isa,cpu: Add support for FS SMT Interrupts
[gem5.git] / src / arch / arm / isa.cc
1 /*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41 #include "arch/arm/isa.hh"
42 #include "arch/arm/pmu.hh"
43 #include "arch/arm/system.hh"
44 #include "cpu/checker/cpu.hh"
45 #include "cpu/base.hh"
46 #include "debug/Arm.hh"
47 #include "debug/MiscRegs.hh"
48 #include "dev/arm/generic_timer.hh"
49 #include "params/ArmISA.hh"
50 #include "sim/faults.hh"
51 #include "sim/stat_control.hh"
52 #include "sim/system.hh"
53
54 namespace ArmISA
55 {
56
57
58 /**
59 * Some registers aliase with others, and therefore need to be translated.
60 * For each entry:
61 * The first value is the misc register that is to be looked up
62 * the second value is the lower part of the translation
63 * the third the upper part
64 */
65 const struct ISA::MiscRegInitializerEntry
66 ISA::MiscRegSwitch[miscRegTranslateMax] = {
67 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
68 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
69 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
70 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
71 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
72 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
73 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
74 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
75 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
76 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
77 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
78 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
79 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
80 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
81 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
82 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
83 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
84 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
85 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
86 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
87 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
88 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
89 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
90 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
91 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
92 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
93 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
94 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
95 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
96 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
97 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
98 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
99 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
100 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
101 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
102 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
103 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
104 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
105 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
106 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
107 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
108 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
109 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
110 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
111 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
112 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
113 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
114 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
115 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
116 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
117 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
118 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
119 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
120 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
121 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
122 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
123 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
124 };
125
126
127 ISA::ISA(Params *p)
128 : SimObject(p),
129 system(NULL),
130 pmu(p->pmu),
131 lookUpMiscReg(NUM_MISCREGS, {0,0})
132 {
133 SCTLR sctlr;
134 sctlr = 0;
135 miscRegs[MISCREG_SCTLR_RST] = sctlr;
136
137 // Hook up a dummy device if we haven't been configured with a
138 // real PMU. By using a dummy device, we don't need to check that
139 // the PMU exist every time we try to access a PMU register.
140 if (!pmu)
141 pmu = &dummyDevice;
142
143 // Give all ISA devices a pointer to this ISA
144 pmu->setISA(this);
145
146 system = dynamic_cast<ArmSystem *>(p->system);
147
148 // Cache system-level properties
149 if (FullSystem && system) {
150 haveSecurity = system->haveSecurity();
151 haveLPAE = system->haveLPAE();
152 haveVirtualization = system->haveVirtualization();
153 haveLargeAsid64 = system->haveLargeAsid64();
154 physAddrRange64 = system->physAddrRange64();
155 } else {
156 haveSecurity = haveLPAE = haveVirtualization = false;
157 haveLargeAsid64 = false;
158 physAddrRange64 = 32; // dummy value
159 }
160
161 /** Fill in the miscReg translation table */
162 for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
163 struct MiscRegLUTEntry new_entry;
164
165 uint32_t select = MiscRegSwitch[i].index;
166 new_entry = MiscRegSwitch[i].entry;
167
168 lookUpMiscReg[select] = new_entry;
169 }
170
171 preUnflattenMiscReg();
172
173 clear();
174 }
175
176 const ArmISAParams *
177 ISA::params() const
178 {
179 return dynamic_cast<const Params *>(_params);
180 }
181
182 void
183 ISA::clear()
184 {
185 const Params *p(params());
186
187 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
188 memset(miscRegs, 0, sizeof(miscRegs));
189
190 // Initialize configurable default values
191 miscRegs[MISCREG_MIDR] = p->midr;
192 miscRegs[MISCREG_MIDR_EL1] = p->midr;
193 miscRegs[MISCREG_VPIDR] = p->midr;
194
195 if (FullSystem && system->highestELIs64()) {
196 // Initialize AArch64 state
197 clear64(p);
198 return;
199 }
200
201 // Initialize AArch32 state...
202
203 CPSR cpsr = 0;
204 cpsr.mode = MODE_USER;
205 miscRegs[MISCREG_CPSR] = cpsr;
206 updateRegMap(cpsr);
207
208 SCTLR sctlr = 0;
209 sctlr.te = (bool) sctlr_rst.te;
210 sctlr.nmfi = (bool) sctlr_rst.nmfi;
211 sctlr.v = (bool) sctlr_rst.v;
212 sctlr.u = 1;
213 sctlr.xp = 1;
214 sctlr.rao2 = 1;
215 sctlr.rao3 = 1;
216 sctlr.rao4 = 0xf; // SCTLR[6:3]
217 sctlr.uci = 1;
218 sctlr.dze = 1;
219 miscRegs[MISCREG_SCTLR_NS] = sctlr;
220 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
221 miscRegs[MISCREG_HCPTR] = 0;
222
223 // Start with an event in the mailbox
224 miscRegs[MISCREG_SEV_MAILBOX] = 1;
225
226 // Separate Instruction and Data TLBs
227 miscRegs[MISCREG_TLBTR] = 1;
228
229 MVFR0 mvfr0 = 0;
230 mvfr0.advSimdRegisters = 2;
231 mvfr0.singlePrecision = 2;
232 mvfr0.doublePrecision = 2;
233 mvfr0.vfpExceptionTrapping = 0;
234 mvfr0.divide = 1;
235 mvfr0.squareRoot = 1;
236 mvfr0.shortVectors = 1;
237 mvfr0.roundingModes = 1;
238 miscRegs[MISCREG_MVFR0] = mvfr0;
239
240 MVFR1 mvfr1 = 0;
241 mvfr1.flushToZero = 1;
242 mvfr1.defaultNaN = 1;
243 mvfr1.advSimdLoadStore = 1;
244 mvfr1.advSimdInteger = 1;
245 mvfr1.advSimdSinglePrecision = 1;
246 mvfr1.advSimdHalfPrecision = 1;
247 mvfr1.vfpHalfPrecision = 1;
248 miscRegs[MISCREG_MVFR1] = mvfr1;
249
250 // Reset values of PRRR and NMRR are implementation dependent
251
252 // @todo: PRRR and NMRR in secure state?
253 miscRegs[MISCREG_PRRR_NS] =
254 (1 << 19) | // 19
255 (0 << 18) | // 18
256 (0 << 17) | // 17
257 (1 << 16) | // 16
258 (2 << 14) | // 15:14
259 (0 << 12) | // 13:12
260 (2 << 10) | // 11:10
261 (2 << 8) | // 9:8
262 (2 << 6) | // 7:6
263 (2 << 4) | // 5:4
264 (1 << 2) | // 3:2
265 0; // 1:0
266 miscRegs[MISCREG_NMRR_NS] =
267 (1 << 30) | // 31:30
268 (0 << 26) | // 27:26
269 (0 << 24) | // 25:24
270 (3 << 22) | // 23:22
271 (2 << 20) | // 21:20
272 (0 << 18) | // 19:18
273 (0 << 16) | // 17:16
274 (1 << 14) | // 15:14
275 (0 << 12) | // 13:12
276 (2 << 10) | // 11:10
277 (0 << 8) | // 9:8
278 (3 << 6) | // 7:6
279 (2 << 4) | // 5:4
280 (0 << 2) | // 3:2
281 0; // 1:0
282
283 miscRegs[MISCREG_CPACR] = 0;
284
285
286 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
287 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
288
289 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
290 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
291 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
292 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
293
294 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
295 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
296 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
297 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
298 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
299 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
300
301 miscRegs[MISCREG_FPSID] = p->fpsid;
302
303 if (haveLPAE) {
304 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
305 ttbcr.eae = 0;
306 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
307 // Enforce consistency with system-level settings
308 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
309 }
310
311 if (haveSecurity) {
312 miscRegs[MISCREG_SCTLR_S] = sctlr;
313 miscRegs[MISCREG_SCR] = 0;
314 miscRegs[MISCREG_VBAR_S] = 0;
315 } else {
316 // we're always non-secure
317 miscRegs[MISCREG_SCR] = 1;
318 }
319
320 //XXX We need to initialize the rest of the state.
