Merge zizzer:/bk/newmem
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2003-2005 The Regents of The University of Michigan
2 # All rights reserved.
3 #
4 # Redistribution and use in source and binary forms, with or without
5 # modification, are permitted provided that the following conditions are
6 # met: redistributions of source code must retain the above copyright
7 # notice, this list of conditions and the following disclaimer;
8 # redistributions in binary form must reproduce the above copyright
9 # notice, this list of conditions and the following disclaimer in the
10 # documentation and/or other materials provided with the distribution;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission.
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 #
27 # Authors: Steve Reinhardt
28 # Korey Sewell
29
30 import os
31 import sys
32 import re
33 import string
34 import traceback
35 # get type names
36 from types import *
37
38 # Prepend the directory where the PLY lex & yacc modules are found
39 # to the search path. Assumes we're compiling in a subdirectory
40 # of 'build' in the current tree.
41 sys.path[0:0] = [os.environ['M5_PLY']]
42
43 import lex
44 import yacc
45
46 #####################################################################
47 #
48 # Lexer
49 #
50 # The PLY lexer module takes two things as input:
51 # - A list of token names (the string list 'tokens')
52 # - A regular expression describing a match for each token. The
53 # regexp for token FOO can be provided in two ways:
54 # - as a string variable named t_FOO
55 # - as the doc string for a function named t_FOO. In this case,
56 # the function is also executed, allowing an action to be
57 # associated with each token match.
58 #
59 #####################################################################
60
61 # Reserved words. These are listed separately as they are matched
62 # using the same regexp as generic IDs, but distinguished in the
63 # t_ID() function. The PLY documentation suggests this approach.
64 reserved = (
65 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
66 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
67 'OUTPUT', 'SIGNED', 'TEMPLATE'
68 )
69
70 # List of tokens. The lex module requires this.
71 tokens = reserved + (
72 # identifier
73 'ID',
74
75 # integer literal
76 'INTLIT',
77
78 # string literal
79 'STRLIT',
80
81 # code literal
82 'CODELIT',
83
84 # ( ) [ ] { } < > , ; : :: *
85 'LPAREN', 'RPAREN',
86 'LBRACKET', 'RBRACKET',
87 'LBRACE', 'RBRACE',
88 'LESS', 'GREATER', 'EQUALS',
89 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
90 'ASTERISK',
91
92 # C preprocessor directives
93 'CPPDIRECTIVE'
94
95 # The following are matched but never returned. commented out to
96 # suppress PLY warning
97 # newfile directive
98 # 'NEWFILE',
99
100 # endfile directive
101 # 'ENDFILE'
102 )
103
104 # Regular expressions for token matching
105 t_LPAREN = r'\('
106 t_RPAREN = r'\)'
107 t_LBRACKET = r'\['
108 t_RBRACKET = r'\]'
109 t_LBRACE = r'\{'
110 t_RBRACE = r'\}'
111 t_LESS = r'\<'
112 t_GREATER = r'\>'
113 t_EQUALS = r'='
114 t_COMMA = r','
115 t_SEMI = r';'
116 t_COLON = r':'
117 t_DBLCOLON = r'::'
118 t_ASTERISK = r'\*'
119
120 # Identifiers and reserved words
121 reserved_map = { }
122 for r in reserved:
123 reserved_map[r.lower()] = r
124
125 def t_ID(t):
126 r'[A-Za-z_]\w*'
127 t.type = reserved_map.get(t.value,'ID')
128 return t
129
130 # Integer literal
131 def t_INTLIT(t):
132 r'(0x[\da-fA-F]+)|\d+'
133 try:
134 t.value = int(t.value,0)
135 except ValueError:
136 error(t.lineno, 'Integer value "%s" too large' % t.value)
137 t.value = 0
138 return t
139
140 # String literal. Note that these use only single quotes, and
141 # can span multiple lines.
