arch, cpu, dev, gpu, mem, sim, python: start using getPort.
[gem5.git] / src / arch / arm / table_walker.cc
1 /*
2 * Copyright (c) 2010, 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40 #include "arch/arm/table_walker.hh"
41
42 #include <memory>
43
44 #include "arch/arm/faults.hh"
45 #include "arch/arm/stage2_mmu.hh"
46 #include "arch/arm/system.hh"
47 #include "arch/arm/tlb.hh"
48 #include "cpu/base.hh"
49 #include "cpu/thread_context.hh"
50 #include "debug/Checkpoint.hh"
51 #include "debug/Drain.hh"
52 #include "debug/TLB.hh"
53 #include "debug/TLBVerbose.hh"
54 #include "dev/dma_device.hh"
55 #include "sim/system.hh"
56
57 using namespace ArmISA;
58
59 TableWalker::TableWalker(const Params *p)
60 : MemObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent([this]{ doL1DescriptorWrapper(); }, name()),
68 doL2DescEvent([this]{ doL2DescriptorWrapper(); }, name()),
69 doL0LongDescEvent([this]{ doL0LongDescriptorWrapper(); }, name()),
70 doL1LongDescEvent([this]{ doL1LongDescriptorWrapper(); }, name()),
71 doL2LongDescEvent([this]{ doL2LongDescriptorWrapper(); }, name()),
72 doL3LongDescEvent([this]{ doL3LongDescriptorWrapper(); }, name()),
73 LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
74 &doL2LongDescEvent, &doL3LongDescEvent },
75 doProcessEvent([this]{ processWalkWrapper(); }, name())
76 {
77 sctlr = 0;
78
79 // Cache system-level properties
80 if (FullSystem) {
81 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
82 assert(armSys);
83 haveSecurity = armSys->haveSecurity();
84 _haveLPAE = armSys->haveLPAE();
85 _haveVirtualization = armSys->haveVirtualization();
86 physAddrRange = armSys->physAddrRange();
87 _haveLargeAsid64 = armSys->haveLargeAsid64();
88 } else {
89 haveSecurity = _haveLPAE = _haveVirtualization = false;
90 _haveLargeAsid64 = false;
91 physAddrRange = 32;
92 }
93
94 }
95
96 TableWalker::~TableWalker()
97 {
98 ;
99 }
100
101 void
102 TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
103 {
104 stage2Mmu = m;
105 port = &m->getPort();
106 masterId = master_id;
107 }
108
109 void
110 TableWalker::init()
111 {
112 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
113 fatal_if(!port, "Table walker must have a valid port\n");
114 fatal_if(!tlb, "Table walker must have a valid TLB\n");
115 }
116
117 Port &
118 TableWalker::getPort(const std::string &if_name, PortID idx)
119 {
120 if (if_name == "port") {
121 if (!isStage2) {
122 return *port;
123 } else {
124 fatal("Cannot access table walker port through stage-two walker\n");
125 }
126 }
127 return MemObject::getPort(if_name, idx);
128 }
129
130 TableWalker::WalkerState::WalkerState() :
131 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
132 asid(0), vmid(0), isHyp(false), transState(nullptr),
133 vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
134 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
135 pxnTable(false), stage2Req(false),
136 stage2Tran(nullptr), timing(false), functional(false),
137 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
138 delayed(false), tableWalker(nullptr)
139 {
140 }
141
142 void
143 TableWalker::completeDrain()
144 {
145 if (drainState() == DrainState::Draining &&
146 stateQueues[L0].empty() && stateQueues[L1].empty() &&
147 stateQueues[L2].empty() && stateQueues[L3].empty() &&
148 pendingQueue.empty()) {
149
150 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
151 signalDrainDone();
152 }
153 }
154
155 DrainState
156 TableWalker::drain()
157 {
158 bool state_queues_not_empty = false;
159
160 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
161 if (!stateQueues[i].empty()) {
162 state_queues_not_empty = true;
163 break;
164 }
165 }
166
167 if (state_queues_not_empty || pendingQueue.size()) {
168 DPRINTF(Drain, "TableWalker not drained\n");
169 return DrainState::Draining;
170 } else {
171 DPRINTF(Drain, "TableWalker free, no need to drain\n");
172 return DrainState::Drained;
173 }
174 }
175
176 void
177 TableWalker::drainResume()
178 {
179 if (params()->sys->isTimingMode() && currState) {
180 delete currState;
181 currState = NULL;
182 pendingChange();
183 }
184 }
185
186 Fault
187 TableWalker::walk(const RequestPtr &_req, ThreadContext *_tc, uint16_t _asid,
188 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
189 TLB::Translation *_trans, bool _timing, bool _functional,
190 bool secure, TLB::ArmTranslationType tranType,
191 bool _stage2Req)
192 {
193 assert(!(_functional && _timing));
194 ++statWalks;
195
196 WalkerState *savedCurrState = NULL;
197
198 if (!currState && !_functional) {
199 // For atomic mode, a new WalkerState instance should be only created
200 // once per TLB. For timing mode, a new instance is generated for every
201 // TLB miss.
202 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
203
204 currState = new WalkerState();
205 currState->tableWalker = this;
206 } else if (_functional) {
207 // If we are mixing functional mode with timing (or even
208 // atomic), we need to to be careful and clean up after
209 // ourselves to not risk getting into an inconsistent state.
210 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
211 savedCurrState = currState;
212 currState = new WalkerState();
213 currState->tableWalker = this;
214 } else if (_timing) {
215 // This is a translation that was completed and then faulted again
216 // because some underlying parameters that affect the translation
217 // changed out from under us (e.g. asid). It will either be a
218 // misprediction, in which case nothing will happen or we'll use
219 // this fault to re-execute the faulting instruction which should clean
220 // up everything.
221 if (currState->vaddr_tainted == _req->getVaddr()) {
222 ++statSquashedBefore;
223 return std::make_shared<ReExec>();
224 }
225 }
226 pendingChange();
227
228 currState->startTime = curTick();
229 currState->tc = _tc;
230 // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
231 // aarch32/translation/translation/AArch32.TranslateAddress dictates
232 // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
233 if (isStage2) {
234 currState->el = EL1;
235 currState->aarch64 = ELIs64(_tc, EL2);
236 } else {
237 currState->el =
238 TLB::tranTypeEL(_tc->readMiscReg(MISCREG_CPSR), tranType);
239 currState->aarch64 =
240 ELIs64(_tc, currState->el == EL0 ? EL1 : currState->el);
241 }
242 currState->transState = _trans;
243 currState->req = _req;
244 currState->fault = NoFault;
245 currState->asid = _asid;
246 currState->vmid = _vmid;
247 currState->isHyp = _isHyp;
248 currState->timing = _timing;
249 currState->functional = _functional;
250 currState->mode = _mode;
251 currState->tranType = tranType;
252 currState->isSecure = secure;
253 currState->physAddrRange = physAddrRange;
254
255 /** @todo These should be cached or grabbed from cached copies in
256 the TLB, all these miscreg reads are expensive */
257 currState->vaddr_tainted = currState->req->getVaddr();
258 if (currState->aarch64)
259 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
260 currState->tc, currState->el);
261 else
262 currState->vaddr = currState->vaddr_tainted;
263
264 if (currState->aarch64) {
265 if (isStage2) {
266 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
267 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
268 } else switch (currState->el) {
269 case EL0:
270 case EL1:
271 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
272 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
273 break;
274 case EL2:
275 assert(_haveVirtualization);
276 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
277 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
278 break;
279 case EL3:
280 assert(haveSecurity);
281 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
282 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
283 break;
284 default:
285 panic("Invalid exception level");
286 break;
287 }
288 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
289 } else {
290 currState->sctlr = currState->tc->readMiscReg(snsBankedIndex(
291 MISCREG_SCTLR, currState->tc, !currState->isSecure));
292 currState->ttbcr = currState->tc->readMiscReg(snsBankedIndex(
293 MISCREG_TTBCR, currState->tc, !currState->isSecure));
294 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
295 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
296 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
297 }
298 sctlr = currState->sctlr;
299
300 currState->isFetch = (currState->mode == TLB::Execute);
301 currState->isWrite = (currState->mode == TLB::Write);
302
303 statRequestOrigin[REQUESTED][currState->isFetch]++;
304
305 currState->stage2Req = _stage2Req && !isStage2;
306
307 bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
308 longDescFormatInUse(currState->tc);
309
310 if (long_desc_format) {
311 // Helper variables used for hierarchical permissions
312 currState->secureLookup = currState->isSecure;
313 currState->rwTable = true;
314 currState->userTable = true;
315 currState->xnTable = false;
316 currState->pxnTable = false;
317
318 ++statWalksLongDescriptor;
319 } else {
320 ++statWalksShortDescriptor;
321 }
322
323 if (!currState->timing) {
324 Fault fault = NoFault;
325 if (currState->aarch64)
326 fault = processWalkAArch64();
327 else if (long_desc_format)
328 fault = processWalkLPAE();
329 else
330 fault = processWalk();
331
332 // If this was a functional non-timing access restore state to
333 // how we found it.
