arm: Fix multi-system AArch64 boot w/caches.
[gem5.git] / src / arch / arm / isa.cc
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41 #include "arch/arm/isa.hh"
42 #include "arch/arm/pmu.hh"
43 #include "arch/arm/system.hh"
44 #include "cpu/checker/cpu.hh"
45 #include "cpu/base.hh"
46 #include "debug/Arm.hh"
47 #include "debug/MiscRegs.hh"
48 #include "params/ArmISA.hh"
49 #include "sim/faults.hh"
50 #include "sim/stat_control.hh"
51 #include "sim/system.hh"
52
53 namespace ArmISA
54 {
55
56
57 /**
58 * Some registers aliase with others, and therefore need to be translated.
59 * For each entry:
60 * The first value is the misc register that is to be looked up
61 * the second value is the lower part of the translation
62 * the third the upper part
63 */
64 const struct ISA::MiscRegInitializerEntry
65 ISA::MiscRegSwitch[miscRegTranslateMax] = {
66 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
67 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
68 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
69 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
70 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
71 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
72 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
73 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
74 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
75 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
76 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
77 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
78 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
79 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
80 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
81 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
82 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
83 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
84 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
85 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
86 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
87 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
88 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
89 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
90 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
91 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
92 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
93 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
94 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
95 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
96 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
97 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
98 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
99 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
100 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
101 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
102 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
103 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
104 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
105 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
106 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
107 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
108 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
109 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
110 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
111 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
112 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
113 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
114 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
115 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
116 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
117 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
118 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
119 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
120 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
121 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
122 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
123 };
124
125
126 ISA::ISA(Params *p)
127 : SimObject(p),
128 system(NULL),
129 pmu(p->pmu),
130 lookUpMiscReg(NUM_MISCREGS, {0,0})
131 {
132 SCTLR sctlr;
133 sctlr = 0;
134 miscRegs[MISCREG_SCTLR_RST] = sctlr;
135
136 // Hook up a dummy device if we haven't been configured with a
137 // real PMU. By using a dummy device, we don't need to check that
138 // the PMU exist every time we try to access a PMU register.
139 if (!pmu)
140 pmu = &dummyDevice;
141
142 system = dynamic_cast<ArmSystem *>(p->system);
143 DPRINTFN("ISA system set to: %p %p\n", system, p->system);
144
145 // Cache system-level properties
146 if (FullSystem && system) {
147 haveSecurity = system->haveSecurity();
148 haveLPAE = system->haveLPAE();
149 haveVirtualization = system->haveVirtualization();
150 haveLargeAsid64 = system->haveLargeAsid64();
151 physAddrRange64 = system->physAddrRange64();
152 } else {
153 haveSecurity = haveLPAE = haveVirtualization = false;
154 haveLargeAsid64 = false;
155 physAddrRange64 = 32; // dummy value
156 }
157
158 /** Fill in the miscReg translation table */
159 for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
160 struct MiscRegLUTEntry new_entry;
161
162 uint32_t select = MiscRegSwitch[i].index;
163 new_entry = MiscRegSwitch[i].entry;
164
165 lookUpMiscReg[select] = new_entry;
166 }
167
168 preUnflattenMiscReg();
169
170 clear();
171 }
172
173 const ArmISAParams *
174 ISA::params() const
175 {
176 return dynamic_cast<const Params *>(_params);
177 }
178
179 void
180 ISA::clear()
181 {
182 const Params *p(params());
183
184 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
185 memset(miscRegs, 0, sizeof(miscRegs));
186
187 // Initialize configurable default values
188 miscRegs[MISCREG_MIDR] = p->midr;
189 miscRegs[MISCREG_MIDR_EL1] = p->midr;
190 miscRegs[MISCREG_VPIDR] = p->midr;
191
192 if (FullSystem && system->highestELIs64()) {
193 // Initialize AArch64 state
194 clear64(p);
195 return;
196 }
197
198 // Initialize AArch32 state...
199
200 CPSR cpsr = 0;
201 cpsr.mode = MODE_USER;
202 miscRegs[MISCREG_CPSR] = cpsr;
203 updateRegMap(cpsr);
204
205 SCTLR sctlr = 0;
206 sctlr.te = (bool) sctlr_rst.te;
207 sctlr.nmfi = (bool) sctlr_rst.nmfi;
208 sctlr.v = (bool) sctlr_rst.v;
209 sctlr.u = 1;
210 sctlr.xp = 1;
211 sctlr.rao2 = 1;
212 sctlr.rao3 = 1;
213 sctlr.rao4 = 0xf; // SCTLR[6:3]
214 sctlr.uci = 1;
215 sctlr.dze = 1;
216 miscRegs[MISCREG_SCTLR_NS] = sctlr;
217 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
218 miscRegs[MISCREG_HCPTR] = 0;
219
220 // Start with an event in the mailbox
221 miscRegs[MISCREG_SEV_MAILBOX] = 1;
222
223 // Separate Instruction and Data TLBs
224 miscRegs[MISCREG_TLBTR] = 1;
225
226 MVFR0 mvfr0 = 0;
227 mvfr0.advSimdRegisters = 2;
228 mvfr0.singlePrecision = 2;
229 mvfr0.doublePrecision = 2;
230 mvfr0.vfpExceptionTrapping = 0;
231 mvfr0.divide = 1;
232 mvfr0.squareRoot = 1;
233 mvfr0.shortVectors = 1;
234 mvfr0.roundingModes = 1;
235 miscRegs[MISCREG_MVFR0] = mvfr0;
236
237 MVFR1 mvfr1 = 0;
238 mvfr1.flushToZero = 1;
239 mvfr1.defaultNaN = 1;
240 mvfr1.advSimdLoadStore = 1;
241 mvfr1.advSimdInteger = 1;
242 mvfr1.advSimdSinglePrecision = 1;
243 mvfr1.advSimdHalfPrecision = 1;
244 mvfr1.vfpHalfPrecision = 1;
245 miscRegs[MISCREG_MVFR1] = mvfr1;
246
247 // Reset values of PRRR and NMRR are implementation dependent
248
249 // @todo: PRRR and NMRR in secure state?
250 miscRegs[MISCREG_PRRR_NS] =
251 (1 << 19) | // 19
252 (0 << 18) | // 18
253 (0 << 17) | // 17
254 (1 << 16) | // 16
255 (2 << 14) | // 15:14
256 (0 << 12) | // 13:12
257 (2 << 10) | // 11:10
258 (2 << 8) | // 9:8
259 (2 << 6) | // 7:6
260 (2 << 4) | // 5:4
261 (1 << 2) | // 3:2
262 0; // 1:0
263 miscRegs[MISCREG_NMRR_NS] =
264 (1 << 30) | // 31:30
265 (0 << 26) | // 27:26
266 (0 << 24) | // 25:24
267 (3 << 22) | // 23:22
268 (2 << 20) | // 21:20
269 (0 << 18) | // 19:18
270 (0 << 16) | // 17:16
271 (1 << 14) | // 15:14
272 (0 << 12) | // 13:12
273 (2 << 10) | // 11:10
274 (0 << 8) | // 9:8
275 (3 << 6) | // 7:6
276 (2 << 4) | // 5:4
277 (0 << 2) | // 3:2
278 0; // 1:0
279
280 miscRegs[MISCREG_CPACR] = 0;
281
282
283 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
284 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
285
286 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
287 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
288 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
289 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
290
291 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
292 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
293 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
294 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
295 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
296 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
297
298 miscRegs[MISCREG_FPSID] = p->fpsid;
299
300 if (haveLPAE) {
301 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
302 ttbcr.eae = 0;
303 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
304 // Enforce consistency with system-level settings
305 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
306 }
307
308 if (haveSecurity) {
309 miscRegs[MISCREG_SCTLR_S] = sctlr;
310 miscRegs[MISCREG_SCR] = 0;
311 miscRegs[MISCREG_VBAR_S] = 0;
312 } else {
313 // we're always non-secure
314 miscRegs[MISCREG_SCR] = 1;
315 }
316
317 //XXX We need to initialize the rest of the state.
318 }
319
320 void
321 ISA::clear64(const ArmISAParams *p)
322 {
323 CPSR cpsr = 0;
324 Addr rvbar = system->resetAddr64();
325 switch (system->highestEL()) {
326 // Set initial EL to highest implemented EL using associated stack
327 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
328 // value
329 case EL3:
330 cpsr.mode = MODE_EL3H;
331 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
332 break;
333 case EL2:
334 cpsr.mode = MODE_EL2H;
335 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
336 break;
337 case EL1:
338 cpsr.mode = MODE_EL1H;
339 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
340 break;
341 default:
342 panic("Invalid highest implemented exception level");
343 break;
344 }
345
346 // Initialize rest of CPSR
347 cpsr.daif = 0xf; // Mask all interrupts
348 cpsr.ss = 0;
349 cpsr.il = 0;
350 miscRegs[MISCREG_CPSR] = cpsr;
351 updateRegMap(cpsr);
352
353 // Initialize other control registers
354 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
355 if (haveSecurity) {
356 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
357 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
358 // @todo: uncomment this to enable Virtualization
359 // } else if (haveVirtualization) {
360 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
361 } else {
362 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
363 // Always non-secure
364 miscRegs[MISCREG_SCR_EL3] = 1;
365 }
366
367 // Initialize configurable id registers
368 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
369 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
370 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
371 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
372 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
373
374 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
375 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
376 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
377 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
378 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
379 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
380 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
381
382 miscRegs[MISCREG_ID_DFR0_EL1] =
383 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
384
385 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
386
387 // Enforce consistency with system-level settings...
