ARM: Implement VCVT between double and single width FP.
[gem5.git] / src / arch / arm / isa / formats / fp.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2010 ARM Limited
4 // All rights reserved
5 //
6 // The license below extends only to copyright in the software and shall
7 // not be construed as granting a license to any other intellectual
8 // property including but not limited to intellectual property relating
9 // to a hardware implementation of the functionality of the software
10 // licensed hereunder. You may use the software subject to the license
11 // terms below provided that you ensure that this notice is replicated
12 // unmodified and in its entirety in all distributions of the software,
13 // modified or unmodified, in source code or in binary form.
14 //
15 // Copyright (c) 2007-2008 The Florida State University
16 // All rights reserved.
17 //
18 // Redistribution and use in source and binary forms, with or without
19 // modification, are permitted provided that the following conditions are
20 // met: redistributions of source code must retain the above copyright
21 // notice, this list of conditions and the following disclaimer;
22 // redistributions in binary form must reproduce the above copyright
23 // notice, this list of conditions and the following disclaimer in the
24 // documentation and/or other materials provided with the distribution;
25 // neither the name of the copyright holders nor the names of its
26 // contributors may be used to endorse or promote products derived from
27 // this software without specific prior written permission.
28 //
29 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 //
41 // Authors: Stephen Hines
42
43 ////////////////////////////////////////////////////////////////////
44 //
45 // Floating Point operate instructions
46 //
47
48 def template FPAExecute {{
49 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50 {
51 Fault fault = NoFault;
52
53 %(fp_enable_check)s;
54
55 %(op_decl)s;
56 %(op_rd)s;
57
58 if (%(predicate_test)s) {
59 %(code)s;
60 if (fault == NoFault) {
61 %(op_wb)s;
62 }
63 }
64
65 return fault;
66 }
67 }};
68
69 def template FloatDoubleDecode {{
70 {
71 ArmStaticInst *i = NULL;
72 switch (OPCODE_19 << 1 | OPCODE_7)
73 {
74 case 0:
75 i = (ArmStaticInst *)new %(class_name)sS(machInst);
76 break;
77 case 1:
78 i = (ArmStaticInst *)new %(class_name)sD(machInst);
79 break;
80 case 2:
81 case 3:
82 default:
83 panic("Cannot decode float/double nature of the instruction");
84 }
85 return i;
86 }
87 }};
88
89 // Primary format for float point operate instructions:
90 def format FloatOp(code, *flags) {{
91 orig_code = code
92
93 cblk = code
94 iop = InstObjParams(name, Name, 'PredOp',
95 {"code": cblk,
96 "predicate_test": predicateTest},
97 flags)
98 header_output = BasicDeclare.subst(iop)
99 decoder_output = BasicConstructor.subst(iop)
100 exec_output = FPAExecute.subst(iop)
101
102 sng_cblk = code
103 sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104 {"code": sng_cblk,
105 "predicate_test": predicateTest},
106 flags)
107 header_output += BasicDeclare.subst(sng_iop)
108 decoder_output += BasicConstructor.subst(sng_iop)
109 exec_output += FPAExecute.subst(sng_iop)
110
111 dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113 dbl_cblk = dbl_code
114 dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115 {"code": dbl_cblk,
116 "predicate_test": predicateTest},
117 flags)
118 header_output += BasicDeclare.subst(dbl_iop)
119 decoder_output += BasicConstructor.subst(dbl_iop)
120 exec_output += FPAExecute.subst(dbl_iop)
121
122 decode_block = FloatDoubleDecode.subst(iop)
123 }};
124
125 let {{
126 calcFPCcCode = '''
127 uint16_t _in, _iz, _ic, _iv;
128
