41060ff014635b53a7bd0d1681495acb2a810824
[gem5.git] / src / arch / arm / isa / insts / macromem.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2010-2014 ARM Limited
4 // All rights reserved
5 //
6 // The license below extends only to copyright in the software and shall
7 // not be construed as granting a license to any other intellectual
8 // property including but not limited to intellectual property relating
9 // to a hardware implementation of the functionality of the software
10 // licensed hereunder. You may use the software subject to the license
11 // terms below provided that you ensure that this notice is replicated
12 // unmodified and in its entirety in all distributions of the software,
13 // modified or unmodified, in source code or in binary form.
14 //
15 // Copyright (c) 2007-2008 The Florida State University
16 // All rights reserved.
17 //
18 // Redistribution and use in source and binary forms, with or without
19 // modification, are permitted provided that the following conditions are
20 // met: redistributions of source code must retain the above copyright
21 // notice, this list of conditions and the following disclaimer;
22 // redistributions in binary form must reproduce the above copyright
23 // notice, this list of conditions and the following disclaimer in the
24 // documentation and/or other materials provided with the distribution;
25 // neither the name of the copyright holders nor the names of its
26 // contributors may be used to endorse or promote products derived from
27 // this software without specific prior written permission.
28 //
29 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 //
41 // Authors: Stephen Hines
42 // Gabe Black
43
44 ////////////////////////////////////////////////////////////////////
45 //
46 // Load/store microops
47 //
48
49 let {{
50 microLdrUopCode = "IWRa = cSwap(Mem_uw, ((CPSR)Cpsr).e);"
51 microLdrUopIop = InstObjParams('ldr_uop', 'MicroLdrUop',
52 'MicroMemOp',
53 {'memacc_code': microLdrUopCode,
54 'ea_code': 'EA = URb + (up ? imm : -imm);',
55 'predicate_test': predicateTest},
56 ['IsMicroop'])
57
58 microLdr2UopCode = '''
59 uint64_t data = Mem_ud;
60 Dest = cSwap((uint32_t) data, ((CPSR)Cpsr).e);
61 Dest2 = cSwap((uint32_t) (data >> 32), ((CPSR)Cpsr).e);
62 '''
63 microLdr2UopIop = InstObjParams('ldr2_uop', 'MicroLdr2Uop',
64 'MicroMemPairOp',
65 {'memacc_code': microLdr2UopCode,
66 'ea_code': 'EA = URb + (up ? imm : -imm);',
67 'predicate_test': predicateTest},
68 ['IsMicroop'])
69
70 microLdrFpUopCode = "Fa_uw = cSwap(Mem_uw, ((CPSR)Cpsr).e);"
71 microLdrFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrFpUop',
72 'MicroMemOp',
73 {'memacc_code': microLdrFpUopCode,
74 'ea_code': vfpEnabledCheckCode +
75 'EA = URb + (up ? imm : -imm);',
76 'predicate_test': predicateTest},
77 ['IsMicroop'])
78
79 microLdrDBFpUopCode = "Fa_uw = cSwap(Mem_uw, ((CPSR)Cpsr).e);"
80 microLdrDBFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrDBFpUop',
81 'MicroMemOp',
82 {'memacc_code': microLdrFpUopCode,
83 'ea_code': vfpEnabledCheckCode + '''
84 EA = URb + (up ? imm : -imm) +
85 (((CPSR)Cpsr).e ? 4 : 0);
86 ''',
87 'predicate_test': predicateTest},
88 ['IsMicroop'])
89
90 microLdrDTFpUopCode = "Fa_uw = cSwap(Mem_uw, ((CPSR)Cpsr).e);"
91 microLdrDTFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrDTFpUop',
92 'MicroMemOp',
93 {'memacc_code': microLdrFpUopCode,
94 'ea_code': vfpEnabledCheckCode + '''
95 EA = URb + (up ? imm : -imm) -
96 (((CPSR)Cpsr).e ? 4 : 0);
