radv: set EVENT_WRITE_EOP.INT_SEL = wait for write confirmation
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for SI */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "gfx9d.h"
35 #include "radv_util.h"
36 #include "main/macros.h"
37
38 static void
39 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
40 struct radeon_cmdbuf *cs,
41 unsigned raster_config,
42 unsigned raster_config_1)
43 {
44 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
45 unsigned raster_config_se[4];
46 unsigned se;
47
48 ac_get_harvested_configs(&physical_device->rad_info,
49 raster_config,
50 &raster_config_1,
51 raster_config_se);
52
53 for (se = 0; se < num_se; se++) {
54 /* GRBM_GFX_INDEX has a different offset on SI and CI+ */
55 if (physical_device->rad_info.chip_class < CIK)
56 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
57 S_00802C_SE_INDEX(se) |
58 S_00802C_SH_BROADCAST_WRITES(1) |
59 S_00802C_INSTANCE_BROADCAST_WRITES(1));
60 else
61 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
62 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
63 S_030800_INSTANCE_BROADCAST_WRITES(1));
64 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
65 }
66
67 /* GRBM_GFX_INDEX has a different offset on SI and CI+ */
68 if (physical_device->rad_info.chip_class < CIK)
69 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
70 S_00802C_SE_BROADCAST_WRITES(1) |
71 S_00802C_SH_BROADCAST_WRITES(1) |
72 S_00802C_INSTANCE_BROADCAST_WRITES(1));
73 else
74 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
75 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
76 S_030800_INSTANCE_BROADCAST_WRITES(1));
77
78 if (physical_device->rad_info.chip_class >= CIK)
79 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
80 }
81
82 static void
83 si_emit_compute(struct radv_physical_device *physical_device,
84 struct radeon_cmdbuf *cs)
85 {
86 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
87 radeon_emit(cs, 0);
88 radeon_emit(cs, 0);
89 radeon_emit(cs, 0);
90
91 radeon_set_sh_reg_seq(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
92 S_00B854_WAVES_PER_SH(0x3));
93 radeon_emit(cs, 0);
94 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
95 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
96 radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
97
98 if (physical_device->rad_info.chip_class >= CIK) {
99 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
100 radeon_set_sh_reg_seq(cs,
101 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
102 radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
103 S_00B864_SH1_CU_EN(0xffff));
104 radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
105 S_00B868_SH1_CU_EN(0xffff));
106 }
107
108 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
109 * and is now per pipe, so it should be handled in the
110 * kernel if we want to use something other than the default value,
111 * which is now 0x22f.
112 */
113 if (physical_device->rad_info.chip_class <= SI) {
114 /* XXX: This should be:
115 * (number of compute units) * 4 * (waves per simd) - 1 */
116
117 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
118 0x190 /* Default value */);
119 }
120 }
121
122 void
123 si_init_compute(struct radv_cmd_buffer *cmd_buffer)
124 {
125 struct radv_physical_device *physical_device = cmd_buffer->device->physical_device;
126 si_emit_compute(physical_device, cmd_buffer->cs);
127 }
128
129 /* 12.4 fixed-point */
130 static unsigned radv_pack_float_12p4(float x)
131 {
132 return x <= 0 ? 0 :
133 x >= 4096 ? 0xffff : x * 16;
134 }
135
136 static void
137 si_set_raster_config(struct radv_physical_device *physical_device,
138 struct radeon_cmdbuf *cs)
139 {
140 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
141 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
142 unsigned raster_config, raster_config_1;
143
144 ac_get_raster_config(&physical_device->rad_info,
145 &raster_config,
146 &raster_config_1);
147
148 /* Always use the default config when all backends are enabled
149 * (or when we failed to determine the enabled backends).
150 */
151 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
152 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
153 raster_config);
154 if (physical_device->rad_info.chip_class >= CIK)
155 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
156 raster_config_1);
157 } else {
158 si_write_harvested_raster_configs(physical_device, cs,
159 raster_config,
160 raster_config_1);
161 }
162 }
163
164 static void
165 si_emit_config(struct radv_physical_device *physical_device,
166 struct radeon_cmdbuf *cs)
167 {
168 int i;
169
170 /* Only SI can disable CLEAR_STATE for now. */
171 assert(physical_device->has_clear_state ||
172 physical_device->rad_info.chip_class == SI);
173
174 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
175 radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
176 radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
177
178 if (physical_device->has_clear_state) {
179 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
180 radeon_emit(cs, 0);
181 }
182
183 if (physical_device->rad_info.chip_class <= VI)
184 si_set_raster_config(physical_device, cs);
185
186 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
187 if (!physical_device->has_clear_state)
188 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
189
190 /* FIXME calculate these values somehow ??? */
191 if (physical_device->rad_info.chip_class <= VI) {
192 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
193 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
194 }
195
196 if (!physical_device->has_clear_state) {
197 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
198 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
199 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
200 }
201
202 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
203 if (!physical_device->has_clear_state)
204 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
205 if (physical_device->rad_info.chip_class < CIK)
206 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
207 S_008A14_CLIP_VTX_REORDER_ENA(1));
208
209 radeon_set_context_reg(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 0x76543210);
210 radeon_set_context_reg(cs, R_028BD8_PA_SC_CENTROID_PRIORITY_1, 0xfedcba98);
211
212 if (!physical_device->has_clear_state)
213 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
214
215 /* CLEAR_STATE doesn't clear these correctly on certain generations.
