radv: rewrite late alloc computation
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for AMD GCN */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "radv_util.h"
35 #include "main/macros.h"
36
37 static void
38 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
39 struct radeon_cmdbuf *cs,
40 unsigned raster_config,
41 unsigned raster_config_1)
42 {
43 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
44 unsigned raster_config_se[4];
45 unsigned se;
46
47 ac_get_harvested_configs(&physical_device->rad_info,
48 raster_config,
49 &raster_config_1,
50 raster_config_se);
51
52 for (se = 0; se < num_se; se++) {
53 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
54 if (physical_device->rad_info.chip_class < GFX7)
55 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
56 S_00802C_SE_INDEX(se) |
57 S_00802C_SH_BROADCAST_WRITES(1) |
58 S_00802C_INSTANCE_BROADCAST_WRITES(1));
59 else
60 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
61 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
62 S_030800_INSTANCE_BROADCAST_WRITES(1));
63 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
64 }
65
66 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
67 if (physical_device->rad_info.chip_class < GFX7)
68 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
69 S_00802C_SE_BROADCAST_WRITES(1) |
70 S_00802C_SH_BROADCAST_WRITES(1) |
71 S_00802C_INSTANCE_BROADCAST_WRITES(1));
72 else
73 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
74 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
75 S_030800_INSTANCE_BROADCAST_WRITES(1));
76
77 if (physical_device->rad_info.chip_class >= GFX7)
78 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
79 }
80
81 void
82 si_emit_compute(struct radv_physical_device *physical_device,
83 struct radeon_cmdbuf *cs)
84 {
85 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
86 radeon_emit(cs, 0);
87 radeon_emit(cs, 0);
88 radeon_emit(cs, 0);
89
90 radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
91 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1,
92 * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */
93 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
94 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
95
96 if (physical_device->rad_info.chip_class >= GFX7) {
97 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
98 radeon_set_sh_reg_seq(cs,
99 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
100 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
101 S_00B858_SH1_CU_EN(0xffff));
102 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
103 S_00B858_SH1_CU_EN(0xffff));
104 }
105
106 if (physical_device->rad_info.chip_class >= GFX10)
107 radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, 0);
108
109 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
110 * and is now per pipe, so it should be handled in the
111 * kernel if we want to use something other than the default value,
112 * which is now 0x22f.
113 */
114 if (physical_device->rad_info.chip_class <= GFX6) {
115 /* XXX: This should be:
116 * (number of compute units) * 4 * (waves per simd) - 1 */
117
118 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
119 0x190 /* Default value */);
120 }
121 }
122
123 /* 12.4 fixed-point */
124 static unsigned radv_pack_float_12p4(float x)
125 {
126 return x <= 0 ? 0 :
127 x >= 4096 ? 0xffff : x * 16;
128 }
129
130 static void
131 si_set_raster_config(struct radv_physical_device *physical_device,
132 struct radeon_cmdbuf *cs)
133 {
134 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
135 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
136 unsigned raster_config, raster_config_1;
137
138 ac_get_raster_config(&physical_device->rad_info,
139 &raster_config,
140 &raster_config_1, NULL);
141
142 /* Always use the default config when all backends are enabled
143 * (or when we failed to determine the enabled backends).
144 */
145 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
146 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
147 raster_config);
148 if (physical_device->rad_info.chip_class >= GFX7)
149 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
150 raster_config_1);
151 } else {
152 si_write_harvested_raster_configs(physical_device, cs,
153 raster_config,
154 raster_config_1);
155 }
156 }
157
158 void
159 si_emit_graphics(struct radv_physical_device *physical_device,
160 struct radeon_cmdbuf *cs)
161 {
162 bool has_clear_state = physical_device->rad_info.has_clear_state;
163 int i;
164
165 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
166 radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
167 radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
168
169 if (has_clear_state) {
170 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
171 radeon_emit(cs, 0);
172 }
173
174 if (physical_device->rad_info.chip_class <= GFX8)
175 si_set_raster_config(physical_device, cs);
176
177 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
178 if (!has_clear_state)
179 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
180
181 /* FIXME calculate these values somehow ??? */
182 if (physical_device->rad_info.chip_class <= GFX8) {
183 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
184 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
185 }
186
187 if (!has_clear_state) {
188 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
189 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
190 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
191 }
192
193 if (physical_device->rad_info.chip_class <= GFX9)
194 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
195 if (!has_clear_state)
196 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
197 if (physical_device->rad_info.chip_class < GFX7)
198 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
199 S_008A14_CLIP_VTX_REORDER_ENA(1));
200
201 if (!has_clear_state)
202 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
203
204 /* CLEAR_STATE doesn't clear these correctly on certain generations.
205 * I don't know why. Deduced by trial and error.
206 */
207 if (physical_device->rad_info.chip_class <= GFX7 || !has_clear_state) {
208 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
209 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
210 S_028204_WINDOW_OFFSET_DISABLE(1));
211 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
212 S_028240_WINDOW_OFFSET_DISABLE(1));
213 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
214 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
215 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
216 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
217 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
218 }
219
220 if (!has_clear_state) {
221 for (i = 0; i < 16; i++) {
222 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
223 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
224 }
225 }
226
227 if (!has_clear_state) {
228 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
229 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
230 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
231 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
232 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
233 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
234 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
235 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
236 }
237
238 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
239 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
240 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
241
242 if (physical_device->rad_info.chip_class >= GFX10) {
243 radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
244 radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0);
245 radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0);
246 radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0);
247 radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0);
248 radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0);
249 } else if (physical_device->rad_info.chip_class == GFX9) {
250 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
251 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
252 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
253 } else {
254 /* These registers, when written, also overwrite the
255 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
256 * them. It would be an issue if there was another UMD
257 * changing them.
258 */
259 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
260 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
261 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
262 }
263
264 if (physical_device->rad_info.chip_class >= GFX7) {
265 if (physical_device->rad_info.chip_class >= GFX10) {
266 /* Logical CUs 16 - 31 */
267 radeon_set_sh_reg_idx(physical_device, cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
268 3, S_00B404_CU_EN(0xffff));
269 radeon_set_sh_reg_idx(physical_device, cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
270 3, S_00B104_CU_EN(0xffff));
271 radeon_set_sh_reg_idx(physical_device, cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
272 3, S_00B004_CU_EN(0xffff));
273 }
274
275 if (physical_device->rad_info.chip_class >= GFX9) {
276 radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
277 3, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
278 } else {
279 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
280 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
281 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
282 S_00B41C_WAVE_LIMIT(0x3F));
283 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
284 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
285 /* If this is 0, Bonaire can hang even if GS isn't being used.