97 ''',
98 'predicate_test': predicateTest},
99 ['IsMicroop'])
100
101 microRetUopCode = '''
102 CPSR old_cpsr = Cpsr;
103 SCTLR sctlr = Sctlr;
104
105 CPSR new_cpsr =
106 cpsrWriteByInstr(old_cpsr, Spsr, Scr, Nsacr, 0xF, true,
107 sctlr.nmfi, xc->tcBase());
108 Cpsr = ~CondCodesMask & new_cpsr;
109 CondCodesNZ = new_cpsr.nz;
110 CondCodesC = new_cpsr.c;
111 CondCodesV = new_cpsr.v;
112 CondCodesGE = new_cpsr.ge;
113 IWNPC = cSwap(%s, old_cpsr.e) | ((Spsr & 0x20) ? 1 : 0);
114 NextItState = ((((CPSR)Spsr).it2 << 2) & 0xFC)
115 | (((CPSR)Spsr).it1 & 0x3);
116 SevMailbox = 1;
117 '''
118
119 microLdrRetUopIop = InstObjParams('ldr_ret_uop', 'MicroLdrRetUop',
120 'MicroMemOp',
121 {'memacc_code':
122 microRetUopCode % 'Mem_uw',
123 'ea_code':
124 'EA = URb + (up ? imm : -imm);',
125 'predicate_test': condPredicateTest},
126 ['IsMicroop','IsNonSpeculative',
127 'IsSerializeAfter'])
128
129 microStrUopCode = "Mem = cSwap(URa_uw, ((CPSR)Cpsr).e);"
130 microStrUopIop = InstObjParams('str_uop', 'MicroStrUop',
131 'MicroMemOp',
132 {'memacc_code': microStrUopCode,
133 'postacc_code': "",
134 'ea_code': 'EA = URb + (up ? imm : -imm);',
135 'predicate_test': predicateTest},
136 ['IsMicroop'])
137
138 microStrFpUopCode = "Mem = cSwap(Fa_uw, ((CPSR)Cpsr).e);"
139 microStrFpUopIop = InstObjParams('strfp_uop', 'MicroStrFpUop',
140 'MicroMemOp',
141 {'memacc_code': microStrFpUopCode,
142 'postacc_code': "",
143 'ea_code': vfpEnabledCheckCode +
144 'EA = URb + (up ? imm : -imm);',
145 'predicate_test': predicateTest},
146 ['IsMicroop'])
147
148 microStrDBFpUopCode = "Mem = cSwap(Fa_uw, ((CPSR)Cpsr).e);"
149 microStrDBFpUopIop = InstObjParams('strfp_uop', 'MicroStrDBFpUop',
150 'MicroMemOp',
151 {'memacc_code': microStrFpUopCode,
152 'postacc_code': "",
153 'ea_code': vfpEnabledCheckCode + '''
154 EA = URb + (up ? imm : -imm) +
155 (((CPSR)Cpsr).e ? 4 : 0);
156 ''',
157 'predicate_test': predicateTest},
158 ['IsMicroop'])
159
160 microStrDTFpUopCode = "Mem = cSwap(Fa_uw, ((CPSR)Cpsr).e);"
161 microStrDTFpUopIop = InstObjParams('strfp_uop', 'MicroStrDTFpUop',
162 'MicroMemOp',
163 {'memacc_code': microStrFpUopCode,
164 'postacc_code': "",
165 'ea_code': vfpEnabledCheckCode + '''
166 EA = URb + (up ? imm : -imm) -
167 (((CPSR)Cpsr).e ? 4 : 0);
168 ''',
169 'predicate_test': predicateTest},
170 ['IsMicroop'])
171
172 header_output = decoder_output = exec_output = ''
173
174 loadIops = (microLdrUopIop, microLdrRetUopIop,
175 microLdrFpUopIop, microLdrDBFpUopIop, microLdrDTFpUopIop)
176 storeIops = (microStrUopIop, microStrFpUopIop,
177 microStrDBFpUopIop, microStrDTFpUopIop)
178 for iop in loadIops + storeIops:
179 header_output += MicroMemDeclare.subst(iop)
180 decoder_output += MicroMemConstructor.subst(iop)
181 for iop in loadIops:
182 exec_output += LoadExecute.subst(iop) + \
183 LoadInitiateAcc.subst(iop) + \
184 LoadCompleteAcc.subst(iop)
185 for iop in storeIops:
186 exec_output += StoreExecute.subst(iop) + \
187 StoreInitiateAcc.subst(iop) + \
188 StoreCompleteAcc.subst(iop)
189
190 header_output += MicroMemPairDeclare.subst(microLdr2UopIop)
191 decoder_output += MicroMemPairConstructor.subst(microLdr2UopIop)
192 exec_output += LoadExecute.subst(microLdr2UopIop) + \
193 LoadInitiateAcc.subst(microLdr2UopIop) + \
194 LoadCompleteAcc.subst(microLdr2UopIop)
195 }};
196
197 let {{
198 exec_output = header_output = ''
199
200 eaCode = 'EA = XURa + imm;'
201
202 for size in (1, 2, 3, 4, 6, 8, 12, 16):
203 # Set up the memory access.