216 * I don't know why. Deduced by trial and error.
217 */
218 if (physical_device->rad_info.chip_class <= CIK) {
219 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
220 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
221 S_028204_WINDOW_OFFSET_DISABLE(1));
222 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
223 S_028240_WINDOW_OFFSET_DISABLE(1));
224 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
225 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
226 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
227 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
228 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
229 }
230
231 if (!physical_device->has_clear_state) {
232 for (i = 0; i < 16; i++) {
233 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
234 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
235 }
236 }
237
238 if (!physical_device->has_clear_state) {
239 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
240 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
241 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on SI */
242 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
243 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
244 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
245 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
246 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
247 }
248
249 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
250 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
251 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
252
253 if (physical_device->rad_info.chip_class >= GFX9) {
254 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
255 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
256 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
257 } else {
258 /* These registers, when written, also overwrite the
259 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
260 * them. It would be an issue if there was another UMD
261 * changing them.
262 */
263 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
264 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
265 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
266 }
267
268 if (physical_device->rad_info.chip_class >= CIK) {
269 if (physical_device->rad_info.chip_class >= GFX9) {
270 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
271 S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
272 } else {
273 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
274 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
275 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
276 S_00B41C_WAVE_LIMIT(0x3F));
277 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
278 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
279 /* If this is 0, Bonaire can hang even if GS isn't being used.
280 * Other chips are unaffected. These are suboptimal values,
281 * but we don't use on-chip GS.
282 */
283 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
284 S_028A44_ES_VERTS_PER_SUBGRP(64) |
285 S_028A44_GS_PRIMS_PER_SUBGRP(4));
286 }
287 radeon_set_sh_reg(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
288 S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F));
289
290 if (physical_device->rad_info.num_good_compute_units /
291 (physical_device->rad_info.max_se * physical_device->rad_info.max_sh_per_se) <= 4) {
292 /* Too few available compute units per SH. Disallowing
293 * VS to run on CU0 could hurt us more than late VS
294 * allocation would help.
295 *
296 * LATE_ALLOC_VS = 2 is the highest safe number.
297 */
298 radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
299 S_00B118_CU_EN(0xffff) | S_00B118_WAVE_LIMIT(0x3F) );
300 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(2));
301 } else {
302 /* Set LATE_ALLOC_VS == 31. It should be less than
303 * the number of scratch waves. Limitations:
304 * - VS can't execute on CU0.
305 * - If HS writes outputs to LDS, LS can't execute on CU0.
306 */
307 radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
308 S_00B118_CU_EN(0xfffe) | S_00B118_WAVE_LIMIT(0x3F));
309 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(31));
310 }
311
312 radeon_set_sh_reg(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
313 S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
314 }
315
316 if (physical_device->rad_info.chip_class >= VI) {
317 uint32_t vgt_tess_distribution;
318 radeon_set_context_reg(cs, R_028424_CB_DCC_CONTROL,
319 S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(1) |
320 S_028424_OVERWRITE_COMBINER_WATERMARK(4));
321
322 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
323 S_028B50_ACCUM_TRI(11) |
324 S_028B50_ACCUM_QUAD(11) |
325 S_028B50_DONUT_SPLIT(16);
326
327 if (physical_device->rad_info.family == CHIP_FIJI ||
328 physical_device->rad_info.family >= CHIP_POLARIS10)
329 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
330
331 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
332 vgt_tess_distribution);
333 } else if (!physical_device->has_clear_state) {
334 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
335 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
336 }
337
338 if (physical_device->rad_info.chip_class >= GFX9) {
339 unsigned num_se = physical_device->rad_info.max_se;
340 unsigned pc_lines = 0;
341
342 switch (physical_device->rad_info.family) {
343 case CHIP_VEGA10:
344 case CHIP_VEGA12:
345 pc_lines = 4096;
346 break;
347 case CHIP_RAVEN:
348 pc_lines = 1024;
349 break;
350 default:
351 assert(0);
352 }
353
354 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
355 S_028C48_MAX_ALLOC_COUNT(MIN2(128, pc_lines / (4 * num_se))) |
356 S_028C48_MAX_PRIM_PER_BATCH(1023));
357 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
358 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
359 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
360 }
361
362 unsigned tmp = (unsigned)(1.0 * 8.0);
363 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
364 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
365 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
366 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
367 S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));
368
369 if (!physical_device->has_clear_state) {
370 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
371 S_028004_ZPASS_INCREMENT_DISABLE(1));
372 }
373
374 /* Enable the Polaris small primitive filter control.
375 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
376 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
377 * and AMDVLK doesn't have a workaround as well.
