arch-arm: Implement ARMv8.1-PAN, Privileged access never
[gem5.git] / src / arch / arm / faults.cc
1 /*
2 * Copyright (c) 2010, 2012-2014, 2016-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * Copyright (c) 2007-2008 The Florida State University
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ali Saidi
42 * Gabe Black
43 * Giacomo Gabrielli
44 * Thomas Grocutt
45 */
46
47 #include "arch/arm/faults.hh"
48
49 #include "arch/arm/insts/static_inst.hh"
50 #include "arch/arm/system.hh"
51 #include "arch/arm/utility.hh"
52 #include "base/compiler.hh"
53 #include "base/trace.hh"
54 #include "cpu/base.hh"
55 #include "cpu/thread_context.hh"
56 #include "debug/Faults.hh"
57 #include "sim/full_system.hh"
58
59 namespace ArmISA
60 {
61
62 uint8_t ArmFault::shortDescFaultSources[] = {
63 0x01, // AlignmentFault
64 0x04, // InstructionCacheMaintenance
65 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID)
66 0x0c, // SynchExtAbtOnTranslTableWalkL1
67 0x0e, // SynchExtAbtOnTranslTableWalkL2
68 0xff, // SynchExtAbtOnTranslTableWalkL3 (INVALID)
69 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID)
70 0x1c, // SynchPtyErrOnTranslTableWalkL1
71 0x1e, // SynchPtyErrOnTranslTableWalkL2
72 0xff, // SynchPtyErrOnTranslTableWalkL3 (INVALID)
73 0xff, // TranslationL0 (INVALID)
74 0x05, // TranslationL1
75 0x07, // TranslationL2
76 0xff, // TranslationL3 (INVALID)
77 0xff, // AccessFlagL0 (INVALID)
78 0x03, // AccessFlagL1
79 0x06, // AccessFlagL2
80 0xff, // AccessFlagL3 (INVALID)
81 0xff, // DomainL0 (INVALID)
82 0x09, // DomainL1
83 0x0b, // DomainL2
84 0xff, // DomainL3 (INVALID)
85 0xff, // PermissionL0 (INVALID)
86 0x0d, // PermissionL1
87 0x0f, // PermissionL2
88 0xff, // PermissionL3 (INVALID)
89 0x02, // DebugEvent
90 0x08, // SynchronousExternalAbort
91 0x10, // TLBConflictAbort
92 0x19, // SynchPtyErrOnMemoryAccess
93 0x16, // AsynchronousExternalAbort
94 0x18, // AsynchPtyErrOnMemoryAccess
95 0xff, // AddressSizeL0 (INVALID)
96 0xff, // AddressSizeL1 (INVALID)
97 0xff, // AddressSizeL2 (INVALID)
98 0xff, // AddressSizeL3 (INVALID)
99 0x40, // PrefetchTLBMiss
100 0x80 // PrefetchUncacheable
101 };
102
103 static_assert(sizeof(ArmFault::shortDescFaultSources) ==
104 ArmFault::NumFaultSources,
105 "Invalid size of ArmFault::shortDescFaultSources[]");
106
107 uint8_t ArmFault::longDescFaultSources[] = {
108 0x21, // AlignmentFault
109 0xff, // InstructionCacheMaintenance (INVALID)
110 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID)
111 0x15, // SynchExtAbtOnTranslTableWalkL1
112 0x16, // SynchExtAbtOnTranslTableWalkL2
113 0x17, // SynchExtAbtOnTranslTableWalkL3
114 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID)
115 0x1d, // SynchPtyErrOnTranslTableWalkL1
116 0x1e, // SynchPtyErrOnTranslTableWalkL2
117 0x1f, // SynchPtyErrOnTranslTableWalkL3
118 0xff, // TranslationL0 (INVALID)
119 0x05, // TranslationL1
120 0x06, // TranslationL2
121 0x07, // TranslationL3
122 0xff, // AccessFlagL0 (INVALID)
123 0x09, // AccessFlagL1
124 0x0a, // AccessFlagL2
125 0x0b, // AccessFlagL3
126 0xff, // DomainL0 (INVALID)
127 0x3d, // DomainL1
128 0x3e, // DomainL2
129 0xff, // DomainL3 (RESERVED)
130 0xff, // PermissionL0 (INVALID)
131 0x0d, // PermissionL1
132 0x0e, // PermissionL2
133 0x0f, // PermissionL3
134 0x22, // DebugEvent
135 0x10, // SynchronousExternalAbort
136 0x30, // TLBConflictAbort
137 0x18, // SynchPtyErrOnMemoryAccess
138 0x11, // AsynchronousExternalAbort
139 0x19, // AsynchPtyErrOnMemoryAccess
140 0xff, // AddressSizeL0 (INVALID)
141 0xff, // AddressSizeL1 (INVALID)
142 0xff, // AddressSizeL2 (INVALID)
143 0xff, // AddressSizeL3 (INVALID)
144 0x40, // PrefetchTLBMiss
145 0x80 // PrefetchUncacheable
146 };
147
148 static_assert(sizeof(ArmFault::longDescFaultSources) ==
149 ArmFault::NumFaultSources,
150 "Invalid size of ArmFault::longDescFaultSources[]");
151
152 uint8_t ArmFault::aarch64FaultSources[] = {
153 0x21, // AlignmentFault
154 0xff, // InstructionCacheMaintenance (INVALID)
155 0x14, // SynchExtAbtOnTranslTableWalkL0
156 0x15, // SynchExtAbtOnTranslTableWalkL1
157 0x16, // SynchExtAbtOnTranslTableWalkL2
158 0x17, // SynchExtAbtOnTranslTableWalkL3
159 0x1c, // SynchPtyErrOnTranslTableWalkL0
160 0x1d, // SynchPtyErrOnTranslTableWalkL1
161 0x1e, // SynchPtyErrOnTranslTableWalkL2
162 0x1f, // SynchPtyErrOnTranslTableWalkL3
163 0x04, // TranslationL0
164 0x05, // TranslationL1
165 0x06, // TranslationL2
166 0x07, // TranslationL3
167 0x08, // AccessFlagL0
168 0x09, // AccessFlagL1
169 0x0a, // AccessFlagL2
170 0x0b, // AccessFlagL3
171 // @todo: Section & Page Domain Fault in AArch64?