334 if (currState->functional) {
335 delete currState;
336 currState = savedCurrState;
337 }
338 return fault;
339 }
340
341 if (pending || pendingQueue.size()) {
342 pendingQueue.push_back(currState);
343 currState = NULL;
344 pendingChange();
345 } else {
346 pending = true;
347 pendingChange();
348 if (currState->aarch64)
349 return processWalkAArch64();
350 else if (long_desc_format)
351 return processWalkLPAE();
352 else
353 return processWalk();
354 }
355
356 return NoFault;
357 }
358
359 void
360 TableWalker::processWalkWrapper()
361 {
362 assert(!currState);
363 assert(pendingQueue.size());
364 pendingChange();
365 currState = pendingQueue.front();
366
367 // Check if a previous walk filled this request already
368 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
369 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
370 currState->vmid, currState->isHyp, currState->isSecure, true, false,
371 currState->el);
372
373 // Check if we still need to have a walk for this request. If the requesting
374 // instruction has been squashed, or a previous walk has filled the TLB with
375 // a match, we just want to get rid of the walk. The latter could happen
376 // when there are multiple outstanding misses to a single page and a
377 // previous request has been successfully translated.
378 if (!currState->transState->squashed() && !te) {
379 // We've got a valid request, lets process it
380 pending = true;
381 pendingQueue.pop_front();
382 // Keep currState in case one of the processWalk... calls NULLs it
383 WalkerState *curr_state_copy = currState;
384 Fault f;
385 if (currState->aarch64)
386 f = processWalkAArch64();
387 else if (longDescFormatInUse(currState->tc) ||
388 currState->isHyp || isStage2)
389 f = processWalkLPAE();
390 else
391 f = processWalk();
392
393 if (f != NoFault) {
394 curr_state_copy->transState->finish(f, curr_state_copy->req,
395 curr_state_copy->tc, curr_state_copy->mode);
396
397 delete curr_state_copy;
398 }
399 return;
400 }
401
402
403 // If the instruction that we were translating for has been
404 // squashed we shouldn't bother.
405 unsigned num_squashed = 0;
406 ThreadContext *tc = currState->tc;
407 while ((num_squashed < numSquashable) && currState &&
408 (currState->transState->squashed() || te)) {
409 pendingQueue.pop_front();
410 num_squashed++;
411 statSquashedBefore++;
412
413 DPRINTF(TLB, "Squashing table walk for address %#x\n",
414 currState->vaddr_tainted);
415
416 if (currState->transState->squashed()) {
417 // finish the translation which will delete the translation object
418 currState->transState->finish(
419 std::make_shared<UnimpFault>("Squashed Inst"),
420 currState->req, currState->tc, currState->mode);
421 } else {
422 // translate the request now that we know it will work
423 statWalkServiceTime.sample(curTick() - currState->startTime);
424 tlb->translateTiming(currState->req, currState->tc,
425 currState->transState, currState->mode);
426
427 }
428
429 // delete the current request
430 delete currState;
431
432 // peak at the next one
433 if (pendingQueue.size()) {
434 currState = pendingQueue.front();
435 te = tlb->lookup(currState->vaddr, currState->asid,
436 currState->vmid, currState->isHyp, currState->isSecure, true,
437 false, currState->el);
438 } else {
439 // Terminate the loop, nothing more to do
440 currState = NULL;
441 }
442 }
443 pendingChange();
444
445 // if we still have pending translations, schedule more work
446 nextWalk(tc);
447 currState = NULL;
448 }
449
450 Fault
451 TableWalker::processWalk()
452 {
453 Addr ttbr = 0;
454
455 // If translation isn't enabled, we shouldn't be here
456 assert(currState->sctlr.m || isStage2);
457
458 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
459 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
460 32 - currState->ttbcr.n));
461
462 statWalkWaitTime.sample(curTick() - currState->startTime);
463
464 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
465 32 - currState->ttbcr.n)) {
466 DPRINTF(TLB, " - Selecting TTBR0\n");
467 // Check if table walk is allowed when Security Extensions are enabled
468 if (haveSecurity && currState->ttbcr.pd0) {
469 if (currState->isFetch)
470 return std::make_shared<PrefetchAbort>(
471 currState->vaddr_tainted,
472 ArmFault::TranslationLL + L1,
473 isStage2,
474 ArmFault::VmsaTran);
475 else
476 return std::make_shared<DataAbort>(
477 currState->vaddr_tainted,
478 TlbEntry::DomainType::NoAccess, currState->isWrite,
479 ArmFault::TranslationLL + L1, isStage2,
480 ArmFault::VmsaTran);
481 }
482 ttbr = currState->tc->readMiscReg(snsBankedIndex(
483 MISCREG_TTBR0, currState->tc, !currState->isSecure));
484 } else {
485 DPRINTF(TLB, " - Selecting TTBR1\n");
486 // Check if table walk is allowed when Security Extensions are enabled
487 if (haveSecurity && currState->ttbcr.pd1) {
488 if (currState->isFetch)
489 return std::make_shared<PrefetchAbort>(
490 currState->vaddr_tainted,
491 ArmFault::TranslationLL + L1,
492 isStage2,
493 ArmFault::VmsaTran);
494 else
495 return std::make_shared<DataAbort>(
496 currState->vaddr_tainted,
497 TlbEntry::DomainType::NoAccess, currState->isWrite,
498 ArmFault::TranslationLL + L1, isStage2,
499 ArmFault::VmsaTran);
500 }
501 ttbr = currState->tc->readMiscReg(snsBankedIndex(
502 MISCREG_TTBR1, currState->tc, !currState->isSecure));
503 currState->ttbcr.n = 0;
504 }
505
506 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
507 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
508 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
509 currState->isSecure ? "s" : "ns");
510
511 // Trickbox address check
512 Fault f;
513 f = testWalk(l1desc_addr, sizeof(uint32_t),
514 TlbEntry::DomainType::NoAccess, L1);
515 if (f) {
516 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
517 if (currState->timing) {
518 pending = false;
519 nextWalk(currState->tc);
520 currState = NULL;
521 } else {
522 currState->tc = NULL;
523 currState->req = NULL;
524 }
525 return f;
526 }
527
528 Request::Flags flag = Request::PT_WALK;
529 if (currState->sctlr.c == 0) {
530 flag.set(Request::UNCACHEABLE);
531 }
532
533 if (currState->isSecure) {
534 flag.set(Request::SECURE);
535 }
536
537 bool delayed;
538 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
539 sizeof(uint32_t), flag, L1, &doL1DescEvent,
540 &TableWalker::doL1Descriptor);
541 if (!delayed) {
542 f = currState->fault;
543 }
544
545 return f;
546 }
547
548 Fault
549 TableWalker::processWalkLPAE()
550 {
551 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
552 int tsz, n;
553 LookupLevel start_lookup_level = L1;
554
555 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
556 currState->vaddr_tainted, currState->ttbcr);
557
558 statWalkWaitTime.sample(curTick() - currState->startTime);
559
560 Request::Flags flag = Request::PT_WALK;
561 if (currState->isSecure)
562 flag.set(Request::SECURE);
563
564 // work out which base address register to use, if in hyp mode we always
565 // use HTTBR
566 if (isStage2) {
567 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
568 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
569 tsz = sext<4>(currState->vtcr.t0sz);
570 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
571 } else if (currState->isHyp) {
572 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
573 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
574 tsz = currState->htcr.t0sz;
575 } else {
576 assert(longDescFormatInUse(currState->tc));
577
578 // Determine boundaries of TTBR0/1 regions
579 if (currState->ttbcr.t0sz)
580 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
581 else if (currState->ttbcr.t1sz)
582 ttbr0_max = (1ULL << 32) -
583 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
584 else
585 ttbr0_max = (1ULL << 32) - 1;
586 if (currState->ttbcr.t1sz)
587 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
588 else
589 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
590
591 // The following code snippet selects the appropriate translation table base
592 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
593 // depending on the address range supported by the translation table (ARM
594 // ARM issue C B3.6.4)
595 if (currState->vaddr <= ttbr0_max) {
596 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
597 // Check if table walk is allowed
598 if (currState->ttbcr.epd0) {
599 if (currState->isFetch)
600 return std::make_shared<PrefetchAbort>(
601 currState->vaddr_tainted,
602 ArmFault::TranslationLL + L1,