378 */
379 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
380 unsigned small_prim_filter_cntl =
381 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
382 /* Workaround for a hw line bug. */
383 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
384
385 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
386 small_prim_filter_cntl);
387 }
388
389 si_emit_compute(physical_device, cs);
390 }
391
392 void si_init_config(struct radv_cmd_buffer *cmd_buffer)
393 {
394 struct radv_physical_device *physical_device = cmd_buffer->device->physical_device;
395
396 si_emit_config(physical_device, cmd_buffer->cs);
397 }
398
399 void
400 cik_create_gfx_config(struct radv_device *device)
401 {
402 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
403 if (!cs)
404 return;
405
406 si_emit_config(device->physical_device, cs);
407
408 while (cs->cdw & 7) {
409 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
410 radeon_emit(cs, 0x80000000);
411 else
412 radeon_emit(cs, 0xffff1000);
413 }
414
415 device->gfx_init = device->ws->buffer_create(device->ws,
416 cs->cdw * 4, 4096,
417 RADEON_DOMAIN_GTT,
418 RADEON_FLAG_CPU_ACCESS|
419 RADEON_FLAG_NO_INTERPROCESS_SHARING |
420 RADEON_FLAG_READ_ONLY);
421 if (!device->gfx_init)
422 goto fail;
423
424 void *map = device->ws->buffer_map(device->gfx_init);
425 if (!map) {
426 device->ws->buffer_destroy(device->gfx_init);
427 device->gfx_init = NULL;
428 goto fail;
429 }
430 memcpy(map, cs->buf, cs->cdw * 4);
431
432 device->ws->buffer_unmap(device->gfx_init);
433 device->gfx_init_size_dw = cs->cdw;
434 fail:
435 device->ws->cs_destroy(cs);
436 }
437
438 static void
439 get_viewport_xform(const VkViewport *viewport,
440 float scale[3], float translate[3])
441 {
442 float x = viewport->x;
443 float y = viewport->y;
444 float half_width = 0.5f * viewport->width;
445 float half_height = 0.5f * viewport->height;
446 double n = viewport->minDepth;
447 double f = viewport->maxDepth;
448
449 scale[0] = half_width;
450 translate[0] = half_width + x;
451 scale[1] = half_height;
452 translate[1] = half_height + y;
453
454 scale[2] = (f - n);
455 translate[2] = n;
456 }
457
458 void
459 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
460 int count, const VkViewport *viewports)
461 {
462 int i;
463
464 assert(count);
465 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
466 first_vp * 4 * 6, count * 6);
467
468 for (i = 0; i < count; i++) {
469 float scale[3], translate[3];
470
471
472 get_viewport_xform(&viewports[i], scale, translate);
473 radeon_emit(cs, fui(scale[0]));
474 radeon_emit(cs, fui(translate[0]));
475 radeon_emit(cs, fui(scale[1]));
476 radeon_emit(cs, fui(translate[1]));
477 radeon_emit(cs, fui(scale[2]));
478 radeon_emit(cs, fui(translate[2]));
479 }
480
481 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
482 first_vp * 4 * 2, count * 2);
483 for (i = 0; i < count; i++) {
484 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
485 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
486 radeon_emit(cs, fui(zmin));
487 radeon_emit(cs, fui(zmax));
488 }
489 }
490
491 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
492 {
493 float scale[3], translate[3];
494 VkRect2D rect;
495
496 get_viewport_xform(viewport, scale, translate);
497
498 rect.offset.x = translate[0] - fabs(scale[0]);
499 rect.offset.y = translate[1] - fabs(scale[1]);
500 rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x;
501 rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y;
502
503 return rect;
504 }
505
506 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
507 VkRect2D ret;
508 ret.offset.x = MAX2(a->offset.x, b->offset.x);
509 ret.offset.y = MAX2(a->offset.y, b->offset.y);
510 ret.extent.width = MIN2(a->offset.x + a->extent.width,
511 b->offset.x + b->extent.width) - ret.offset.x;
512 ret.extent.height = MIN2(a->offset.y + a->extent.height,
513 b->offset.y + b->extent.height) - ret.offset.y;
514 return ret;
515 }
516
517 void
518 si_write_scissors(struct radeon_cmdbuf *cs, int first,
519 int count, const VkRect2D *scissors,
520 const VkViewport *viewports, bool can_use_guardband)
521 {
522 int i;
523 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
524 const float max_range = 32767.0f;
525 if (!count)
526 return;
527
528 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
529 for (i = 0; i < count; i++) {
530 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
531 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
532
533 get_viewport_xform(viewports + i, scale, translate);
534 scale[0] = abs(scale[0]);
535 scale[1] = abs(scale[1]);
536
537 if (scale[0] < 0.5)
538 scale[0] = 0.5;
539 if (scale[1] < 0.5)
540 scale[1] = 0.5;
541
542 guardband_x = MIN2(guardband_x, (max_range - abs(translate[0])) / scale[0]);
543 guardband_y = MIN2(guardband_y, (max_range - abs(translate[1])) / scale[1]);
544
545 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
546 S_028250_TL_Y(scissor.offset.y) |
547 S_028250_WINDOW_OFFSET_DISABLE(1));
548 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
549 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
550 }
551 if (!can_use_guardband) {
552 guardband_x = 1.0;
553 guardband_y = 1.0;
554 }
555
556 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
557 radeon_emit(cs, fui(guardband_y));
558 radeon_emit(cs, fui(1.0));
559 radeon_emit(cs, fui(guardband_x));
560 radeon_emit(cs, fui(1.0));
561 }
562
563 static inline unsigned
564 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
565 {
566 if (num == 0)
567 return 0;
568
569 if (info->incr == 0)
570 return 0;
571
572 if (num < info->min)
573 return 0;
574
575 return 1 + ((num - info->min) / info->incr);
576 }
577
578 uint32_t
579 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
580 bool instanced_draw, bool indirect_draw,
581 uint32_t draw_vertex_count)
582 {
583 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
584 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
585 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
586 const unsigned max_primgroup_in_wave = 2;
587 /* SWITCH_ON_EOP(0) is always preferable. */
588 bool wd_switch_on_eop = false;
589 bool ia_switch_on_eop = false;
590 bool ia_switch_on_eoi = false;
591 bool partial_vs_wave = false;
592 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
593 bool multi_instances_smaller_than_primgroup;
594
595 multi_instances_smaller_than_primgroup = indirect_draw;
596 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
597 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
598 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
599 multi_instances_smaller_than_primgroup = true;
600 }
601
602 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
603 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
604
605 if (chip_class >= CIK) {
606 wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop;
607
608 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
609 * We don't know that for indirect drawing, so treat it as
610 * always problematic. */
611 if (family == CHIP_HAWAII &&
612 (instanced_draw || indirect_draw))
613 wd_switch_on_eop = true;
614
615 /* Performance recommendation for 4 SE Gfx7-8 parts if
616 * instances are smaller than a primgroup.
