misc: Merged release-staging-v19.0.0.0 into develop
[gem5.git] / src / arch / arm / isa.cc
1 /*
2 * Copyright (c) 2010-2020 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include "arch/arm/isa.hh"
39
40 #include "arch/arm/faults.hh"
41 #include "arch/arm/interrupts.hh"
42 #include "arch/arm/pmu.hh"
43 #include "arch/arm/system.hh"
44 #include "arch/arm/tlb.hh"
45 #include "arch/arm/tlbi_op.hh"
46 #include "cpu/base.hh"
47 #include "cpu/checker/cpu.hh"
48 #include "debug/Arm.hh"
49 #include "debug/MiscRegs.hh"
50 #include "dev/arm/generic_timer.hh"
51 #include "dev/arm/gic_v3.hh"
52 #include "dev/arm/gic_v3_cpu_interface.hh"
53 #include "params/ArmISA.hh"
54 #include "sim/faults.hh"
55 #include "sim/stat_control.hh"
56 #include "sim/system.hh"
57
58 namespace ArmISA
59 {
60
61 ISA::ISA(Params *p) : BaseISA(p), system(NULL),
62 _decoderFlavor(p->decoderFlavor), _vecRegRenameMode(Enums::Full),
63 pmu(p->pmu), haveGICv3CPUInterface(false), impdefAsNop(p->impdef_nop),
64 afterStartup(false)
65 {
66 miscRegs[MISCREG_SCTLR_RST] = 0;
67
68 // Hook up a dummy device if we haven't been configured with a
69 // real PMU. By using a dummy device, we don't need to check that
70 // the PMU exist every time we try to access a PMU register.
71 if (!pmu)
72 pmu = &dummyDevice;
73
74 // Give all ISA devices a pointer to this ISA
75 pmu->setISA(this);
76
77 system = dynamic_cast<ArmSystem *>(p->system);
78
79 // Cache system-level properties
80 if (FullSystem && system) {
81 highestELIs64 = system->highestELIs64();
82 haveSecurity = system->haveSecurity();
83 haveLPAE = system->haveLPAE();
84 haveCrypto = system->haveCrypto();
85 haveVirtualization = system->haveVirtualization();
86 haveLargeAsid64 = system->haveLargeAsid64();
87 physAddrRange = system->physAddrRange();
88 haveSVE = system->haveSVE();
89 havePAN = system->havePAN();
90 sveVL = system->sveVL();
91 haveLSE = system->haveLSE();
92 } else {
93 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
94 haveSecurity = haveLPAE = haveVirtualization = false;
95 haveCrypto = true;
96 haveLargeAsid64 = false;
97 physAddrRange = 32; // dummy value
98 haveSVE = true;
99 havePAN = false;
100 sveVL = p->sve_vl_se;
101 haveLSE = true;
102 }
103
104 // Initial rename mode depends on highestEL
105 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
106 highestELIs64 ? Enums::Full : Enums::Elem;
107
108 initializeMiscRegMetadata();
109 preUnflattenMiscReg();
110
111 clear();
112 }
113
114 std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
115
116 const ArmISAParams *
117 ISA::params() const
118 {
119 return dynamic_cast<const Params *>(_params);
120 }
121
122 void
123 ISA::clear(ThreadContext *tc)
124 {
125 clear();
126 // Invalidate cached copies of miscregs in the TLBs
127 getITBPtr(tc)->invalidateMiscReg();
128 getDTBPtr(tc)->invalidateMiscReg();
129 }
130
131 void
132 ISA::clear()
133 {
134 const Params *p(params());
135
136 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
137 memset(miscRegs, 0, sizeof(miscRegs));
138
139 initID32(p);
140
141 // We always initialize AArch64 ID registers even
142 // if we are in AArch32. This is done since if we
143 // are in SE mode we don't know if our ArmProcess is
144 // AArch32 or AArch64
145 initID64(p);
146
147 // Start with an event in the mailbox
148 miscRegs[MISCREG_SEV_MAILBOX] = 1;
149
150 // Separate Instruction and Data TLBs
151 miscRegs[MISCREG_TLBTR] = 1;
152
153 MVFR0 mvfr0 = 0;
154 mvfr0.advSimdRegisters = 2;
155 mvfr0.singlePrecision = 2;
156 mvfr0.doublePrecision = 2;
157 mvfr0.vfpExceptionTrapping = 0;
158 mvfr0.divide = 1;
159 mvfr0.squareRoot = 1;
160 mvfr0.shortVectors = 1;
161 mvfr0.roundingModes = 1;
162 miscRegs[MISCREG_MVFR0] = mvfr0;
163
164 MVFR1 mvfr1 = 0;
165 mvfr1.flushToZero = 1;
166 mvfr1.defaultNaN = 1;
167 mvfr1.advSimdLoadStore = 1;
168 mvfr1.advSimdInteger = 1;
169 mvfr1.advSimdSinglePrecision = 1;
170 mvfr1.advSimdHalfPrecision = 1;
171 mvfr1.vfpHalfPrecision = 1;
172 miscRegs[MISCREG_MVFR1] = mvfr1;
173
174 // Reset values of PRRR and NMRR are implementation dependent
175
176 // @todo: PRRR and NMRR in secure state?
177 miscRegs[MISCREG_PRRR_NS] =
178 (1 << 19) | // 19
179 (0 << 18) | // 18
180 (0 << 17) | // 17
181 (1 << 16) | // 16
182 (2 << 14) | // 15:14
183 (0 << 12) | // 13:12
184 (2 << 10) | // 11:10
185 (2 << 8) | // 9:8
186 (2 << 6) | // 7:6
187 (2 << 4) | // 5:4
188 (1 << 2) | // 3:2
189 0; // 1:0
190
191 miscRegs[MISCREG_NMRR_NS] =
192 (1 << 30) | // 31:30
193 (0 << 26) | // 27:26
194 (0 << 24) | // 25:24
195 (3 << 22) | // 23:22
196 (2 << 20) | // 21:20
197 (0 << 18) | // 19:18
198 (0 << 16) | // 17:16
199 (1 << 14) | // 15:14
200 (0 << 12) | // 13:12
201 (2 << 10) | // 11:10
202 (0 << 8) | // 9:8
203 (3 << 6) | // 7:6
204 (2 << 4) | // 5:4
205 (0 << 2) | // 3:2
206 0; // 1:0
207
208 if (FullSystem && system->highestELIs64()) {
209 // Initialize AArch64 state
210 clear64(p);
211 return;
212 }
213
214 // Initialize AArch32 state...
215 clear32(p, sctlr_rst);
216 }
217
218 void
219 ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
220 {
221 CPSR cpsr = 0;
222 cpsr.mode = MODE_USER;
223
224 if (FullSystem) {
225 miscRegs[MISCREG_MVBAR] = system->resetAddr();
226 }
227
228 miscRegs[MISCREG_CPSR] = cpsr;
229 updateRegMap(cpsr);
230
231 SCTLR sctlr = 0;
232 sctlr.te = (bool) sctlr_rst.te;
233 sctlr.nmfi = (bool) sctlr_rst.nmfi;
234 sctlr.v = (bool) sctlr_rst.v;
235 sctlr.u = 1;
236 sctlr.xp = 1;
237 sctlr.rao2 = 1;
238 sctlr.rao3 = 1;
239 sctlr.rao4 = 0xf; // SCTLR[6:3]
240 sctlr.uci = 1;
241 sctlr.dze = 1;
242 miscRegs[MISCREG_SCTLR_NS] = sctlr;
243 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
244 miscRegs[MISCREG_HCPTR] = 0;
245
246 miscRegs[MISCREG_CPACR] = 0;
247
248 miscRegs[MISCREG_FPSID] = p->fpsid;
249
250 if (haveLPAE) {
251 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
252 ttbcr.eae = 0;
253 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
254 // Enforce consistency with system-level settings
255 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
256 }
257
258 if (haveSecurity) {
259 miscRegs[MISCREG_SCTLR_S] = sctlr;
260 miscRegs[MISCREG_SCR] = 0;
261 miscRegs[MISCREG_VBAR_S] = 0;
262 } else {
263 // we're always non-secure
264 miscRegs[MISCREG_SCR] = 1;
265 }
266
267 //XXX We need to initialize the rest of the state.