286 * Other chips are unaffected. These are suboptimal values,
287 * but we don't use on-chip GS.
288 */
289 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
290 S_028A44_ES_VERTS_PER_SUBGRP(64) |
291 S_028A44_GS_PRIMS_PER_SUBGRP(4));
292 }
293
294 /* Compute LATE_ALLOC_VS.LIMIT. */
295 unsigned num_cu_per_sh = physical_device->rad_info.num_good_cu_per_sh;
296 unsigned late_alloc_wave64 = 0; /* The limit is per SH. */
297 unsigned late_alloc_wave64_gs = 0;
298 unsigned cu_mask_vs = 0xffff;
299 unsigned cu_mask_gs = 0xffff;
300
301 if (physical_device->rad_info.chip_class >= GFX10) {
302 /* For Wave32, the hw will launch twice the number of late
303 * alloc waves, so 1 == 2x wave32.
304 */
305 if (num_cu_per_sh <= 6) {
306 late_alloc_wave64 = num_cu_per_sh - 2;
307 } else {
308 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
309
310 /* CU2 & CU3 disabled because of the dual CU design */
311 cu_mask_vs = 0xfff3;
312 cu_mask_gs = 0xfff3; /* NGG only */
313 }
314
315 late_alloc_wave64_gs = late_alloc_wave64;
316
317 /* Don't use late alloc for NGG on Navi14 due to a hw
318 * bug. If NGG is never used, enable all CUs.
319 */
320 if (!physical_device->use_ngg ||
321 physical_device->rad_info.family == CHIP_NAVI14) {
322 late_alloc_wave64_gs = 0;
323 cu_mask_gs = 0xffff;
324 }
325 } else {
326 if (physical_device->rad_info.family == CHIP_KABINI) {
327 late_alloc_wave64 = 0; /* Potential hang on Kabini. */
328 } else if (num_cu_per_sh <= 4) {
329 /* Too few available compute units per SH.
330 * Disallowing VS to run on one CU could hurt
331 * us more than late VS allocation would help.
332 *
333 * 2 is the highest safe number that allows us
334 * to keep all CUs enabled.
335 */
336 late_alloc_wave64 = 2;
337 } else {
338 /* This is a good initial value, allowing 1
339 * late_alloc wave per SIMD on num_cu - 2.
340 */
341 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
342 }
343
344 if (late_alloc_wave64 > 2)
345 cu_mask_vs = 0xfffe; /* 1 CU disabled */
346 }
347
348 radeon_set_sh_reg_idx(physical_device, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
349 3, S_00B118_CU_EN(cu_mask_vs) |
350 S_00B118_WAVE_LIMIT(0x3F));
351 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
352 S_00B11C_LIMIT(late_alloc_wave64));
353
354 radeon_set_sh_reg_idx(physical_device, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
355 3, S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));
356
357 if (physical_device->rad_info.chip_class >= GFX10) {
358 radeon_set_sh_reg_idx(physical_device, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
359 3, S_00B204_CU_EN(0xffff) |
360 S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64_gs));
361 }
362
363 radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
364 3, S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
365 }
366
367 if (physical_device->rad_info.chip_class >= GFX10) {
368 /* Break up a pixel wave if it contains deallocs for more than
369 * half the parameter cache.
370 *
371 * To avoid a deadlock where pixel waves aren't launched
372 * because they're waiting for more pixels while the frontend
373 * is stuck waiting for PC space, the maximum allowed value is
374 * the size of the PC minus the largest possible allocation for
375 * a single primitive shader subgroup.
376 */
377 radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL,
378 S_028C50_MAX_DEALLOCS_IN_WAVE(512));
379 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
380
381 /* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */
382 unsigned meta_write_policy, meta_read_policy;
383
384 /* TODO: investigate whether LRU improves performance on other chips too */
385 if (physical_device->rad_info.num_render_backends <= 4) {
386 meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */
387 meta_read_policy = V_02807C_CACHE_LRU_RD; /* cache reads */
388 } else {
389 meta_write_policy = V_02807C_CACHE_STREAM_WR; /* write combine */
390 meta_read_policy = V_02807C_CACHE_NOA_RD; /* don't cache reads */
391 }
392
393 radeon_set_context_reg(cs, R_02807C_DB_RMI_L2_CACHE_CONTROL,
394 S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
395 S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
396 S_02807C_HTILE_WR_POLICY(meta_write_policy) |
397 S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
398 S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA_RD) |
399 S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA_RD) |
400 S_02807C_HTILE_RD_POLICY(meta_read_policy));
401
402 radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL,
403 S_028410_CMASK_WR_POLICY(meta_write_policy) |
404 S_028410_FMASK_WR_POLICY(meta_write_policy) |
405 S_028410_DCC_WR_POLICY(meta_write_policy) |
406 S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM_WR) |
407 S_028410_CMASK_RD_POLICY(meta_read_policy) |
408 S_028410_FMASK_RD_POLICY(meta_read_policy) |
409 S_028410_DCC_RD_POLICY(meta_read_policy) |
410 S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_RD));
411 radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0);
412
413 radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
414 S_00B0C0_SOFT_GROUPING_EN(1) |
415 S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
416 radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);
417
418 if (physical_device->rad_info.family == CHIP_NAVI10 ||
419 physical_device->rad_info.family == CHIP_NAVI12 ||
420 physical_device->rad_info.family == CHIP_NAVI14) {
421 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
422 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
423 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
424 }
425
426 /* TODO: For culling, replace 128 with 256. */
427 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
428 S_030980_OVERSUB_EN(1) |
429 S_030980_NUM_PC_LINES(128 * physical_device->rad_info.max_se - 1));
430 }
431
432 if (physical_device->rad_info.chip_class >= GFX9) {
433 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
434 S_028B50_ACCUM_ISOLINE(40) |
435 S_028B50_ACCUM_TRI(30) |
436 S_028B50_ACCUM_QUAD(24) |
437 S_028B50_DONUT_SPLIT(24) |
438 S_028B50_TRAP_SPLIT(6));
439 } else if (physical_device->rad_info.chip_class >= GFX8) {
440 uint32_t vgt_tess_distribution;
441
442 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
443 S_028B50_ACCUM_TRI(11) |
444 S_028B50_ACCUM_QUAD(11) |
445 S_028B50_DONUT_SPLIT(16);
446
447 if (physical_device->rad_info.family == CHIP_FIJI ||
448 physical_device->rad_info.family >= CHIP_POLARIS10)
449 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
450
451 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
452 vgt_tess_distribution);
453 } else if (!has_clear_state) {
454 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
455 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
456 }
457
458 if (physical_device->rad_info.chip_class >= GFX9) {
459 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
460 S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) |
461 S_028C48_MAX_PRIM_PER_BATCH(1023));
462 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
463 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
464 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
465 }
466
467 unsigned tmp = (unsigned)(1.0 * 8.0);
468 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
469 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
470 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
471 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
472 S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));
473
474 if (!has_clear_state) {
475 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
476 S_028004_ZPASS_INCREMENT_DISABLE(1));
477 }
478
479 /* Enable the Polaris small primitive filter control.