603 isStage2,
604 ArmFault::LpaeTran);
605 else
606 return std::make_shared<DataAbort>(
607 currState->vaddr_tainted,
608 TlbEntry::DomainType::NoAccess,
609 currState->isWrite,
610 ArmFault::TranslationLL + L1,
611 isStage2,
612 ArmFault::LpaeTran);
613 }
614 ttbr = currState->tc->readMiscReg(snsBankedIndex(
615 MISCREG_TTBR0, currState->tc, !currState->isSecure));
616 tsz = currState->ttbcr.t0sz;
617 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
618 start_lookup_level = L2;
619 } else if (currState->vaddr >= ttbr1_min) {
620 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
621 // Check if table walk is allowed
622 if (currState->ttbcr.epd1) {
623 if (currState->isFetch)
624 return std::make_shared<PrefetchAbort>(
625 currState->vaddr_tainted,
626 ArmFault::TranslationLL + L1,
627 isStage2,
628 ArmFault::LpaeTran);
629 else
630 return std::make_shared<DataAbort>(
631 currState->vaddr_tainted,
632 TlbEntry::DomainType::NoAccess,
633 currState->isWrite,
634 ArmFault::TranslationLL + L1,
635 isStage2,
636 ArmFault::LpaeTran);
637 }
638 ttbr = currState->tc->readMiscReg(snsBankedIndex(
639 MISCREG_TTBR1, currState->tc, !currState->isSecure));
640 tsz = currState->ttbcr.t1sz;
641 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
642 start_lookup_level = L2;
643 } else {
644 // Out of boundaries -> translation fault
645 if (currState->isFetch)
646 return std::make_shared<PrefetchAbort>(
647 currState->vaddr_tainted,
648 ArmFault::TranslationLL + L1,
649 isStage2,
650 ArmFault::LpaeTran);
651 else
652 return std::make_shared<DataAbort>(
653 currState->vaddr_tainted,
654 TlbEntry::DomainType::NoAccess,
655 currState->isWrite, ArmFault::TranslationLL + L1,
656 isStage2, ArmFault::LpaeTran);
657 }
658
659 }
660
661 // Perform lookup (ARM ARM issue C B3.6.6)
662 if (start_lookup_level == L1) {
663 n = 5 - tsz;
664 desc_addr = mbits(ttbr, 39, n) |
665 (bits(currState->vaddr, n + 26, 30) << 3);
666 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
667 desc_addr, currState->isSecure ? "s" : "ns");
668 } else {
669 // Skip first-level lookup
670 n = (tsz >= 2 ? 14 - tsz : 12);
671 desc_addr = mbits(ttbr, 39, n) |
672 (bits(currState->vaddr, n + 17, 21) << 3);
673 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
674 desc_addr, currState->isSecure ? "s" : "ns");
675 }
676
677 // Trickbox address check
678 Fault f = testWalk(desc_addr, sizeof(uint64_t),
679 TlbEntry::DomainType::NoAccess, start_lookup_level);
680 if (f) {
681 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
682 if (currState->timing) {
683 pending = false;
684 nextWalk(currState->tc);
685 currState = NULL;
686 } else {
687 currState->tc = NULL;
688 currState->req = NULL;
689 }
690 return f;
691 }
692
693 if (currState->sctlr.c == 0) {
694 flag.set(Request::UNCACHEABLE);
695 }
696
697 currState->longDesc.lookupLevel = start_lookup_level;
698 currState->longDesc.aarch64 = false;
699 currState->longDesc.grainSize = Grain4KB;
700
701 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
702 sizeof(uint64_t), flag, start_lookup_level,
703 LongDescEventByLevel[start_lookup_level],
704 &TableWalker::doLongDescriptor);
705 if (!delayed) {
706 f = currState->fault;
707 }
708
709 return f;
710 }
711
712 unsigned
713 TableWalker::adjustTableSizeAArch64(unsigned tsz)
714 {
715 if (tsz < 25)
716 return 25;
717 if (tsz > 48)
718 return 48;
719 return tsz;
720 }
721
722 bool
723 TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
724 {
725 return (currPhysAddrRange != MaxPhysAddrRange &&
726 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
727 }
728
729 Fault
730 TableWalker::processWalkAArch64()
731 {
732 assert(currState->aarch64);
733
734 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
735 currState->vaddr_tainted, currState->tcr);
736
737 static const GrainSize GrainMap_tg0[] =
738 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
739 static const GrainSize GrainMap_tg1[] =
740 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
741
742 statWalkWaitTime.sample(curTick() - currState->startTime);
743
744 // Determine TTBR, table size, granule size and phys. address range
745 Addr ttbr = 0;
746 int tsz = 0, ps = 0;
747 GrainSize tg = Grain4KB; // grain size computed from tg* field
748 bool fault = false;
749
750 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
751
752 switch (currState->el) {
753 case EL0:
754 case EL1:
755 if (isStage2) {
756 DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
757 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
758 tsz = 64 - currState->vtcr.t0sz64;
759 tg = GrainMap_tg0[currState->vtcr.tg0];
760 // ARM DDI 0487A.f D7-2148
761 // The starting level of stage 2 translation depends on
762 // VTCR_EL2.SL0 and VTCR_EL2.TG0
763 LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
764 uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
765 static const LookupLevel SLL[] = {
766 L2, L3, L3, __, // sl0 == 0
767 L1, L2, L2, __, // sl0 == 1, etc.
768 L0, L1, L1, __,
769 __, __, __, __
770 };
771 start_lookup_level = SLL[sl_tg];
772 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
773 "Cannot discern lookup level from vtcr.{sl0,tg0}");
774 ps = currState->vtcr.ps;
775 } else {
776 switch (bits(currState->vaddr, 63,48)) {
777 case 0:
778 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
779 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
780 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
781 tg = GrainMap_tg0[currState->tcr.tg0];
782 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
783 currState->tcr.epd0)
784 fault = true;
785 break;
786 case 0xffff:
787 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
788 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
789 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
790 tg = GrainMap_tg1[currState->tcr.tg1];
791 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
792 currState->tcr.epd1)
793 fault = true;
794 break;
795 default:
796 // top two bytes must be all 0s or all 1s, else invalid addr
797 fault = true;
798 }
799 ps = currState->tcr.ips;
800 }
801 break;
802 case EL2:
803 switch(bits(currState->vaddr, 63,48)) {
804 case 0:
805 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
806 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
807 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
808 tg = GrainMap_tg0[currState->tcr.tg0];
809 break;
810
811 case 0xffff:
812 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
813 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL2);
814 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
815 tg = GrainMap_tg1[currState->tcr.tg1];
816 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
817 currState->tcr.epd1 || !currState->hcr.e2h)
818 fault = true;
819 break;
820
821 default:
822 // invalid addr if top two bytes are not all 0s
823 fault = true;
824 }
825 ps = currState->tcr.ps;
826 break;
827 case EL3:
828 switch(bits(currState->vaddr, 63,48)) {
829 case 0:
830 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
831 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
832 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
833 tg = GrainMap_tg0[currState->tcr.tg0];
834 break;
835 default:
836 // invalid addr if top two bytes are not all 0s
837 fault = true;
838 }
839 ps = currState->tcr.ps;
840 break;
841 }
842
843 if (fault) {
844 Fault f;
845 if (currState->isFetch)
846 f = std::make_shared<PrefetchAbort>(
847 currState->vaddr_tainted,
848 ArmFault::TranslationLL + L0, isStage2,
849 ArmFault::LpaeTran);
850 else
851 f = std::make_shared<DataAbort>(
852 currState->vaddr_tainted,
853 TlbEntry::DomainType::NoAccess,
854 currState->isWrite,
855 ArmFault::TranslationLL + L0,
856 isStage2, ArmFault::LpaeTran);
857
858 if (currState->timing) {
859 pending = false;
860 nextWalk(currState->tc);
861 currState = NULL;
862 } else {
863 currState->tc = NULL;
864 currState->req = NULL;
865 }
866 return f;
867
868 }
869
870 if (tg == ReservedGrain) {
871 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
872 "DEFINED behavior takes this to mean 4KB granules\n");
873 tg = Grain4KB;
874 }
875
876 // Determine starting lookup level
877 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
878 // in ARM DDI 0487A. These table values correspond to the cascading tests
879 // to compute the lookup level and are of the form
880 // (grain_size + N*stride), for N = {1, 2, 3}.
881 // A value of 64 will never succeed and a value of 0 will always succeed.