388
389 // EL3
390 // (no AArch32/64 interprocessing support for now)
391 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
392 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
393 haveSecurity ? 0x1 : 0x0);
394 // EL2
395 // (no AArch32/64 interprocessing support for now)
396 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
397 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
398 haveVirtualization ? 0x1 : 0x0);
399 // Large ASID support
400 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
401 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
402 haveLargeAsid64 ? 0x2 : 0x0);
403 // Physical address size
404 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
405 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
406 encodePhysAddrRange64(physAddrRange64));
407 }
408
409 MiscReg
410 ISA::readMiscRegNoEffect(int misc_reg) const
411 {
412 assert(misc_reg < NumMiscRegs);
413
414 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
415 // registers are left unchanged
416 MiscReg val;
417
418 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
419 || flat_idx == MISCREG_SCTLR_EL1) {
420 if (flat_idx == MISCREG_SPSR)
421 flat_idx = flattenMiscIndex(MISCREG_SPSR);
422 if (flat_idx == MISCREG_SCTLR_EL1)
423 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
424 val = miscRegs[flat_idx];
425 } else
426 if (lookUpMiscReg[flat_idx].upper > 0)
427 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
428 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
429 else
430 val = miscRegs[lookUpMiscReg[flat_idx].lower];
431
432 return val;
433 }
434
435
436 MiscReg
437 ISA::readMiscReg(int misc_reg, ThreadContext *tc)
438 {
439 CPSR cpsr = 0;
440 PCState pc = 0;
441 SCR scr = 0;
442
443 if (misc_reg == MISCREG_CPSR) {
444 cpsr = miscRegs[misc_reg];
445 pc = tc->pcState();
446 cpsr.j = pc.jazelle() ? 1 : 0;
447 cpsr.t = pc.thumb() ? 1 : 0;
448 return cpsr;
449 }
450
451 #ifndef NDEBUG
452 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
453 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
454 warn("Unimplemented system register %s read.\n",
455 miscRegName[misc_reg]);
456 else
457 panic("Unimplemented system register %s read.\n",
458 miscRegName[misc_reg]);
459 }
460 #endif
461
462 switch (unflattenMiscReg(misc_reg)) {
463 case MISCREG_HCR:
464 {
465 if (!haveVirtualization)
466 return 0;
467 else
468 return readMiscRegNoEffect(MISCREG_HCR);
469 }
470 case MISCREG_CPACR:
471 {
472 const uint32_t ones = (uint32_t)(-1);
473 CPACR cpacrMask = 0;
474 // Only cp10, cp11, and ase are implemented, nothing else should
475 // be readable? (straight copy from the write code)
476 cpacrMask.cp10 = ones;
477 cpacrMask.cp11 = ones;
478 cpacrMask.asedis = ones;
479
480 // Security Extensions may limit the readability of CPACR
481 if (haveSecurity) {
482 scr = readMiscRegNoEffect(MISCREG_SCR);
483 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
484 if (scr.ns && (cpsr.mode != MODE_MON)) {
485 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
486 // NB: Skipping the full loop, here
487 if (!nsacr.cp10) cpacrMask.cp10 = 0;
488 if (!nsacr.cp11) cpacrMask.cp11 = 0;
489 }
490 }
491 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
492 val &= cpacrMask;
493 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
494 miscRegName[misc_reg], val);
495 return val;
496 }
497 case MISCREG_MPIDR:
498 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
499 scr = readMiscRegNoEffect(MISCREG_SCR);
500 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
501 return getMPIDR(system, tc);
502 } else {
503 return readMiscReg(MISCREG_VMPIDR, tc);
504 }
505 break;
506 case MISCREG_MPIDR_EL1:
507 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
508 return getMPIDR(system, tc) & 0xffffffff;
509 case MISCREG_VMPIDR:
510 // top bit defined as RES1
511 return readMiscRegNoEffect(misc_reg) | 0x80000000;
512 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
513 case MISCREG_REVIDR: // not implemented, so alias MIDR
514 case MISCREG_MIDR:
515 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
516 scr = readMiscRegNoEffect(MISCREG_SCR);
517 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
518 return readMiscRegNoEffect(misc_reg);
519 } else {
520 return readMiscRegNoEffect(MISCREG_VPIDR);
521 }
522 break;
523 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
524 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
525 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
526 case MISCREG_AIDR: // AUX ID set to 0
527 case MISCREG_TCMTR: // No TCM's
528 return 0;
529
530 case MISCREG_CLIDR:
531 warn_once("The clidr register always reports 0 caches.\n");
532 warn_once("clidr LoUIS field of 0b001 to match current "
533 "ARM implementations.\n");
534 return 0x00200000;
535 case MISCREG_CCSIDR:
536 warn_once("The ccsidr register isn't implemented and "
537 "always reads as 0.\n");
538 break;
539 case MISCREG_CTR:
540 {
541 //all caches have the same line size in gem5
542 //4 byte words in ARM
543 unsigned lineSizeWords =
544 tc->getSystemPtr()->cacheLineSize() / 4;
545 unsigned log2LineSizeWords = 0;
546
547 while (lineSizeWords >>= 1) {
548 ++log2LineSizeWords;
549 }
550
551 CTR ctr = 0;
552 //log2 of minimun i-cache line size (words)
553 ctr.iCacheLineSize = log2LineSizeWords;
554 //b11 - gem5 uses pipt
555 ctr.l1IndexPolicy = 0x3;
556 //log2 of minimum d-cache line size (words)
557 ctr.dCacheLineSize = log2LineSizeWords;
558 //log2 of max reservation size (words)
559 ctr.erg = log2LineSizeWords;
560 //log2 of max writeback size (words)
561 ctr.cwg = log2LineSizeWords;
562 //b100 - gem5 format is ARMv7
563 ctr.format = 0x4;
564
565 return ctr;
566 }
567 case MISCREG_ACTLR:
568 warn("Not doing anything for miscreg ACTLR\n");
569 break;
570
571 case MISCREG_PMXEVTYPER_PMCCFILTR:
572 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
573 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
574 case MISCREG_PMCR ... MISCREG_PMOVSSET:
575 return pmu->readMiscReg(misc_reg);
576
577 case MISCREG_CPSR_Q:
578 panic("shouldn't be reading this register seperately\n");
579 case MISCREG_FPSCR_QC:
580 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
581 case MISCREG_FPSCR_EXC:
582 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
583 case MISCREG_FPSR:
584 {
585 const uint32_t ones = (uint32_t)(-1);
586 FPSCR fpscrMask = 0;
587 fpscrMask.ioc = ones;
588 fpscrMask.dzc = ones;
589 fpscrMask.ofc = ones;
590 fpscrMask.ufc = ones;
591 fpscrMask.ixc = ones;
592 fpscrMask.idc = ones;
593 fpscrMask.qc = ones;
594 fpscrMask.v = ones;
595 fpscrMask.c = ones;
596 fpscrMask.z = ones;
597 fpscrMask.n = ones;
598 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
599 }
600 case MISCREG_FPCR:
601 {
602 const uint32_t ones = (uint32_t)(-1);
603 FPSCR fpscrMask = 0;
604 fpscrMask.ioe = ones;
605 fpscrMask.dze = ones;
606 fpscrMask.ofe = ones;
607 fpscrMask.ufe = ones;
608 fpscrMask.ixe = ones;
609 fpscrMask.ide = ones;
610 fpscrMask.len = ones;
611 fpscrMask.stride = ones;
612 fpscrMask.rMode = ones;
613 fpscrMask.fz = ones;
614 fpscrMask.dn = ones;
615 fpscrMask.ahp = ones;
616 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
617 }
618 case MISCREG_NZCV:
619 {
620 CPSR cpsr = 0;
621 cpsr.nz = tc->readCCReg(CCREG_NZ);
622 cpsr.c = tc->readCCReg(CCREG_C);
623 cpsr.v = tc->readCCReg(CCREG_V);
624 return cpsr;
625 }
626 case MISCREG_DAIF:
627 {
628 CPSR cpsr = 0;
629 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
630 return cpsr;
631 }
632 case MISCREG_SP_EL0:
633 {
634 return tc->readIntReg(INTREG_SP0);
635 }
636 case MISCREG_SP_EL1:
637 {
638 return tc->readIntReg(INTREG_SP1);
639 }
640 case MISCREG_SP_EL2:
641 {
642 return tc->readIntReg(INTREG_SP2);
643 }
644 case MISCREG_SPSEL:
645 {
646 return miscRegs[MISCREG_CPSR] & 0x1;
647 }
648 case MISCREG_CURRENTEL:
649 {
650 return miscRegs[MISCREG_CPSR] & 0xc;
651 }
652 case MISCREG_L2CTLR:
653 {
654 // mostly unimplemented, just set NumCPUs field from sim and return
655 L2CTLR l2ctlr = 0;
656 // b00:1CPU to b11:4CPUs
657 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
658 return l2ctlr;
659 }
660 case MISCREG_DBGDIDR:
661 /* For now just implement the version number.