321 }
322
323 void
324 ISA::clear64(const ArmISAParams *p)
325 {
326 CPSR cpsr = 0;
327 Addr rvbar = system->resetAddr64();
328 switch (system->highestEL()) {
329 // Set initial EL to highest implemented EL using associated stack
330 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
331 // value
332 case EL3:
333 cpsr.mode = MODE_EL3H;
334 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
335 break;
336 case EL2:
337 cpsr.mode = MODE_EL2H;
338 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
339 break;
340 case EL1:
341 cpsr.mode = MODE_EL1H;
342 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
343 break;
344 default:
345 panic("Invalid highest implemented exception level");
346 break;
347 }
348
349 // Initialize rest of CPSR
350 cpsr.daif = 0xf; // Mask all interrupts
351 cpsr.ss = 0;
352 cpsr.il = 0;
353 miscRegs[MISCREG_CPSR] = cpsr;
354 updateRegMap(cpsr);
355
356 // Initialize other control registers
357 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
358 if (haveSecurity) {
359 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
360 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
361 // @todo: uncomment this to enable Virtualization
362 // } else if (haveVirtualization) {
363 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
364 } else {
365 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
366 // Always non-secure
367 miscRegs[MISCREG_SCR_EL3] = 1;
368 }
369
370 // Initialize configurable id registers
371 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
372 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
373 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
374 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
375 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
376
377 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
378 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
379 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
380 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
381 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
382 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
383 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
384
385 miscRegs[MISCREG_ID_DFR0_EL1] =
386 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
387
388 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
389
390 // Enforce consistency with system-level settings...
391
392 // EL3
393 // (no AArch32/64 interprocessing support for now)
394 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
395 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
396 haveSecurity ? 0x1 : 0x0);
397 // EL2
398 // (no AArch32/64 interprocessing support for now)
399 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
400 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
401 haveVirtualization ? 0x1 : 0x0);
402 // Large ASID support
403 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
404 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
405 haveLargeAsid64 ? 0x2 : 0x0);
406 // Physical address size
407 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
408 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
409 encodePhysAddrRange64(physAddrRange64));
410 }
411
412 MiscReg
413 ISA::readMiscRegNoEffect(int misc_reg) const
414 {
415 assert(misc_reg < NumMiscRegs);
416
417 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
418 // registers are left unchanged
419 MiscReg val;
420
421 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
422 || flat_idx == MISCREG_SCTLR_EL1) {
423 if (flat_idx == MISCREG_SPSR)
424 flat_idx = flattenMiscIndex(MISCREG_SPSR);
425 if (flat_idx == MISCREG_SCTLR_EL1)
426 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
427 val = miscRegs[flat_idx];
428 } else
429 if (lookUpMiscReg[flat_idx].upper > 0)
430 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
431 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
432 else
433 val = miscRegs[lookUpMiscReg[flat_idx].lower];
434
435 return val;
436 }
437
438
439 MiscReg
440 ISA::readMiscReg(int misc_reg, ThreadContext *tc)
441 {
442 CPSR cpsr = 0;
443 PCState pc = 0;
444 SCR scr = 0;
445
446 if (misc_reg == MISCREG_CPSR) {
447 cpsr = miscRegs[misc_reg];
448 pc = tc->pcState();
449 cpsr.j = pc.jazelle() ? 1 : 0;
450 cpsr.t = pc.thumb() ? 1 : 0;
451 return cpsr;
452 }
453
454 #ifndef NDEBUG
455 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
456 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
457 warn("Unimplemented system register %s read.\n",
458 miscRegName[misc_reg]);
459 else
460 panic("Unimplemented system register %s read.\n",
461 miscRegName[misc_reg]);
462 }
463 #endif
464
465 switch (unflattenMiscReg(misc_reg)) {
466 case MISCREG_HCR:
467 {
468 if (!haveVirtualization)
469 return 0;
470 else
471 return readMiscRegNoEffect(MISCREG_HCR);
472 }
473 case MISCREG_CPACR:
474 {
475 const uint32_t ones = (uint32_t)(-1);
476 CPACR cpacrMask = 0;
477 // Only cp10, cp11, and ase are implemented, nothing else should
478 // be readable? (straight copy from the write code)
479 cpacrMask.cp10 = ones;
480 cpacrMask.cp11 = ones;
481 cpacrMask.asedis = ones;
482
483 // Security Extensions may limit the readability of CPACR
484 if (haveSecurity) {
485 scr = readMiscRegNoEffect(MISCREG_SCR);
486 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
487 if (scr.ns && (cpsr.mode != MODE_MON)) {
488 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
489 // NB: Skipping the full loop, here
490 if (!nsacr.cp10) cpacrMask.cp10 = 0;
491 if (!nsacr.cp11) cpacrMask.cp11 = 0;
492 }
493 }
494 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
495 val &= cpacrMask;
496 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
497 miscRegName[misc_reg], val);
498 return val;
499 }
500 case MISCREG_MPIDR:
501 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
502 scr = readMiscRegNoEffect(MISCREG_SCR);
503 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
504 return getMPIDR(system, tc);
505 } else {
506 return readMiscReg(MISCREG_VMPIDR, tc);
507 }
508 break;
509 case MISCREG_MPIDR_EL1:
510 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
511 return getMPIDR(system, tc) & 0xffffffff;
512 case MISCREG_VMPIDR:
513 // top bit defined as RES1
514 return readMiscRegNoEffect(misc_reg) | 0x80000000;
515 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
516 case MISCREG_REVIDR: // not implemented, so alias MIDR
517 case MISCREG_MIDR:
518 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
519 scr = readMiscRegNoEffect(MISCREG_SCR);
520 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
521 return readMiscRegNoEffect(misc_reg);
522 } else {
523 return readMiscRegNoEffect(MISCREG_VPIDR);
524 }
525 break;
526 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
527 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
528 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
529 case MISCREG_AIDR: // AUX ID set to 0
530 case MISCREG_TCMTR: // No TCM's
531 return 0;
532
533 case MISCREG_CLIDR:
534 warn_once("The clidr register always reports 0 caches.\n");
535 warn_once("clidr LoUIS field of 0b001 to match current "
536 "ARM implementations.\n");
537 return 0x00200000;
538 case MISCREG_CCSIDR:
539 warn_once("The ccsidr register isn't implemented and "
540 "always reads as 0.\n");
541 break;
542 case MISCREG_CTR:
543 {
544 //all caches have the same line size in gem5
545 //4 byte words in ARM
546 unsigned lineSizeWords =
547 tc->getSystemPtr()->cacheLineSize() / 4;
548 unsigned log2LineSizeWords = 0;
549
550 while (lineSizeWords >>= 1) {
551 ++log2LineSizeWords;
552 }
553
554 CTR ctr = 0;
555 //log2 of minimun i-cache line size (words)
556 ctr.iCacheLineSize = log2LineSizeWords;
557 //b11 - gem5 uses pipt
558 ctr.l1IndexPolicy = 0x3;
559 //log2 of minimum d-cache line size (words)
560 ctr.dCacheLineSize = log2LineSizeWords;
561 //log2 of max reservation size (words)
562 ctr.erg = log2LineSizeWords;
563 //log2 of max writeback size (words)
564 ctr.cwg = log2LineSizeWords;
565 //b100 - gem5 format is ARMv7
566 ctr.format = 0x4;
567
568 return ctr;
569 }
570 case MISCREG_ACTLR:
571 warn("Not doing anything for miscreg ACTLR\n");
572 break;
573
574 case MISCREG_PMXEVTYPER_PMCCFILTR:
575 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
576 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
577 case MISCREG_PMCR ... MISCREG_PMOVSSET:
578 return pmu->readMiscReg(misc_reg);
579
580 case MISCREG_CPSR_Q:
581 panic("shouldn't be reading this register seperately\n");
582 case MISCREG_FPSCR_QC:
583 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
584 case MISCREG_FPSCR_EXC:
585 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
586 case MISCREG_FPSR:
587 {
588 const uint32_t ones = (uint32_t)(-1);
589 FPSCR fpscrMask = 0;
590 fpscrMask.ioc = ones;
591 fpscrMask.dzc = ones;
592 fpscrMask.ofc = ones;
593 fpscrMask.ufc = ones;
594 fpscrMask.ixc = ones;
595 fpscrMask.idc = ones;
596 fpscrMask.qc = ones;
597 fpscrMask.v = ones;
598 fpscrMask.c = ones;
599 fpscrMask.z = ones;
600 fpscrMask.n = ones;
601 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
602 }
603 case MISCREG_FPCR:
604 {
605 const uint32_t ones = (uint32_t)(-1);
606 FPSCR fpscrMask = 0;
607 fpscrMask.ioe = ones;
608 fpscrMask.dze = ones;
609 fpscrMask.ofe = ones;
610 fpscrMask.ufe = ones;
611 fpscrMask.ixe = ones;
612 fpscrMask.ide = ones;
613 fpscrMask.len = ones;
614 fpscrMask.stride = ones;
615 fpscrMask.rMode = ones;
616 fpscrMask.fz = ones;
617 fpscrMask.dn = ones;
618 fpscrMask.ahp = ones;
619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620 }
621 case MISCREG_NZCV:
622 {
623 CPSR cpsr = 0;
624 cpsr.nz = tc->readCCReg(CCREG_NZ);
625 cpsr.c = tc->readCCReg(CCREG_C);
626 cpsr.v = tc->readCCReg(CCREG_V);
627 return cpsr;
628 }
629 case MISCREG_DAIF:
630 {
631 CPSR cpsr = 0;
632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
633 return cpsr;
634 }
635 case MISCREG_SP_EL0:
636 {
637 return tc->readIntReg(INTREG_SP0);
638 }
639 case MISCREG_SP_EL1:
640 {
641 return tc->readIntReg(INTREG_SP1);
642 }
643 case MISCREG_SP_EL2:
644 {
645 return tc->readIntReg(INTREG_SP2);
646 }
647 case MISCREG_SPSEL:
648 {
649 return miscRegs[MISCREG_CPSR] & 0x1;
650 }
651 case MISCREG_CURRENTEL:
652 {
653 return miscRegs[MISCREG_CPSR] & 0xc;
654 }
655 case MISCREG_L2CTLR:
656 {
657 // mostly unimplemented, just set NumCPUs field from sim and return
658 L2CTLR l2ctlr = 0;
659 // b00:1CPU to b11:4CPUs
660 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
661 return l2ctlr;
662 }
663 case MISCREG_DBGDIDR:
664 /* For now just implement the version number.