142 def t_STRLIT(t):
143 r"(?m)'([^'])+'"
144 # strip off quotes
145 t.value = t.value[1:-1]
146 t.lineno += t.value.count('\n')
147 return t
148
149
150 # "Code literal"... like a string literal, but delimiters are
151 # '{{' and '}}' so they get formatted nicely under emacs c-mode
152 def t_CODELIT(t):
153 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
154 # strip off {{ & }}
155 t.value = t.value[2:-2]
156 t.lineno += t.value.count('\n')
157 return t
158
159 def t_CPPDIRECTIVE(t):
160 r'^\#[^\#].*\n'
161 t.lineno += t.value.count('\n')
162 return t
163
164 def t_NEWFILE(t):
165 r'^\#\#newfile\s+"[\w/.-]*"'
166 fileNameStack.push((t.value[11:-1], t.lineno))
167 t.lineno = 0
168
169 def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (old_filename, t.lineno) = fileNameStack.pop()
172
173 #
174 # The functions t_NEWLINE, t_ignore, and t_error are
175 # special for the lex module.
176 #
177
178 # Newlines
179 def t_NEWLINE(t):
180 r'\n+'
181 t.lineno += t.value.count('\n')
182
183 # Comments
184 def t_comment(t):
185 r'//.*'
186
187 # Completely ignored characters
188 t_ignore = ' \t\x0c'
189
190 # Error handler
191 def t_error(t):
192 error(t.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195 # Build the lexer
196 lex.lex()
197
198 #####################################################################
199 #
200 # Parser
201 #
202 # Every function whose name starts with 'p_' defines a grammar rule.
203 # The rule is encoded in the function's doc string, while the
204 # function body provides the action taken when the rule is matched.
205 # The argument to each function is a list of the values of the
206 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207 # on the RHS. For tokens, the value is copied from the t.value
208 # attribute provided by the lexer. For non-terminals, the value
209 # is assigned by the producing rule; i.e., the job of the grammar
210 # rule function is to set the value for the non-terminal on the LHS
211 # (by assigning to t[0]).
212 #####################################################################
213
214 # The LHS of the first grammar rule is used as the start symbol
215 # (in this case, 'specification'). Note that this rule enforces
216 # that there will be exactly one namespace declaration, with 0 or more
217 # global defs/decls before and after it. The defs & decls before
218 # the namespace decl will be outside the namespace; those after
219 # will be inside. The decoder function is always inside the namespace.
220 def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227 StaticInstPtr
228 %(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
229 {
230 using namespace %(namespace)s;
231 ''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237 # ISA name declaration looks like "namespace <foo>;"
238 def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242 # 'opt_defs_and_outputs' is a possibly empty sequence of
243 # def and/or output statements.
244 def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248 def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252 def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256 def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260 # The list of possible definition/output statements.
261 def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_template
265 | def_operand_types
266 | def_operands
267 | output_header
268 | output_decoder
269 | output_exec
270 | global_let'''
271 t[0] = t[1]
272
273 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
274 # directly to the appropriate output section.
275
276
277 # Protect any non-dict-substitution '%'s in a format string
278 # (i.e. those not followed by '(')
279 def protect_non_subst_percents(s):
280 return re.sub(r'%(?!\()', '%%', s)
281
282 # Massage output block by substituting in template definitions and bit
283 # operators. We handle '%'s embedded in the string that don't
284 # indicate template substitutions (or CPU-specific symbols, which get
285 # handled in GenCode) by doubling them first so that the format
286 # operation will reduce them back to single '%'s.