662 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
663 */
664 return 0x5 << 16;
665 case MISCREG_DBGDSCRint:
666 return 0;
667 case MISCREG_ISR:
668 return tc->getCpuPtr()->getInterruptController()->getISR(
669 readMiscRegNoEffect(MISCREG_HCR),
670 readMiscRegNoEffect(MISCREG_CPSR),
671 readMiscRegNoEffect(MISCREG_SCR));
672 case MISCREG_ISR_EL1:
673 return tc->getCpuPtr()->getInterruptController()->getISR(
674 readMiscRegNoEffect(MISCREG_HCR_EL2),
675 readMiscRegNoEffect(MISCREG_CPSR),
676 readMiscRegNoEffect(MISCREG_SCR_EL3));
677 case MISCREG_DCZID_EL0:
678 return 0x04; // DC ZVA clear 64-byte chunks
679 case MISCREG_HCPTR:
680 {
681 MiscReg val = readMiscRegNoEffect(misc_reg);
682 // The trap bit associated with CP14 is defined as RAZ
683 val &= ~(1 << 14);
684 // If a CP bit in NSACR is 0 then the corresponding bit in
685 // HCPTR is RAO/WI
686 bool secure_lookup = haveSecurity &&
687 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
688 readMiscRegNoEffect(MISCREG_CPSR));
689 if (!secure_lookup) {
690 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
691 val |= (mask ^ 0x7FFF) & 0xBFFF;
692 }
693 // Set the bits for unimplemented coprocessors to RAO/WI
694 val |= 0x33FF;
695 return (val);
696 }
697 case MISCREG_HDFAR: // alias for secure DFAR
698 return readMiscRegNoEffect(MISCREG_DFAR_S);
699 case MISCREG_HIFAR: // alias for secure IFAR
700 return readMiscRegNoEffect(MISCREG_IFAR_S);
701 case MISCREG_HVBAR: // bottom bits reserved
702 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
703 case MISCREG_SCTLR: // Some bits hardwired
704 // The FI field (bit 21) is common between S/NS versions of the register
705 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
706 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
707 case MISCREG_SCTLR_EL1:
708 // The FI field (bit 21) is common between S/NS versions of the register
709 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
710 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
711 case MISCREG_SCTLR_EL3:
712 // The FI field (bit 21) is common between S/NS versions of the register
713 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
714 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
715 case MISCREG_HSCTLR: // FI comes from SCTLR
716 {
717 uint32_t mask = 1 << 27;
718 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
719 (readMiscRegNoEffect(MISCREG_SCTLR) & mask);
720 }
721 case MISCREG_SCR:
722 {
723 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
724 if (cpsr.width) {
725 return readMiscRegNoEffect(MISCREG_SCR);
726 } else {
727 return readMiscRegNoEffect(MISCREG_SCR_EL3);
728 }
729 }
730 // Generic Timer registers
731 case MISCREG_CNTFRQ:
732 case MISCREG_CNTFRQ_EL0:
733 inform_once("Read CNTFREQ_EL0 frequency\n");
734 return getSystemCounter(tc)->freq();
735 case MISCREG_CNTPCT:
736 case MISCREG_CNTPCT_EL0:
737 return getSystemCounter(tc)->value();
738 case MISCREG_CNTVCT:
739 return getSystemCounter(tc)->value();
740 case MISCREG_CNTVCT_EL0:
741 return getSystemCounter(tc)->value();
742 case MISCREG_CNTP_CVAL:
743 case MISCREG_CNTP_CVAL_EL0:
744 return getArchTimer(tc, tc->cpuId())->compareValue();
745 case MISCREG_CNTP_TVAL:
746 case MISCREG_CNTP_TVAL_EL0:
747 return getArchTimer(tc, tc->cpuId())->timerValue();
748 case MISCREG_CNTP_CTL:
749 case MISCREG_CNTP_CTL_EL0:
750 return getArchTimer(tc, tc->cpuId())->control();
751 // PL1 phys. timer, secure
752 // AArch64
753 // case MISCREG_CNTPS_CVAL_EL1:
754 // case MISCREG_CNTPS_TVAL_EL1:
755 // case MISCREG_CNTPS_CTL_EL1:
756 // PL2 phys. timer, non-secure
757 // AArch32
758 // case MISCREG_CNTHCTL:
759 // case MISCREG_CNTHP_CVAL:
760 // case MISCREG_CNTHP_TVAL:
761 // case MISCREG_CNTHP_CTL:
762 // AArch64
763 // case MISCREG_CNTHCTL_EL2:
764 // case MISCREG_CNTHP_CVAL_EL2:
765 // case MISCREG_CNTHP_TVAL_EL2:
766 // case MISCREG_CNTHP_CTL_EL2:
767 // Virtual timer
768 // AArch32
769 // case MISCREG_CNTV_CVAL:
770 // case MISCREG_CNTV_TVAL:
771 // case MISCREG_CNTV_CTL:
772 // AArch64
773 // case MISCREG_CNTV_CVAL_EL2:
774 // case MISCREG_CNTV_TVAL_EL2:
775 // case MISCREG_CNTV_CTL_EL2:
776 default:
777 break;
778
779 }
780 return readMiscRegNoEffect(misc_reg);
781 }
782
783 void
784 ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
785 {
786 assert(misc_reg < NumMiscRegs);
787
788 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
789 // registers are left unchanged
790
791 int flat_idx2 = lookUpMiscReg[flat_idx].upper;
792
793 if (flat_idx2 > 0) {
794 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
795 miscRegs[flat_idx2] = bits(val, 63, 32);
796 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
797 misc_reg, flat_idx, flat_idx2, val);
798 } else {
799 if (flat_idx == MISCREG_SPSR)
800 flat_idx = flattenMiscIndex(MISCREG_SPSR);
801 else if (flat_idx == MISCREG_SCTLR_EL1)
802 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
803 else
804 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
805 lookUpMiscReg[flat_idx].lower : flat_idx;
806 miscRegs[flat_idx] = val;
807 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
808 misc_reg, flat_idx, val);
809 }
810 }
811
812 void
813 ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
814 {
815
816 MiscReg newVal = val;
817 int x;
818 bool secure_lookup;
819 bool hyp;
820 System *sys;
821 ThreadContext *oc;
822 uint8_t target_el;
823 uint16_t asid;
824 SCR scr;
825
826 if (misc_reg == MISCREG_CPSR) {
827 updateRegMap(val);
828
829
830 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
831 int old_mode = old_cpsr.mode;
832 CPSR cpsr = val;
833 if (old_mode != cpsr.mode) {
834 tc->getITBPtr()->invalidateMiscReg();
835 tc->getDTBPtr()->invalidateMiscReg();
836 }
837
838 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
839 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
840 PCState pc = tc->pcState();
841 pc.nextThumb(cpsr.t);
842 pc.nextJazelle(cpsr.j);
843
844 // Follow slightly different semantics if a CheckerCPU object
845 // is connected
846 CheckerCPU *checker = tc->getCheckerCpuPtr();
847 if (checker) {
848 tc->pcStateNoRecord(pc);
849 } else {
850 tc->pcState(pc);
851 }
852 } else {
853 #ifndef NDEBUG
854 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
855 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
856 warn("Unimplemented system register %s write with %#x.\n",
857 miscRegName[misc_reg], val);
858 else
859 panic("Unimplemented system register %s write with %#x.\n",
860 miscRegName[misc_reg], val);
861 }
862 #endif
863 switch (unflattenMiscReg(misc_reg)) {
864 case MISCREG_CPACR:
865 {
866
867 const uint32_t ones = (uint32_t)(-1);
868 CPACR cpacrMask = 0;
869 // Only cp10, cp11, and ase are implemented, nothing else should
870 // be writable
871 cpacrMask.cp10 = ones;
872 cpacrMask.cp11 = ones;
873 cpacrMask.asedis = ones;
874
875 // Security Extensions may limit the writability of CPACR
876 if (haveSecurity) {
877 scr = readMiscRegNoEffect(MISCREG_SCR);
878 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
879 if (scr.ns && (cpsr.mode != MODE_MON)) {
880 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
