O3CPU: Undo Gabe's changes to remove hwrei and simpalcheck from O3 CPU. Removing...
[gem5.git] / src / arch / alpha / isa / decoder.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2003-2006 The Regents of The University of Michigan
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are
8 // met: redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer;
10 // redistributions in binary form must reproduce the above copyright
11 // notice, this list of conditions and the following disclaimer in the
12 // documentation and/or other materials provided with the distribution;
13 // neither the name of the copyright holders nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Authors: Steve Reinhardt
30
31 ////////////////////////////////////////////////////////////////////
32 //
33 // The actual decoder specification
34 //
35
36 decode OPCODE default Unknown::unknown() {
37
38 format LoadAddress {
39 0x08: lda({{ Ra = Rb + disp; }});
40 0x09: ldah({{ Ra = Rb + (disp << 16); }});
41 }
42
43 format LoadOrNop {
44 0x0a: ldbu({{ Ra.uq = Mem.ub; }});
45 0x0c: ldwu({{ Ra.uq = Mem.uw; }});
46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
47 0x23: ldt({{ Fa = Mem.df; }});
48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
50 #ifdef USE_COPY
51 0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
52 {{ fault = xc->copySrcTranslate(EA); }},
53 inst_flags = [IsMemRef, IsLoad, IsCopy]);
54 #endif
55 }
56
57 format LoadOrPrefetch {
58 0x28: ldl({{ Ra.sl = Mem.sl; }});
59 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
60 // IsFloating flag on lds gets the prefetch to disassemble
61 // using f31 instead of r31... funcitonally it's unnecessary
62 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
63 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
64 }
65
66 format Store {
67 0x0e: stb({{ Mem.ub = Ra<7:0>; }});
68 0x0d: stw({{ Mem.uw = Ra<15:0>; }});
69 0x2c: stl({{ Mem.ul = Ra<31:0>; }});
70 0x2d: stq({{ Mem.uq = Ra.uq; }});
71 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
72 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
73 0x27: stt({{ Mem.df = Fa; }});
74 #ifdef USE_COPY
75 0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
76 {{ fault = xc->copy(EA); }},
77 inst_flags = [IsMemRef, IsStore, IsCopy]);
78 #endif
79 }
80
81 format StoreCond {
82 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
83 {{
84 uint64_t tmp = write_result;
85 // see stq_c
86 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
87 if (tmp == 1) {
88 xc->setStCondFailures(0);
89 }
90 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
91 0x2f: stq_c({{ Mem.uq = Ra; }},
92 {{
93 uint64_t tmp = write_result;
94 // If the write operation returns 0 or 1, then
95 // this was a conventional store conditional,
96 // and the value indicates the success/failure
97 // of the operation. If another value is
98 // returned, then this was a Turbolaser
99 // mailbox access, and we don't update the
100 // result register at all.
101 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
102 if (tmp == 1) {
103 // clear failure counter... this is
104 // non-architectural and for debugging
105 // only.
106 xc->setStCondFailures(0);
107 }
108 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
109 }
110
111 format IntegerOperate {
112
113 0x10: decode INTFUNC { // integer arithmetic operations
114
115 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
116 0x40: addlv({{
117 uint32_t tmp = Ra.sl + Rb_or_imm.sl;
118 // signed overflow occurs when operands have same sign
119 // and sign of result does not match.
120 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
121 fault = new IntegerOverflowFault;
122 Rc.sl = tmp;
123 }});
124 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
125 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
126
127 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
128 0x60: addqv({{
129 uint64_t tmp = Ra + Rb_or_imm;
130 // signed overflow occurs when operands have same sign
131 // and sign of result does not match.
