radv/radeonsi/nir: lower 64bit flrp
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48
49 #include "util/string_buffer.h"
50
51 static const struct nir_shader_compiler_options nir_options = {
52 .vertex_id_zero_based = true,
53 .lower_scmp = true,
54 .lower_flrp32 = true,
55 .lower_flrp64 = true,
56 .lower_fsat = true,
57 .lower_fdiv = true,
58 .lower_sub = true,
59 .lower_pack_snorm_2x16 = true,
60 .lower_pack_snorm_4x8 = true,
61 .lower_pack_unorm_2x16 = true,
62 .lower_pack_unorm_4x8 = true,
63 .lower_unpack_snorm_2x16 = true,
64 .lower_unpack_snorm_4x8 = true,
65 .lower_unpack_unorm_2x16 = true,
66 .lower_unpack_unorm_4x8 = true,
67 .lower_extract_byte = true,
68 .lower_extract_word = true,
69 .lower_ffma = true,
70 .max_unroll_iterations = 32
71 };
72
73 VkResult radv_CreateShaderModule(
74 VkDevice _device,
75 const VkShaderModuleCreateInfo* pCreateInfo,
76 const VkAllocationCallbacks* pAllocator,
77 VkShaderModule* pShaderModule)
78 {
79 RADV_FROM_HANDLE(radv_device, device, _device);
80 struct radv_shader_module *module;
81
82 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
83 assert(pCreateInfo->flags == 0);
84
85 module = vk_alloc2(&device->alloc, pAllocator,
86 sizeof(*module) + pCreateInfo->codeSize, 8,
87 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
88 if (module == NULL)
89 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
90
91 module->nir = NULL;
92 module->size = pCreateInfo->codeSize;
93 memcpy(module->data, pCreateInfo->pCode, module->size);
94
95 _mesa_sha1_compute(module->data, module->size, module->sha1);
96
97 *pShaderModule = radv_shader_module_to_handle(module);
98
99 return VK_SUCCESS;
100 }
101
102 void radv_DestroyShaderModule(
103 VkDevice _device,
104 VkShaderModule _module,
105 const VkAllocationCallbacks* pAllocator)
106 {
107 RADV_FROM_HANDLE(radv_device, device, _device);
108 RADV_FROM_HANDLE(radv_shader_module, module, _module);
109
110 if (!module)
111 return;
112
113 vk_free2(&device->alloc, pAllocator, module);
114 }
115
116 void
117 radv_optimize_nir(struct nir_shader *shader)
118 {
119 bool progress;
120
121 do {
122 progress = false;
123
124 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
125 NIR_PASS_V(shader, nir_lower_64bit_pack);
126 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
127 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
128
129 NIR_PASS(progress, shader, nir_copy_prop);
130 NIR_PASS(progress, shader, nir_opt_remove_phis);
131 NIR_PASS(progress, shader, nir_opt_dce);
132 if (nir_opt_trivial_continues(shader)) {
133 progress = true;
134 NIR_PASS(progress, shader, nir_copy_prop);
135 NIR_PASS(progress, shader, nir_opt_remove_phis);
136 NIR_PASS(progress, shader, nir_opt_dce);
137 }
138 NIR_PASS(progress, shader, nir_opt_if);
139 NIR_PASS(progress, shader, nir_opt_dead_cf);
140 NIR_PASS(progress, shader, nir_opt_cse);
141 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
142 NIR_PASS(progress, shader, nir_opt_algebraic);
143 NIR_PASS(progress, shader, nir_opt_constant_folding);
144 NIR_PASS(progress, shader, nir_opt_undef);
145 NIR_PASS(progress, shader, nir_opt_conditional_discard);
146 if (shader->options->max_unroll_iterations) {
147 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
148 }
149 } while (progress);
150 }
151
152 nir_shader *
153 radv_shader_compile_to_nir(struct radv_device *device,
154 struct radv_shader_module *module,
155 const char *entrypoint_name,
156 gl_shader_stage stage,
157 const VkSpecializationInfo *spec_info)
158 {
159 if (strcmp(entrypoint_name, "main") != 0) {
160 radv_finishme("Multiple shaders per module not really supported");
161 }
162
163 nir_shader *nir;