665 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
666 */
667 return 0x5 << 16;
668 case MISCREG_DBGDSCRint:
669 return 0;
670 case MISCREG_ISR:
671 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
672 readMiscRegNoEffect(MISCREG_HCR),
673 readMiscRegNoEffect(MISCREG_CPSR),
674 readMiscRegNoEffect(MISCREG_SCR));
675 case MISCREG_ISR_EL1:
676 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
677 readMiscRegNoEffect(MISCREG_HCR_EL2),
678 readMiscRegNoEffect(MISCREG_CPSR),
679 readMiscRegNoEffect(MISCREG_SCR_EL3));
680 case MISCREG_DCZID_EL0:
681 return 0x04; // DC ZVA clear 64-byte chunks
682 case MISCREG_HCPTR:
683 {
684 MiscReg val = readMiscRegNoEffect(misc_reg);
685 // The trap bit associated with CP14 is defined as RAZ
686 val &= ~(1 << 14);
687 // If a CP bit in NSACR is 0 then the corresponding bit in
688 // HCPTR is RAO/WI
689 bool secure_lookup = haveSecurity &&
690 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
691 readMiscRegNoEffect(MISCREG_CPSR));
692 if (!secure_lookup) {
693 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
694 val |= (mask ^ 0x7FFF) & 0xBFFF;
695 }
696 // Set the bits for unimplemented coprocessors to RAO/WI
697 val |= 0x33FF;
698 return (val);
699 }
700 case MISCREG_HDFAR: // alias for secure DFAR
701 return readMiscRegNoEffect(MISCREG_DFAR_S);
702 case MISCREG_HIFAR: // alias for secure IFAR
703 return readMiscRegNoEffect(MISCREG_IFAR_S);
704 case MISCREG_HVBAR: // bottom bits reserved
705 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
706 case MISCREG_SCTLR: // Some bits hardwired
707 // The FI field (bit 21) is common between S/NS versions of the register
708 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
709 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
710 case MISCREG_SCTLR_EL1:
711 // The FI field (bit 21) is common between S/NS versions of the register
712 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
713 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
714 case MISCREG_SCTLR_EL3:
715 // The FI field (bit 21) is common between S/NS versions of the register
716 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
717 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
718 case MISCREG_HSCTLR: // FI comes from SCTLR
719 {
720 uint32_t mask = 1 << 27;
721 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
722 (readMiscRegNoEffect(MISCREG_SCTLR) & mask);
723 }
724 case MISCREG_SCR:
725 {
726 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
727 if (cpsr.width) {
728 return readMiscRegNoEffect(MISCREG_SCR);
729 } else {
730 return readMiscRegNoEffect(MISCREG_SCR_EL3);
731 }
732 }
733
734 // Generic Timer registers
735 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
736 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
737 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
738 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
739 return getGenericTimer(tc).readMiscReg(misc_reg);
740
741 default:
742 break;
743
744 }
745 return readMiscRegNoEffect(misc_reg);
746 }
747
748 void
749 ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
750 {
751 assert(misc_reg < NumMiscRegs);
752
753 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
754 // registers are left unchanged
755
756 int flat_idx2 = lookUpMiscReg[flat_idx].upper;
757
758 if (flat_idx2 > 0) {
759 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
760 miscRegs[flat_idx2] = bits(val, 63, 32);
761 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
762 misc_reg, flat_idx, flat_idx2, val);
763 } else {
764 if (flat_idx == MISCREG_SPSR)
765 flat_idx = flattenMiscIndex(MISCREG_SPSR);
766 else if (flat_idx == MISCREG_SCTLR_EL1)
767 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
768 else
769 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
770 lookUpMiscReg[flat_idx].lower : flat_idx;
771 miscRegs[flat_idx] = val;
772 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
773 misc_reg, flat_idx, val);
774 }
775 }
776
777 void
778 ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
779 {
780
781 MiscReg newVal = val;
782 int x;
783 bool secure_lookup;
784 bool hyp;
785 System *sys;
786 ThreadContext *oc;
787 uint8_t target_el;
788 uint16_t asid;
789 SCR scr;
790
791 if (misc_reg == MISCREG_CPSR) {
792 updateRegMap(val);
793
794
795 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
796 int old_mode = old_cpsr.mode;
797 CPSR cpsr = val;
798 if (old_mode != cpsr.mode) {
799 tc->getITBPtr()->invalidateMiscReg();
800 tc->getDTBPtr()->invalidateMiscReg();
801 }
802
803 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
804 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
805 PCState pc = tc->pcState();
806 pc.nextThumb(cpsr.t);
807 pc.nextJazelle(cpsr.j);
808
809 // Follow slightly different semantics if a CheckerCPU object
810 // is connected
811 CheckerCPU *checker = tc->getCheckerCpuPtr();
812 if (checker) {
813 tc->pcStateNoRecord(pc);
814 } else {
815 tc->pcState(pc);
816 }
817 } else {
818 #ifndef NDEBUG
819 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
820 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
821 warn("Unimplemented system register %s write with %#x.\n",
822 miscRegName[misc_reg], val);
823 else
824 panic("Unimplemented system register %s write with %#x.\n",
825 miscRegName[misc_reg], val);
826 }
827 #endif
828 switch (unflattenMiscReg(misc_reg)) {
829 case MISCREG_CPACR:
830 {
831
832 const uint32_t ones = (uint32_t)(-1);
833 CPACR cpacrMask = 0;
834 // Only cp10, cp11, and ase are implemented, nothing else should
835 // be writable
836 cpacrMask.cp10 = ones;
837 cpacrMask.cp11 = ones;
838 cpacrMask.asedis = ones;
839
840 // Security Extensions may limit the writability of CPACR
841 if (haveSecurity) {
842 scr = readMiscRegNoEffect(MISCREG_SCR);
843 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
844 if (scr.ns && (cpsr.mode != MODE_MON)) {
845 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
846 // NB: Skipping the full loop, here
847 if (!nsacr.cp10) cpacrMask.cp10 = 0;
848 if (!nsacr.cp11) cpacrMask.cp11 = 0;
849 }
850 }
851
852 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
853 newVal &= cpacrMask;
854 newVal |= old_val & ~cpacrMask;
855 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
856 miscRegName[misc_reg], newVal);
857 }
858 break;
859 case MISCREG_CPACR_EL1:
860 {
861 const uint32_t ones = (uint32_t)(-1);
862 CPACR cpacrMask = 0;
863 cpacrMask.tta = ones;
864 cpacrMask.fpen = ones;