172 0xff, // DomainL0 (INVALID)
173 0xff, // DomainL1 (INVALID)
174 0xff, // DomainL2 (INVALID)
175 0xff, // DomainL3 (INVALID)
176 0x0c, // PermissionL0
177 0x0d, // PermissionL1
178 0x0e, // PermissionL2
179 0x0f, // PermissionL3
180 0x22, // DebugEvent
181 0x10, // SynchronousExternalAbort
182 0x30, // TLBConflictAbort
183 0x18, // SynchPtyErrOnMemoryAccess
184 0xff, // AsynchronousExternalAbort (INVALID)
185 0xff, // AsynchPtyErrOnMemoryAccess (INVALID)
186 0x00, // AddressSizeL0
187 0x01, // AddressSizeL1
188 0x02, // AddressSizeL2
189 0x03, // AddressSizeL3
190 0x40, // PrefetchTLBMiss
191 0x80 // PrefetchUncacheable
192 };
193
194 static_assert(sizeof(ArmFault::aarch64FaultSources) ==
195 ArmFault::NumFaultSources,
196 "Invalid size of ArmFault::aarch64FaultSources[]");
197
198 // Fields: name, offset, cur{ELT,ELH}Offset, lowerEL{64,32}Offset, next mode,
199 // {ARM, Thumb, ARM_ELR, Thumb_ELR} PC offset, hyp trap,
200 // {A, F} disable, class, stat
201 template<> ArmFault::FaultVals ArmFaultVals<Reset>::vals(
202 // Some dummy values (the reset vector has an IMPLEMENTATION DEFINED
203 // location in AArch64)
204 "Reset", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
205 0, 0, 0, 0, false, true, true, EC_UNKNOWN
206 );
207 template<> ArmFault::FaultVals ArmFaultVals<UndefinedInstruction>::vals(
208 "Undefined Instruction", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_UNDEFINED,
209 4, 2, 0, 0, true, false, false, EC_UNKNOWN
210 );
211 template<> ArmFault::FaultVals ArmFaultVals<SupervisorCall>::vals(
212 "Supervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
213 4, 2, 4, 2, true, false, false, EC_SVC_TO_HYP
214 );
215 template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorCall>::vals(
216 "Secure Monitor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_MON,
217 4, 4, 4, 4, false, true, true, EC_SMC_TO_HYP
218 );
219 template<> ArmFault::FaultVals ArmFaultVals<HypervisorCall>::vals(
220 "Hypervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_HYP,
221 4, 4, 4, 4, true, false, false, EC_HVC
222 );
223 template<> ArmFault::FaultVals ArmFaultVals<PrefetchAbort>::vals(
224 "Prefetch Abort", 0x00C, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
225 4, 4, 0, 0, true, true, false, EC_PREFETCH_ABORT_TO_HYP
226 );
227 template<> ArmFault::FaultVals ArmFaultVals<DataAbort>::vals(
228 "Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
229 8, 8, 0, 0, true, true, false, EC_DATA_ABORT_TO_HYP
230 );
231 template<> ArmFault::FaultVals ArmFaultVals<VirtualDataAbort>::vals(
232 "Virtual Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
233 8, 8, 0, 0, true, true, false, EC_INVALID
234 );
235 template<> ArmFault::FaultVals ArmFaultVals<HypervisorTrap>::vals(
236 // @todo: double check these values
237 "Hypervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_HYP,
238 0, 0, 0, 0, false, false, false, EC_UNKNOWN
239 );
240 template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorTrap>::vals(
241 "Secure Monitor Trap", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_MON,
242 4, 2, 0, 0, false, false, false, EC_UNKNOWN
243 );
244 template<> ArmFault::FaultVals ArmFaultVals<Interrupt>::vals(
245 "IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ,
246 4, 4, 0, 0, false, true, false, EC_UNKNOWN
247 );
248 template<> ArmFault::FaultVals ArmFaultVals<VirtualInterrupt>::vals(
249 "Virtual IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ,
250 4, 4, 0, 0, false, true, false, EC_INVALID
251 );
252 template<> ArmFault::FaultVals ArmFaultVals<FastInterrupt>::vals(
253 "FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ,
254 4, 4, 0, 0, false, true, true, EC_UNKNOWN
255 );
256 template<> ArmFault::FaultVals ArmFaultVals<VirtualFastInterrupt>::vals(
257 "Virtual FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ,
258 4, 4, 0, 0, false, true, true, EC_INVALID
259 );
260 template<> ArmFault::FaultVals ArmFaultVals<IllegalInstSetStateFault>::vals(
261 "Illegal Inst Set State Fault", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_UNDEFINED,
262 4, 2, 0, 0, true, false, false, EC_ILLEGAL_INST
263 );
264 template<> ArmFault::FaultVals ArmFaultVals<SupervisorTrap>::vals(
265 // Some dummy values (SupervisorTrap is AArch64-only)
266 "Supervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
267 0, 0, 0, 0, false, false, false, EC_UNKNOWN
268 );
269 template<> ArmFault::FaultVals ArmFaultVals<PCAlignmentFault>::vals(
270 // Some dummy values (PCAlignmentFault is AArch64-only)
271 "PC Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
272 0, 0, 0, 0, true, false, false, EC_PC_ALIGNMENT
273 );
274 template<> ArmFault::FaultVals ArmFaultVals<SPAlignmentFault>::vals(
275 // Some dummy values (SPAlignmentFault is AArch64-only)
276 "SP Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
277 0, 0, 0, 0, true, false, false, EC_STACK_PTR_ALIGNMENT
278 );
279 template<> ArmFault::FaultVals ArmFaultVals<SystemError>::vals(
280 // Some dummy values (SError is AArch64-only)
281 "SError", 0x000, 0x180, 0x380, 0x580, 0x780, MODE_SVC,
282 0, 0, 0, 0, false, true, true, EC_SERROR
283 );
284 template<> ArmFault::FaultVals ArmFaultVals<SoftwareBreakpoint>::vals(
285 // Some dummy values (SoftwareBreakpoint is AArch64-only)
286 "Software Breakpoint", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
287 0, 0, 0, 0, true, false, false, EC_SOFTWARE_BREAKPOINT
288 );
289 template<> ArmFault::FaultVals ArmFaultVals<ArmSev>::vals(
290 // Some dummy values
291 "ArmSev Flush", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
292 0, 0, 0, 0, false, true, true, EC_UNKNOWN
293 );
294
295 Addr
296 ArmFault::getVector(ThreadContext *tc)
297 {
298 Addr base;
299
300 // Check for invalid modes
301 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
302 assert(ArmSystem::haveSecurity(tc) || cpsr.mode != MODE_MON);
303 assert(ArmSystem::haveVirtualization(tc) || cpsr.mode != MODE_HYP);
304
305 switch (cpsr.mode)
306 {
307 case MODE_MON:
308 base = tc->readMiscReg(MISCREG_MVBAR);
309 break;
310 case MODE_HYP:
311 base = tc->readMiscReg(MISCREG_HVBAR);
312 break;
313 default:
314 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR);
315 if (sctlr.v) {
316 base = HighVecs;
317 } else {
318 base = ArmSystem::haveSecurity(tc) ?
319 tc->readMiscReg(MISCREG_VBAR) : 0;
320 }
321 break;
322 }
323
324 return base + offset(tc);
325 }
326
327 Addr
328 ArmFault::getVector64(ThreadContext *tc)
329 {
330 Addr vbar;
331 switch (toEL) {
332 case EL3:
333 assert(ArmSystem::haveSecurity(tc));
334 vbar = tc->readMiscReg(MISCREG_VBAR_EL3);
335 break;
336 case EL2:
337 assert(ArmSystem::haveVirtualization(tc));
338 vbar = tc->readMiscReg(MISCREG_VBAR_EL2);
339 break;
340 case EL1:
341 vbar = tc->readMiscReg(MISCREG_VBAR_EL1);
342 break;
343 default:
344 panic("Invalid target exception level");
345 break;
346 }
347 return vbar + offset64(tc);
348 }
349
350 MiscRegIndex
351 ArmFault::getSyndromeReg64() const
352 {
353 switch (toEL) {
354 case EL1:
355 return MISCREG_ESR_EL1;
356 case EL2:
357 return MISCREG_ESR_EL2;
358 case EL3:
359 return MISCREG_ESR_EL3;
360 default:
361 panic("Invalid exception level");
362 break;
363 }
364 }
365
366 MiscRegIndex
367 ArmFault::getFaultAddrReg64() const
368 {
369 switch (toEL) {
370 case EL1:
371 return MISCREG_FAR_EL1;
372 case EL2:
373 return MISCREG_FAR_EL2;
374 case EL3:
375 return MISCREG_FAR_EL3;
376 default:
377 panic("Invalid exception level");
378 break;
379 }
380 }
381
382 void
383 ArmFault::setSyndrome(ThreadContext *tc, MiscRegIndex syndrome_reg)
384 {
385 uint32_t value;
386 uint32_t exc_class = (uint32_t) ec(tc);
387 uint32_t issVal = iss();
388
389 assert(!from64 || ArmSystem::highestELIs64(tc));
390
391 value = exc_class << 26;
392
393 // HSR.IL not valid for Prefetch Aborts (0x20, 0x21) and Data Aborts (0x24,
394 // 0x25) for which the ISS information is not valid (ARMv7).