268 }
269
270 void
271 ISA::clear64(const ArmISAParams *p)
272 {
273 CPSR cpsr = 0;
274 Addr rvbar = system->resetAddr();
275 switch (system->highestEL()) {
276 // Set initial EL to highest implemented EL using associated stack
277 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
278 // value
279 case EL3:
280 cpsr.mode = MODE_EL3H;
281 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
282 break;
283 case EL2:
284 cpsr.mode = MODE_EL2H;
285 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
286 break;
287 case EL1:
288 cpsr.mode = MODE_EL1H;
289 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
290 break;
291 default:
292 panic("Invalid highest implemented exception level");
293 break;
294 }
295
296 // Initialize rest of CPSR
297 cpsr.daif = 0xf; // Mask all interrupts
298 cpsr.ss = 0;
299 cpsr.il = 0;
300 miscRegs[MISCREG_CPSR] = cpsr;
301 updateRegMap(cpsr);
302
303 // Initialize other control registers
304 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
305 if (haveSecurity) {
306 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
307 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
308 } else if (haveVirtualization) {
309 // also MISCREG_SCTLR_EL2 (by mapping)
310 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
311 } else {
312 // also MISCREG_SCTLR_EL1 (by mapping)
313 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
314 // Always non-secure
315 miscRegs[MISCREG_SCR_EL3] = 1;
316 }
317 }
318
319 void
320 ISA::initID32(const ArmISAParams *p)
321 {
322 // Initialize configurable default values
323
324 uint32_t midr;
325 if (p->midr != 0x0)
326 midr = p->midr;
327 else if (highestELIs64)
328 // Cortex-A57 TRM r0p0 MIDR
329 midr = 0x410fd070;
330 else
331 // Cortex-A15 TRM r0p0 MIDR
332 midr = 0x410fc0f0;
333
334 miscRegs[MISCREG_MIDR] = midr;
335 miscRegs[MISCREG_MIDR_EL1] = midr;
336 miscRegs[MISCREG_VPIDR] = midr;
337
338 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
339 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
340 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
341 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
342 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
343 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
344
345 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
346 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
347 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
348 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
349
350 miscRegs[MISCREG_ID_ISAR5] = insertBits(
351 miscRegs[MISCREG_ID_ISAR5], 19, 4,
352 haveCrypto ? 0x1112 : 0x0);
353 }
354
355 void
356 ISA::initID64(const ArmISAParams *p)
357 {
358 // Initialize configurable id registers
359 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
360 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
361 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
362 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
363 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
364
365 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
366 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
367 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
368 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
369 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
370 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
371
372 miscRegs[MISCREG_ID_DFR0_EL1] =
373 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
374
375 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
376
377 // SVE
378 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0
379 if (haveSecurity) {
380 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
381 } else if (haveVirtualization) {
382 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
383 } else {
384 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
385 }
386
387 // Enforce consistency with system-level settings...
388
389 // EL3
390 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
391 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
392 haveSecurity ? 0x2 : 0x0);
393 // EL2
394 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
395 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
396 haveVirtualization ? 0x2 : 0x0);
397 // SVE
398 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
399 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
400 haveSVE ? 0x1 : 0x0);
401 // Large ASID support
402 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
403 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
404 haveLargeAsid64 ? 0x2 : 0x0);
405 // Physical address size
406 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
407 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
408 encodePhysAddrRange64(physAddrRange));
409 // Crypto
410 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
411 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
412 haveCrypto ? 0x1112 : 0x0);
413 // LSE
414 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
415 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 23, 20,
416 haveLSE ? 0x2 : 0x0);
417 // PAN
418 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits(
419 miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20,
420 havePAN ? 0x1 : 0x0);
421 }
422
423 void
424 ISA::startup(ThreadContext *tc)
425 {
426 pmu->setThreadContext(tc);
427
428 if (system) {
429 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
430 if (gicv3) {
431 haveGICv3CPUInterface = true;
432 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
433 gicv3CpuInterface->setISA(this);
434 gicv3CpuInterface->setThreadContext(tc);
435 }
436 }
437
438 afterStartup = true;
439 }
440
441
442 RegVal
443 ISA::readMiscRegNoEffect(int misc_reg) const
444 {
445 assert(misc_reg < NumMiscRegs);
446
447 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
448 const auto &map = getMiscIndices(misc_reg);
449 int lower = map.first, upper = map.second;
450 // NB!: apply architectural masks according to desired register,
451 // despite possibly getting value from different (mapped) register.
452 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
453 |(miscRegs[upper] << 32));
454 if (val & reg.res0()) {
455 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
456 miscRegName[misc_reg], val & reg.res0());
457 }
458 if ((val & reg.res1()) != reg.res1()) {
459 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
460 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
461 }
462 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
463 }
464
465
466 RegVal
467 ISA::readMiscReg(int misc_reg, ThreadContext *tc)
468 {
469 CPSR cpsr = 0;
470 PCState pc = 0;
471 SCR scr = 0;
472
473 if (misc_reg == MISCREG_CPSR) {
474 cpsr = miscRegs[misc_reg];
475 pc = tc->pcState();
476 cpsr.j = pc.jazelle() ? 1 : 0;
477 cpsr.t = pc.thumb() ? 1 : 0;
478 return cpsr;
479 }
480
481 #ifndef NDEBUG
482 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
483 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
484 warn("Unimplemented system register %s read.\n",
485 miscRegName[misc_reg]);
486 else
487 panic("Unimplemented system register %s read.\n",
488 miscRegName[misc_reg]);
489 }
490 #endif
491
492 switch (unflattenMiscReg(misc_reg)) {
493 case MISCREG_HCR:
494 case MISCREG_HCR2:
495 if (!haveVirtualization)
496 return 0;
497 break;
498 case MISCREG_CPACR:
499 {
500 const uint32_t ones = (uint32_t)(-1);
501 CPACR cpacrMask = 0;
502 // Only cp10, cp11, and ase are implemented, nothing else should
503 // be readable? (straight copy from the write code)
504 cpacrMask.cp10 = ones;
505 cpacrMask.cp11 = ones;
506 cpacrMask.asedis = ones;
507
508 // Security Extensions may limit the readability of CPACR
509 if (haveSecurity) {
510 scr = readMiscRegNoEffect(MISCREG_SCR);
511 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
512 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
513 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
514 // NB: Skipping the full loop, here
515 if (!nsacr.cp10) cpacrMask.cp10 = 0;
516 if (!nsacr.cp11) cpacrMask.cp11 = 0;
517 }
518 }
519 RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
520 val &= cpacrMask;
521 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
522 miscRegName[misc_reg], val);
523 return val;
524 }
525 case MISCREG_MPIDR:
526 case MISCREG_MPIDR_EL1:
527 return readMPIDR(system, tc);
528 case MISCREG_VMPIDR:
529 case MISCREG_VMPIDR_EL2:
530 // top bit defined as RES1
531 return readMiscRegNoEffect(misc_reg) | 0x80000000;
532 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
533 case MISCREG_REVIDR: // not implemented, so alias MIDR
534 case MISCREG_MIDR:
535 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
536 scr = readMiscRegNoEffect(MISCREG_SCR);
537 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
538 return readMiscRegNoEffect(misc_reg);
539 } else {
540 return readMiscRegNoEffect(MISCREG_VPIDR);
541 }
542 break;
543 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
544 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
545 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
546 case MISCREG_AIDR: // AUX ID set to 0
547 case MISCREG_TCMTR: // No TCM's
548 return 0;
549
550 case MISCREG_CLIDR:
551 warn_once("The clidr register always reports 0 caches.\n");
552 warn_once("clidr LoUIS field of 0b001 to match current "
553 "ARM implementations.\n");
554 return 0x00200000;
555 case MISCREG_CCSIDR:
556 warn_once("The ccsidr register isn't implemented and "
557 "always reads as 0.\n");
558 break;
559 case MISCREG_CTR: // AArch32, ARMv7, top bit set
560 case MISCREG_CTR_EL0: // AArch64
561 {
562 //all caches have the same line size in gem5
563 //4 byte words in ARM
564 unsigned lineSizeWords =
565 tc->getSystemPtr()->cacheLineSize() / 4;
566 unsigned log2LineSizeWords = 0;
567
568 while (lineSizeWords >>= 1) {
569 ++log2LineSizeWords;
570 }
571
572 CTR ctr = 0;
573 //log2 of minimun i-cache line size (words)
574 ctr.iCacheLineSize = log2LineSizeWords;
575 //b11 - gem5 uses pipt
576 ctr.l1IndexPolicy = 0x3;
577 //log2 of minimum d-cache line size (words)
578 ctr.dCacheLineSize = log2LineSizeWords;
579 //log2 of max reservation size (words)
580 ctr.erg = log2LineSizeWords;
581 //log2 of max writeback size (words)
582 ctr.cwg = log2LineSizeWords;
583 //b100 - gem5 format is ARMv7
584 ctr.format = 0x4;
585
586 return ctr;
587 }
588 case MISCREG_ACTLR:
589 warn("Not doing anything for miscreg ACTLR\n");
590 break;
591
592 case MISCREG_PMXEVTYPER_PMCCFILTR:
593 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
594 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
595 case MISCREG_PMCR ... MISCREG_PMOVSSET:
596 return pmu->readMiscReg(misc_reg);
597
598 case MISCREG_CPSR_Q:
599 panic("shouldn't be reading this register seperately\n");
600 case MISCREG_FPSCR_QC:
601 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
602 case MISCREG_FPSCR_EXC:
603 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
604 case MISCREG_FPSR:
605 {
606 const uint32_t ones = (uint32_t)(-1);
607 FPSCR fpscrMask = 0;
608 fpscrMask.ioc = ones;
609 fpscrMask.dzc = ones;
610 fpscrMask.ofc = ones;
611 fpscrMask.ufc = ones;
612 fpscrMask.ixc = ones;
613 fpscrMask.idc = ones;
614 fpscrMask.qc = ones;
615 fpscrMask.v = ones;
616 fpscrMask.c = ones;
617 fpscrMask.z = ones;
618 fpscrMask.n = ones;
619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620 }
621 case MISCREG_FPCR:
622 {
623 const uint32_t ones = (uint32_t)(-1);
624 FPSCR fpscrMask = 0;
625 fpscrMask.len = ones;
626 fpscrMask.fz16 = ones;
627 fpscrMask.stride = ones;
628 fpscrMask.rMode = ones;
629 fpscrMask.fz = ones;
630 fpscrMask.dn = ones;
631 fpscrMask.ahp = ones;
632 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
633 }
634 case MISCREG_NZCV:
635 {
636 CPSR cpsr = 0;
637 cpsr.nz = tc->readCCReg(CCREG_NZ);
638 cpsr.c = tc->readCCReg(CCREG_C);
639 cpsr.v = tc->readCCReg(CCREG_V);
640 return cpsr;
641 }
642 case MISCREG_DAIF:
643 {
644 CPSR cpsr = 0;
645 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
646 return cpsr;
647 }
648 case MISCREG_SP_EL0:
649 {
650 return tc->readIntReg(INTREG_SP0);
651 }
652 case MISCREG_SP_EL1:
653 {
654 return tc->readIntReg(INTREG_SP1);
655 }
656 case MISCREG_SP_EL2:
657 {
658 return tc->readIntReg(INTREG_SP2);
659 }
660 case MISCREG_SPSEL:
661 {
662 return miscRegs[MISCREG_CPSR] & 0x1;
663 }
664 case MISCREG_CURRENTEL:
665 {
666 return miscRegs[MISCREG_CPSR] & 0xc;
667 }
668 case MISCREG_PAN:
669 {
670 return miscRegs[MISCREG_CPSR] & 0x400000;
671 }
672 case MISCREG_L2CTLR:
673 {
674 // mostly unimplemented, just set NumCPUs field from sim and return
675 L2CTLR l2ctlr = 0;
676 // b00:1CPU to b11:4CPUs
677 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
678 return l2ctlr;
679 }
680 case MISCREG_DBGDIDR:
681 /* For now just implement the version number.