480 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
481 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
482 * and AMDVLK doesn't have a workaround as well.
483 */
484 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
485 unsigned small_prim_filter_cntl =
486 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
487 /* Workaround for a hw line bug. */
488 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
489
490 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
491 small_prim_filter_cntl);
492 }
493
494 si_emit_compute(physical_device, cs);
495 }
496
497 void
498 cik_create_gfx_config(struct radv_device *device)
499 {
500 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
501 if (!cs)
502 return;
503
504 si_emit_graphics(device->physical_device, cs);
505
506 while (cs->cdw & 7) {
507 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
508 radeon_emit(cs, 0x80000000);
509 else
510 radeon_emit(cs, 0xffff1000);
511 }
512
513 device->gfx_init = device->ws->buffer_create(device->ws,
514 cs->cdw * 4, 4096,
515 RADEON_DOMAIN_GTT,
516 RADEON_FLAG_CPU_ACCESS|
517 RADEON_FLAG_NO_INTERPROCESS_SHARING |
518 RADEON_FLAG_READ_ONLY,
519 RADV_BO_PRIORITY_CS);
520 if (!device->gfx_init)
521 goto fail;
522
523 void *map = device->ws->buffer_map(device->gfx_init);
524 if (!map) {
525 device->ws->buffer_destroy(device->gfx_init);
526 device->gfx_init = NULL;
527 goto fail;
528 }
529 memcpy(map, cs->buf, cs->cdw * 4);
530
531 device->ws->buffer_unmap(device->gfx_init);
532 device->gfx_init_size_dw = cs->cdw;
533 fail:
534 device->ws->cs_destroy(cs);
535 }
536
537 static void
538 get_viewport_xform(const VkViewport *viewport,
539 float scale[3], float translate[3])
540 {
541 float x = viewport->x;
542 float y = viewport->y;
543 float half_width = 0.5f * viewport->width;
544 float half_height = 0.5f * viewport->height;
545 double n = viewport->minDepth;
546 double f = viewport->maxDepth;
547
548 scale[0] = half_width;
549 translate[0] = half_width + x;
550 scale[1] = half_height;
551 translate[1] = half_height + y;
552
553 scale[2] = (f - n);
554 translate[2] = n;
555 }
556
557 void
558 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
559 int count, const VkViewport *viewports)
560 {
561 int i;
562
563 assert(count);
564 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
565 first_vp * 4 * 6, count * 6);
566
567 for (i = 0; i < count; i++) {
568 float scale[3], translate[3];
569
570
571 get_viewport_xform(&viewports[i], scale, translate);
572 radeon_emit(cs, fui(scale[0]));
573 radeon_emit(cs, fui(translate[0]));
574 radeon_emit(cs, fui(scale[1]));
575 radeon_emit(cs, fui(translate[1]));
576 radeon_emit(cs, fui(scale[2]));
577 radeon_emit(cs, fui(translate[2]));
578 }
579
580 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
581 first_vp * 4 * 2, count * 2);
582 for (i = 0; i < count; i++) {
583 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
584 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
585 radeon_emit(cs, fui(zmin));
586 radeon_emit(cs, fui(zmax));
587 }
588 }
589
590 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
591 {
592 float scale[3], translate[3];
593 VkRect2D rect;
594
595 get_viewport_xform(viewport, scale, translate);
596
597 rect.offset.x = translate[0] - fabs(scale[0]);
598 rect.offset.y = translate[1] - fabs(scale[1]);
599 rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x;
600 rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y;
601
602 return rect;
603 }
604
605 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
606 VkRect2D ret;
607 ret.offset.x = MAX2(a->offset.x, b->offset.x);
608 ret.offset.y = MAX2(a->offset.y, b->offset.y);
609 ret.extent.width = MIN2(a->offset.x + a->extent.width,
610 b->offset.x + b->extent.width) - ret.offset.x;
611 ret.extent.height = MIN2(a->offset.y + a->extent.height,
612 b->offset.y + b->extent.height) - ret.offset.y;
613 return ret;
614 }
615
616 void
617 si_write_scissors(struct radeon_cmdbuf *cs, int first,
618 int count, const VkRect2D *scissors,
619 const VkViewport *viewports, bool can_use_guardband)
620 {
621 int i;
622 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
623 const float max_range = 32767.0f;
624 if (!count)
625 return;
626
627 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
628 for (i = 0; i < count; i++) {
629 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
630 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
631
632 get_viewport_xform(viewports + i, scale, translate);
633 scale[0] = fabsf(scale[0]);
634 scale[1] = fabsf(scale[1]);
635
636 if (scale[0] < 0.5)
637 scale[0] = 0.5;
638 if (scale[1] < 0.5)
639 scale[1] = 0.5;
640
641 guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
642 guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);
643
644 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
645 S_028250_TL_Y(scissor.offset.y) |
646 S_028250_WINDOW_OFFSET_DISABLE(1));
647 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
648 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
649 }
650 if (!can_use_guardband) {
651 guardband_x = 1.0;
652 guardband_y = 1.0;
653 }
654
655 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
656 radeon_emit(cs, fui(guardband_y));
657 radeon_emit(cs, fui(1.0));
658 radeon_emit(cs, fui(guardband_x));
659 radeon_emit(cs, fui(1.0));
660 }
661
662 static inline unsigned
663 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
664 {
665 if (num == 0)
666 return 0;
667
668 if (info->incr == 0)
669 return 0;
670
671 if (num < info->min)
672 return 0;
673
674 return 1 + ((num - info->min) / info->incr);
675 }
676
677 uint32_t
678 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
679 bool instanced_draw, bool indirect_draw,
680 bool count_from_stream_output,
681 uint32_t draw_vertex_count)
682 {
683 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
684 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
685 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
686 const unsigned max_primgroup_in_wave = 2;
687 /* SWITCH_ON_EOP(0) is always preferable. */
688 bool wd_switch_on_eop = false;
689 bool ia_switch_on_eop = false;
690 bool ia_switch_on_eoi = false;
691 bool partial_vs_wave = false;
692 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
693 bool multi_instances_smaller_than_primgroup;
694
695 multi_instances_smaller_than_primgroup = indirect_draw;
696 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
697 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
698 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
699 multi_instances_smaller_than_primgroup = true;
700 }
701
702 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
703 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
704
705 if (chip_class >= GFX7) {
706 wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop;
707
708 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
709 * We don't know that for indirect drawing, so treat it as
710 * always problematic. */
711 if (family == CHIP_HAWAII &&
712 (instanced_draw || indirect_draw))
713 wd_switch_on_eop = true;
714
715 /* Performance recommendation for 4 SE Gfx7-8 parts if
716 * instances are smaller than a primgroup.