882 if (start_lookup_level == MAX_LOOKUP_LEVELS) {
883 struct GrainMap {
884 GrainSize grain_size;
885 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
886 };
887 static const GrainMap GM[] = {
888 { Grain4KB, { 39, 30, 0, 0 } },
889 { Grain16KB, { 47, 36, 25, 0 } },
890 { Grain64KB, { 64, 42, 29, 0 } }
891 };
892
893 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
894
895 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
896 if (tg == GM[i].grain_size) {
897 lookup = GM[i].lookup_level_cutoff;
898 break;
899 }
900 }
901 assert(lookup);
902
903 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
904 if (tsz > lookup[L]) {
905 start_lookup_level = (LookupLevel) L;
906 break;
907 }
908 }
909 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
910 "Table walker couldn't find lookup level\n");
911 }
912
913 int stride = tg - 3;
914
915 // Determine table base address
916 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
917 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
918
919 // Determine physical address size and raise an Address Size Fault if
920 // necessary
921 int pa_range = decodePhysAddrRange64(ps);
922 // Clamp to lower limit
923 if (pa_range > physAddrRange)
924 currState->physAddrRange = physAddrRange;
925 else
926 currState->physAddrRange = pa_range;
927 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
928 DPRINTF(TLB, "Address size fault before any lookup\n");
929 Fault f;
930 if (currState->isFetch)
931 f = std::make_shared<PrefetchAbort>(
932 currState->vaddr_tainted,
933 ArmFault::AddressSizeLL + start_lookup_level,
934 isStage2,
935 ArmFault::LpaeTran);
936 else
937 f = std::make_shared<DataAbort>(
938 currState->vaddr_tainted,
939 TlbEntry::DomainType::NoAccess,
940 currState->isWrite,
941 ArmFault::AddressSizeLL + start_lookup_level,
942 isStage2,
943 ArmFault::LpaeTran);
944
945
946 if (currState->timing) {
947 pending = false;
948 nextWalk(currState->tc);
949 currState = NULL;
950 } else {
951 currState->tc = NULL;
952 currState->req = NULL;
953 }
954 return f;
955
956 }
957
958 // Determine descriptor address
959 Addr desc_addr = base_addr |
960 (bits(currState->vaddr, tsz - 1,
961 stride * (3 - start_lookup_level) + tg) << 3);
962
963 // Trickbox address check
964 Fault f = testWalk(desc_addr, sizeof(uint64_t),
965 TlbEntry::DomainType::NoAccess, start_lookup_level);
966 if (f) {
967 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
968 if (currState->timing) {
969 pending = false;
970 nextWalk(currState->tc);
971 currState = NULL;
972 } else {
973 currState->tc = NULL;
974 currState->req = NULL;
975 }
976 return f;
977 }
978
979 Request::Flags flag = Request::PT_WALK;
980 if (currState->sctlr.c == 0) {
981 flag.set(Request::UNCACHEABLE);
982 }
983
984 if (currState->isSecure) {
985 flag.set(Request::SECURE);
986 }
987
988 currState->longDesc.lookupLevel = start_lookup_level;
989 currState->longDesc.aarch64 = true;
990 currState->longDesc.grainSize = tg;
991
992 if (currState->timing) {
993 fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
994 sizeof(uint64_t), flag, start_lookup_level,
995 LongDescEventByLevel[start_lookup_level], NULL);
996 } else {
997 fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
998 sizeof(uint64_t), flag, -1, NULL,
999 &TableWalker::doLongDescriptor);
1000 f = currState->fault;
1001 }
1002
1003 return f;
1004 }
1005
1006 void
1007 TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
1008 uint8_t texcb, bool s)
1009 {
1010 // Note: tc and sctlr local variables are hiding tc and sctrl class
1011 // variables
1012 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1013 te.shareable = false; // default value
1014 te.nonCacheable = false;
1015 te.outerShareable = false;
1016 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1017 switch(texcb) {
1018 case 0: // Stongly-ordered
1019 te.nonCacheable = true;
1020 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1021 te.shareable = true;
1022 te.innerAttrs = 1;
1023 te.outerAttrs = 0;
1024 break;
1025 case 1: // Shareable Device
1026 te.nonCacheable = true;
1027 te.mtype = TlbEntry::MemoryType::Device;
1028 te.shareable = true;
1029 te.innerAttrs = 3;
1030 te.outerAttrs = 0;
1031 break;
1032 case 2: // Outer and Inner Write-Through, no Write-Allocate
1033 te.mtype = TlbEntry::MemoryType::Normal;
1034 te.shareable = s;
1035 te.innerAttrs = 6;
1036 te.outerAttrs = bits(texcb, 1, 0);
1037 break;
1038 case 3: // Outer and Inner Write-Back, no Write-Allocate
1039 te.mtype = TlbEntry::MemoryType::Normal;
1040 te.shareable = s;
1041 te.innerAttrs = 7;
1042 te.outerAttrs = bits(texcb, 1, 0);
1043 break;
1044 case 4: // Outer and Inner Non-cacheable
1045 te.nonCacheable = true;
1046 te.mtype = TlbEntry::MemoryType::Normal;
1047 te.shareable = s;
1048 te.innerAttrs = 0;
1049 te.outerAttrs = bits(texcb, 1, 0);
1050 break;
1051 case 5: // Reserved
1052 panic("Reserved texcb value!\n");
1053 break;
1054 case 6: // Implementation Defined
1055 panic("Implementation-defined texcb value!\n");
1056 break;
1057 case 7: // Outer and Inner Write-Back, Write-Allocate
1058 te.mtype = TlbEntry::MemoryType::Normal;
1059 te.shareable = s;
1060 te.innerAttrs = 5;
1061 te.outerAttrs = 1;
1062 break;
1063 case 8: // Non-shareable Device
1064 te.nonCacheable = true;
1065 te.mtype = TlbEntry::MemoryType::Device;
1066 te.shareable = false;
1067 te.innerAttrs = 3;
1068 te.outerAttrs = 0;
1069 break;
1070 case 9 ... 15: // Reserved
1071 panic("Reserved texcb value!\n");
1072 break;
1073 case 16 ... 31: // Cacheable Memory
1074 te.mtype = TlbEntry::MemoryType::Normal;
1075 te.shareable = s;
1076 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1077 te.nonCacheable = true;
1078 te.innerAttrs = bits(texcb, 1, 0);
1079 te.outerAttrs = bits(texcb, 3, 2);
1080 break;
1081 default:
1082 panic("More than 32 states for 5 bits?\n");
1083 }
1084 } else {
1085 assert(tc);
1086 PRRR prrr = tc->readMiscReg(snsBankedIndex(MISCREG_PRRR,
1087 currState->tc, !currState->isSecure));
1088 NMRR nmrr = tc->readMiscReg(snsBankedIndex(MISCREG_NMRR,
1089 currState->tc, !currState->isSecure));
1090 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1091 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1092 switch(bits(texcb, 2,0)) {
1093 case 0:
1094 curr_tr = prrr.tr0;
1095 curr_ir = nmrr.ir0;
1096 curr_or = nmrr.or0;
1097 te.outerShareable = (prrr.nos0 == 0);
1098 break;
1099 case 1:
1100 curr_tr = prrr.tr1;
1101 curr_ir = nmrr.ir1;
1102 curr_or = nmrr.or1;
1103 te.outerShareable = (prrr.nos1 == 0);
1104 break;
1105 case 2:
1106 curr_tr = prrr.tr2;
1107 curr_ir = nmrr.ir2;
1108 curr_or = nmrr.or2;
1109 te.outerShareable = (prrr.nos2 == 0);
1110 break;
1111 case 3:
1112 curr_tr = prrr.tr3;
1113 curr_ir = nmrr.ir3;
1114 curr_or = nmrr.or3;
1115 te.outerShareable = (prrr.nos3 == 0);
1116 break;
1117 case 4:
1118 curr_tr = prrr.tr4;
1119 curr_ir = nmrr.ir4;
1120 curr_or = nmrr.or4;
1121 te.outerShareable = (prrr.nos4 == 0);
1122 break;
1123 case 5:
1124 curr_tr = prrr.tr5;
1125 curr_ir = nmrr.ir5;
1126 curr_or = nmrr.or5;
1127 te.outerShareable = (prrr.nos5 == 0);
1128 break;
1129 case 6:
1130 panic("Imp defined type\n");
1131 case 7:
1132 curr_tr = prrr.tr7;
1133 curr_ir = nmrr.ir7;
1134 curr_or = nmrr.or7;
1135 te.outerShareable = (prrr.nos7 == 0);
1136 break;
1137 }
1138
1139 switch(curr_tr) {
1140 case 0:
1141 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1142 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1143 te.nonCacheable = true;
1144 te.innerAttrs = 1;
1145 te.outerAttrs = 0;
1146 te.shareable = true;
1147 break;
1148 case 1:
1149 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1150 prrr.ds1, prrr.ds0, s);
1151 te.mtype = TlbEntry::MemoryType::Device;
1152 te.nonCacheable = true;
1153 te.innerAttrs = 3;
1154 te.outerAttrs = 0;
1155 if (prrr.ds1 && s)
1156 te.shareable = true;
1157 if (prrr.ds0 && !s)
1158 te.shareable = true;
1159 break;
1160 case 2:
1161 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1162 prrr.ns1, prrr.ns0, s);
1163 te.mtype = TlbEntry::MemoryType::Normal;
1164 if (prrr.ns1 && s)
1165 te.shareable = true;
1166 if (prrr.ns0 && !s)
1167 te.shareable = true;
1168 break;
1169 case 3:
1170 panic("Reserved type");
1171 }
1172
1173 if (te.mtype == TlbEntry::MemoryType::Normal){
1174 switch(curr_ir) {
1175 case 0:
1176 te.nonCacheable = true;
1177 te.innerAttrs = 0;
1178 break;
1179 case 1:
1180 te.innerAttrs = 5;
1181 break;
1182 case 2:
1183 te.innerAttrs = 6;
1184 break;
1185 case 3:
1186 te.innerAttrs = 7;
1187 break;
1188 }
1189
1190 switch(curr_or) {
1191 case 0:
1192 te.nonCacheable = true;
1193 te.outerAttrs = 0;
1194 break;
1195 case 1:
1196 te.outerAttrs = 1;
1197 break;
1198 case 2:
1199 te.outerAttrs = 2;
1200 break;
1201 case 3:
1202 te.outerAttrs = 3;
1203 break;
1204 }
1205 }
1206 }
1207 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1208 "outerAttrs: %d\n",
1209 te.shareable, te.innerAttrs, te.outerAttrs);
1210 te.setAttributes(false);
1211 }
1212
1213 void
1214 TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1215 LongDescriptor &lDescriptor)
1216 {
1217 assert(_haveLPAE);
1218
1219 uint8_t attr;
1220 uint8_t sh = lDescriptor.sh();
1221 // Different format and source of attributes if this is a stage 2
1222 // translation
1223 if (isStage2) {
1224 attr = lDescriptor.memAttr();
1225 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1226 uint8_t attr_1_0 = attr & 0x3;
1227
1228 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1229
1230 if (attr_3_2 == 0) {
1231 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1232 : TlbEntry::MemoryType::Device;
1233 te.outerAttrs = 0;
1234 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1235 te.nonCacheable = true;
1236 } else {
1237 te.mtype = TlbEntry::MemoryType::Normal;
1238 te.outerAttrs = attr_3_2 == 1 ? 0 :
1239 attr_3_2 == 2 ? 2 : 1;
1240 te.innerAttrs = attr_1_0 == 1 ? 0 :
1241 attr_1_0 == 2 ? 6 : 5;
1242 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1243 }
1244 } else {
1245 uint8_t attrIndx = lDescriptor.attrIndx();
1246
1247 // LPAE always uses remapping of memory attributes, irrespective of the
1248 // value of SCTLR.TRE
1249 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1250 int reg_as_int = snsBankedIndex(reg, currState->tc,
1251 !currState->isSecure);
1252 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1253 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1254 uint8_t attr_7_4 = bits(attr, 7, 4);
1255 uint8_t attr_3_0 = bits(attr, 3, 0);
1256 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1257
1258 // Note: the memory subsystem only cares about the 'cacheable' memory
1259 // attribute. The other attributes are only used to fill the PAR register
1260 // accordingly to provide the illusion of full support
1261 te.nonCacheable = false;
1262
1263 switch (attr_7_4) {
1264 case 0x0:
1265 // Strongly-ordered or Device memory
1266 if (attr_3_0 == 0x0)
1267 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1268 else if (attr_3_0 == 0x4)
1269 te.mtype = TlbEntry::MemoryType::Device;
1270 else
1271 panic("Unpredictable behavior\n");
1272 te.nonCacheable = true;
1273 te.outerAttrs = 0;
1274 break;
1275 case 0x4:
1276 // Normal memory, Outer Non-cacheable
1277 te.mtype = TlbEntry::MemoryType::Normal;
1278 te.outerAttrs = 0;
1279 if (attr_3_0 == 0x4)
1280 // Inner Non-cacheable
1281 te.nonCacheable = true;
1282 else if (attr_3_0 < 0x8)
1283 panic("Unpredictable behavior\n");
1284 break;
1285 case 0x8:
1286 case 0x9:
1287 case 0xa:
1288 case 0xb:
1289 case 0xc:
1290 case 0xd:
1291 case 0xe:
1292 case 0xf:
1293 if (attr_7_4 & 0x4) {
1294 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1295 } else {
1296 te.outerAttrs = 0x2;
1297 }
1298 // Normal memory, Outer Cacheable
1299 te.mtype = TlbEntry::MemoryType::Normal;
1300 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1301 panic("Unpredictable behavior\n");
1302 break;
1303 default:
1304 panic("Unpredictable behavior\n");
1305 break;
1306 }
1307
1308 switch (attr_3_0) {
1309 case 0x0:
1310 te.innerAttrs = 0x1;
1311 break;
1312 case 0x4:
1313 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1314 break;
1315 case 0x8:
1316 case 0x9:
1317 case 0xA:
1318 case 0xB:
1319 te.innerAttrs = 6;
1320 break;
1321 case 0xC:
1322 case 0xD:
1323 case 0xE:
1324 case 0xF:
1325 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1326 break;
1327 default:
1328 panic("Unpredictable behavior\n");
1329 break;
1330 }
1331 }
1332
1333 te.outerShareable = sh == 2;
1334 te.shareable = (sh & 0x2) ? true : false;
1335 te.setAttributes(true);
1336 te.attributes |= (uint64_t) attr << 56;
1337 }
1338
1339 void
1340 TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1341 LongDescriptor &lDescriptor)
1342 {
1343 uint8_t attr;
1344 uint8_t attr_hi;
1345 uint8_t attr_lo;
1346 uint8_t sh = lDescriptor.sh();
1347
1348 if (isStage2) {
1349 attr = lDescriptor.memAttr();
1350 uint8_t attr_hi = (attr >> 2) & 0x3;
1351 uint8_t attr_lo = attr & 0x3;
1352
1353 DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1354
1355 if (attr_hi == 0) {
1356 te.mtype = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1357 : TlbEntry::MemoryType::Device;
1358 te.outerAttrs = 0;
1359 te.innerAttrs = attr_lo == 0 ? 1 : 3;
1360 te.nonCacheable = true;
1361 } else {
1362 te.mtype = TlbEntry::MemoryType::Normal;
1363 te.outerAttrs = attr_hi == 1 ? 0 :
1364 attr_hi == 2 ? 2 : 1;
1365 te.innerAttrs = attr_lo == 1 ? 0 :
1366 attr_lo == 2 ? 6 : 5;
1367 // Treat write-through memory as uncacheable, this is safe
1368 // but for performance reasons not optimal.
1369 te.nonCacheable = (attr_hi == 1) || (attr_hi == 2) ||
1370 (attr_lo == 1) || (attr_lo == 2);
1371 }
1372 } else {
1373 uint8_t attrIndx = lDescriptor.attrIndx();
1374
1375 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1376
1377 // Select MAIR
1378 uint64_t mair;
1379 switch (currState->el) {
1380 case EL0:
1381 case EL1:
1382 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1383 break;
1384 case EL2:
1385 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1386 break;
1387 case EL3:
1388 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1389 break;
1390 default:
1391 panic("Invalid exception level");
1392 break;
1393 }
1394
1395 // Select attributes
1396 attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1397 attr_lo = bits(attr, 3, 0);
1398 attr_hi = bits(attr, 7, 4);
1399
1400 // Memory type
1401 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1402
1403 // Cacheability
1404 te.nonCacheable = false;
1405 if (te.mtype == TlbEntry::MemoryType::Device) { // Device memory
1406 te.nonCacheable = true;
1407 }
1408 // Treat write-through memory as uncacheable, this is safe
1409 // but for performance reasons not optimal.
