Change ExecContext to ThreadContext. This is being renamed to differentiate between...
[gem5.git] / src / arch / alpha / isa / decoder.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2003-2006 The Regents of The University of Michigan
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are
8 // met: redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer;
10 // redistributions in binary form must reproduce the above copyright
11 // notice, this list of conditions and the following disclaimer in the
12 // documentation and/or other materials provided with the distribution;
13 // neither the name of the copyright holders nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Authors: Steve Reinhardt
30
31 ////////////////////////////////////////////////////////////////////
32 //
33 // The actual decoder specification
34 //
35
36 decode OPCODE default Unknown::unknown() {
37
38 format LoadAddress {
39 0x08: lda({{ Ra = Rb + disp; }});
40 0x09: ldah({{ Ra = Rb + (disp << 16); }});
41 }
42
43 format LoadOrNop {
44 0x0a: ldbu({{ Ra.uq = Mem.ub; }});
45 0x0c: ldwu({{ Ra.uq = Mem.uw; }});
46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
47 0x23: ldt({{ Fa = Mem.df; }});
48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
50 0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
51 {{ fault = xc->copySrcTranslate(EA); }},
52 inst_flags = [IsMemRef, IsLoad, IsCopy]);
53 }
54
55 format LoadOrPrefetch {
56 0x28: ldl({{ Ra.sl = Mem.sl; }});
57 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
58 // IsFloating flag on lds gets the prefetch to disassemble
59 // using f31 instead of r31... funcitonally it's unnecessary
60 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
61 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
62 }
63
64 format Store {
65 0x0e: stb({{ Mem.ub = Ra<7:0>; }});
66 0x0d: stw({{ Mem.uw = Ra<15:0>; }});
67 0x2c: stl({{ Mem.ul = Ra<31:0>; }});
68 0x2d: stq({{ Mem.uq = Ra.uq; }});
69 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
70 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
71 0x27: stt({{ Mem.df = Fa; }});
72 0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
73 {{ fault = xc->copy(EA); }},
74 inst_flags = [IsMemRef, IsStore, IsCopy]);
75 }
76
77 format StoreCond {
78 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
79 {{
80 uint64_t tmp = write_result;
81 // see stq_c
82 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
83 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
84 0x2f: stq_c({{ Mem.uq = Ra; }},
85 {{
86 uint64_t tmp = write_result;
87 // If the write operation returns 0 or 1, then
88 // this was a conventional store conditional,
89 // and the value indicates the success/failure
90 // of the operation. If another value is
91 // returned, then this was a Turbolaser
92 // mailbox access, and we don't update the
93 // result register at all.
94 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
95 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
96 }
97
98 format IntegerOperate {
99
100 0x10: decode INTFUNC { // integer arithmetic operations
101
102 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
103 0x40: addlv({{
104 uint32_t tmp = Ra.sl + Rb_or_imm.sl;
105 // signed overflow occurs when operands have same sign
106 // and sign of result does not match.
107 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
108 fault = new IntegerOverflowFault;
109 Rc.sl = tmp;
110 }});
111 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
112 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
113
114 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
115 0x60: addqv({{
116 uint64_t tmp = Ra + Rb_or_imm;
117 // signed overflow occurs when operands have same sign
118 // and sign of result does not match.
119 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
120 fault = new IntegerOverflowFault;
121 Rc = tmp;
122 }});
123 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
124 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
125
126 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
127 0x49: sublv({{
128 uint32_t tmp = Ra.sl - Rb_or_imm.sl;
129 // signed overflow detection is same as for add,
130 // except we need to look at the *complemented*
131 // sign bit of the subtrahend (Rb), i.e., if the initial
132 // signs are the *same* then no overflow can occur
133 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
134 fault = new IntegerOverflowFault;
135 Rc.sl = tmp;
136 }});
137 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
138 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
139
140 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
141 0x69: subqv({{
142 uint64_t tmp = Ra - Rb_or_imm;
143 // signed overflow detection is same as for add,
144 // except we need to look at the *complemented*
145 // sign bit of the subtrahend (Rb), i.e., if the initial
146 // signs are the *same* then no overflow can occur
147 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
148 fault = new IntegerOverflowFault;
149 Rc = tmp;
150 }});
151 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
152 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
153
154 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
155 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
156 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
157 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
158 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
159
160 0x0f: cmpbge({{
161 int hi = 7;
162 int lo = 0;
163 uint64_t tmp = 0;
164 for (int i = 0; i < 8; ++i) {
165 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
166 hi += 8;
167 lo += 8;
168 }
169 Rc = tmp;
170 }});
171 }
172
173 0x11: decode INTFUNC { // integer logical operations
174
175 0x00: and({{ Rc = Ra & Rb_or_imm; }});
176 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
177 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
178 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
179 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
180 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
181
182 // conditional moves
183 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
184 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
185 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
186 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
187 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
188 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
189 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
190 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
191
192 // For AMASK, RA must be R31.
