ac/nir: move all RADV related code to radv_nir_to_llvm.c
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48
49 #include "util/string_buffer.h"
50
51 static const struct nir_shader_compiler_options nir_options = {
52 .vertex_id_zero_based = true,
53 .lower_scmp = true,
54 .lower_flrp32 = true,
55 .lower_flrp64 = true,
56 .lower_device_index_to_zero = true,
57 .lower_fsat = true,
58 .lower_fdiv = true,
59 .lower_sub = true,
60 .lower_pack_snorm_2x16 = true,
61 .lower_pack_snorm_4x8 = true,
62 .lower_pack_unorm_2x16 = true,
63 .lower_pack_unorm_4x8 = true,
64 .lower_unpack_snorm_2x16 = true,
65 .lower_unpack_snorm_4x8 = true,
66 .lower_unpack_unorm_2x16 = true,
67 .lower_unpack_unorm_4x8 = true,
68 .lower_extract_byte = true,
69 .lower_extract_word = true,
70 .lower_ffma = true,
71 .lower_fpow = true,
72 .vs_inputs_dual_locations = true,
73 .max_unroll_iterations = 32
74 };
75
76 VkResult radv_CreateShaderModule(
77 VkDevice _device,
78 const VkShaderModuleCreateInfo* pCreateInfo,
79 const VkAllocationCallbacks* pAllocator,
80 VkShaderModule* pShaderModule)
81 {
82 RADV_FROM_HANDLE(radv_device, device, _device);
83 struct radv_shader_module *module;
84
85 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
86 assert(pCreateInfo->flags == 0);
87
88 module = vk_alloc2(&device->alloc, pAllocator,
89 sizeof(*module) + pCreateInfo->codeSize, 8,
90 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
91 if (module == NULL)
92 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
93
94 module->nir = NULL;
95 module->size = pCreateInfo->codeSize;
96 memcpy(module->data, pCreateInfo->pCode, module->size);
97
98 _mesa_sha1_compute(module->data, module->size, module->sha1);
99
100 *pShaderModule = radv_shader_module_to_handle(module);
101
102 return VK_SUCCESS;
103 }
104
105 void radv_DestroyShaderModule(
106 VkDevice _device,
107 VkShaderModule _module,
108 const VkAllocationCallbacks* pAllocator)
109 {
110 RADV_FROM_HANDLE(radv_device, device, _device);
111 RADV_FROM_HANDLE(radv_shader_module, module, _module);
112
113 if (!module)
114 return;
115
116 vk_free2(&device->alloc, pAllocator, module);
117 }
118
119 void
120 radv_optimize_nir(struct nir_shader *shader)
121 {
122 bool progress;
123
124 do {
125 progress = false;
126
127 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
128 NIR_PASS_V(shader, nir_lower_64bit_pack);
129 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
130 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
131
132 NIR_PASS(progress, shader, nir_copy_prop);
133 NIR_PASS(progress, shader, nir_opt_remove_phis);
134 NIR_PASS(progress, shader, nir_opt_dce);
135 if (nir_opt_trivial_continues(shader)) {
136 progress = true;
137 NIR_PASS(progress, shader, nir_copy_prop);
138 NIR_PASS(progress, shader, nir_opt_remove_phis);
139 NIR_PASS(progress, shader, nir_opt_dce);
140 }
141 NIR_PASS(progress, shader, nir_opt_if);
142 NIR_PASS(progress, shader, nir_opt_dead_cf);
143 NIR_PASS(progress, shader, nir_opt_cse);
144 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
145 NIR_PASS(progress, shader, nir_opt_algebraic);
146 NIR_PASS(progress, shader, nir_opt_constant_folding);
147 NIR_PASS(progress, shader, nir_opt_undef);
148 NIR_PASS(progress, shader, nir_opt_conditional_discard);
149 if (shader->options->max_unroll_iterations) {
150 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
151 }
152 } while (progress);
153
154 NIR_PASS(progress, shader, nir_opt_shrink_load);
155 }
156
157 nir_shader *
158 radv_shader_compile_to_nir(struct radv_device *device,
159 struct radv_shader_module *module,
160 const char *entrypoint_name,
161 gl_shader_stage stage,
162 const VkSpecializationInfo *spec_info)
163 {
164 if (strcmp(entrypoint_name, "main") != 0) {
165 radv_finishme("Multiple shaders per module not really supported");
166 }
167
168 nir_shader *nir;
169 nir_function *entry_point;
170 if (module->nir) {
171 /* Some things such as our meta clear/blit code will give us a NIR
172 * shader directly. In that case, we just ignore the SPIR-V entirely
173 * and just use the NIR shader */
174 nir = module->nir;
175 nir->options = &nir_options;
176 nir_validate_shader(nir);
177
178 assert(exec_list_length(&nir->functions) == 1);
179 struct exec_node *node = exec_list_get_head(&nir->functions);
180 entry_point = exec_node_data(nir_function, node, node);
181 } else {
182 uint32_t *spirv = (uint32_t *) module->data;
183 assert(module->size % 4 == 0);
184
185 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