617 * Assume indirect draws always use small instances.
618 * This is needed for good VS wave utilization.
619 */
620 if (chip_class <= VI &&
621 info->max_se == 4 &&
622 multi_instances_smaller_than_primgroup)
623 wd_switch_on_eop = true;
624
625 /* Required on CIK and later. */
626 if (info->max_se > 2 && !wd_switch_on_eop)
627 ia_switch_on_eoi = true;
628
629 /* Required by Hawaii and, for some special cases, by VI. */
630 if (ia_switch_on_eoi &&
631 (family == CHIP_HAWAII ||
632 (chip_class == VI &&
633 /* max primgroup in wave is always 2 - leave this for documentation */
634 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
635 partial_vs_wave = true;
636
637 /* Instancing bug on Bonaire. */
638 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
639 (instanced_draw || indirect_draw))
640 partial_vs_wave = true;
641
642 /* If the WD switch is false, the IA switch must be false too. */
643 assert(wd_switch_on_eop || !ia_switch_on_eop);
644 }
645 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
646 if (chip_class <= VI && ia_switch_on_eoi)
647 partial_es_wave = true;
648
649 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
650 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
651 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
652 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
653 */
654 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
655 bool set_vgt_flush = indirect_draw;
656 if (!set_vgt_flush && instanced_draw) {
657 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
658 if (num_prims <= 1)
659 set_vgt_flush = true;
660 }
661 if (set_vgt_flush)
662 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
663 }
664 }
665
666 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
667 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
668 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
669 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
670 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
671 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= CIK ? wd_switch_on_eop : 0);
672
673 }
674
675 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
676 bool predicated,
677 enum chip_class chip_class,
678 bool is_mec,
679 unsigned event, unsigned event_flags,
680 unsigned data_sel,
681 uint64_t va,
682 uint32_t old_fence,
683 uint32_t new_fence)
684 {
685 unsigned op = EVENT_TYPE(event) |
686 EVENT_INDEX(5) |
687 event_flags;
688 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
689 unsigned sel = EOP_DATA_SEL(data_sel);
690
691 /* Wait for write confirmation before writing data, but don't send
692 * an interrupt. */
693 if (data_sel != EOP_DATA_SEL_DISCARD)
694 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
695
696 if (chip_class >= GFX9 || is_gfx8_mec) {
697 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, predicated));
698 radeon_emit(cs, op);
699 radeon_emit(cs, sel);
700 radeon_emit(cs, va); /* address lo */
701 radeon_emit(cs, va >> 32); /* address hi */
702 radeon_emit(cs, new_fence); /* immediate data lo */
703 radeon_emit(cs, 0); /* immediate data hi */
704 if (!is_gfx8_mec)
705 radeon_emit(cs, 0); /* unused */
706 } else {
707 if (chip_class == CIK ||
708 chip_class == VI) {
709 /* Two EOP events are required to make all engines go idle
710 * (and optional cache flushes executed) before the timestamp
711 * is written.