1410 switch (attr_hi) {
1411 case 0x1 ... 0x3: // Normal Memory, Outer Write-through transient
1412 case 0x4: // Normal memory, Outer Non-cacheable
1413 case 0x8 ... 0xb: // Normal Memory, Outer Write-through non-transient
1414 te.nonCacheable = true;
1415 }
1416 switch (attr_lo) {
1417 case 0x1 ... 0x3: // Normal Memory, Inner Write-through transient
1418 case 0x9 ... 0xb: // Normal Memory, Inner Write-through non-transient
1419 warn_if(!attr_hi, "Unpredictable behavior");
1420 M5_FALLTHROUGH;
1421 case 0x4: // Device-nGnRE memory or
1422 // Normal memory, Inner Non-cacheable
1423 case 0x8: // Device-nGRE memory or
1424 // Normal memory, Inner Write-through non-transient
1425 te.nonCacheable = true;
1426 }
1427
1428 te.shareable = sh == 2;
1429 te.outerShareable = (sh & 0x2) ? true : false;
1430 // Attributes formatted according to the 64-bit PAR
1431 te.attributes = ((uint64_t) attr << 56) |
1432 (1 << 11) | // LPAE bit
1433 (te.ns << 9) | // NS bit
1434 (sh << 7);
1435 }
1436 }
1437
1438 void
1439 TableWalker::doL1Descriptor()
1440 {
1441 if (currState->fault != NoFault) {
1442 return;
1443 }
1444
1445 currState->l1Desc.data = htog(currState->l1Desc.data,
1446 byteOrder(currState->tc));
1447
1448 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1449 currState->vaddr_tainted, currState->l1Desc.data);
1450 TlbEntry te;
1451
1452 switch (currState->l1Desc.type()) {
1453 case L1Descriptor::Ignore:
1454 case L1Descriptor::Reserved:
1455 if (!currState->timing) {
1456 currState->tc = NULL;
1457 currState->req = NULL;
1458 }
1459 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1460 if (currState->isFetch)
1461 currState->fault =
1462 std::make_shared<PrefetchAbort>(
1463 currState->vaddr_tainted,
1464 ArmFault::TranslationLL + L1,
1465 isStage2,
1466 ArmFault::VmsaTran);
1467 else
1468 currState->fault =
1469 std::make_shared<DataAbort>(
1470 currState->vaddr_tainted,
1471 TlbEntry::DomainType::NoAccess,
1472 currState->isWrite,
1473 ArmFault::TranslationLL + L1, isStage2,
1474 ArmFault::VmsaTran);
1475 return;
1476 case L1Descriptor::Section:
1477 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1478 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1479 * enabled if set, do l1.Desc.setAp0() instead of generating
1480 * AccessFlag0
1481 */
1482
1483 currState->fault = std::make_shared<DataAbort>(
1484 currState->vaddr_tainted,
1485 currState->l1Desc.domain(),
1486 currState->isWrite,
1487 ArmFault::AccessFlagLL + L1,
1488 isStage2,
1489 ArmFault::VmsaTran);
1490 }
1491 if (currState->l1Desc.supersection()) {
1492 panic("Haven't implemented supersections\n");
1493 }
1494 insertTableEntry(currState->l1Desc, false);
1495 return;
1496 case L1Descriptor::PageTable:
1497 {
1498 Addr l2desc_addr;
1499 l2desc_addr = currState->l1Desc.l2Addr() |
1500 (bits(currState->vaddr, 19, 12) << 2);
1501 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1502 l2desc_addr, currState->isSecure ? "s" : "ns");
1503
1504 // Trickbox address check
1505 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1506 currState->l1Desc.domain(), L2);
1507
1508 if (currState->fault) {
1509 if (!currState->timing) {
1510 currState->tc = NULL;
1511 currState->req = NULL;
1512 }
1513 return;
1514 }
1515
1516 Request::Flags flag = Request::PT_WALK;
1517 if (currState->isSecure)
1518 flag.set(Request::SECURE);
1519
1520 bool delayed;
1521 delayed = fetchDescriptor(l2desc_addr,
1522 (uint8_t*)&currState->l2Desc.data,
1523 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1524 &TableWalker::doL2Descriptor);
1525 if (delayed) {
1526 currState->delayed = true;
1527 }
1528
1529 return;
1530 }
1531 default:
1532 panic("A new type in a 2 bit field?\n");
1533 }
1534 }
1535
1536 void
1537 TableWalker::doLongDescriptor()
1538 {
1539 if (currState->fault != NoFault) {
1540 return;
1541 }
1542
1543 currState->longDesc.data = htog(currState->longDesc.data,
1544 byteOrder(currState->tc));
1545
1546 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1547 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1548 currState->longDesc.data,
1549 currState->aarch64 ? "AArch64" : "long-desc.");
1550
1551 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1552 (currState->longDesc.type() == LongDescriptor::Page)) {
1553 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1554 "xn: %d, ap: %d, af: %d, type: %d\n",
1555 currState->longDesc.lookupLevel,
1556 currState->longDesc.data,
1557 currState->longDesc.pxn(),
1558 currState->longDesc.xn(),
1559 currState->longDesc.ap(),
1560 currState->longDesc.af(),
1561 currState->longDesc.type());
1562 } else {
1563 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1564 currState->longDesc.lookupLevel,
1565 currState->longDesc.data,
1566 currState->longDesc.type());
1567 }
1568
1569 TlbEntry te;
1570
1571 switch (currState->longDesc.type()) {
1572 case LongDescriptor::Invalid:
1573 if (!currState->timing) {
1574 currState->tc = NULL;
1575 currState->req = NULL;
1576 }
1577
1578 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1579 currState->longDesc.lookupLevel,
1580 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1581 if (currState->isFetch)
1582 currState->fault = std::make_shared<PrefetchAbort>(
1583 currState->vaddr_tainted,
1584 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1585 isStage2,
1586 ArmFault::LpaeTran);
1587 else
1588 currState->fault = std::make_shared<DataAbort>(
1589 currState->vaddr_tainted,
1590 TlbEntry::DomainType::NoAccess,
1591 currState->isWrite,
1592 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1593 isStage2,
1594 ArmFault::LpaeTran);
1595 return;
1596 case LongDescriptor::Block:
1597 case LongDescriptor::Page:
1598 {
1599 bool fault = false;
1600 bool aff = false;
1601 // Check for address size fault
1602 if (checkAddrSizeFaultAArch64(
1603 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1604 currState->longDesc.offsetBits()),
1605 currState->physAddrRange)) {
1606 fault = true;
1607 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1608 currState->longDesc.lookupLevel);
1609 // Check for access fault
1610 } else if (currState->longDesc.af() == 0) {
1611 fault = true;
1612 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1613 currState->longDesc.lookupLevel);
1614 aff = true;
1615 }
1616 if (fault) {
1617 if (currState->isFetch)
1618 currState->fault = std::make_shared<PrefetchAbort>(
1619 currState->vaddr_tainted,
1620 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1621 currState->longDesc.lookupLevel,
1622 isStage2,
1623 ArmFault::LpaeTran);
1624 else
1625 currState->fault = std::make_shared<DataAbort>(
1626 currState->vaddr_tainted,
1627 TlbEntry::DomainType::NoAccess, currState->isWrite,
1628 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1629 currState->longDesc.lookupLevel,
1630 isStage2,
1631 ArmFault::LpaeTran);
1632 } else {
1633 insertTableEntry(currState->longDesc, true);
1634 }
1635 }
1636 return;
1637 case LongDescriptor::Table:
1638 {
1639 // Set hierarchical permission flags
1640 currState->secureLookup = currState->secureLookup &&
1641 currState->longDesc.secureTable();
1642 currState->rwTable = currState->rwTable &&
1643 currState->longDesc.rwTable();
1644 currState->userTable = currState->userTable &&
1645 currState->longDesc.userTable();
1646 currState->xnTable = currState->xnTable ||
1647 currState->longDesc.xnTable();
1648 currState->pxnTable = currState->pxnTable ||
1649 currState->longDesc.pxnTable();
1650
1651 // Set up next level lookup
1652 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1653 currState->vaddr);
1654
1655 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1656 currState->longDesc.lookupLevel,
1657 currState->longDesc.lookupLevel + 1,
1658 next_desc_addr,
1659 currState->secureLookup ? "s" : "ns");
1660
1661 // Check for address size fault
1662 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1663 next_desc_addr, currState->physAddrRange)) {
1664 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1665 currState->longDesc.lookupLevel);
1666 if (currState->isFetch)
1667 currState->fault = std::make_shared<PrefetchAbort>(
1668 currState->vaddr_tainted,
1669 ArmFault::AddressSizeLL
1670 + currState->longDesc.lookupLevel,
1671 isStage2,
1672 ArmFault::LpaeTran);
1673 else
1674 currState->fault = std::make_shared<DataAbort>(
1675 currState->vaddr_tainted,
1676 TlbEntry::DomainType::NoAccess, currState->isWrite,
1677 ArmFault::AddressSizeLL
1678 + currState->longDesc.lookupLevel,
1679 isStage2,
1680 ArmFault::LpaeTran);
1681 return;
