radv: adjust IA_MULTI_VGT_PARAM.WD_SWITCH_ON_EOP at draw time
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for AMD GCN */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "radv_util.h"
35
36 static void
37 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
38 struct radeon_cmdbuf *cs,
39 unsigned raster_config,
40 unsigned raster_config_1)
41 {
42 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
43 unsigned raster_config_se[4];
44 unsigned se;
45
46 ac_get_harvested_configs(&physical_device->rad_info,
47 raster_config,
48 &raster_config_1,
49 raster_config_se);
50
51 for (se = 0; se < num_se; se++) {
52 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
53 if (physical_device->rad_info.chip_class < GFX7)
54 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
55 S_00802C_SE_INDEX(se) |
56 S_00802C_SH_BROADCAST_WRITES(1) |
57 S_00802C_INSTANCE_BROADCAST_WRITES(1));
58 else
59 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
60 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
61 S_030800_INSTANCE_BROADCAST_WRITES(1));
62 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
63 }
64
65 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
66 if (physical_device->rad_info.chip_class < GFX7)
67 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
68 S_00802C_SE_BROADCAST_WRITES(1) |
69 S_00802C_SH_BROADCAST_WRITES(1) |
70 S_00802C_INSTANCE_BROADCAST_WRITES(1));
71 else
72 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
73 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
74 S_030800_INSTANCE_BROADCAST_WRITES(1));
75
76 if (physical_device->rad_info.chip_class >= GFX7)
77 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
78 }
79
80 void
81 si_emit_compute(struct radv_physical_device *physical_device,
82 struct radeon_cmdbuf *cs)
83 {
84 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
85 radeon_emit(cs, 0);
86 radeon_emit(cs, 0);
87 radeon_emit(cs, 0);
88
89 radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
90 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1,
91 * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */
92 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
93 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
94
95 if (physical_device->rad_info.chip_class >= GFX7) {
96 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
97 radeon_set_sh_reg_seq(cs,
98 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
99 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
100 S_00B858_SH1_CU_EN(0xffff));
101 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
102 S_00B858_SH1_CU_EN(0xffff));
103 }
104
105 if (physical_device->rad_info.chip_class >= GFX10)
106 radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, 0);
107
108 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
109 * and is now per pipe, so it should be handled in the
110 * kernel if we want to use something other than the default value,
111 * which is now 0x22f.
112 */
113 if (physical_device->rad_info.chip_class <= GFX6) {
114 /* XXX: This should be:
115 * (number of compute units) * 4 * (waves per simd) - 1 */
116
117 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
118 0x190 /* Default value */);
119 }
120 }
121
122 /* 12.4 fixed-point */
123 static unsigned radv_pack_float_12p4(float x)
124 {
125 return x <= 0 ? 0 :
126 x >= 4096 ? 0xffff : x * 16;
127 }
128
129 static void
130 si_set_raster_config(struct radv_physical_device *physical_device,
131 struct radeon_cmdbuf *cs)
132 {
133 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
134 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
135 unsigned raster_config, raster_config_1;
136
137 ac_get_raster_config(&physical_device->rad_info,
138 &raster_config,
139 &raster_config_1, NULL);
140
141 /* Always use the default config when all backends are enabled
142 * (or when we failed to determine the enabled backends).
143 */
144 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
145 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
146 raster_config);
147 if (physical_device->rad_info.chip_class >= GFX7)
148 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
149 raster_config_1);
150 } else {
151 si_write_harvested_raster_configs(physical_device, cs,
152 raster_config,
153 raster_config_1);
154 }
155 }
156
157 void
158 si_emit_graphics(struct radv_device *device,
159 struct radeon_cmdbuf *cs)
160 {
161 struct radv_physical_device *physical_device = device->physical_device;
162
163 bool has_clear_state = physical_device->rad_info.has_clear_state;
164 int i;
165
166 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
167 radeon_emit(cs, CC0_UPDATE_LOAD_ENABLES(1));
168 radeon_emit(cs, CC1_UPDATE_SHADOW_ENABLES(1));
169
170 if (has_clear_state) {
171 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
172 radeon_emit(cs, 0);
173 }
174
175 if (physical_device->rad_info.chip_class <= GFX8)
176 si_set_raster_config(physical_device, cs);
177
178 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
179 if (!has_clear_state)
180 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
181
182 /* FIXME calculate these values somehow ??? */
183 if (physical_device->rad_info.chip_class <= GFX8) {
184 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
185 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
186 }
187
188 if (!has_clear_state) {
189 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
190 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
191 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
192 }
193
194 if (physical_device->rad_info.chip_class <= GFX9)
195 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
196 if (!has_clear_state)
197 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
198 if (physical_device->rad_info.chip_class < GFX7)
199 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
200 S_008A14_CLIP_VTX_REORDER_ENA(1));
201
202 if (!has_clear_state)
203 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
204
205 /* CLEAR_STATE doesn't clear these correctly on certain generations.
206 * I don't know why. Deduced by trial and error.
207 */
208 if (physical_device->rad_info.chip_class <= GFX7 || !has_clear_state) {
209 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
210 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
211 S_028204_WINDOW_OFFSET_DISABLE(1));
212 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
213 S_028240_WINDOW_OFFSET_DISABLE(1));
214 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
215 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
216 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
217 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
218 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
219 }
220
221 if (!has_clear_state) {
222 for (i = 0; i < 16; i++) {
223 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
224 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
225 }
226 }
227
228 if (!has_clear_state) {
229 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
230 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
231 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
232 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
233 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
234 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
235 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
236 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
237 }
238
239 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
240 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
241 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
242
243 if (physical_device->rad_info.chip_class >= GFX10) {
244 radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
245 radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0);
246 radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0);
247 radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0);
248 radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0);
249 radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0);
250 } else if (physical_device->rad_info.chip_class == GFX9) {
251 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
252 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
253 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
254 } else {
255 /* These registers, when written, also overwrite the
256 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
257 * them. It would be an issue if there was another UMD
258 * changing them.
259 */
260 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
261 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
262 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
263 }
264
265 if (physical_device->rad_info.chip_class >= GFX7) {
266 if (physical_device->rad_info.chip_class >= GFX10) {
267 /* Logical CUs 16 - 31 */
268 radeon_set_sh_reg_idx(physical_device, cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
269 3, S_00B404_CU_EN(0xffff));
270 radeon_set_sh_reg_idx(physical_device, cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
271 3, S_00B104_CU_EN(0xffff));
272 radeon_set_sh_reg_idx(physical_device, cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
273 3, S_00B004_CU_EN(0xffff));
274 }
275
276 if (physical_device->rad_info.chip_class >= GFX9) {
277 radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
278 3, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
279 } else {
280 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
281 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
282 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
283 S_00B41C_WAVE_LIMIT(0x3F));
284 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
285 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
286 /* If this is 0, Bonaire can hang even if GS isn't being used.