395 // @todo: ARMv8 revises AArch32 functionality: when HSR.IL is not
396 // valid it is treated as RES1.
397 if (to64) {
398 value |= 1 << 25;
399 } else if ((bits(exc_class, 5, 3) != 4) ||
400 (bits(exc_class, 2) && bits(issVal, 24))) {
401 if (!machInst.thumb || machInst.bigThumb)
402 value |= 1 << 25;
403 }
404 // Condition code valid for EC[5:4] nonzero
405 if (!from64 && ((bits(exc_class, 5, 4) == 0) &&
406 (bits(exc_class, 3, 0) != 0))) {
407 if (!machInst.thumb) {
408 uint32_t cond;
409 ConditionCode condCode = (ConditionCode) (uint32_t) machInst.condCode;
410 // If its on unconditional instruction report with a cond code of
411 // 0xE, ie the unconditional code
412 cond = (condCode == COND_UC) ? COND_AL : condCode;
413 value |= cond << 20;
414 value |= 1 << 24;
415 }
416 value |= bits(issVal, 19, 0);
417 } else {
418 value |= issVal;
419 }
420 tc->setMiscReg(syndrome_reg, value);
421 }
422
423 void
424 ArmFault::update(ThreadContext *tc)
425 {
426 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
427
428 // Determine source exception level and mode
429 fromMode = (OperatingMode) (uint8_t) cpsr.mode;
430 fromEL = opModeToEL(fromMode);
431 if (opModeIs64(fromMode))
432 from64 = true;
433
434 // Determine target exception level (aarch64) or target execution
435 // mode (aarch32).
436 if (ArmSystem::haveSecurity(tc) && routeToMonitor(tc)) {
437 toMode = MODE_MON;
438 toEL = EL3;
439 } else if (ArmSystem::haveVirtualization(tc) && routeToHyp(tc)) {
440 toMode = MODE_HYP;
441 toEL = EL2;
442 hypRouted = true;
443 } else {
444 toMode = nextMode();
445 toEL = opModeToEL(toMode);
446 }
447
448 if (fromEL > toEL)
449 toEL = fromEL;
450
451 // Check for Set Priviledge Access Never, if PAN is supported
452 AA64MMFR1 mmfr1 = tc->readMiscReg(MISCREG_ID_AA64MMFR1_EL1);
453 if (mmfr1.pan) {
454 if (toEL == EL1) {
455 const SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR_EL1);
456 span = !sctlr.span;
457 }
458
459 const HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR_EL2);
460 if (toEL == EL2 && hcr.e2h && hcr.tge) {
461 const SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR_EL2);
462 span = !sctlr.span;
463 }
464 }
465
466 to64 = ELIs64(tc, toEL);
467
468 // The fault specific informations have been updated; it is
469 // now possible to use them inside the fault.
470 faultUpdated = true;
471 }
472
473 void
474 ArmFault::invoke(ThreadContext *tc, const StaticInstPtr &inst)
475 {
476
477 // Update fault state informations, like the starting mode (aarch32)
478 // or EL (aarch64) and the ending mode or EL.
479 // From the update function we are also evaluating if the fault must
480 // be handled in AArch64 mode (to64).
481 update(tc);
482
483 if (to64) {
484 // Invoke exception handler in AArch64 state
485 invoke64(tc, inst);
486 return;
487 }
488
489 // ARMv7 (ARM ARM issue C B1.9)
490
491 bool have_security = ArmSystem::haveSecurity(tc);
492
493 FaultBase::invoke(tc);
494 if (!FullSystem)
495 return;
496 countStat()++;
497
498 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR);
499 SCR scr = tc->readMiscReg(MISCREG_SCR);
500 CPSR saved_cpsr = tc->readMiscReg(MISCREG_CPSR);
501 saved_cpsr.nz = tc->readCCReg(CCREG_NZ);
502 saved_cpsr.c = tc->readCCReg(CCREG_C);
503 saved_cpsr.v = tc->readCCReg(CCREG_V);
504 saved_cpsr.ge = tc->readCCReg(CCREG_GE);
505
506 Addr curPc M5_VAR_USED = tc->pcState().pc();
507 ITSTATE it = tc->pcState().itstate();
508 saved_cpsr.it2 = it.top6;
509 saved_cpsr.it1 = it.bottom2;
510
511 // if we have a valid instruction then use it to annotate this fault with
512 // extra information. This is used to generate the correct fault syndrome
513 // information
514 ArmStaticInst *arm_inst M5_VAR_USED = instrAnnotate(inst);
515
516 // Ensure Secure state if initially in Monitor mode
517 if (have_security && saved_cpsr.mode == MODE_MON) {
518 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
519 if (scr.ns) {
520 scr.ns = 0;
521 tc->setMiscRegNoEffect(MISCREG_SCR, scr);
522 }
523 }
524
525 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
526 cpsr.mode = toMode;
527
528 // some bits are set differently if we have been routed to hyp mode
529 if (cpsr.mode == MODE_HYP) {
530 SCTLR hsctlr = tc->readMiscReg(MISCREG_HSCTLR);
531 cpsr.t = hsctlr.te;
532 cpsr.e = hsctlr.ee;
533 if (!scr.ea) {cpsr.a = 1;}
534 if (!scr.fiq) {cpsr.f = 1;}
535 if (!scr.irq) {cpsr.i = 1;}
536 } else if (cpsr.mode == MODE_MON) {
537 // Special case handling when entering monitor mode
538 cpsr.t = sctlr.te;
539 cpsr.e = sctlr.ee;
540 cpsr.a = 1;
541 cpsr.f = 1;
542 cpsr.i = 1;
543 } else {
544 cpsr.t = sctlr.te;
545 cpsr.e = sctlr.ee;
546
547 // The *Disable functions are virtual and different per fault
548 cpsr.a = cpsr.a | abortDisable(tc);
549 cpsr.f = cpsr.f | fiqDisable(tc);
550 cpsr.i = 1;
551 }
552 cpsr.it1 = cpsr.it2 = 0;
553 cpsr.j = 0;
554 cpsr.pan = span ? 1 : saved_cpsr.pan;
555 tc->setMiscReg(MISCREG_CPSR, cpsr);
556
557 // Make sure mailbox sets to one always
558 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1);
559
560 // Clear the exclusive monitor
561 tc->setMiscReg(MISCREG_LOCKFLAG, 0);
562
563 if (cpsr.mode == MODE_HYP) {
564 tc->setMiscReg(MISCREG_ELR_HYP, curPc +
565 (saved_cpsr.t ? thumbPcOffset(true) : armPcOffset(true)));
566 } else {
567 tc->setIntReg(INTREG_LR, curPc +
568 (saved_cpsr.t ? thumbPcOffset(false) : armPcOffset(false)));