186 radv_print_spirv(spirv, module->size, stderr);
187
188 uint32_t num_spec_entries = 0;
189 struct nir_spirv_specialization *spec_entries = NULL;
190 if (spec_info && spec_info->mapEntryCount > 0) {
191 num_spec_entries = spec_info->mapEntryCount;
192 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
193 for (uint32_t i = 0; i < num_spec_entries; i++) {
194 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
195 const void *data = spec_info->pData + entry.offset;
196 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
197
198 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
199 if (spec_info->dataSize == 8)
200 spec_entries[i].data64 = *(const uint64_t *)data;
201 else
202 spec_entries[i].data32 = *(const uint32_t *)data;
203 }
204 }
205 const struct spirv_to_nir_options spirv_options = {
206 .caps = {
207 .device_group = true,
208 .draw_parameters = true,
209 .float64 = true,
210 .image_read_without_format = true,
211 .image_write_without_format = true,
212 .tessellation = true,
213 .int64 = true,
214 .multiview = true,
215 .subgroup_basic = true,
216 .variable_pointers = true,
217 },
218 .exts = {
219 .AMD_gcn_shader = true,
220 },
221 };
222 entry_point = spirv_to_nir(spirv, module->size / 4,
223 spec_entries, num_spec_entries,
224 stage, entrypoint_name,
225 &spirv_options, &nir_options);
226 nir = entry_point->shader;
227 assert(nir->info.stage == stage);
228 nir_validate_shader(nir);
229
230 free(spec_entries);
231
232 /* We have to lower away local constant initializers right before we
233 * inline functions. That way they get properly initialized at the top
234 * of the function and not at the top of its caller.
235 */
236 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
237 NIR_PASS_V(nir, nir_lower_returns);
238 NIR_PASS_V(nir, nir_inline_functions);
239
240 /* Pick off the single entrypoint that we want */
241 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
242 if (func != entry_point)
243 exec_node_remove(&func->node);
244 }
245 assert(exec_list_length(&nir->functions) == 1);
246 entry_point->name = ralloc_strdup(entry_point, "main");
247
248 NIR_PASS_V(nir, nir_remove_dead_variables,
249 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
250
251 /* Now that we've deleted all but the main function, we can go ahead and
252 * lower the rest of the constant initializers.
253 */
254 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
255 NIR_PASS_V(nir, nir_lower_system_values);
256 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
257 }
258
259 /* Vulkan uses the separate-shader linking model */
260 nir->info.separate_shader = true;
261
262 nir_shader_gather_info(nir, entry_point->impl);
263
264 static const nir_lower_tex_options tex_options = {
265 .lower_txp = ~0,
266 };
267
268 nir_lower_tex(nir, &tex_options);
269
270 nir_lower_vars_to_ssa(nir);
271 nir_lower_var_copies(nir);
272 nir_lower_global_vars_to_local(nir);
273 nir_remove_dead_variables(nir, nir_var_local);
274 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
275 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
276 .subgroup_size = 64,
277 .ballot_bit_size = 64,
278 .lower_to_scalar = 1,
279 .lower_subgroup_masks = 1,
280 .lower_shuffle = 1,
281 .lower_quad = 1,
282 });
283
284 radv_optimize_nir(nir);
285
286 return nir;
287 }
288
289 void *
290 radv_alloc_shader_memory(struct radv_device *device,
291 struct radv_shader_variant *shader)
292 {
293 mtx_lock(&device->shader_slab_mutex);
294 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
295 uint64_t offset = 0;
296 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
297 if (s->bo_offset - offset >= shader->code_size) {
298 shader->bo = slab->bo;
299 shader->bo_offset = offset;
300 list_addtail(&shader->slab_list, &s->slab_list);
301 mtx_unlock(&device->shader_slab_mutex);
302 return slab->ptr + offset;
303 }
304 offset = align_u64(s->bo_offset + s->code_size, 256);
305 }
306 if (slab->size - offset >= shader->code_size) {
307 shader->bo = slab->bo;
308 shader->bo_offset = offset;
309 list_addtail(&shader->slab_list, &slab->shaders);
310 mtx_unlock(&device->shader_slab_mutex);
311 return slab->ptr + offset;
312 }
313 }
314
315 mtx_unlock(&device->shader_slab_mutex);
316 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
317
318 slab->size = 256 * 1024;
319 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
320 RADEON_DOMAIN_VRAM,
321 RADEON_FLAG_NO_INTERPROCESS_SHARING |
322 device->physical_device->cpdma_prefetch_writes_memory ?