287 * Other chips are unaffected. These are suboptimal values,
288 * but we don't use on-chip GS.
289 */
290 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
291 S_028A44_ES_VERTS_PER_SUBGRP(64) |
292 S_028A44_GS_PRIMS_PER_SUBGRP(4));
293 }
294
295 /* Compute LATE_ALLOC_VS.LIMIT. */
296 unsigned num_cu_per_sh = physical_device->rad_info.min_good_cu_per_sa;
297 unsigned late_alloc_wave64 = 0; /* The limit is per SA. */
298 unsigned late_alloc_wave64_gs = 0;
299 unsigned cu_mask_vs = 0xffff;
300 unsigned cu_mask_gs = 0xffff;
301
302 if (physical_device->rad_info.chip_class >= GFX10) {
303 /* For Wave32, the hw will launch twice the number of late
304 * alloc waves, so 1 == 2x wave32.
305 */
306 if (!physical_device->rad_info.use_late_alloc) {
307 late_alloc_wave64 = 0;
308 } else if (num_cu_per_sh <= 6) {
309 late_alloc_wave64 = num_cu_per_sh - 2;
310 } else {
311 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
312
313 /* CU2 & CU3 disabled because of the dual CU design */
314 cu_mask_vs = 0xfff3;
315 cu_mask_gs = 0xfff3; /* NGG only */
316 }
317
318 late_alloc_wave64_gs = late_alloc_wave64;
319
320 /* Don't use late alloc for NGG on Navi14 due to a hw
321 * bug. If NGG is never used, enable all CUs.
322 */
323 if (!physical_device->use_ngg ||
324 physical_device->rad_info.family == CHIP_NAVI14) {
325 late_alloc_wave64_gs = 0;
326 cu_mask_gs = 0xffff;
327 }
328 } else {
329 if (!physical_device->rad_info.use_late_alloc) {
330 late_alloc_wave64 = 0;
331 } else if (num_cu_per_sh <= 4) {
332 /* Too few available compute units per SA.
333 * Disallowing VS to run on one CU could hurt
334 * us more than late VS allocation would help.
335 *
336 * 2 is the highest safe number that allows us
337 * to keep all CUs enabled.
338 */
339 late_alloc_wave64 = 2;
340 } else {
341 /* This is a good initial value, allowing 1
342 * late_alloc wave per SIMD on num_cu - 2.
343 */
344 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
345 }
346
347 if (late_alloc_wave64 > 2)
348 cu_mask_vs = 0xfffe; /* 1 CU disabled */
349 }
350
351 radeon_set_sh_reg_idx(physical_device, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
352 3, S_00B118_CU_EN(cu_mask_vs) |
353 S_00B118_WAVE_LIMIT(0x3F));
354 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
355 S_00B11C_LIMIT(late_alloc_wave64));
356
357 radeon_set_sh_reg_idx(physical_device, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
358 3, S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));
359
360 if (physical_device->rad_info.chip_class >= GFX10) {
361 radeon_set_sh_reg_idx(physical_device, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
362 3, S_00B204_CU_EN(0xffff) |
363 S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64_gs));
364 }
365
366 radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
367 3, S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
368 }
369
370 if (physical_device->rad_info.chip_class >= GFX10) {
371 /* Break up a pixel wave if it contains deallocs for more than
372 * half the parameter cache.
373 *
374 * To avoid a deadlock where pixel waves aren't launched
375 * because they're waiting for more pixels while the frontend
376 * is stuck waiting for PC space, the maximum allowed value is
377 * the size of the PC minus the largest possible allocation for
378 * a single primitive shader subgroup.
379 */
380 radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL,
381 S_028C50_MAX_DEALLOCS_IN_WAVE(512));
382 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
383
384 /* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */
385 unsigned meta_write_policy, meta_read_policy;
386
387 /* TODO: investigate whether LRU improves performance on other chips too */
388 if (physical_device->rad_info.num_render_backends <= 4) {
389 meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */
390 meta_read_policy = V_02807C_CACHE_LRU_RD; /* cache reads */
391 } else {
392 meta_write_policy = V_02807C_CACHE_STREAM_WR; /* write combine */
393 meta_read_policy = V_02807C_CACHE_NOA_RD; /* don't cache reads */
394 }
395
396 radeon_set_context_reg(cs, R_02807C_DB_RMI_L2_CACHE_CONTROL,
397 S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
398 S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
399 S_02807C_HTILE_WR_POLICY(meta_write_policy) |
400 S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
401 S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA_RD) |
402 S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA_RD) |
403 S_02807C_HTILE_RD_POLICY(meta_read_policy));
404
405 radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL,
406 S_028410_CMASK_WR_POLICY(meta_write_policy) |
407 S_028410_FMASK_WR_POLICY(meta_write_policy) |
408 S_028410_DCC_WR_POLICY(meta_write_policy) |
409 S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM_WR) |
410 S_028410_CMASK_RD_POLICY(meta_read_policy) |
411 S_028410_FMASK_RD_POLICY(meta_read_policy) |
412 S_028410_DCC_RD_POLICY(meta_read_policy) |
413 S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_RD));
414 radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0);
415
416 radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
417 S_00B0C0_SOFT_GROUPING_EN(1) |
418 S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
419 radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);
420
421 if (physical_device->rad_info.chip_class >= GFX10_3) {
422 radeon_set_context_reg(cs, R_028750_SX_PS_DOWNCONVERT_CONTROL_GFX103, 0xff);
423 }
424
425 if (physical_device->rad_info.chip_class == GFX10) {
426 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
427 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
428 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
429 }
430
431 /* TODO: For culling, replace 128 with 256. */
432 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
433 S_030980_OVERSUB_EN(physical_device->rad_info.use_late_alloc) |
434 S_030980_NUM_PC_LINES(128 * physical_device->rad_info.max_se - 1));
435 }
436
437 if (physical_device->rad_info.chip_class >= GFX9) {
438 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
439 S_028B50_ACCUM_ISOLINE(40) |
440 S_028B50_ACCUM_TRI(30) |
441 S_028B50_ACCUM_QUAD(24) |
442 S_028B50_DONUT_SPLIT(24) |
443 S_028B50_TRAP_SPLIT(6));
444 } else if (physical_device->rad_info.chip_class >= GFX8) {
445 uint32_t vgt_tess_distribution;
446
447 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
448 S_028B50_ACCUM_TRI(11) |
449 S_028B50_ACCUM_QUAD(11) |
450 S_028B50_DONUT_SPLIT(16);
451
452 if (physical_device->rad_info.family == CHIP_FIJI ||
453 physical_device->rad_info.family >= CHIP_POLARIS10)
454 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
455
456 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
457 vgt_tess_distribution);
458 } else if (!has_clear_state) {
459 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
460 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
461 }
462
463 if (device->border_color_data.bo) {
464 uint64_t border_color_va = radv_buffer_get_va(device->border_color_data.bo);
465
466 radeon_set_context_reg(cs, R_028080_TA_BC_BASE_ADDR, border_color_va >> 8);
467 if (physical_device->rad_info.chip_class >= GFX7) {
468 radeon_set_context_reg(cs, R_028084_TA_BC_BASE_ADDR_HI,
469 S_028084_ADDRESS(border_color_va >> 40));
470 }
471 }
472
473 if (physical_device->rad_info.chip_class >= GFX9) {
474 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
475 S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) |
476 S_028C48_MAX_PRIM_PER_BATCH(1023));
477 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
478 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
479 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
480 }
481
482 unsigned tmp = (unsigned)(1.0 * 8.0);
483 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
484 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
485 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
486 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
487 S_028A04_MAX_SIZE(radv_pack_float_12p4(8191.875/2)));
488
489 if (!has_clear_state) {
490 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
491 S_028004_ZPASS_INCREMENT_DISABLE(1));
492 }
493
494 /* Enable the Polaris small primitive filter control.