132 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
133 fault = new IntegerOverflowFault;
134 Rc = tmp;
135 }});
136 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
137 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
138
139 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
140 0x49: sublv({{
141 uint32_t tmp = Ra.sl - Rb_or_imm.sl;
142 // signed overflow detection is same as for add,
143 // except we need to look at the *complemented*
144 // sign bit of the subtrahend (Rb), i.e., if the initial
145 // signs are the *same* then no overflow can occur
146 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
147 fault = new IntegerOverflowFault;
148 Rc.sl = tmp;
149 }});
150 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
151 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
152
153 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
154 0x69: subqv({{
155 uint64_t tmp = Ra - Rb_or_imm;
156 // signed overflow detection is same as for add,
157 // except we need to look at the *complemented*
158 // sign bit of the subtrahend (Rb), i.e., if the initial
159 // signs are the *same* then no overflow can occur
160 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
161 fault = new IntegerOverflowFault;
162 Rc = tmp;
163 }});
164 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
165 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
166
167 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
168 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
169 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
170 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
171 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
172
173 0x0f: cmpbge({{
174 int hi = 7;
175 int lo = 0;
176 uint64_t tmp = 0;
177 for (int i = 0; i < 8; ++i) {
178 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
179 hi += 8;
180 lo += 8;
181 }
182 Rc = tmp;
183 }});
184 }
185
186 0x11: decode INTFUNC { // integer logical operations
187
188 0x00: and({{ Rc = Ra & Rb_or_imm; }});
189 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
190 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
191 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
192 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
193 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
194
195 // conditional moves
196 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
197 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
198 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
199 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
200 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
201 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
202 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
203 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
204
205 // For AMASK, RA must be R31.
206 0x61: decode RA {
207 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
208 }
209
210 // For IMPLVER, RA must be R31 and the B operand
211 // must be the immediate value 1.
212 0x6c: decode RA {
213 31: decode IMM {
214 1: decode INTIMM {
215 // return EV5 for FULL_SYSTEM and EV6 otherwise
216 1: implver({{
217 #if FULL_SYSTEM
218 Rc = 1;
219 #else
220 Rc = 2;
221 #endif
222 }});
223 }
224 }
225 }
226
227 #if FULL_SYSTEM
228 // The mysterious 11.25...
229 0x25: WarnUnimpl::eleven25();
230 #endif
231 }
232
233 0x12: decode INTFUNC {
234 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
235 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
236 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
237
238 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
239 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
240 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
241 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
242
243 0x52: mskwh({{
244 int bv = Rb_or_imm<2:0>;
245 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
246 }});
247 0x62: msklh({{
248 int bv = Rb_or_imm<2:0>;
249 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
250 }});
251 0x72: mskqh({{
252 int bv = Rb_or_imm<2:0>;
253 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
254 }});
255
256 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
257 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
258 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
259 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
260
261 0x5a: extwh({{
262 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
263 0x6a: extlh({{
264 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
265 0x7a: extqh({{
266 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
267
268 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
269 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
270 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
271 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
272
273 0x57: inswh({{
274 int bv = Rb_or_imm<2:0>;
275 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
276 }});
277 0x67: inslh({{
278 int bv = Rb_or_imm<2:0>;
279 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
280 }});
281 0x77: insqh({{
282 int bv = Rb_or_imm<2:0>;
283 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
284 }});
285
286 0x30: zap({{
287 uint64_t zapmask = 0;
288 for (int i = 0; i < 8; ++i) {
289 if (Rb_or_imm<i:>)
290 zapmask |= (mask(8) << (i * 8));
291 }
292 Rc = Ra & ~zapmask;
293 }});
294 0x31: zapnot({{
295 uint64_t zapmask = 0;
296 for (int i = 0; i < 8; ++i) {
297 if (!Rb_or_imm<i:>)
298 zapmask |= (mask(8) << (i * 8));
299 }
300 Rc = Ra & ~zapmask;
301 }});
302 }
303
304 0x13: decode INTFUNC { // integer multiplies
305 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
306 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
307 0x30: umulh({{
308 uint64_t hi, lo;
309 mul128(Ra, Rb_or_imm, hi, lo);
310 Rc = hi;
311 }}, IntMultOp);
312 0x40: mullv({{
313 // 32-bit multiply with trap on overflow
314 int64_t Rax = Ra.sl; // sign extended version of Ra.sl
315 int64_t Rbx = Rb_or_imm.sl;
316 int64_t tmp = Rax * Rbx;
317 // To avoid overflow, all the upper 32 bits must match
318 // the sign bit of the lower 32. We code this as
319 // checking the upper 33 bits for all 0s or all 1s.