881 // NB: Skipping the full loop, here
882 if (!nsacr.cp10) cpacrMask.cp10 = 0;
883 if (!nsacr.cp11) cpacrMask.cp11 = 0;
884 }
885 }
886
887 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
888 newVal &= cpacrMask;
889 newVal |= old_val & ~cpacrMask;
890 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
891 miscRegName[misc_reg], newVal);
892 }
893 break;
894 case MISCREG_CPACR_EL1:
895 {
896 const uint32_t ones = (uint32_t)(-1);
897 CPACR cpacrMask = 0;
898 cpacrMask.tta = ones;
899 cpacrMask.fpen = ones;
900 newVal &= cpacrMask;
901 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
902 miscRegName[misc_reg], newVal);
903 }
904 break;
905 case MISCREG_CPTR_EL2:
906 {
907 const uint32_t ones = (uint32_t)(-1);
908 CPTR cptrMask = 0;
909 cptrMask.tcpac = ones;
910 cptrMask.tta = ones;
911 cptrMask.tfp = ones;
912 newVal &= cptrMask;
913 cptrMask = 0;
914 cptrMask.res1_13_12_el2 = ones;
915 cptrMask.res1_9_0_el2 = ones;
916 newVal |= cptrMask;
917 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
918 miscRegName[misc_reg], newVal);
919 }
920 break;
921 case MISCREG_CPTR_EL3:
922 {
923 const uint32_t ones = (uint32_t)(-1);
924 CPTR cptrMask = 0;
925 cptrMask.tcpac = ones;
926 cptrMask.tta = ones;
927 cptrMask.tfp = ones;
928 newVal &= cptrMask;
929 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
930 miscRegName[misc_reg], newVal);
931 }
932 break;
933 case MISCREG_CSSELR:
934 warn_once("The csselr register isn't implemented.\n");
935 return;
936
937 case MISCREG_DC_ZVA_Xt:
938 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
939 return;
940
941 case MISCREG_FPSCR:
942 {
943 const uint32_t ones = (uint32_t)(-1);
944 FPSCR fpscrMask = 0;
945 fpscrMask.ioc = ones;
946 fpscrMask.dzc = ones;
947 fpscrMask.ofc = ones;
948 fpscrMask.ufc = ones;
949 fpscrMask.ixc = ones;
950 fpscrMask.idc = ones;
951 fpscrMask.ioe = ones;
952 fpscrMask.dze = ones;
953 fpscrMask.ofe = ones;
954 fpscrMask.ufe = ones;
955 fpscrMask.ixe = ones;
956 fpscrMask.ide = ones;
957 fpscrMask.len = ones;
958 fpscrMask.stride = ones;
959 fpscrMask.rMode = ones;
960 fpscrMask.fz = ones;
961 fpscrMask.dn = ones;
962 fpscrMask.ahp = ones;
963 fpscrMask.qc = ones;
964 fpscrMask.v = ones;
965 fpscrMask.c = ones;
966 fpscrMask.z = ones;
967 fpscrMask.n = ones;
968 newVal = (newVal & (uint32_t)fpscrMask) |
969 (readMiscRegNoEffect(MISCREG_FPSCR) &
970 ~(uint32_t)fpscrMask);
971 tc->getDecoderPtr()->setContext(newVal);
972 }
973 break;
974 case MISCREG_FPSR:
975 {
976 const uint32_t ones = (uint32_t)(-1);
977 FPSCR fpscrMask = 0;
978 fpscrMask.ioc = ones;
979 fpscrMask.dzc = ones;
980 fpscrMask.ofc = ones;
981 fpscrMask.ufc = ones;
982 fpscrMask.ixc = ones;
983 fpscrMask.idc = ones;
984 fpscrMask.qc = ones;
985 fpscrMask.v = ones;
986 fpscrMask.c = ones;
987 fpscrMask.z = ones;
988 fpscrMask.n = ones;
989 newVal = (newVal & (uint32_t)fpscrMask) |
990 (readMiscRegNoEffect(MISCREG_FPSCR) &
991 ~(uint32_t)fpscrMask);
992 misc_reg = MISCREG_FPSCR;
993 }
994 break;
995 case MISCREG_FPCR:
996 {
997 const uint32_t ones = (uint32_t)(-1);
998 FPSCR fpscrMask = 0;
999 fpscrMask.ioe = ones;
1000 fpscrMask.dze = ones;
1001 fpscrMask.ofe = ones;
1002 fpscrMask.ufe = ones;
1003 fpscrMask.ixe = ones;
1004 fpscrMask.ide = ones;
1005 fpscrMask.len = ones;
1006 fpscrMask.stride = ones;
1007 fpscrMask.rMode = ones;
1008 fpscrMask.fz = ones;
1009 fpscrMask.dn = ones;
1010 fpscrMask.ahp = ones;
1011 newVal = (newVal & (uint32_t)fpscrMask) |
1012 (readMiscRegNoEffect(MISCREG_FPSCR) &
1013 ~(uint32_t)fpscrMask);
1014 misc_reg = MISCREG_FPSCR;
1015 }
1016 break;
1017 case MISCREG_CPSR_Q:
1018 {
1019 assert(!(newVal & ~CpsrMaskQ));
1020 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1021 misc_reg = MISCREG_CPSR;
1022 }
1023 break;
1024 case MISCREG_FPSCR_QC:
1025 {
1026 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1027 (newVal & FpscrQcMask);
1028 misc_reg = MISCREG_FPSCR;
1029 }
1030 break;
1031 case MISCREG_FPSCR_EXC:
1032 {
1033 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1034 (newVal & FpscrExcMask);
1035 misc_reg = MISCREG_FPSCR;
1036 }
1037 break;
1038 case MISCREG_FPEXC:
1039 {
1040 // vfpv3 architecture, section B.6.1 of DDI04068
1041 // bit 29 - valid only if fpexc[31] is 0
1042 const uint32_t fpexcMask = 0x60000000;
1043 newVal = (newVal & fpexcMask) |
1044 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1045 }
1046 break;
1047 case MISCREG_HCR:
1048 {
1049 if (!haveVirtualization)
1050 return;
1051 }
1052 break;
1053 case MISCREG_IFSR:
1054 {
1055 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1056 const uint32_t ifsrMask =
1057 mask(31, 13) | mask(11, 11) | mask(8, 6);
1058 newVal = newVal & ~ifsrMask;
1059 }
1060 break;
1061 case MISCREG_DFSR:
1062 {
1063 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1064 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1065 newVal = newVal & ~dfsrMask;
1066 }
1067 break;
1068 case MISCREG_AMAIR0:
1069 case MISCREG_AMAIR1:
1070 {
1071 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1072 // Valid only with LPAE
1073 if (!haveLPAE)
1074 return;
1075 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1076 }
1077 break;
1078 case MISCREG_SCR:
1079 tc->getITBPtr()->invalidateMiscReg();
1080 tc->getDTBPtr()->invalidateMiscReg();
1081 break;
1082 case MISCREG_SCTLR:
1083 {
1084 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1085 MiscRegIndex sctlr_idx;
1086 scr = readMiscRegNoEffect(MISCREG_SCR);
1087 if (haveSecurity && !scr.ns) {
1088 sctlr_idx = MISCREG_SCTLR_S;
1089 } else {
1090 sctlr_idx = MISCREG_SCTLR_NS;
1091 // The FI field (bit 21) is common between S/NS versions
1092 // of the register, we store this in the secure copy of
1093 // the reg
1094 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21);
1095 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1096 }
1097 SCTLR sctlr = miscRegs[sctlr_idx];
1098 SCTLR new_sctlr = newVal;
1099 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1100 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1101 tc->getITBPtr()->invalidateMiscReg();
1102 tc->getDTBPtr()->invalidateMiscReg();
1103
1104 if (new_sctlr.c)
1105 updateBootUncacheable(sctlr_idx, tc);
1106 return;
1107 }
1108 case MISCREG_MIDR:
1109 case MISCREG_ID_PFR0:
1110 case MISCREG_ID_PFR1:
1111 case MISCREG_ID_DFR0:
1112 case MISCREG_ID_MMFR0:
1113 case MISCREG_ID_MMFR1:
1114 case MISCREG_ID_MMFR2:
1115 case MISCREG_ID_MMFR3:
1116 case MISCREG_ID_ISAR0:
1117 case MISCREG_ID_ISAR1:
1118 case MISCREG_ID_ISAR2:
1119 case MISCREG_ID_ISAR3:
1120 case MISCREG_ID_ISAR4:
1121 case MISCREG_ID_ISAR5:
1122
1123 case MISCREG_MPIDR:
1124 case MISCREG_FPSID:
1125 case MISCREG_TLBTR:
1126 case MISCREG_MVFR0:
1127 case MISCREG_MVFR1:
1128
1129 case MISCREG_ID_AA64AFR0_EL1:
1130 case MISCREG_ID_AA64AFR1_EL1:
1131 case MISCREG_ID_AA64DFR0_EL1:
1132 case MISCREG_ID_AA64DFR1_EL1:
1133 case MISCREG_ID_AA64ISAR0_EL1:
1134 case MISCREG_ID_AA64ISAR1_EL1:
1135 case MISCREG_ID_AA64MMFR0_EL1:
1136 case MISCREG_ID_AA64MMFR1_EL1:
1137 case MISCREG_ID_AA64PFR0_EL1:
1138 case MISCREG_ID_AA64PFR1_EL1:
1139 // ID registers are constants.