495 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
496 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
497 * and AMDVLK doesn't have a workaround as well.
498 */
499 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
500 unsigned small_prim_filter_cntl =
501 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
502 /* Workaround for a hw line bug. */
503 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
504
505 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
506 small_prim_filter_cntl);
507 }
508
509 si_emit_compute(physical_device, cs);
510 }
511
512 void
513 cik_create_gfx_config(struct radv_device *device)
514 {
515 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
516 if (!cs)
517 return;
518
519 si_emit_graphics(device, cs);
520
521 while (cs->cdw & 7) {
522 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
523 radeon_emit(cs, PKT2_NOP_PAD);
524 else
525 radeon_emit(cs, PKT3_NOP_PAD);
526 }
527
528 device->gfx_init = device->ws->buffer_create(device->ws,
529 cs->cdw * 4, 4096,
530 RADEON_DOMAIN_GTT,
531 RADEON_FLAG_CPU_ACCESS|
532 RADEON_FLAG_NO_INTERPROCESS_SHARING |
533 RADEON_FLAG_READ_ONLY,
534 RADV_BO_PRIORITY_CS);
535 if (!device->gfx_init)
536 goto fail;
537
538 void *map = device->ws->buffer_map(device->gfx_init);
539 if (!map) {
540 device->ws->buffer_destroy(device->gfx_init);
541 device->gfx_init = NULL;
542 goto fail;
543 }
544 memcpy(map, cs->buf, cs->cdw * 4);
545
546 device->ws->buffer_unmap(device->gfx_init);
547 device->gfx_init_size_dw = cs->cdw;
548 fail:
549 device->ws->cs_destroy(cs);
550 }
551
552 static void
553 get_viewport_xform(const VkViewport *viewport,
554 float scale[3], float translate[3])
555 {
556 float x = viewport->x;
557 float y = viewport->y;
558 float half_width = 0.5f * viewport->width;
559 float half_height = 0.5f * viewport->height;
560 double n = viewport->minDepth;
561 double f = viewport->maxDepth;
562
563 scale[0] = half_width;
564 translate[0] = half_width + x;
565 scale[1] = half_height;
566 translate[1] = half_height + y;
567
568 scale[2] = (f - n);
569 translate[2] = n;
570 }
571
572 void
573 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
574 int count, const VkViewport *viewports)
575 {
576 int i;
577
578 assert(count);
579 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
580 first_vp * 4 * 6, count * 6);
581
582 for (i = 0; i < count; i++) {
583 float scale[3], translate[3];
584
585
586 get_viewport_xform(&viewports[i], scale, translate);
587 radeon_emit(cs, fui(scale[0]));
588 radeon_emit(cs, fui(translate[0]));
589 radeon_emit(cs, fui(scale[1]));
590 radeon_emit(cs, fui(translate[1]));
591 radeon_emit(cs, fui(scale[2]));
592 radeon_emit(cs, fui(translate[2]));
593 }
594
595 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
596 first_vp * 4 * 2, count * 2);
597 for (i = 0; i < count; i++) {
598 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
599 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
600 radeon_emit(cs, fui(zmin));
601 radeon_emit(cs, fui(zmax));
602 }
603 }
604
605 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
606 {
607 float scale[3], translate[3];
608 VkRect2D rect;
609
610 get_viewport_xform(viewport, scale, translate);
611
612 rect.offset.x = translate[0] - fabsf(scale[0]);
613 rect.offset.y = translate[1] - fabsf(scale[1]);
614 rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
615 rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;
616
617 return rect;
618 }
619
620 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
621 VkRect2D ret;
622 ret.offset.x = MAX2(a->offset.x, b->offset.x);
623 ret.offset.y = MAX2(a->offset.y, b->offset.y);
624 ret.extent.width = MIN2(a->offset.x + a->extent.width,
625 b->offset.x + b->extent.width) - ret.offset.x;
626 ret.extent.height = MIN2(a->offset.y + a->extent.height,
627 b->offset.y + b->extent.height) - ret.offset.y;
628 return ret;
629 }
630
631 void
632 si_write_scissors(struct radeon_cmdbuf *cs, int first,
633 int count, const VkRect2D *scissors,
634 const VkViewport *viewports, bool can_use_guardband)
635 {
636 int i;
637 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
638 const float max_range = 32767.0f;
639 if (!count)
640 return;
641
642 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
643 for (i = 0; i < count; i++) {
644 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
645 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
646
647 get_viewport_xform(viewports + i, scale, translate);
648 scale[0] = fabsf(scale[0]);
649 scale[1] = fabsf(scale[1]);
650
651 if (scale[0] < 0.5)
652 scale[0] = 0.5;
653 if (scale[1] < 0.5)
654 scale[1] = 0.5;
655
656 guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
657 guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);
658
659 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
660 S_028250_TL_Y(scissor.offset.y) |
661 S_028250_WINDOW_OFFSET_DISABLE(1));
662 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
663 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
664 }
665 if (!can_use_guardband) {
666 guardband_x = 1.0;
667 guardband_y = 1.0;
668 }
669
670 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
671 radeon_emit(cs, fui(guardband_y));
672 radeon_emit(cs, fui(1.0));
673 radeon_emit(cs, fui(guardband_x));
674 radeon_emit(cs, fui(1.0));
675 }
676
677 static inline unsigned
678 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
679 {
680 if (num == 0)
681 return 0;
682
683 if (info->incr == 0)
684 return 0;
685
686 if (num < info->min)
687 return 0;
688
689 return 1 + ((num - info->min) / info->incr);
690 }
691
692 uint32_t
693 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
694 bool instanced_draw, bool indirect_draw,
695 bool count_from_stream_output,
696 uint32_t draw_vertex_count)
697 {
698 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
699 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
700 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
701 const unsigned max_primgroup_in_wave = 2;
702 /* SWITCH_ON_EOP(0) is always preferable. */
703 bool wd_switch_on_eop = false;
704 bool ia_switch_on_eop = false;
705 bool ia_switch_on_eoi = false;
706 bool partial_vs_wave = false;
707 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
708 unsigned topology = cmd_buffer->state.pipeline->graphics.topology;
709 bool multi_instances_smaller_than_primgroup;
710
711 multi_instances_smaller_than_primgroup = indirect_draw;
712 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
713 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
714 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
715 multi_instances_smaller_than_primgroup = true;
716 }
717
718 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
719 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
720
721 if (chip_class >= GFX7) {
722 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
723 * 4 shader engines. Set 1 to pass the assertion below.