682 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
683 */
684 return 0x5 << 16;
685 case MISCREG_DBGDSCRint:
686 return 0;
687 case MISCREG_ISR:
688 {
689 auto ic = dynamic_cast<ArmISA::Interrupts *>(
690 tc->getCpuPtr()->getInterruptController(tc->threadId()));
691 return ic->getISR(
692 readMiscRegNoEffect(MISCREG_HCR),
693 readMiscRegNoEffect(MISCREG_CPSR),
694 readMiscRegNoEffect(MISCREG_SCR));
695 }
696 case MISCREG_ISR_EL1:
697 {
698 auto ic = dynamic_cast<ArmISA::Interrupts *>(
699 tc->getCpuPtr()->getInterruptController(tc->threadId()));
700 return ic->getISR(
701 readMiscRegNoEffect(MISCREG_HCR_EL2),
702 readMiscRegNoEffect(MISCREG_CPSR),
703 readMiscRegNoEffect(MISCREG_SCR_EL3));
704 }
705 case MISCREG_DCZID_EL0:
706 return 0x04; // DC ZVA clear 64-byte chunks
707 case MISCREG_HCPTR:
708 {
709 RegVal val = readMiscRegNoEffect(misc_reg);
710 // The trap bit associated with CP14 is defined as RAZ
711 val &= ~(1 << 14);
712 // If a CP bit in NSACR is 0 then the corresponding bit in
713 // HCPTR is RAO/WI
714 bool secure_lookup = haveSecurity &&
715 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
716 readMiscRegNoEffect(MISCREG_CPSR));
717 if (!secure_lookup) {
718 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
719 val |= (mask ^ 0x7FFF) & 0xBFFF;
720 }
721 // Set the bits for unimplemented coprocessors to RAO/WI
722 val |= 0x33FF;
723 return (val);
724 }
725 case MISCREG_HDFAR: // alias for secure DFAR
726 return readMiscRegNoEffect(MISCREG_DFAR_S);
727 case MISCREG_HIFAR: // alias for secure IFAR
728 return readMiscRegNoEffect(MISCREG_IFAR_S);
729
730 case MISCREG_ID_PFR0:
731 // !ThumbEE | !Jazelle | Thumb | ARM
732 return 0x00000031;
733 case MISCREG_ID_PFR1:
734 { // Timer | Virti | !M Profile | TrustZone | ARMv4
735 bool haveTimer = (system->getGenericTimer() != NULL);
736 return 0x00000001
737 | (haveSecurity ? 0x00000010 : 0x0)
738 | (haveVirtualization ? 0x00001000 : 0x0)
739 | (haveTimer ? 0x00010000 : 0x0);
740 }
741 case MISCREG_ID_AA64PFR0_EL1:
742 return 0x0000000000000002 | // AArch{64,32} supported at EL0
743 0x0000000000000020 | // EL1
744 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2
745 (haveSecurity ? 0x0000000000002000 : 0) | // EL3
746 (haveSVE ? 0x0000000100000000 : 0) | // SVE
747 (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
748 case MISCREG_ID_AA64PFR1_EL1:
749 return 0; // bits [63:0] RES0 (reserved for future use)
750
751 // Generic Timer registers
752 case MISCREG_CNTHV_CTL_EL2:
753 case MISCREG_CNTHV_CVAL_EL2:
754 case MISCREG_CNTHV_TVAL_EL2:
755 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
756 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
757 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
758 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
759 return getGenericTimer(tc).readMiscReg(misc_reg);
760
761 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15:
762 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
763 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
764 return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
765
766 default:
767 break;
768
769 }
770 return readMiscRegNoEffect(misc_reg);
771 }
772
773 void
774 ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
775 {
776 assert(misc_reg < NumMiscRegs);
777
778 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
779 const auto &map = getMiscIndices(misc_reg);
780 int lower = map.first, upper = map.second;
781
782 auto v = (val & ~reg.wi()) | reg.rao();
783 if (upper > 0) {
784 miscRegs[lower] = bits(v, 31, 0);
785 miscRegs[upper] = bits(v, 63, 32);
786 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
787 misc_reg, lower, upper, v);
788 } else {
789 miscRegs[lower] = v;
790 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
791 misc_reg, lower, v);
792 }
793 }
794
795 void
796 ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
797 {
798
799 RegVal newVal = val;
800 bool secure_lookup;
801 SCR scr;
802
803 if (misc_reg == MISCREG_CPSR) {
804 updateRegMap(val);
805
806
807 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
808 int old_mode = old_cpsr.mode;
809 CPSR cpsr = val;
810 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
811 getITBPtr(tc)->invalidateMiscReg();
812 getDTBPtr(tc)->invalidateMiscReg();
813 }
814
815 if (cpsr.pan != old_cpsr.pan) {
816 getDTBPtr(tc)->invalidateMiscReg();
817 }
818
819 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
820 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
821 PCState pc = tc->pcState();
822 pc.nextThumb(cpsr.t);
823 pc.nextJazelle(cpsr.j);
824 pc.illegalExec(cpsr.il == 1);
825
826 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
827
828 // Follow slightly different semantics if a CheckerCPU object
829 // is connected
830 CheckerCPU *checker = tc->getCheckerCpuPtr();
831 if (checker) {
832 tc->pcStateNoRecord(pc);
833 } else {
834 tc->pcState(pc);
835 }
836 } else {
837 #ifndef NDEBUG
838 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
839 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
840 warn("Unimplemented system register %s write with %#x.\n",
841 miscRegName[misc_reg], val);
842 else
843 panic("Unimplemented system register %s write with %#x.\n",
844 miscRegName[misc_reg], val);
845 }
846 #endif
847 switch (unflattenMiscReg(misc_reg)) {
848 case MISCREG_CPACR:
849 {
850
851 const uint32_t ones = (uint32_t)(-1);
852 CPACR cpacrMask = 0;
853 // Only cp10, cp11, and ase are implemented, nothing else should
854 // be writable
855 cpacrMask.cp10 = ones;
856 cpacrMask.cp11 = ones;
857 cpacrMask.asedis = ones;
858
859 // Security Extensions may limit the writability of CPACR
860 if (haveSecurity) {
861 scr = readMiscRegNoEffect(MISCREG_SCR);
862 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
863 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
864 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
865 // NB: Skipping the full loop, here
866 if (!nsacr.cp10) cpacrMask.cp10 = 0;
867 if (!nsacr.cp11) cpacrMask.cp11 = 0;
868 }
869 }
870
871 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
872 newVal &= cpacrMask;
873 newVal |= old_val & ~cpacrMask;
874 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
875 miscRegName[misc_reg], newVal);
876 }
877 break;
878 case MISCREG_CPACR_EL1:
879 {
880 const uint32_t ones = (uint32_t)(-1);
881 CPACR cpacrMask = 0;
882 cpacrMask.tta = ones;
883 cpacrMask.fpen = ones;
884 if (haveSVE) {
885 cpacrMask.zen = ones;
886 }
887 newVal &= cpacrMask;
888 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
889 miscRegName[misc_reg], newVal);
890 }
891 break;
892 case MISCREG_CPTR_EL2:
893 {
894 const uint32_t ones = (uint32_t)(-1);
895 CPTR cptrMask = 0;
896 cptrMask.tcpac = ones;
897 cptrMask.tta = ones;
898 cptrMask.tfp = ones;
899 if (haveSVE) {
900 cptrMask.tz = ones;
901 }
902 newVal &= cptrMask;
903 cptrMask = 0;
904 cptrMask.res1_13_12_el2 = ones;
905 cptrMask.res1_7_0_el2 = ones;
906 if (!haveSVE) {
907 cptrMask.res1_8_el2 = ones;
908 }
909 cptrMask.res1_9_el2 = ones;