204 regs = (size + 3) // 4
205 subst = { "size" : size, "regs" : regs }
206 memDecl = '''
207 union MemUnion {
208 uint8_t bytes[%(size)d];
209 Element elements[%(size)d / sizeof(Element)];
210 uint32_t floatRegBits[%(regs)d];
211 };
212 ''' % subst
213
214 # Do endian conversion for all the elements.
215 convCode = '''
216 const unsigned eCount = sizeof(memUnion.elements) /
217 sizeof(memUnion.elements[0]);
218 if (((CPSR)Cpsr).e) {
219 for (unsigned i = 0; i < eCount; i++) {
220 memUnion.elements[i] = gtobe(memUnion.elements[i]);
221 }
222 } else {
223 for (unsigned i = 0; i < eCount; i++) {
224 memUnion.elements[i] = gtole(memUnion.elements[i]);
225 }
226 }
227 '''
228
229 # Offload everything into registers
230 regSetCode = ''
231 for reg in range(regs):
232 mask = ''
233 if reg == regs - 1:
234 mask = ' & mask(%d)' % (32 - 8 * (regs * 4 - size))
235 regSetCode += '''
236 FpDestP%(reg)d_uw = gtoh(memUnion.floatRegBits[%(reg)d])%(mask)s;
237 ''' % { "reg" : reg, "mask" : mask }
238
239 # Pull everything in from registers
240 regGetCode = ''
241 for reg in range(regs):
242 regGetCode += '''
243 memUnion.floatRegBits[%(reg)d] = htog(FpDestP%(reg)d_uw);
244 ''' % { "reg" : reg }
245
246 loadMemAccCode = convCode + regSetCode
247 storeMemAccCode = regGetCode + convCode
248
249 loadIop = InstObjParams('ldrneon%(size)d_uop' % subst,
250 'MicroLdrNeon%(size)dUop' % subst,
251 'MicroNeonMemOp',
252 { 'mem_decl' : memDecl,
253 'size' : size,
254 'memacc_code' : loadMemAccCode,
255 'ea_code' : simdEnabledCheckCode + eaCode,
256 'predicate_test' : predicateTest },
257 [ 'IsMicroop', 'IsMemRef', 'IsLoad' ])
258 storeIop = InstObjParams('strneon%(size)d_uop' % subst,
259 'MicroStrNeon%(size)dUop' % subst,
260 'MicroNeonMemOp',
261 { 'mem_decl' : memDecl,
262 'size' : size,
263 'memacc_code' : storeMemAccCode,
264 'ea_code' : simdEnabledCheckCode + eaCode,
265 'predicate_test' : predicateTest },
266 [ 'IsMicroop', 'IsMemRef', 'IsStore' ])
267
268 exec_output += NeonLoadExecute.subst(loadIop) + \
269 NeonLoadInitiateAcc.subst(loadIop) + \
270 NeonLoadCompleteAcc.subst(loadIop) + \
271 NeonStoreExecute.subst(storeIop) + \
272 NeonStoreInitiateAcc.subst(storeIop) + \
273 NeonStoreCompleteAcc.subst(storeIop)
274 header_output += MicroNeonMemDeclare.subst(loadIop) + \
275 MicroNeonMemDeclare.subst(storeIop)
276 }};
277
278 let {{
279 exec_output = ''
280 for eSize, type in (1, 'uint8_t'), \
281 (2, 'uint16_t'), \
282 (4, 'uint32_t'), \
283 (8, 'uint64_t'):
284 size = eSize
285 # An instruction handles no more than 16 bytes and no more than
286 # 4 elements, or the number of elements needed to fill 8 or 16 bytes.