1682 }
1683
1684 // Trickbox address check
1685 currState->fault = testWalk(
1686 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1687 toLookupLevel(currState->longDesc.lookupLevel +1));
1688
1689 if (currState->fault) {
1690 if (!currState->timing) {
1691 currState->tc = NULL;
1692 currState->req = NULL;
1693 }
1694 return;
1695 }
1696
1697 Request::Flags flag = Request::PT_WALK;
1698 if (currState->secureLookup)
1699 flag.set(Request::SECURE);
1700
1701 LookupLevel L = currState->longDesc.lookupLevel =
1702 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1703 Event *event = NULL;
1704 switch (L) {
1705 case L1:
1706 assert(currState->aarch64);
1707 case L2:
1708 case L3:
1709 event = LongDescEventByLevel[L];
1710 break;
1711 default:
1712 panic("Wrong lookup level in table walk\n");
1713 break;
1714 }
1715
1716 bool delayed;
1717 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1718 sizeof(uint64_t), flag, -1, event,
1719 &TableWalker::doLongDescriptor);
1720 if (delayed) {
1721 currState->delayed = true;
1722 }
1723 }
1724 return;
1725 default:
1726 panic("A new type in a 2 bit field?\n");
1727 }
1728 }
1729
1730 void
1731 TableWalker::doL2Descriptor()
1732 {
1733 if (currState->fault != NoFault) {
1734 return;
1735 }
1736
1737 currState->l2Desc.data = htog(currState->l2Desc.data,
1738 byteOrder(currState->tc));
1739
1740 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1741 currState->vaddr_tainted, currState->l2Desc.data);
1742 TlbEntry te;
1743
1744 if (currState->l2Desc.invalid()) {
1745 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1746 if (!currState->timing) {
1747 currState->tc = NULL;
1748 currState->req = NULL;
1749 }
1750 if (currState->isFetch)
1751 currState->fault = std::make_shared<PrefetchAbort>(
1752 currState->vaddr_tainted,
1753 ArmFault::TranslationLL + L2,
1754 isStage2,
1755 ArmFault::VmsaTran);
1756 else
1757 currState->fault = std::make_shared<DataAbort>(
1758 currState->vaddr_tainted, currState->l1Desc.domain(),
1759 currState->isWrite, ArmFault::TranslationLL + L2,
1760 isStage2,
1761 ArmFault::VmsaTran);
1762 return;
1763 }
1764
1765 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1766 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1767 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1768 */
1769 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1770 currState->sctlr.afe, currState->l2Desc.ap());
1771
1772 currState->fault = std::make_shared<DataAbort>(
1773 currState->vaddr_tainted,
1774 TlbEntry::DomainType::NoAccess, currState->isWrite,
1775 ArmFault::AccessFlagLL + L2, isStage2,
1776 ArmFault::VmsaTran);
1777 }
1778
1779 insertTableEntry(currState->l2Desc, false);
1780 }
1781
1782 void
1783 TableWalker::doL1DescriptorWrapper()
1784 {
1785 currState = stateQueues[L1].front();
1786 currState->delayed = false;
1787 // if there's a stage2 translation object we don't need it any more
1788 if (currState->stage2Tran) {
1789 delete currState->stage2Tran;
1790 currState->stage2Tran = NULL;
1791 }
1792
1793
1794 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1795 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1796
1797 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1798 doL1Descriptor();
1799
1800 stateQueues[L1].pop_front();
1801 // Check if fault was generated
1802 if (currState->fault != NoFault) {
1803 currState->transState->finish(currState->fault, currState->req,
1804 currState->tc, currState->mode);
1805 statWalksShortTerminatedAtLevel[0]++;
1806
1807 pending = false;
1808 nextWalk(currState->tc);
1809
1810 currState->req = NULL;
1811 currState->tc = NULL;
1812 currState->delayed = false;
1813 delete currState;
1814 }
1815 else if (!currState->delayed) {
1816 // delay is not set so there is no L2 to do
1817 // Don't finish the translation if a stage 2 look up is underway
1818 statWalkServiceTime.sample(curTick() - currState->startTime);
1819 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1820 tlb->translateTiming(currState->req, currState->tc,
1821 currState->transState, currState->mode);
1822 statWalksShortTerminatedAtLevel[0]++;
1823
1824 pending = false;
1825 nextWalk(currState->tc);
1826
1827 currState->req = NULL;
1828 currState->tc = NULL;
1829 currState->delayed = false;
1830 delete currState;
1831 } else {
1832 // need to do L2 descriptor
1833 stateQueues[L2].push_back(currState);
1834 }
1835 currState = NULL;
1836 }
1837
1838 void
1839 TableWalker::doL2DescriptorWrapper()
1840 {
1841 currState = stateQueues[L2].front();
1842 assert(currState->delayed);
1843 // if there's a stage2 translation object we don't need it any more
1844 if (currState->stage2Tran) {
1845 delete currState->stage2Tran;
1846 currState->stage2Tran = NULL;
1847 }
1848
1849 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1850 currState->vaddr_tainted);
1851 doL2Descriptor();
1852
1853 // Check if fault was generated
1854 if (currState->fault != NoFault) {
1855 currState->transState->finish(currState->fault, currState->req,
1856 currState->tc, currState->mode);
1857 statWalksShortTerminatedAtLevel[1]++;
1858 } else {
1859 statWalkServiceTime.sample(curTick() - currState->startTime);
1860 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1861 tlb->translateTiming(currState->req, currState->tc,
1862 currState->transState, currState->mode);
1863 statWalksShortTerminatedAtLevel[1]++;
1864 }
1865
1866
1867 stateQueues[L2].pop_front();
1868 pending = false;
1869 nextWalk(currState->tc);
1870
1871 currState->req = NULL;
1872 currState->tc = NULL;
1873 currState->delayed = false;
1874
1875 delete currState;
1876 currState = NULL;
1877 }
1878
1879 void
1880 TableWalker::doL0LongDescriptorWrapper()
1881 {
1882 doLongDescriptorWrapper(L0);
1883 }
1884
1885 void
1886 TableWalker::doL1LongDescriptorWrapper()
1887 {
1888 doLongDescriptorWrapper(L1);
1889 }
1890
1891 void
1892 TableWalker::doL2LongDescriptorWrapper()
1893 {
1894 doLongDescriptorWrapper(L2);
1895 }
1896
1897 void
1898 TableWalker::doL3LongDescriptorWrapper()
1899 {
1900 doLongDescriptorWrapper(L3);
1901 }
1902
1903 void
1904 TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1905 {
1906 currState = stateQueues[curr_lookup_level].front();
1907 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1908 currState->delayed = false;
1909
1910 // if there's a stage2 translation object we don't need it any more
1911 if (currState->stage2Tran) {
1912 delete currState->stage2Tran;
1913 currState->stage2Tran = NULL;
1914 }
1915
1916 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1917 currState->vaddr_tainted);
1918 doLongDescriptor();
1919
1920 stateQueues[curr_lookup_level].pop_front();
1921
1922 if (currState->fault != NoFault) {
1923 // A fault was generated
1924 currState->transState->finish(currState->fault, currState->req,
1925 currState->tc, currState->mode);
1926
1927 pending = false;
1928 nextWalk(currState->tc);
1929
1930 currState->req = NULL;
1931 currState->tc = NULL;
1932 currState->delayed = false;
1933 delete currState;
1934 } else if (!currState->delayed) {
1935 // No additional lookups required
1936 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1937 statWalkServiceTime.sample(curTick() - currState->startTime);
1938 tlb->translateTiming(currState->req, currState->tc,
1939 currState->transState, currState->mode);
1940 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1941
1942 pending = false;
1943 nextWalk(currState->tc);
1944
1945 currState->req = NULL;
1946 currState->tc = NULL;
1947 currState->delayed = false;
1948 delete currState;
1949 } else {
1950 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1951 panic("Max. number of lookups already reached in table walk\n");
1952 // Need to perform additional lookups
1953 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1954 }
1955 currState = NULL;
1956 }
1957
1958
1959 void
1960 TableWalker::nextWalk(ThreadContext *tc)
1961 {
1962 if (pendingQueue.size())
1963 schedule(doProcessEvent, clockEdge(Cycles(1)));
1964 else
1965 completeDrain();
1966 }
1967
1968 bool
1969 TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1970 Request::Flags flags, int queueIndex, Event *event,
1971 void (TableWalker::*doDescriptor)())
1972 {
1973 bool isTiming = currState->timing;
1974
1975 DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1976 descAddr, currState->stage2Req);
1977
1978 // If this translation has a stage 2 then we know descAddr is an IPA and
1979 // needs to be translated before we can access the page table. Do that
1980 // check here.