910 newVal |= cptrMask;
911 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
912 miscRegName[misc_reg], newVal);
913 }
914 break;
915 case MISCREG_CPTR_EL3:
916 {
917 const uint32_t ones = (uint32_t)(-1);
918 CPTR cptrMask = 0;
919 cptrMask.tcpac = ones;
920 cptrMask.tta = ones;
921 cptrMask.tfp = ones;
922 if (haveSVE) {
923 cptrMask.ez = ones;
924 }
925 newVal &= cptrMask;
926 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
927 miscRegName[misc_reg], newVal);
928 }
929 break;
930 case MISCREG_CSSELR:
931 warn_once("The csselr register isn't implemented.\n");
932 return;
933
934 case MISCREG_DC_ZVA_Xt:
935 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
936 return;
937
938 case MISCREG_FPSCR:
939 {
940 const uint32_t ones = (uint32_t)(-1);
941 FPSCR fpscrMask = 0;
942 fpscrMask.ioc = ones;
943 fpscrMask.dzc = ones;
944 fpscrMask.ofc = ones;
945 fpscrMask.ufc = ones;
946 fpscrMask.ixc = ones;
947 fpscrMask.idc = ones;
948 fpscrMask.ioe = ones;
949 fpscrMask.dze = ones;
950 fpscrMask.ofe = ones;
951 fpscrMask.ufe = ones;
952 fpscrMask.ixe = ones;
953 fpscrMask.ide = ones;
954 fpscrMask.len = ones;
955 fpscrMask.fz16 = ones;
956 fpscrMask.stride = ones;
957 fpscrMask.rMode = ones;
958 fpscrMask.fz = ones;
959 fpscrMask.dn = ones;
960 fpscrMask.ahp = ones;
961 fpscrMask.qc = ones;
962 fpscrMask.v = ones;
963 fpscrMask.c = ones;
964 fpscrMask.z = ones;
965 fpscrMask.n = ones;
966 newVal = (newVal & (uint32_t)fpscrMask) |
967 (readMiscRegNoEffect(MISCREG_FPSCR) &
968 ~(uint32_t)fpscrMask);
969 tc->getDecoderPtr()->setContext(newVal);
970 }
971 break;
972 case MISCREG_FPSR:
973 {
974 const uint32_t ones = (uint32_t)(-1);
975 FPSCR fpscrMask = 0;
976 fpscrMask.ioc = ones;
977 fpscrMask.dzc = ones;
978 fpscrMask.ofc = ones;
979 fpscrMask.ufc = ones;
980 fpscrMask.ixc = ones;
981 fpscrMask.idc = ones;
982 fpscrMask.qc = ones;
983 fpscrMask.v = ones;
984 fpscrMask.c = ones;
985 fpscrMask.z = ones;
986 fpscrMask.n = ones;
987 newVal = (newVal & (uint32_t)fpscrMask) |
988 (readMiscRegNoEffect(MISCREG_FPSCR) &
989 ~(uint32_t)fpscrMask);
990 misc_reg = MISCREG_FPSCR;
991 }
992 break;
993 case MISCREG_FPCR:
994 {
995 const uint32_t ones = (uint32_t)(-1);
996 FPSCR fpscrMask = 0;
997 fpscrMask.len = ones;
998 fpscrMask.fz16 = ones;
999 fpscrMask.stride = ones;
1000 fpscrMask.rMode = ones;
1001 fpscrMask.fz = ones;
1002 fpscrMask.dn = ones;
1003 fpscrMask.ahp = ones;
1004 newVal = (newVal & (uint32_t)fpscrMask) |
1005 (readMiscRegNoEffect(MISCREG_FPSCR) &
1006 ~(uint32_t)fpscrMask);
1007 misc_reg = MISCREG_FPSCR;
1008 }
1009 break;
1010 case MISCREG_CPSR_Q:
1011 {
1012 assert(!(newVal & ~CpsrMaskQ));
1013 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1014 misc_reg = MISCREG_CPSR;
1015 }
1016 break;
1017 case MISCREG_FPSCR_QC:
1018 {
1019 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1020 (newVal & FpscrQcMask);
1021 misc_reg = MISCREG_FPSCR;
1022 }
1023 break;
1024 case MISCREG_FPSCR_EXC:
1025 {
1026 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1027 (newVal & FpscrExcMask);
1028 misc_reg = MISCREG_FPSCR;
1029 }
1030 break;
1031 case MISCREG_FPEXC:
1032 {
1033 // vfpv3 architecture, section B.6.1 of DDI04068
1034 // bit 29 - valid only if fpexc[31] is 0
1035 const uint32_t fpexcMask = 0x60000000;
1036 newVal = (newVal & fpexcMask) |
1037 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1038 }
1039 break;
1040 case MISCREG_HCR:
1041 case MISCREG_HCR2:
1042 if (!haveVirtualization)
1043 return;
1044 break;
1045 case MISCREG_IFSR:
1046 {
1047 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1048 const uint32_t ifsrMask =
1049 mask(31, 13) | mask(11, 11) | mask(8, 6);
1050 newVal = newVal & ~ifsrMask;
1051 }
1052 break;
1053 case MISCREG_DFSR:
1054 {
1055 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1056 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1057 newVal = newVal & ~dfsrMask;
1058 }
1059 break;
1060 case MISCREG_AMAIR0:
1061 case MISCREG_AMAIR1:
1062 {
1063 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1064 // Valid only with LPAE
1065 if (!haveLPAE)
1066 return;
1067 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1068 }
1069 break;
1070 case MISCREG_SCR:
1071 getITBPtr(tc)->invalidateMiscReg();
1072 getDTBPtr(tc)->invalidateMiscReg();
1073 break;
1074 case MISCREG_SCTLR:
1075 {
1076 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1077 scr = readMiscRegNoEffect(MISCREG_SCR);
1078
1079 MiscRegIndex sctlr_idx;
1080 if (haveSecurity && !highestELIs64 && !scr.ns) {
1081 sctlr_idx = MISCREG_SCTLR_S;
1082 } else {
1083 sctlr_idx = MISCREG_SCTLR_NS;
1084 }
1085
1086 SCTLR sctlr = miscRegs[sctlr_idx];
1087 SCTLR new_sctlr = newVal;
1088 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1089 miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1090 getITBPtr(tc)->invalidateMiscReg();
1091 getDTBPtr(tc)->invalidateMiscReg();
1092 }
1093 case MISCREG_MIDR:
1094 case MISCREG_ID_PFR0:
1095 case MISCREG_ID_PFR1:
1096 case MISCREG_ID_DFR0:
1097 case MISCREG_ID_MMFR0:
1098 case MISCREG_ID_MMFR1:
1099 case MISCREG_ID_MMFR2:
1100 case MISCREG_ID_MMFR3:
1101 case MISCREG_ID_ISAR0:
1102 case MISCREG_ID_ISAR1:
1103 case MISCREG_ID_ISAR2:
1104 case MISCREG_ID_ISAR3:
1105 case MISCREG_ID_ISAR4:
1106 case MISCREG_ID_ISAR5:
1107
1108 case MISCREG_MPIDR:
1109 case MISCREG_FPSID:
1110 case MISCREG_TLBTR:
1111 case MISCREG_MVFR0:
1112 case MISCREG_MVFR1:
1113
1114 case MISCREG_ID_AA64AFR0_EL1:
1115 case MISCREG_ID_AA64AFR1_EL1:
1116 case MISCREG_ID_AA64DFR0_EL1:
1117 case MISCREG_ID_AA64DFR1_EL1:
1118 case MISCREG_ID_AA64ISAR0_EL1:
1119 case MISCREG_ID_AA64ISAR1_EL1:
1120 case MISCREG_ID_AA64MMFR0_EL1:
1121 case MISCREG_ID_AA64MMFR1_EL1:
1122 case MISCREG_ID_AA64MMFR2_EL1:
1123 case MISCREG_ID_AA64PFR0_EL1:
1124 case MISCREG_ID_AA64PFR1_EL1:
1125 // ID registers are constants.
1126 return;
1127
1128 // TLB Invalidate All
1129 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1130 {
1131 assert32(tc);
1132 scr = readMiscReg(MISCREG_SCR, tc);
1133
1134 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1135 tlbiOp(tc);
1136 return;
1137 }
1138 // TLB Invalidate All, Inner Shareable
1139 case MISCREG_TLBIALLIS:
1140 {
1141 assert32(tc);
1142 scr = readMiscReg(MISCREG_SCR, tc);
1143
1144 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1145 tlbiOp.broadcast(tc);
1146 return;
1147 }
1148 // Instruction TLB Invalidate All
1149 case MISCREG_ITLBIALL:
1150 {
1151 assert32(tc);
1152 scr = readMiscReg(MISCREG_SCR, tc);
1153
1154 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1155 tlbiOp(tc);
1156 return;
1157 }
1158 // Data TLB Invalidate All
1159 case MISCREG_DTLBIALL:
1160 {
1161 assert32(tc);
1162 scr = readMiscReg(MISCREG_SCR, tc);
1163
1164 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1165 tlbiOp(tc);
1166 return;
1167 }
1168 // TLB Invalidate by VA
1169 // mcr tlbimval(is) is invalidating all matching entries
1170 // regardless of the level of lookup, since in gem5 we cache
1171 // in the tlb the last level of lookup only.