320 uint64_t sign_bits = tmp<63:31>;
321 if (sign_bits != 0 && sign_bits != mask(33))
322 fault = new IntegerOverflowFault;
323 Rc.sl = tmp<31:0>;
324 }}, IntMultOp);
325 0x60: mulqv({{
326 // 64-bit multiply with trap on overflow
327 uint64_t hi, lo;
328 mul128(Ra, Rb_or_imm, hi, lo);
329 // all the upper 64 bits must match the sign bit of
330 // the lower 64
331 if (!((hi == 0 && lo<63:> == 0) ||
332 (hi == mask(64) && lo<63:> == 1)))
333 fault = new IntegerOverflowFault;
334 Rc = lo;
335 }}, IntMultOp);
336 }
337
338 0x1c: decode INTFUNC {
339 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
340 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
341 0x32: ctlz({{
342 uint64_t count = 0;
343 uint64_t temp = Rb;
344 if (temp<63:32>) temp >>= 32; else count += 32;
345 if (temp<31:16>) temp >>= 16; else count += 16;
346 if (temp<15:8>) temp >>= 8; else count += 8;
347 if (temp<7:4>) temp >>= 4; else count += 4;
348 if (temp<3:2>) temp >>= 2; else count += 2;
349 if (temp<1:1>) temp >>= 1; else count += 1;
350 if ((temp<0:0>) != 0x1) count += 1;
351 Rc = count;
352 }}, IntAluOp);
353
354 0x33: cttz({{
355 uint64_t count = 0;
356 uint64_t temp = Rb;
357 if (!(temp<31:0>)) { temp >>= 32; count += 32; }
358 if (!(temp<15:0>)) { temp >>= 16; count += 16; }
359 if (!(temp<7:0>)) { temp >>= 8; count += 8; }
360 if (!(temp<3:0>)) { temp >>= 4; count += 4; }
361 if (!(temp<1:0>)) { temp >>= 2; count += 2; }
362 if (!(temp<0:0> & ULL(0x1))) count += 1;
363 Rc = count;
364 }}, IntAluOp);
365
366 format FailUnimpl {
367 0x30: ctpop();
368 0x31: perr();
369 0x34: unpkbw();
370 0x35: unpkbl();
371 0x36: pkwb();
372 0x37: pklb();
373 0x38: minsb8();
374 0x39: minsw4();
375 0x3a: minub8();
376 0x3b: minuw4();
377 0x3c: maxub8();
378 0x3d: maxuw4();
379 0x3e: maxsb8();
380 0x3f: maxsw4();
381 }
382
383 format BasicOperateWithNopCheck {
384 0x70: decode RB {
385 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
386 }
387 0x78: decode RB {
388 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
389 FloatCvtOp);
390 }
391 }
392 }
393 }
394
395 // Conditional branches.