1140 return;
1141
1142 // TLBI all entries, EL0&1 inner sharable (ignored)
1143 case MISCREG_TLBIALLIS:
1144 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1145 assert32(tc);
1146 target_el = 1; // el 0 and 1 are handled together
1147 scr = readMiscReg(MISCREG_SCR, tc);
1148 secure_lookup = haveSecurity && !scr.ns;
1149 sys = tc->getSystemPtr();
1150 for (x = 0; x < sys->numContexts(); x++) {
1151 oc = sys->getThreadContext(x);
1152 assert(oc->getITBPtr() && oc->getDTBPtr());
1153 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1154 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1155
1156 // If CheckerCPU is connected, need to notify it of a flush
1157 CheckerCPU *checker = oc->getCheckerCpuPtr();
1158 if (checker) {
1159 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1160 target_el);
1161 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1162 target_el);
1163 }
1164 }
1165 return;
1166 // TLBI all entries, EL0&1, instruction side
1167 case MISCREG_ITLBIALL:
1168 assert32(tc);
1169 target_el = 1; // el 0 and 1 are handled together
1170 scr = readMiscReg(MISCREG_SCR, tc);
1171 secure_lookup = haveSecurity && !scr.ns;
1172 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1173 return;
1174 // TLBI all entries, EL0&1, data side
1175 case MISCREG_DTLBIALL:
1176 assert32(tc);
1177 target_el = 1; // el 0 and 1 are handled together
1178 scr = readMiscReg(MISCREG_SCR, tc);
1179 secure_lookup = haveSecurity && !scr.ns;
1180 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1181 return;
1182 // TLBI based on VA, EL0&1 inner sharable (ignored)
1183 case MISCREG_TLBIMVAIS:
1184 case MISCREG_TLBIMVA:
1185 assert32(tc);
1186 target_el = 1; // el 0 and 1 are handled together
1187 scr = readMiscReg(MISCREG_SCR, tc);
1188 secure_lookup = haveSecurity && !scr.ns;
1189 sys = tc->getSystemPtr();
1190 for (x = 0; x < sys->numContexts(); x++) {
1191 oc = sys->getThreadContext(x);
1192 assert(oc->getITBPtr() && oc->getDTBPtr());
1193 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1194 bits(newVal, 7,0),
1195 secure_lookup, target_el);
1196 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1197 bits(newVal, 7,0),
1198 secure_lookup, target_el);
1199
1200 CheckerCPU *checker = oc->getCheckerCpuPtr();
1201 if (checker) {
1202 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1203 bits(newVal, 7,0), secure_lookup, target_el);
1204 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1205 bits(newVal, 7,0), secure_lookup, target_el);
1206 }
1207 }
1208 return;
1209 // TLBI by ASID, EL0&1, inner sharable
1210 case MISCREG_TLBIASIDIS:
1211 case MISCREG_TLBIASID:
1212 assert32(tc);
1213 target_el = 1; // el 0 and 1 are handled together
1214 scr = readMiscReg(MISCREG_SCR, tc);
1215 secure_lookup = haveSecurity && !scr.ns;
1216 sys = tc->getSystemPtr();
1217 for (x = 0; x < sys->numContexts(); x++) {
1218 oc = sys->getThreadContext(x);
1219 assert(oc->getITBPtr() && oc->getDTBPtr());
1220 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1221 secure_lookup, target_el);
1222 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1223 secure_lookup, target_el);
1224 CheckerCPU *checker = oc->getCheckerCpuPtr();
1225 if (checker) {
1226 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1227 secure_lookup, target_el);
1228 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1229 secure_lookup, target_el);
1230 }
1231 }
1232 return;
1233 // TLBI by address, EL0&1, inner sharable (ignored)
1234 case MISCREG_TLBIMVAAIS:
1235 case MISCREG_TLBIMVAA:
1236 assert32(tc);
1237 target_el = 1; // el 0 and 1 are handled together
1238 scr = readMiscReg(MISCREG_SCR, tc);
1239 secure_lookup = haveSecurity && !scr.ns;
1240 hyp = 0;
1241 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1242 return;
1243 // TLBI by address, EL2, hypervisor mode
1244 case MISCREG_TLBIMVAH:
1245 case MISCREG_TLBIMVAHIS:
1246 assert32(tc);
1247 target_el = 1; // aarch32, use hyp bit
1248 scr = readMiscReg(MISCREG_SCR, tc);
1249 secure_lookup = haveSecurity && !scr.ns;
1250 hyp = 1;
1251 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1252 return;
1253 // TLBI by address and asid, EL0&1, instruction side only
1254 case MISCREG_ITLBIMVA:
1255 assert32(tc);
1256 target_el = 1; // el 0 and 1 are handled together
1257 scr = readMiscReg(MISCREG_SCR, tc);
1258 secure_lookup = haveSecurity && !scr.ns;
1259 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1260 bits(newVal, 7,0), secure_lookup, target_el);
1261 return;
1262 // TLBI by address and asid, EL0&1, data side only
1263 case MISCREG_DTLBIMVA:
1264 assert32(tc);
1265 target_el = 1; // el 0 and 1 are handled together
1266 scr = readMiscReg(MISCREG_SCR, tc);
1267 secure_lookup = haveSecurity && !scr.ns;
1268 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1269 bits(newVal, 7,0), secure_lookup, target_el);
1270 return;
1271 // TLBI by ASID, EL0&1, instrution side only
1272 case MISCREG_ITLBIASID:
1273 assert32(tc);
1274 target_el = 1; // el 0 and 1 are handled together
1275 scr = readMiscReg(MISCREG_SCR, tc);
1276 secure_lookup = haveSecurity && !scr.ns;
1277 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1278 target_el);
1279 return;
1280 // TLBI by ASID EL0&1 data size only
1281 case MISCREG_DTLBIASID:
1282 assert32(tc);
1283 target_el = 1; // el 0 and 1 are handled together
1284 scr = readMiscReg(MISCREG_SCR, tc);
1285 secure_lookup = haveSecurity && !scr.ns;
1286 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1287 target_el);
1288 return;
1289 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1290 case MISCREG_TLBIALLNSNH:
1291 case MISCREG_TLBIALLNSNHIS:
1292 assert32(tc);
1293 target_el = 1; // el 0 and 1 are handled together
1294 hyp = 0;
1295 tlbiALLN(tc, hyp, target_el);
1296 return;
1297 // TLBI all entries, EL2, hyp,
1298 case MISCREG_TLBIALLH:
1299 case MISCREG_TLBIALLHIS:
1300 assert32(tc);
1301 target_el = 1; // aarch32, use hyp bit
1302 hyp = 1;
1303 tlbiALLN(tc, hyp, target_el);
1304 return;
1305 // AArch64 TLBI: invalidate all entries EL3
1306 case MISCREG_TLBI_ALLE3IS:
1307 case MISCREG_TLBI_ALLE3:
1308 assert64(tc);
1309 target_el = 3;
1310 secure_lookup = true;
1311 tlbiALL(tc, secure_lookup, target_el);
1312 return;
1313 // @todo: uncomment this to enable Virtualization
1314 // case MISCREG_TLBI_ALLE2IS:
1315 // case MISCREG_TLBI_ALLE2:
1316 // TLBI all entries, EL0&1
1317 case MISCREG_TLBI_ALLE1IS:
1318 case MISCREG_TLBI_ALLE1:
1319 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1320 case MISCREG_TLBI_VMALLE1IS:
1321 case MISCREG_TLBI_VMALLE1:
1322 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1323 case MISCREG_TLBI_VMALLS12E1IS:
1324 case MISCREG_TLBI_VMALLS12E1:
1325 // @todo: handle VMID and stage 2 to enable Virtualization
1326 assert64(tc);
1327 target_el = 1; // el 0 and 1 are handled together
1328 scr = readMiscReg(MISCREG_SCR, tc);
1329 secure_lookup = haveSecurity && !scr.ns;
1330 tlbiALL(tc, secure_lookup, target_el);
1331 return;
1332 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1333 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1334 // from the last level of translation table walks
1335 // @todo: handle VMID to enable Virtualization
1336 // TLBI all entries, EL0&1
1337 case MISCREG_TLBI_VAE3IS_Xt:
1338 case MISCREG_TLBI_VAE3_Xt:
1339 // TLBI by VA, EL3 regime stage 1, last level walk
1340 case MISCREG_TLBI_VALE3IS_Xt:
1341 case MISCREG_TLBI_VALE3_Xt:
1342 assert64(tc);
1343 target_el = 3;
1344 asid = 0xbeef; // does not matter, tlbi is global
1345 secure_lookup = true;
1346 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1347 return;
1348 // TLBI by VA, EL2
1349 case MISCREG_TLBI_VAE2IS_Xt:
1350 case MISCREG_TLBI_VAE2_Xt:
1351 // TLBI by VA, EL2, stage1 last level walk
1352 case MISCREG_TLBI_VALE2IS_Xt:
1353 case MISCREG_TLBI_VALE2_Xt:
1354 assert64(tc);
1355 target_el = 2;
1356 asid = 0xbeef; // does not matter, tlbi is global
1357 scr = readMiscReg(MISCREG_SCR, tc);
1358 secure_lookup = haveSecurity && !scr.ns;
1359 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1360 return;
1361 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1362 case MISCREG_TLBI_VAE1IS_Xt:
1363 case MISCREG_TLBI_VAE1_Xt:
1364 case MISCREG_TLBI_VALE1IS_Xt:
1365 case MISCREG_TLBI_VALE1_Xt:
1366 assert64(tc);
1367 asid = bits(newVal, 63, 48);
1368 target_el = 1; // el 0 and 1 are handled together
1369 scr = readMiscReg(MISCREG_SCR, tc);
1370 secure_lookup = haveSecurity && !scr.ns;
1371 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1372 return;
1373 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1374 // @todo: handle VMID to enable Virtualization
1375 case MISCREG_TLBI_ASIDE1IS_Xt:
1376 case MISCREG_TLBI_ASIDE1_Xt:
1377 assert64(tc);
1378 target_el = 1; // el 0 and 1 are handled together
1379 scr = readMiscReg(MISCREG_SCR, tc);
1380 secure_lookup = haveSecurity && !scr.ns;
1381 sys = tc->getSystemPtr();
1382 for (x = 0; x < sys->numContexts(); x++) {
1383 oc = sys->getThreadContext(x);
1384 assert(oc->getITBPtr() && oc->getDTBPtr());
1385 asid = bits(newVal, 63, 48);
1386 if (haveLargeAsid64)
1387 asid &= mask(8);
1388 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1389 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1390 CheckerCPU *checker = oc->getCheckerCpuPtr();
1391 if (checker) {
1392 checker->getITBPtr()->flushAsid(asid,
1393 secure_lookup, target_el);
1394 checker->getDTBPtr()->flushAsid(asid,
1395 secure_lookup, target_el);
1396 }
1397 }
1398 return;
1399 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1400 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1401 // entries from the last level of translation table walks
1402 // @todo: handle VMID to enable Virtualization
1403 case MISCREG_TLBI_VAAE1IS_Xt:
1404 case MISCREG_TLBI_VAAE1_Xt:
1405 case MISCREG_TLBI_VAALE1IS_Xt:
1406 case MISCREG_TLBI_VAALE1_Xt:
1407 assert64(tc);
1408 target_el = 1; // el 0 and 1 are handled together
1409 scr = readMiscReg(MISCREG_SCR, tc);
1410 secure_lookup = haveSecurity && !scr.ns;
1411 sys = tc->getSystemPtr();
1412 for (x = 0; x < sys->numContexts(); x++) {
1413 // @todo: extra controls on TLBI broadcast?