193 0x61: decode RA {
194 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
195 }
196
197 // For IMPLVER, RA must be R31 and the B operand
198 // must be the immediate value 1.
199 0x6c: decode RA {
200 31: decode IMM {
201 1: decode INTIMM {
202 // return EV5 for FULL_SYSTEM and EV6 otherwise
203 1: implver({{
204 #if FULL_SYSTEM
205 Rc = 1;
206 #else
207 Rc = 2;
208 #endif
209 }});
210 }
211 }
212 }
213
214 #if FULL_SYSTEM
215 // The mysterious 11.25...
216 0x25: WarnUnimpl::eleven25();
217 #endif
218 }
219
220 0x12: decode INTFUNC {
221 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
222 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
223 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
224
225 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
226 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
227 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
228 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
229
230 0x52: mskwh({{
231 int bv = Rb_or_imm<2:0>;
232 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
233 }});
234 0x62: msklh({{
235 int bv = Rb_or_imm<2:0>;
236 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
237 }});
238 0x72: mskqh({{
239 int bv = Rb_or_imm<2:0>;
240 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
241 }});
242
243 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
244 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
245 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
246 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
247
248 0x5a: extwh({{
249 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
250 0x6a: extlh({{
251 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
252 0x7a: extqh({{
253 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
254
255 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
256 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
257 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
258 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
259
260 0x57: inswh({{
261 int bv = Rb_or_imm<2:0>;
262 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
263 }});
264 0x67: inslh({{
265 int bv = Rb_or_imm<2:0>;
266 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
267 }});
268 0x77: insqh({{
269 int bv = Rb_or_imm<2:0>;
270 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
271 }});
272
273 0x30: zap({{
274 uint64_t zapmask = 0;
275 for (int i = 0; i < 8; ++i) {
276 if (Rb_or_imm<i:>)
277 zapmask |= (mask(8) << (i * 8));
278 }
279 Rc = Ra & ~zapmask;
280 }});
281 0x31: zapnot({{
282 uint64_t zapmask = 0;
283 for (int i = 0; i < 8; ++i) {
284 if (!Rb_or_imm<i:>)
285 zapmask |= (mask(8) << (i * 8));
286 }
287 Rc = Ra & ~zapmask;
288 }});
289 }
290
291 0x13: decode INTFUNC { // integer multiplies
292 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
293 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
294 0x30: umulh({{
295 uint64_t hi, lo;
296 mul128(Ra, Rb_or_imm, hi, lo);
297 Rc = hi;
298 }}, IntMultOp);
299 0x40: mullv({{
300 // 32-bit multiply with trap on overflow
301 int64_t Rax = Ra.sl; // sign extended version of Ra.sl
302 int64_t Rbx = Rb_or_imm.sl;
303 int64_t tmp = Rax * Rbx;
304 // To avoid overflow, all the upper 32 bits must match
305 // the sign bit of the lower 32. We code this as
306 // checking the upper 33 bits for all 0s or all 1s.