396 format CondBranch {
397 0x39: beq({{ cond = (Ra == 0); }});
398 0x3d: bne({{ cond = (Ra != 0); }});
399 0x3e: bge({{ cond = (Ra.sq >= 0); }});
400 0x3f: bgt({{ cond = (Ra.sq > 0); }});
401 0x3b: ble({{ cond = (Ra.sq <= 0); }});
402 0x3a: blt({{ cond = (Ra.sq < 0); }});
403 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
404 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
405
406 0x31: fbeq({{ cond = (Fa == 0); }});
407 0x35: fbne({{ cond = (Fa != 0); }});
408 0x36: fbge({{ cond = (Fa >= 0); }});
409 0x37: fbgt({{ cond = (Fa > 0); }});
410 0x33: fble({{ cond = (Fa <= 0); }});
411 0x32: fblt({{ cond = (Fa < 0); }});
412 }
413
414 // unconditional branches
415 format UncondBranch {
416 0x30: br();
417 0x34: bsr(IsCall);
418 }
419
420 // indirect branches
421 0x1a: decode JMPFUNC {
422 format Jump {
423 0: jmp();
424 1: jsr(IsCall);
425 2: ret(IsReturn);
426 3: jsr_coroutine(IsCall, IsReturn);
427 }
428 }
429
430 // Square root and integer-to-FP moves
431 0x14: decode FP_SHORTFUNC {
432 // Integer to FP register moves must have RB == 31
433 0x4: decode RB {
434 31: decode FP_FULLFUNC {
435 format BasicOperateWithNopCheck {
436 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
437 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
438 0x014: FailUnimpl::itoff(); // VAX-format conversion
439 }
440 }
441 }
442
443 // Square root instructions must have FA == 31
444 0xb: decode FA {
445 31: decode FP_TYPEFUNC {
446 format FloatingPointOperate {
447 #if SS_COMPATIBLE_FP
448 0x0b: sqrts({{
449 if (Fb < 0.0)
450 fault = new ArithmeticFault;
451 Fc = sqrt(Fb);
452 }}, FloatSqrtOp);
453 #else
454 0x0b: sqrts({{
455 if (Fb.sf < 0.0)
456 fault = new ArithmeticFault;
457 Fc.sf = sqrt(Fb.sf);
458 }}, FloatSqrtOp);
459 #endif
460 0x2b: sqrtt({{
461 if (Fb < 0.0)
462 fault = new ArithmeticFault;
463 Fc = sqrt(Fb);
464 }}, FloatSqrtOp);
465 }
466 }
467 }
468
469 // VAX-format sqrtf and sqrtg are not implemented
470 0xa: FailUnimpl::sqrtfg();
471 }
472
473 // IEEE floating point
474 0x16: decode FP_SHORTFUNC_TOP2 {
475 // The top two bits of the short function code break this
476 // space into four groups: binary ops, compares, reserved, and
477 // conversions. See Table 4-12 of AHB. There are different
478 // special cases in these different groups, so we decode on
479 // these top two bits first just to select a decode strategy.
480 // Most of these instructions may have various trapping and
481 // rounding mode flags set; these are decoded in the
482 // FloatingPointDecode template used by the
483 // FloatingPointOperate format.
484
485 // add/sub/mul/div: just decode on the short function code
486 // and source type. All valid trapping and rounding modes apply.
487 0: decode FP_TRAPMODE {
488 // check for valid trapping modes here
489 0,1,5,7: decode FP_TYPEFUNC {
490 format FloatingPointOperate {
491 #if SS_COMPATIBLE_FP
492 0x00: adds({{ Fc = Fa + Fb; }});
493 0x01: subs({{ Fc = Fa - Fb; }});
494 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
495 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
496 #else
497 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
498 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
499 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
500 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
501 #endif
502
503 0x20: addt({{ Fc = Fa + Fb; }});
504 0x21: subt({{ Fc = Fa - Fb; }});
505 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
506 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
507 }
508 }
509 }
510
511 // Floating-point compare instructions must have the default
512 // rounding mode, and may use the default trapping mode or
513 // /SU. Both trapping modes are treated the same by M5; the
514 // only difference on the real hardware (as far a I can tell)
515 // is that without /SU you'd get an imprecise trap if you
516 // tried to compare a NaN with something else (instead of an
517 // "unordered" result).
518 1: decode FP_FULLFUNC {
519 format BasicOperateWithNopCheck {
520 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
521 FloatCmpOp);
522 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
523 FloatCmpOp);
524 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
525 FloatCmpOp);
526 0x0a4, 0x5a4: cmptun({{ // unordered
527 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
528 }}, FloatCmpOp);
529 }
530 }
531
532 // The FP-to-integer and integer-to-FP conversion insts
533 // require that FA be 31.