712 */
713 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, predicated));
714 radeon_emit(cs, op);
715 radeon_emit(cs, va);
716 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
717 radeon_emit(cs, old_fence); /* immediate data */
718 radeon_emit(cs, 0); /* unused */
719 }
720
721 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, predicated));
722 radeon_emit(cs, op);
723 radeon_emit(cs, va);
724 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
725 radeon_emit(cs, new_fence); /* immediate data */
726 radeon_emit(cs, 0); /* unused */
727 }
728 }
729
730 void
731 si_emit_wait_fence(struct radeon_cmdbuf *cs,
732 bool predicated,
733 uint64_t va, uint32_t ref,
734 uint32_t mask)
735 {
736 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, predicated));
737 radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
738 radeon_emit(cs, va);
739 radeon_emit(cs, va >> 32);
740 radeon_emit(cs, ref); /* reference value */
741 radeon_emit(cs, mask); /* mask */
742 radeon_emit(cs, 4); /* poll interval */
743 }
744
745 static void
746 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
747 bool is_mec,
748 bool predicated,
749 bool is_gfx9,
750 unsigned cp_coher_cntl)
751 {
752 if (is_mec || is_gfx9) {
753 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
754 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, predicated) |
755 PKT3_SHADER_TYPE_S(is_mec));
756 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
757 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
758 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
759 radeon_emit(cs, 0); /* CP_COHER_BASE */
760 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
761 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
762 } else {
763 /* ACQUIRE_MEM is only required on a compute ring. */
764 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, predicated));
765 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
766 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
767 radeon_emit(cs, 0); /* CP_COHER_BASE */
768 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
769 }
770 }
771
772 void
773 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
774 enum chip_class chip_class,
775 uint32_t *flush_cnt,
776 uint64_t flush_va,
777 bool is_mec,
778 enum radv_cmd_flush_bits flush_bits)
779 {
780 unsigned cp_coher_cntl = 0;
781 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
782 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
783
784 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
785 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
786 if (flush_bits & RADV_CMD_FLAG_INV_SMEM_L1)
787 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
788
789 if (chip_class <= VI) {
790 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
791 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
792 S_0085F0_CB0_DEST_BASE_ENA(1) |
793 S_0085F0_CB1_DEST_BASE_ENA(1) |
794 S_0085F0_CB2_DEST_BASE_ENA(1) |
795 S_0085F0_CB3_DEST_BASE_ENA(1) |
796 S_0085F0_CB4_DEST_BASE_ENA(1) |
797 S_0085F0_CB5_DEST_BASE_ENA(1) |
798 S_0085F0_CB6_DEST_BASE_ENA(1) |
799 S_0085F0_CB7_DEST_BASE_ENA(1);
800
801 /* Necessary for DCC */
802 if (chip_class >= VI) {
803 si_cs_emit_write_event_eop(cs,
804 false,
805 chip_class,
806 is_mec,
807 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
808 0,
809 EOP_DATA_SEL_DISCARD,
810 0, 0, 0);
811 }
812 }
813 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
814 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
815 S_0085F0_DB_DEST_BASE_ENA(1);
816 }
817 }
818
819 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
820 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
821 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
822 }
823
824 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
825 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
826 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
827 }
828
829 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
830 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
831 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
832 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
833 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
834 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
835 }
836
837 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
838 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
839 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
840 }
841
842 if (chip_class >= GFX9 && flush_cb_db) {
843 unsigned cb_db_event, tc_flags;
844
845 /* Set the CB/DB flush event. */
846 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
847
848 /* These are the only allowed combinations. If you need to
849 * do multiple operations at once, do them separately.
850 * All operations that invalidate L2 also seem to invalidate
851 * metadata. Volatile (VOL) and WC flushes are not listed here.
852 *
853 * TC | TC_WB = writeback & invalidate L2 & L1
854 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
855 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
856 * TC | TC_NC = invalidate L2 for MTYPE == NC
857 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
858 * TCL1 = invalidate L1
859 */
860 tc_flags = EVENT_TC_ACTION_ENA |
861 EVENT_TC_MD_ACTION_ENA;
862
863 /* Ideally flush TC together with CB/DB. */
864 if (flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) {
865 /* Writeback and invalidate everything in L2 & L1. */
866 tc_flags = EVENT_TC_ACTION_ENA |
867 EVENT_TC_WB_ACTION_ENA;
868
869
870 /* Clear the flags. */
871 flush_bits &= ~(RADV_CMD_FLAG_INV_GLOBAL_L2 |
872 RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2 |
873 RADV_CMD_FLAG_INV_VMEM_L1);
874 }
875 assert(flush_cnt);
876 uint32_t old_fence = (*flush_cnt)++;
877
878 si_cs_emit_write_event_eop(cs, false, chip_class, false, cb_db_event, tc_flags,
879 EOP_DATA_SEL_VALUE_32BIT,
880 flush_va, old_fence, *flush_cnt);
881 si_emit_wait_fence(cs, false, flush_va, *flush_cnt, 0xffffffff);
882 }
883
884 /* VGT state sync */
885 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
886 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
887 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
888 }
889
890 /* Make sure ME is idle (it executes most packets) before continuing.
891 * This prevents read-after-write hazards between PFP and ME.
892 */
893 if ((cp_coher_cntl ||
894 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
895 RADV_CMD_FLAG_INV_VMEM_L1 |
896 RADV_CMD_FLAG_INV_GLOBAL_L2 |
897 RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) &&
898 !is_mec) {
899 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
900 radeon_emit(cs, 0);
901 }
902
903 if ((flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) ||
904 (chip_class <= CIK && (flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) {
905 si_emit_acquire_mem(cs, is_mec, false, chip_class >= GFX9,
906 cp_coher_cntl |
907 S_0085F0_TC_ACTION_ENA(1) |
908 S_0085F0_TCL1_ACTION_ENA(1) |
909 S_0301F0_TC_WB_ACTION_ENA(chip_class >= VI));
910 cp_coher_cntl = 0;
911 } else {
912 if(flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2) {
913 /* WB = write-back
914 * NC = apply to non-coherent MTYPEs
915 * (i.e. MTYPE <= 1, which is what we use everywhere)
916 *
917 * WB doesn't work without NC.
918 */
919 si_emit_acquire_mem(cs, is_mec, false,
920 chip_class >= GFX9,
921 cp_coher_cntl |
922 S_0301F0_TC_WB_ACTION_ENA(1) |
923 S_0301F0_TC_NC_ACTION_ENA(1));
924 cp_coher_cntl = 0;
925 }
926 if (flush_bits & RADV_CMD_FLAG_INV_VMEM_L1) {
927 si_emit_acquire_mem(cs, is_mec,
928 false, chip_class >= GFX9,
929 cp_coher_cntl |
930 S_0085F0_TCL1_ACTION_ENA(1));
931 cp_coher_cntl = 0;
932 }
933 }
934
935 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
936 * Therefore, it should be last. Done in PFP.