307 uint64_t sign_bits = tmp<63:31>;
308 if (sign_bits != 0 && sign_bits != mask(33))
309 fault = new IntegerOverflowFault;
310 Rc.sl = tmp<31:0>;
311 }}, IntMultOp);
312 0x60: mulqv({{
313 // 64-bit multiply with trap on overflow
314 uint64_t hi, lo;
315 mul128(Ra, Rb_or_imm, hi, lo);
316 // all the upper 64 bits must match the sign bit of
317 // the lower 64
318 if (!((hi == 0 && lo<63:> == 0) ||
319 (hi == mask(64) && lo<63:> == 1)))
320 fault = new IntegerOverflowFault;
321 Rc = lo;
322 }}, IntMultOp);
323 }
324
325 0x1c: decode INTFUNC {
326 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
327 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
328 0x32: ctlz({{
329 uint64_t count = 0;
330 uint64_t temp = Rb;
331 if (temp<63:32>) temp >>= 32; else count += 32;
332 if (temp<31:16>) temp >>= 16; else count += 16;
333 if (temp<15:8>) temp >>= 8; else count += 8;
334 if (temp<7:4>) temp >>= 4; else count += 4;
335 if (temp<3:2>) temp >>= 2; else count += 2;
336 if (temp<1:1>) temp >>= 1; else count += 1;
337 if ((temp<0:0>) != 0x1) count += 1;
338 Rc = count;
339 }}, IntAluOp);
340
341 0x33: cttz({{
342 uint64_t count = 0;
343 uint64_t temp = Rb;
344 if (!(temp<31:0>)) { temp >>= 32; count += 32; }
345 if (!(temp<15:0>)) { temp >>= 16; count += 16; }
346 if (!(temp<7:0>)) { temp >>= 8; count += 8; }
347 if (!(temp<3:0>)) { temp >>= 4; count += 4; }
348 if (!(temp<1:0>)) { temp >>= 2; count += 2; }
349 if (!(temp<0:0> & ULL(0x1))) count += 1;
350 Rc = count;
351 }}, IntAluOp);
352
353 format FailUnimpl {
354 0x30: ctpop();
355 0x31: perr();
356 0x34: unpkbw();
357 0x35: unpkbl();
358 0x36: pkwb();
359 0x37: pklb();
360 0x38: minsb8();
361 0x39: minsw4();
362 0x3a: minub8();
363 0x3b: minuw4();
364 0x3c: maxub8();
365 0x3d: maxuw4();
366 0x3e: maxsb8();
367 0x3f: maxsw4();
368 }
369
370 format BasicOperateWithNopCheck {
371 0x70: decode RB {
372 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
373 }
374 0x78: decode RB {
375 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
376 FloatCvtOp);
377 }
378 }
379 }
380 }
381
382 // Conditional branches.
383 format CondBranch {
384 0x39: beq({{ cond = (Ra == 0); }});
385 0x3d: bne({{ cond = (Ra != 0); }});
386 0x3e: bge({{ cond = (Ra.sq >= 0); }});
387 0x3f: bgt({{ cond = (Ra.sq > 0); }});
388 0x3b: ble({{ cond = (Ra.sq <= 0); }});
389 0x3a: blt({{ cond = (Ra.sq < 0); }});
390 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
391 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
392
393 0x31: fbeq({{ cond = (Fa == 0); }});
394 0x35: fbne({{ cond = (Fa != 0); }});
395 0x36: fbge({{ cond = (Fa >= 0); }});
396 0x37: fbgt({{ cond = (Fa > 0); }});
397 0x33: fble({{ cond = (Fa <= 0); }});
398 0x32: fblt({{ cond = (Fa < 0); }});
399 }
400
401 // unconditional branches
402 format UncondBranch {
403 0x30: br();
404 0x34: bsr(IsCall);
405 }
406
407 // indirect branches
408 0x1a: decode JMPFUNC {
409 format Jump {
410 0: jmp();
411 1: jsr(IsCall);
412 2: ret(IsReturn);
413 3: jsr_coroutine(IsCall, IsReturn);
414 }
415 }
416
417 // Square root and integer-to-FP moves
418 0x14: decode FP_SHORTFUNC {
419 // Integer to FP register moves must have RB == 31
420 0x4: decode RB {
421 31: decode FP_FULLFUNC {
422 format BasicOperateWithNopCheck {
423 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
424 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
425 0x014: FailUnimpl::itoff(); // VAX-format conversion
426 }
427 }
428 }
429
430 // Square root instructions must have FA == 31
431 0xb: decode FA {
432 31: decode FP_TYPEFUNC {
433 format FloatingPointOperate {
434 #if SS_COMPATIBLE_FP
435 0x0b: sqrts({{
436 if (Fb < 0.0)
437 fault = new ArithmeticFault;
438 Fc = sqrt(Fb);
439 }}, FloatSqrtOp);
440 #else
441 0x0b: sqrts({{
442 if (Fb.sf < 0.0)
443 fault = new ArithmeticFault;
444 Fc.sf = sqrt(Fb.sf);
445 }}, FloatSqrtOp);
446 #endif
447 0x2b: sqrtt({{
448 if (Fb < 0.0)
449 fault = new ArithmeticFault;
450 Fc = sqrt(Fb);
451 }}, FloatSqrtOp);
452 }
453 }
454 }
455
456 // VAX-format sqrtf and sqrtg are not implemented
457 0xa: FailUnimpl::sqrtfg();
458 }
459
460 // IEEE floating point
461 0x16: decode FP_SHORTFUNC_TOP2 {
462 // The top two bits of the short function code break this
463 // space into four groups: binary ops, compares, reserved, and
464 // conversions. See Table 4-12 of AHB. There are different
465 // special cases in these different groups, so we decode on
466 // these top two bits first just to select a decode strategy.