569 }
570
571 switch (cpsr.mode) {
572 case MODE_FIQ:
573 tc->setMiscReg(MISCREG_SPSR_FIQ, saved_cpsr);
574 break;
575 case MODE_IRQ:
576 tc->setMiscReg(MISCREG_SPSR_IRQ, saved_cpsr);
577 break;
578 case MODE_SVC:
579 tc->setMiscReg(MISCREG_SPSR_SVC, saved_cpsr);
580 break;
581 case MODE_MON:
582 assert(have_security);
583 tc->setMiscReg(MISCREG_SPSR_MON, saved_cpsr);
584 break;
585 case MODE_ABORT:
586 tc->setMiscReg(MISCREG_SPSR_ABT, saved_cpsr);
587 break;
588 case MODE_UNDEFINED:
589 tc->setMiscReg(MISCREG_SPSR_UND, saved_cpsr);
590 if (ec(tc) != EC_UNKNOWN)
591 setSyndrome(tc, MISCREG_HSR);
592 break;
593 case MODE_HYP:
594 assert(ArmSystem::haveVirtualization(tc));
595 tc->setMiscReg(MISCREG_SPSR_HYP, saved_cpsr);
596 setSyndrome(tc, MISCREG_HSR);
597 break;
598 default:
599 panic("unknown Mode\n");
600 }
601
602 Addr newPc = getVector(tc);
603 DPRINTF(Faults, "Invoking Fault:%s cpsr:%#x PC:%#x lr:%#x newVec: %#x "
604 "%s\n", name(), cpsr, curPc, tc->readIntReg(INTREG_LR),
605 newPc, arm_inst ? csprintf("inst: %#x", arm_inst->encoding()) :
606 std::string());
607 PCState pc(newPc);
608 pc.thumb(cpsr.t);
609 pc.nextThumb(pc.thumb());
610 pc.jazelle(cpsr.j);
611 pc.nextJazelle(pc.jazelle());
612 pc.aarch64(!cpsr.width);
613 pc.nextAArch64(!cpsr.width);
614 pc.illegalExec(false);
615 tc->pcState(pc);
616 }
617
618 void
619 ArmFault::invoke64(ThreadContext *tc, const StaticInstPtr &inst)
620 {
621 // Determine actual misc. register indices for ELR_ELx and SPSR_ELx
622 MiscRegIndex elr_idx, spsr_idx;
623 switch (toEL) {
624 case EL1:
625 elr_idx = MISCREG_ELR_EL1;
626 spsr_idx = MISCREG_SPSR_EL1;
627 break;
628 case EL2:
629 assert(ArmSystem::haveVirtualization(tc));
630 elr_idx = MISCREG_ELR_EL2;
631 spsr_idx = MISCREG_SPSR_EL2;
632 break;
633 case EL3:
634 assert(ArmSystem::haveSecurity(tc));
635 elr_idx = MISCREG_ELR_EL3;
636 spsr_idx = MISCREG_SPSR_EL3;
637 break;
638 default:
639 panic("Invalid target exception level");
640 break;
641 }
642
643 // Save process state into SPSR_ELx
644 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
645 CPSR spsr = cpsr;
646 spsr.nz = tc->readCCReg(CCREG_NZ);
647 spsr.c = tc->readCCReg(CCREG_C);
648 spsr.v = tc->readCCReg(CCREG_V);
649 if (from64) {
650 // Force some bitfields to 0
651 spsr.q = 0;
652 spsr.it1 = 0;
653 spsr.j = 0;
654 spsr.ge = 0;
655 spsr.it2 = 0;
656 spsr.t = 0;
657 } else {
658 spsr.ge = tc->readCCReg(CCREG_GE);
659 ITSTATE it = tc->pcState().itstate();
660 spsr.it2 = it.top6;
661 spsr.it1 = it.bottom2;
662 // Force some bitfields to 0
663 spsr.ss = 0;
664 }
665 tc->setMiscReg(spsr_idx, spsr);
666
667 // Save preferred return address into ELR_ELx
668 Addr curr_pc = tc->pcState().pc();
669 Addr ret_addr = curr_pc;
670 if (from64)
671 ret_addr += armPcElrOffset();
672 else
673 ret_addr += spsr.t ? thumbPcElrOffset() : armPcElrOffset();
674 tc->setMiscReg(elr_idx, ret_addr);
675
676 Addr vec_address = getVector64(tc);
677
678 // Update process state
679 OperatingMode64 mode = 0;
680 mode.spX = 1;
681 mode.el = toEL;
682 mode.width = 0;
683 cpsr.mode = mode;
684 cpsr.daif = 0xf;
685 cpsr.il = 0;
686 cpsr.ss = 0;
687 cpsr.pan = span ? 1 : spsr.pan;
688 tc->setMiscReg(MISCREG_CPSR, cpsr);
689
690 // If we have a valid instruction then use it to annotate this fault with
691 // extra information. This is used to generate the correct fault syndrome
692 // information
693 ArmStaticInst *arm_inst M5_VAR_USED = instrAnnotate(inst);
694
695 // Set PC to start of exception handler
696 Addr new_pc = purifyTaggedAddr(vec_address, tc, toEL);
697 DPRINTF(Faults, "Invoking Fault (AArch64 target EL):%s cpsr:%#x PC:%#x "
698 "elr:%#x newVec: %#x %s\n", name(), cpsr, curr_pc, ret_addr,
699 new_pc, arm_inst ? csprintf("inst: %#x", arm_inst->encoding()) :
700 std::string());
701 PCState pc(new_pc);
702 pc.aarch64(!cpsr.width);
703 pc.nextAArch64(!cpsr.width);
704 pc.illegalExec(false);
705 tc->pcState(pc);
706
707 // Save exception syndrome
708 if ((nextMode() != MODE_IRQ) && (nextMode() != MODE_FIQ))
709 setSyndrome(tc, getSyndromeReg64());
710 }
711
712 ArmStaticInst *
713 ArmFault::instrAnnotate(const StaticInstPtr &inst)
714 {
715 if (inst) {
716 auto arm_inst = static_cast<ArmStaticInst *>(inst.get());
717 arm_inst->annotateFault(this);
718 return arm_inst;
719 } else {
720 return nullptr;
721 }
722 }
723
724 Addr
725 Reset::getVector(ThreadContext *tc)
726 {
727 Addr base;
728
729 // Check for invalid modes
730 CPSR M5_VAR_USED cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
731 assert(ArmSystem::haveSecurity(tc) || cpsr.mode != MODE_MON);
732 assert(ArmSystem::haveVirtualization(tc) || cpsr.mode != MODE_HYP);
733
734 // RVBAR is aliased (implemented as) MVBAR in gem5, since the two
735 // are mutually exclusive; there is no need to check here for
736 // which register to use since they hold the same value
737 base = tc->readMiscReg(MISCREG_MVBAR);
738
739 return base + offset(tc);
740 }
741
742 void
743 Reset::invoke(ThreadContext *tc, const StaticInstPtr &inst)
744 {
745 if (FullSystem) {
746 tc->getCpuPtr()->clearInterrupts(tc->threadId());
747 tc->clearArchRegs();
748 }
749 if (!ArmSystem::highestELIs64(tc)) {
750 ArmFault::invoke(tc, inst);
751 tc->setMiscReg(MISCREG_VMPIDR,
752 getMPIDR(dynamic_cast<ArmSystem*>(tc->getSystemPtr()), tc));
753
754 // Unless we have SMC code to get us there, boot in HYP!