534 3: decode FA {
535 31: decode FP_TYPEFUNC {
536 format FloatingPointOperate {
537 0x2f: decode FP_ROUNDMODE {
538 format FPFixedRounding {
539 // "chopped" i.e. round toward zero
540 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
541 Chopped);
542 // round to minus infinity
543 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
544 MinusInfinity);
545 }
546 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
547 }
548
549 // The cvtts opcode is overloaded to be cvtst if the trap
550 // mode is 2 or 6 (which are not valid otherwise)
551 0x2c: decode FP_FULLFUNC {
552 format BasicOperateWithNopCheck {
553 // trap on denorm version "cvtst/s" is
554 // simulated same as cvtst
555 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
556 }
557 default: cvtts({{ Fc.sf = Fb; }});
558 }
559
560 // The trapping mode for integer-to-FP conversions
561 // must be /SUI or nothing; /U and /SU are not
562 // allowed. The full set of rounding modes are
563 // supported though.
564 0x3c: decode FP_TRAPMODE {
565 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
566 }
567 0x3e: decode FP_TRAPMODE {
568 0,7: cvtqt({{ Fc = Fb.sq; }});
569 }
570 }
571 }
572 }
573 }
574
575 // misc FP operate
576 0x17: decode FP_FULLFUNC {
577 format BasicOperateWithNopCheck {
578 0x010: cvtlq({{
579 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
580 }});
581 0x030: cvtql({{
582 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
583 }});
584
585 // We treat the precise & imprecise trapping versions of
586 // cvtql identically.
587 0x130, 0x530: cvtqlv({{
588 // To avoid overflow, all the upper 32 bits must match
589 // the sign bit of the lower 32. We code this as
590 // checking the upper 33 bits for all 0s or all 1s.
591 uint64_t sign_bits = Fb.uq<63:31>;
592 if (sign_bits != 0 && sign_bits != mask(33))
593 fault = new IntegerOverflowFault;
594 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
595 }});
596
597 0x020: cpys({{ // copy sign
598 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
599 }});
600 0x021: cpysn({{ // copy sign negated
601 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
602 }});
603 0x022: cpyse({{ // copy sign and exponent
604 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
605 }});
606
607 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
608 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
609 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
610 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
611 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
612 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
613
614 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess);
615 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess);
616 }
617 }
618
619 // miscellaneous mem-format ops
620 0x18: decode MEMFUNC {
621 format WarnUnimpl {
622 0x8000: fetch();
623 0xa000: fetch_m();
624 0xe800: ecb();
625 }
626
627 format MiscPrefetch {
628 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
629 {{ xc->writeHint(EA, 64, memAccessFlags); }},
630 mem_flags = NO_FAULT,
631 inst_flags = [IsMemRef, IsDataPrefetch,
632 IsStore, MemWriteOp]);
633 }
634
635 format BasicOperate {
636 0xc000: rpcc({{
637 #if FULL_SYSTEM
638 /* Rb is a fake dependency so here is a fun way to get
639 * the parser to understand that.
640 */
641 Ra = xc->readMiscReg(IPR_CC) + (Rb & 0);
642
643 #else
644 Ra = curTick;
645 #endif
646 }}, IsUnverifiable);
647
648 // All of the barrier instructions below do nothing in
649 // their execute() methods (hence the empty code blocks).
650 // All of their functionality is hard-coded in the
651 // pipeline based on the flags IsSerializing,
652 // IsMemBarrier, and IsWriteBarrier. In the current
653 // detailed CPU model, the execute() function only gets
654 // called at fetch, so there's no way to generate pipeline
655 // behavior at any other stage. Once we go to an
656 // exec-in-exec CPU model we should be able to get rid of
657 // these flags and implement this behavior via the
658 // execute() methods.
659
660 // trapb is just a barrier on integer traps, where excb is
661 // a barrier on integer and FP traps. "EXCB is thus a
662 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
663 // them the same though.