865 newVal &= cpacrMask;
866 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
867 miscRegName[misc_reg], newVal);
868 }
869 break;
870 case MISCREG_CPTR_EL2:
871 {
872 const uint32_t ones = (uint32_t)(-1);
873 CPTR cptrMask = 0;
874 cptrMask.tcpac = ones;
875 cptrMask.tta = ones;
876 cptrMask.tfp = ones;
877 newVal &= cptrMask;
878 cptrMask = 0;
879 cptrMask.res1_13_12_el2 = ones;
880 cptrMask.res1_9_0_el2 = ones;
881 newVal |= cptrMask;
882 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
883 miscRegName[misc_reg], newVal);
884 }
885 break;
886 case MISCREG_CPTR_EL3:
887 {
888 const uint32_t ones = (uint32_t)(-1);
889 CPTR cptrMask = 0;
890 cptrMask.tcpac = ones;
891 cptrMask.tta = ones;
892 cptrMask.tfp = ones;
893 newVal &= cptrMask;
894 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
895 miscRegName[misc_reg], newVal);
896 }
897 break;
898 case MISCREG_CSSELR:
899 warn_once("The csselr register isn't implemented.\n");
900 return;
901
902 case MISCREG_DC_ZVA_Xt:
903 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
904 return;
905
906 case MISCREG_FPSCR:
907 {
908 const uint32_t ones = (uint32_t)(-1);
909 FPSCR fpscrMask = 0;
910 fpscrMask.ioc = ones;
911 fpscrMask.dzc = ones;
912 fpscrMask.ofc = ones;
913 fpscrMask.ufc = ones;
914 fpscrMask.ixc = ones;
915 fpscrMask.idc = ones;
916 fpscrMask.ioe = ones;
917 fpscrMask.dze = ones;
918 fpscrMask.ofe = ones;
919 fpscrMask.ufe = ones;
920 fpscrMask.ixe = ones;
921 fpscrMask.ide = ones;
922 fpscrMask.len = ones;
923 fpscrMask.stride = ones;
924 fpscrMask.rMode = ones;
925 fpscrMask.fz = ones;
926 fpscrMask.dn = ones;
927 fpscrMask.ahp = ones;
928 fpscrMask.qc = ones;
929 fpscrMask.v = ones;
930 fpscrMask.c = ones;
931 fpscrMask.z = ones;
932 fpscrMask.n = ones;
933 newVal = (newVal & (uint32_t)fpscrMask) |
934 (readMiscRegNoEffect(MISCREG_FPSCR) &
935 ~(uint32_t)fpscrMask);
936 tc->getDecoderPtr()->setContext(newVal);
937 }
938 break;
939 case MISCREG_FPSR:
940 {
941 const uint32_t ones = (uint32_t)(-1);
942 FPSCR fpscrMask = 0;
943 fpscrMask.ioc = ones;
944 fpscrMask.dzc = ones;
945 fpscrMask.ofc = ones;
946 fpscrMask.ufc = ones;
947 fpscrMask.ixc = ones;
948 fpscrMask.idc = ones;
949 fpscrMask.qc = ones;
950 fpscrMask.v = ones;
951 fpscrMask.c = ones;
952 fpscrMask.z = ones;
953 fpscrMask.n = ones;
954 newVal = (newVal & (uint32_t)fpscrMask) |
955 (readMiscRegNoEffect(MISCREG_FPSCR) &
956 ~(uint32_t)fpscrMask);
957 misc_reg = MISCREG_FPSCR;
958 }
959 break;
960 case MISCREG_FPCR:
961 {
962 const uint32_t ones = (uint32_t)(-1);
963 FPSCR fpscrMask = 0;
964 fpscrMask.ioe = ones;
965 fpscrMask.dze = ones;
966 fpscrMask.ofe = ones;
967 fpscrMask.ufe = ones;
968 fpscrMask.ixe = ones;
969 fpscrMask.ide = ones;
970 fpscrMask.len = ones;
971 fpscrMask.stride = ones;
972 fpscrMask.rMode = ones;
973 fpscrMask.fz = ones;
974 fpscrMask.dn = ones;
975 fpscrMask.ahp = ones;
976 newVal = (newVal & (uint32_t)fpscrMask) |
977 (readMiscRegNoEffect(MISCREG_FPSCR) &
978 ~(uint32_t)fpscrMask);
979 misc_reg = MISCREG_FPSCR;
980 }
981 break;
982 case MISCREG_CPSR_Q:
983 {
984 assert(!(newVal & ~CpsrMaskQ));
985 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
986 misc_reg = MISCREG_CPSR;
987 }
988 break;
989 case MISCREG_FPSCR_QC:
990 {
991 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
992 (newVal & FpscrQcMask);
993 misc_reg = MISCREG_FPSCR;
994 }
995 break;
996 case MISCREG_FPSCR_EXC:
997 {
998 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
999 (newVal & FpscrExcMask);
1000 misc_reg = MISCREG_FPSCR;
1001 }
1002 break;
1003 case MISCREG_FPEXC:
1004 {
1005 // vfpv3 architecture, section B.6.1 of DDI04068
1006 // bit 29 - valid only if fpexc[31] is 0
1007 const uint32_t fpexcMask = 0x60000000;
1008 newVal = (newVal & fpexcMask) |
1009 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1010 }
1011 break;
1012 case MISCREG_HCR:
1013 {
1014 if (!haveVirtualization)
1015 return;
1016 }
1017 break;
1018 case MISCREG_IFSR:
1019 {
1020 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1021 const uint32_t ifsrMask =
1022 mask(31, 13) | mask(11, 11) | mask(8, 6);
1023 newVal = newVal & ~ifsrMask;
1024 }
1025 break;
1026 case MISCREG_DFSR:
1027 {
1028 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1029 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1030 newVal = newVal & ~dfsrMask;
1031 }
1032 break;
1033 case MISCREG_AMAIR0:
1034 case MISCREG_AMAIR1:
1035 {
1036 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1037 // Valid only with LPAE
1038 if (!haveLPAE)
1039 return;
1040 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1041 }
1042 break;
1043 case MISCREG_SCR:
1044 tc->getITBPtr()->invalidateMiscReg();
1045 tc->getDTBPtr()->invalidateMiscReg();
1046 break;
1047 case MISCREG_SCTLR:
1048 {
1049 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1050 MiscRegIndex sctlr_idx;
1051 scr = readMiscRegNoEffect(MISCREG_SCR);
1052 if (haveSecurity && !scr.ns) {
1053 sctlr_idx = MISCREG_SCTLR_S;
1054 } else {
1055 sctlr_idx = MISCREG_SCTLR_NS;
1056 // The FI field (bit 21) is common between S/NS versions
1057 // of the register, we store this in the secure copy of
1058 // the reg
1059 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21);
1060 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1061 }
1062 SCTLR sctlr = miscRegs[sctlr_idx];
1063 SCTLR new_sctlr = newVal;
1064 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1065 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1066 tc->getITBPtr()->invalidateMiscReg();
1067 tc->getDTBPtr()->invalidateMiscReg();
1068 }
1069 case MISCREG_MIDR:
1070 case MISCREG_ID_PFR0:
1071 case MISCREG_ID_PFR1:
1072 case MISCREG_ID_DFR0:
1073 case MISCREG_ID_MMFR0:
1074 case MISCREG_ID_MMFR1:
1075 case MISCREG_ID_MMFR2:
1076 case MISCREG_ID_MMFR3:
1077 case MISCREG_ID_ISAR0:
1078 case MISCREG_ID_ISAR1:
1079 case MISCREG_ID_ISAR2:
1080 case MISCREG_ID_ISAR3:
1081 case MISCREG_ID_ISAR4:
1082 case MISCREG_ID_ISAR5:
1083
1084 case MISCREG_MPIDR:
1085 case MISCREG_FPSID:
1086 case MISCREG_TLBTR:
1087 case MISCREG_MVFR0:
1088 case MISCREG_MVFR1:
1089
1090 case MISCREG_ID_AA64AFR0_EL1:
1091 case MISCREG_ID_AA64AFR1_EL1:
1092 case MISCREG_ID_AA64DFR0_EL1:
1093 case MISCREG_ID_AA64DFR1_EL1:
1094 case MISCREG_ID_AA64ISAR0_EL1:
1095 case MISCREG_ID_AA64ISAR1_EL1:
1096 case MISCREG_ID_AA64MMFR0_EL1:
1097 case MISCREG_ID_AA64MMFR1_EL1:
1098 case MISCREG_ID_AA64PFR0_EL1:
1099 case MISCREG_ID_AA64PFR1_EL1:
1100 // ID registers are constants.