287 sizes = set((16, 8))
288 for count in 1, 2, 3, 4:
289 size = count * eSize
290 if size <= 16:
291 sizes.add(size)
292 for size in sizes:
293 substDict = {
294 "class_name" : "MicroLdrNeon%dUop" % size,
295 "targs" : type
296 }
297 exec_output += MicroNeonMemExecDeclare.subst(substDict)
298 substDict["class_name"] = "MicroStrNeon%dUop" % size
299 exec_output += MicroNeonMemExecDeclare.subst(substDict)
300 size += eSize
301 }};
302
303 ////////////////////////////////////////////////////////////////////
304 //
305 // Neon (de)interlacing microops
306 //
307
308 let {{
309 header_output = exec_output = ''
310 for dRegs in (2, 3, 4):
311 loadConv = ''
312 unloadConv = ''
313 for dReg in range(dRegs):
314 loadConv += '''
315 conv1.cRegs[%(sReg0)d] = htog(FpOp1P%(sReg0)d_uw);
316 conv1.cRegs[%(sReg1)d] = htog(FpOp1P%(sReg1)d_uw);
317 ''' % { "sReg0" : (dReg * 2), "sReg1" : (dReg * 2 + 1) }
318 unloadConv += '''
319 FpDestS%(dReg)dP0_uw = gtoh(conv2.cRegs[2 * %(dReg)d + 0]);
320 FpDestS%(dReg)dP1_uw = gtoh(conv2.cRegs[2 * %(dReg)d + 1]);
321 ''' % { "dReg" : dReg }
322 microDeintNeonCode = '''
323 const unsigned dRegs = %(dRegs)d;
324 const unsigned regs = 2 * dRegs;
325 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
326 sizeof(Element);
327 union convStruct {
328 FloatRegBits cRegs[regs];
329 Element elements[dRegs * perDReg];
330 } conv1, conv2;
331
332 %(loadConv)s
333
334 unsigned srcElem = 0;
335 for (unsigned destOffset = 0;
336 destOffset < perDReg; destOffset++) {
337 for (unsigned dReg = 0; dReg < dRegs; dReg++) {
338 conv2.elements[dReg * perDReg + destOffset] =
339 conv1.elements[srcElem++];
340 }
341 }
342
343 %(unloadConv)s
344 ''' % { "dRegs" : dRegs,
345 "loadConv" : loadConv,
346 "unloadConv" : unloadConv }
347 microDeintNeonIop = \
348 InstObjParams('deintneon%duop' % (dRegs * 2),
349 'MicroDeintNeon%dUop' % (dRegs * 2),
350 'MicroNeonMixOp',
351 { 'predicate_test': predicateTest,
352 'code' : microDeintNeonCode },
353 ['IsMicroop'])
354 header_output += MicroNeonMixDeclare.subst(microDeintNeonIop)
355 exec_output += MicroNeonMixExecute.subst(microDeintNeonIop)
356
357 loadConv = ''
358 unloadConv = ''
359 for dReg in range(dRegs):
360 loadConv += '''
361 conv1.cRegs[2 * %(dReg)d + 0] = htog(FpOp1S%(dReg)dP0_uw);
362 conv1.cRegs[2 * %(dReg)d + 1] = htog(FpOp1S%(dReg)dP1_uw);
363 ''' % { "dReg" : dReg }
364 unloadConv += '''
365 FpDestP%(sReg0)d_uw = gtoh(conv2.cRegs[%(sReg0)d]);
366 FpDestP%(sReg1)d_uw = gtoh(conv2.cRegs[%(sReg1)d]);
367 ''' % { "sReg0" : (dReg * 2), "sReg1" : (dReg * 2 + 1) }
368 microInterNeonCode = '''
369 const unsigned dRegs = %(dRegs)d;
370 const unsigned regs = 2 * dRegs;
371 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
372 sizeof(Element);
373 union convStruct {
374 FloatRegBits cRegs[regs];
375 Element elements[dRegs * perDReg];
376 } conv1, conv2;
377
378 %(loadConv)s
379
380 unsigned destElem = 0;
381 for (unsigned srcOffset = 0;
382 srcOffset < perDReg; srcOffset++) {
383 for (unsigned dReg = 0; dReg < dRegs; dReg++) {
384 conv2.elements[destElem++] =
385 conv1.elements[dReg * perDReg + srcOffset];
386 }
387 }
388
389 %(unloadConv)s
390 ''' % { "dRegs" : dRegs,
391 "loadConv" : loadConv,
392 "unloadConv" : unloadConv }
393 microInterNeonIop = \
394 InstObjParams('interneon%duop' % (dRegs * 2),