287 def process_output(s):
288 s = protect_non_subst_percents(s)
289 # protects cpu-specific symbols too
290 s = protect_cpu_symbols(s)
291 return substBitOps(s % templateMap)
292
293 def p_output_header(t):
294 'output_header : OUTPUT HEADER CODELIT SEMI'
295 t[0] = GenCode(header_output = process_output(t[3]))
296
297 def p_output_decoder(t):
298 'output_decoder : OUTPUT DECODER CODELIT SEMI'
299 t[0] = GenCode(decoder_output = process_output(t[3]))
300
301 def p_output_exec(t):
302 'output_exec : OUTPUT EXEC CODELIT SEMI'
303 t[0] = GenCode(exec_output = process_output(t[3]))
304
305 # global let blocks 'let {{...}}' (Python code blocks) are executed
306 # directly when seen. Note that these execute in a special variable
307 # context 'exportContext' to prevent the code from polluting this
308 # script's namespace.
309 def p_global_let(t):
310 'global_let : LET CODELIT SEMI'
311 updateExportContext()
312 try:
313 exec fixPythonIndentation(t[2]) in exportContext
314 except Exception, exc:
315 error(t.lineno(1),
316 'error: %s in global let block "%s".' % (exc, t[2]))
317 t[0] = GenCode() # contributes nothing to the output C++ file
318
319 # Define the mapping from operand type extensions to C++ types and bit
320 # widths (stored in operandTypeMap).
321 def p_def_operand_types(t):
322 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323 try:
324 userDict = eval('{' + t[3] + '}')
325 except Exception, exc:
326 error(t.lineno(1),
327 'error: %s in def operand_types block "%s".' % (exc, t[3]))
328 buildOperandTypeMap(userDict, t.lineno(1))
329 t[0] = GenCode() # contributes nothing to the output C++ file
330
331 # Define the mapping from operand names to operand classes and other
332 # traits. Stored in operandNameMap.
333 def p_def_operands(t):
334 'def_operands : DEF OPERANDS CODELIT SEMI'
335 if not globals().has_key('operandTypeMap'):
336 error(t.lineno(1),
337 'error: operand types must be defined before operands')
338 try:
339 userDict = eval('{' + t[3] + '}')
340 except Exception, exc:
341 error(t.lineno(1),
342 'error: %s in def operands block "%s".' % (exc, t[3]))
343 buildOperandNameMap(userDict, t.lineno(1))
344 t[0] = GenCode() # contributes nothing to the output C++ file
345
346 # A bitfield definition looks like:
347 # 'def [signed] bitfield <ID> [<first>:<last>]'
348 # This generates a preprocessor macro in the output file.
349 def p_def_bitfield_0(t):
350 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352 if (t[2] == 'signed'):
353 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355 t[0] = GenCode(header_output = hash_define)
356
357 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358 def p_def_bitfield_1(t):
359 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361 if (t[2] == 'signed'):
362 expr = 'sext<%d>(%s)' % (1, expr)
363 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364 t[0] = GenCode(header_output = hash_define)
365
366 def p_opt_signed_0(t):
367 'opt_signed : SIGNED'
368 t[0] = t[1]
369
370 def p_opt_signed_1(t):
371 'opt_signed : empty'
372 t[0] = ''
373
374 # Global map variable to hold templates
375 templateMap = {}
376
377 def p_def_template(t):
378 'def_template : DEF TEMPLATE ID CODELIT SEMI'
379 templateMap[t[3]] = Template(t[4])
380 t[0] = GenCode()
381
382 # An instruction format definition looks like
383 # "def format <fmt>(<params>) {{...}};"
384 def p_def_format(t):
385 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
386 (id, params, code) = (t[3], t[5], t[7])
387 defFormat(id, params, code, t.lineno(1))
388 t[0] = GenCode()
389
390 # The formal parameter list for an instruction format is a possibly
391 # empty list of comma-separated parameters. Positional (standard,
392 # non-keyword) parameters must come first, followed by keyword
393 # parameters, followed by a '*foo' parameter that gets excess
394 # positional arguments (as in Python). Each of these three parameter
395 # categories is optional.
396 #
397 # Note that we do not support the '**foo' parameter for collecting
398 # otherwise undefined keyword args. Otherwise the parameter list is
399 # (I believe) identical to what is supported in Python.