164 nir_function *entry_point;
165 if (module->nir) {
166 /* Some things such as our meta clear/blit code will give us a NIR
167 * shader directly. In that case, we just ignore the SPIR-V entirely
168 * and just use the NIR shader */
169 nir = module->nir;
170 nir->options = &nir_options;
171 nir_validate_shader(nir);
172
173 assert(exec_list_length(&nir->functions) == 1);
174 struct exec_node *node = exec_list_get_head(&nir->functions);
175 entry_point = exec_node_data(nir_function, node, node);
176 } else {
177 uint32_t *spirv = (uint32_t *) module->data;
178 assert(module->size % 4 == 0);
179
180 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
181 radv_print_spirv(spirv, module->size, stderr);
182
183 uint32_t num_spec_entries = 0;
184 struct nir_spirv_specialization *spec_entries = NULL;
185 if (spec_info && spec_info->mapEntryCount > 0) {
186 num_spec_entries = spec_info->mapEntryCount;
187 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
188 for (uint32_t i = 0; i < num_spec_entries; i++) {
189 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
190 const void *data = spec_info->pData + entry.offset;
191 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
192
193 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
194 if (spec_info->dataSize == 8)
195 spec_entries[i].data64 = *(const uint64_t *)data;
196 else
197 spec_entries[i].data32 = *(const uint32_t *)data;
198 }
199 }
200 const struct spirv_to_nir_options spirv_options = {
201 .caps = {
202 .draw_parameters = true,
203 .float64 = true,
204 .image_read_without_format = true,
205 .image_write_without_format = true,
206 .tessellation = true,
207 .int64 = true,
208 .multiview = true,
209 .variable_pointers = true,
210 },
211 };
212 entry_point = spirv_to_nir(spirv, module->size / 4,
213 spec_entries, num_spec_entries,
214 stage, entrypoint_name,
215 &spirv_options, &nir_options);
216 nir = entry_point->shader;
217 assert(nir->info.stage == stage);
218 nir_validate_shader(nir);
219
220 free(spec_entries);
221
222 /* We have to lower away local constant initializers right before we
223 * inline functions. That way they get properly initialized at the top
224 * of the function and not at the top of its caller.
225 */
226 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
227 NIR_PASS_V(nir, nir_lower_returns);
228 NIR_PASS_V(nir, nir_inline_functions);
229
230 /* Pick off the single entrypoint that we want */
231 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
232 if (func != entry_point)
233 exec_node_remove(&func->node);
234 }
235 assert(exec_list_length(&nir->functions) == 1);
236 entry_point->name = ralloc_strdup(entry_point, "main");
237
238 NIR_PASS_V(nir, nir_remove_dead_variables,
239 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
240
241 /* Now that we've deleted all but the main function, we can go ahead and
242 * lower the rest of the constant initializers.
243 */
244 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
245 NIR_PASS_V(nir, nir_lower_system_values);
246 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
247 }
248
249 /* Vulkan uses the separate-shader linking model */
250 nir->info.separate_shader = true;
251
252 nir_shader_gather_info(nir, entry_point->impl);
253
254 /* While it would be nice not to have this flag, we are constrained
255 * by the reality that LLVM 5.0 doesn't have working VGPR indexing
256 * on GFX9.
257 */
258 bool llvm_has_working_vgpr_indexing =
259 device->physical_device->rad_info.chip_class <= VI;
260
261 /* TODO: Indirect indexing of GS inputs is unimplemented.
262 *
263 * TCS and TES load inputs directly from LDS or offchip memory, so
264 * indirect indexing is trivial.