467 // Most of these instructions may have various trapping and
468 // rounding mode flags set; these are decoded in the
469 // FloatingPointDecode template used by the
470 // FloatingPointOperate format.
471
472 // add/sub/mul/div: just decode on the short function code
473 // and source type. All valid trapping and rounding modes apply.
474 0: decode FP_TRAPMODE {
475 // check for valid trapping modes here
476 0,1,5,7: decode FP_TYPEFUNC {
477 format FloatingPointOperate {
478 #if SS_COMPATIBLE_FP
479 0x00: adds({{ Fc = Fa + Fb; }});
480 0x01: subs({{ Fc = Fa - Fb; }});
481 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
482 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
483 #else
484 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
485 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
486 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
487 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
488 #endif
489
490 0x20: addt({{ Fc = Fa + Fb; }});
491 0x21: subt({{ Fc = Fa - Fb; }});
492 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
493 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
494 }
495 }
496 }
497
498 // Floating-point compare instructions must have the default
499 // rounding mode, and may use the default trapping mode or
500 // /SU. Both trapping modes are treated the same by M5; the
501 // only difference on the real hardware (as far a I can tell)
502 // is that without /SU you'd get an imprecise trap if you
503 // tried to compare a NaN with something else (instead of an
504 // "unordered" result).
505 1: decode FP_FULLFUNC {
506 format BasicOperateWithNopCheck {
507 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
508 FloatCmpOp);
509 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
510 FloatCmpOp);
511 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
512 FloatCmpOp);
513 0x0a4, 0x5a4: cmptun({{ // unordered
514 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
515 }}, FloatCmpOp);
516 }
517 }
518
519 // The FP-to-integer and integer-to-FP conversion insts
520 // require that FA be 31.
521 3: decode FA {
522 31: decode FP_TYPEFUNC {
523 format FloatingPointOperate {
524 0x2f: decode FP_ROUNDMODE {
525 format FPFixedRounding {
526 // "chopped" i.e. round toward zero
527 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
528 Chopped);
529 // round to minus infinity
530 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
531 MinusInfinity);
532 }
533 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
534 }
535
536 // The cvtts opcode is overloaded to be cvtst if the trap
537 // mode is 2 or 6 (which are not valid otherwise)
538 0x2c: decode FP_FULLFUNC {
539 format BasicOperateWithNopCheck {
540 // trap on denorm version "cvtst/s" is
541 // simulated same as cvtst
542 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
543 }
544 default: cvtts({{ Fc.sf = Fb; }});
545 }
546
547 // The trapping mode for integer-to-FP conversions
548 // must be /SUI or nothing; /U and /SU are not
549 // allowed. The full set of rounding modes are
550 // supported though.
551 0x3c: decode FP_TRAPMODE {
552 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
553 }
554 0x3e: decode FP_TRAPMODE {
555 0,7: cvtqt({{ Fc = Fb.sq; }});
556 }
557 }
558 }
559 }
560 }
561
562 // misc FP operate
563 0x17: decode FP_FULLFUNC {
564 format BasicOperateWithNopCheck {
565 0x010: cvtlq({{
566 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
567 }});
568 0x030: cvtql({{
569 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
570 }});
571
572 // We treat the precise & imprecise trapping versions of
573 // cvtql identically.
574 0x130, 0x530: cvtqlv({{
575 // To avoid overflow, all the upper 32 bits must match
576 // the sign bit of the lower 32. We code this as
577 // checking the upper 33 bits for all 0s or all 1s.