1172 case MISCREG_TLBIMVA:
1173 case MISCREG_TLBIMVAL:
1174 {
1175 assert32(tc);
1176 scr = readMiscReg(MISCREG_SCR, tc);
1177
1178 TLBIMVA tlbiOp(EL1,
1179 haveSecurity && !scr.ns,
1180 mbits(newVal, 31, 12),
1181 bits(newVal, 7,0));
1182
1183 tlbiOp(tc);
1184 return;
1185 }
1186 // TLB Invalidate by VA, Inner Shareable
1187 case MISCREG_TLBIMVAIS:
1188 case MISCREG_TLBIMVALIS:
1189 {
1190 assert32(tc);
1191 scr = readMiscReg(MISCREG_SCR, tc);
1192
1193 TLBIMVA tlbiOp(EL1,
1194 haveSecurity && !scr.ns,
1195 mbits(newVal, 31, 12),
1196 bits(newVal, 7,0));
1197
1198 tlbiOp.broadcast(tc);
1199 return;
1200 }
1201 // TLB Invalidate by ASID match
1202 case MISCREG_TLBIASID:
1203 {
1204 assert32(tc);
1205 scr = readMiscReg(MISCREG_SCR, tc);
1206
1207 TLBIASID tlbiOp(EL1,
1208 haveSecurity && !scr.ns,
1209 bits(newVal, 7,0));
1210
1211 tlbiOp(tc);
1212 return;
1213 }
1214 // TLB Invalidate by ASID match, Inner Shareable
1215 case MISCREG_TLBIASIDIS:
1216 {
1217 assert32(tc);
1218 scr = readMiscReg(MISCREG_SCR, tc);
1219
1220 TLBIASID tlbiOp(EL1,
1221 haveSecurity && !scr.ns,
1222 bits(newVal, 7,0));
1223
1224 tlbiOp.broadcast(tc);
1225 return;
1226 }
1227 // mcr tlbimvaal(is) is invalidating all matching entries
1228 // regardless of the level of lookup, since in gem5 we cache
1229 // in the tlb the last level of lookup only.
1230 // TLB Invalidate by VA, All ASID
1231 case MISCREG_TLBIMVAA:
1232 case MISCREG_TLBIMVAAL:
1233 {
1234 assert32(tc);
1235 scr = readMiscReg(MISCREG_SCR, tc);
1236
1237 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1238 mbits(newVal, 31,12));
1239
1240 tlbiOp(tc);
1241 return;
1242 }
1243 // TLB Invalidate by VA, All ASID, Inner Shareable
1244 case MISCREG_TLBIMVAAIS:
1245 case MISCREG_TLBIMVAALIS:
1246 {
1247 assert32(tc);
1248 scr = readMiscReg(MISCREG_SCR, tc);
1249
1250 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1251 mbits(newVal, 31,12));
1252
1253 tlbiOp.broadcast(tc);
1254 return;
1255 }
1256 // mcr tlbimvalh(is) is invalidating all matching entries
1257 // regardless of the level of lookup, since in gem5 we cache
1258 // in the tlb the last level of lookup only.
1259 // TLB Invalidate by VA, Hyp mode
1260 case MISCREG_TLBIMVAH:
1261 case MISCREG_TLBIMVALH:
1262 {
1263 assert32(tc);
1264 scr = readMiscReg(MISCREG_SCR, tc);
1265
1266 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1267 mbits(newVal, 31,12));
1268
1269 tlbiOp(tc);
1270 return;
1271 }
1272 // TLB Invalidate by VA, Hyp mode, Inner Shareable
1273 case MISCREG_TLBIMVAHIS:
1274 case MISCREG_TLBIMVALHIS:
1275 {
1276 assert32(tc);
1277 scr = readMiscReg(MISCREG_SCR, tc);
1278
1279 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1280 mbits(newVal, 31,12));
1281
1282 tlbiOp.broadcast(tc);
1283 return;
1284 }
1285 // mcr tlbiipas2l(is) is invalidating all matching entries
1286 // regardless of the level of lookup, since in gem5 we cache
1287 // in the tlb the last level of lookup only.
1288 // TLB Invalidate by Intermediate Physical Address, Stage 2
1289 case MISCREG_TLBIIPAS2:
1290 case MISCREG_TLBIIPAS2L:
1291 {
1292 assert32(tc);
1293 scr = readMiscReg(MISCREG_SCR, tc);
1294
1295 TLBIIPA tlbiOp(EL1,
1296 haveSecurity && !scr.ns,
1297 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1298
1299 tlbiOp(tc);
1300 return;
1301 }
1302 // TLB Invalidate by Intermediate Physical Address, Stage 2,
1303 // Inner Shareable
1304 case MISCREG_TLBIIPAS2IS:
1305 case MISCREG_TLBIIPAS2LIS:
1306 {
1307 assert32(tc);
1308 scr = readMiscReg(MISCREG_SCR, tc);
1309
1310 TLBIIPA tlbiOp(EL1,
1311 haveSecurity && !scr.ns,
1312 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1313
1314 tlbiOp.broadcast(tc);
1315 return;
1316 }
1317 // Instruction TLB Invalidate by VA
1318 case MISCREG_ITLBIMVA:
1319 {
1320 assert32(tc);
1321 scr = readMiscReg(MISCREG_SCR, tc);
1322
1323 ITLBIMVA tlbiOp(EL1,
1324 haveSecurity && !scr.ns,
1325 mbits(newVal, 31, 12),
1326 bits(newVal, 7,0));
1327
1328 tlbiOp(tc);
1329 return;
1330 }
1331 // Data TLB Invalidate by VA
1332 case MISCREG_DTLBIMVA:
1333 {
1334 assert32(tc);
1335 scr = readMiscReg(MISCREG_SCR, tc);
1336
1337 DTLBIMVA tlbiOp(EL1,
1338 haveSecurity && !scr.ns,
1339 mbits(newVal, 31, 12),
1340 bits(newVal, 7,0));
1341
1342 tlbiOp(tc);
1343 return;
1344 }
1345 // Instruction TLB Invalidate by ASID match
1346 case MISCREG_ITLBIASID:
1347 {
1348 assert32(tc);
1349 scr = readMiscReg(MISCREG_SCR, tc);
1350
1351 ITLBIASID tlbiOp(EL1,
1352 haveSecurity && !scr.ns,
1353 bits(newVal, 7,0));
1354
1355 tlbiOp(tc);
1356 return;
1357 }
1358 // Data TLB Invalidate by ASID match
1359 case MISCREG_DTLBIASID:
1360 {
1361 assert32(tc);
1362 scr = readMiscReg(MISCREG_SCR, tc);
1363
1364 DTLBIASID tlbiOp(EL1,
1365 haveSecurity && !scr.ns,
1366 bits(newVal, 7,0));
1367
1368 tlbiOp(tc);
1369 return;
1370 }
1371 // TLB Invalidate All, Non-Secure Non-Hyp
1372 case MISCREG_TLBIALLNSNH:
1373 {
1374 assert32(tc);
1375
1376 TLBIALLN tlbiOp(EL1);
1377 tlbiOp(tc);
1378 return;
1379 }
1380 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1381 case MISCREG_TLBIALLNSNHIS:
1382 {
1383 assert32(tc);
1384
1385 TLBIALLN tlbiOp(EL1);
1386 tlbiOp.broadcast(tc);
1387 return;
1388 }
1389 // TLB Invalidate All, Hyp mode
1390 case MISCREG_TLBIALLH:
1391 {
1392 assert32(tc);
1393
1394 TLBIALLN tlbiOp(EL2);
1395 tlbiOp(tc);
1396 return;
1397 }
1398 // TLB Invalidate All, Hyp mode, Inner Shareable
1399 case MISCREG_TLBIALLHIS:
1400 {
1401 assert32(tc);
1402
1403 TLBIALLN tlbiOp(EL2);
1404 tlbiOp.broadcast(tc);
1405 return;
1406 }
1407 // AArch64 TLB Invalidate All, EL3
1408 case MISCREG_TLBI_ALLE3:
1409 {
1410 assert64(tc);
1411
1412 TLBIALL tlbiOp(EL3, true);
1413 tlbiOp(tc);
1414 return;
1415 }
1416 // AArch64 TLB Invalidate All, EL3, Inner Shareable
1417 case MISCREG_TLBI_ALLE3IS:
1418 {
1419 assert64(tc);
1420
1421 TLBIALL tlbiOp(EL3, true);
1422 tlbiOp.broadcast(tc);
1423 return;
1424 }
1425 // AArch64 TLB Invalidate All, EL2, Inner Shareable
1426 case MISCREG_TLBI_ALLE2:
1427 case MISCREG_TLBI_ALLE2IS:
1428 {
1429 assert64(tc);
1430 scr = readMiscReg(MISCREG_SCR, tc);
1431
1432 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1433 tlbiOp(tc);
1434 return;
1435 }
1436 // AArch64 TLB Invalidate All, EL1
1437 case MISCREG_TLBI_ALLE1:
1438 case MISCREG_TLBI_VMALLE1:
1439 case MISCREG_TLBI_VMALLS12E1:
1440 // @todo: handle VMID and stage 2 to enable Virtualization
1441 {
1442 assert64(tc);
1443 scr = readMiscReg(MISCREG_SCR, tc);
1444
1445 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1446 tlbiOp(tc);
1447 return;
1448 }
1449 // AArch64 TLB Invalidate All, EL1, Inner Shareable
1450 case MISCREG_TLBI_ALLE1IS:
1451 case MISCREG_TLBI_VMALLE1IS:
1452 case MISCREG_TLBI_VMALLS12E1IS:
1453 // @todo: handle VMID and stage 2 to enable Virtualization
1454 {
1455 assert64(tc);
1456 scr = readMiscReg(MISCREG_SCR, tc);
1457
1458 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1459 tlbiOp.broadcast(tc);
1460 return;
1461 }
1462 // VAEx(IS) and VALEx(IS) are the same because TLBs
1463 // only store entries
1464 // from the last level of translation table walks
1465 // @todo: handle VMID to enable Virtualization
1466 // AArch64 TLB Invalidate by VA, EL3
1467 case MISCREG_TLBI_VAE3_Xt:
1468 case MISCREG_TLBI_VALE3_Xt:
1469 {
1470 assert64(tc);
1471
1472 TLBIMVA tlbiOp(EL3, true,
1473 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1474 0xbeef);
1475 tlbiOp(tc);
1476 return;
1477 }
1478 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1479 case MISCREG_TLBI_VAE3IS_Xt:
1480 case MISCREG_TLBI_VALE3IS_Xt:
1481 {
1482 assert64(tc);
1483
1484 TLBIMVA tlbiOp(EL3, true,
1485 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1486 0xbeef);
1487
1488 tlbiOp.broadcast(tc);
1489 return;
1490 }
1491 // AArch64 TLB Invalidate by VA, EL2
1492 case MISCREG_TLBI_VAE2_Xt:
1493 case MISCREG_TLBI_VALE2_Xt:
1494 {
1495 assert64(tc);
1496 scr = readMiscReg(MISCREG_SCR, tc);
1497
1498 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1499 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1500 0xbeef);
1501 tlbiOp(tc);
1502 return;
1503 }
1504 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1505 case MISCREG_TLBI_VAE2IS_Xt:
1506 case MISCREG_TLBI_VALE2IS_Xt:
1507 {
1508 assert64(tc);
1509 scr = readMiscReg(MISCREG_SCR, tc);
1510
1511 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1512 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1513 0xbeef);
1514
1515 tlbiOp.broadcast(tc);
1516 return;
1517 }
1518 // AArch64 TLB Invalidate by VA, EL1
1519 case MISCREG_TLBI_VAE1_Xt:
1520 case MISCREG_TLBI_VALE1_Xt:
1521 {
1522 assert64(tc);
1523 scr = readMiscReg(MISCREG_SCR, tc);
1524 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1525 bits(newVal, 55, 48);
1526
1527 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1528 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1529 asid);
1530
1531 tlbiOp(tc);
1532 return;
1533 }
1534 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1535 case MISCREG_TLBI_VAE1IS_Xt:
1536 case MISCREG_TLBI_VALE1IS_Xt:
1537 {
1538 assert64(tc);
1539 scr = readMiscReg(MISCREG_SCR, tc);
1540 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1541 bits(newVal, 55, 48);
1542
1543 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1544 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1545 asid);
1546
1547 tlbiOp.broadcast(tc);
1548 return;
1549 }
1550 // AArch64 TLB Invalidate by ASID, EL1
1551 // @todo: handle VMID to enable Virtualization
1552 case MISCREG_TLBI_ASIDE1_Xt:
1553 {
1554 assert64(tc);
1555 scr = readMiscReg(MISCREG_SCR, tc);
1556 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1557 bits(newVal, 55, 48);
1558
1559 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1560 tlbiOp(tc);
1561 return;
1562 }
1563 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1564 case MISCREG_TLBI_ASIDE1IS_Xt:
1565 {
1566 assert64(tc);
1567 scr = readMiscReg(MISCREG_SCR, tc);
1568 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1569 bits(newVal, 55, 48);
1570
1571 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1572 tlbiOp.broadcast(tc);
1573 return;
1574 }
1575 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1576 // entries from the last level of translation table walks
1577 // AArch64 TLB Invalidate by VA, All ASID, EL1
1578 case MISCREG_TLBI_VAAE1_Xt:
1579 case MISCREG_TLBI_VAALE1_Xt:
1580 {
1581 assert64(tc);
1582 scr = readMiscReg(MISCREG_SCR, tc);
1583
1584 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1585 static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1586
1587 tlbiOp(tc);
1588 return;
1589 }
1590 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1591 case MISCREG_TLBI_VAAE1IS_Xt:
1592 case MISCREG_TLBI_VAALE1IS_Xt:
1593 {
1594 assert64(tc);
1595 scr = readMiscReg(MISCREG_SCR, tc);
1596
1597 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1598 static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1599
1600 tlbiOp.broadcast(tc);
1601 return;
1602 }
1603 // AArch64 TLB Invalidate by Intermediate Physical Address,
1604 // Stage 2, EL1
1605 case MISCREG_TLBI_IPAS2E1_Xt:
1606 case MISCREG_TLBI_IPAS2LE1_Xt:
1607 {
1608 assert64(tc);
1609 scr = readMiscReg(MISCREG_SCR, tc);
1610
1611 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1612 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1613
1614 tlbiOp(tc);
1615 return;
1616 }
1617 // AArch64 TLB Invalidate by Intermediate Physical Address,
1618 // Stage 2, EL1, Inner Shareable
1619 case MISCREG_TLBI_IPAS2E1IS_Xt:
1620 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1621 {
1622 assert64(tc);
1623 scr = readMiscReg(MISCREG_SCR, tc);
1624
1625 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1626 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1627
1628 tlbiOp.broadcast(tc);
1629 return;
1630 }
1631 case MISCREG_ACTLR:
1632 warn("Not doing anything for write of miscreg ACTLR\n");
1633 break;
1634
1635 case MISCREG_PMXEVTYPER_PMCCFILTR:
1636 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1637 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1638 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1639 pmu->setMiscReg(misc_reg, newVal);
1640 break;
1641
1642
1643 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1644 {
1645 HSTR hstrMask = 0;
1646 hstrMask.tjdbx = 1;
1647 newVal &= ~((uint32_t) hstrMask);
1648 break;
1649 }
1650 case MISCREG_HCPTR:
1651 {
1652 // If a CP bit in NSACR is 0 then the corresponding bit in
1653 // HCPTR is RAO/WI. Same applies to NSASEDIS
1654 secure_lookup = haveSecurity &&
1655 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1656 readMiscRegNoEffect(MISCREG_CPSR));
1657 if (!secure_lookup) {
1658 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1659 RegVal mask =
1660 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1661 newVal = (newVal & ~mask) | (oldValue & mask);
1662 }
1663 break;
1664 }
1665 case MISCREG_HDFAR: // alias for secure DFAR
1666 misc_reg = MISCREG_DFAR_S;
1667 break;
1668 case MISCREG_HIFAR: // alias for secure IFAR
1669 misc_reg = MISCREG_IFAR_S;
1670 break;
1671 case MISCREG_ATS1CPR:
1672 case MISCREG_ATS1CPW:
1673 case MISCREG_ATS1CUR:
1674 case MISCREG_ATS1CUW:
1675 case MISCREG_ATS12NSOPR:
1676 case MISCREG_ATS12NSOPW:
1677 case MISCREG_ATS12NSOUR:
1678 case MISCREG_ATS12NSOUW:
1679 case MISCREG_ATS1HR:
1680 case MISCREG_ATS1HW:
1681 {
1682 Request::Flags flags = 0;
1683 BaseTLB::Mode mode = BaseTLB::Read;
1684 TLB::ArmTranslationType tranType = TLB::NormalTran;
1685 Fault fault;
1686 switch(misc_reg) {
1687 case MISCREG_ATS1CPR:
1688 flags = TLB::MustBeOne;
1689 tranType = TLB::S1CTran;
1690 mode = BaseTLB::Read;
1691 break;
1692 case MISCREG_ATS1CPW:
1693 flags = TLB::MustBeOne;
1694 tranType = TLB::S1CTran;
1695 mode = BaseTLB::Write;
1696 break;
1697 case MISCREG_ATS1CUR:
1698 flags = TLB::MustBeOne | TLB::UserMode;
1699 tranType = TLB::S1CTran;
1700 mode = BaseTLB::Read;
1701 break;
1702 case MISCREG_ATS1CUW:
1703 flags = TLB::MustBeOne | TLB::UserMode;
1704 tranType = TLB::S1CTran;
1705 mode = BaseTLB::Write;
1706 break;
1707 case MISCREG_ATS12NSOPR:
1708 if (!haveSecurity)
1709 panic("Security Extensions required for ATS12NSOPR");
1710 flags = TLB::MustBeOne;
1711 tranType = TLB::S1S2NsTran;
1712 mode = BaseTLB::Read;
1713 break;
1714 case MISCREG_ATS12NSOPW:
1715 if (!haveSecurity)
1716 panic("Security Extensions required for ATS12NSOPW");
1717 flags = TLB::MustBeOne;
1718 tranType = TLB::S1S2NsTran;
1719 mode = BaseTLB::Write;
1720 break;
1721 case MISCREG_ATS12NSOUR:
1722 if (!haveSecurity)
1723 panic("Security Extensions required for ATS12NSOUR");
1724 flags = TLB::MustBeOne | TLB::UserMode;
1725 tranType = TLB::S1S2NsTran;
1726 mode = BaseTLB::Read;
1727 break;
1728 case MISCREG_ATS12NSOUW:
1729 if (!haveSecurity)
1730 panic("Security Extensions required for ATS12NSOUW");
1731 flags = TLB::MustBeOne | TLB::UserMode;
1732 tranType = TLB::S1S2NsTran;
1733 mode = BaseTLB::Write;
1734 break;
1735 case MISCREG_ATS1HR: // only really useful from secure mode.