265 */
266 nir_variable_mode indirect_mask = 0;
267 if (nir->info.stage == MESA_SHADER_GEOMETRY ||
268 (nir->info.stage != MESA_SHADER_TESS_CTRL &&
269 nir->info.stage != MESA_SHADER_TESS_EVAL &&
270 !llvm_has_working_vgpr_indexing)) {
271 indirect_mask |= nir_var_shader_in;
272 }
273 if (!llvm_has_working_vgpr_indexing &&
274 nir->info.stage != MESA_SHADER_TESS_CTRL)
275 indirect_mask |= nir_var_shader_out;
276
277 /* TODO: We shouldn't need to do this, however LLVM isn't currently
278 * smart enough to handle indirects without causing excess spilling
279 * causing the gpu to hang.
280 *
281 * See the following thread for more details of the problem:
282 * https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
283 */
284 indirect_mask |= nir_var_local;
285
286 nir_lower_indirect_derefs(nir, indirect_mask);
287
288 static const nir_lower_tex_options tex_options = {
289 .lower_txp = ~0,
290 };
291
292 nir_lower_tex(nir, &tex_options);
293
294 nir_lower_vars_to_ssa(nir);
295 nir_lower_var_copies(nir);
296 nir_lower_global_vars_to_local(nir);
297 nir_remove_dead_variables(nir, nir_var_local);
298 radv_optimize_nir(nir);
299
300 return nir;
301 }
302
303 void *
304 radv_alloc_shader_memory(struct radv_device *device,
305 struct radv_shader_variant *shader)
306 {
307 mtx_lock(&device->shader_slab_mutex);
308 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
309 uint64_t offset = 0;
310 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
311 if (s->bo_offset - offset >= shader->code_size) {
312 shader->bo = slab->bo;
313 shader->bo_offset = offset;
314 list_addtail(&shader->slab_list, &s->slab_list);
315 mtx_unlock(&device->shader_slab_mutex);
316 return slab->ptr + offset;
317 }
318 offset = align_u64(s->bo_offset + s->code_size, 256);
319 }
320 if (slab->size - offset >= shader->code_size) {
321 shader->bo = slab->bo;
322 shader->bo_offset = offset;
323 list_addtail(&shader->slab_list, &slab->shaders);
324 mtx_unlock(&device->shader_slab_mutex);
325 return slab->ptr + offset;
326 }
327 }
328
329 mtx_unlock(&device->shader_slab_mutex);
330 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
331
332 slab->size = 256 * 1024;
333 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
334 RADEON_DOMAIN_VRAM,
335 RADEON_FLAG_NO_INTERPROCESS_SHARING |
336 device->physical_device->cpdma_prefetch_writes_memory ?
337 0 : RADEON_FLAG_READ_ONLY);
338 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
339 list_inithead(&slab->shaders);
340
341 mtx_lock(&device->shader_slab_mutex);
342 list_add(&slab->slabs, &device->shader_slabs);
343
344 shader->bo = slab->bo;
345 shader->bo_offset = 0;
346 list_add(&shader->slab_list, &slab->shaders);
347 mtx_unlock(&device->shader_slab_mutex);
348 return slab->ptr;
349 }
350
351 void
352 radv_destroy_shader_slabs(struct radv_device *device)
353 {
354 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
355 device->ws->buffer_destroy(slab->bo);
356 free(slab);
357 }
358 mtx_destroy(&device->shader_slab_mutex);
359 }
360
361 static void
362 radv_fill_shader_variant(struct radv_device *device,
363 struct radv_shader_variant *variant,
364 struct ac_shader_binary *binary,
365 gl_shader_stage stage)
366 {
367 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
368 unsigned vgpr_comp_cnt = 0;
369
370 if (scratch_enabled && !device->llvm_supports_spill)
371 radv_finishme("shader scratch support only available with LLVM 4.0");
372
373 variant->code_size = binary->code_size;
374 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
375 S_00B12C_SCRATCH_EN(scratch_enabled);
376
377 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
378 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
379 S_00B848_DX10_CLAMP(1) |
380 S_00B848_FLOAT_MODE(variant->config.float_mode);
381
382 switch (stage) {
383 case MESA_SHADER_TESS_EVAL:
384 vgpr_comp_cnt = 3;
385 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
386 break;