717 * Assume indirect draws always use small instances.
718 * This is needed for good VS wave utilization.
719 */
720 if (chip_class <= GFX8 &&
721 info->max_se == 4 &&
722 multi_instances_smaller_than_primgroup)
723 wd_switch_on_eop = true;
724
725 /* Required on GFX7 and later. */
726 if (info->max_se > 2 && !wd_switch_on_eop)
727 ia_switch_on_eoi = true;
728
729 /* Required by Hawaii and, for some special cases, by GFX8. */
730 if (ia_switch_on_eoi &&
731 (family == CHIP_HAWAII ||
732 (chip_class == GFX8 &&
733 /* max primgroup in wave is always 2 - leave this for documentation */
734 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
735 partial_vs_wave = true;
736
737 /* Instancing bug on Bonaire. */
738 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
739 (instanced_draw || indirect_draw))
740 partial_vs_wave = true;
741
742 /* Hardware requirement when drawing primitives from a stream
743 * output buffer.
744 */
745 if (count_from_stream_output)
746 wd_switch_on_eop = true;
747
748 /* If the WD switch is false, the IA switch must be false too. */
749 assert(wd_switch_on_eop || !ia_switch_on_eop);
750 }
751 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
752 if (chip_class <= GFX8 && ia_switch_on_eoi)
753 partial_es_wave = true;
754
755 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
756 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
757 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
758 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
759 */
760 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
761 bool set_vgt_flush = indirect_draw;
762 if (!set_vgt_flush && instanced_draw) {
763 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
764 if (num_prims <= 1)
765 set_vgt_flush = true;
766 }
767 if (set_vgt_flush)
768 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
769 }
770 }
771
772 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
773 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
774 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
775 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
776 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
777 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0);
778
779 }
780
781 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
782 enum chip_class chip_class,
783 bool is_mec,
784 unsigned event, unsigned event_flags,
785 unsigned dst_sel, unsigned data_sel,
786 uint64_t va,
787 uint32_t new_fence,
788 uint64_t gfx9_eop_bug_va)
789 {
790 unsigned op = EVENT_TYPE(event) |
791 EVENT_INDEX(event == V_028A90_CS_DONE ||
792 event == V_028A90_PS_DONE ? 6 : 5) |
793 event_flags;
794 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
795 unsigned sel = EOP_DST_SEL(dst_sel) |
796 EOP_DATA_SEL(data_sel);
797
798 /* Wait for write confirmation before writing data, but don't send
799 * an interrupt. */
800 if (data_sel != EOP_DATA_SEL_DISCARD)
801 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
802
803 if (chip_class >= GFX9 || is_gfx8_mec) {
804 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
805 * counters) must immediately precede every timestamp event to
806 * prevent a GPU hang on GFX9.
807 */
808 if (chip_class == GFX9 && !is_mec) {
809 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
810 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
811 radeon_emit(cs, gfx9_eop_bug_va);
812 radeon_emit(cs, gfx9_eop_bug_va >> 32);
813 }
814
815 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
816 radeon_emit(cs, op);
817 radeon_emit(cs, sel);
818 radeon_emit(cs, va); /* address lo */
819 radeon_emit(cs, va >> 32); /* address hi */
820 radeon_emit(cs, new_fence); /* immediate data lo */
821 radeon_emit(cs, 0); /* immediate data hi */
822 if (!is_gfx8_mec)
823 radeon_emit(cs, 0); /* unused */
824 } else {
825 if (chip_class == GFX7 ||
826 chip_class == GFX8) {
827 /* Two EOP events are required to make all engines go idle
828 * (and optional cache flushes executed) before the timestamp
829 * is written.
830 */
831 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
832 radeon_emit(cs, op);
833 radeon_emit(cs, va);
834 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
835 radeon_emit(cs, 0); /* immediate data */
836 radeon_emit(cs, 0); /* unused */
837 }
838
839 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
840 radeon_emit(cs, op);
841 radeon_emit(cs, va);
842 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
843 radeon_emit(cs, new_fence); /* immediate data */
844 radeon_emit(cs, 0); /* unused */
845 }
846 }
847
848 void
849 radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
850 uint32_t ref, uint32_t mask)
851 {
852 assert(op == WAIT_REG_MEM_EQUAL ||
853 op == WAIT_REG_MEM_NOT_EQUAL ||
854 op == WAIT_REG_MEM_GREATER_OR_EQUAL);
855
856 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
857 radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
858 radeon_emit(cs, va);
859 radeon_emit(cs, va >> 32);
860 radeon_emit(cs, ref); /* reference value */
861 radeon_emit(cs, mask); /* mask */
862 radeon_emit(cs, 4); /* poll interval */
863 }
864
865 static void
866 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
867 bool is_mec,
868 bool is_gfx9,
869 unsigned cp_coher_cntl)
870 {
871 if (is_mec || is_gfx9) {
872 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
873 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
874 PKT3_SHADER_TYPE_S(is_mec));
875 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
876 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
877 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
878 radeon_emit(cs, 0); /* CP_COHER_BASE */
879 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
880 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
881 } else {
882 /* ACQUIRE_MEM is only required on a compute ring. */
883 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
884 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
885 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
886 radeon_emit(cs, 0); /* CP_COHER_BASE */
887 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
888 }
889 }
890
891 static void
892 gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
893 enum chip_class chip_class,
894 uint32_t *flush_cnt,
895 uint64_t flush_va,
896 bool is_mec,
897 enum radv_cmd_flush_bits flush_bits,
898 uint64_t gfx9_eop_bug_va)
899 {
900 uint32_t gcr_cntl = 0;
901 unsigned cb_db_event = 0;
902
903 /* We don't need these. */
904 assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC)));
905
906 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
907 gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
908 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
909 /* TODO: When writing to the SMEM L1 cache, we need to set SEQ
910 * to FORWARD when both L1 and L2 are written out (WB or INV).