395 'MicroInterNeon%dUop' % (dRegs * 2),
396 'MicroNeonMixOp',
397 { 'predicate_test': predicateTest,
398 'code' : microInterNeonCode },
399 ['IsMicroop'])
400 header_output += MicroNeonMixDeclare.subst(microInterNeonIop)
401 exec_output += MicroNeonMixExecute.subst(microInterNeonIop)
402 }};
403
404 let {{
405 exec_output = ''
406 for type in ('uint8_t', 'uint16_t', 'uint32_t', 'uint64_t'):
407 for dRegs in (2, 3, 4):
408 Name = "MicroDeintNeon%dUop" % (dRegs * 2)
409 substDict = { "class_name" : Name, "targs" : type }
410 exec_output += MicroNeonExecDeclare.subst(substDict)
411 Name = "MicroInterNeon%dUop" % (dRegs * 2)
412 substDict = { "class_name" : Name, "targs" : type }
413 exec_output += MicroNeonExecDeclare.subst(substDict)
414 }};
415
416 ////////////////////////////////////////////////////////////////////
417 //
418 // Neon microops to pack/unpack a single lane
419 //
420
421 let {{
422 header_output = exec_output = ''
423 for sRegs in 1, 2:
424 baseLoadRegs = ''
425 for reg in range(sRegs):
426 baseLoadRegs += '''
427 sourceRegs.fRegs[%(reg0)d] = htog(FpOp1P%(reg0)d_uw);
428 sourceRegs.fRegs[%(reg1)d] = htog(FpOp1P%(reg1)d_uw);
429 ''' % { "reg0" : (2 * reg + 0),
430 "reg1" : (2 * reg + 1) }
431 for dRegs in range(sRegs, 5):
432 unloadRegs = ''
433 loadRegs = baseLoadRegs
434 for reg in range(dRegs):
435 loadRegs += '''
436 destRegs[%(reg)d].fRegs[0] = htog(FpDestS%(reg)dP0_uw);
437 destRegs[%(reg)d].fRegs[1] = htog(FpDestS%(reg)dP1_uw);
438 ''' % { "reg" : reg }
439 unloadRegs += '''
440 FpDestS%(reg)dP0_uw = gtoh(destRegs[%(reg)d].fRegs[0]);
441 FpDestS%(reg)dP1_uw = gtoh(destRegs[%(reg)d].fRegs[1]);
442 ''' % { "reg" : reg }
443 microUnpackNeonCode = '''
444 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
445 sizeof(Element);
446
447 union SourceRegs {
448 FloatRegBits fRegs[2 * %(sRegs)d];
449 Element elements[%(sRegs)d * perDReg];
450 } sourceRegs;
451
452 union DestReg {
453 FloatRegBits fRegs[2];
454 Element elements[perDReg];
455 } destRegs[%(dRegs)d];
456
457 %(loadRegs)s
458
459 for (unsigned i = 0; i < %(dRegs)d; i++) {
460 destRegs[i].elements[lane] = sourceRegs.elements[i];
461 }
462
463 %(unloadRegs)s
464 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
465 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
466
467 microUnpackNeonIop = \
468 InstObjParams('unpackneon%dto%duop' % (sRegs * 2, dRegs * 2),
469 'MicroUnpackNeon%dto%dUop' %
470 (sRegs * 2, dRegs * 2),
471 'MicroNeonMixLaneOp',
472 { 'predicate_test': predicateTest,
473 'code' : microUnpackNeonCode },
474 ['IsMicroop'])
475 header_output += MicroNeonMixLaneDeclare.subst(microUnpackNeonIop)
476 exec_output += MicroNeonMixExecute.subst(microUnpackNeonIop)
477
478 for sRegs in 1, 2:
479 loadRegs = ''
480 for reg in range(sRegs):
481 loadRegs += '''
482 sourceRegs.fRegs[%(reg0)d] = htog(FpOp1P%(reg0)d_uw);
483 sourceRegs.fRegs[%(reg1)d] = htog(FpOp1P%(reg1)d_uw);
484 ''' % { "reg0" : (2 * reg + 0),
485 "reg1" : (2 * reg + 1) }
486 for dRegs in range(sRegs, 5):
487 unloadRegs = ''
488 for reg in range(dRegs):
489 unloadRegs += '''
490 FpDestS%(reg)dP0_uw = gtoh(destRegs[%(reg)d].fRegs[0]);
491 FpDestS%(reg)dP1_uw = gtoh(destRegs[%(reg)d].fRegs[1]);
492 ''' % { "reg" : reg }
493 microUnpackAllNeonCode = '''
494 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