129 _in = %(fReg1)s < %(fReg2)s;
130 _iz = %(fReg1)s == %(fReg2)s;
131 _ic = %(fReg1)s >= %(fReg2)s;
132 _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134 CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135 (CondCodes & 0x0FFFFFFF);
136 '''
137 }};
138
139 def format FloatCmp(fReg1, fReg2, *flags) {{
140 code = calcFPCcCode % vars()
141 iop = InstObjParams(name, Name, 'PredOp',
142 {"code": code,
143 "predicate_test": predicateTest},
144 flags)
145 header_output = BasicDeclare.subst(iop)
146 decoder_output = BasicConstructor.subst(iop)
147 decode_block = BasicDecode.subst(iop)
148 exec_output = FPAExecute.subst(iop)
149 }};
150
151 let {{
152 header_output = '''
153 StaticInstPtr
154 decodeExtensionRegLoadStore(ExtMachInst machInst);
155 '''
156 decoder_output = '''
157 StaticInstPtr
158 decodeExtensionRegLoadStore(ExtMachInst machInst)
159 {
160 const uint32_t opcode = bits(machInst, 24, 20);
161 const uint32_t offset = bits(machInst, 7, 0);
162 const bool single = (bits(machInst, 8) == 0);
163 const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164 RegIndex vd;
165 if (single) {
166 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167 bits(machInst, 22));
168 } else {
169 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170 (bits(machInst, 22) << 5));
171 }
172 switch (bits(opcode, 4, 3)) {
173 case 0x0:
174 if (bits(opcode, 4, 1) == 0x2 &&
175 !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176 !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177 if ((bits(machInst, 7, 4) & 0xd) != 1) {
178 break;
179 }
180 const IntRegIndex rt =
181 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182 const IntRegIndex rt2 =
183 (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184 const bool op = bits(machInst, 20);
185 uint32_t vm;
186 if (single) {
187 vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188 } else {
189 vm = (bits(machInst, 3, 0) << 1) |
190 (bits(machInst, 5) << 5);
191 }
192 if (op) {
193 return new Vmov2Core2Reg(machInst, rt, rt2,
194 (IntRegIndex)vm);
195 } else {
196 return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197 rt, rt2);
198 }
199 }
200 break;
201 case 0x1:
202 switch (bits(opcode, 1, 0)) {
203 case 0x0:
204 return new VLdmStm(machInst, rn, vd, single,
205 true, false, false, offset);
206 case 0x1:
207 return new VLdmStm(machInst, rn, vd, single,
208 true, false, true, offset);
209 case 0x2:
210 return new VLdmStm(machInst, rn, vd, single,
211 true, true, false, offset);
212 case 0x3:
213 // If rn == sp, then this is called vpop.
214 return new VLdmStm(machInst, rn, vd, single,
215 true, true, true, offset);
216 }
217 case 0x2:
218 if (bits(opcode, 1, 0) == 0x2) {
219 // If rn == sp, then this is called vpush.
220 return new VLdmStm(machInst, rn, vd, single,
221 false, true, false, offset);
222 } else if (bits(opcode, 1, 0) == 0x3) {
223 return new VLdmStm(machInst, rn, vd, single,
224 false, true, true, offset);
225 }
226 // Fall through on purpose
227 case 0x3:
228 const bool up = (bits(machInst, 23) == 1);
229 const uint32_t imm = bits(machInst, 7, 0) << 2;
230 RegIndex vd;
231 if (single) {
232 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233 (bits(machInst, 22)));
234 } else {
235 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236 (bits(machInst, 22) << 5));
237 }
238 if (bits(opcode, 1, 0) == 0x0) {
239 if (single) {
240 if (up) {
241 return new %(vstr_us)s(machInst, vd, rn, up, imm);
242 } else {
243 return new %(vstr_s)s(machInst, vd, rn, up, imm);
244 }
245 } else {
246 if (up) {
247 return new %(vstr_ud)s(machInst, vd, vd + 1,
248 rn, up, imm);
249 } else {
250 return new %(vstr_d)s(machInst, vd, vd + 1,
251 rn, up, imm);
252 }
253 }
254 } else if (bits(opcode, 1, 0) == 0x1) {