1414 oc = sys->getThreadContext(x);
1415 assert(oc->getITBPtr() && oc->getDTBPtr());
1416 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1417 oc->getITBPtr()->flushMva(va,
1418 secure_lookup, false, target_el);
1419 oc->getDTBPtr()->flushMva(va,
1420 secure_lookup, false, target_el);
1421
1422 CheckerCPU *checker = oc->getCheckerCpuPtr();
1423 if (checker) {
1424 checker->getITBPtr()->flushMva(va,
1425 secure_lookup, false, target_el);
1426 checker->getDTBPtr()->flushMva(va,
1427 secure_lookup, false, target_el);
1428 }
1429 }
1430 return;
1431 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1432 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1433 case MISCREG_TLBI_IPAS2LE1_Xt:
1434 case MISCREG_TLBI_IPAS2E1IS_Xt:
1435 case MISCREG_TLBI_IPAS2E1_Xt:
1436 assert64(tc);
1437 // @todo: implement these as part of Virtualization
1438 warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
1439 return;
1440 case MISCREG_ACTLR:
1441 warn("Not doing anything for write of miscreg ACTLR\n");
1442 break;
1443
1444 case MISCREG_PMXEVTYPER_PMCCFILTR:
1445 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1446 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1447 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1448 pmu->setMiscReg(misc_reg, newVal);
1449 break;
1450
1451
1452 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1453 {
1454 HSTR hstrMask = 0;
1455 hstrMask.tjdbx = 1;
1456 newVal &= ~((uint32_t) hstrMask);
1457 break;
1458 }
1459 case MISCREG_HCPTR:
1460 {
1461 // If a CP bit in NSACR is 0 then the corresponding bit in
1462 // HCPTR is RAO/WI. Same applies to NSASEDIS
1463 secure_lookup = haveSecurity &&
1464 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1465 readMiscRegNoEffect(MISCREG_CPSR));
1466 if (!secure_lookup) {
1467 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1468 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1469 newVal = (newVal & ~mask) | (oldValue & mask);
1470 }
1471 break;
1472 }
1473 case MISCREG_HDFAR: // alias for secure DFAR
1474 misc_reg = MISCREG_DFAR_S;
1475 break;
1476 case MISCREG_HIFAR: // alias for secure IFAR
1477 misc_reg = MISCREG_IFAR_S;
1478 break;
1479 case MISCREG_ATS1CPR:
1480 case MISCREG_ATS1CPW:
1481 case MISCREG_ATS1CUR:
1482 case MISCREG_ATS1CUW:
1483 case MISCREG_ATS12NSOPR:
1484 case MISCREG_ATS12NSOPW:
1485 case MISCREG_ATS12NSOUR:
1486 case MISCREG_ATS12NSOUW:
1487 case MISCREG_ATS1HR:
1488 case MISCREG_ATS1HW:
1489 {
1490 RequestPtr req = new Request;
1491 unsigned flags = 0;
1492 BaseTLB::Mode mode = BaseTLB::Read;
1493 TLB::ArmTranslationType tranType = TLB::NormalTran;
1494 Fault fault;
1495 switch(misc_reg) {
1496 case MISCREG_ATS1CPR:
1497 flags = TLB::MustBeOne;
1498 tranType = TLB::S1CTran;
1499 mode = BaseTLB::Read;
1500 break;
1501 case MISCREG_ATS1CPW:
1502 flags = TLB::MustBeOne;
1503 tranType = TLB::S1CTran;
1504 mode = BaseTLB::Write;
1505 break;
1506 case MISCREG_ATS1CUR:
1507 flags = TLB::MustBeOne | TLB::UserMode;
1508 tranType = TLB::S1CTran;
1509 mode = BaseTLB::Read;
1510 break;
1511 case MISCREG_ATS1CUW:
1512 flags = TLB::MustBeOne | TLB::UserMode;
1513 tranType = TLB::S1CTran;
1514 mode = BaseTLB::Write;
1515 break;
1516 case MISCREG_ATS12NSOPR:
1517 if (!haveSecurity)
1518 panic("Security Extensions required for ATS12NSOPR");
1519 flags = TLB::MustBeOne;
1520 tranType = TLB::S1S2NsTran;
1521 mode = BaseTLB::Read;
1522 break;
1523 case MISCREG_ATS12NSOPW:
1524 if (!haveSecurity)
1525 panic("Security Extensions required for ATS12NSOPW");
1526 flags = TLB::MustBeOne;
1527 tranType = TLB::S1S2NsTran;
1528 mode = BaseTLB::Write;
1529 break;
1530 case MISCREG_ATS12NSOUR:
1531 if (!haveSecurity)
1532 panic("Security Extensions required for ATS12NSOUR");
1533 flags = TLB::MustBeOne | TLB::UserMode;
1534 tranType = TLB::S1S2NsTran;
1535 mode = BaseTLB::Read;
1536 break;
1537 case MISCREG_ATS12NSOUW:
1538 if (!haveSecurity)
1539 panic("Security Extensions required for ATS12NSOUW");
1540 flags = TLB::MustBeOne | TLB::UserMode;
1541 tranType = TLB::S1S2NsTran;
1542 mode = BaseTLB::Write;
1543 break;
1544 case MISCREG_ATS1HR: // only really useful from secure mode.
1545 flags = TLB::MustBeOne;
1546 tranType = TLB::HypMode;
1547 mode = BaseTLB::Read;
1548 break;
1549 case MISCREG_ATS1HW:
1550 flags = TLB::MustBeOne;
1551 tranType = TLB::HypMode;
1552 mode = BaseTLB::Write;
1553 break;
1554 }
1555 // If we're in timing mode then doing the translation in
1556 // functional mode then we're slightly distorting performance
1557 // results obtained from simulations. The translation should be
1558 // done in the same mode the core is running in. NOTE: This
1559 // can't be an atomic translation because that causes problems
1560 // with unexpected atomic snoop requests.