724 * The other cases are hardware requirements. */
725 if (cmd_buffer->device->physical_device->rad_info.max_se < 4 ||
726 topology == V_008958_DI_PT_POLYGON ||
727 topology == V_008958_DI_PT_LINELOOP ||
728 topology == V_008958_DI_PT_TRIFAN ||
729 topology == V_008958_DI_PT_TRISTRIP_ADJ ||
730 (cmd_buffer->state.pipeline->graphics.prim_restart_enable &&
731 (cmd_buffer->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
732 (topology != V_008958_DI_PT_POINTLIST &&
733 topology != V_008958_DI_PT_LINESTRIP))))
734 wd_switch_on_eop = true;
735
736 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
737 * We don't know that for indirect drawing, so treat it as
738 * always problematic. */
739 if (family == CHIP_HAWAII &&
740 (instanced_draw || indirect_draw))
741 wd_switch_on_eop = true;
742
743 /* Performance recommendation for 4 SE Gfx7-8 parts if
744 * instances are smaller than a primgroup.
745 * Assume indirect draws always use small instances.
746 * This is needed for good VS wave utilization.
747 */
748 if (chip_class <= GFX8 &&
749 info->max_se == 4 &&
750 multi_instances_smaller_than_primgroup)
751 wd_switch_on_eop = true;
752
753 /* Required on GFX7 and later. */
754 if (info->max_se > 2 && !wd_switch_on_eop)
755 ia_switch_on_eoi = true;
756
757 /* Required by Hawaii and, for some special cases, by GFX8. */
758 if (ia_switch_on_eoi &&
759 (family == CHIP_HAWAII ||
760 (chip_class == GFX8 &&
761 /* max primgroup in wave is always 2 - leave this for documentation */
762 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
763 partial_vs_wave = true;
764
765 /* Instancing bug on Bonaire. */
766 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
767 (instanced_draw || indirect_draw))
768 partial_vs_wave = true;
769
770 /* Hardware requirement when drawing primitives from a stream
771 * output buffer.
772 */
773 if (count_from_stream_output)
774 wd_switch_on_eop = true;
775
776 /* If the WD switch is false, the IA switch must be false too. */
777 assert(wd_switch_on_eop || !ia_switch_on_eop);
778 }
779 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
780 if (chip_class <= GFX8 && ia_switch_on_eoi)
781 partial_es_wave = true;
782
783 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
784 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
785 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
786 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
787 */
788 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
789 bool set_vgt_flush = indirect_draw;
790 if (!set_vgt_flush && instanced_draw) {
791 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
792 if (num_prims <= 1)
793 set_vgt_flush = true;
794 }
795 if (set_vgt_flush)
796 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
797 }
798 }
799
800 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
801 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
802 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
803 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
804 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
805 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0);
806
807 }
808
809 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
810 enum chip_class chip_class,
811 bool is_mec,
812 unsigned event, unsigned event_flags,
813 unsigned dst_sel, unsigned data_sel,
814 uint64_t va,
815 uint32_t new_fence,
816 uint64_t gfx9_eop_bug_va)
817 {
818 unsigned op = EVENT_TYPE(event) |
819 EVENT_INDEX(event == V_028A90_CS_DONE ||
820 event == V_028A90_PS_DONE ? 6 : 5) |
821 event_flags;
822 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
823 unsigned sel = EOP_DST_SEL(dst_sel) |
824 EOP_DATA_SEL(data_sel);
825
826 /* Wait for write confirmation before writing data, but don't send
827 * an interrupt. */
828 if (data_sel != EOP_DATA_SEL_DISCARD)
829 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
830
831 if (chip_class >= GFX9 || is_gfx8_mec) {
832 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
833 * counters) must immediately precede every timestamp event to
834 * prevent a GPU hang on GFX9.
835 */
836 if (chip_class == GFX9 && !is_mec) {
837 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
838 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
839 radeon_emit(cs, gfx9_eop_bug_va);
840 radeon_emit(cs, gfx9_eop_bug_va >> 32);
841 }
842
843 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
844 radeon_emit(cs, op);
845 radeon_emit(cs, sel);
846 radeon_emit(cs, va); /* address lo */
847 radeon_emit(cs, va >> 32); /* address hi */
848 radeon_emit(cs, new_fence); /* immediate data lo */
849 radeon_emit(cs, 0); /* immediate data hi */
850 if (!is_gfx8_mec)
851 radeon_emit(cs, 0); /* unused */
852 } else {
853 if (chip_class == GFX7 ||
854 chip_class == GFX8) {
855 /* Two EOP events are required to make all engines go idle
856 * (and optional cache flushes executed) before the timestamp
857 * is written.