400 #
401 # The param list generates a tuple, where the first element is a list of
402 # the positional params and the second element is a dict containing the
403 # keyword params.
404 def p_param_list_0(t):
405 'param_list : positional_param_list COMMA nonpositional_param_list'
406 t[0] = t[1] + t[3]
407
408 def p_param_list_1(t):
409 '''param_list : positional_param_list
410 | nonpositional_param_list'''
411 t[0] = t[1]
412
413 def p_positional_param_list_0(t):
414 'positional_param_list : empty'
415 t[0] = []
416
417 def p_positional_param_list_1(t):
418 'positional_param_list : ID'
419 t[0] = [t[1]]
420
421 def p_positional_param_list_2(t):
422 'positional_param_list : positional_param_list COMMA ID'
423 t[0] = t[1] + [t[3]]
424
425 def p_nonpositional_param_list_0(t):
426 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
427 t[0] = t[1] + t[3]
428
429 def p_nonpositional_param_list_1(t):
430 '''nonpositional_param_list : keyword_param_list
431 | excess_args_param'''
432 t[0] = t[1]
433
434 def p_keyword_param_list_0(t):
435 'keyword_param_list : keyword_param'
436 t[0] = [t[1]]
437
438 def p_keyword_param_list_1(t):
439 'keyword_param_list : keyword_param_list COMMA keyword_param'
440 t[0] = t[1] + [t[3]]
441
442 def p_keyword_param(t):
443 'keyword_param : ID EQUALS expr'
444 t[0] = t[1] + ' = ' + t[3].__repr__()
445
446 def p_excess_args_param(t):
447 'excess_args_param : ASTERISK ID'
448 # Just concatenate them: '*ID'. Wrap in list to be consistent
449 # with positional_param_list and keyword_param_list.
450 t[0] = [t[1] + t[2]]
451
452 # End of format definition-related rules.
453 ##############
454
455 #
456 # A decode block looks like:
457 # decode <field1> [, <field2>]* [default <inst>] { ... }
458 #
459 def p_decode_block(t):
460 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
461 default_defaults = defaultStack.pop()
462 codeObj = t[5]
463 # use the "default defaults" only if there was no explicit
464 # default statement in decode_stmt_list
465 if not codeObj.has_decode_default:
466 codeObj += default_defaults
467 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
468 t[0] = codeObj
469
470 # The opt_default statement serves only to push the "default defaults"
471 # onto defaultStack. This value will be used by nested decode blocks,
472 # and used and popped off when the current decode_block is processed
473 # (in p_decode_block() above).
474 def p_opt_default_0(t):
475 'opt_default : empty'
476 # no default specified: reuse the one currently at the top of the stack
477 defaultStack.push(defaultStack.top())
478 # no meaningful value returned
479 t[0] = None
480
481 def p_opt_default_1(t):
482 'opt_default : DEFAULT inst'
483 # push the new default
484 codeObj = t[2]
485 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
486 defaultStack.push(codeObj)
487 # no meaningful value returned
488 t[0] = None
489
490 def p_decode_stmt_list_0(t):
491 'decode_stmt_list : decode_stmt'
492 t[0] = t[1]
493
494 def p_decode_stmt_list_1(t):
495 'decode_stmt_list : decode_stmt decode_stmt_list'
496 if (t[1].has_decode_default and t[2].has_decode_default):
497 error(t.lineno(1), 'Two default cases in decode block')
498 t[0] = t[1] + t[2]
499
500 #
501 # Decode statement rules
502 #
503 # There are four types of statements allowed in a decode block:
504 # 1. Format blocks 'format <foo> { ... }'
505 # 2. Nested decode blocks
506 # 3. Instruction definitions.
507 # 4. C preprocessor directives.