937 */
938 if (cp_coher_cntl)
939 si_emit_acquire_mem(cs, is_mec, false, chip_class >= GFX9, cp_coher_cntl);
940 }
941
942 void
943 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
944 {
945 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
946
947 if (is_compute)
948 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
949 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
950 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
951 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
952 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
953 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
954 RADV_CMD_FLAG_VGT_FLUSH);
955
956 if (!cmd_buffer->state.flush_bits)
957 return;
958
959 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
960 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
961
962 uint32_t *ptr = NULL;
963 uint64_t va = 0;
964 if (chip_class == GFX9) {
965 va = radv_buffer_get_va(cmd_buffer->gfx9_fence_bo) + cmd_buffer->gfx9_fence_offset;
966 ptr = &cmd_buffer->gfx9_fence_idx;
967 }
968 si_cs_emit_cache_flush(cmd_buffer->cs,
969 cmd_buffer->device->physical_device->rad_info.chip_class,
970 ptr, va,
971 radv_cmd_buffer_uses_mec(cmd_buffer),
972 cmd_buffer->state.flush_bits);
973
974
975 if (unlikely(cmd_buffer->device->trace_bo))
976 radv_cmd_buffer_trace_emit(cmd_buffer);
977
978 cmd_buffer->state.flush_bits = 0;
979 }
980
981 /* sets the CP predication state using a boolean stored at va */
982 void
983 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
984 {
985 uint32_t op = 0;
986
987 if (va)
988 op = PRED_OP(PREDICATION_OP_BOOL64) | PREDICATION_DRAW_VISIBLE;
989 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
990 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
991 radeon_emit(cmd_buffer->cs, op);
992 radeon_emit(cmd_buffer->cs, va);
993 radeon_emit(cmd_buffer->cs, va >> 32);
994 } else {
995 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
996 radeon_emit(cmd_buffer->cs, va);
997 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
998 }
999 }
1000
1001 /* Set this if you want the 3D engine to wait until CP DMA is done.
1002 * It should be set on the last CP DMA packet. */
1003 #define CP_DMA_SYNC (1 << 0)
1004
1005 /* Set this if the source data was used as a destination in a previous CP DMA
1006 * packet. It's for preventing a read-after-write (RAW) hazard between two
1007 * CP DMA packets. */
1008 #define CP_DMA_RAW_WAIT (1 << 1)
1009 #define CP_DMA_USE_L2 (1 << 2)
1010 #define CP_DMA_CLEAR (1 << 3)
1011
1012 /* Alignment for optimal performance. */
1013 #define SI_CPDMA_ALIGNMENT 32
1014
1015 /* The max number of bytes that can be copied per packet. */
1016 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1017 {
1018 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1019 S_414_BYTE_COUNT_GFX9(~0u) :
1020 S_414_BYTE_COUNT_GFX6(~0u);
1021
1022 /* make it aligned for optimal performance */
1023 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1024 }
1025
1026 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1027 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1028 * clear value.
1029 */
1030 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1031 uint64_t dst_va, uint64_t src_va,
1032 unsigned size, unsigned flags)
1033 {
1034 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1035 uint32_t header = 0, command = 0;
1036
1037 assert(size);
1038 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1039
1040 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1041 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1042 command |= S_414_BYTE_COUNT_GFX9(size);
1043 else
1044 command |= S_414_BYTE_COUNT_GFX6(size);
1045
1046 /* Sync flags. */
1047 if (flags & CP_DMA_SYNC)
1048 header |= S_411_CP_SYNC(1);
1049 else {
1050 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1051 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1052 else
1053 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1054 }
1055
1056 if (flags & CP_DMA_RAW_WAIT)
1057 command |= S_414_RAW_WAIT(1);
1058
1059 /* Src and dst flags. */
1060 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1061 !(flags & CP_DMA_CLEAR) &&
1062 src_va == dst_va)
1063 header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
1064 else if (flags & CP_DMA_USE_L2)
1065 header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
1066
1067 if (flags & CP_DMA_CLEAR)
1068 header |= S_411_SRC_SEL(V_411_DATA);
1069 else if (flags & CP_DMA_USE_L2)
1070 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1071
1072 if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
1073 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1074 radeon_emit(cs, header);
1075 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1076 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1077 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1078 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1079 radeon_emit(cs, command);
1080 } else {
1081 assert(!(flags & CP_DMA_USE_L2));
1082 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1083 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1084 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1085 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1086 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1087 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1088 radeon_emit(cs, command);
1089 }
1090
1091 /* CP DMA is executed in ME, but index buffers are read by PFP.
1092 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1093 * indices. If we wanted to execute CP DMA in PFP, this packet
1094 * should precede it.
1095 */
1096 if ((flags & CP_DMA_SYNC) && cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1097 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1098 radeon_emit(cs, 0);
1099 }
1100
1101 if (unlikely(cmd_buffer->device->trace_bo))
1102 radv_cmd_buffer_trace_emit(cmd_buffer);
1103 }
1104
1105 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1106 unsigned size)
1107 {
1108 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1109 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1110
1111 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1112 aligned_size, CP_DMA_USE_L2);
1113 }
1114
1115 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1116 uint64_t remaining_size, unsigned *flags)
1117 {
1118
1119 /* Flush the caches for the first copy only.
