d509fc28adca7e807dd536d05fe57be0135b4531
[gem5.git] / src / arch / arm / isa / formats / fp.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2010 ARM Limited
4 // All rights reserved
5 //
6 // The license below extends only to copyright in the software and shall
7 // not be construed as granting a license to any other intellectual
8 // property including but not limited to intellectual property relating
9 // to a hardware implementation of the functionality of the software
10 // licensed hereunder. You may use the software subject to the license
11 // terms below provided that you ensure that this notice is replicated
12 // unmodified and in its entirety in all distributions of the software,
13 // modified or unmodified, in source code or in binary form.
14 //
15 // Copyright (c) 2007-2008 The Florida State University
16 // All rights reserved.
17 //
18 // Redistribution and use in source and binary forms, with or without
19 // modification, are permitted provided that the following conditions are
20 // met: redistributions of source code must retain the above copyright
21 // notice, this list of conditions and the following disclaimer;
22 // redistributions in binary form must reproduce the above copyright
23 // notice, this list of conditions and the following disclaimer in the
24 // documentation and/or other materials provided with the distribution;
25 // neither the name of the copyright holders nor the names of its
26 // contributors may be used to endorse or promote products derived from
27 // this software without specific prior written permission.
28 //
29 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 //
41 // Authors: Stephen Hines
42
43 ////////////////////////////////////////////////////////////////////
44 //
45 // Floating Point operate instructions
46 //
47
48 def template FPAExecute {{
49 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50 {
51 Fault fault = NoFault;
52
53 %(fp_enable_check)s;
54
55 %(op_decl)s;
56 %(op_rd)s;
57
58 if (%(predicate_test)s) {
59 %(code)s;
60 if (fault == NoFault) {
61 %(op_wb)s;
62 }
63 }
64
65 return fault;
66 }
67 }};
68
69 def template FloatDoubleDecode {{
70 {
71 ArmStaticInst *i = NULL;
72 switch (OPCODE_19 << 1 | OPCODE_7)
73 {
74 case 0:
75 i = (ArmStaticInst *)new %(class_name)sS(machInst);
76 break;
77 case 1:
78 i = (ArmStaticInst *)new %(class_name)sD(machInst);
79 break;
80 case 2:
81 case 3:
82 default:
83 panic("Cannot decode float/double nature of the instruction");
84 }
85 return i;
86 }
87 }};
88
89 // Primary format for float point operate instructions:
90 def format FloatOp(code, *flags) {{
91 orig_code = code
92
93 cblk = code
94 iop = InstObjParams(name, Name, 'PredOp',
95 {"code": cblk,
96 "predicate_test": predicateTest},
97 flags)
98 header_output = BasicDeclare.subst(iop)
99 decoder_output = BasicConstructor.subst(iop)
100 exec_output = FPAExecute.subst(iop)
101
102 sng_cblk = code
103 sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104 {"code": sng_cblk,
105 "predicate_test": predicateTest},
106 flags)
107 header_output += BasicDeclare.subst(sng_iop)
108 decoder_output += BasicConstructor.subst(sng_iop)
109 exec_output += FPAExecute.subst(sng_iop)
110