508
509
510 # Preprocessor directives found in a decode statement list are passed
511 # through to the output, replicated to all of the output code
512 # streams. This works well for ifdefs, so we can ifdef out both the
513 # declarations and the decode cases generated by an instruction
514 # definition. Handling them as part of the grammar makes it easy to
515 # keep them in the right place with respect to the code generated by
516 # the other statements.
517 def p_decode_stmt_cpp(t):
518 'decode_stmt : CPPDIRECTIVE'
519 t[0] = GenCode(t[1], t[1], t[1], t[1])
520
521 # A format block 'format <foo> { ... }' sets the default instruction
522 # format used to handle instruction definitions inside the block.
523 # This format can be overridden by using an explicit format on the
524 # instruction definition or with a nested format block.
525 def p_decode_stmt_format(t):
526 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
527 # The format will be pushed on the stack when 'push_format_id' is
528 # processed (see below). Once the parser has recognized the full
529 # production (though the right brace), we're done with the format,
530 # so now we can pop it.
531 formatStack.pop()
532 t[0] = t[4]
533
534 # This rule exists so we can set the current format (& push the stack)
535 # when we recognize the format name part of the format block.
536 def p_push_format_id(t):
537 'push_format_id : ID'
538 try:
539 formatStack.push(formatMap[t[1]])
540 t[0] = ('', '// format %s' % t[1])
541 except KeyError:
542 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
543
544 # Nested decode block: if the value of the current field matches the
545 # specified constant, do a nested decode on some other field.
546 def p_decode_stmt_decode(t):
547 'decode_stmt : case_label COLON decode_block'
548 label = t[1]
549 codeObj = t[3]
550 # just wrap the decoding code from the block as a case in the
551 # outer switch statement.
552 codeObj.wrap_decode_block('\n%s:\n' % label)
553 codeObj.has_decode_default = (label == 'default')
554 t[0] = codeObj
555
556 # Instruction definition (finally!).
557 def p_decode_stmt_inst(t):
558 'decode_stmt : case_label COLON inst SEMI'
559 label = t[1]
560 codeObj = t[3]
561 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
562 codeObj.has_decode_default = (label == 'default')
563 t[0] = codeObj
564
565 # The case label is either a list of one or more constants or 'default'
566 def p_case_label_0(t):
567 'case_label : intlit_list'
568 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
569
570 def p_case_label_1(t):
571 'case_label : DEFAULT'
572 t[0] = 'default'
573
574 #
575 # The constant list for a decode case label must be non-empty, but may have
576 # one or more comma-separated integer literals in it.
577 #
578 def p_intlit_list_0(t):
579 'intlit_list : INTLIT'
580 t[0] = [t[1]]
581
582 def p_intlit_list_1(t):
583 'intlit_list : intlit_list COMMA INTLIT'
584 t[0] = t[1]
585 t[0].append(t[3])
586
587 # Define an instruction using the current instruction format (specified
588 # by an enclosing format block).
589 # "<mnemonic>(<args>)"
590 def p_inst_0(t):
591 'inst : ID LPAREN arg_list RPAREN'
592 # Pass the ID and arg list to the current format class to deal with.
593 currentFormat = formatStack.top()
594 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
595 args = ','.join(map(str, t[3]))
596 args = re.sub('(?m)^', '//', args)
597 args = re.sub('^//', '', args)
598 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
599 codeObj.prepend_all(comment)
600 t[0] = codeObj
601
602 # Define an instruction using an explicitly specified format:
603 # "<fmt>::<mnemonic>(<args>)"
604 def p_inst_1(t):
605 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606 try:
607 format = formatMap[t[1]]
608 except KeyError:
609 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
611 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
612 codeObj.prepend_all(comment)
613 t[0] = codeObj
614
615 # The arg list generates a tuple, where the first element is a list of
616 # the positional args and the second element is a dict containing the
617 # keyword args.