1120 * Also wait for the previous CP DMA operations.
1121 */
1122 if (cmd_buffer->state.flush_bits) {
1123 si_emit_cache_flush(cmd_buffer);
1124 *flags |= CP_DMA_RAW_WAIT;
1125 }
1126
1127 /* Do the synchronization after the last dma, so that all data
1128 * is written to memory.
1129 */
1130 if (byte_count == remaining_size)
1131 *flags |= CP_DMA_SYNC;
1132 }
1133
1134 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1135 {
1136 uint64_t va;
1137 uint32_t offset;
1138 unsigned dma_flags = 0;
1139 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1140 void *ptr;
1141
1142 assert(size < SI_CPDMA_ALIGNMENT);
1143
1144 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1145
1146 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1147 va += offset;
1148
1149 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1150
1151 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1152 dma_flags);
1153 }
1154
1155 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1156 uint64_t src_va, uint64_t dest_va,
1157 uint64_t size)
1158 {
1159 uint64_t main_src_va, main_dest_va;
1160 uint64_t skipped_size = 0, realign_size = 0;
1161
1162
1163 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1164 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1165 /* If the size is not aligned, we must add a dummy copy at the end
1166 * just to align the internal counter. Otherwise, the DMA engine
1167 * would slow down by an order of magnitude for following copies.
1168 */
1169 if (size % SI_CPDMA_ALIGNMENT)
1170 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1171
1172 /* If the copy begins unaligned, we must start copying from the next
1173 * aligned block and the skipped part should be copied after everything
1174 * else has been copied. Only the src alignment matters, not dst.
1175 */
1176 if (src_va % SI_CPDMA_ALIGNMENT) {
1177 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1178 /* The main part will be skipped if the size is too small. */
1179 skipped_size = MIN2(skipped_size, size);
1180 size -= skipped_size;
1181 }
1182 }
1183 main_src_va = src_va + skipped_size;
1184 main_dest_va = dest_va + skipped_size;
1185
1186 while (size) {
1187 unsigned dma_flags = 0;
1188 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1189
1190 si_cp_dma_prepare(cmd_buffer, byte_count,
1191 size + skipped_size + realign_size,
1192 &dma_flags);
1193
1194 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1195 byte_count, dma_flags);
1196
1197 size -= byte_count;
1198 main_src_va += byte_count;
1199 main_dest_va += byte_count;
1200 }
1201
1202 if (skipped_size) {
1203 unsigned dma_flags = 0;
1204
1205 si_cp_dma_prepare(cmd_buffer, skipped_size,
1206 size + skipped_size + realign_size,
1207 &dma_flags);
1208
1209 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1210 skipped_size, dma_flags);
1211 }
1212 if (realign_size)
1213 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1214 }
1215
1216 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1217 uint64_t size, unsigned value)
1218 {
1219
1220 if (!size)
1221 return;
1222
1223 assert(va % 4 == 0 && size % 4 == 0);
1224
1225 while (size) {
1226 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1227 unsigned dma_flags = CP_DMA_CLEAR;
1228
1229 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1230
1231 /* Emit the clear packet. */
1232 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1233 dma_flags);
1234
1235 size -= byte_count;
1236 va += byte_count;
1237 }
1238 }
1239
1240 /* For MSAA sample positions. */
1241 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1242 (((s0x) & 0xf) | (((unsigned)(s0y) & 0xf) << 4) | \
1243 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1244 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1245 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1246
1247
1248 /* 2xMSAA
1249 * There are two locations (4, 4), (-4, -4). */
1250 const uint32_t eg_sample_locs_2x[4] = {
1251 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1252 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1253 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1254 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1255 };
1256 const unsigned eg_max_dist_2x = 4;
1257 /* 4xMSAA
1258 * There are 4 locations: (-2, 6), (6, -2), (-6, 2), (2, 6). */
1259 const uint32_t eg_sample_locs_4x[4] = {
1260 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1261 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1262 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1263 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1264 };
1265 const unsigned eg_max_dist_4x = 6;
1266
1267 /* Cayman 8xMSAA */
1268 static const uint32_t cm_sample_locs_8x[] = {
1269 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1270 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1271 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1272 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1273 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1274 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1275 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1276 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1277 };
1278 static const unsigned cm_max_dist_8x = 8;
1279 /* Cayman 16xMSAA */
1280 static const uint32_t cm_sample_locs_16x[] = {