111 dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113 dbl_cblk = dbl_code
114 dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115 {"code": dbl_cblk,
116 "predicate_test": predicateTest},
117 flags)
118 header_output += BasicDeclare.subst(dbl_iop)
119 decoder_output += BasicConstructor.subst(dbl_iop)
120 exec_output += FPAExecute.subst(dbl_iop)
121
122 decode_block = FloatDoubleDecode.subst(iop)
123 }};
124
125 let {{
126 calcFPCcCode = '''
127 uint16_t _in, _iz, _ic, _iv;
128
129 _in = %(fReg1)s < %(fReg2)s;
130 _iz = %(fReg1)s == %(fReg2)s;
131 _ic = %(fReg1)s >= %(fReg2)s;
132 _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134 CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135 (CondCodes & 0x0FFFFFFF);
136 '''
137 }};
138
139 def format FloatCmp(fReg1, fReg2, *flags) {{
140 code = calcFPCcCode % vars()
141 iop = InstObjParams(name, Name, 'PredOp',
142 {"code": code,
143 "predicate_test": predicateTest},
144 flags)
145 header_output = BasicDeclare.subst(iop)
146 decoder_output = BasicConstructor.subst(iop)
147 decode_block = BasicDecode.subst(iop)
148 exec_output = FPAExecute.subst(iop)
149 }};
150
151 let {{
152 header_output = '''
153 StaticInstPtr
154 decodeExtensionRegLoadStore(ExtMachInst machInst);
155 '''
156 decoder_output = '''
157 StaticInstPtr
158 decodeExtensionRegLoadStore(ExtMachInst machInst)
159 {
160 const uint32_t opcode = bits(machInst, 24, 20);
161 const uint32_t offset = bits(machInst, 7, 0);
162 const bool single = (bits(machInst, 8) == 0);
163 const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164 RegIndex vd;
165 if (single) {
166 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167 bits(machInst, 22));
168 } else {
169 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170 (bits(machInst, 22) << 5));
171 }
172 switch (bits(opcode, 4, 3)) {
173 case 0x0:
174 if (bits(opcode, 4, 1) == 0x2 &&
175 !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176 !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177 if ((bits(machInst, 7, 4) & 0xd) != 1) {
178 break;
179 }
180 const IntRegIndex rt =
181 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182 const IntRegIndex rt2 =
183 (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184 const bool op = bits(machInst, 20);
185 uint32_t vm;
186 if (single) {
187 vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188 } else {
189 vm = (bits(machInst, 3, 0) << 1) |
190 (bits(machInst, 5) << 5);
191 }
192 if (op) {
193 return new Vmov2Core2Reg(machInst, rt, rt2,
194 (IntRegIndex)vm);
195 } else {
196 return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197 rt, rt2);
198 }
199 }
200 break;
201 case 0x1:
202 switch (bits(opcode, 1, 0)) {
203 case 0x0:
204 return new VLdmStm(machInst, rn, vd, single,
205 true, false, false, offset);
206 case 0x1:
207 return new VLdmStm(machInst, rn, vd, single,
208 true, false, true, offset);
209 case 0x2:
210 return new VLdmStm(machInst, rn, vd, single,
211 true, true, false, offset);
212 case 0x3:
213 // If rn == sp, then this is called vpop.
214 return new VLdmStm(machInst, rn, vd, single,
215 true, true, true, offset);
216 }
217 case 0x2:
218 if (bits(opcode, 1, 0) == 0x2) {
219 // If rn == sp, then this is called vpush.