1981 if (currState->stage2Req) {
1982 Fault fault;
1983 flags = flags | TLB::MustBeOne;
1984
1985 if (isTiming) {
1986 Stage2MMU::Stage2Translation *tran = new
1987 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1988 currState->vaddr);
1989 currState->stage2Tran = tran;
1990 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1991 flags);
1992 fault = tran->fault;
1993 } else {
1994 fault = stage2Mmu->readDataUntimed(currState->tc,
1995 currState->vaddr, descAddr, data, numBytes, flags,
1996 currState->functional);
1997 }
1998
1999 if (fault != NoFault) {
2000 currState->fault = fault;
2001 }
2002 if (isTiming) {
2003 if (queueIndex >= 0) {
2004 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2005 stateQueues[queueIndex].size());
2006 stateQueues[queueIndex].push_back(currState);
2007 currState = NULL;
2008 }
2009 } else {
2010 (this->*doDescriptor)();
2011 }
2012 } else {
2013 if (isTiming) {
2014 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
2015 currState->tc->getCpuPtr()->clockPeriod(),flags);
2016 if (queueIndex >= 0) {
2017 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2018 stateQueues[queueIndex].size());
2019 stateQueues[queueIndex].push_back(currState);
2020 currState = NULL;
2021 }
2022 } else if (!currState->functional) {
2023 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
2024 currState->tc->getCpuPtr()->clockPeriod(), flags);
2025 (this->*doDescriptor)();
2026 } else {
2027 RequestPtr req = std::make_shared<Request>(
2028 descAddr, numBytes, flags, masterId);
2029
2030 req->taskId(ContextSwitchTaskId::DMA);
2031 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
2032 pkt->dataStatic(data);
2033 port->sendFunctional(pkt);
2034 (this->*doDescriptor)();
2035 delete pkt;
2036 }
2037 }
2038 return (isTiming);
2039 }
2040
2041 void
2042 TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2043 {
2044 TlbEntry te;
2045
2046 // Create and fill a new page table entry
2047 te.valid = true;
2048 te.longDescFormat = longDescriptor;
2049 te.isHyp = currState->isHyp;
2050 te.asid = currState->asid;
2051 te.vmid = currState->vmid;
2052 te.N = descriptor.offsetBits();
2053 te.vpn = currState->vaddr >> te.N;
2054 te.size = (1<<te.N) - 1;
2055 te.pfn = descriptor.pfn();
2056 te.domain = descriptor.domain();
2057 te.lookupLevel = descriptor.lookupLevel;
2058 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
2059 te.nstid = !currState->isSecure;
2060 te.xn = descriptor.xn();
2061 if (currState->aarch64)
2062 te.el = currState->el;
2063 else
2064 te.el = 1;
2065
2066 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2067 statRequestOrigin[COMPLETED][currState->isFetch]++;
2068
2069 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2070 // as global
2071 te.global = descriptor.global(currState) || isStage2;
2072 if (longDescriptor) {
2073 LongDescriptor lDescriptor =
2074 dynamic_cast<LongDescriptor &>(descriptor);
2075
2076 te.xn |= currState->xnTable;
2077 te.pxn = currState->pxnTable || lDescriptor.pxn();
2078 if (isStage2) {
2079 // this is actually the HAP field, but its stored in the same bit
2080 // possitions as the AP field in a stage 1 translation.
2081 te.hap = lDescriptor.ap();
2082 } else {
2083 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2084 (currState->userTable && (descriptor.ap() & 0x1));
2085 }
2086 if (currState->aarch64)
2087 memAttrsAArch64(currState->tc, te, lDescriptor);
2088 else
2089 memAttrsLPAE(currState->tc, te, lDescriptor);
2090 } else {
2091 te.ap = descriptor.ap();
2092 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2093 descriptor.shareable());
2094 }
2095
2096 // Debug output
2097 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2098 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2099 te.N, te.pfn, te.size, te.global, te.valid);
2100 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2101 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2102 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2103 te.nonCacheable, te.ns);
2104 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2105 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2106 descriptor.getRawData());
2107
2108 // Insert the entry into the TLB
2109 tlb->insert(currState->vaddr, te);
2110 if (!currState->timing) {
2111 currState->tc = NULL;
2112 currState->req = NULL;
2113 }
2114 }
2115
2116 ArmISA::TableWalker *
2117 ArmTableWalkerParams::create()
2118 {
2119 return new ArmISA::TableWalker(this);
2120 }
2121
2122 LookupLevel
2123 TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2124 {
2125 switch (lookup_level_as_int) {
2126 case L1:
2127 return L1;
2128 case L2:
2129 return L2;
2130 case L3:
2131 return L3;
2132 default:
2133 panic("Invalid lookup level conversion");
2134 }
2135 }
2136
2137 /* this method keeps track of the table walker queue's residency, so
2138 * needs to be called whenever requests start and complete. */
2139 void
2140 TableWalker::pendingChange()
2141 {
2142 unsigned n = pendingQueue.size();
2143 if ((currState != NULL) && (currState != pendingQueue.front())) {
2144 ++n;
2145 }
2146
2147 if (n != pendingReqs) {
2148 Tick now = curTick();
2149 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2150 pendingReqs = n;
2151 pendingChangeTick = now;
2152 }
2153 }
2154
2155 Fault
2156 TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2157 LookupLevel lookup_level)
2158 {
2159 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2160 currState->mode, domain, lookup_level);
2161 }
2162
2163
2164 uint8_t
2165 TableWalker::pageSizeNtoStatBin(uint8_t N)
2166 {
2167 /* for statPageSizes */
2168 switch(N) {
2169 case 12: return 0; // 4K
2170 case 14: return 1; // 16K (using 16K granule in v8-64)
2171 case 16: return 2; // 64K
2172 case 20: return 3; // 1M
2173 case 21: return 4; // 2M-LPAE
2174 case 24: return 5; // 16M
2175 case 25: return 6; // 32M (using 16K granule in v8-64)
2176 case 29: return 7; // 512M (using 64K granule in v8-64)
2177 case 30: return 8; // 1G-LPAE
2178 default:
2179 panic("unknown page size");
2180 return 255;
2181 }
2182 }
2183
2184 void
2185 TableWalker::regStats()
2186 {
2187 ClockedObject::regStats();
2188
2189 statWalks
2190 .name(name() + ".walks")
2191 .desc("Table walker walks requested")
2192 ;
2193
2194 statWalksShortDescriptor
2195 .name(name() + ".walksShort")
2196 .desc("Table walker walks initiated with short descriptors")
2197 .flags(Stats::nozero)
2198 ;
2199
2200 statWalksLongDescriptor
2201 .name(name() + ".walksLong")
2202 .desc("Table walker walks initiated with long descriptors")
2203 .flags(Stats::nozero)
2204 ;
2205
2206 statWalksShortTerminatedAtLevel
2207 .init(2)
2208 .name(name() + ".walksShortTerminationLevel")
2209 .desc("Level at which table walker walks "
2210 "with short descriptors terminate")
2211 .flags(Stats::nozero)
2212 ;
2213 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2214 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2215
2216 statWalksLongTerminatedAtLevel
2217 .init(4)
2218 .name(name() + ".walksLongTerminationLevel")
2219 .desc("Level at which table walker walks "
2220 "with long descriptors terminate")
2221 .flags(Stats::nozero)
2222 ;
2223 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2224 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2225 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2226 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2227
2228 statSquashedBefore
2229 .name(name() + ".walksSquashedBefore")
2230 .desc("Table walks squashed before starting")
2231 .flags(Stats::nozero)
2232 ;
2233
2234 statSquashedAfter
2235 .name(name() + ".walksSquashedAfter")
2236 .desc("Table walks squashed after completion")
2237 .flags(Stats::nozero)
2238 ;
2239
2240 statWalkWaitTime
2241 .init(16)
2242 .name(name() + ".walkWaitTime")
2243 .desc("Table walker wait (enqueue to first request) latency")
2244 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2245 ;
2246
2247 statWalkServiceTime
2248 .init(16)
2249 .name(name() + ".walkCompletionTime")
2250 .desc("Table walker service (enqueue to completion) latency")
2251 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2252 ;
2253
2254 statPendingWalks
2255 .init(16)
2256 .name(name() + ".walksPending")
2257 .desc("Table walker pending requests distribution")
2258 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2259 ;
2260
2261 statPageSizes // see DDI 0487A D4-1661
2262 .init(9)
2263 .name(name() + ".walkPageSizes")
2264 .desc("Table walker page sizes translated")
2265 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2266 ;
2267 statPageSizes.subname(0, "4K");
2268 statPageSizes.subname(1, "16K");
2269 statPageSizes.subname(2, "64K");
2270 statPageSizes.subname(3, "1M");
2271 statPageSizes.subname(4, "2M");
2272 statPageSizes.subname(5, "16M");
2273 statPageSizes.subname(6, "32M");
2274 statPageSizes.subname(7, "512M");
2275 statPageSizes.subname(8, "1G");
2276
2277 statRequestOrigin
2278 .init(2,2) // Instruction/Data, requests/completed
2279 .name(name() + ".walkRequestOrigin")
2280 .desc("Table walker requests started/completed, data/inst")
2281 .flags(Stats::total)
2282 ;
2283 statRequestOrigin.subname(0,"Requested");
2284 statRequestOrigin.subname(1,"Completed");
2285 statRequestOrigin.ysubname(0,"Data");
2286 statRequestOrigin.ysubname(1,"Inst");
2287 }