858 */
859 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
860 radeon_emit(cs, op);
861 radeon_emit(cs, va);
862 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
863 radeon_emit(cs, 0); /* immediate data */
864 radeon_emit(cs, 0); /* unused */
865 }
866
867 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
868 radeon_emit(cs, op);
869 radeon_emit(cs, va);
870 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
871 radeon_emit(cs, new_fence); /* immediate data */
872 radeon_emit(cs, 0); /* unused */
873 }
874 }
875
876 void
877 radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
878 uint32_t ref, uint32_t mask)
879 {
880 assert(op == WAIT_REG_MEM_EQUAL ||
881 op == WAIT_REG_MEM_NOT_EQUAL ||
882 op == WAIT_REG_MEM_GREATER_OR_EQUAL);
883
884 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
885 radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
886 radeon_emit(cs, va);
887 radeon_emit(cs, va >> 32);
888 radeon_emit(cs, ref); /* reference value */
889 radeon_emit(cs, mask); /* mask */
890 radeon_emit(cs, 4); /* poll interval */
891 }
892
893 static void
894 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
895 bool is_mec,
896 bool is_gfx9,
897 unsigned cp_coher_cntl)
898 {
899 if (is_mec || is_gfx9) {
900 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
901 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
902 PKT3_SHADER_TYPE_S(is_mec));
903 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
904 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
905 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
906 radeon_emit(cs, 0); /* CP_COHER_BASE */
907 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
908 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
909 } else {
910 /* ACQUIRE_MEM is only required on a compute ring. */
911 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
912 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
913 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
914 radeon_emit(cs, 0); /* CP_COHER_BASE */
915 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
916 }
917 }
918
919 static void
920 gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
921 enum chip_class chip_class,
922 uint32_t *flush_cnt,
923 uint64_t flush_va,
924 bool is_mec,
925 enum radv_cmd_flush_bits flush_bits,
926 uint64_t gfx9_eop_bug_va)
927 {
928 uint32_t gcr_cntl = 0;
929 unsigned cb_db_event = 0;
930
931 /* We don't need these. */
932 assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC)));
933
934 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
935 gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
936 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
937 /* TODO: When writing to the SMEM L1 cache, we need to set SEQ
938 * to FORWARD when both L1 and L2 are written out (WB or INV).
939 */
940 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
941 }
942 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE)
943 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
944 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
945 /* Writeback and invalidate everything in L2. */
946 gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) |
947 S_586_GLM_INV(1) | S_586_GLM_WB(1);
948 } else if (flush_bits & RADV_CMD_FLAG_WB_L2) {
949 /* Writeback but do not invalidate.
950 * GLM doesn't support WB alone. If WB is set, INV must be set too.
951 */
952 gcr_cntl |= S_586_GL2_WB(1) |
953 S_586_GLM_WB(1) | S_586_GLM_INV(1);
954 }
955
956 /* TODO: Implement this new flag for GFX9+.
957 else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA)
958 gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
959 */
960
961 if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
962 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */
963 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
964 /* Flush CMASK/FMASK/DCC. Will wait for idle later. */
965 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
966 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
967 EVENT_INDEX(0));
968 }
969
970 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */
971 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
972 /* Flush HTILE. Will wait for idle later. */
973 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
974 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
975 EVENT_INDEX(0));
976 }
977
978 /* First flush CB/DB, then L1/L2. */
979 gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
980
981 if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) ==
982 (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
983 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
984 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
985 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
986 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
987 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
988 } else {
989 assert(0);
990 }
991 } else {
992 /* Wait for graphics shaders to go idle if requested. */
993 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
994 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
995 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
996 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
997 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
998 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
999 }
1000 }
1001
1002 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1003 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1004 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
1005 }
1006
1007 if (cb_db_event) {
1008 /* CB/DB flush and invalidate (or possibly just a wait for a
1009 * meta flush) via RELEASE_MEM.
1010 *
1011 * Combine this with other cache flushes when possible; this
1012 * requires affected shaders to be idle, so do it after the
1013 * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
1014 * implied).
1015 */
1016 /* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
1017 unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
1018 unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
1019 unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
1020 unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
1021 assert(G_586_GL2_US(gcr_cntl) == 0);
1022 assert(G_586_GL2_RANGE(gcr_cntl) == 0);
1023 assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
1024 unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
1025 unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
1026 unsigned gcr_seq = G_586_SEQ(gcr_cntl);
1027
1028 gcr_cntl &= C_586_GLM_WB &
1029 C_586_GLM_INV &
1030 C_586_GLV_INV &
1031 C_586_GL1_INV &
1032 C_586_GL2_INV &
1033 C_586_GL2_WB; /* keep SEQ */
1034
1035 assert(flush_cnt);
1036 (*flush_cnt)++;
1037
1038 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event,
1039 S_490_GLM_WB(glm_wb) |
1040 S_490_GLM_INV(glm_inv) |
1041 S_490_GLV_INV(glv_inv) |
1042 S_490_GL1_INV(gl1_inv) |
1043 S_490_GL2_INV(gl2_inv) |
1044 S_490_GL2_WB(gl2_wb) |
1045 S_490_SEQ(gcr_seq),
1046 EOP_DST_SEL_MEM,
1047 EOP_DATA_SEL_VALUE_32BIT,
1048 flush_va, *flush_cnt,
1049 gfx9_eop_bug_va);
1050
1051 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1052 *flush_cnt, 0xffffffff);
1053 }
1054
1055 /* VGT state sync */
1056 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1057 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1058 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1059 }
1060
1061 /* Ignore fields that only modify the behavior of other fields. */
1062 if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
1063 /* Flush caches and wait for the caches to assert idle.
1064 * The cache flush is executed in the ME, but the PFP waits
1065 * for completion.
1066 */
1067 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
1068 radeon_emit(cs, 0); /* CP_COHER_CNTL */
1069 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
1070 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
1071 radeon_emit(cs, 0); /* CP_COHER_BASE */
1072 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
1073 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
1074 radeon_emit(cs, gcr_cntl); /* GCR_CNTL */
1075 } else if ((cb_db_event ||
1076 (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1077 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1078 RADV_CMD_FLAG_CS_PARTIAL_FLUSH)))
1079 && !is_mec) {
1080 /* We need to ensure that PFP waits as well. */
1081 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1082 radeon_emit(cs, 0);
1083 }
1084
1085 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1086 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1087 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1088 EVENT_INDEX(0));
1089 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1090 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1091 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1092 EVENT_INDEX(0));
1093 }
1094 }
1095
1096 void
1097 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1098 enum chip_class chip_class,
1099 uint32_t *flush_cnt,
1100 uint64_t flush_va,
1101 bool is_mec,
1102 enum radv_cmd_flush_bits flush_bits,
1103 uint64_t gfx9_eop_bug_va)
1104 {
1105 unsigned cp_coher_cntl = 0;
1106 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1107 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
1108
1109 if (chip_class >= GFX10) {
1110 /* GFX10 cache flush handling is quite different. */
1111 gfx10_cs_emit_cache_flush(cs, chip_class, flush_cnt, flush_va,
1112 is_mec, flush_bits, gfx9_eop_bug_va);
1113 return;
1114 }
1115
1116 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
1117 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
1118 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE)
1119 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
1120
1121 if (chip_class <= GFX8) {
1122 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1123 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
1124 S_0085F0_CB0_DEST_BASE_ENA(1) |
1125 S_0085F0_CB1_DEST_BASE_ENA(1) |
1126 S_0085F0_CB2_DEST_BASE_ENA(1) |
1127 S_0085F0_CB3_DEST_BASE_ENA(1) |
1128 S_0085F0_CB4_DEST_BASE_ENA(1) |
1129 S_0085F0_CB5_DEST_BASE_ENA(1) |
1130 S_0085F0_CB6_DEST_BASE_ENA(1) |
1131 S_0085F0_CB7_DEST_BASE_ENA(1);
1132
1133 /* Necessary for DCC */
1134 if (chip_class >= GFX8) {
1135 si_cs_emit_write_event_eop(cs,
1136 chip_class,
1137 is_mec,
1138 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
1139 0,
1140 EOP_DST_SEL_MEM,
1141 EOP_DATA_SEL_DISCARD,
1142 0, 0,
1143 gfx9_eop_bug_va);
1144 }
1145 }
1146 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1147 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
1148 S_0085F0_DB_DEST_BASE_ENA(1);
1149 }
1150 }
1151
1152 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
1153 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1154 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
1155 }
1156
1157 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
1158 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1159 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
1160 }
1161
1162 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1163 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1164 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1165 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1166 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1167 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1168 }
1169
1170 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1171 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1172 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1173 }
1174
1175 if (chip_class == GFX9 && flush_cb_db) {
1176 unsigned cb_db_event, tc_flags;
1177
1178 /* Set the CB/DB flush event. */
1179 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1180
1181 /* These are the only allowed combinations. If you need to
1182 * do multiple operations at once, do them separately.