220 return new VLdmStm(machInst, rn, vd, single,
221 false, true, false, offset);
222 } else if (bits(opcode, 1, 0) == 0x3) {
223 return new VLdmStm(machInst, rn, vd, single,
224 false, true, true, offset);
225 }
226 // Fall through on purpose
227 case 0x3:
228 const bool up = (bits(machInst, 23) == 1);
229 const uint32_t imm = bits(machInst, 7, 0) << 2;
230 RegIndex vd;
231 if (single) {
232 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233 (bits(machInst, 22)));
234 } else {
235 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236 (bits(machInst, 22) << 5));
237 }
238 if (bits(opcode, 1, 0) == 0x0) {
239 if (single) {
240 if (up) {
241 return new %(vstr_us)s(machInst, vd, rn, up, imm);
242 } else {
243 return new %(vstr_s)s(machInst, vd, rn, up, imm);
244 }
245 } else {
246 if (up) {
247 return new %(vstr_ud)s(machInst, vd, vd + 1,
248 rn, up, imm);
249 } else {
250 return new %(vstr_d)s(machInst, vd, vd + 1,
251 rn, up, imm);
252 }
253 }
254 } else if (bits(opcode, 1, 0) == 0x1) {
255 if (single) {
256 if (up) {
257 return new %(vldr_us)s(machInst, vd, rn, up, imm);
258 } else {
259 return new %(vldr_s)s(machInst, vd, rn, up, imm);
260 }
261 } else {
262 if (up) {
263 return new %(vldr_ud)s(machInst, vd, vd + 1,
264 rn, up, imm);
265 } else {
266 return new %(vldr_d)s(machInst, vd, vd + 1,
267 rn, up, imm);
268 }
269 }
270 }
271 }
272 return new Unknown(machInst);
273 }
274 ''' % {
275 "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276 "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277 "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278 "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279 "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280 "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281 "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282 "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283 }
284 }};
285
286 def format ExtensionRegLoadStore() {{
287 decode_block = '''
288 return decodeExtensionRegLoadStore(machInst);
289 '''
290 }};
291
292 let {{
293 header_output = '''
294 StaticInstPtr
295 decodeShortFpTransfer(ExtMachInst machInst);
296 '''
297 decoder_output = '''
298 StaticInstPtr
299 decodeShortFpTransfer(ExtMachInst machInst)
300 {
301 const uint32_t l = bits(machInst, 20);
302 const uint32_t c = bits(machInst, 8);
303 const uint32_t a = bits(machInst, 23, 21);
304 const uint32_t b = bits(machInst, 6, 5);
305 if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306 (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307 return new Unknown(machInst);
308 }
309 if (l == 0 && c == 0) {
310 if (a == 0) {
311 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312 bits(machInst, 7);
313 const IntRegIndex rt =
314 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315 if (bits(machInst, 20) == 1) {
316 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317 } else {
318 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319 }
320 } else if (a == 0x7) {
321 const IntRegIndex rt =
322 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323 uint32_t specReg = bits(machInst, 19, 16);
324 switch (specReg) {
325 case 0:
326 specReg = MISCREG_FPSID;
327 break;
328 case 1:
329 specReg = MISCREG_FPSCR;
330 break;
331 case 6:
332 specReg = MISCREG_MVFR1;
333 break;
334 case 7:
335 specReg = MISCREG_MVFR0;
336 break;
337 case 8:
338 specReg = MISCREG_FPEXC;
339 break;
340 default:
341 return new Unknown(machInst);
342 }
343 return new Vmsr(machInst, (IntRegIndex)specReg, rt);
344 }
345 } else if (l == 0 && c == 1) {
346 if (bits(a, 2) == 0) {
347 uint32_t vd = (bits(machInst, 7) << 5) |
348 (bits(machInst, 19, 16) << 1);
349 uint32_t index, size;
350 const IntRegIndex rt =
351 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
352 if (bits(machInst, 22) == 1) {
353 size = 8;