578 uint64_t sign_bits = Fb.uq<63:31>;
579 if (sign_bits != 0 && sign_bits != mask(33))
580 fault = new IntegerOverflowFault;
581 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
582 }});
583
584 0x020: cpys({{ // copy sign
585 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
586 }});
587 0x021: cpysn({{ // copy sign negated
588 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
589 }});
590 0x022: cpyse({{ // copy sign and exponent
591 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
592 }});
593
594 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
595 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
596 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
597 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
598 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
599 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
600
601 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess);
602 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess);
603 }
604 }
605
606 // miscellaneous mem-format ops
607 0x18: decode MEMFUNC {
608 format WarnUnimpl {
609 0x8000: fetch();
610 0xa000: fetch_m();
611 0xe800: ecb();
612 }
613
614 format MiscPrefetch {
615 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
616 {{ xc->writeHint(EA, 64, memAccessFlags); }},
617 mem_flags = NO_FAULT,
618 inst_flags = [IsMemRef, IsDataPrefetch,
619 IsStore, MemWriteOp]);
620 }
621
622 format BasicOperate {
623 0xc000: rpcc({{
624 #if FULL_SYSTEM
625 /* Rb is a fake dependency so here is a fun way to get
626 * the parser to understand that.
627 */
628 Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0);
629
630 #else
631 Ra = curTick;
632 #endif
633 }}, IsUnverifiable);
634
635 // All of the barrier instructions below do nothing in
636 // their execute() methods (hence the empty code blocks).
637 // All of their functionality is hard-coded in the
638 // pipeline based on the flags IsSerializing,
639 // IsMemBarrier, and IsWriteBarrier. In the current
640 // detailed CPU model, the execute() function only gets
641 // called at fetch, so there's no way to generate pipeline
642 // behavior at any other stage. Once we go to an
643 // exec-in-exec CPU model we should be able to get rid of
644 // these flags and implement this behavior via the
645 // execute() methods.
646
647 // trapb is just a barrier on integer traps, where excb is
648 // a barrier on integer and FP traps. "EXCB is thus a
649 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
650 // them the same though.
651 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
652 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
653 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
654 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
655 }
656
657 #if FULL_SYSTEM
658 format BasicOperate {
659 0xe000: rc({{
660 Ra = xc->readIntrFlag();
661 xc->setIntrFlag(0);
662 }}, IsNonSpeculative);
663 0xf000: rs({{
664 Ra = xc->readIntrFlag();
665 xc->setIntrFlag(1);
666 }}, IsNonSpeculative);
667 }
668 #else
669 format FailUnimpl {
670 0xe000: rc();
671 0xf000: rs();
672 }
673 #endif
674 }
675
676 #if FULL_SYSTEM
677 0x00: CallPal::call_pal({{
678 if (!palValid ||
679 (palPriv
680 && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
681 // invalid pal function code, or attempt to do privileged
682 // PAL call in non-kernel mode
683 fault = new UnimplementedOpcodeFault;
684 }
685 else {
686 // check to see if simulator wants to do something special
687 // on this PAL call (including maybe suppress it)
688 bool dopal = xc->simPalCheck(palFunc);
689
690 if (dopal) {
691 xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC);
692 NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
693 }
694 }
695 }}, IsNonSpeculative);