323 0 : RADEON_FLAG_READ_ONLY);
324 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
325 list_inithead(&slab->shaders);
326
327 mtx_lock(&device->shader_slab_mutex);
328 list_add(&slab->slabs, &device->shader_slabs);
329
330 shader->bo = slab->bo;
331 shader->bo_offset = 0;
332 list_add(&shader->slab_list, &slab->shaders);
333 mtx_unlock(&device->shader_slab_mutex);
334 return slab->ptr;
335 }
336
337 void
338 radv_destroy_shader_slabs(struct radv_device *device)
339 {
340 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
341 device->ws->buffer_destroy(slab->bo);
342 free(slab);
343 }
344 mtx_destroy(&device->shader_slab_mutex);
345 }
346
347 static void
348 radv_fill_shader_variant(struct radv_device *device,
349 struct radv_shader_variant *variant,
350 struct ac_shader_binary *binary,
351 gl_shader_stage stage)
352 {
353 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
354 unsigned vgpr_comp_cnt = 0;
355
356 if (scratch_enabled && !device->llvm_supports_spill)
357 radv_finishme("shader scratch support only available with LLVM 4.0");
358
359 variant->code_size = binary->code_size;
360 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
361 S_00B12C_SCRATCH_EN(scratch_enabled);
362
363 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
364 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
365 S_00B848_DX10_CLAMP(1) |
366 S_00B848_FLOAT_MODE(variant->config.float_mode);
367
368 switch (stage) {
369 case MESA_SHADER_TESS_EVAL:
370 vgpr_comp_cnt = 3;
371 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
372 break;
373 case MESA_SHADER_TESS_CTRL:
374 if (device->physical_device->rad_info.chip_class >= GFX9)
375 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
376 else
377 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
378 break;
379 case MESA_SHADER_VERTEX:
380 case MESA_SHADER_GEOMETRY:
381 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
382 break;
383 case MESA_SHADER_FRAGMENT:
384 break;
385 case MESA_SHADER_COMPUTE: {
386 struct ac_shader_info *info = &variant->info.info;
387 variant->rsrc2 |=
388 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
389 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
390 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
391 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
392 info->cs.uses_thread_id[1] ? 1 : 0) |
393 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
394 S_00B84C_LDS_SIZE(variant->config.lds_size);
395 break;
396 }
397 default:
398 unreachable("unsupported shader type");
399 break;
400 }
401
402 if (device->physical_device->rad_info.chip_class >= GFX9 &&
403 stage == MESA_SHADER_GEOMETRY) {
404 struct ac_shader_info *info = &variant->info.info;
405 unsigned es_type = variant->info.gs.es_type;
406 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
407
408 if (es_type == MESA_SHADER_VERTEX) {
409 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
410 } else if (es_type == MESA_SHADER_TESS_EVAL) {
411 es_vgpr_comp_cnt = 3;
412 } else {
413 unreachable("invalid shader ES type");
414 }
415
416 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
417 * VGPR[0:4] are always loaded.