495 sizeof(Element);
496
497 union SourceRegs {
498 FloatRegBits fRegs[2 * %(sRegs)d];
499 Element elements[%(sRegs)d * perDReg];
500 } sourceRegs;
501
502 union DestReg {
503 FloatRegBits fRegs[2];
504 Element elements[perDReg];
505 } destRegs[%(dRegs)d];
506
507 %(loadRegs)s
508
509 for (unsigned i = 0; i < %(dRegs)d; i++) {
510 for (unsigned j = 0; j < perDReg; j++)
511 destRegs[i].elements[j] = sourceRegs.elements[i];
512 }
513
514 %(unloadRegs)s
515 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
516 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
517
518 microUnpackAllNeonIop = \
519 InstObjParams('unpackallneon%dto%duop' % (sRegs * 2, dRegs * 2),
520 'MicroUnpackAllNeon%dto%dUop' %
521 (sRegs * 2, dRegs * 2),
522 'MicroNeonMixOp',
523 { 'predicate_test': predicateTest,
524 'code' : microUnpackAllNeonCode },
525 ['IsMicroop'])
526 header_output += MicroNeonMixDeclare.subst(microUnpackAllNeonIop)
527 exec_output += MicroNeonMixExecute.subst(microUnpackAllNeonIop)
528
529 for dRegs in 1, 2:
530 unloadRegs = ''
531 for reg in range(dRegs):
532 unloadRegs += '''
533 FpDestP%(reg0)d_uw = gtoh(destRegs.fRegs[%(reg0)d]);
534 FpDestP%(reg1)d_uw = gtoh(destRegs.fRegs[%(reg1)d]);
535 ''' % { "reg0" : (2 * reg + 0),
536 "reg1" : (2 * reg + 1) }
537 for sRegs in range(dRegs, 5):
538 loadRegs = ''
539 for reg in range(sRegs):
540 loadRegs += '''
541 sourceRegs[%(reg)d].fRegs[0] = htog(FpOp1S%(reg)dP0_uw);
542 sourceRegs[%(reg)d].fRegs[1] = htog(FpOp1S%(reg)dP1_uw);
543 ''' % { "reg" : reg }
544 microPackNeonCode = '''
545 const unsigned perDReg = (2 * sizeof(FloatRegBits)) /
546 sizeof(Element);
547
548 union SourceReg {
549 FloatRegBits fRegs[2];
550 Element elements[perDReg];
551 } sourceRegs[%(sRegs)d];
552
553 union DestRegs {
554 FloatRegBits fRegs[2 * %(dRegs)d];
555 Element elements[%(dRegs)d * perDReg];
556 } destRegs;
557
558 %(loadRegs)s
559
560 for (unsigned i = 0; i < %(sRegs)d; i++) {
561 destRegs.elements[i] = sourceRegs[i].elements[lane];
562 }
563 for (unsigned i = %(sRegs)d; i < %(dRegs)d * perDReg; ++i) {
564 destRegs.elements[i] = 0;
565 }
566
567 %(unloadRegs)s
568 ''' % { "sRegs" : sRegs, "dRegs" : dRegs,
569 "loadRegs" : loadRegs, "unloadRegs" : unloadRegs }
570
571 microPackNeonIop = \
572 InstObjParams('packneon%dto%duop' % (sRegs * 2, dRegs * 2),
573 'MicroPackNeon%dto%dUop' %
574 (sRegs * 2, dRegs * 2),
575 'MicroNeonMixLaneOp',
576 { 'predicate_test': predicateTest,
577 'code' : microPackNeonCode },
578 ['IsMicroop'])
579 header_output += MicroNeonMixLaneDeclare.subst(microPackNeonIop)
580 exec_output += MicroNeonMixExecute.subst(microPackNeonIop)
581 }};
582
583 let {{
584 exec_output = ''
585 for typeSize in (8, 16, 32):
586 for sRegs in 1, 2:
587 for dRegs in range(sRegs, min(sRegs * 64 / typeSize + 1, 5)):
588 for format in ("MicroUnpackNeon%(sRegs)dto%(dRegs)dUop",
589 "MicroUnpackAllNeon%(sRegs)dto%(dRegs)dUop",
590 "MicroPackNeon%(dRegs)dto%(sRegs)dUop"):
591 Name = format % { "sRegs" : sRegs * 2,
592 "dRegs" : dRegs * 2 }
593 substDict = { "class_name" : Name,
594 "targs" : "uint%d_t" % typeSize }
595 exec_output += MicroNeonExecDeclare.subst(substDict)
596 }};
597
598 ////////////////////////////////////////////////////////////////////
599 //
600 // Integer = Integer op Immediate microops
601 //
602
603 let {{