755 if (ArmSystem::haveVirtualization(tc) &&
756 !ArmSystem::haveSecurity(tc)) {
757 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
758 cpsr.mode = MODE_HYP;
759 tc->setMiscReg(MISCREG_CPSR, cpsr);
760 }
761 } else {
762 // Advance the PC to the IMPLEMENTATION DEFINED reset value
763 PCState pc = ArmSystem::resetAddr(tc);
764 pc.aarch64(true);
765 pc.nextAArch64(true);
766 tc->pcState(pc);
767 }
768 }
769
770 void
771 UndefinedInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst)
772 {
773 if (FullSystem) {
774 ArmFault::invoke(tc, inst);
775 return;
776 }
777
778 // If the mnemonic isn't defined this has to be an unknown instruction.
779 assert(unknown || mnemonic != NULL);
780 auto arm_inst = static_cast<ArmStaticInst *>(inst.get());
781 if (disabled) {
782 panic("Attempted to execute disabled instruction "
783 "'%s' (inst 0x%08x)", mnemonic, arm_inst->encoding());
784 } else if (unknown) {
785 panic("Attempted to execute unknown instruction (inst 0x%08x)",
786 arm_inst->encoding());
787 } else {
788 panic("Attempted to execute unimplemented instruction "
789 "'%s' (inst 0x%08x)", mnemonic, arm_inst->encoding());
790 }
791 }
792
793 bool
794 UndefinedInstruction::routeToHyp(ThreadContext *tc) const
795 {
796 bool toHyp;
797
798 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
799 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
800 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
801
802 // if in Hyp mode then stay in Hyp mode
803 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
804 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
805 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER);
806 return toHyp;
807 }
808
809 uint32_t
810 UndefinedInstruction::iss() const
811 {
812
813 // If UndefinedInstruction is routed to hypervisor, iss field is 0.
814 if (hypRouted) {
815 return 0;
816 }
817
818 if (overrideEc == EC_INVALID)
819 return issRaw;
820
821 uint32_t new_iss = 0;
822 uint32_t op0, op1, op2, CRn, CRm, Rt, dir;
823
824 dir = bits(machInst, 21, 21);
825 op0 = bits(machInst, 20, 19);
826 op1 = bits(machInst, 18, 16);
827 CRn = bits(machInst, 15, 12);
828 CRm = bits(machInst, 11, 8);
829 op2 = bits(machInst, 7, 5);
830 Rt = bits(machInst, 4, 0);
831
832 new_iss = op0 << 20 | op2 << 17 | op1 << 14 | CRn << 10 |
833 Rt << 5 | CRm << 1 | dir;
834
835 return new_iss;
836 }
837
838 void
839 SupervisorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst)
840 {
841 if (FullSystem) {
842 ArmFault::invoke(tc, inst);
843 return;
844 }
845
846 // As of now, there isn't a 32 bit thumb version of this instruction.
847 assert(!machInst.bigThumb);
848 uint32_t callNum;
849 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
850 OperatingMode mode = (OperatingMode)(uint8_t)cpsr.mode;
851 if (opModeIs64(mode))
852 callNum = tc->readIntReg(INTREG_X8);
853 else
854 callNum = tc->readIntReg(INTREG_R7);
855 Fault fault;
856 tc->syscall(callNum, &fault);
857
858 // Advance the PC since that won't happen automatically.
859 PCState pc = tc->pcState();
860 assert(inst);
861 inst->advancePC(pc);
862 tc->pcState(pc);
863 }
864
865 bool
866 SupervisorCall::routeToHyp(ThreadContext *tc) const
867 {
868 bool toHyp;
869
870 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
871 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
872 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
873
874 // if in Hyp mode then stay in Hyp mode
875 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
876 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
877 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER);
878 return toHyp;
879 }
880
881 ExceptionClass
882 SupervisorCall::ec(ThreadContext *tc) const
883 {
884 return (overrideEc != EC_INVALID) ? overrideEc :
885 (from64 ? EC_SVC_64 : vals.ec);
886 }
887
888 uint32_t
889 SupervisorCall::iss() const
890 {
891 // Even if we have a 24 bit imm from an arm32 instruction then we only use
892 // the bottom 16 bits for the ISS value (it doesn't hurt for AArch64 SVC).
893 return issRaw & 0xFFFF;
894 }
895
896 uint32_t
897 SecureMonitorCall::iss() const
898 {
899 if (from64)
900 return bits(machInst, 20, 5);
901 return 0;
902 }
903
904 ExceptionClass
905 UndefinedInstruction::ec(ThreadContext *tc) const
906 {
907 // If UndefinedInstruction is routed to hypervisor,
908 // HSR.EC field is 0.
909 if (hypRouted)
910 return EC_UNKNOWN;
911 else
912 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
913 }
914
915
916 HypervisorCall::HypervisorCall(ExtMachInst _machInst, uint32_t _imm) :
917 ArmFaultVals<HypervisorCall>(_machInst, _imm)
918 {}
919
920 ExceptionClass
921 HypervisorCall::ec(ThreadContext *tc) const
922 {
923 return from64 ? EC_HVC_64 : vals.ec;
924 }
925
926 ExceptionClass
927 HypervisorTrap::ec(ThreadContext *tc) const
928 {
929 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
930 }
931
932 template<class T>
933 FaultOffset
934 ArmFaultVals<T>::offset(ThreadContext *tc)
935 {
936 bool isHypTrap = false;
937
938 // Normally we just use the exception vector from the table at the top if
939 // this file, however if this exception has caused a transition to hype
940 // mode, and its an exception type that would only do this if it has been
941 // trapped then we use the hyp trap vector instead of the normal vector
942 if (vals.hypTrappable) {
943 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
944 if (cpsr.mode == MODE_HYP) {
945 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
946 isHypTrap = spsr.mode != MODE_HYP;
947 }
948 }
949 return isHypTrap ? 0x14 : vals.offset;
950 }
951
952 template<class T>
953 FaultOffset
954 ArmFaultVals<T>::offset64(ThreadContext *tc)
955 {
956 if (toEL == fromEL) {
957 if (opModeIsT(fromMode))
958 return vals.currELTOffset;
959 return vals.currELHOffset;
960 } else {
961 bool lower_32 = false;
962 if (toEL == EL3) {
963 if (!inSecureState(tc) && ArmSystem::haveEL(tc, EL2))
964 lower_32 = ELIs32(tc, EL2);
965 else
966 lower_32 = ELIs32(tc, EL1);
967 } else {
968 lower_32 = ELIs32(tc, static_cast<ExceptionLevel>(toEL - 1));
969 }
970
971 if (lower_32)
972 return vals.lowerEL32Offset;
973 return vals.lowerEL64Offset;
974 }
975 }
976
977 // void
978 // SupervisorCall::setSyndrome64(ThreadContext *tc, MiscRegIndex esr_idx)
979 // {
980 // ESR esr = 0;
981 // esr.ec = machInst.aarch64 ? SvcAArch64 : SvcAArch32;
982 // esr.il = !machInst.thumb;
983 // if (machInst.aarch64)
984 // esr.imm16 = bits(machInst.instBits, 20, 5);
985 // else if (machInst.thumb)
986 // esr.imm16 = bits(machInst.instBits, 7, 0);
987 // else
988 // esr.imm16 = bits(machInst.instBits, 15, 0);
989 // tc->setMiscReg(esr_idx, esr);
990 // }
991
992 void
993 SecureMonitorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst)
994 {
995 if (FullSystem) {
996 ArmFault::invoke(tc, inst);
997 return;
998 }
999 }
1000
1001 ExceptionClass
1002 SecureMonitorCall::ec(ThreadContext *tc) const
1003 {
1004 return (from64 ? EC_SMC_64 : vals.ec);
1005 }
1006
1007 bool
1008 SupervisorTrap::routeToHyp(ThreadContext *tc) const
1009 {
1010 bool toHyp = false;
1011
1012 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1013 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR_EL2);
1014 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1015
1016 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
1017 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.el == EL0);
1018 return toHyp;
1019 }
1020
1021 uint32_t
1022 SupervisorTrap::iss() const
1023 {
1024 // If SupervisorTrap is routed to hypervisor, iss field is 0.