255 if (single) {
256 if (up) {
257 return new %(vldr_us)s(machInst, vd, rn, up, imm);
258 } else {
259 return new %(vldr_s)s(machInst, vd, rn, up, imm);
260 }
261 } else {
262 if (up) {
263 return new %(vldr_ud)s(machInst, vd, vd + 1,
264 rn, up, imm);
265 } else {
266 return new %(vldr_d)s(machInst, vd, vd + 1,
267 rn, up, imm);
268 }
269 }
270 }
271 }
272 return new Unknown(machInst);
273 }
274 ''' % {
275 "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276 "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277 "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278 "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279 "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280 "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281 "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282 "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283 }
284 }};
285
286 def format ExtensionRegLoadStore() {{
287 decode_block = '''
288 return decodeExtensionRegLoadStore(machInst);
289 '''
290 }};
291
292 let {{
293 header_output = '''
294 StaticInstPtr
295 decodeShortFpTransfer(ExtMachInst machInst);
296 '''
297 decoder_output = '''
298 StaticInstPtr
299 decodeShortFpTransfer(ExtMachInst machInst)
300 {
301 const uint32_t l = bits(machInst, 20);
302 const uint32_t c = bits(machInst, 8);
303 const uint32_t a = bits(machInst, 23, 21);
304 const uint32_t b = bits(machInst, 6, 5);
305 if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306 (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307 return new Unknown(machInst);
308 }
309 if (l == 0 && c == 0) {
310 if (a == 0) {
311 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312 bits(machInst, 7);
313 const IntRegIndex rt =
314 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315 if (bits(machInst, 20) == 1) {
316 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317 } else {
318 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319 }
320 } else if (a == 0x7) {
321 const IntRegIndex rt =
322 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323 uint32_t specReg = bits(machInst, 19, 16);
324 switch (specReg) {
325 case 0:
326 specReg = MISCREG_FPSID;
327 break;
328 case 1:
329 specReg = MISCREG_FPSCR;
330 break;
331 case 8:
332 specReg = MISCREG_FPEXC;
333 break;
334 default:
335 return new Unknown(machInst);
336 }
337 return new Vmsr(machInst, (IntRegIndex)specReg, rt);
338 }
339 } else if (l == 0 && c == 1) {
340 if (bits(a, 2) == 0) {
341 uint32_t vd = (bits(machInst, 7) << 5) |
342 (bits(machInst, 19, 16) << 1);
343 uint32_t index, size;
344 const IntRegIndex rt =
345 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
346 if (bits(machInst, 22) == 1) {
347 size = 8;
348 index = (bits(machInst, 21) << 2) |
349 bits(machInst, 6, 5);
350 } else if (bits(machInst, 5) == 1) {
351 size = 16;
352 index = (bits(machInst, 21) << 1) |
353 bits(machInst, 6);
354 } else if (bits(machInst, 6) == 0) {
355 size = 32;
356 index = bits(machInst, 21);
357 } else {
358 return new Unknown(machInst);
359 }
360 if (index >= (32 / size)) {
361 index -= (32 / size);
362 vd++;
363 }
364 switch (size) {
365 case 8:
366 return new VmovCoreRegB(machInst, (IntRegIndex)vd,
367 rt, index);
368 case 16:
369 return new VmovCoreRegH(machInst, (IntRegIndex)vd,
370 rt, index);
371 case 32:
372 return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
373 }
374 } else if (bits(b, 1) == 0) {
375 // A8-594
376 return new WarnUnimplemented("vdup", machInst);
377 }
378 } else if (l == 1 && c == 0) {
379 if (a == 0) {
380 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
381 bits(machInst, 7);
382 const IntRegIndex rt =
383 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
384 if (bits(machInst, 20) == 1) {