1561 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1562 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1563 tc->pcState().pc());
1564 req->setThreadContext(tc->contextId(), tc->threadId());
1565 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, tranType);
1566 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1567 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1568
1569 MiscReg newVal;
1570 if (fault == NoFault) {
1571 Addr paddr = req->getPaddr();
1572 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1573 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1574 newVal = (paddr & mask(39, 12)) |
1575 (tc->getDTBPtr()->getAttr());
1576 } else {
1577 newVal = (paddr & 0xfffff000) |
1578 (tc->getDTBPtr()->getAttr());
1579 }
1580 DPRINTF(MiscRegs,
1581 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1582 val, newVal);
1583 } else {
1584 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1585 // Set fault bit and FSR
1586 FSR fsr = armFault->getFsr(tc);
1587
1588 newVal = ((fsr >> 9) & 1) << 11;
1589 if (newVal) {
1590 // LPAE - rearange fault status
1591 newVal |= ((fsr >> 0) & 0x3f) << 1;
1592 } else {
1593 // VMSA - rearange fault status
1594 newVal |= ((fsr >> 0) & 0xf) << 1;
1595 newVal |= ((fsr >> 10) & 0x1) << 5;
1596 newVal |= ((fsr >> 12) & 0x1) << 6;
1597 }
1598 newVal |= 0x1; // F bit
1599 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1600 newVal |= armFault->isStage2() ? 0x200 : 0;
1601 DPRINTF(MiscRegs,
1602 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1603 val, fsr, newVal);
1604 }
1605 delete req;
1606 setMiscRegNoEffect(MISCREG_PAR, newVal);
1607 return;
1608 }
1609 case MISCREG_TTBCR:
1610 {
1611 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1612 const uint32_t ones = (uint32_t)(-1);
1613 TTBCR ttbcrMask = 0;
1614 TTBCR ttbcrNew = newVal;
1615
1616 // ARM DDI 0406C.b, ARMv7-32
1617 ttbcrMask.n = ones; // T0SZ
1618 if (haveSecurity) {
1619 ttbcrMask.pd0 = ones;
1620 ttbcrMask.pd1 = ones;
1621 }
1622 ttbcrMask.epd0 = ones;
1623 ttbcrMask.irgn0 = ones;
1624 ttbcrMask.orgn0 = ones;
1625 ttbcrMask.sh0 = ones;
1626 ttbcrMask.ps = ones; // T1SZ
1627 ttbcrMask.a1 = ones;
1628 ttbcrMask.epd1 = ones;
1629 ttbcrMask.irgn1 = ones;
1630 ttbcrMask.orgn1 = ones;
1631 ttbcrMask.sh1 = ones;
1632 if (haveLPAE)
1633 ttbcrMask.eae = ones;
1634
1635 if (haveLPAE && ttbcrNew.eae) {
1636 newVal = newVal & ttbcrMask;
1637 } else {
1638 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1639 }
1640 }
1641 case MISCREG_TTBR0:
1642 case MISCREG_TTBR1:
1643 {
1644 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1645 if (haveLPAE) {
1646 if (ttbcr.eae) {
1647 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1648 // ARMv8 AArch32 bit 63-56 only
1649 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1650 newVal = (newVal & (~ttbrMask));
1651 }
1652 }
1653 }
1654 case MISCREG_SCTLR_EL1:
1655 {
1656 tc->getITBPtr()->invalidateMiscReg();
1657 tc->getDTBPtr()->invalidateMiscReg();
1658 SCTLR new_sctlr = newVal;
1659 setMiscRegNoEffect(misc_reg, newVal);
1660 if (new_sctlr.c)
1661 updateBootUncacheable(misc_reg, tc);
1662 return;
1663 }
1664 case MISCREG_CONTEXTIDR:
1665 case MISCREG_PRRR:
1666 case MISCREG_NMRR:
1667 case MISCREG_MAIR0:
1668 case MISCREG_MAIR1:
1669 case MISCREG_DACR:
1670 case MISCREG_VTTBR:
1671 case MISCREG_SCR_EL3:
1672 case MISCREG_TCR_EL1:
1673 case MISCREG_TCR_EL2:
1674 case MISCREG_TCR_EL3:
1675 case MISCREG_SCTLR_EL2:
1676 case MISCREG_SCTLR_EL3:
1677 case MISCREG_TTBR0_EL1:
1678 case MISCREG_TTBR1_EL1:
1679 case MISCREG_TTBR0_EL2:
1680 case MISCREG_TTBR0_EL3:
1681 tc->getITBPtr()->invalidateMiscReg();
1682 tc->getDTBPtr()->invalidateMiscReg();
1683 break;
1684 case MISCREG_NZCV:
1685 {
1686 CPSR cpsr = val;
1687
1688 tc->setCCReg(CCREG_NZ, cpsr.nz);
1689 tc->setCCReg(CCREG_C, cpsr.c);
1690 tc->setCCReg(CCREG_V, cpsr.v);
1691 }
1692 break;
1693 case MISCREG_DAIF:
1694 {
1695 CPSR cpsr = miscRegs[MISCREG_CPSR];
1696 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1697 newVal = cpsr;
1698 misc_reg = MISCREG_CPSR;
1699 }
1700 break;
1701 case MISCREG_SP_EL0:
1702 tc->setIntReg(INTREG_SP0, newVal);
1703 break;
1704 case MISCREG_SP_EL1:
1705 tc->setIntReg(INTREG_SP1, newVal);
1706 break;
1707 case MISCREG_SP_EL2:
1708 tc->setIntReg(INTREG_SP2, newVal);
1709 break;
1710 case MISCREG_SPSEL:
1711 {
1712 CPSR cpsr = miscRegs[MISCREG_CPSR];
1713 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1714 newVal = cpsr;
1715 misc_reg = MISCREG_CPSR;
1716 }
1717 break;
1718 case MISCREG_CURRENTEL:
1719 {
1720 CPSR cpsr = miscRegs[MISCREG_CPSR];
1721 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1722 newVal = cpsr;
1723 misc_reg = MISCREG_CPSR;
1724 }
1725 break;
1726 case MISCREG_AT_S1E1R_Xt:
1727 case MISCREG_AT_S1E1W_Xt:
1728 case MISCREG_AT_S1E0R_Xt:
1729 case MISCREG_AT_S1E0W_Xt:
1730 case MISCREG_AT_S1E2R_Xt:
1731 case MISCREG_AT_S1E2W_Xt:
1732 case MISCREG_AT_S12E1R_Xt:
1733 case MISCREG_AT_S12E1W_Xt:
1734 case MISCREG_AT_S12E0R_Xt:
1735 case MISCREG_AT_S12E0W_Xt:
1736 case MISCREG_AT_S1E3R_Xt:
1737 case MISCREG_AT_S1E3W_Xt:
1738 {
1739 RequestPtr req = new Request;
1740 unsigned flags = 0;
1741 BaseTLB::Mode mode = BaseTLB::Read;
1742 TLB::ArmTranslationType tranType = TLB::NormalTran;
1743 Fault fault;
1744 switch(misc_reg) {
1745 case MISCREG_AT_S1E1R_Xt:
1746 flags = TLB::MustBeOne;
1747 tranType = TLB::S1CTran;
1748 mode = BaseTLB::Read;
1749 break;
1750 case MISCREG_AT_S1E1W_Xt:
1751 flags = TLB::MustBeOne;
1752 tranType = TLB::S1CTran;
1753 mode = BaseTLB::Write;
1754 break;
1755 case MISCREG_AT_S1E0R_Xt:
1756 flags = TLB::MustBeOne | TLB::UserMode;
1757 tranType = TLB::S1CTran;
1758 mode = BaseTLB::Read;
1759 break;
1760 case MISCREG_AT_S1E0W_Xt:
1761 flags = TLB::MustBeOne | TLB::UserMode;
1762 tranType = TLB::S1CTran;
1763 mode = BaseTLB::Write;
1764 break;
1765 case MISCREG_AT_S1E2R_Xt:
1766 flags = TLB::MustBeOne;
1767 tranType = TLB::HypMode;
1768 mode = BaseTLB::Read;
1769 break;
1770 case MISCREG_AT_S1E2W_Xt:
1771 flags = TLB::MustBeOne;
1772 tranType = TLB::HypMode;
1773 mode = BaseTLB::Write;
1774 break;
1775 case MISCREG_AT_S12E0R_Xt:
1776 flags = TLB::MustBeOne | TLB::UserMode;
1777 tranType = TLB::S1S2NsTran;
1778 mode = BaseTLB::Read;
1779 break;
1780 case MISCREG_AT_S12E0W_Xt:
1781 flags = TLB::MustBeOne | TLB::UserMode;
1782 tranType = TLB::S1S2NsTran;
1783 mode = BaseTLB::Write;
1784 break;
1785 case MISCREG_AT_S12E1R_Xt:
1786 flags = TLB::MustBeOne;
1787 tranType = TLB::S1S2NsTran;
1788 mode = BaseTLB::Read;
1789 break;
1790 case MISCREG_AT_S12E1W_Xt:
1791 flags = TLB::MustBeOne;
1792 tranType = TLB::S1S2NsTran;
1793 mode = BaseTLB::Write;
1794 break;
1795 case MISCREG_AT_S1E3R_Xt:
1796 flags = TLB::MustBeOne;
1797 tranType = TLB::HypMode; // There is no TZ mode defined.
1798 mode = BaseTLB::Read;
1799 break;
1800 case MISCREG_AT_S1E3W_Xt:
1801 flags = TLB::MustBeOne;
1802 tranType = TLB::HypMode; // There is no TZ mode defined.
1803 mode = BaseTLB::Write;
1804 break;
1805 }
1806 // If we're in timing mode then doing the translation in
1807 // functional mode then we're slightly distorting performance
1808 // results obtained from simulations. The translation should be
1809 // done in the same mode the core is running in. NOTE: This
1810 // can't be an atomic translation because that causes problems
1811 // with unexpected atomic snoop requests.