1736 flags = TLB::MustBeOne;
1737 tranType = TLB::HypMode;
1738 mode = BaseTLB::Read;
1739 break;
1740 case MISCREG_ATS1HW:
1741 flags = TLB::MustBeOne;
1742 tranType = TLB::HypMode;
1743 mode = BaseTLB::Write;
1744 break;
1745 }
1746 // If we're in timing mode then doing the translation in
1747 // functional mode then we're slightly distorting performance
1748 // results obtained from simulations. The translation should be
1749 // done in the same mode the core is running in. NOTE: This
1750 // can't be an atomic translation because that causes problems
1751 // with unexpected atomic snoop requests.
1752 warn("Translating via %s in functional mode! Fix Me!\n",
1753 miscRegName[misc_reg]);
1754
1755 auto req = std::make_shared<Request>(
1756 0, val, 0, flags, Request::funcMasterId,
1757 tc->pcState().pc(), tc->contextId());
1758
1759 fault = getDTBPtr(tc)->translateFunctional(
1760 req, tc, mode, tranType);
1761
1762 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1763 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1764
1765 RegVal newVal;
1766 if (fault == NoFault) {
1767 Addr paddr = req->getPaddr();
1768 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1769 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1770 newVal = (paddr & mask(39, 12)) |
1771 (getDTBPtr(tc)->getAttr());
1772 } else {
1773 newVal = (paddr & 0xfffff000) |
1774 (getDTBPtr(tc)->getAttr());
1775 }
1776 DPRINTF(MiscRegs,
1777 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1778 val, newVal);
1779 } else {
1780 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1781 armFault->update(tc);
1782 // Set fault bit and FSR
1783 FSR fsr = armFault->getFsr(tc);
1784
1785 newVal = ((fsr >> 9) & 1) << 11;
1786 if (newVal) {
1787 // LPAE - rearange fault status
1788 newVal |= ((fsr >> 0) & 0x3f) << 1;
1789 } else {
1790 // VMSA - rearange fault status
1791 newVal |= ((fsr >> 0) & 0xf) << 1;
1792 newVal |= ((fsr >> 10) & 0x1) << 5;
1793 newVal |= ((fsr >> 12) & 0x1) << 6;
1794 }
1795 newVal |= 0x1; // F bit
1796 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1797 newVal |= armFault->isStage2() ? 0x200 : 0;
1798 DPRINTF(MiscRegs,
1799 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1800 val, fsr, newVal);
1801 }
1802 setMiscRegNoEffect(MISCREG_PAR, newVal);
1803 return;
1804 }
1805 case MISCREG_TTBCR:
1806 {
1807 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1808 const uint32_t ones = (uint32_t)(-1);
1809 TTBCR ttbcrMask = 0;
1810 TTBCR ttbcrNew = newVal;
1811
1812 // ARM DDI 0406C.b, ARMv7-32
1813 ttbcrMask.n = ones; // T0SZ
1814 if (haveSecurity) {
1815 ttbcrMask.pd0 = ones;
1816 ttbcrMask.pd1 = ones;
1817 }
1818 ttbcrMask.epd0 = ones;
1819 ttbcrMask.irgn0 = ones;
1820 ttbcrMask.orgn0 = ones;
1821 ttbcrMask.sh0 = ones;
1822 ttbcrMask.ps = ones; // T1SZ
1823 ttbcrMask.a1 = ones;
1824 ttbcrMask.epd1 = ones;
1825 ttbcrMask.irgn1 = ones;
1826 ttbcrMask.orgn1 = ones;
1827 ttbcrMask.sh1 = ones;
1828 if (haveLPAE)
1829 ttbcrMask.eae = ones;
1830
1831 if (haveLPAE && ttbcrNew.eae) {
1832 newVal = newVal & ttbcrMask;
1833 } else {
1834 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1835 }
1836 // Invalidate TLB MiscReg
1837 getITBPtr(tc)->invalidateMiscReg();
1838 getDTBPtr(tc)->invalidateMiscReg();
1839 break;
1840 }
1841 case MISCREG_TTBR0:
1842 case MISCREG_TTBR1:
1843 {
1844 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1845 if (haveLPAE) {
1846 if (ttbcr.eae) {
1847 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1848 // ARMv8 AArch32 bit 63-56 only
1849 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1850 newVal = (newVal & (~ttbrMask));
1851 }
1852 }
1853 // Invalidate TLB MiscReg
1854 getITBPtr(tc)->invalidateMiscReg();
1855 getDTBPtr(tc)->invalidateMiscReg();
1856 break;
1857 }
1858 case MISCREG_SCTLR_EL1:
1859 case MISCREG_CONTEXTIDR:
1860 case MISCREG_PRRR:
1861 case MISCREG_NMRR:
1862 case MISCREG_MAIR0:
1863 case MISCREG_MAIR1:
1864 case MISCREG_DACR:
1865 case MISCREG_VTTBR:
1866 case MISCREG_SCR_EL3:
1867 case MISCREG_HCR_EL2:
1868 case MISCREG_TCR_EL1:
1869 case MISCREG_TCR_EL2:
1870 case MISCREG_TCR_EL3:
1871 case MISCREG_SCTLR_EL2:
1872 case MISCREG_SCTLR_EL3:
1873 case MISCREG_HSCTLR:
1874 case MISCREG_TTBR0_EL1:
1875 case MISCREG_TTBR1_EL1:
1876 case MISCREG_TTBR0_EL2:
1877 case MISCREG_TTBR1_EL2:
1878 case MISCREG_TTBR0_EL3:
1879 getITBPtr(tc)->invalidateMiscReg();
1880 getDTBPtr(tc)->invalidateMiscReg();
1881 break;
1882 case MISCREG_NZCV:
1883 {
1884 CPSR cpsr = val;
1885
1886 tc->setCCReg(CCREG_NZ, cpsr.nz);
1887 tc->setCCReg(CCREG_C, cpsr.c);
1888 tc->setCCReg(CCREG_V, cpsr.v);
1889 }
1890 break;
1891 case MISCREG_DAIF:
1892 {
1893 CPSR cpsr = miscRegs[MISCREG_CPSR];
1894 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1895 newVal = cpsr;
1896 misc_reg = MISCREG_CPSR;
1897 }
1898 break;
1899 case MISCREG_SP_EL0:
1900 tc->setIntReg(INTREG_SP0, newVal);
1901 break;
1902 case MISCREG_SP_EL1:
1903 tc->setIntReg(INTREG_SP1, newVal);
1904 break;
1905 case MISCREG_SP_EL2:
1906 tc->setIntReg(INTREG_SP2, newVal);
1907 break;
1908 case MISCREG_SPSEL:
1909 {
1910 CPSR cpsr = miscRegs[MISCREG_CPSR];
1911 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1912 newVal = cpsr;
1913 misc_reg = MISCREG_CPSR;
1914 }
1915 break;
1916 case MISCREG_CURRENTEL:
1917 {
1918 CPSR cpsr = miscRegs[MISCREG_CPSR];
1919 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1920 newVal = cpsr;
1921 misc_reg = MISCREG_CPSR;
1922 }
1923 break;
1924 case MISCREG_PAN:
1925 {
1926 // PAN is affecting data accesses
1927 getDTBPtr(tc)->invalidateMiscReg();
1928
1929 CPSR cpsr = miscRegs[MISCREG_CPSR];
1930 cpsr.pan = (uint8_t) ((CPSR) newVal).pan;
1931 newVal = cpsr;
1932 misc_reg = MISCREG_CPSR;
1933 }
1934 break;
1935 case MISCREG_AT_S1E1R_Xt:
1936 case MISCREG_AT_S1E1W_Xt:
1937 case MISCREG_AT_S1E0R_Xt:
1938 case MISCREG_AT_S1E0W_Xt:
1939 case MISCREG_AT_S1E2R_Xt:
1940 case MISCREG_AT_S1E2W_Xt:
1941 case MISCREG_AT_S12E1R_Xt:
1942 case MISCREG_AT_S12E1W_Xt:
1943 case MISCREG_AT_S12E0R_Xt:
1944 case MISCREG_AT_S12E0W_Xt:
1945 case MISCREG_AT_S1E3R_Xt:
1946 case MISCREG_AT_S1E3W_Xt:
1947 {
1948 RequestPtr req = std::make_shared<Request>();
1949 Request::Flags flags = 0;
1950 BaseTLB::Mode mode = BaseTLB::Read;
1951 TLB::ArmTranslationType tranType = TLB::NormalTran;
1952 Fault fault;
1953 switch(misc_reg) {
1954 case MISCREG_AT_S1E1R_Xt:
1955 flags = TLB::MustBeOne;
1956 tranType = TLB::S1E1Tran;
1957 mode = BaseTLB::Read;
1958 break;
1959 case MISCREG_AT_S1E1W_Xt:
1960 flags = TLB::MustBeOne;
1961 tranType = TLB::S1E1Tran;
1962 mode = BaseTLB::Write;
1963 break;
1964 case MISCREG_AT_S1E0R_Xt:
1965 flags = TLB::MustBeOne | TLB::UserMode;
1966 tranType = TLB::S1E0Tran;
1967 mode = BaseTLB::Read;
1968 break;
1969 case MISCREG_AT_S1E0W_Xt:
1970 flags = TLB::MustBeOne | TLB::UserMode;
1971 tranType = TLB::S1E0Tran;
1972 mode = BaseTLB::Write;
1973 break;
1974 case MISCREG_AT_S1E2R_Xt:
1975 flags = TLB::MustBeOne;
1976 tranType = TLB::S1E2Tran;