354 index = (bits(machInst, 21) << 2) |
355 bits(machInst, 6, 5);
356 } else if (bits(machInst, 5) == 1) {
357 size = 16;
358 index = (bits(machInst, 21) << 1) |
359 bits(machInst, 6);
360 } else if (bits(machInst, 6) == 0) {
361 size = 32;
362 index = bits(machInst, 21);
363 } else {
364 return new Unknown(machInst);
365 }
366 if (index >= (32 / size)) {
367 index -= (32 / size);
368 vd++;
369 }
370 switch (size) {
371 case 8:
372 return new VmovCoreRegB(machInst, (IntRegIndex)vd,
373 rt, index);
374 case 16:
375 return new VmovCoreRegH(machInst, (IntRegIndex)vd,
376 rt, index);
377 case 32:
378 return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
379 }
380 } else if (bits(b, 1) == 0) {
381 // A8-594
382 return new WarnUnimplemented("vdup", machInst);
383 }
384 } else if (l == 1 && c == 0) {
385 if (a == 0) {
386 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
387 bits(machInst, 7);
388 const IntRegIndex rt =
389 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
390 if (bits(machInst, 20) == 1) {
391 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
392 } else {
393 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
394 }
395 } else if (a == 7) {
396 const IntRegIndex rt =
397 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
398 uint32_t specReg = bits(machInst, 19, 16);
399 switch (specReg) {
400 case 0:
401 specReg = MISCREG_FPSID;
402 break;
403 case 1:
404 specReg = MISCREG_FPSCR;
405 break;
406 case 6:
407 specReg = MISCREG_MVFR1;
408 break;
409 case 7:
410 specReg = MISCREG_MVFR0;
411 break;
412 case 8:
413 specReg = MISCREG_FPEXC;
414 break;
415 default:
416 return new Unknown(machInst);
417 }
418 if (rt == 0xf) {
419 CPSR cpsrMask = 0;
420 cpsrMask.n = 1;
421 cpsrMask.z = 1;
422 cpsrMask.c = 1;
423 cpsrMask.v = 1;
424 return new VmrsApsr(machInst, INTREG_CONDCODES,
425 (IntRegIndex)specReg, (uint32_t)cpsrMask);
426 } else {
427 return new Vmrs(machInst, rt, (IntRegIndex)specReg);
428 }
429 }
430 } else {
431 uint32_t vd = (bits(machInst, 7) << 5) |
432 (bits(machInst, 19, 16) << 1);
433 uint32_t index, size;
434 const IntRegIndex rt =
435 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
436 const bool u = (bits(machInst, 23) == 1);
437 if (bits(machInst, 22) == 1) {
438 size = 8;
439 index = (bits(machInst, 21) << 2) |
440 bits(machInst, 6, 5);
441 } else if (bits(machInst, 5) == 1) {
442 size = 16;
443 index = (bits(machInst, 21) << 1) |
444 bits(machInst, 6);
445 } else if (bits(machInst, 6) == 0 && !u) {
446 size = 32;
447 index = bits(machInst, 21);
448 } else {
449 return new Unknown(machInst);
450 }
451 if (index >= (32 / size)) {
452 index -= (32 / size);
453 vd++;
454 }
455 switch (size) {
456 case 8:
457 if (u) {
458 return new VmovRegCoreUB(machInst, rt,
459 (IntRegIndex)vd, index);
460 } else {
461 return new VmovRegCoreSB(machInst, rt,
462 (IntRegIndex)vd, index);
463 }
464 case 16:
465 if (u) {
466 return new VmovRegCoreUH(machInst, rt,
467 (IntRegIndex)vd, index);
468 } else {
469 return new VmovRegCoreSH(machInst, rt,
470 (IntRegIndex)vd, index);
471 }
472 case 32:
473 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
474 }
475 }
476 return new Unknown(machInst);
477 }
478 '''
479 }};
480
481 def format ShortFpTransfer() {{
482 decode_block = '''
483 return decodeShortFpTransfer(machInst);
484 '''
485 }};
486
487 let {{
488 header_output = '''
489 StaticInstPtr
490 decodeVfpData(ExtMachInst machInst);
491 '''
492 decoder_output = '''
493 StaticInstPtr
494 decodeVfpData(ExtMachInst machInst)
495 {
496 const uint32_t opc1 = bits(machInst, 23, 20);
497 const uint32_t opc2 = bits(machInst, 19, 16);
498 const uint32_t opc3 = bits(machInst, 7, 6);
499 //const uint32_t opc4 = bits(machInst, 3, 0);
500 const bool single = (bits(machInst, 8) == 0);
501 // Used to select between vcmp and vcmpe.