911 */
912 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
913 }
914 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE)
915 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
916 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
917 /* Writeback and invalidate everything in L2. */
918 gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) |
919 S_586_GLM_INV(1) | S_586_GLM_WB(1);
920 } else if (flush_bits & RADV_CMD_FLAG_WB_L2) {
921 /* Writeback but do not invalidate.
922 * GLM doesn't support WB alone. If WB is set, INV must be set too.
923 */
924 gcr_cntl |= S_586_GL2_WB(1) |
925 S_586_GLM_WB(1) | S_586_GLM_INV(1);
926 }
927
928 /* TODO: Implement this new flag for GFX9+.
929 else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA)
930 gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
931 */
932
933 if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
934 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */
935 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
936 /* Flush CMASK/FMASK/DCC. Will wait for idle later. */
937 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
938 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
939 EVENT_INDEX(0));
940 }
941
942 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */
943 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
944 /* Flush HTILE. Will wait for idle later. */
945 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
946 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
947 EVENT_INDEX(0));
948 }
949
950 /* First flush CB/DB, then L1/L2. */
951 gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
952
953 if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) ==
954 (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
955 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
956 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
957 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
958 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
959 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
960 } else {
961 assert(0);
962 }
963 } else {
964 /* Wait for graphics shaders to go idle if requested. */
965 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
966 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
967 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
968 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
969 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
970 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
971 }
972 }
973
974 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
975 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
976 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
977 }
978
979 if (cb_db_event) {
980 /* CB/DB flush and invalidate (or possibly just a wait for a
981 * meta flush) via RELEASE_MEM.
982 *
983 * Combine this with other cache flushes when possible; this
984 * requires affected shaders to be idle, so do it after the
985 * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
986 * implied).
987 */
988 /* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
989 unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
990 unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
991 unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
992 unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
993 assert(G_586_GL2_US(gcr_cntl) == 0);
994 assert(G_586_GL2_RANGE(gcr_cntl) == 0);
995 assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
996 unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
997 unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
998 unsigned gcr_seq = G_586_SEQ(gcr_cntl);
999
1000 gcr_cntl &= C_586_GLM_WB &
1001 C_586_GLM_INV &
1002 C_586_GLV_INV &
1003 C_586_GL1_INV &
1004 C_586_GL2_INV &
1005 C_586_GL2_WB; /* keep SEQ */
1006
1007 assert(flush_cnt);
1008 (*flush_cnt)++;
1009
1010 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event,
1011 S_490_GLM_WB(glm_wb) |
1012 S_490_GLM_INV(glm_inv) |
1013 S_490_GLV_INV(glv_inv) |
1014 S_490_GL1_INV(gl1_inv) |
1015 S_490_GL2_INV(gl2_inv) |
1016 S_490_GL2_WB(gl2_wb) |
1017 S_490_SEQ(gcr_seq),
1018 EOP_DST_SEL_MEM,
1019 EOP_DATA_SEL_VALUE_32BIT,
1020 flush_va, *flush_cnt,
1021 gfx9_eop_bug_va);
1022
1023 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1024 *flush_cnt, 0xffffffff);
1025 }
1026
1027 /* VGT state sync */
1028 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1029 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1030 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1031 }
1032
1033 /* Ignore fields that only modify the behavior of other fields. */
1034 if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
1035 /* Flush caches and wait for the caches to assert idle.
1036 * The cache flush is executed in the ME, but the PFP waits
1037 * for completion.
1038 */
1039 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
1040 radeon_emit(cs, 0); /* CP_COHER_CNTL */
1041 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
1042 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
1043 radeon_emit(cs, 0); /* CP_COHER_BASE */
1044 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
1045 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
1046 radeon_emit(cs, gcr_cntl); /* GCR_CNTL */
1047 } else if ((cb_db_event ||
1048 (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1049 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1050 RADV_CMD_FLAG_CS_PARTIAL_FLUSH)))
1051 && !is_mec) {
1052 /* We need to ensure that PFP waits as well. */
1053 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1054 radeon_emit(cs, 0);
1055 }
1056
1057 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1058 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1059 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1060 EVENT_INDEX(0));
1061 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1062 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1063 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1064 EVENT_INDEX(0));
1065 }
1066 }
1067
1068 void
1069 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1070 enum chip_class chip_class,
1071 uint32_t *flush_cnt,
1072 uint64_t flush_va,
1073 bool is_mec,
1074 enum radv_cmd_flush_bits flush_bits,
1075 uint64_t gfx9_eop_bug_va)
1076 {
1077 unsigned cp_coher_cntl = 0;
1078 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1079 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
1080
1081 if (chip_class >= GFX10) {
1082 /* GFX10 cache flush handling is quite different. */
1083 gfx10_cs_emit_cache_flush(cs, chip_class, flush_cnt, flush_va,
1084 is_mec, flush_bits, gfx9_eop_bug_va);
1085 return;
1086 }
1087
1088 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
1089 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
1090 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE)
1091 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
1092
1093 if (chip_class <= GFX8) {
1094 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1095 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
1096 S_0085F0_CB0_DEST_BASE_ENA(1) |
1097 S_0085F0_CB1_DEST_BASE_ENA(1) |
1098 S_0085F0_CB2_DEST_BASE_ENA(1) |
1099 S_0085F0_CB3_DEST_BASE_ENA(1) |
1100 S_0085F0_CB4_DEST_BASE_ENA(1) |
1101 S_0085F0_CB5_DEST_BASE_ENA(1) |
1102 S_0085F0_CB6_DEST_BASE_ENA(1) |
1103 S_0085F0_CB7_DEST_BASE_ENA(1);
1104
1105 /* Necessary for DCC */
1106 if (chip_class >= GFX8) {
1107 si_cs_emit_write_event_eop(cs,
1108 chip_class,
1109 is_mec,
1110 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
1111 0,
1112 EOP_DST_SEL_MEM,
1113 EOP_DATA_SEL_DISCARD,
1114 0, 0,
1115 gfx9_eop_bug_va);
1116 }
1117 }
1118 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1119 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
1120 S_0085F0_DB_DEST_BASE_ENA(1);
1121 }
1122 }
1123
1124 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
1125 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1126 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
1127 }
1128
1129 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
1130 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1131 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
1132 }
1133
1134 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1135 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1136 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1137 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1138 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1139 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1140 }
1141
1142 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1143 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1144 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1145 }
1146
1147 if (chip_class == GFX9 && flush_cb_db) {
1148 unsigned cb_db_event, tc_flags;
1149
1150 /* Set the CB/DB flush event. */
1151 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1152
1153 /* These are the only allowed combinations. If you need to
1154 * do multiple operations at once, do them separately.