1183 * All operations that invalidate L2 also seem to invalidate
1184 * metadata. Volatile (VOL) and WC flushes are not listed here.
1185 *
1186 * TC | TC_WB = writeback & invalidate L2 & L1
1187 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1188 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
1189 * TC | TC_NC = invalidate L2 for MTYPE == NC
1190 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1191 * TCL1 = invalidate L1
1192 */
1193 tc_flags = EVENT_TC_ACTION_ENA |
1194 EVENT_TC_MD_ACTION_ENA;
1195
1196 /* Ideally flush TC together with CB/DB. */
1197 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1198 /* Writeback and invalidate everything in L2 & L1. */
1199 tc_flags = EVENT_TC_ACTION_ENA |
1200 EVENT_TC_WB_ACTION_ENA;
1201
1202
1203 /* Clear the flags. */
1204 flush_bits &= ~(RADV_CMD_FLAG_INV_L2 |
1205 RADV_CMD_FLAG_WB_L2 |
1206 RADV_CMD_FLAG_INV_VCACHE);
1207 }
1208 assert(flush_cnt);
1209 (*flush_cnt)++;
1210
1211 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
1212 EOP_DST_SEL_MEM,
1213 EOP_DATA_SEL_VALUE_32BIT,
1214 flush_va, *flush_cnt,
1215 gfx9_eop_bug_va);
1216 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1217 *flush_cnt, 0xffffffff);
1218 }
1219
1220 /* VGT state sync */
1221 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1222 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1223 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1224 }
1225
1226 /* VGT streamout state sync */
1227 if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
1228 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1229 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
1230 }
1231
1232 /* Make sure ME is idle (it executes most packets) before continuing.
1233 * This prevents read-after-write hazards between PFP and ME.
1234 */
1235 if ((cp_coher_cntl ||
1236 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1237 RADV_CMD_FLAG_INV_VCACHE |
1238 RADV_CMD_FLAG_INV_L2 |
1239 RADV_CMD_FLAG_WB_L2))) &&
1240 !is_mec) {
1241 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1242 radeon_emit(cs, 0);
1243 }
1244
1245 if ((flush_bits & RADV_CMD_FLAG_INV_L2) ||
1246 (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) {
1247 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9,
1248 cp_coher_cntl |
1249 S_0085F0_TC_ACTION_ENA(1) |
1250 S_0085F0_TCL1_ACTION_ENA(1) |
1251 S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8));
1252 cp_coher_cntl = 0;
1253 } else {
1254 if(flush_bits & RADV_CMD_FLAG_WB_L2) {
1255 /* WB = write-back
1256 * NC = apply to non-coherent MTYPEs
1257 * (i.e. MTYPE <= 1, which is what we use everywhere)
1258 *
1259 * WB doesn't work without NC.
1260 */
1261 si_emit_acquire_mem(cs, is_mec,
1262 chip_class == GFX9,
1263 cp_coher_cntl |
1264 S_0301F0_TC_WB_ACTION_ENA(1) |
1265 S_0301F0_TC_NC_ACTION_ENA(1));
1266 cp_coher_cntl = 0;
1267 }
1268 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
1269 si_emit_acquire_mem(cs, is_mec,
1270 chip_class == GFX9,
1271 cp_coher_cntl |
1272 S_0085F0_TCL1_ACTION_ENA(1));
1273 cp_coher_cntl = 0;
1274 }
1275 }
1276
1277 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
1278 * Therefore, it should be last. Done in PFP.
1279 */
1280 if (cp_coher_cntl)
1281 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9, cp_coher_cntl);
1282
1283 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1284 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1285 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1286 EVENT_INDEX(0));
1287 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1288 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1289 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1290 EVENT_INDEX(0));
1291 }
1292 }
1293
1294 void
1295 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
1296 {
1297 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
1298
1299 if (is_compute)
1300 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1301 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
1302 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
1303 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
1304 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1305 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1306 RADV_CMD_FLAG_VGT_FLUSH |
1307 RADV_CMD_FLAG_START_PIPELINE_STATS |
1308 RADV_CMD_FLAG_STOP_PIPELINE_STATS);
1309
1310 if (!cmd_buffer->state.flush_bits)
1311 return;
1312
1313 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
1314
1315 si_cs_emit_cache_flush(cmd_buffer->cs,
1316 cmd_buffer->device->physical_device->rad_info.chip_class,
1317 &cmd_buffer->gfx9_fence_idx,
1318 cmd_buffer->gfx9_fence_va,
1319 radv_cmd_buffer_uses_mec(cmd_buffer),
1320 cmd_buffer->state.flush_bits,
1321 cmd_buffer->gfx9_eop_bug_va);
1322
1323
1324 if (unlikely(cmd_buffer->device->trace_bo))
1325 radv_cmd_buffer_trace_emit(cmd_buffer);
1326
1327 /* Clear the caches that have been flushed to avoid syncing too much
1328 * when there is some pending active queries.
1329 */
1330 cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
1331
1332 cmd_buffer->state.flush_bits = 0;
1333
1334 /* If the driver used a compute shader for resetting a query pool, it
1335 * should be finished at this point.
1336 */
1337 cmd_buffer->pending_reset_query = false;
1338 }
1339
1340 /* sets the CP predication state using a boolean stored at va */
1341 void
1342 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
1343 bool draw_visible, uint64_t va)
1344 {
1345 uint32_t op = 0;
1346
1347 if (va) {
1348 op = PRED_OP(PREDICATION_OP_BOOL64);
1349
1350 /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
1351 * zero, all rendering commands are discarded. Otherwise, they
1352 * are discarded if the value is non zero.