1101 return;
1102
1103 // TLBI all entries, EL0&1 inner sharable (ignored)
1104 case MISCREG_TLBIALLIS:
1105 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1106 assert32(tc);
1107 target_el = 1; // el 0 and 1 are handled together
1108 scr = readMiscReg(MISCREG_SCR, tc);
1109 secure_lookup = haveSecurity && !scr.ns;
1110 sys = tc->getSystemPtr();
1111 for (x = 0; x < sys->numContexts(); x++) {
1112 oc = sys->getThreadContext(x);
1113 assert(oc->getITBPtr() && oc->getDTBPtr());
1114 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1115 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1116
1117 // If CheckerCPU is connected, need to notify it of a flush
1118 CheckerCPU *checker = oc->getCheckerCpuPtr();
1119 if (checker) {
1120 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1121 target_el);
1122 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1123 target_el);
1124 }
1125 }
1126 return;
1127 // TLBI all entries, EL0&1, instruction side
1128 case MISCREG_ITLBIALL:
1129 assert32(tc);
1130 target_el = 1; // el 0 and 1 are handled together
1131 scr = readMiscReg(MISCREG_SCR, tc);
1132 secure_lookup = haveSecurity && !scr.ns;
1133 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1134 return;
1135 // TLBI all entries, EL0&1, data side
1136 case MISCREG_DTLBIALL:
1137 assert32(tc);
1138 target_el = 1; // el 0 and 1 are handled together
1139 scr = readMiscReg(MISCREG_SCR, tc);
1140 secure_lookup = haveSecurity && !scr.ns;
1141 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1142 return;
1143 // TLBI based on VA, EL0&1 inner sharable (ignored)
1144 case MISCREG_TLBIMVAIS:
1145 case MISCREG_TLBIMVA:
1146 assert32(tc);
1147 target_el = 1; // el 0 and 1 are handled together
1148 scr = readMiscReg(MISCREG_SCR, tc);
1149 secure_lookup = haveSecurity && !scr.ns;
1150 sys = tc->getSystemPtr();
1151 for (x = 0; x < sys->numContexts(); x++) {
1152 oc = sys->getThreadContext(x);
1153 assert(oc->getITBPtr() && oc->getDTBPtr());
1154 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1155 bits(newVal, 7,0),
1156 secure_lookup, target_el);
1157 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1158 bits(newVal, 7,0),
1159 secure_lookup, target_el);
1160
1161 CheckerCPU *checker = oc->getCheckerCpuPtr();
1162 if (checker) {
1163 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1164 bits(newVal, 7,0), secure_lookup, target_el);
1165 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1166 bits(newVal, 7,0), secure_lookup, target_el);
1167 }
1168 }
1169 return;
1170 // TLBI by ASID, EL0&1, inner sharable
1171 case MISCREG_TLBIASIDIS:
1172 case MISCREG_TLBIASID:
1173 assert32(tc);
1174 target_el = 1; // el 0 and 1 are handled together
1175 scr = readMiscReg(MISCREG_SCR, tc);
1176 secure_lookup = haveSecurity && !scr.ns;
1177 sys = tc->getSystemPtr();
1178 for (x = 0; x < sys->numContexts(); x++) {
1179 oc = sys->getThreadContext(x);
1180 assert(oc->getITBPtr() && oc->getDTBPtr());
1181 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1182 secure_lookup, target_el);
1183 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1184 secure_lookup, target_el);
1185 CheckerCPU *checker = oc->getCheckerCpuPtr();
1186 if (checker) {
1187 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1188 secure_lookup, target_el);
1189 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1190 secure_lookup, target_el);
1191 }
1192 }
1193 return;
1194 // TLBI by address, EL0&1, inner sharable (ignored)
1195 case MISCREG_TLBIMVAAIS:
1196 case MISCREG_TLBIMVAA:
1197 assert32(tc);
1198 target_el = 1; // el 0 and 1 are handled together
1199 scr = readMiscReg(MISCREG_SCR, tc);
1200 secure_lookup = haveSecurity && !scr.ns;
1201 hyp = 0;
1202 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1203 return;
1204 // TLBI by address, EL2, hypervisor mode
1205 case MISCREG_TLBIMVAH:
1206 case MISCREG_TLBIMVAHIS:
1207 assert32(tc);
1208 target_el = 1; // aarch32, use hyp bit
1209 scr = readMiscReg(MISCREG_SCR, tc);
1210 secure_lookup = haveSecurity && !scr.ns;
1211 hyp = 1;
1212 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1213 return;
1214 // TLBI by address and asid, EL0&1, instruction side only
1215 case MISCREG_ITLBIMVA:
1216 assert32(tc);
1217 target_el = 1; // el 0 and 1 are handled together
1218 scr = readMiscReg(MISCREG_SCR, tc);
1219 secure_lookup = haveSecurity && !scr.ns;
1220 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1221 bits(newVal, 7,0), secure_lookup, target_el);
1222 return;
1223 // TLBI by address and asid, EL0&1, data side only
1224 case MISCREG_DTLBIMVA:
1225 assert32(tc);
1226 target_el = 1; // el 0 and 1 are handled together
1227 scr = readMiscReg(MISCREG_SCR, tc);
1228 secure_lookup = haveSecurity && !scr.ns;
1229 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1230 bits(newVal, 7,0), secure_lookup, target_el);
1231 return;
1232 // TLBI by ASID, EL0&1, instrution side only
1233 case MISCREG_ITLBIASID:
1234 assert32(tc);
1235 target_el = 1; // el 0 and 1 are handled together
1236 scr = readMiscReg(MISCREG_SCR, tc);
1237 secure_lookup = haveSecurity && !scr.ns;
1238 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1239 target_el);
1240 return;
1241 // TLBI by ASID EL0&1 data size only
1242 case MISCREG_DTLBIASID:
1243 assert32(tc);
1244 target_el = 1; // el 0 and 1 are handled together
1245 scr = readMiscReg(MISCREG_SCR, tc);
1246 secure_lookup = haveSecurity && !scr.ns;
1247 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1248 target_el);
1249 return;
1250 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1251 case MISCREG_TLBIALLNSNH:
1252 case MISCREG_TLBIALLNSNHIS:
1253 assert32(tc);
1254 target_el = 1; // el 0 and 1 are handled together
1255 hyp = 0;
1256 tlbiALLN(tc, hyp, target_el);
1257 return;
1258 // TLBI all entries, EL2, hyp,
1259 case MISCREG_TLBIALLH:
1260 case MISCREG_TLBIALLHIS:
1261 assert32(tc);
1262 target_el = 1; // aarch32, use hyp bit
1263 hyp = 1;
1264 tlbiALLN(tc, hyp, target_el);
1265 return;
1266 // AArch64 TLBI: invalidate all entries EL3
1267 case MISCREG_TLBI_ALLE3IS:
1268 case MISCREG_TLBI_ALLE3:
1269 assert64(tc);
1270 target_el = 3;
1271 secure_lookup = true;
1272 tlbiALL(tc, secure_lookup, target_el);
1273 return;
1274 // @todo: uncomment this to enable Virtualization
1275 // case MISCREG_TLBI_ALLE2IS:
1276 // case MISCREG_TLBI_ALLE2:
1277 // TLBI all entries, EL0&1
1278 case MISCREG_TLBI_ALLE1IS:
1279 case MISCREG_TLBI_ALLE1:
1280 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1281 case MISCREG_TLBI_VMALLE1IS:
1282 case MISCREG_TLBI_VMALLE1:
1283 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1284 case MISCREG_TLBI_VMALLS12E1IS:
1285 case MISCREG_TLBI_VMALLS12E1:
1286 // @todo: handle VMID and stage 2 to enable Virtualization
1287 assert64(tc);
1288 target_el = 1; // el 0 and 1 are handled together
1289 scr = readMiscReg(MISCREG_SCR, tc);
1290 secure_lookup = haveSecurity && !scr.ns;
1291 tlbiALL(tc, secure_lookup, target_el);
1292 return;
1293 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1294 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1295 // from the last level of translation table walks