1155 * All operations that invalidate L2 also seem to invalidate
1156 * metadata. Volatile (VOL) and WC flushes are not listed here.
1157 *
1158 * TC | TC_WB = writeback & invalidate L2 & L1
1159 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1160 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
1161 * TC | TC_NC = invalidate L2 for MTYPE == NC
1162 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1163 * TCL1 = invalidate L1
1164 */
1165 tc_flags = EVENT_TC_ACTION_ENA |
1166 EVENT_TC_MD_ACTION_ENA;
1167
1168 /* Ideally flush TC together with CB/DB. */
1169 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1170 /* Writeback and invalidate everything in L2 & L1. */
1171 tc_flags = EVENT_TC_ACTION_ENA |
1172 EVENT_TC_WB_ACTION_ENA;
1173
1174
1175 /* Clear the flags. */
1176 flush_bits &= ~(RADV_CMD_FLAG_INV_L2 |
1177 RADV_CMD_FLAG_WB_L2 |
1178 RADV_CMD_FLAG_INV_VCACHE);
1179 }
1180 assert(flush_cnt);
1181 (*flush_cnt)++;
1182
1183 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
1184 EOP_DST_SEL_MEM,
1185 EOP_DATA_SEL_VALUE_32BIT,
1186 flush_va, *flush_cnt,
1187 gfx9_eop_bug_va);
1188 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1189 *flush_cnt, 0xffffffff);
1190 }
1191
1192 /* VGT state sync */
1193 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1194 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1195 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1196 }
1197
1198 /* VGT streamout state sync */
1199 if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
1200 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1201 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
1202 }
1203
1204 /* Make sure ME is idle (it executes most packets) before continuing.
1205 * This prevents read-after-write hazards between PFP and ME.
1206 */
1207 if ((cp_coher_cntl ||
1208 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1209 RADV_CMD_FLAG_INV_VCACHE |
1210 RADV_CMD_FLAG_INV_L2 |
1211 RADV_CMD_FLAG_WB_L2))) &&
1212 !is_mec) {
1213 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1214 radeon_emit(cs, 0);
1215 }
1216
1217 if ((flush_bits & RADV_CMD_FLAG_INV_L2) ||
1218 (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) {
1219 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9,
1220 cp_coher_cntl |
1221 S_0085F0_TC_ACTION_ENA(1) |
1222 S_0085F0_TCL1_ACTION_ENA(1) |
1223 S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8));
1224 cp_coher_cntl = 0;
1225 } else {
1226 if(flush_bits & RADV_CMD_FLAG_WB_L2) {
1227 /* WB = write-back
1228 * NC = apply to non-coherent MTYPEs
1229 * (i.e. MTYPE <= 1, which is what we use everywhere)
1230 *
1231 * WB doesn't work without NC.
1232 */
1233 si_emit_acquire_mem(cs, is_mec,
1234 chip_class == GFX9,
1235 cp_coher_cntl |
1236 S_0301F0_TC_WB_ACTION_ENA(1) |
1237 S_0301F0_TC_NC_ACTION_ENA(1));
1238 cp_coher_cntl = 0;
1239 }
1240 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
1241 si_emit_acquire_mem(cs, is_mec,
1242 chip_class == GFX9,
1243 cp_coher_cntl |
1244 S_0085F0_TCL1_ACTION_ENA(1));
1245 cp_coher_cntl = 0;
1246 }
1247 }
1248
1249 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
1250 * Therefore, it should be last. Done in PFP.
1251 */
1252 if (cp_coher_cntl)
1253 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9, cp_coher_cntl);
1254
1255 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1256 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1257 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1258 EVENT_INDEX(0));
1259 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1260 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1261 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1262 EVENT_INDEX(0));
1263 }
1264 }
1265
1266 void
1267 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
1268 {
1269 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
1270
1271 if (is_compute)
1272 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1273 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
1274 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
1275 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
1276 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1277 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1278 RADV_CMD_FLAG_VGT_FLUSH |
1279 RADV_CMD_FLAG_START_PIPELINE_STATS |
1280 RADV_CMD_FLAG_STOP_PIPELINE_STATS);
1281
1282 if (!cmd_buffer->state.flush_bits)
1283 return;
1284
1285 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
1286
1287 si_cs_emit_cache_flush(cmd_buffer->cs,
1288 cmd_buffer->device->physical_device->rad_info.chip_class,
1289 &cmd_buffer->gfx9_fence_idx,
1290 cmd_buffer->gfx9_fence_va,
1291 radv_cmd_buffer_uses_mec(cmd_buffer),
1292 cmd_buffer->state.flush_bits,
1293 cmd_buffer->gfx9_eop_bug_va);
1294
1295
1296 if (unlikely(cmd_buffer->device->trace_bo))
1297 radv_cmd_buffer_trace_emit(cmd_buffer);
1298
1299 /* Clear the caches that have been flushed to avoid syncing too much
1300 * when there is some pending active queries.
1301 */
1302 cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
1303
1304 cmd_buffer->state.flush_bits = 0;
1305
1306 /* If the driver used a compute shader for resetting a query pool, it
1307 * should be finished at this point.
1308 */
1309 cmd_buffer->pending_reset_query = false;
1310 }
1311
1312 /* sets the CP predication state using a boolean stored at va */
1313 void
1314 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
1315 bool draw_visible, uint64_t va)
1316 {
1317 uint32_t op = 0;
1318
1319 if (va) {
1320 op = PRED_OP(PREDICATION_OP_BOOL64);
1321
1322 /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
1323 * zero, all rendering commands are discarded. Otherwise, they
1324 * are discarded if the value is non zero.
1325 */
1326 op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
1327 PREDICATION_DRAW_NOT_VISIBLE;
1328 }
1329 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1330 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
1331 radeon_emit(cmd_buffer->cs, op);
1332 radeon_emit(cmd_buffer->cs, va);
1333 radeon_emit(cmd_buffer->cs, va >> 32);
1334 } else {
1335 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1336 radeon_emit(cmd_buffer->cs, va);
1337 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1338 }
1339 }
1340
1341 /* Set this if you want the 3D engine to wait until CP DMA is done.