387 case MESA_SHADER_TESS_CTRL:
388 if (device->physical_device->rad_info.chip_class >= GFX9)
389 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
390 else
391 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
392 break;
393 case MESA_SHADER_VERTEX:
394 case MESA_SHADER_GEOMETRY:
395 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
396 break;
397 case MESA_SHADER_FRAGMENT:
398 break;
399 case MESA_SHADER_COMPUTE: {
400 struct ac_shader_info *info = &variant->info.info;
401 variant->rsrc2 |=
402 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
403 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
404 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
405 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
406 info->cs.uses_thread_id[1] ? 1 : 0) |
407 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
408 S_00B84C_LDS_SIZE(variant->config.lds_size);
409 break;
410 }
411 default:
412 unreachable("unsupported shader type");
413 break;
414 }
415
416 if (device->physical_device->rad_info.chip_class >= GFX9 &&
417 stage == MESA_SHADER_GEOMETRY) {
418 struct ac_shader_info *info = &variant->info.info;
419 unsigned es_type = variant->info.gs.es_type;
420 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
421
422 if (es_type == MESA_SHADER_VERTEX) {
423 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
424 } else if (es_type == MESA_SHADER_TESS_EVAL) {
425 es_vgpr_comp_cnt = 3;
426 } else {
427 assert(!"invalid shader ES type");
428 }
429
430 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
431 * VGPR[0:4] are always loaded.
432 */
433 if (info->uses_invocation_id)
434 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
435 else if (info->uses_prim_id)
436 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
437 else if (variant->info.gs.vertices_in >= 3)
438 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
439 else
440 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
441
442 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
443 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
444 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
445 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
446 stage == MESA_SHADER_TESS_CTRL)
447 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
448 else
449 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
450
451 void *ptr = radv_alloc_shader_memory(device, variant);
452 memcpy(ptr, binary->code, binary->code_size);
453 }
454
455 static struct radv_shader_variant *
456 shader_variant_create(struct radv_device *device,
457 struct radv_shader_module *module,
458 struct nir_shader * const *shaders,
459 int shader_count,
460 gl_shader_stage stage,
461 struct ac_nir_compiler_options *options,
462 bool gs_copy_shader,
463 void **code_out,
464 unsigned *code_size_out)
465 {
466 enum radeon_family chip_family = device->physical_device->rad_info.family;
467 bool dump_shaders = radv_can_dump_shader(device, module);
468 enum ac_target_machine_options tm_options = 0;
469 struct radv_shader_variant *variant;
470 struct ac_shader_binary binary;
471 LLVMTargetMachineRef tm;
472
473 variant = calloc(1, sizeof(struct radv_shader_variant));
474 if (!variant)
475 return NULL;
476
477 options->family = chip_family;
478 options->chip_class = device->physical_device->rad_info.chip_class;
479
480 if (options->supports_spill)
481 tm_options |= AC_TM_SUPPORTS_SPILL;
482 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
483 tm_options |= AC_TM_SISCHED;
484 tm = ac_create_target_machine(chip_family, tm_options);
485
486 if (gs_copy_shader) {
487 assert(shader_count == 1);
488 ac_create_gs_copy_shader(tm, *shaders, &binary, &variant->config,
489 &variant->info, options, dump_shaders);
490 } else {
491 ac_compile_nir_shader(tm, &binary, &variant->config,
492 &variant->info, shaders, shader_count, options,
493 dump_shaders);
494 }
495
496 LLVMDisposeTargetMachine(tm);
497