418 */
419 if (info->uses_invocation_id)
420 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
421 else if (info->uses_prim_id)
422 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
423 else if (variant->info.gs.vertices_in >= 3)
424 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
425 else
426 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
427
428 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
429 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
430 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
431 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
432 stage == MESA_SHADER_TESS_CTRL)
433 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
434 else
435 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
436
437 void *ptr = radv_alloc_shader_memory(device, variant);
438 memcpy(ptr, binary->code, binary->code_size);
439 }
440
441 static struct radv_shader_variant *
442 shader_variant_create(struct radv_device *device,
443 struct radv_shader_module *module,
444 struct nir_shader * const *shaders,
445 int shader_count,
446 gl_shader_stage stage,
447 struct ac_nir_compiler_options *options,
448 bool gs_copy_shader,
449 void **code_out,
450 unsigned *code_size_out)
451 {
452 enum radeon_family chip_family = device->physical_device->rad_info.family;
453 bool dump_shaders = radv_can_dump_shader(device, module);
454 enum ac_target_machine_options tm_options = 0;
455 struct radv_shader_variant *variant;
456 struct ac_shader_binary binary;
457 LLVMTargetMachineRef tm;
458
459 variant = calloc(1, sizeof(struct radv_shader_variant));
460 if (!variant)
461 return NULL;
462
463 options->family = chip_family;
464 options->chip_class = device->physical_device->rad_info.chip_class;
465 options->dump_preoptir = radv_can_dump_shader(device, module) &&
466 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
467
468 if (options->supports_spill)
469 tm_options |= AC_TM_SUPPORTS_SPILL;
470 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
471 tm_options |= AC_TM_SISCHED;
472 tm = ac_create_target_machine(chip_family, tm_options);
473
474 if (gs_copy_shader) {
475 assert(shader_count == 1);
476 radv_compile_gs_copy_shader(tm, *shaders, &binary,
477 &variant->config, &variant->info,
478 options, dump_shaders);
479 } else {
480 radv_compile_nir_shader(tm, &binary, &variant->config,
481 &variant->info, shaders, shader_count,
482 options, dump_shaders);
483 }
484
485 LLVMDisposeTargetMachine(tm);
486
487 radv_fill_shader_variant(device, variant, &binary, stage);
488
489 if (code_out) {
490 *code_out = binary.code;
491 *code_size_out = binary.code_size;
492 } else
493 free(binary.code);
494 free(binary.config);
495 free(binary.rodata);
496 free(binary.global_symbol_offsets);
497 free(binary.relocs);
498 variant->ref_count = 1;
499
500 if (device->keep_shader_info) {
501 variant->disasm_string = binary.disasm_string;
502 if (!gs_copy_shader && !module->nir) {
503 variant->nir = *shaders;
504 variant->spirv = (uint32_t *)module->data;
505 variant->spirv_size = module->size;
506 }
507 } else {
508 free(binary.disasm_string);
509 }
510
511 return variant;
512 }
513
514 struct radv_shader_variant *
515 radv_shader_variant_create(struct radv_device *device,
516 struct radv_shader_module *module,
517 struct nir_shader *const *shaders,
518 int shader_count,
519 struct radv_pipeline_layout *layout,
520 const struct ac_shader_variant_key *key,
521 void **code_out,
522 unsigned *code_size_out)
523 {
524 struct ac_nir_compiler_options options = {0};
525
526 options.layout = layout;
527 if (key)
528 options.key = *key;
529
530 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
531 options.supports_spill = device->llvm_supports_spill;
532
533 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
534 &options, false, code_out, code_size_out);
535 }
536
537 struct radv_shader_variant *
538 radv_create_gs_copy_shader(struct radv_device *device,
539 struct nir_shader *shader,
540 void **code_out,
541 unsigned *code_size_out,
542 bool multiview)
543 {
544 struct ac_nir_compiler_options options = {0};
545
546 options.key.has_multiview_view_index = multiview;
547
548 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
549 &options, true, code_out, code_size_out);
550 }
551
552 void
553 radv_shader_variant_destroy(struct radv_device *device,
554 struct radv_shader_variant *variant)
555 {
556 if (!p_atomic_dec_zero(&variant->ref_count))
557 return;
558
559 mtx_lock(&device->shader_slab_mutex);
560 list_del(&variant->slab_list);
561 mtx_unlock(&device->shader_slab_mutex);
562
563 ralloc_free(variant->nir);
564 free(variant->disasm_string);
565 free(variant);
566 }
567
568 const char *
569 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
570 {
571 switch (stage) {
572 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
573 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
574 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
575 case MESA_SHADER_COMPUTE: return "Compute Shader";
576 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
577 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
578 default:
579 return "Unknown shader";
580 };
581 }
582
583 static uint32_t
584 get_total_sgprs(struct radv_device *device)
585 {
586 if (device->physical_device->rad_info.chip_class >= VI)
587 return 800;
588 else
589 return 512;
590 }
591
592 static void
593 generate_shader_stats(struct radv_device *device,
594 struct radv_shader_variant *variant,
595 gl_shader_stage stage,
596 struct _mesa_string_buffer *buf)
597 {
598 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
599 struct ac_shader_config *conf;
600 unsigned max_simd_waves;
601 unsigned lds_per_wave = 0;
602
603 switch (device->physical_device->rad_info.family) {
604 /* These always have 8 waves: */
605 case CHIP_POLARIS10:
606 case CHIP_POLARIS11:
607 case CHIP_POLARIS12:
608 max_simd_waves = 8;
609 break;
610 default:
611 max_simd_waves = 10;
612 }
613
614 conf = &variant->config;
615
616 if (stage == MESA_SHADER_FRAGMENT) {
617 lds_per_wave = conf->lds_size * lds_increment +
618 align(variant->info.fs.num_interp * 48,
619 lds_increment);
620 }
621
622 if (conf->num_sgprs)
623 max_simd_waves = MIN2(max_simd_waves, get_total_sgprs(device) / conf->num_sgprs);
624
625 if (conf->num_vgprs)
626 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
627
628 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
629 * that PS can use.