1296 // @todo: handle VMID to enable Virtualization
1297 // TLBI all entries, EL0&1
1298 case MISCREG_TLBI_VAE3IS_Xt:
1299 case MISCREG_TLBI_VAE3_Xt:
1300 // TLBI by VA, EL3 regime stage 1, last level walk
1301 case MISCREG_TLBI_VALE3IS_Xt:
1302 case MISCREG_TLBI_VALE3_Xt:
1303 assert64(tc);
1304 target_el = 3;
1305 asid = 0xbeef; // does not matter, tlbi is global
1306 secure_lookup = true;
1307 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1308 return;
1309 // TLBI by VA, EL2
1310 case MISCREG_TLBI_VAE2IS_Xt:
1311 case MISCREG_TLBI_VAE2_Xt:
1312 // TLBI by VA, EL2, stage1 last level walk
1313 case MISCREG_TLBI_VALE2IS_Xt:
1314 case MISCREG_TLBI_VALE2_Xt:
1315 assert64(tc);
1316 target_el = 2;
1317 asid = 0xbeef; // does not matter, tlbi is global
1318 scr = readMiscReg(MISCREG_SCR, tc);
1319 secure_lookup = haveSecurity && !scr.ns;
1320 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1321 return;
1322 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1323 case MISCREG_TLBI_VAE1IS_Xt:
1324 case MISCREG_TLBI_VAE1_Xt:
1325 case MISCREG_TLBI_VALE1IS_Xt:
1326 case MISCREG_TLBI_VALE1_Xt:
1327 assert64(tc);
1328 asid = bits(newVal, 63, 48);
1329 target_el = 1; // el 0 and 1 are handled together
1330 scr = readMiscReg(MISCREG_SCR, tc);
1331 secure_lookup = haveSecurity && !scr.ns;
1332 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1333 return;
1334 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1335 // @todo: handle VMID to enable Virtualization
1336 case MISCREG_TLBI_ASIDE1IS_Xt:
1337 case MISCREG_TLBI_ASIDE1_Xt:
1338 assert64(tc);
1339 target_el = 1; // el 0 and 1 are handled together
1340 scr = readMiscReg(MISCREG_SCR, tc);
1341 secure_lookup = haveSecurity && !scr.ns;
1342 sys = tc->getSystemPtr();
1343 for (x = 0; x < sys->numContexts(); x++) {
1344 oc = sys->getThreadContext(x);
1345 assert(oc->getITBPtr() && oc->getDTBPtr());
1346 asid = bits(newVal, 63, 48);
1347 if (!haveLargeAsid64)
1348 asid &= mask(8);
1349 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1350 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1351 CheckerCPU *checker = oc->getCheckerCpuPtr();
1352 if (checker) {
1353 checker->getITBPtr()->flushAsid(asid,
1354 secure_lookup, target_el);
1355 checker->getDTBPtr()->flushAsid(asid,
1356 secure_lookup, target_el);
1357 }
1358 }
1359 return;
1360 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1361 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1362 // entries from the last level of translation table walks
1363 // @todo: handle VMID to enable Virtualization
1364 case MISCREG_TLBI_VAAE1IS_Xt:
1365 case MISCREG_TLBI_VAAE1_Xt:
1366 case MISCREG_TLBI_VAALE1IS_Xt:
1367 case MISCREG_TLBI_VAALE1_Xt:
1368 assert64(tc);
1369 target_el = 1; // el 0 and 1 are handled together
1370 scr = readMiscReg(MISCREG_SCR, tc);
1371 secure_lookup = haveSecurity && !scr.ns;
1372 sys = tc->getSystemPtr();
1373 for (x = 0; x < sys->numContexts(); x++) {
1374 // @todo: extra controls on TLBI broadcast?
1375 oc = sys->getThreadContext(x);
1376 assert(oc->getITBPtr() && oc->getDTBPtr());
1377 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1378 oc->getITBPtr()->flushMva(va,
1379 secure_lookup, false, target_el);
1380 oc->getDTBPtr()->flushMva(va,
1381 secure_lookup, false, target_el);
1382
1383 CheckerCPU *checker = oc->getCheckerCpuPtr();
1384 if (checker) {
1385 checker->getITBPtr()->flushMva(va,
1386 secure_lookup, false, target_el);
1387 checker->getDTBPtr()->flushMva(va,
1388 secure_lookup, false, target_el);
1389 }
1390 }
1391 return;
1392 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1393 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1394 case MISCREG_TLBI_IPAS2LE1_Xt:
1395 case MISCREG_TLBI_IPAS2E1IS_Xt:
1396 case MISCREG_TLBI_IPAS2E1_Xt:
1397 assert64(tc);
1398 // @todo: implement these as part of Virtualization
1399 warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
1400 return;
1401 case MISCREG_ACTLR:
1402 warn("Not doing anything for write of miscreg ACTLR\n");
1403 break;
1404
1405 case MISCREG_PMXEVTYPER_PMCCFILTR:
1406 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1407 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1408 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1409 pmu->setMiscReg(misc_reg, newVal);
1410 break;
1411
1412
1413 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1414 {
1415 HSTR hstrMask = 0;
1416 hstrMask.tjdbx = 1;
1417 newVal &= ~((uint32_t) hstrMask);
1418 break;
1419 }
1420 case MISCREG_HCPTR:
1421 {
1422 // If a CP bit in NSACR is 0 then the corresponding bit in
1423 // HCPTR is RAO/WI. Same applies to NSASEDIS
1424 secure_lookup = haveSecurity &&
1425 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1426 readMiscRegNoEffect(MISCREG_CPSR));
1427 if (!secure_lookup) {
1428 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1429 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1430 newVal = (newVal & ~mask) | (oldValue & mask);
1431 }
1432 break;
1433 }
1434 case MISCREG_HDFAR: // alias for secure DFAR
1435 misc_reg = MISCREG_DFAR_S;
1436 break;
1437 case MISCREG_HIFAR: // alias for secure IFAR
1438 misc_reg = MISCREG_IFAR_S;
1439 break;
1440 case MISCREG_ATS1CPR:
1441 case MISCREG_ATS1CPW:
1442 case MISCREG_ATS1CUR:
1443 case MISCREG_ATS1CUW:
1444 case MISCREG_ATS12NSOPR:
1445 case MISCREG_ATS12NSOPW:
1446 case MISCREG_ATS12NSOUR:
1447 case MISCREG_ATS12NSOUW:
1448 case MISCREG_ATS1HR:
1449 case MISCREG_ATS1HW:
1450 {
1451 unsigned flags = 0;
1452 BaseTLB::Mode mode = BaseTLB::Read;
1453 TLB::ArmTranslationType tranType = TLB::NormalTran;
1454 Fault fault;
1455 switch(misc_reg) {
1456 case MISCREG_ATS1CPR:
1457 flags = TLB::MustBeOne;
1458 tranType = TLB::S1CTran;
1459 mode = BaseTLB::Read;
1460 break;
1461 case MISCREG_ATS1CPW:
1462 flags = TLB::MustBeOne;
1463 tranType = TLB::S1CTran;
1464 mode = BaseTLB::Write;
1465 break;
1466 case MISCREG_ATS1CUR:
1467 flags = TLB::MustBeOne | TLB::UserMode;
1468 tranType = TLB::S1CTran;
1469 mode = BaseTLB::Read;
1470 break;
1471 case MISCREG_ATS1CUW:
1472 flags = TLB::MustBeOne | TLB::UserMode;
1473 tranType = TLB::S1CTran;
1474 mode = BaseTLB::Write;
1475 break;
1476 case MISCREG_ATS12NSOPR:
1477 if (!haveSecurity)
1478 panic("Security Extensions required for ATS12NSOPR");
1479 flags = TLB::MustBeOne;
1480 tranType = TLB::S1S2NsTran;
1481 mode = BaseTLB::Read;
1482 break;
1483 case MISCREG_ATS12NSOPW:
1484 if (!haveSecurity)
1485 panic("Security Extensions required for ATS12NSOPW");
1486 flags = TLB::MustBeOne;
1487 tranType = TLB::S1S2NsTran;
1488 mode = BaseTLB::Write;
1489 break;
1490 case MISCREG_ATS12NSOUR:
1491 if (!haveSecurity)
1492 panic("Security Extensions required for ATS12NSOUR");
1493 flags = TLB::MustBeOne | TLB::UserMode;
1494 tranType = TLB::S1S2NsTran;
1495 mode = BaseTLB::Read;
1496 break;
1497 case MISCREG_ATS12NSOUW:
1498 if (!haveSecurity)
1499 panic("Security Extensions required for ATS12NSOUW");
1500 flags = TLB::MustBeOne | TLB::UserMode;
1501 tranType = TLB::S1S2NsTran;
1502 mode = BaseTLB::Write;
1503 break;
1504 case MISCREG_ATS1HR: // only really useful from secure mode.