385 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
386 } else {
387 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
388 }
389 } else if (a == 7) {
390 const IntRegIndex rt =
391 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
392 uint32_t specReg = bits(machInst, 19, 16);
393 switch (specReg) {
394 case 0:
395 specReg = MISCREG_FPSID;
396 break;
397 case 1:
398 specReg = MISCREG_FPSCR;
399 break;
400 case 6:
401 specReg = MISCREG_MVFR1;
402 break;
403 case 7:
404 specReg = MISCREG_MVFR0;
405 break;
406 case 8:
407 specReg = MISCREG_FPEXC;
408 break;
409 default:
410 return new Unknown(machInst);
411 }
412 return new Vmrs(machInst, rt, (IntRegIndex)specReg);
413 }
414 } else {
415 uint32_t vd = (bits(machInst, 7) << 5) |
416 (bits(machInst, 19, 16) << 1);
417 uint32_t index, size;
418 const IntRegIndex rt =
419 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
420 const bool u = (bits(machInst, 23) == 1);
421 if (bits(machInst, 22) == 1) {
422 size = 8;
423 index = (bits(machInst, 21) << 2) |
424 bits(machInst, 6, 5);
425 } else if (bits(machInst, 5) == 1) {
426 size = 16;
427 index = (bits(machInst, 21) << 1) |
428 bits(machInst, 6);
429 } else if (bits(machInst, 6) == 0 && !u) {
430 size = 32;
431 index = bits(machInst, 21);
432 } else {
433 return new Unknown(machInst);
434 }
435 if (index >= (32 / size)) {
436 index -= (32 / size);
437 vd++;
438 }
439 switch (size) {
440 case 8:
441 if (u) {
442 return new VmovRegCoreUB(machInst, rt,
443 (IntRegIndex)vd, index);
444 } else {
445 return new VmovRegCoreSB(machInst, rt,
446 (IntRegIndex)vd, index);
447 }
448 case 16:
449 if (u) {
450 return new VmovRegCoreUH(machInst, rt,
451 (IntRegIndex)vd, index);
452 } else {
453 return new VmovRegCoreSH(machInst, rt,
454 (IntRegIndex)vd, index);
455 }
456 case 32:
457 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
458 }
459 }
460 return new Unknown(machInst);
461 }
462 '''
463 }};
464
465 def format ShortFpTransfer() {{
466 decode_block = '''
467 return decodeShortFpTransfer(machInst);
468 '''
469 }};
470
471 let {{
472 header_output = '''
473 StaticInstPtr
474 decodeVfpData(ExtMachInst machInst);
475 '''
476 decoder_output = '''
477 StaticInstPtr
478 decodeVfpData(ExtMachInst machInst)
479 {
480 const uint32_t opc1 = bits(machInst, 23, 20);
481 const uint32_t opc2 = bits(machInst, 19, 16);
482 const uint32_t opc3 = bits(machInst, 7, 6);
483 //const uint32_t opc4 = bits(machInst, 3, 0);
484 const bool single = (bits(machInst, 8) == 0);
485 IntRegIndex vd;
486 IntRegIndex vm;
487 IntRegIndex vn;
488 if (single) {
489 vd = (IntRegIndex)(bits(machInst, 22) |
490 (bits(machInst, 15, 12) << 1));
491 vm = (IntRegIndex)(bits(machInst, 5) |
492 (bits(machInst, 3, 0) << 1));
493 vn = (IntRegIndex)(bits(machInst, 7) |
494 (bits(machInst, 19, 16) << 1));
495 } else {
496 vd = (IntRegIndex)((bits(machInst, 22) << 5) |
497 (bits(machInst, 15, 12) << 1));
498 vm = (IntRegIndex)((bits(machInst, 5) << 5) |
499 (bits(machInst, 3, 0) << 1));
500 vn = (IntRegIndex)((bits(machInst, 7) << 5) |
501 (bits(machInst, 19, 16) << 1));
502 }
503 switch (opc1 & 0xb /* 1011 */) {
504 case 0x0:
505 if (bits(machInst, 6) == 0) {
506 if (single) {
507 return new VmlaS(machInst, vd, vn, vm);
508 } else {
509 return new VmlaD(machInst, vd, vn, vm);
510 }
511 } else {
512 if (single) {
513 return new VmlsS(machInst, vd, vn, vm);
514 } else {
515 return new VmlsD(machInst, vd, vn, vm);
516 }
517 }
518 case 0x1:
519 if (bits(machInst, 6) == 1) {
520 if (single) {
521 return new VnmlaS(machInst, vd, vn, vm);
522 } else {
523 return new VnmlaD(machInst, vd, vn, vm);
524 }
525 } else {
526 if (single) {
527 return new VnmlsS(machInst, vd, vn, vm);
528 } else {