630 */
631 if (lds_per_wave)
632 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
633
634 if (stage == MESA_SHADER_FRAGMENT) {
635 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
636 "SPI_PS_INPUT_ADDR = 0x%04x\n"
637 "SPI_PS_INPUT_ENA = 0x%04x\n",
638 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
639 }
640
641 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
642 "SGPRS: %d\n"
643 "VGPRS: %d\n"
644 "Spilled SGPRs: %d\n"
645 "Spilled VGPRs: %d\n"
646 "PrivMem VGPRS: %d\n"
647 "Code Size: %d bytes\n"
648 "LDS: %d blocks\n"
649 "Scratch: %d bytes per wave\n"
650 "Max Waves: %d\n"
651 "********************\n\n\n",
652 conf->num_sgprs, conf->num_vgprs,
653 conf->spilled_sgprs, conf->spilled_vgprs,
654 variant->info.private_mem_vgprs, variant->code_size,
655 conf->lds_size, conf->scratch_bytes_per_wave,
656 max_simd_waves);
657 }
658
659 void
660 radv_shader_dump_stats(struct radv_device *device,
661 struct radv_shader_variant *variant,
662 gl_shader_stage stage,
663 FILE *file)
664 {
665 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
666
667 generate_shader_stats(device, variant, stage, buf);
668
669 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
670 fprintf(file, "%s", buf->buf);
671
672 _mesa_string_buffer_destroy(buf);
673 }
674
675 VkResult
676 radv_GetShaderInfoAMD(VkDevice _device,
677 VkPipeline _pipeline,
678 VkShaderStageFlagBits shaderStage,
679 VkShaderInfoTypeAMD infoType,
680 size_t* pInfoSize,
681 void* pInfo)
682 {
683 RADV_FROM_HANDLE(radv_device, device, _device);
684 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
685 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
686 struct radv_shader_variant *variant = pipeline->shaders[stage];
687 struct _mesa_string_buffer *buf;
688 VkResult result = VK_SUCCESS;
689
690 /* Spec doesn't indicate what to do if the stage is invalid, so just
691 * return no info for this. */
692 if (!variant)
693 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
694
695 switch (infoType) {
696 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
697 if (!pInfo) {
698 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
699 } else {
700 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
701 struct ac_shader_config *conf = &variant->config;
702
703 VkShaderStatisticsInfoAMD statistics = {};
704 statistics.shaderStageMask = shaderStage;
705 statistics.numPhysicalVgprs = 256;
706 statistics.numPhysicalSgprs = get_total_sgprs(device);
707 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
708
709 if (stage == MESA_SHADER_COMPUTE) {
710 unsigned *local_size = variant->nir->info.cs.local_size;
711 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
712
713 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
714 ceil(workgroup_size / statistics.numPhysicalVgprs);
715
716 statistics.computeWorkGroupSize[0] = local_size[0];
717 statistics.computeWorkGroupSize[1] = local_size[1];
718 statistics.computeWorkGroupSize[2] = local_size[2];
719 } else {
720 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
721 }
722
723 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
724 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
725 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
726 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
727 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
728
729 size_t size = *pInfoSize;
730 *pInfoSize = sizeof(statistics);
731
732 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
733
734 if (size < *pInfoSize)
735 result = VK_INCOMPLETE;
736 }
737
738 break;
739 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
740 buf = _mesa_string_buffer_create(NULL, 1024);
741
742 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
743 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
744 generate_shader_stats(device, variant, stage, buf);
745
746 /* Need to include the null terminator. */
747 size_t length = buf->length + 1;
748
749 if (!pInfo) {
750 *pInfoSize = length;
751 } else {
752 size_t size = *pInfoSize;
753 *pInfoSize = length;
754
755 memcpy(pInfo, buf->buf, MIN2(size, length));
756
757 if (size < length)
758 result = VK_INCOMPLETE;
759 }
760
761 _mesa_string_buffer_destroy(buf);
762 break;
763 default:
764 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
765 result = VK_ERROR_FEATURE_NOT_PRESENT;
766 break;
767 }
768
769 return result;
770 }