1025 if (hypRouted) {
1026 return 0;
1027 }
1028 return issRaw;
1029 }
1030
1031 ExceptionClass
1032 SupervisorTrap::ec(ThreadContext *tc) const
1033 {
1034 if (hypRouted)
1035 return EC_UNKNOWN;
1036 else
1037 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
1038 }
1039
1040 ExceptionClass
1041 SecureMonitorTrap::ec(ThreadContext *tc) const
1042 {
1043 return (overrideEc != EC_INVALID) ? overrideEc :
1044 (from64 ? EC_SMC_64 : vals.ec);
1045 }
1046
1047 template<class T>
1048 void
1049 AbortFault<T>::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1050 {
1051 if (tranMethod == ArmFault::UnknownTran) {
1052 tranMethod = longDescFormatInUse(tc) ? ArmFault::LpaeTran
1053 : ArmFault::VmsaTran;
1054
1055 if ((tranMethod == ArmFault::VmsaTran) && this->routeToMonitor(tc)) {
1056 // See ARM ARM B3-1416
1057 bool override_LPAE = false;
1058 TTBCR ttbcr_s = tc->readMiscReg(MISCREG_TTBCR_S);
1059 TTBCR M5_VAR_USED ttbcr_ns = tc->readMiscReg(MISCREG_TTBCR_NS);
1060 if (ttbcr_s.eae) {
1061 override_LPAE = true;
1062 } else {
1063 // Unimplemented code option, not seen in testing. May need
1064 // extension according to the manual exceprt above.
1065 DPRINTF(Faults, "Warning: Incomplete translation method "
1066 "override detected.\n");
1067 }
1068 if (override_LPAE)
1069 tranMethod = ArmFault::LpaeTran;
1070 }
1071 }
1072
1073 if (source == ArmFault::AsynchronousExternalAbort) {
1074 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
1075 }
1076 // Get effective fault source encoding
1077 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1078
1079 // source must be determined BEFORE invoking generic routines which will
1080 // try to set hsr etc. and are based upon source!
1081 ArmFaultVals<T>::invoke(tc, inst);
1082
1083 if (!this->to64) { // AArch32
1084 FSR fsr = getFsr(tc);
1085 if (cpsr.mode == MODE_HYP) {
1086 tc->setMiscReg(T::HFarIndex, faultAddr);
1087 } else if (stage2) {
1088 tc->setMiscReg(MISCREG_HPFAR, (faultAddr >> 8) & ~0xf);
1089 tc->setMiscReg(T::HFarIndex, OVAddr);
1090 } else {
1091 tc->setMiscReg(T::FsrIndex, fsr);
1092 tc->setMiscReg(T::FarIndex, faultAddr);
1093 }
1094 DPRINTF(Faults, "Abort Fault source=%#x fsr=%#x faultAddr=%#x "\
1095 "tranMethod=%#x\n", source, fsr, faultAddr, tranMethod);
1096 } else { // AArch64
1097 // Set the FAR register. Nothing else to do if we are in AArch64 state
1098 // because the syndrome register has already been set inside invoke64()
1099 if (stage2) {
1100 // stage 2 fault, set HPFAR_EL2 to the faulting IPA
1101 // and FAR_EL2 to the Original VA
1102 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), OVAddr);
1103 tc->setMiscReg(MISCREG_HPFAR_EL2, bits(faultAddr, 47, 12) << 4);
1104
1105 DPRINTF(Faults, "Abort Fault (Stage 2) VA: 0x%x IPA: 0x%x\n",
1106 OVAddr, faultAddr);
1107 } else {
1108 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), faultAddr);
1109 }
1110 }
1111 }
1112
1113 template<class T>
1114 void
1115 AbortFault<T>::setSyndrome(ThreadContext *tc, MiscRegIndex syndrome_reg)
1116 {
1117 srcEncoded = getFaultStatusCode(tc);
1118 if (srcEncoded == ArmFault::FaultSourceInvalid) {
1119 panic("Invalid fault source\n");
1120 }
1121 ArmFault::setSyndrome(tc, syndrome_reg);
1122 }
1123
1124 template<class T>
1125 uint8_t
1126 AbortFault<T>::getFaultStatusCode(ThreadContext *tc) const
1127 {
1128
1129 panic_if(!this->faultUpdated,
1130 "Trying to use un-updated ArmFault internal variables\n");
1131
1132 uint8_t fsc = 0;
1133
1134 if (!this->to64) {
1135 // AArch32
1136 assert(tranMethod != ArmFault::UnknownTran);
1137 if (tranMethod == ArmFault::LpaeTran) {
1138 fsc = ArmFault::longDescFaultSources[source];
1139 } else {
1140 fsc = ArmFault::shortDescFaultSources[source];
1141 }
1142 } else {
1143 // AArch64
1144 fsc = ArmFault::aarch64FaultSources[source];
1145 }
1146
1147 return fsc;
1148 }
1149
1150 template<class T>
1151 FSR
1152 AbortFault<T>::getFsr(ThreadContext *tc) const
1153 {
1154 FSR fsr = 0;
1155
1156 auto fsc = getFaultStatusCode(tc);
1157
1158 // AArch32
1159 assert(tranMethod != ArmFault::UnknownTran);
1160 if (tranMethod == ArmFault::LpaeTran) {
1161 fsr.status = fsc;
1162 fsr.lpae = 1;
1163 } else {
1164 fsr.fsLow = bits(fsc, 3, 0);
1165 fsr.fsHigh = bits(fsc, 4);
1166 fsr.domain = static_cast<uint8_t>(domain);
1167 }
1168
1169 fsr.wnr = (write ? 1 : 0);
1170 fsr.ext = 0;
1171
1172 return fsr;
1173 }
1174
1175 template<class T>
1176 bool
1177 AbortFault<T>::abortDisable(ThreadContext *tc)
1178 {
1179 if (ArmSystem::haveSecurity(tc)) {
1180 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1181 return (!scr.ns || scr.aw);
1182 }
1183 return true;
1184 }
1185
1186 template<class T>
1187 void
1188 AbortFault<T>::annotate(ArmFault::AnnotationIDs id, uint64_t val)
1189 {
1190 switch (id)
1191 {
1192 case ArmFault::S1PTW:
1193 s1ptw = val;
1194 break;
1195 case ArmFault::OVA:
1196 OVAddr = val;
1197 break;
1198
1199 // Just ignore unknown ID's
1200 default:
1201 break;
1202 }
1203 }
1204
1205 template<class T>
1206 uint32_t
1207 AbortFault<T>::iss() const
1208 {
1209 uint32_t val;
1210
1211 val = srcEncoded & 0x3F;
1212 val |= write << 6;
1213 val |= s1ptw << 7;
1214 return (val);
1215 }
1216
1217 template<class T>
1218 bool
1219 AbortFault<T>::isMMUFault() const
1220 {
1221 // NOTE: Not relying on LL information being aligned to lowest bits here
1222 return
1223 (source == ArmFault::AlignmentFault) ||
1224 ((source >= ArmFault::TranslationLL) &&
1225 (source < ArmFault::TranslationLL + 4)) ||
1226 ((source >= ArmFault::AccessFlagLL) &&
1227 (source < ArmFault::AccessFlagLL + 4)) ||
1228 ((source >= ArmFault::DomainLL) &&
1229 (source < ArmFault::DomainLL + 4)) ||
1230 ((source >= ArmFault::PermissionLL) &&
1231 (source < ArmFault::PermissionLL + 4));
1232 }
1233
1234 template<class T>
1235 bool
1236 AbortFault<T>::getFaultVAddr(Addr &va) const
1237 {
1238 va = (stage2 ? OVAddr : faultAddr);
1239 return true;
1240 }
1241
1242 ExceptionClass
1243 PrefetchAbort::ec(ThreadContext *tc) const
1244 {
1245 if (to64) {
1246 // AArch64
1247 if (toEL == fromEL)
1248 return EC_PREFETCH_ABORT_CURR_EL;
1249 else
1250 return EC_PREFETCH_ABORT_LOWER_EL;
1251 } else {
1252 // AArch32
1253 // Abort faults have different EC codes depending on whether
1254 // the fault originated within HYP mode, or not. So override
1255 // the method and add the extra adjustment of the EC value.