529 return new VnmlsD(machInst, vd, vn, vm);
530 }
531 }
532 case 0x2:
533 if ((opc3 & 0x1) == 0) {
534 if (single) {
535 return new VmulS(machInst, vd, vn, vm);
536 } else {
537 return new VmulD(machInst, vd, vn, vm);
538 }
539 } else {
540 if (single) {
541 return new VnmulS(machInst, vd, vn, vm);
542 } else {
543 return new VnmulD(machInst, vd, vn, vm);
544 }
545 }
546 case 0x3:
547 if ((opc3 & 0x1) == 0) {
548 if (single) {
549 return new VaddS(machInst, vd, vn, vm);
550 } else {
551 return new VaddD(machInst, vd, vn, vm);
552 }
553 } else {
554 if (single) {
555 return new VsubS(machInst, vd, vn, vm);
556 } else {
557 return new VsubD(machInst, vd, vn, vm);
558 }
559 }
560 case 0x8:
561 if ((opc3 & 0x1) == 0) {
562 if (single) {
563 return new VdivS(machInst, vd, vn, vm);
564 } else {
565 return new VdivD(machInst, vd, vn, vm);
566 }
567 }
568 break;
569 case 0xb:
570 if ((opc3 & 0x1) == 0) {
571 const uint32_t baseImm =
572 bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
573 if (single) {
574 uint32_t imm = vfp_modified_imm(baseImm, false);
575 return new VmovImmS(machInst, vd, imm);
576 } else {
577 uint64_t imm = vfp_modified_imm(baseImm, true);
578 return new VmovImmD(machInst, vd, imm);
579 }
580 }
581 switch (opc2) {
582 case 0x0:
583 if (opc3 == 1) {
584 if (single) {
585 return new VmovRegS(machInst, vd, vm);
586 } else {
587 return new VmovRegD(machInst, vd, vm);
588 }
589 } else {
590 if (single) {
591 return new VabsS(machInst, vd, vm);
592 } else {
593 return new VabsD(machInst, vd, vm);
594 }
595 }
596 case 0x1:
597 if (opc3 == 1) {
598 if (single) {
599 return new VnegS(machInst, vd, vm);
600 } else {
601 return new VnegD(machInst, vd, vm);
602 }
603 } else {
604 if (single) {
605 return new VsqrtS(machInst, vd, vm);
606 } else {
607 return new VsqrtD(machInst, vd, vm);
608 }
609 }
610 case 0x2:
611 case 0x3:
612 // Between half and single precision.
613 return new WarnUnimplemented("vcvtb, vcvtt", machInst);
614 case 0x4:
615 case 0x5:
616 return new WarnUnimplemented("vcmp, vcmpe", machInst);
617 case 0x7:
618 if (opc3 == 0x3) {
619 if (single) {
620 vm = (IntRegIndex)(bits(machInst, 5) |
621 (bits(machInst, 3, 0) << 1));
622 return new VcvtFpSFpD(machInst, vd, vm);
623 } else {
624 vd = (IntRegIndex)(bits(machInst, 22) |
625 (bits(machInst, 15, 12) << 1));
626 return new VcvtFpDFpS(machInst, vd, vm);
627 }
628 }
629 break;
630 case 0x8:
631 if (bits(machInst, 7) == 0) {
632 if (single) {
633 return new VcvtUIntFpS(machInst, vd, vm);
634 } else {
635 vm = (IntRegIndex)(bits(machInst, 5) |
636 (bits(machInst, 3, 0) << 1));
637 return new VcvtUIntFpD(machInst, vd, vm);
638 }
639 } else {
640 if (single) {
641 return new VcvtSIntFpS(machInst, vd, vm);
642 } else {
643 vm = (IntRegIndex)(bits(machInst, 5) |
644 (bits(machInst, 3, 0) << 1));
645 return new VcvtSIntFpD(machInst, vd, vm);
646 }
647 }
648 case 0xa:
649 case 0xb:
650 // Between FP and fixed point.
651 return new WarnUnimplemented("vcvt", machInst);
652 case 0xc:
653 if (single) {
654 return new VcvtFpUIntS(machInst, vd, vm);
655 } else {
656 vd = (IntRegIndex)(bits(machInst, 22) |
657 (bits(machInst, 15, 12) << 1));
658 return new VcvtFpUIntD(machInst, vd, vm);
659 }
660 case 0xd:
661 if (single) {
662 return new VcvtFpSIntS(machInst, vd, vm);
663 } else {
664 vd = (IntRegIndex)(bits(machInst, 22) |
665 (bits(machInst, 15, 12) << 1));
666 return new VcvtFpSIntD(machInst, vd, vm);
667 }
668 case 0xe:
669 case 0xf:
670 // Between FP and fixed point.
671 return new WarnUnimplemented("vcvt", machInst);
672 }
673 break;
674 }
675 return new Unknown(machInst);
676 }
677 '''
678 }};
679
680 def format VfpData() {{
681 decode_block = '''
682 return decodeVfpData(machInst);
683 '''
684 }};