618 def p_arg_list_0(t):
619 'arg_list : positional_arg_list COMMA keyword_arg_list'
620 t[0] = ( t[1], t[3] )
621
622 def p_arg_list_1(t):
623 'arg_list : positional_arg_list'
624 t[0] = ( t[1], {} )
625
626 def p_arg_list_2(t):
627 'arg_list : keyword_arg_list'
628 t[0] = ( [], t[1] )
629
630 def p_positional_arg_list_0(t):
631 'positional_arg_list : empty'
632 t[0] = []
633
634 def p_positional_arg_list_1(t):
635 'positional_arg_list : expr'
636 t[0] = [t[1]]
637
638 def p_positional_arg_list_2(t):
639 'positional_arg_list : positional_arg_list COMMA expr'
640 t[0] = t[1] + [t[3]]
641
642 def p_keyword_arg_list_0(t):
643 'keyword_arg_list : keyword_arg'
644 t[0] = t[1]
645
646 def p_keyword_arg_list_1(t):
647 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
648 t[0] = t[1]
649 t[0].update(t[3])
650
651 def p_keyword_arg(t):
652 'keyword_arg : ID EQUALS expr'
653 t[0] = { t[1] : t[3] }
654
655 #
656 # Basic expressions. These constitute the argument values of
657 # "function calls" (i.e. instruction definitions in the decode block)
658 # and default values for formal parameters of format functions.
659 #
660 # Right now, these are either strings, integers, or (recursively)
661 # lists of exprs (using Python square-bracket list syntax). Note that
662 # bare identifiers are trated as string constants here (since there
663 # isn't really a variable namespace to refer to).
664 #
665 def p_expr_0(t):
666 '''expr : ID
667 | INTLIT
668 | STRLIT
669 | CODELIT'''
670 t[0] = t[1]
671
672 def p_expr_1(t):
673 '''expr : LBRACKET list_expr RBRACKET'''
674 t[0] = t[2]
675
676 def p_list_expr_0(t):
677 'list_expr : expr'
678 t[0] = [t[1]]
679
680 def p_list_expr_1(t):
681 'list_expr : list_expr COMMA expr'
682 t[0] = t[1] + [t[3]]
683
684 def p_list_expr_2(t):
685 'list_expr : empty'
686 t[0] = []
687
688 #
689 # Empty production... use in other rules for readability.
690 #
691 def p_empty(t):
692 'empty :'
693 pass
694
695 # Parse error handler. Note that the argument here is the offending
696 # *token*, not a grammar symbol (hence the need to use t.value)
697 def p_error(t):
698 if t:
699 error(t.lineno, "syntax error at '%s'" % t.value)
700 else:
701 error(0, "unknown syntax error", True)
702
703 # END OF GRAMMAR RULES
704 #
705 # Now build the parser.
706 yacc.yacc()
707
708
709 #####################################################################
710 #
711 # Support Classes
712 #
713 #####################################################################
714
715 # Expand template with CPU-specific references into a dictionary with
716 # an entry for each CPU model name. The entry key is the model name
717 # and the corresponding value is the template with the CPU-specific
718 # refs substituted for that model.
719 def expand_cpu_symbols_to_dict(template):
720 # Protect '%'s that don't go with CPU-specific terms
721 t = re.sub(r'%(?!\(CPU_)', '%%', template)
722 result = {}
723 for cpu in cpu_models:
724 result[cpu.name] = t % cpu.strings
725 return result
726
727 # *If* the template has CPU-specific references, return a single
728 # string containing a copy of the template for each CPU model with the
729 # corresponding values substituted in. If the template has no
730 # CPU-specific references, it is returned unmodified.
731 def expand_cpu_symbols_to_string(template):
732 if template.find('%(CPU_') != -1:
733 return reduce(lambda x,y: x+y,
734 expand_cpu_symbols_to_dict(template).values())
735 else:
736 return template
737
738 # Protect CPU-specific references by doubling the corresponding '%'s
739 # (in preparation for substituting a different set of references into
740 # the template).