664 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
665 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
666 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
667 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
668 }
669
670 #if FULL_SYSTEM
671 format BasicOperate {
672 0xe000: rc({{
673 Ra = IntrFlag;
674 IntrFlag = 0;
675 }}, IsNonSpeculative, IsUnverifiable);
676 0xf000: rs({{
677 Ra = IntrFlag;
678 IntrFlag = 1;
679 }}, IsNonSpeculative, IsUnverifiable);
680 }
681 #else
682 format FailUnimpl {
683 0xe000: rc();
684 0xf000: rs();
685 }
686 #endif
687 }
688
689 #if FULL_SYSTEM
690 0x00: CallPal::call_pal({{
691 if (!palValid ||
692 (palPriv
693 && xc->readMiscReg(IPR_ICM) != mode_kernel)) {
694 // invalid pal function code, or attempt to do privileged
695 // PAL call in non-kernel mode
696 fault = new UnimplementedOpcodeFault;
697 }
698 else {
699 // check to see if simulator wants to do something special
700 // on this PAL call (including maybe suppress it)
701 bool dopal = xc->simPalCheck(palFunc);
702
703 if (dopal) {
704 xc->setMiscReg(IPR_EXC_ADDR, NPC);
705 NPC = xc->readMiscReg(IPR_PAL_BASE) + palOffset;
706 }
707 }
708 }}, IsNonSpeculative);
709 #else
710 0x00: decode PALFUNC {
711 format EmulatedCallPal {
712 0x00: halt ({{
713 exitSimLoop("halt instruction encountered");
714 }}, IsNonSpeculative);
715 0x83: callsys({{
716 xc->syscall(R0);
717 }}, IsSerializeAfter, IsNonSpeculative, IsSyscall);
718 // Read uniq reg into ABI return value register (r0)
719 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess);
720 // Write uniq reg with value from ABI arg register (r16)
721 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess);
722 }
723 }
724 #endif
725
726 #if FULL_SYSTEM
727 0x1b: decode PALMODE {
728 0: OpcdecFault::hw_st_quad();
729 1: decode HW_LDST_QUAD {
730 format HwLoad {
731 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }},
732 L, IsSerializing, IsSerializeBefore);
733 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }},
734 Q, IsSerializing, IsSerializeBefore);
735 }
736 }
737 }
738
739 0x1f: decode PALMODE {
740 0: OpcdecFault::hw_st_cond();
741 format HwStore {
742 1: decode HW_LDST_COND {
743 0: decode HW_LDST_QUAD {
744 0: hw_st({{ EA = (Rb + disp) & ~3; }},
745 {{ Mem.ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore);
746 1: hw_st({{ EA = (Rb + disp) & ~7; }},
747 {{ Mem.uq = Ra.uq; }}, Q, IsSerializing, IsSerializeBefore);
748 }
749
750 1: FailUnimpl::hw_st_cond();
751 }
752 }
753 }
754
755 0x19: decode PALMODE {
756 0: OpcdecFault::hw_mfpr();
757 format HwMoveIPR {
758 1: hw_mfpr({{
759 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ?
760 IprToMiscRegIndex[ipr_index] : -1;
761 if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) ||
762 miscRegIndex >= NumInternalProcRegs)
763 fault = new UnimplementedOpcodeFault;
764 else
765 Ra = xc->readMiscReg(miscRegIndex);
766 }}, IsIprAccess);
767 }
768 }
769
770 0x1d: decode PALMODE {
771 0: OpcdecFault::hw_mtpr();
772 format HwMoveIPR {
773 1: hw_mtpr({{
774 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ?