1812 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1813 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1814 tc->pcState().pc());
1815 req->setThreadContext(tc->contextId(), tc->threadId());
1816 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1817 tranType);
1818
1819 MiscReg newVal;
1820 if (fault == NoFault) {
1821 Addr paddr = req->getPaddr();
1822 uint64_t attr = tc->getDTBPtr()->getAttr();
1823 uint64_t attr1 = attr >> 56;
1824 if (!attr1 || attr1 ==0x44) {
1825 attr |= 0x100;
1826 attr &= ~ uint64_t(0x80);
1827 }
1828 newVal = (paddr & mask(47, 12)) | attr;
1829 DPRINTF(MiscRegs,
1830 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1831 val, newVal);
1832 } else {
1833 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1834 // Set fault bit and FSR
1835 FSR fsr = armFault->getFsr(tc);
1836
1837 newVal = ((fsr >> 9) & 1) << 11;
1838 // rearange fault status
1839 newVal |= ((fsr >> 0) & 0x3f) << 1;
1840 newVal |= 0x1; // F bit
1841 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1842 newVal |= armFault->isStage2() ? 0x200 : 0;
1843 DPRINTF(MiscRegs,
1844 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1845 val, fsr, newVal);
1846 }
1847 delete req;
1848 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1849 return;
1850 }
1851 case MISCREG_SPSR_EL3:
1852 case MISCREG_SPSR_EL2:
1853 case MISCREG_SPSR_EL1:
1854 // Force bits 23:21 to 0
1855 newVal = val & ~(0x7 << 21);
1856 break;
1857 case MISCREG_L2CTLR:
1858 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1859 miscRegName[misc_reg], uint32_t(val));
1860 break;
1861
1862 // Generic Timer registers
1863 case MISCREG_CNTFRQ:
1864 case MISCREG_CNTFRQ_EL0:
1865 getSystemCounter(tc)->setFreq(val);
1866 break;
1867 case MISCREG_CNTP_CVAL:
1868 case MISCREG_CNTP_CVAL_EL0:
1869 getArchTimer(tc, tc->cpuId())->setCompareValue(val);
1870 break;
1871 case MISCREG_CNTP_TVAL:
1872 case MISCREG_CNTP_TVAL_EL0:
1873 getArchTimer(tc, tc->cpuId())->setTimerValue(val);
1874 break;
1875 case MISCREG_CNTP_CTL:
1876 case MISCREG_CNTP_CTL_EL0:
1877 getArchTimer(tc, tc->cpuId())->setControl(val);
1878 break;
1879 // PL1 phys. timer, secure
1880 // AArch64
1881 case MISCREG_CNTPS_CVAL_EL1:
1882 case MISCREG_CNTPS_TVAL_EL1:
1883 case MISCREG_CNTPS_CTL_EL1:
1884 // PL2 phys. timer, non-secure
1885 // AArch32
1886 case MISCREG_CNTHCTL:
1887 case MISCREG_CNTHP_CVAL:
1888 case MISCREG_CNTHP_TVAL:
1889 case MISCREG_CNTHP_CTL:
1890 // AArch64
1891 case MISCREG_CNTHCTL_EL2:
1892 case MISCREG_CNTHP_CVAL_EL2:
1893 case MISCREG_CNTHP_TVAL_EL2:
1894 case MISCREG_CNTHP_CTL_EL2:
1895 // Virtual timer
1896 // AArch32
1897 case MISCREG_CNTV_CVAL:
1898 case MISCREG_CNTV_TVAL:
1899 case MISCREG_CNTV_CTL:
1900 // AArch64
1901 // case MISCREG_CNTV_CVAL_EL2:
1902 // case MISCREG_CNTV_TVAL_EL2:
1903 // case MISCREG_CNTV_CTL_EL2:
1904 break;
1905 }
1906 }
1907 setMiscRegNoEffect(misc_reg, newVal);
1908 }
1909
1910 void
1911 ISA::updateBootUncacheable(int sctlr_idx, ThreadContext *tc)
1912 {
1913 System *sys;
1914 ThreadContext *oc;
1915
1916 // Check if all CPUs are booted with caches enabled
1917 // so we can stop enforcing coherency of some kernel
1918 // structures manually.
1919 sys = tc->getSystemPtr();
1920 for (int x = 0; x < sys->numContexts(); x++) {
1921 oc = sys->getThreadContext(x);
1922 // @todo: double check this for security
1923 SCTLR other_sctlr = oc->readMiscRegNoEffect(sctlr_idx);
1924 if (!other_sctlr.c && oc->status() != ThreadContext::Halted)
1925 return;
1926 }
1927
1928 for (int x = 0; x < sys->numContexts(); x++) {
1929 oc = sys->getThreadContext(x);
1930 oc->getDTBPtr()->allCpusCaching();
1931 oc->getITBPtr()->allCpusCaching();
1932
1933 // If CheckerCPU is connected, need to notify it.
1934 CheckerCPU *checker = oc->getCheckerCpuPtr();
1935 if (checker) {
1936 checker->getDTBPtr()->allCpusCaching();
1937 checker->getITBPtr()->allCpusCaching();
1938 }
1939 }
1940 }
1941
1942 void
1943 ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint8_t asid, bool secure_lookup,
1944 uint8_t target_el)
1945 {
1946 if (haveLargeAsid64)
1947 asid &= mask(8);
1948 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1949 System *sys = tc->getSystemPtr();
1950 for (int x = 0; x < sys->numContexts(); x++) {
1951 ThreadContext *oc = sys->getThreadContext(x);
1952 assert(oc->getITBPtr() && oc->getDTBPtr());
1953 oc->getITBPtr()->flushMvaAsid(va, asid,
1954 secure_lookup, target_el);
1955 oc->getDTBPtr()->flushMvaAsid(va, asid,
1956 secure_lookup, target_el);
1957
1958 CheckerCPU *checker = oc->getCheckerCpuPtr();
1959 if (checker) {
1960 checker->getITBPtr()->flushMvaAsid(
1961 va, asid, secure_lookup, target_el);
1962 checker->getDTBPtr()->flushMvaAsid(
1963 va, asid, secure_lookup, target_el);
1964 }
1965 }
1966 }
1967
1968 void
1969 ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1970 {
1971 System *sys = tc->getSystemPtr();
1972 for (int x = 0; x < sys->numContexts(); x++) {
1973 ThreadContext *oc = sys->getThreadContext(x);
1974 assert(oc->getITBPtr() && oc->getDTBPtr());
1975 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1976 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1977
1978 // If CheckerCPU is connected, need to notify it of a flush
1979 CheckerCPU *checker = oc->getCheckerCpuPtr();
1980 if (checker) {
1981 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1982 target_el);
1983 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1984 target_el);
1985 }
1986 }
1987 }
1988
1989 void
1990 ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1991 {
1992 System *sys = tc->getSystemPtr();
1993 for (int x = 0; x < sys->numContexts(); x++) {
1994 ThreadContext *oc = sys->getThreadContext(x);
1995 assert(oc->getITBPtr() && oc->getDTBPtr());
1996 oc->getITBPtr()->flushAllNs(hyp, target_el);
1997 oc->getDTBPtr()->flushAllNs(hyp, target_el);
1998
1999 CheckerCPU *checker = oc->getCheckerCpuPtr();
2000 if (checker) {
2001 checker->getITBPtr()->flushAllNs(hyp, target_el);
2002 checker->getDTBPtr()->flushAllNs(hyp, target_el);
2003 }
2004 }
2005 }
2006
2007 void
2008 ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
2009 uint8_t target_el)
2010 {
2011 System *sys = tc->getSystemPtr();
2012 for (int x = 0; x < sys->numContexts(); x++) {
2013 ThreadContext *oc = sys->getThreadContext(x);
2014 assert(oc->getITBPtr() && oc->getDTBPtr());
2015 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
2016 secure_lookup, hyp, target_el);
2017 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2018 secure_lookup, hyp, target_el);
2019
2020 CheckerCPU *checker = oc->getCheckerCpuPtr();
2021 if (checker) {
2022 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
2023 secure_lookup, hyp, target_el);
2024 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2025 secure_lookup, hyp, target_el);
2026 }
2027 }
2028 }
2029
2030 ::GenericTimer::SystemCounter *
2031 ISA::getSystemCounter(ThreadContext *tc)
2032 {
2033 ::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())->
2034 getSystemCounter();
2035 if (cnt == NULL) {
2036 panic("System counter not available\n");
2037 }
2038 return cnt;
2039 }
2040
2041 ::GenericTimer::ArchTimer *
2042 ISA::getArchTimer(ThreadContext *tc, int cpu_id)
2043 {
2044 ::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())->
2045 getArchTimer(cpu_id);
2046 if (timer == NULL) {
2047 panic("Architected timer not available\n");
2048 }
2049 return timer;
2050 }
2051
2052 }
2053
2054 ArmISA::ISA *
2055 ArmISAParams::create()
2056 {
2057 return new ArmISA::ISA(this);
2058 }