696 #else
697 0x00: decode PALFUNC {
698 format EmulatedCallPal {
699 0x00: halt ({{
700 SimExit(curTick, "halt instruction encountered");
701 }}, IsNonSpeculative);
702 0x83: callsys({{
703 xc->syscall(R0);
704 }}, IsNonSpeculative);
705 // Read uniq reg into ABI return value register (r0)
706 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess);
707 // Write uniq reg with value from ABI arg register (r16)
708 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess);
709 }
710 }
711 #endif
712
713 #if FULL_SYSTEM
714 0x1b: decode PALMODE {
715 0: OpcdecFault::hw_st_quad();
716 1: decode HW_LDST_QUAD {
717 format HwLoad {
718 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
719 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
720 }
721 }
722 }
723
724 0x1f: decode PALMODE {
725 0: OpcdecFault::hw_st_cond();
726 format HwStore {
727 1: decode HW_LDST_COND {
728 0: decode HW_LDST_QUAD {
729 0: hw_st({{ EA = (Rb + disp) & ~3; }},
730 {{ Mem.ul = Ra<31:0>; }}, L);
731 1: hw_st({{ EA = (Rb + disp) & ~7; }},
732 {{ Mem.uq = Ra.uq; }}, Q);
733 }
734
735 1: FailUnimpl::hw_st_cond();
736 }
737 }
738 }
739
740 0x19: decode PALMODE {
741 0: OpcdecFault::hw_mfpr();
742 format HwMoveIPR {
743 1: hw_mfpr({{
744 Ra = xc->readMiscRegWithEffect(ipr_index, fault);
745 }}, IsIprAccess);
746 }
747 }
748
749 0x1d: decode PALMODE {
750 0: OpcdecFault::hw_mtpr();
751 format HwMoveIPR {
752 1: hw_mtpr({{
753 xc->setMiscRegWithEffect(ipr_index, Ra);
754 if (traceData) { traceData->setData(Ra); }
755 }}, IsIprAccess);
756 }
757 }
758
759 format BasicOperate {
760 0x1e: decode PALMODE {
761 0: OpcdecFault::hw_rei();
762 1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
763 }
764
765 // M5 special opcodes use the reserved 0x01 opcode space
766 0x01: decode M5FUNC {
767 0x00: arm({{
768 AlphaPseudo::arm(xc->tcBase());
769 }}, IsNonSpeculative);
770 0x01: quiesce({{
771 AlphaPseudo::quiesce(xc->tcBase());
772 }}, IsNonSpeculative, IsQuiesce);
773 0x02: quiesceNs({{
774 AlphaPseudo::quiesceNs(xc->tcBase(), R16);
775 }}, IsNonSpeculative, IsQuiesce);
776 0x03: quiesceCycles({{
777 AlphaPseudo::quiesceCycles(xc->tcBase(), R16);
778 }}, IsNonSpeculative, IsQuiesce);
779 0x04: quiesceTime({{
780 R0 = AlphaPseudo::quiesceTime(xc->tcBase());
781 }}, IsNonSpeculative);
782 0x10: ivlb({{
783 AlphaPseudo::ivlb(xc->tcBase());
784 }}, No_OpClass, IsNonSpeculative);
785 0x11: ivle({{
786 AlphaPseudo::ivle(xc->tcBase());
787 }}, No_OpClass, IsNonSpeculative);
788 0x20: m5exit_old({{
789 AlphaPseudo::m5exit_old(xc->tcBase());
790 }}, No_OpClass, IsNonSpeculative);
791 0x21: m5exit({{
792 AlphaPseudo::m5exit(xc->tcBase(), R16);
793 }}, No_OpClass, IsNonSpeculative);
794 0x30: initparam({{ Ra = xc->tcBase()->getCpuPtr()->system->init_param; }});
795 0x40: resetstats({{
796 AlphaPseudo::resetstats(xc->tcBase(), R16, R17);
797 }}, IsNonSpeculative);
798 0x41: dumpstats({{
799 AlphaPseudo::dumpstats(xc->tcBase(), R16, R17);
800 }}, IsNonSpeculative);
801 0x42: dumpresetstats({{
802 AlphaPseudo::dumpresetstats(xc->tcBase(), R16, R17);
803 }}, IsNonSpeculative);
804 0x43: m5checkpoint({{
805 AlphaPseudo::m5checkpoint(xc->tcBase(), R16, R17);
806 }}, IsNonSpeculative);
807 0x50: m5readfile({{
808 R0 = AlphaPseudo::readfile(xc->tcBase(), R16, R17, R18);
809 }}, IsNonSpeculative);
810 0x51: m5break({{
811 AlphaPseudo::debugbreak(xc->tcBase());
812 }}, IsNonSpeculative);
813 0x52: m5switchcpu({{
814 AlphaPseudo::switchcpu(xc->tcBase());
815 }}, IsNonSpeculative);
816 0x53: m5addsymbol({{
817 AlphaPseudo::addsymbol(xc->tcBase(), R16, R17);
818 }}, IsNonSpeculative);
819 0x54: m5panic({{
820 panic("M5 panic instruction called at pc=%#x.", xc->readPC());
821 }}, IsNonSpeculative);
822
823 }
824 }
825 #endif
826 }