775 IprToMiscRegIndex[ipr_index] : -1;
776 if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) ||
777 miscRegIndex >= NumInternalProcRegs)
778 fault = new UnimplementedOpcodeFault;
779 else
780 xc->setMiscReg(miscRegIndex, Ra);
781 if (traceData) { traceData->setData(Ra); }
782 }}, IsIprAccess);
783 }
784 }
785
786 format BasicOperate {
787 0x1e: decode PALMODE {
788 0: OpcdecFault::hw_rei();
789 1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
790 }
791
792 // M5 special opcodes use the reserved 0x01 opcode space
793 0x01: decode M5FUNC {
794 0x00: arm({{
795 PseudoInst::arm(xc->tcBase());
796 }}, IsNonSpeculative);
797 0x01: quiesce({{
798 PseudoInst::quiesce(xc->tcBase());
799 }}, IsNonSpeculative, IsQuiesce);
800 0x02: quiesceNs({{
801 PseudoInst::quiesceNs(xc->tcBase(), R16);
802 }}, IsNonSpeculative, IsQuiesce);
803 0x03: quiesceCycles({{
804 PseudoInst::quiesceCycles(xc->tcBase(), R16);
805 }}, IsNonSpeculative, IsQuiesce, IsUnverifiable);
806 0x04: quiesceTime({{
807 R0 = PseudoInst::quiesceTime(xc->tcBase());
808 }}, IsNonSpeculative, IsUnverifiable);
809 0x10: deprecated_ivlb({{
810 warn_once("Obsolete M5 ivlb instruction encountered.\n");
811 }});
812 0x11: deprecated_ivle({{
813 warn_once("Obsolete M5 ivlb instruction encountered.\n");
814 }});
815 0x20: deprecated_exit ({{
816 warn_once("deprecated M5 exit instruction encountered.\n");
817 PseudoInst::m5exit(xc->tcBase(), 0);
818 }}, No_OpClass, IsNonSpeculative);
819 0x21: m5exit({{
820 PseudoInst::m5exit(xc->tcBase(), R16);
821 }}, No_OpClass, IsNonSpeculative);
822 0x31: loadsymbol({{
823 PseudoInst::loadsymbol(xc->tcBase());
824 }}, No_OpClass, IsNonSpeculative);
825 0x30: initparam({{
826 Ra = xc->tcBase()->getCpuPtr()->system->init_param;
827 }});
828 0x40: resetstats({{
829 PseudoInst::resetstats(xc->tcBase(), R16, R17);
830 }}, IsNonSpeculative);
831 0x41: dumpstats({{
832 PseudoInst::dumpstats(xc->tcBase(), R16, R17);
833 }}, IsNonSpeculative);
834 0x42: dumpresetstats({{
835 PseudoInst::dumpresetstats(xc->tcBase(), R16, R17);
836 }}, IsNonSpeculative);
837 0x43: m5checkpoint({{
838 PseudoInst::m5checkpoint(xc->tcBase(), R16, R17);
839 }}, IsNonSpeculative);
840 0x50: m5readfile({{
841 R0 = PseudoInst::readfile(xc->tcBase(), R16, R17, R18);
842 }}, IsNonSpeculative);
843 0x51: m5break({{
844 PseudoInst::debugbreak(xc->tcBase());
845 }}, IsNonSpeculative);
846 0x52: m5switchcpu({{
847 PseudoInst::switchcpu(xc->tcBase());
848 }}, IsNonSpeculative);
849 0x53: m5addsymbol({{
850 PseudoInst::addsymbol(xc->tcBase(), R16, R17);
851 }}, IsNonSpeculative);
852 0x54: m5panic({{
853 panic("M5 panic instruction called at pc=%#x.", xc->readPC());
854 }}, IsNonSpeculative);
855 0x55: m5reserved1({{
856 warn("M5 reserved opcode ignored");
857 }}, IsNonSpeculative);
858 0x56: m5reserved2({{
859 warn("M5 reserved opcode ignored");
860 }}, IsNonSpeculative);
861 0x57: m5reserved3({{
862 warn("M5 reserved opcode ignored");
863 }}, IsNonSpeculative);
864 0x58: m5reserved4({{
865 warn("M5 reserved opcode ignored");
866 }}, IsNonSpeculative);
867 0x59: m5reserved5({{
868 warn("M5 reserved opcode ignored");
869 }}, IsNonSpeculative);
870 }
871 }
872 #endif
873 }