741 def protect_cpu_symbols(template):
742 return re.sub(r'%(?=\(CPU_)', '%%', template)
743
744 ###############
745 # GenCode class
746 #
747 # The GenCode class encapsulates generated code destined for various
748 # output files. The header_output and decoder_output attributes are
749 # strings containing code destined for decoder.hh and decoder.cc
750 # respectively. The decode_block attribute contains code to be
751 # incorporated in the decode function itself (that will also end up in
752 # decoder.cc). The exec_output attribute is a dictionary with a key
753 # for each CPU model name; the value associated with a particular key
754 # is the string of code for that CPU model's exec.cc file. The
755 # has_decode_default attribute is used in the decode block to allow
756 # explicit default clauses to override default default clauses.
757
758 class GenCode:
759 # Constructor. At this point we substitute out all CPU-specific
760 # symbols. For the exec output, these go into the per-model
761 # dictionary. For all other output types they get collapsed into
762 # a single string.
763 def __init__(self,
764 header_output = '', decoder_output = '', exec_output = '',
765 decode_block = '', has_decode_default = False):
766 self.header_output = expand_cpu_symbols_to_string(header_output)
767 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
768 if isinstance(exec_output, dict):
769 self.exec_output = exec_output
770 elif isinstance(exec_output, str):
771 # If the exec_output arg is a single string, we replicate
772 # it for each of the CPU models, substituting and
773 # %(CPU_foo)s params appropriately.
774 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
775 self.decode_block = expand_cpu_symbols_to_string(decode_block)
776 self.has_decode_default = has_decode_default
777
778 # Override '+' operator: generate a new GenCode object that
779 # concatenates all the individual strings in the operands.
780 def __add__(self, other):
781 exec_output = {}
782 for cpu in cpu_models:
783 n = cpu.name
784 exec_output[n] = self.exec_output[n] + other.exec_output[n]
785 return GenCode(self.header_output + other.header_output,
786 self.decoder_output + other.decoder_output,
787 exec_output,
788 self.decode_block + other.decode_block,
789 self.has_decode_default or other.has_decode_default)
790
791 # Prepend a string (typically a comment) to all the strings.
792 def prepend_all(self, pre):
793 self.header_output = pre + self.header_output
794 self.decoder_output = pre + self.decoder_output
795 self.decode_block = pre + self.decode_block
796 for cpu in cpu_models:
797 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
798
799 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
800 # and 'break;'). Used to build the big nested switch statement.
801 def wrap_decode_block(self, pre, post = ''):
802 self.decode_block = pre + indent(self.decode_block) + post
803
804 ################
805 # Format object.
806 #
807 # A format object encapsulates an instruction format. It must provide
808 # a defineInst() method that generates the code for an instruction
809 # definition.
810
811 exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
812
813 exportContext = {}
814
815 def updateExportContext():
816 exportContext.update(exportDict(*exportContextSymbols))
817 exportContext.update(templateMap)
818
819 def exportDict(*symNames):
820 return dict([(s, eval(s)) for s in symNames])
821
822
823 class Format:
824 def __init__(self, id, params, code):
825 # constructor: just save away arguments
826 self.id = id
827 self.params = params
828 label = 'def format ' + id
829 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
830 param_list = string.join(params, ", ")
831 f = '''def defInst(_code, _context, %s):
832 my_locals = vars().copy()
833 exec _code in _context, my_locals
834 return my_locals\n''' % param_list
835 c = compile(f, label + ' wrapper', 'exec')
836 exec c
837 self.func = defInst
838
839 def defineInst(self, name, args, lineno):
840 context = {}
841 updateExportContext()
842 context.update(exportContext)
843 context.update({ 'name': name, 'Name': string.capitalize(name) })
844 try:
845 vars = self.func(self.user_code, context, *args[0], **args[1])
846 except Exception, exc:
847 error(lineno, 'error defining "%s": %s.' % (name, exc))
848 for k in vars.keys():
849 if k not in ('header_output', 'decoder_output',
850 'exec_output', 'decode_block'):
851 del vars[k]
852 return GenCode(**vars)
853
854 # Special null format to catch an implicit-format instruction
855 # definition outside of any format block.