1505 flags = TLB::MustBeOne;
1506 tranType = TLB::HypMode;
1507 mode = BaseTLB::Read;
1508 break;
1509 case MISCREG_ATS1HW:
1510 flags = TLB::MustBeOne;
1511 tranType = TLB::HypMode;
1512 mode = BaseTLB::Write;
1513 break;
1514 }
1515 // If we're in timing mode then doing the translation in
1516 // functional mode then we're slightly distorting performance
1517 // results obtained from simulations. The translation should be
1518 // done in the same mode the core is running in. NOTE: This
1519 // can't be an atomic translation because that causes problems
1520 // with unexpected atomic snoop requests.
1521 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1522 Request req(0, val, 1, flags, Request::funcMasterId,
1523 tc->pcState().pc(), tc->contextId(),
1524 tc->threadId());
1525 fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType);
1526 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1527 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1528
1529 MiscReg newVal;
1530 if (fault == NoFault) {
1531 Addr paddr = req.getPaddr();
1532 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1533 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1534 newVal = (paddr & mask(39, 12)) |
1535 (tc->getDTBPtr()->getAttr());
1536 } else {
1537 newVal = (paddr & 0xfffff000) |
1538 (tc->getDTBPtr()->getAttr());
1539 }
1540 DPRINTF(MiscRegs,
1541 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1542 val, newVal);
1543 } else {
1544 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1545 // Set fault bit and FSR
1546 FSR fsr = armFault->getFsr(tc);
1547
1548 newVal = ((fsr >> 9) & 1) << 11;
1549 if (newVal) {
1550 // LPAE - rearange fault status
1551 newVal |= ((fsr >> 0) & 0x3f) << 1;
1552 } else {
1553 // VMSA - rearange fault status
1554 newVal |= ((fsr >> 0) & 0xf) << 1;
1555 newVal |= ((fsr >> 10) & 0x1) << 5;
1556 newVal |= ((fsr >> 12) & 0x1) << 6;
1557 }
1558 newVal |= 0x1; // F bit
1559 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1560 newVal |= armFault->isStage2() ? 0x200 : 0;
1561 DPRINTF(MiscRegs,
1562 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1563 val, fsr, newVal);
1564 }
1565 setMiscRegNoEffect(MISCREG_PAR, newVal);
1566 return;
1567 }
1568 case MISCREG_TTBCR:
1569 {
1570 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1571 const uint32_t ones = (uint32_t)(-1);
1572 TTBCR ttbcrMask = 0;
1573 TTBCR ttbcrNew = newVal;
1574
1575 // ARM DDI 0406C.b, ARMv7-32
1576 ttbcrMask.n = ones; // T0SZ
1577 if (haveSecurity) {
1578 ttbcrMask.pd0 = ones;
1579 ttbcrMask.pd1 = ones;
1580 }
1581 ttbcrMask.epd0 = ones;
1582 ttbcrMask.irgn0 = ones;
1583 ttbcrMask.orgn0 = ones;
1584 ttbcrMask.sh0 = ones;
1585 ttbcrMask.ps = ones; // T1SZ
1586 ttbcrMask.a1 = ones;
1587 ttbcrMask.epd1 = ones;
1588 ttbcrMask.irgn1 = ones;
1589 ttbcrMask.orgn1 = ones;
1590 ttbcrMask.sh1 = ones;
1591 if (haveLPAE)
1592 ttbcrMask.eae = ones;
1593
1594 if (haveLPAE && ttbcrNew.eae) {
1595 newVal = newVal & ttbcrMask;
1596 } else {
1597 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1598 }
1599 }
1600 case MISCREG_TTBR0:
1601 case MISCREG_TTBR1:
1602 {
1603 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1604 if (haveLPAE) {
1605 if (ttbcr.eae) {
1606 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1607 // ARMv8 AArch32 bit 63-56 only
1608 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1609 newVal = (newVal & (~ttbrMask));
1610 }
1611 }
1612 }
1613 case MISCREG_SCTLR_EL1:
1614 {
1615 tc->getITBPtr()->invalidateMiscReg();
1616 tc->getDTBPtr()->invalidateMiscReg();
1617 setMiscRegNoEffect(misc_reg, newVal);
1618 }
1619 case MISCREG_CONTEXTIDR:
1620 case MISCREG_PRRR:
1621 case MISCREG_NMRR:
1622 case MISCREG_MAIR0:
1623 case MISCREG_MAIR1:
1624 case MISCREG_DACR:
1625 case MISCREG_VTTBR:
1626 case MISCREG_SCR_EL3:
1627 case MISCREG_TCR_EL1:
1628 case MISCREG_TCR_EL2:
1629 case MISCREG_TCR_EL3:
1630 case MISCREG_SCTLR_EL2:
1631 case MISCREG_SCTLR_EL3:
1632 case MISCREG_TTBR0_EL1:
1633 case MISCREG_TTBR1_EL1:
1634 case MISCREG_TTBR0_EL2:
1635 case MISCREG_TTBR0_EL3:
1636 tc->getITBPtr()->invalidateMiscReg();
1637 tc->getDTBPtr()->invalidateMiscReg();
1638 break;
1639 case MISCREG_NZCV:
1640 {
1641 CPSR cpsr = val;
1642
1643 tc->setCCReg(CCREG_NZ, cpsr.nz);
1644 tc->setCCReg(CCREG_C, cpsr.c);
1645 tc->setCCReg(CCREG_V, cpsr.v);
1646 }
1647 break;
1648 case MISCREG_DAIF:
1649 {
1650 CPSR cpsr = miscRegs[MISCREG_CPSR];
1651 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1652 newVal = cpsr;
1653 misc_reg = MISCREG_CPSR;
1654 }
1655 break;
1656 case MISCREG_SP_EL0:
1657 tc->setIntReg(INTREG_SP0, newVal);
1658 break;
1659 case MISCREG_SP_EL1:
1660 tc->setIntReg(INTREG_SP1, newVal);
1661 break;
1662 case MISCREG_SP_EL2:
1663 tc->setIntReg(INTREG_SP2, newVal);
1664 break;
1665 case MISCREG_SPSEL:
1666 {
1667 CPSR cpsr = miscRegs[MISCREG_CPSR];
1668 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1669 newVal = cpsr;
1670 misc_reg = MISCREG_CPSR;
1671 }
1672 break;
1673 case MISCREG_CURRENTEL:
1674 {
1675 CPSR cpsr = miscRegs[MISCREG_CPSR];
1676 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1677 newVal = cpsr;
1678 misc_reg = MISCREG_CPSR;
1679 }
1680 break;
1681 case MISCREG_AT_S1E1R_Xt:
1682 case MISCREG_AT_S1E1W_Xt:
1683 case MISCREG_AT_S1E0R_Xt:
1684 case MISCREG_AT_S1E0W_Xt:
1685 case MISCREG_AT_S1E2R_Xt:
1686 case MISCREG_AT_S1E2W_Xt:
1687 case MISCREG_AT_S12E1R_Xt:
1688 case MISCREG_AT_S12E1W_Xt:
1689 case MISCREG_AT_S12E0R_Xt:
1690 case MISCREG_AT_S12E0W_Xt:
1691 case MISCREG_AT_S1E3R_Xt:
1692 case MISCREG_AT_S1E3W_Xt:
1693 {
1694 RequestPtr req = new Request;
1695 unsigned flags = 0;
1696 BaseTLB::Mode mode = BaseTLB::Read;
1697 TLB::ArmTranslationType tranType = TLB::NormalTran;
1698 Fault fault;
1699 switch(misc_reg) {
1700 case MISCREG_AT_S1E1R_Xt:
1701 flags = TLB::MustBeOne;
1702 tranType = TLB::S1CTran;
1703 mode = BaseTLB::Read;
1704 break;
1705 case MISCREG_AT_S1E1W_Xt:
1706 flags = TLB::MustBeOne;
1707 tranType = TLB::S1CTran;
1708 mode = BaseTLB::Write;
1709 break;
1710 case MISCREG_AT_S1E0R_Xt:
1711 flags = TLB::MustBeOne | TLB::UserMode;
1712 tranType = TLB::S1CTran;
1713 mode = BaseTLB::Read;
1714 break;
1715 case MISCREG_AT_S1E0W_Xt:
1716 flags = TLB::MustBeOne | TLB::UserMode;
1717 tranType = TLB::S1CTran;
1718 mode = BaseTLB::Write;
1719 break;
1720 case MISCREG_AT_S1E2R_Xt:
1721 flags = TLB::MustBeOne;
1722 tranType = TLB::HypMode;
1723 mode = BaseTLB::Read;
1724 break;
1725 case MISCREG_AT_S1E2W_Xt:
1726 flags = TLB::MustBeOne;
1727 tranType = TLB::HypMode;
1728 mode = BaseTLB::Write;
1729 break;
1730 case MISCREG_AT_S12E0R_Xt:
1731 flags = TLB::MustBeOne | TLB::UserMode;
1732 tranType = TLB::S1S2NsTran;
1733 mode = BaseTLB::Read;
1734 break;
1735 case MISCREG_AT_S12E0W_Xt:
1736 flags = TLB::MustBeOne | TLB::UserMode;
1737 tranType = TLB::S1S2NsTran;
1738 mode = BaseTLB::Write;
1739 break;
1740 case MISCREG_AT_S12E1R_Xt:
1741 flags = TLB::MustBeOne;
1742 tranType = TLB::S1S2NsTran;
1743 mode = BaseTLB::Read;
1744 break;
1745 case MISCREG_AT_S12E1W_Xt:
1746 flags = TLB::MustBeOne;
1747 tranType = TLB::S1S2NsTran;
1748 mode = BaseTLB::Write;
1749 break;
1750 case MISCREG_AT_S1E3R_Xt:
1751 flags = TLB::MustBeOne;
1752 tranType = TLB::HypMode; // There is no TZ mode defined.