498 radv_fill_shader_variant(device, variant, &binary, stage);
499
500 if (code_out) {
501 *code_out = binary.code;
502 *code_size_out = binary.code_size;
503 } else
504 free(binary.code);
505 free(binary.config);
506 free(binary.rodata);
507 free(binary.global_symbol_offsets);
508 free(binary.relocs);
509 variant->ref_count = 1;
510
511 if (device->keep_shader_info) {
512 variant->disasm_string = binary.disasm_string;
513 if (!gs_copy_shader && !module->nir) {
514 variant->nir = *shaders;
515 variant->spirv = (uint32_t *)module->data;
516 variant->spirv_size = module->size;
517 }
518 } else {
519 free(binary.disasm_string);
520 }
521
522 return variant;
523 }
524
525 struct radv_shader_variant *
526 radv_shader_variant_create(struct radv_device *device,
527 struct radv_shader_module *module,
528 struct nir_shader *const *shaders,
529 int shader_count,
530 struct radv_pipeline_layout *layout,
531 const struct ac_shader_variant_key *key,
532 void **code_out,
533 unsigned *code_size_out)
534 {
535 struct ac_nir_compiler_options options = {0};
536
537 options.layout = layout;
538 if (key)
539 options.key = *key;
540
541 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
542 options.supports_spill = device->llvm_supports_spill;
543
544 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
545 &options, false, code_out, code_size_out);
546 }
547
548 struct radv_shader_variant *
549 radv_create_gs_copy_shader(struct radv_device *device,
550 struct nir_shader *shader,
551 void **code_out,
552 unsigned *code_size_out,
553 bool multiview)
554 {
555 struct ac_nir_compiler_options options = {0};
556
557 options.key.has_multiview_view_index = multiview;
558
559 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
560 &options, true, code_out, code_size_out);
561 }
562
563 void
564 radv_shader_variant_destroy(struct radv_device *device,
565 struct radv_shader_variant *variant)
566 {
567 if (!p_atomic_dec_zero(&variant->ref_count))
568 return;
569
570 mtx_lock(&device->shader_slab_mutex);
571 list_del(&variant->slab_list);
572 mtx_unlock(&device->shader_slab_mutex);
573
574 ralloc_free(variant->nir);
575 free(variant->disasm_string);
576 free(variant);
577 }
578
579 const char *
580 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
581 {
582 switch (stage) {
583 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
584 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
585 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
586 case MESA_SHADER_COMPUTE: return "Compute Shader";
587 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
588 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
589 default:
590 return "Unknown shader";
591 };
592 }
593
594 static uint32_t
595 get_total_sgprs(struct radv_device *device)
596 {
597 if (device->physical_device->rad_info.chip_class >= VI)
598 return 800;
599 else
600 return 512;
601 }
602
603 static void
604 generate_shader_stats(struct radv_device *device,
605 struct radv_shader_variant *variant,
606 gl_shader_stage stage,
607 struct _mesa_string_buffer *buf)
608 {
609 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
610 struct ac_shader_config *conf;
611 unsigned max_simd_waves;
612 unsigned lds_per_wave = 0;
613
614 switch (device->physical_device->rad_info.family) {
615 /* These always have 8 waves: */
616 case CHIP_POLARIS10:
617 case CHIP_POLARIS11:
618 case CHIP_POLARIS12:
619 max_simd_waves = 8;
620 break;
621 default:
622 max_simd_waves = 10;
623 }
624
625 conf = &variant->config;
626
627 if (stage == MESA_SHADER_FRAGMENT) {
628 lds_per_wave = conf->lds_size * lds_increment +
629 align(variant->info.fs.num_interp * 48,
630 lds_increment);
631 }
632
633 if (conf->num_sgprs)
634 max_simd_waves = MIN2(max_simd_waves, get_total_sgprs(device) / conf->num_sgprs);
635
636 if (conf->num_vgprs)
637 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
638
639 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
640 * that PS can use.