1342 * It should be set on the last CP DMA packet. */
1343 #define CP_DMA_SYNC (1 << 0)
1344
1345 /* Set this if the source data was used as a destination in a previous CP DMA
1346 * packet. It's for preventing a read-after-write (RAW) hazard between two
1347 * CP DMA packets. */
1348 #define CP_DMA_RAW_WAIT (1 << 1)
1349 #define CP_DMA_USE_L2 (1 << 2)
1350 #define CP_DMA_CLEAR (1 << 3)
1351
1352 /* Alignment for optimal performance. */
1353 #define SI_CPDMA_ALIGNMENT 32
1354
1355 /* The max number of bytes that can be copied per packet. */
1356 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1357 {
1358 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1359 S_414_BYTE_COUNT_GFX9(~0u) :
1360 S_414_BYTE_COUNT_GFX6(~0u);
1361
1362 /* make it aligned for optimal performance */
1363 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1364 }
1365
1366 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1367 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1368 * clear value.
1369 */
1370 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1371 uint64_t dst_va, uint64_t src_va,
1372 unsigned size, unsigned flags)
1373 {
1374 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1375 uint32_t header = 0, command = 0;
1376
1377 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1378
1379 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1380 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1381 command |= S_414_BYTE_COUNT_GFX9(size);
1382 else
1383 command |= S_414_BYTE_COUNT_GFX6(size);
1384
1385 /* Sync flags. */
1386 if (flags & CP_DMA_SYNC)
1387 header |= S_411_CP_SYNC(1);
1388 else {
1389 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1390 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1391 else
1392 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1393 }
1394
1395 if (flags & CP_DMA_RAW_WAIT)
1396 command |= S_414_RAW_WAIT(1);
1397
1398 /* Src and dst flags. */
1399 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1400 !(flags & CP_DMA_CLEAR) &&
1401 src_va == dst_va)
1402 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
1403 else if (flags & CP_DMA_USE_L2)
1404 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
1405
1406 if (flags & CP_DMA_CLEAR)
1407 header |= S_411_SRC_SEL(V_411_DATA);
1408 else if (flags & CP_DMA_USE_L2)
1409 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1410
1411 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
1412 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1413 radeon_emit(cs, header);
1414 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1415 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1416 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1417 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1418 radeon_emit(cs, command);
1419 } else {
1420 assert(!(flags & CP_DMA_USE_L2));
1421 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1422 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1423 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1424 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1425 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1426 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1427 radeon_emit(cs, command);
1428 }
1429
1430 /* CP DMA is executed in ME, but index buffers are read by PFP.
1431 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1432 * indices. If we wanted to execute CP DMA in PFP, this packet
1433 * should precede it.
1434 */
1435 if (flags & CP_DMA_SYNC) {
1436 if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1437 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1438 radeon_emit(cs, 0);
1439 }
1440
1441 /* CP will see the sync flag and wait for all DMAs to complete. */
1442 cmd_buffer->state.dma_is_busy = false;
1443 }
1444
1445 if (unlikely(cmd_buffer->device->trace_bo))
1446 radv_cmd_buffer_trace_emit(cmd_buffer);
1447 }
1448
1449 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1450 unsigned size)
1451 {
1452 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1453 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1454
1455 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1456 aligned_size, CP_DMA_USE_L2);
1457 }
1458
1459 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1460 uint64_t remaining_size, unsigned *flags)
1461 {
1462
1463 /* Flush the caches for the first copy only.
1464 * Also wait for the previous CP DMA operations.
1465 */
1466 if (cmd_buffer->state.flush_bits) {
1467 si_emit_cache_flush(cmd_buffer);
1468 *flags |= CP_DMA_RAW_WAIT;
1469 }
1470
1471 /* Do the synchronization after the last dma, so that all data
1472 * is written to memory.
1473 */
1474 if (byte_count == remaining_size)
1475 *flags |= CP_DMA_SYNC;
1476 }
1477
1478 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1479 {
1480 uint64_t va;
1481 uint32_t offset;
1482 unsigned dma_flags = 0;
1483 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1484 void *ptr;
1485
1486 assert(size < SI_CPDMA_ALIGNMENT);
1487
1488 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1489
1490 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1491 va += offset;
1492
1493 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1494
1495 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1496 dma_flags);
1497 }
1498
1499 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1500 uint64_t src_va, uint64_t dest_va,
1501 uint64_t size)
1502 {
1503 uint64_t main_src_va, main_dest_va;
1504 uint64_t skipped_size = 0, realign_size = 0;
1505
1506 /* Assume that we are not going to sync after the last DMA operation. */
1507 cmd_buffer->state.dma_is_busy = true;
1508
1509 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1510 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1511 /* If the size is not aligned, we must add a dummy copy at the end
1512 * just to align the internal counter. Otherwise, the DMA engine
1513 * would slow down by an order of magnitude for following copies.
1514 */
1515 if (size % SI_CPDMA_ALIGNMENT)
1516 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1517
1518 /* If the copy begins unaligned, we must start copying from the next
1519 * aligned block and the skipped part should be copied after everything
1520 * else has been copied. Only the src alignment matters, not dst.
1521 */
1522 if (src_va % SI_CPDMA_ALIGNMENT) {
1523 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1524 /* The main part will be skipped if the size is too small. */
1525 skipped_size = MIN2(skipped_size, size);
1526 size -= skipped_size;
1527 }
1528 }
1529 main_src_va = src_va + skipped_size;
1530 main_dest_va = dest_va + skipped_size;
1531
1532 while (size) {
1533 unsigned dma_flags = 0;
1534 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1535
1536 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1537 /* DMA operations via L2 are coherent and faster.
1538 * TODO: GFX7-GFX9 should also support this but it
1539 * requires tests/benchmarks.