1353 */
1354 op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
1355 PREDICATION_DRAW_NOT_VISIBLE;
1356 }
1357 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1358 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
1359 radeon_emit(cmd_buffer->cs, op);
1360 radeon_emit(cmd_buffer->cs, va);
1361 radeon_emit(cmd_buffer->cs, va >> 32);
1362 } else {
1363 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1364 radeon_emit(cmd_buffer->cs, va);
1365 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1366 }
1367 }
1368
1369 /* Set this if you want the 3D engine to wait until CP DMA is done.
1370 * It should be set on the last CP DMA packet. */
1371 #define CP_DMA_SYNC (1 << 0)
1372
1373 /* Set this if the source data was used as a destination in a previous CP DMA
1374 * packet. It's for preventing a read-after-write (RAW) hazard between two
1375 * CP DMA packets. */
1376 #define CP_DMA_RAW_WAIT (1 << 1)
1377 #define CP_DMA_USE_L2 (1 << 2)
1378 #define CP_DMA_CLEAR (1 << 3)
1379
1380 /* Alignment for optimal performance. */
1381 #define SI_CPDMA_ALIGNMENT 32
1382
1383 /* The max number of bytes that can be copied per packet. */
1384 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1385 {
1386 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1387 S_414_BYTE_COUNT_GFX9(~0u) :
1388 S_414_BYTE_COUNT_GFX6(~0u);
1389
1390 /* make it aligned for optimal performance */
1391 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1392 }
1393
1394 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1395 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1396 * clear value.
1397 */
1398 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1399 uint64_t dst_va, uint64_t src_va,
1400 unsigned size, unsigned flags)
1401 {
1402 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1403 uint32_t header = 0, command = 0;
1404
1405 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1406
1407 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1408 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1409 command |= S_414_BYTE_COUNT_GFX9(size);
1410 else
1411 command |= S_414_BYTE_COUNT_GFX6(size);
1412
1413 /* Sync flags. */
1414 if (flags & CP_DMA_SYNC)
1415 header |= S_411_CP_SYNC(1);
1416 else {
1417 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1418 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1419 else
1420 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1421 }
1422
1423 if (flags & CP_DMA_RAW_WAIT)
1424 command |= S_414_RAW_WAIT(1);
1425
1426 /* Src and dst flags. */
1427 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1428 !(flags & CP_DMA_CLEAR) &&
1429 src_va == dst_va)
1430 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
1431 else if (flags & CP_DMA_USE_L2)
1432 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
1433
1434 if (flags & CP_DMA_CLEAR)
1435 header |= S_411_SRC_SEL(V_411_DATA);
1436 else if (flags & CP_DMA_USE_L2)
1437 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1438
1439 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
1440 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1441 radeon_emit(cs, header);
1442 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1443 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1444 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1445 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1446 radeon_emit(cs, command);
1447 } else {
1448 assert(!(flags & CP_DMA_USE_L2));
1449 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1450 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1451 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1452 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1453 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1454 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1455 radeon_emit(cs, command);
1456 }
1457
1458 /* CP DMA is executed in ME, but index buffers are read by PFP.
1459 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1460 * indices. If we wanted to execute CP DMA in PFP, this packet
1461 * should precede it.
1462 */
1463 if (flags & CP_DMA_SYNC) {
1464 if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1465 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1466 radeon_emit(cs, 0);
1467 }
1468
1469 /* CP will see the sync flag and wait for all DMAs to complete. */
1470 cmd_buffer->state.dma_is_busy = false;
1471 }
1472
1473 if (unlikely(cmd_buffer->device->trace_bo))
1474 radv_cmd_buffer_trace_emit(cmd_buffer);
1475 }
1476
1477 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1478 unsigned size)
1479 {
1480 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1481 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1482
1483 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1484 aligned_size, CP_DMA_USE_L2);
1485 }
1486
1487 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1488 uint64_t remaining_size, unsigned *flags)
1489 {
1490
1491 /* Flush the caches for the first copy only.
1492 * Also wait for the previous CP DMA operations.
1493 */
1494 if (cmd_buffer->state.flush_bits) {
1495 si_emit_cache_flush(cmd_buffer);
1496 *flags |= CP_DMA_RAW_WAIT;
1497 }
1498
1499 /* Do the synchronization after the last dma, so that all data
1500 * is written to memory.
1501 */
1502 if (byte_count == remaining_size)
1503 *flags |= CP_DMA_SYNC;
1504 }
1505
1506 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1507 {
1508 uint64_t va;
1509 uint32_t offset;
1510 unsigned dma_flags = 0;
1511 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1512 void *ptr;
1513
1514 assert(size < SI_CPDMA_ALIGNMENT);
1515
1516 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1517
1518 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1519 va += offset;
1520
1521 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1522
1523 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1524 dma_flags);
1525 }
1526
1527 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1528 uint64_t src_va, uint64_t dest_va,
1529 uint64_t size)
1530 {
1531 uint64_t main_src_va, main_dest_va;
1532 uint64_t skipped_size = 0, realign_size = 0;
1533
1534 /* Assume that we are not going to sync after the last DMA operation. */
1535 cmd_buffer->state.dma_is_busy = true;
1536
1537 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1538 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1539 /* If the size is not aligned, we must add a dummy copy at the end
1540 * just to align the internal counter. Otherwise, the DMA engine
1541 * would slow down by an order of magnitude for following copies.
1542 */
1543 if (size % SI_CPDMA_ALIGNMENT)
1544 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1545
1546 /* If the copy begins unaligned, we must start copying from the next
1547 * aligned block and the skipped part should be copied after everything
1548 * else has been copied. Only the src alignment matters, not dst.
1549 */
1550 if (src_va % SI_CPDMA_ALIGNMENT) {
1551 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1552 /* The main part will be skipped if the size is too small. */
1553 skipped_size = MIN2(skipped_size, size);
1554 size -= skipped_size;
1555 }
1556 }
1557 main_src_va = src_va + skipped_size;
1558 main_dest_va = dest_va + skipped_size;
1559
1560 while (size) {
1561 unsigned dma_flags = 0;
1562 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1563
1564 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1565 /* DMA operations via L2 are coherent and faster.
1566 * TODO: GFX7-GFX9 should also support this but it
1567 * requires tests/benchmarks.