1256
1257 ExceptionClass ec = ArmFaultVals<PrefetchAbort>::vals.ec;
1258
1259 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
1260 if (spsr.mode == MODE_HYP) {
1261 ec = ((ExceptionClass) (((uint32_t) ec) + 1));
1262 }
1263 return ec;
1264 }
1265 }
1266
1267 bool
1268 PrefetchAbort::routeToMonitor(ThreadContext *tc) const
1269 {
1270 SCR scr = 0;
1271 if (from64)
1272 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1273 else
1274 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1275
1276 return scr.ea && !isMMUFault();
1277 }
1278
1279 bool
1280 PrefetchAbort::routeToHyp(ThreadContext *tc) const
1281 {
1282 bool toHyp;
1283
1284 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1285 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1286 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1287 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
1288
1289 // if in Hyp mode then stay in Hyp mode
1290 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
1291 // otherwise, check whether to take to Hyp mode through Hyp Trap vector
1292 toHyp |= (stage2 ||
1293 ( (source == DebugEvent) && hdcr.tde && (cpsr.mode != MODE_HYP)) ||
1294 ( (source == SynchronousExternalAbort) && hcr.tge && (cpsr.mode == MODE_USER))
1295 ) && !inSecureState(tc);
1296 return toHyp;
1297 }
1298
1299 ExceptionClass
1300 DataAbort::ec(ThreadContext *tc) const
1301 {
1302 if (to64) {
1303 // AArch64
1304 if (source == ArmFault::AsynchronousExternalAbort) {
1305 panic("Asynchronous External Abort should be handled with "
1306 "SystemErrors (SErrors)!");
1307 }
1308 if (toEL == fromEL)
1309 return EC_DATA_ABORT_CURR_EL;
1310 else
1311 return EC_DATA_ABORT_LOWER_EL;
1312 } else {
1313 // AArch32
1314 // Abort faults have different EC codes depending on whether
1315 // the fault originated within HYP mode, or not. So override
1316 // the method and add the extra adjustment of the EC value.
1317
1318 ExceptionClass ec = ArmFaultVals<DataAbort>::vals.ec;
1319
1320 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
1321 if (spsr.mode == MODE_HYP) {
1322 ec = ((ExceptionClass) (((uint32_t) ec) + 1));
1323 }
1324 return ec;
1325 }
1326 }
1327
1328 bool
1329 DataAbort::routeToMonitor(ThreadContext *tc) const
1330 {
1331 SCR scr = 0;
1332 if (from64)
1333 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1334 else
1335 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1336
1337 return scr.ea && !isMMUFault();
1338 }
1339
1340 bool
1341 DataAbort::routeToHyp(ThreadContext *tc) const
1342 {
1343 bool toHyp;
1344
1345 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1346 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1347 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1348 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
1349
1350 // if in Hyp mode then stay in Hyp mode
1351 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
1352 // otherwise, check whether to take to Hyp mode through Hyp Trap vector
1353 toHyp |= (stage2 ||
1354 ( (cpsr.mode != MODE_HYP) && ( ((source == AsynchronousExternalAbort) && hcr.amo) ||
1355 ((source == DebugEvent) && hdcr.tde) )
1356 ) ||
1357 ( (cpsr.mode == MODE_USER) && hcr.tge &&
1358 ((source == AlignmentFault) ||
1359 (source == SynchronousExternalAbort))
1360 )
1361 ) && !inSecureState(tc);
1362 return toHyp;
1363 }
1364
1365 uint32_t
1366 DataAbort::iss() const
1367 {
1368 uint32_t val;
1369
1370 // Add on the data abort specific fields to the generic abort ISS value
1371 val = AbortFault<DataAbort>::iss();
1372 // ISS is valid if not caused by a stage 1 page table walk, and when taken
1373 // to AArch64 only when directed to EL2
1374 if (!s1ptw && (!to64 || toEL == EL2)) {
1375 val |= isv << 24;
1376 if (isv) {
1377 val |= sas << 22;
1378 val |= sse << 21;
1379 val |= srt << 16;
1380 // AArch64 only. These assignments are safe on AArch32 as well
1381 // because these vars are initialized to false
1382 val |= sf << 15;
1383 val |= ar << 14;
1384 }
1385 }
1386 return (val);
1387 }
1388
1389 void
1390 DataAbort::annotate(AnnotationIDs id, uint64_t val)
1391 {
1392 AbortFault<DataAbort>::annotate(id, val);
1393 switch (id)
1394 {
1395 case SAS:
1396 isv = true;
1397 sas = val;
1398 break;
1399 case SSE:
1400 isv = true;
1401 sse = val;
1402 break;
1403 case SRT:
1404 isv = true;
1405 srt = val;
1406 break;
1407 case SF:
1408 isv = true;
1409 sf = val;
1410 break;
1411 case AR:
1412 isv = true;
1413 ar = val;
1414 break;
1415 // Just ignore unknown ID's
1416 default:
1417 break;
1418 }
1419 }
1420
1421 void
1422 VirtualDataAbort::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1423 {
1424 AbortFault<VirtualDataAbort>::invoke(tc, inst);
1425 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1426 hcr.va = 0;
1427 tc->setMiscRegNoEffect(MISCREG_HCR, hcr);
1428 }
1429
1430 bool
1431 Interrupt::routeToMonitor(ThreadContext *tc) const
1432 {
1433 assert(ArmSystem::haveSecurity(tc));
1434 SCR scr = 0;
1435 if (from64)
1436 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1437 else
1438 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1439 return scr.irq;
1440 }
1441
1442 bool
1443 Interrupt::routeToHyp(ThreadContext *tc) const
1444 {
1445 bool toHyp;
1446
1447 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1448 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1449 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1450 // Determine whether IRQs are routed to Hyp mode.