502 const bool e = (bits(machInst, 7) == 1);
503 IntRegIndex vd;
504 IntRegIndex vm;
505 IntRegIndex vn;
506 if (single) {
507 vd = (IntRegIndex)(bits(machInst, 22) |
508 (bits(machInst, 15, 12) << 1));
509 vm = (IntRegIndex)(bits(machInst, 5) |
510 (bits(machInst, 3, 0) << 1));
511 vn = (IntRegIndex)(bits(machInst, 7) |
512 (bits(machInst, 19, 16) << 1));
513 } else {
514 vd = (IntRegIndex)((bits(machInst, 22) << 5) |
515 (bits(machInst, 15, 12) << 1));
516 vm = (IntRegIndex)((bits(machInst, 5) << 5) |
517 (bits(machInst, 3, 0) << 1));
518 vn = (IntRegIndex)((bits(machInst, 7) << 5) |
519 (bits(machInst, 19, 16) << 1));
520 }
521 switch (opc1 & 0xb /* 1011 */) {
522 case 0x0:
523 if (bits(machInst, 6) == 0) {
524 if (single) {
525 return decodeVfpRegRegRegOp<VmlaS>(
526 machInst, vd, vn, vm, false);
527 } else {
528 return decodeVfpRegRegRegOp<VmlaD>(
529 machInst, vd, vn, vm, true);
530 }
531 } else {
532 if (single) {
533 return decodeVfpRegRegRegOp<VmlsS>(
534 machInst, vd, vn, vm, false);
535 } else {
536 return decodeVfpRegRegRegOp<VmlsD>(
537 machInst, vd, vn, vm, true);
538 }
539 }
540 case 0x1:
541 if (bits(machInst, 6) == 1) {
542 if (single) {
543 return decodeVfpRegRegRegOp<VnmlaS>(
544 machInst, vd, vn, vm, false);
545 } else {
546 return decodeVfpRegRegRegOp<VnmlaD>(
547 machInst, vd, vn, vm, true);
548 }
549 } else {
550 if (single) {
551 return decodeVfpRegRegRegOp<VnmlsS>(
552 machInst, vd, vn, vm, false);
553 } else {
554 return decodeVfpRegRegRegOp<VnmlsD>(
555 machInst, vd, vn, vm, true);
556 }
557 }
558 case 0x2:
559 if ((opc3 & 0x1) == 0) {
560 if (single) {
561 return decodeVfpRegRegRegOp<VmulS>(
562 machInst, vd, vn, vm, false);
563 } else {
564 return decodeVfpRegRegRegOp<VmulD>(
565 machInst, vd, vn, vm, true);
566 }
567 } else {
568 if (single) {
569 return decodeVfpRegRegRegOp<VnmulS>(
570 machInst, vd, vn, vm, false);
571 } else {
572 return decodeVfpRegRegRegOp<VnmulD>(
573 machInst, vd, vn, vm, true);
574 }
575 }
576 case 0x3:
577 if ((opc3 & 0x1) == 0) {
578 if (single) {
579 return decodeVfpRegRegRegOp<VaddS>(
580 machInst, vd, vn, vm, false);
581 } else {
582 return decodeVfpRegRegRegOp<VaddD>(
583 machInst, vd, vn, vm, true);
584 }
585 } else {
586 if (single) {
587 return decodeVfpRegRegRegOp<VsubS>(
588 machInst, vd, vn, vm, false);
589 } else {
590 return decodeVfpRegRegRegOp<VsubD>(
591 machInst, vd, vn, vm, true);
592 }
593 }
594 case 0x8:
595 if ((opc3 & 0x1) == 0) {
596 if (single) {
597 return decodeVfpRegRegRegOp<VdivS>(
598 machInst, vd, vn, vm, false);
599 } else {
600 return decodeVfpRegRegRegOp<VdivD>(
601 machInst, vd, vn, vm, true);
602 }
603 }
604 break;
605 case 0xb:
606 if ((opc3 & 0x1) == 0) {
607 const uint32_t baseImm =
608 bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
609 if (single) {
610 uint32_t imm = vfp_modified_imm(baseImm, false);
611 return decodeVfpRegImmOp<VmovImmS>(
612 machInst, vd, imm, false);
613 } else {