1568 */
1569 dma_flags |= CP_DMA_USE_L2;
1570 }
1571
1572 si_cp_dma_prepare(cmd_buffer, byte_count,
1573 size + skipped_size + realign_size,
1574 &dma_flags);
1575
1576 dma_flags &= ~CP_DMA_SYNC;
1577
1578 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1579 byte_count, dma_flags);
1580
1581 size -= byte_count;
1582 main_src_va += byte_count;
1583 main_dest_va += byte_count;
1584 }
1585
1586 if (skipped_size) {
1587 unsigned dma_flags = 0;
1588
1589 si_cp_dma_prepare(cmd_buffer, skipped_size,
1590 size + skipped_size + realign_size,
1591 &dma_flags);
1592
1593 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1594 skipped_size, dma_flags);
1595 }
1596 if (realign_size)
1597 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1598 }
1599
1600 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1601 uint64_t size, unsigned value)
1602 {
1603
1604 if (!size)
1605 return;
1606
1607 assert(va % 4 == 0 && size % 4 == 0);
1608
1609 /* Assume that we are not going to sync after the last DMA operation. */
1610 cmd_buffer->state.dma_is_busy = true;
1611
1612 while (size) {
1613 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1614 unsigned dma_flags = CP_DMA_CLEAR;
1615
1616 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1617 /* DMA operations via L2 are coherent and faster.
1618 * TODO: GFX7-GFX9 should also support this but it
1619 * requires tests/benchmarks.
1620 */
1621 dma_flags |= CP_DMA_USE_L2;
1622 }
1623
1624 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1625
1626 /* Emit the clear packet. */
1627 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1628 dma_flags);
1629
1630 size -= byte_count;
1631 va += byte_count;
1632 }
1633 }
1634
1635 void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
1636 {
1637 if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7)
1638 return;
1639
1640 if (!cmd_buffer->state.dma_is_busy)
1641 return;
1642
1643 /* Issue a dummy DMA that copies zero bytes.
1644 *
1645 * The DMA engine will see that there's no work to do and skip this
1646 * DMA request, however, the CP will see the sync flag and still wait
1647 * for all DMAs to complete.
1648 */
1649 si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
1650
1651 cmd_buffer->state.dma_is_busy = false;
1652 }
1653
1654 /* For MSAA sample positions. */
1655 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1656 ((((unsigned)(s0x) & 0xf) << 0) | (((unsigned)(s0y) & 0xf) << 4) | \
1657 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1658 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1659 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1660
1661 /* For obtaining location coordinates from registers */
1662 #define SEXT4(x) ((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0)))
1663 #define GET_SFIELD(reg, index) SEXT4(((reg) >> ((index) * 4)) & 0xf)
1664 #define GET_SX(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2)
1665 #define GET_SY(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1)
1666
1667 /* 1x MSAA */
1668 static const uint32_t sample_locs_1x =
1669 FILL_SREG(0, 0, 0, 0, 0, 0, 0, 0);
1670 static const unsigned max_dist_1x = 0;
1671 static const uint64_t centroid_priority_1x = 0x0000000000000000ull;
1672
1673 /* 2xMSAA */
1674 static const uint32_t sample_locs_2x =
1675 FILL_SREG(4,4, -4, -4, 0, 0, 0, 0);
1676 static const unsigned max_dist_2x = 4;
1677 static const uint64_t centroid_priority_2x = 0x1010101010101010ull;
1678
1679 /* 4xMSAA */
1680 static const uint32_t sample_locs_4x =
1681 FILL_SREG(-2,-6, 6, -2, -6, 2, 2, 6);
1682 static const unsigned max_dist_4x = 6;
1683 static const uint64_t centroid_priority_4x = 0x3210321032103210ull;
1684
1685 /* 8xMSAA */
1686 static const uint32_t sample_locs_8x[] = {
1687 FILL_SREG( 1,-3, -1, 3, 5, 1, -3,-5),
1688 FILL_SREG(-5, 5, -7,-1, 3, 7, 7,-7),
1689 /* The following are unused by hardware, but we emit them to IBs
1690 * instead of multiple SET_CONTEXT_REG packets. */
1691 0,
1692 0,
1693 };
1694 static const unsigned max_dist_8x = 7;
1695 static const uint64_t centroid_priority_8x = 0x7654321076543210ull;
1696
1697 unsigned radv_get_default_max_sample_dist(int log_samples)
1698 {
1699 unsigned max_dist[] = {
1700 max_dist_1x,
1701 max_dist_2x,
1702 max_dist_4x,
1703 max_dist_8x,
1704 };
1705 return max_dist[log_samples];
1706 }
1707
1708 void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples)
1709 {
1710 switch (nr_samples) {
1711 default:
1712 case 1:
1713 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1714 radeon_emit(cs, (uint32_t)centroid_priority_1x);
1715 radeon_emit(cs, centroid_priority_1x >> 32);
1716 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x);
1717 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x);
1718 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x);
1719 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x);
1720 break;
1721 case 2:
1722 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1723 radeon_emit(cs, (uint32_t)centroid_priority_2x);
1724 radeon_emit(cs, centroid_priority_2x >> 32);
1725 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x);
1726 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x);
1727 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x);
1728 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x);
1729 break;
1730 case 4:
1731 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1732 radeon_emit(cs, (uint32_t)centroid_priority_4x);
1733 radeon_emit(cs, centroid_priority_4x >> 32);
1734 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x);
1735 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x);
1736 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x);
1737 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x);
1738 break;
1739 case 8:
1740 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1741 radeon_emit(cs, (uint32_t)centroid_priority_8x);
1742 radeon_emit(cs, centroid_priority_8x >> 32);
1743 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1744 radeon_emit_array(cs, sample_locs_8x, 4);
1745 radeon_emit_array(cs, sample_locs_8x, 4);
1746 radeon_emit_array(cs, sample_locs_8x, 4);
1747 radeon_emit_array(cs, sample_locs_8x, 2);
1748 break;
1749 }
1750 }
1751
1752 static void radv_get_sample_position(struct radv_device *device,
1753 unsigned sample_count,
1754 unsigned sample_index, float *out_value)
1755 {
1756 const uint32_t *sample_locs;
1757
1758 switch (sample_count) {
1759 case 1:
1760 default:
1761 sample_locs = &sample_locs_1x;
1762 break;
1763 case 2:
1764 sample_locs = &sample_locs_2x;
1765 break;
1766 case 4:
1767 sample_locs = &sample_locs_4x;
1768 break;
1769 case 8:
1770 sample_locs = sample_locs_8x;
1771 break;
1772 }
1773
1774 out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f;
1775 out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f;
1776 }
1777
1778 void radv_device_init_msaa(struct radv_device *device)
1779 {
1780 int i;
1781
1782 radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1783
1784 for (i = 0; i < 2; i++)
1785 radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1786 for (i = 0; i < 4; i++)
1787 radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1788 for (i = 0; i < 8; i++)
1789 radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1790 }