1977 mode = BaseTLB::Read;
1978 break;
1979 case MISCREG_AT_S1E2W_Xt:
1980 flags = TLB::MustBeOne;
1981 tranType = TLB::S1E2Tran;
1982 mode = BaseTLB::Write;
1983 break;
1984 case MISCREG_AT_S12E0R_Xt:
1985 flags = TLB::MustBeOne | TLB::UserMode;
1986 tranType = TLB::S12E0Tran;
1987 mode = BaseTLB::Read;
1988 break;
1989 case MISCREG_AT_S12E0W_Xt:
1990 flags = TLB::MustBeOne | TLB::UserMode;
1991 tranType = TLB::S12E0Tran;
1992 mode = BaseTLB::Write;
1993 break;
1994 case MISCREG_AT_S12E1R_Xt:
1995 flags = TLB::MustBeOne;
1996 tranType = TLB::S12E1Tran;
1997 mode = BaseTLB::Read;
1998 break;
1999 case MISCREG_AT_S12E1W_Xt:
2000 flags = TLB::MustBeOne;
2001 tranType = TLB::S12E1Tran;
2002 mode = BaseTLB::Write;
2003 break;
2004 case MISCREG_AT_S1E3R_Xt:
2005 flags = TLB::MustBeOne;
2006 tranType = TLB::S1E3Tran;
2007 mode = BaseTLB::Read;
2008 break;
2009 case MISCREG_AT_S1E3W_Xt:
2010 flags = TLB::MustBeOne;
2011 tranType = TLB::S1E3Tran;
2012 mode = BaseTLB::Write;
2013 break;
2014 }
2015 // If we're in timing mode then doing the translation in
2016 // functional mode then we're slightly distorting performance
2017 // results obtained from simulations. The translation should be
2018 // done in the same mode the core is running in. NOTE: This
2019 // can't be an atomic translation because that causes problems
2020 // with unexpected atomic snoop requests.
2021 warn("Translating via %s in functional mode! Fix Me!\n",
2022 miscRegName[misc_reg]);
2023
2024 req->setVirt(0, val, 0, flags, Request::funcMasterId,
2025 tc->pcState().pc());
2026 req->setContext(tc->contextId());
2027 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
2028 tranType);
2029
2030 RegVal newVal;
2031 if (fault == NoFault) {
2032 Addr paddr = req->getPaddr();
2033 uint64_t attr = getDTBPtr(tc)->getAttr();
2034 uint64_t attr1 = attr >> 56;
2035 if (!attr1 || attr1 ==0x44) {
2036 attr |= 0x100;
2037 attr &= ~ uint64_t(0x80);
2038 }
2039 newVal = (paddr & mask(47, 12)) | attr;
2040 DPRINTF(MiscRegs,
2041 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
2042 val, newVal);
2043 } else {
2044 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
2045 armFault->update(tc);
2046 // Set fault bit and FSR
2047 FSR fsr = armFault->getFsr(tc);
2048
2049 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
2050 if (cpsr.width) { // AArch32
2051 newVal = ((fsr >> 9) & 1) << 11;
2052 // rearrange fault status
2053 newVal |= ((fsr >> 0) & 0x3f) << 1;
2054 newVal |= 0x1; // F bit
2055 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2056 newVal |= armFault->isStage2() ? 0x200 : 0;
2057 } else { // AArch64
2058 newVal = 1; // F bit
2059 newVal |= fsr << 1; // FST
2060 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2061 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2062 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2063 newVal |= 1 << 11; // RES1
2064 }
2065 DPRINTF(MiscRegs,
2066 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2067 val, fsr, newVal);
2068 }
2069 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2070 return;
2071 }
2072 case MISCREG_SPSR_EL3:
2073 case MISCREG_SPSR_EL2:
2074 case MISCREG_SPSR_EL1:
2075 {
2076 RegVal spsr_mask = havePAN ?
2077 ~(0x5 << 21) : ~(0x7 << 21);
2078
2079 newVal = val & spsr_mask;
2080 break;
2081 }
2082 case MISCREG_L2CTLR:
2083 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2084 miscRegName[misc_reg], uint32_t(val));
2085 break;
2086
2087 // Generic Timer registers
2088 case MISCREG_CNTHV_CTL_EL2:
2089 case MISCREG_CNTHV_CVAL_EL2:
2090 case MISCREG_CNTHV_TVAL_EL2:
2091 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2092 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2093 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2094 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2095 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2096 break;
2097 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15:
2098 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2099 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2100 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2101 return;
2102 case MISCREG_ZCR_EL3:
2103 case MISCREG_ZCR_EL2:
2104 case MISCREG_ZCR_EL1:
2105 tc->getDecoderPtr()->setSveLen(
2106 (getCurSveVecLenInBits(tc) >> 7) - 1);
2107 break;
2108 }
2109 }
2110 setMiscRegNoEffect(misc_reg, newVal);
2111 }
2112
2113 BaseISADevice &
2114 ISA::getGenericTimer(ThreadContext *tc)
2115 {
2116 // We only need to create an ISA interface the first time we try
2117 // to access the timer.
2118 if (timer)
2119 return *timer.get();
2120
2121 assert(system);
2122 GenericTimer *generic_timer(system->getGenericTimer());
2123 if (!generic_timer) {
2124 panic("Trying to get a generic timer from a system that hasn't "
2125 "been configured to use a generic timer.\n");
2126 }
2127
2128 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2129 timer->setThreadContext(tc);
2130
2131 return *timer.get();
2132 }
2133
2134 BaseISADevice &
2135 ISA::getGICv3CPUInterface(ThreadContext *tc)
2136 {
2137 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2138 return *gicv3CpuInterface.get();
2139 }
2140
2141 unsigned
2142 ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2143 {
2144 if (!FullSystem) {
2145 return sveVL * 128;
2146 }
2147
2148 panic_if(!tc,
2149 "A ThreadContext is needed to determine the SVE vector length "
2150 "in full-system mode");
2151
2152 CPSR cpsr = miscRegs[MISCREG_CPSR];
2153 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2154
2155 unsigned len = 0;
2156
2157 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2158 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2159 }
2160
2161 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2162 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2163 } else if (haveVirtualization && !inSecureState(tc) &&
2164 (el == EL0 || el == EL1)) {
2165 len = std::min(
2166 len,
2167 static_cast<unsigned>(
2168 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2169 }
2170
2171 if (el == EL3) {
2172 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2173 } else if (haveSecurity) {
2174 len = std::min(
2175 len,
2176 static_cast<unsigned>(
2177 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2178 }
2179
2180 len = std::min(len, sveVL - 1);
2181
2182 return (len + 1) * 128;
2183 }
2184
2185 void
2186 ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2187 {
2188 auto vv = vc.as<uint64_t>();
2189 for (int i = 2; i < eCount; ++i) {
2190 vv[i] = 0;
2191 }
2192 }
2193
2194 ISA::MiscRegLUTEntryInitializer::chain
2195 ISA::MiscRegLUTEntryInitializer::highest(ArmSystem *const sys) const
2196 {
2197 switch (FullSystem ? sys->highestEL() : EL1) {
2198 case EL0:
2199 case EL1: priv(); break;
2200 case EL2: hyp(); break;
2201 case EL3: mon(); break;
2202 }
2203 return *this;
2204 }
2205
2206 } // namespace ArmISA
2207
2208 ArmISA::ISA *
2209 ArmISAParams::create()
2210 {
2211 return new ArmISA::ISA(this);
2212 }