614 uint64_t imm = vfp_modified_imm(baseImm, true);
615 return decodeVfpRegImmOp<VmovImmD>(
616 machInst, vd, imm, true);
617 }
618 }
619 switch (opc2) {
620 case 0x0:
621 if (opc3 == 1) {
622 if (single) {
623 return decodeVfpRegRegOp<VmovRegS>(
624 machInst, vd, vm, false);
625 } else {
626 return decodeVfpRegRegOp<VmovRegD>(
627 machInst, vd, vm, true);
628 }
629 } else {
630 if (single) {
631 return decodeVfpRegRegOp<VabsS>(
632 machInst, vd, vm, false);
633 } else {
634 return decodeVfpRegRegOp<VabsD>(
635 machInst, vd, vm, true);
636 }
637 }
638 case 0x1:
639 if (opc3 == 1) {
640 if (single) {
641 return decodeVfpRegRegOp<VnegS>(
642 machInst, vd, vm, false);
643 } else {
644 return decodeVfpRegRegOp<VnegD>(
645 machInst, vd, vm, true);
646 }
647 } else {
648 if (single) {
649 return decodeVfpRegRegOp<VsqrtS>(
650 machInst, vd, vm, false);
651 } else {
652 return decodeVfpRegRegOp<VsqrtD>(
653 machInst, vd, vm, true);
654 }
655 }
656 case 0x2:
657 case 0x3:
658 // Between half and single precision.
659 return new WarnUnimplemented("vcvtb, vcvtt", machInst);
660 case 0x4:
661 if (single) {
662 if (e) {
663 return new VcmpeS(machInst, vd, vm);
664 } else {
665 return new VcmpS(machInst, vd, vm);
666 }
667 } else {
668 if (e) {
669 return new VcmpeD(machInst, vd, vm);
670 } else {
671 return new VcmpD(machInst, vd, vm);
672 }
673 }
674 case 0x5:
675 if (single) {
676 if (e) {
677 return new VcmpeZeroS(machInst, vd, 0);
678 } else {
679 return new VcmpZeroS(machInst, vd, 0);
680 }
681 } else {
682 if (e) {
683 return new VcmpeZeroD(machInst, vd, 0);
684 } else {
685 return new VcmpZeroD(machInst, vd, 0);
686 }
687 }
688 case 0x7:
689 if (opc3 == 0x3) {
690 if (single) {
691 vm = (IntRegIndex)(bits(machInst, 5) |
692 (bits(machInst, 3, 0) << 1));
693 return new VcvtFpSFpD(machInst, vd, vm);
694 } else {
695 vd = (IntRegIndex)(bits(machInst, 22) |
696 (bits(machInst, 15, 12) << 1));
697 return new VcvtFpDFpS(machInst, vd, vm);
698 }
699 }
700 break;
701 case 0x8:
702 if (bits(machInst, 7) == 0) {
703 if (single) {
704 return new VcvtUIntFpS(machInst, vd, vm);
705 } else {
706 vm = (IntRegIndex)(bits(machInst, 5) |
707 (bits(machInst, 3, 0) << 1));
708 return new VcvtUIntFpD(machInst, vd, vm);
709 }
710 } else {
711 if (single) {
712 return new VcvtSIntFpS(machInst, vd, vm);
713 } else {
714 vm = (IntRegIndex)(bits(machInst, 5) |
715 (bits(machInst, 3, 0) << 1));
716 return new VcvtSIntFpD(machInst, vd, vm);
717 }
718 }
719 case 0xa:
720 {
721 const bool half = (bits(machInst, 7) == 0);
722 const uint32_t imm = bits(machInst, 5) |
723 (bits(machInst, 3, 0) << 1);
724 const uint32_t size =
725 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
726 if (single) {
727 if (half) {
728 return new VcvtSHFixedFpS(machInst, vd, vd, size);
729 } else {
730 return new VcvtSFixedFpS(machInst, vd, vd, size);
731 }
732 } else {
733 if (half) {
734 return new VcvtSHFixedFpD(machInst, vd, vd, size);