1753 mode = BaseTLB::Read;
1754 break;
1755 case MISCREG_AT_S1E3W_Xt:
1756 flags = TLB::MustBeOne;
1757 tranType = TLB::HypMode; // There is no TZ mode defined.
1758 mode = BaseTLB::Write;
1759 break;
1760 }
1761 // If we're in timing mode then doing the translation in
1762 // functional mode then we're slightly distorting performance
1763 // results obtained from simulations. The translation should be
1764 // done in the same mode the core is running in. NOTE: This
1765 // can't be an atomic translation because that causes problems
1766 // with unexpected atomic snoop requests.
1767 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1768 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1769 tc->pcState().pc());
1770 req->setThreadContext(tc->contextId(), tc->threadId());
1771 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1772 tranType);
1773
1774 MiscReg newVal;
1775 if (fault == NoFault) {
1776 Addr paddr = req->getPaddr();
1777 uint64_t attr = tc->getDTBPtr()->getAttr();
1778 uint64_t attr1 = attr >> 56;
1779 if (!attr1 || attr1 ==0x44) {
1780 attr |= 0x100;
1781 attr &= ~ uint64_t(0x80);
1782 }
1783 newVal = (paddr & mask(47, 12)) | attr;
1784 DPRINTF(MiscRegs,
1785 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1786 val, newVal);
1787 } else {
1788 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1789 // Set fault bit and FSR
1790 FSR fsr = armFault->getFsr(tc);
1791
1792 newVal = ((fsr >> 9) & 1) << 11;
1793 // rearange fault status
1794 newVal |= ((fsr >> 0) & 0x3f) << 1;
1795 newVal |= 0x1; // F bit
1796 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1797 newVal |= armFault->isStage2() ? 0x200 : 0;
1798 DPRINTF(MiscRegs,
1799 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1800 val, fsr, newVal);
1801 }
1802 delete req;
1803 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1804 return;
1805 }
1806 case MISCREG_SPSR_EL3:
1807 case MISCREG_SPSR_EL2:
1808 case MISCREG_SPSR_EL1:
1809 // Force bits 23:21 to 0
1810 newVal = val & ~(0x7 << 21);
1811 break;
1812 case MISCREG_L2CTLR:
1813 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1814 miscRegName[misc_reg], uint32_t(val));
1815 break;
1816
1817 // Generic Timer registers
1818 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1819 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1820 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1821 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1822 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1823 break;
1824 }
1825 }
1826 setMiscRegNoEffect(misc_reg, newVal);
1827 }
1828
1829 void
1830 ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1831 bool secure_lookup, uint8_t target_el)
1832 {
1833 if (!haveLargeAsid64)
1834 asid &= mask(8);
1835 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1836 System *sys = tc->getSystemPtr();
1837 for (int x = 0; x < sys->numContexts(); x++) {
1838 ThreadContext *oc = sys->getThreadContext(x);
1839 assert(oc->getITBPtr() && oc->getDTBPtr());
1840 oc->getITBPtr()->flushMvaAsid(va, asid,
1841 secure_lookup, target_el);
1842 oc->getDTBPtr()->flushMvaAsid(va, asid,
1843 secure_lookup, target_el);
1844
1845 CheckerCPU *checker = oc->getCheckerCpuPtr();
1846 if (checker) {
1847 checker->getITBPtr()->flushMvaAsid(
1848 va, asid, secure_lookup, target_el);
1849 checker->getDTBPtr()->flushMvaAsid(
1850 va, asid, secure_lookup, target_el);
1851 }
1852 }
1853 }
1854
1855 void
1856 ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1857 {
1858 System *sys = tc->getSystemPtr();
1859 for (int x = 0; x < sys->numContexts(); x++) {
1860 ThreadContext *oc = sys->getThreadContext(x);
1861 assert(oc->getITBPtr() && oc->getDTBPtr());
1862 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1863 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1864
1865 // If CheckerCPU is connected, need to notify it of a flush
1866 CheckerCPU *checker = oc->getCheckerCpuPtr();
1867 if (checker) {
1868 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1869 target_el);
1870 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1871 target_el);
1872 }
1873 }
1874 }
1875
1876 void
1877 ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1878 {
1879 System *sys = tc->getSystemPtr();
1880 for (int x = 0; x < sys->numContexts(); x++) {
1881 ThreadContext *oc = sys->getThreadContext(x);
1882 assert(oc->getITBPtr() && oc->getDTBPtr());
1883 oc->getITBPtr()->flushAllNs(hyp, target_el);
1884 oc->getDTBPtr()->flushAllNs(hyp, target_el);
1885
1886 CheckerCPU *checker = oc->getCheckerCpuPtr();
1887 if (checker) {
1888 checker->getITBPtr()->flushAllNs(hyp, target_el);
1889 checker->getDTBPtr()->flushAllNs(hyp, target_el);
1890 }
1891 }
1892 }
1893
1894 void
1895 ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1896 uint8_t target_el)
1897 {
1898 System *sys = tc->getSystemPtr();
1899 for (int x = 0; x < sys->numContexts(); x++) {
1900 ThreadContext *oc = sys->getThreadContext(x);
1901 assert(oc->getITBPtr() && oc->getDTBPtr());
1902 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
1903 secure_lookup, hyp, target_el);
1904 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1905 secure_lookup, hyp, target_el);
1906
1907 CheckerCPU *checker = oc->getCheckerCpuPtr();
1908 if (checker) {
1909 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
1910 secure_lookup, hyp, target_el);
1911 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1912 secure_lookup, hyp, target_el);
1913 }
1914 }
1915 }
1916
1917 BaseISADevice &
1918 ISA::getGenericTimer(ThreadContext *tc)
1919 {
1920 // We only need to create an ISA interface the first time we try
1921 // to access the timer.
1922 if (timer)
1923 return *timer.get();
1924
1925 assert(system);
1926 GenericTimer *generic_timer(system->getGenericTimer());
1927 if (!generic_timer) {
1928 panic("Trying to get a generic timer from a system that hasn't "
1929 "been configured to use a generic timer.\n");
1930 }
1931
1932 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
1933 return *timer.get();
1934 }
1935
1936 }
1937
1938 ArmISA::ISA *
1939 ArmISAParams::create()
1940 {
1941 return new ArmISA::ISA(this);
1942 }