641 */
642 if (lds_per_wave)
643 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
644
645 if (stage == MESA_SHADER_FRAGMENT) {
646 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
647 "SPI_PS_INPUT_ADDR = 0x%04x\n"
648 "SPI_PS_INPUT_ENA = 0x%04x\n",
649 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
650 }
651
652 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
653 "SGPRS: %d\n"
654 "VGPRS: %d\n"
655 "Spilled SGPRs: %d\n"
656 "Spilled VGPRs: %d\n"
657 "Code Size: %d bytes\n"
658 "LDS: %d blocks\n"
659 "Scratch: %d bytes per wave\n"
660 "Max Waves: %d\n"
661 "********************\n\n\n",
662 conf->num_sgprs, conf->num_vgprs,
663 conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
664 conf->lds_size, conf->scratch_bytes_per_wave,
665 max_simd_waves);
666 }
667
668 void
669 radv_shader_dump_stats(struct radv_device *device,
670 struct radv_shader_variant *variant,
671 gl_shader_stage stage,
672 FILE *file)
673 {
674 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
675
676 generate_shader_stats(device, variant, stage, buf);
677
678 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
679 fprintf(file, "%s", buf->buf);
680
681 _mesa_string_buffer_destroy(buf);
682 }
683
684 VkResult
685 radv_GetShaderInfoAMD(VkDevice _device,
686 VkPipeline _pipeline,
687 VkShaderStageFlagBits shaderStage,
688 VkShaderInfoTypeAMD infoType,
689 size_t* pInfoSize,
690 void* pInfo)
691 {
692 RADV_FROM_HANDLE(radv_device, device, _device);
693 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
694 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
695 struct radv_shader_variant *variant = pipeline->shaders[stage];
696 struct _mesa_string_buffer *buf;
697 VkResult result = VK_SUCCESS;
698
699 /* Spec doesn't indicate what to do if the stage is invalid, so just
700 * return no info for this. */
701 if (!variant)
702 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
703
704 switch (infoType) {
705 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
706 if (!pInfo) {
707 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
708 } else {
709 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
710 struct ac_shader_config *conf = &variant->config;
711
712 VkShaderStatisticsInfoAMD statistics = {};
713 statistics.shaderStageMask = shaderStage;
714 statistics.numPhysicalVgprs = 256;
715 statistics.numPhysicalSgprs = get_total_sgprs(device);
716 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
717
718 if (stage == MESA_SHADER_COMPUTE) {
719 unsigned *local_size = variant->nir->info.cs.local_size;
720 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
721
722 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
723 ceil(workgroup_size / statistics.numPhysicalVgprs);
724
725 statistics.computeWorkGroupSize[0] = local_size[0];
726 statistics.computeWorkGroupSize[1] = local_size[1];
727 statistics.computeWorkGroupSize[2] = local_size[2];
728 } else {
729 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
730 }
731
732 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
733 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
734 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
735 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
736 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
737
738 size_t size = *pInfoSize;
739 *pInfoSize = sizeof(statistics);
740
741 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
742
743 if (size < *pInfoSize)
744 result = VK_INCOMPLETE;
745 }
746
747 break;
748 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
749 buf = _mesa_string_buffer_create(NULL, 1024);
750
751 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
752 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
753 generate_shader_stats(device, variant, stage, buf);
754
755 /* Need to include the null terminator. */
756 size_t length = buf->length + 1;
757
758 if (!pInfo) {
759 *pInfoSize = length;
760 } else {
761 size_t size = *pInfoSize;
762 *pInfoSize = length;
763
764 memcpy(pInfo, buf->buf, MIN2(size, length));
765
766 if (size < length)
767 result = VK_INCOMPLETE;
768 }
769
770 _mesa_string_buffer_destroy(buf);
771 break;
772 default:
773 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
774 result = VK_ERROR_FEATURE_NOT_PRESENT;
775 break;
776 }
777
778 return result;
779 }