1281 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1282 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1283 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1284 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1285 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1286 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1287 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1288 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1289 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1290 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1291 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1292 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1293 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1294 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1295 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1296 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1297 };
1298 static const unsigned cm_max_dist_16x = 8;
1299
1300 unsigned radv_cayman_get_maxdist(int log_samples)
1301 {
1302 unsigned max_dist[] = {
1303 0,
1304 eg_max_dist_2x,
1305 eg_max_dist_4x,
1306 cm_max_dist_8x,
1307 cm_max_dist_16x
1308 };
1309 return max_dist[log_samples];
1310 }
1311
1312 void radv_cayman_emit_msaa_sample_locs(struct radeon_cmdbuf *cs, int nr_samples)
1313 {
1314 switch (nr_samples) {
1315 default:
1316 case 1:
1317 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 0);
1318 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, 0);
1319 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, 0);
1320 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, 0);
1321 break;
1322 case 2:
1323 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_2x[0]);
1324 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_2x[1]);
1325 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_2x[2]);
1326 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_2x[3]);
1327 break;
1328 case 4:
1329 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_4x[0]);
1330 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_4x[1]);
1331 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_4x[2]);
1332 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_4x[3]);
1333 break;
1334 case 8:
1335 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1336 radeon_emit(cs, cm_sample_locs_8x[0]);
1337 radeon_emit(cs, cm_sample_locs_8x[4]);
1338 radeon_emit(cs, 0);
1339 radeon_emit(cs, 0);
1340 radeon_emit(cs, cm_sample_locs_8x[1]);
1341 radeon_emit(cs, cm_sample_locs_8x[5]);
1342 radeon_emit(cs, 0);
1343 radeon_emit(cs, 0);
1344 radeon_emit(cs, cm_sample_locs_8x[2]);
1345 radeon_emit(cs, cm_sample_locs_8x[6]);
1346 radeon_emit(cs, 0);
1347 radeon_emit(cs, 0);
1348 radeon_emit(cs, cm_sample_locs_8x[3]);
1349 radeon_emit(cs, cm_sample_locs_8x[7]);
1350 break;
1351 case 16:
1352 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 16);
1353 radeon_emit(cs, cm_sample_locs_16x[0]);
1354 radeon_emit(cs, cm_sample_locs_16x[4]);
1355 radeon_emit(cs, cm_sample_locs_16x[8]);
1356 radeon_emit(cs, cm_sample_locs_16x[12]);
1357 radeon_emit(cs, cm_sample_locs_16x[1]);
1358 radeon_emit(cs, cm_sample_locs_16x[5]);
1359 radeon_emit(cs, cm_sample_locs_16x[9]);
1360 radeon_emit(cs, cm_sample_locs_16x[13]);
1361 radeon_emit(cs, cm_sample_locs_16x[2]);
1362 radeon_emit(cs, cm_sample_locs_16x[6]);
1363 radeon_emit(cs, cm_sample_locs_16x[10]);
1364 radeon_emit(cs, cm_sample_locs_16x[14]);
1365 radeon_emit(cs, cm_sample_locs_16x[3]);
1366 radeon_emit(cs, cm_sample_locs_16x[7]);
1367 radeon_emit(cs, cm_sample_locs_16x[11]);
1368 radeon_emit(cs, cm_sample_locs_16x[15]);
1369 break;
1370 }
1371 }
1372
1373 static void radv_cayman_get_sample_position(struct radv_device *device,
1374 unsigned sample_count,
1375 unsigned sample_index, float *out_value)
1376 {
1377 int offset, index;
1378 struct {
1379 int idx:4;
1380 } val;
1381 switch (sample_count) {
1382 case 1:
1383 default:
1384 out_value[0] = out_value[1] = 0.5;
1385 break;
1386 case 2:
1387 offset = 4 * (sample_index * 2);
1388 val.idx = (eg_sample_locs_2x[0] >> offset) & 0xf;
1389 out_value[0] = (float)(val.idx + 8) / 16.0f;
1390 val.idx = (eg_sample_locs_2x[0] >> (offset + 4)) & 0xf;
1391 out_value[1] = (float)(val.idx + 8) / 16.0f;
1392 break;
1393 case 4:
1394 offset = 4 * (sample_index * 2);
1395 val.idx = (eg_sample_locs_4x[0] >> offset) & 0xf;
1396 out_value[0] = (float)(val.idx + 8) / 16.0f;
1397 val.idx = (eg_sample_locs_4x[0] >> (offset + 4)) & 0xf;
1398 out_value[1] = (float)(val.idx + 8) / 16.0f;
1399 break;
1400 case 8:
1401 offset = 4 * (sample_index % 4 * 2);
1402 index = (sample_index / 4) * 4;
1403 val.idx = (cm_sample_locs_8x[index] >> offset) & 0xf;
1404 out_value[0] = (float)(val.idx + 8) / 16.0f;
1405 val.idx = (cm_sample_locs_8x[index] >> (offset + 4)) & 0xf;
1406 out_value[1] = (float)(val.idx + 8) / 16.0f;
1407 break;
1408 case 16:
1409 offset = 4 * (sample_index % 4 * 2);
1410 index = (sample_index / 4) * 4;
1411 val.idx = (cm_sample_locs_16x[index] >> offset) & 0xf;
1412 out_value[0] = (float)(val.idx + 8) / 16.0f;
1413 val.idx = (cm_sample_locs_16x[index] >> (offset + 4)) & 0xf;
1414 out_value[1] = (float)(val.idx + 8) / 16.0f;
1415 break;
1416 }
1417 }
1418
1419 void radv_device_init_msaa(struct radv_device *device)
1420 {
1421 int i;
1422 radv_cayman_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1423
1424 for (i = 0; i < 2; i++)
1425 radv_cayman_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1426 for (i = 0; i < 4; i++)
1427 radv_cayman_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1428 for (i = 0; i < 8; i++)
1429 radv_cayman_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1430 for (i = 0; i < 16; i++)
1431 radv_cayman_get_sample_position(device, 16, i, device->sample_locations_16x[i]);
1432 }