1451 toHyp = (!scr.irq && hcr.imo && !inSecureState(tc)) ||
1452 (cpsr.mode == MODE_HYP);
1453 return toHyp;
1454 }
1455
1456 bool
1457 Interrupt::abortDisable(ThreadContext *tc)
1458 {
1459 if (ArmSystem::haveSecurity(tc)) {
1460 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1461 return (!scr.ns || scr.aw);
1462 }
1463 return true;
1464 }
1465
1466 VirtualInterrupt::VirtualInterrupt()
1467 {}
1468
1469 bool
1470 FastInterrupt::routeToMonitor(ThreadContext *tc) const
1471 {
1472 assert(ArmSystem::haveSecurity(tc));
1473 SCR scr = 0;
1474 if (from64)
1475 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1476 else
1477 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1478 return scr.fiq;
1479 }
1480
1481 bool
1482 FastInterrupt::routeToHyp(ThreadContext *tc) const
1483 {
1484 bool toHyp;
1485
1486 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1487 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1488 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1489 // Determine whether IRQs are routed to Hyp mode.
1490 toHyp = (!scr.fiq && hcr.fmo && !inSecureState(tc)) ||
1491 (cpsr.mode == MODE_HYP);
1492 return toHyp;
1493 }
1494
1495 bool
1496 FastInterrupt::abortDisable(ThreadContext *tc)
1497 {
1498 if (ArmSystem::haveSecurity(tc)) {
1499 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1500 return (!scr.ns || scr.aw);
1501 }
1502 return true;
1503 }
1504
1505 bool
1506 FastInterrupt::fiqDisable(ThreadContext *tc)
1507 {
1508 if (ArmSystem::haveVirtualization(tc)) {
1509 return true;
1510 } else if (ArmSystem::haveSecurity(tc)) {
1511 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1512 return (!scr.ns || scr.fw);
1513 }
1514 return true;
1515 }
1516
1517 VirtualFastInterrupt::VirtualFastInterrupt()
1518 {}
1519
1520 void
1521 PCAlignmentFault::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1522 {
1523 ArmFaultVals<PCAlignmentFault>::invoke(tc, inst);
1524 assert(from64);
1525 // Set the FAR
1526 tc->setMiscReg(getFaultAddrReg64(), faultPC);
1527 }
1528
1529 bool
1530 PCAlignmentFault::routeToHyp(ThreadContext *tc) const
1531 {
1532 bool toHyp = false;
1533
1534 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1535 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR_EL2);
1536 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1537
1538 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
1539 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.el == EL0);
1540 return toHyp;
1541 }
1542
1543 SPAlignmentFault::SPAlignmentFault()
1544 {}
1545
1546 SystemError::SystemError()
1547 {}
1548
1549 void
1550 SystemError::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1551 {
1552 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
1553 ArmFault::invoke(tc, inst);
1554 }
1555
1556 bool
1557 SystemError::routeToMonitor(ThreadContext *tc) const
1558 {
1559 assert(ArmSystem::haveSecurity(tc));
1560 assert(from64);
1561 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1562 return scr.ea;
1563 }
1564
1565 bool
1566 SystemError::routeToHyp(ThreadContext *tc) const
1567 {
1568 bool toHyp;
1569 assert(from64);
1570
1571 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1572 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1573
1574 toHyp = (!scr.ea && hcr.amo && !inSecureState(tc)) ||
1575 (!scr.ea && !scr.rw && !hcr.amo && !inSecureState(tc));
1576 return toHyp;
1577 }
1578
1579
1580 SoftwareBreakpoint::SoftwareBreakpoint(ExtMachInst _mach_inst, uint32_t _iss)
1581 : ArmFaultVals<SoftwareBreakpoint>(_mach_inst, _iss)
1582 {}
1583
1584 bool
1585 SoftwareBreakpoint::routeToHyp(ThreadContext *tc) const
1586 {
1587 const bool have_el2 = ArmSystem::haveVirtualization(tc);
1588
1589 const HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR_EL2);
1590 const HDCR mdcr = tc->readMiscRegNoEffect(MISCREG_MDCR_EL2);
1591
1592 return have_el2 && !inSecureState(tc) && fromEL <= EL1 &&
1593 (hcr.tge || mdcr.tde);
1594 }
1595
1596 ExceptionClass
1597 SoftwareBreakpoint::ec(ThreadContext *tc) const
1598 {
1599 return from64 ? EC_SOFTWARE_BREAKPOINT_64 : vals.ec;
1600 }
1601
1602 void
1603 ArmSev::invoke(ThreadContext *tc, const StaticInstPtr &inst) {
1604 DPRINTF(Faults, "Invoking ArmSev Fault\n");
1605 if (!FullSystem)
1606 return;
1607
1608 // Set sev_mailbox to 1, clear the pending interrupt from remote
1609 // SEV execution and let pipeline continue as pcState is still
1610 // valid.
1611 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1);
1612 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_SEV, 0);
1613 }
1614
1615 // Instantiate all the templates to make the linker happy
1616 template class ArmFaultVals<Reset>;
1617 template class ArmFaultVals<UndefinedInstruction>;
1618 template class ArmFaultVals<SupervisorCall>;
1619 template class ArmFaultVals<SecureMonitorCall>;
1620 template class ArmFaultVals<HypervisorCall>;
1621 template class ArmFaultVals<PrefetchAbort>;
1622 template class ArmFaultVals<DataAbort>;
1623 template class ArmFaultVals<VirtualDataAbort>;
1624 template class ArmFaultVals<HypervisorTrap>;
1625 template class ArmFaultVals<Interrupt>;
1626 template class ArmFaultVals<VirtualInterrupt>;
1627 template class ArmFaultVals<FastInterrupt>;
1628 template class ArmFaultVals<VirtualFastInterrupt>;
1629 template class ArmFaultVals<SupervisorTrap>;
1630 template class ArmFaultVals<SecureMonitorTrap>;
1631 template class ArmFaultVals<PCAlignmentFault>;
1632 template class ArmFaultVals<SPAlignmentFault>;
1633 template class ArmFaultVals<SystemError>;
1634 template class ArmFaultVals<SoftwareBreakpoint>;
1635 template class ArmFaultVals<ArmSev>;
1636 template class AbortFault<PrefetchAbort>;
1637 template class AbortFault<DataAbort>;
1638 template class AbortFault<VirtualDataAbort>;
1639
1640
1641 IllegalInstSetStateFault::IllegalInstSetStateFault()
1642 {}
1643
1644 bool
1645 getFaultVAddr(Fault fault, Addr &va)
1646 {
1647 auto arm_fault = dynamic_cast<ArmFault *>(fault.get());
1648
1649 if (arm_fault) {
1650 return arm_fault->getFaultVAddr(va);
1651 } else {
1652 auto pgt_fault = dynamic_cast<GenericPageTableFault *>(fault.get());
1653 if (pgt_fault) {
1654 va = pgt_fault->getFaultVAddr();
1655 return true;
1656 }
1657
1658 auto align_fault = dynamic_cast<GenericAlignmentFault *>(fault.get());
1659 if (align_fault) {
1660 va = align_fault->getFaultVAddr();
1661 return true;
1662 }
1663
1664 // Return false since it's not an address triggered exception
1665 return false;
1666 }
1667 }
1668
1669 } // namespace ArmISA