735 } else {
736 return new VcvtSFixedFpD(machInst, vd, vd, size);
737 }
738 }
739 }
740 case 0xb:
741 {
742 const bool half = (bits(machInst, 7) == 0);
743 const uint32_t imm = bits(machInst, 5) |
744 (bits(machInst, 3, 0) << 1);
745 const uint32_t size =
746 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
747 if (single) {
748 if (half) {
749 return new VcvtUHFixedFpS(machInst, vd, vd, size);
750 } else {
751 return new VcvtUFixedFpS(machInst, vd, vd, size);
752 }
753 } else {
754 if (half) {
755 return new VcvtUHFixedFpD(machInst, vd, vd, size);
756 } else {
757 return new VcvtUFixedFpD(machInst, vd, vd, size);
758 }
759 }
760 }
761 case 0xc:
762 if (bits(machInst, 7) == 0) {
763 if (single) {
764 return new VcvtFpUIntSR(machInst, vd, vm);
765 } else {
766 vd = (IntRegIndex)(bits(machInst, 22) |
767 (bits(machInst, 15, 12) << 1));
768 return new VcvtFpUIntDR(machInst, vd, vm);
769 }
770 } else {
771 if (single) {
772 return new VcvtFpUIntS(machInst, vd, vm);
773 } else {
774 vd = (IntRegIndex)(bits(machInst, 22) |
775 (bits(machInst, 15, 12) << 1));
776 return new VcvtFpUIntD(machInst, vd, vm);
777 }
778 }
779 case 0xd:
780 if (bits(machInst, 7) == 0) {
781 if (single) {
782 return new VcvtFpSIntSR(machInst, vd, vm);
783 } else {
784 vd = (IntRegIndex)(bits(machInst, 22) |
785 (bits(machInst, 15, 12) << 1));
786 return new VcvtFpSIntDR(machInst, vd, vm);
787 }
788 } else {
789 if (single) {
790 return new VcvtFpSIntS(machInst, vd, vm);
791 } else {
792 vd = (IntRegIndex)(bits(machInst, 22) |
793 (bits(machInst, 15, 12) << 1));
794 return new VcvtFpSIntD(machInst, vd, vm);
795 }
796 }
797 case 0xe:
798 {
799 const bool half = (bits(machInst, 7) == 0);
800 const uint32_t imm = bits(machInst, 5) |
801 (bits(machInst, 3, 0) << 1);
802 const uint32_t size =
803 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
804 if (single) {
805 if (half) {
806 return new VcvtFpSHFixedS(machInst, vd, vd, size);
807 } else {
808 return new VcvtFpSFixedS(machInst, vd, vd, size);
809 }
810 } else {
811 if (half) {
812 return new VcvtFpSHFixedD(machInst, vd, vd, size);
813 } else {
814 return new VcvtFpSFixedD(machInst, vd, vd, size);
815 }
816 }
817 }
818 case 0xf:
819 {
820 const bool half = (bits(machInst, 7) == 0);
821 const uint32_t imm = bits(machInst, 5) |
822 (bits(machInst, 3, 0) << 1);
823 const uint32_t size =
824 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
825 if (single) {
826 if (half) {
827 return new VcvtFpUHFixedS(machInst, vd, vd, size);
828 } else {
829 return new VcvtFpUFixedS(machInst, vd, vd, size);
830 }
831 } else {
832 if (half) {
833 return new VcvtFpUHFixedD(machInst, vd, vd, size);
834 } else {
835 return new VcvtFpUFixedD(machInst, vd, vd, size);
836 }
837 }
838 }
839 }
840 break;
841 }
842 return new Unknown(machInst);
843 }
844 '''
845 }};
846
847 def format VfpData() {{
848 decode_block = '''
849 return decodeVfpData(machInst);
850 '''
851 }};