1540 */
1541 dma_flags |= CP_DMA_USE_L2;
1542 }
1543
1544 si_cp_dma_prepare(cmd_buffer, byte_count,
1545 size + skipped_size + realign_size,
1546 &dma_flags);
1547
1548 dma_flags &= ~CP_DMA_SYNC;
1549
1550 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1551 byte_count, dma_flags);
1552
1553 size -= byte_count;
1554 main_src_va += byte_count;
1555 main_dest_va += byte_count;
1556 }
1557
1558 if (skipped_size) {
1559 unsigned dma_flags = 0;
1560
1561 si_cp_dma_prepare(cmd_buffer, skipped_size,
1562 size + skipped_size + realign_size,
1563 &dma_flags);
1564
1565 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1566 skipped_size, dma_flags);
1567 }
1568 if (realign_size)
1569 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1570 }
1571
1572 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1573 uint64_t size, unsigned value)
1574 {
1575
1576 if (!size)
1577 return;
1578
1579 assert(va % 4 == 0 && size % 4 == 0);
1580
1581 /* Assume that we are not going to sync after the last DMA operation. */
1582 cmd_buffer->state.dma_is_busy = true;
1583
1584 while (size) {
1585 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1586 unsigned dma_flags = CP_DMA_CLEAR;
1587
1588 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1589 /* DMA operations via L2 are coherent and faster.
1590 * TODO: GFX7-GFX9 should also support this but it
1591 * requires tests/benchmarks.
1592 */
1593 dma_flags |= CP_DMA_USE_L2;
1594 }
1595
1596 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1597
1598 /* Emit the clear packet. */
1599 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1600 dma_flags);
1601
1602 size -= byte_count;
1603 va += byte_count;
1604 }
1605 }
1606
1607 void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
1608 {
1609 if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7)
1610 return;
1611
1612 if (!cmd_buffer->state.dma_is_busy)
1613 return;
1614
1615 /* Issue a dummy DMA that copies zero bytes.
1616 *
1617 * The DMA engine will see that there's no work to do and skip this
1618 * DMA request, however, the CP will see the sync flag and still wait
1619 * for all DMAs to complete.
1620 */
1621 si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
1622
1623 cmd_buffer->state.dma_is_busy = false;
1624 }
1625
1626 /* For MSAA sample positions. */
1627 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1628 ((((unsigned)(s0x) & 0xf) << 0) | (((unsigned)(s0y) & 0xf) << 4) | \
1629 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1630 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1631 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1632
1633 /* For obtaining location coordinates from registers */
1634 #define SEXT4(x) ((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0)))
1635 #define GET_SFIELD(reg, index) SEXT4(((reg) >> ((index) * 4)) & 0xf)
1636 #define GET_SX(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2)
1637 #define GET_SY(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1)
1638
1639 /* 1x MSAA */
1640 static const uint32_t sample_locs_1x =
1641 FILL_SREG(0, 0, 0, 0, 0, 0, 0, 0);
1642 static const unsigned max_dist_1x = 0;
1643 static const uint64_t centroid_priority_1x = 0x0000000000000000ull;
1644
1645 /* 2xMSAA */
1646 static const uint32_t sample_locs_2x =
1647 FILL_SREG(4,4, -4, -4, 0, 0, 0, 0);
1648 static const unsigned max_dist_2x = 4;
1649 static const uint64_t centroid_priority_2x = 0x1010101010101010ull;
1650
1651 /* 4xMSAA */
1652 static const uint32_t sample_locs_4x =
1653 FILL_SREG(-2,-6, 6, -2, -6, 2, 2, 6);
1654 static const unsigned max_dist_4x = 6;
1655 static const uint64_t centroid_priority_4x = 0x3210321032103210ull;
1656
1657 /* 8xMSAA */
1658 static const uint32_t sample_locs_8x[] = {
1659 FILL_SREG( 1,-3, -1, 3, 5, 1, -3,-5),
1660 FILL_SREG(-5, 5, -7,-1, 3, 7, 7,-7),
1661 /* The following are unused by hardware, but we emit them to IBs
1662 * instead of multiple SET_CONTEXT_REG packets. */
1663 0,
1664 0,
1665 };
1666 static const unsigned max_dist_8x = 7;
1667 static const uint64_t centroid_priority_8x = 0x7654321076543210ull;
1668
1669 unsigned radv_get_default_max_sample_dist(int log_samples)
1670 {
1671 unsigned max_dist[] = {
1672 max_dist_1x,
1673 max_dist_2x,
1674 max_dist_4x,
1675 max_dist_8x,
1676 };
1677 return max_dist[log_samples];
1678 }
1679
1680 void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples)
1681 {
1682 switch (nr_samples) {
1683 default:
1684 case 1:
1685 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1686 radeon_emit(cs, (uint32_t)centroid_priority_1x);
1687 radeon_emit(cs, centroid_priority_1x >> 32);
1688 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x);
1689 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x);
1690 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x);
1691 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x);
1692 break;
1693 case 2:
1694 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1695 radeon_emit(cs, (uint32_t)centroid_priority_2x);
1696 radeon_emit(cs, centroid_priority_2x >> 32);
1697 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x);
1698 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x);
1699 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x);
1700 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x);
1701 break;
1702 case 4:
1703 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1704 radeon_emit(cs, (uint32_t)centroid_priority_4x);
1705 radeon_emit(cs, centroid_priority_4x >> 32);
1706 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x);
1707 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x);
1708 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x);
1709 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x);
1710 break;
1711 case 8:
1712 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1713 radeon_emit(cs, (uint32_t)centroid_priority_8x);
1714 radeon_emit(cs, centroid_priority_8x >> 32);
1715 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1716 radeon_emit_array(cs, sample_locs_8x, 4);
1717 radeon_emit_array(cs, sample_locs_8x, 4);
1718 radeon_emit_array(cs, sample_locs_8x, 4);
1719 radeon_emit_array(cs, sample_locs_8x, 2);
1720 break;
1721 }
1722 }
1723
1724 static void radv_get_sample_position(struct radv_device *device,
1725 unsigned sample_count,
1726 unsigned sample_index, float *out_value)
1727 {
1728 const uint32_t *sample_locs;
1729
1730 switch (sample_count) {
1731 case 1:
1732 default:
1733 sample_locs = &sample_locs_1x;
1734 break;
1735 case 2:
1736 sample_locs = &sample_locs_2x;
1737 break;
1738 case 4:
1739 sample_locs = &sample_locs_4x;
1740 break;
1741 case 8:
1742 sample_locs = sample_locs_8x;
1743 break;
1744 }
1745
1746 out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f;
1747 out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f;
1748 }
1749
1750 void radv_device_init_msaa(struct radv_device *device)
1751 {
1752 int i;
1753
1754 radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1755
1756 for (i = 0; i < 2; i++)
1757 radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1758 for (i = 0; i < 4; i++)
1759 radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1760 for (i = 0; i < 8; i++)
1761 radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1762 }