604 microAddiUopIop = InstObjParams('addi_uop', 'MicroAddiUop',
605 'MicroIntImmOp',
606 {'code': 'URa = URb + imm;',
607 'predicate_test': predicateTest},
608 ['IsMicroop'])
609
610 microAddUopCode = '''
611 URa = URb + shift_rm_imm(URc, shiftAmt, shiftType, OptShiftRmCondCodesC);
612 '''
613
614 microAddXiUopIop = InstObjParams('addxi_uop', 'MicroAddXiUop',
615 'MicroIntImmXOp',
616 'XURa = XURb + imm;',
617 ['IsMicroop'])
618
619 microAddXiSpAlignUopIop = InstObjParams('addxi_uop', 'MicroAddXiSpAlignUop',
620 'MicroIntImmXOp', '''
621 if (isSP((IntRegIndex) urb) && bits(XURb, 3, 0) &&
622 SPAlignmentCheckEnabled(xc->tcBase())) {
623 return new SPAlignmentFault();
624 }
625 XURa = XURb + imm;
626 ''', ['IsMicroop'])
627
628 microAddXERegUopIop = InstObjParams('addxr_uop', 'MicroAddXERegUop',
629 'MicroIntRegXOp',
630 'XURa = XURb + ' + \
631 'extendReg64(XURc, type, shiftAmt, 64);',
632 ['IsMicroop'])
633
634 microAddUopIop = InstObjParams('add_uop', 'MicroAddUop',
635 'MicroIntRegOp',
636 {'code': microAddUopCode,
637 'predicate_test': pickPredicate(microAddUopCode)},
638 ['IsMicroop'])
639
640 microSubiUopIop = InstObjParams('subi_uop', 'MicroSubiUop',
641 'MicroIntImmOp',
642 {'code': 'URa = URb - imm;',
643 'predicate_test': predicateTest},
644 ['IsMicroop'])
645
646 microSubXiUopIop = InstObjParams('subxi_uop', 'MicroSubXiUop',
647 'MicroIntImmXOp',
648 'XURa = XURb - imm;',
649 ['IsMicroop'])
650
651 microSubUopCode = '''
652 URa = URb - shift_rm_imm(URc, shiftAmt, shiftType, OptShiftRmCondCodesC);
653 '''
654 microSubUopIop = InstObjParams('sub_uop', 'MicroSubUop',
655 'MicroIntRegOp',
656 {'code': microSubUopCode,
657 'predicate_test': pickPredicate(microSubUopCode)},
658 ['IsMicroop'])
659
660 microUopRegMovIop = InstObjParams('uopReg_uop', 'MicroUopRegMov',
661 'MicroIntMov',
662 {'code': 'IWRa = URb;',
663 'predicate_test': predicateTest},
664 ['IsMicroop'])
665
666 microUopRegMovRetIop = InstObjParams('movret_uop', 'MicroUopRegMovRet',
667 'MicroIntMov',
668 {'code': microRetUopCode % 'URb',
669 'predicate_test': predicateTest},
670 ['IsMicroop', 'IsNonSpeculative',
671 'IsSerializeAfter'])
672
673 setPCCPSRDecl = '''
674 CPSR cpsrOrCondCodes = URc;
675 SCTLR sctlr = Sctlr;
676 pNPC = URa;
677 CPSR new_cpsr =
678 cpsrWriteByInstr(cpsrOrCondCodes, URb, Scr, Nsacr,
679 0xF, true, sctlr.nmfi, xc->tcBase());
680 Cpsr = ~CondCodesMask & new_cpsr;
681 NextThumb = new_cpsr.t;
682 NextJazelle = new_cpsr.j;
683 NextItState = ((((CPSR)URb).it2 << 2) & 0xFC)
684 | (((CPSR)URb).it1 & 0x3);
685 CondCodesNZ = new_cpsr.nz;
686 CondCodesC = new_cpsr.c;
687 CondCodesV = new_cpsr.v;
688 CondCodesGE = new_cpsr.ge;
689 '''
690
691 microUopSetPCCPSRIop = InstObjParams('uopSet_uop', 'MicroUopSetPCCPSR',
692 'MicroSetPCCPSR',
693 {'code': setPCCPSRDecl,
694 'predicate_test': predicateTest},
695 ['IsMicroop'])
696
697 header_output = MicroIntImmDeclare.subst(microAddiUopIop) + \
698 MicroIntImmDeclare.subst(microAddXiUopIop) + \
699 MicroIntImmDeclare.subst(microAddXiSpAlignUopIop) + \
700 MicroIntImmDeclare.subst(microSubiUopIop) + \
701 MicroIntImmDeclare.subst(microSubXiUopIop) + \
702 MicroIntRegDeclare.subst(microAddUopIop) + \
703 MicroIntRegDeclare.subst(microSubUopIop) + \
704 MicroIntXERegDeclare.subst(microAddXERegUopIop) + \
705 MicroIntMovDeclare.subst(microUopRegMovIop) + \
706 MicroIntMovDeclare.subst(microUopRegMovRetIop) + \
707 MicroSetPCCPSRDeclare.subst(microUopSetPCCPSRIop)
708
709 decoder_output = MicroIntImmConstructor.subst(microAddiUopIop) + \
710 MicroIntImmXConstructor.subst(microAddXiUopIop) + \
711 MicroIntImmXConstructor.subst(microAddXiSpAlignUopIop) + \
712 MicroIntImmConstructor.subst(microSubiUopIop) + \
713 MicroIntImmXConstructor.subst(microSubXiUopIop) + \
714 MicroIntRegConstructor.subst(microAddUopIop) + \
715 MicroIntRegConstructor.subst(microSubUopIop) + \
716 MicroIntXERegConstructor.subst(microAddXERegUopIop) + \
717 MicroIntMovConstructor.subst(microUopRegMovIop) + \
718 MicroIntMovConstructor.subst(microUopRegMovRetIop) + \
719 MicroSetPCCPSRConstructor.subst(microUopSetPCCPSRIop)
720
721 exec_output = PredOpExecute.subst(microAddiUopIop) + \
722 BasicExecute.subst(microAddXiUopIop) + \
723 BasicExecute.subst(microAddXiSpAlignUopIop) + \
724 PredOpExecute.subst(microSubiUopIop) + \
725 BasicExecute.subst(microSubXiUopIop) + \
726 PredOpExecute.subst(microAddUopIop) + \
727 PredOpExecute.subst(microSubUopIop) + \
728 BasicExecute.subst(microAddXERegUopIop) + \
729 PredOpExecute.subst(microUopRegMovIop) + \
730 PredOpExecute.subst(microUopRegMovRetIop) + \
731 PredOpExecute.subst(microUopSetPCCPSRIop)
732
733 }};
734
735 let {{
736 iop = InstObjParams("ldmstm", "LdmStm", 'MacroMemOp', "", [])
737 header_output = MacroMemDeclare.subst(iop)
738 decoder_output = MacroMemConstructor.subst(iop)
739
740 iop = InstObjParams("ldpstp", "LdpStp", 'PairMemOp', "", [])
741 header_output += PairMemDeclare.subst(iop)
742 decoder_output += PairMemConstructor.subst(iop)
743
744 iopImm = InstObjParams("bigfpmemimm", "BigFpMemImm", "BigFpMemImmOp", "")
745 iopPre = InstObjParams("bigfpmempre", "BigFpMemPre", "BigFpMemPreOp", "")
746 iopPost = InstObjParams("bigfpmempost", "BigFpMemPost", "BigFpMemPostOp", "")
747 for iop in (iopImm, iopPre, iopPost):
748 header_output += BigFpMemImmDeclare.subst(iop)
749 decoder_output += BigFpMemImmConstructor.subst(iop)
750
751 iop = InstObjParams("bigfpmemreg", "BigFpMemReg", "BigFpMemRegOp", "")
752 header_output += BigFpMemRegDeclare.subst(iop)
753 decoder_output += BigFpMemRegConstructor.subst(iop)
754
755 iop = InstObjParams("bigfpmemlit", "BigFpMemLit", "BigFpMemLitOp", "")
756 header_output += BigFpMemLitDeclare.subst(iop)
757 decoder_output += BigFpMemLitConstructor.subst(iop)
758
759 iop = InstObjParams("vldmult", "VldMult", 'VldMultOp', "", [])
760 header_output += VMemMultDeclare.subst(iop)
761 decoder_output += VMemMultConstructor.subst(iop)
762
763 iop = InstObjParams("vldsingle", "VldSingle", 'VldSingleOp', "", [])
764 header_output += VMemSingleDeclare.subst(iop)
765 decoder_output += VMemSingleConstructor.subst(iop)
766
767 iop = InstObjParams("vstmult", "VstMult", 'VstMultOp', "", [])
768 header_output += VMemMultDeclare.subst(iop)
769 decoder_output += VMemMultConstructor.subst(iop)
770
771 iop = InstObjParams("vstsingle", "VstSingle", 'VstSingleOp', "", [])
772 header_output += VMemSingleDeclare.subst(iop)
773 decoder_output += VMemSingleConstructor.subst(iop)
774
775 vfpIop = InstObjParams("vldmstm", "VLdmStm", 'MacroVFPMemOp', "", [])
776 header_output += MacroVFPMemDeclare.subst(vfpIop)
777 decoder_output += MacroVFPMemConstructor.subst(vfpIop)
778 }};