856 class NoFormat:
857 def __init__(self):
858 self.defaultInst = ''
859
860 def defineInst(self, name, args, lineno):
861 error(lineno,
862 'instruction definition "%s" with no active format!' % name)
863
864 # This dictionary maps format name strings to Format objects.
865 formatMap = {}
866
867 # Define a new format
868 def defFormat(id, params, code, lineno):
869 # make sure we haven't already defined this one
870 if formatMap.get(id, None) != None:
871 error(lineno, 'format %s redefined.' % id)
872 # create new object and store in global map
873 formatMap[id] = Format(id, params, code)
874
875
876 ##############
877 # Stack: a simple stack object. Used for both formats (formatStack)
878 # and default cases (defaultStack). Simply wraps a list to give more
879 # stack-like syntax and enable initialization with an argument list
880 # (as opposed to an argument that's a list).
881
882 class Stack(list):
883 def __init__(self, *items):
884 list.__init__(self, items)
885
886 def push(self, item):
887 self.append(item);
888
889 def top(self):
890 return self[-1]
891
892 # The global format stack.
893 formatStack = Stack(NoFormat())
894
895 # The global default case stack.
896 defaultStack = Stack( None )
897
898 # Global stack that tracks current file and line number.
899 # Each element is a tuple (filename, lineno) that records the
900 # *current* filename and the line number in the *previous* file where
901 # it was included.
902 fileNameStack = Stack()
903
904 ###################
905 # Utility functions
906
907 #
908 # Indent every line in string 's' by two spaces
909 # (except preprocessor directives).
910 # Used to make nested code blocks look pretty.
911 #
912 def indent(s):
913 return re.sub(r'(?m)^(?!#)', ' ', s)
914
915 #
916 # Munge a somewhat arbitrarily formatted piece of Python code
917 # (e.g. from a format 'let' block) into something whose indentation
918 # will get by the Python parser.
919 #
920 # The two keys here are that Python will give a syntax error if
921 # there's any whitespace at the beginning of the first line, and that
922 # all lines at the same lexical nesting level must have identical
923 # indentation. Unfortunately the way code literals work, an entire
924 # let block tends to have some initial indentation. Rather than
925 # trying to figure out what that is and strip it off, we prepend 'if
926 # 1:' to make the let code the nested block inside the if (and have
927 # the parser automatically deal with the indentation for us).
928 #
929 # We don't want to do this if (1) the code block is empty or (2) the
930 # first line of the block doesn't have any whitespace at the front.
931
932 def fixPythonIndentation(s):
933 # get rid of blank lines first
934 s = re.sub(r'(?m)^\s*\n', '', s);
935 if (s != '' and re.match(r'[ \t]', s[0])):
936 s = 'if 1:\n' + s
937 return s
938
939 # Error handler. Just call exit. Output formatted to work under
940 # Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
941 # prints a Python stack backtrace too (can be handy when trying to
942 # debug the parser itself).
943 def error(lineno, string, print_traceback = False):
944 spaces = ""
945 for (filename, line) in fileNameStack[0:-1]:
946 print spaces + "In file included from " + filename + ":"
947 spaces += " "
948 # Print a Python stack backtrace if requested.
949 if (print_traceback):
950 traceback.print_exc()
951 if lineno != 0:
952 line_str = "%d:" % lineno
953 else:
954 line_str = ""
955 sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
956
957
958 #####################################################################
959 #
960 # Bitfield Operator Support
961 #
962 #####################################################################
963
964 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
965
966 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
967 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
968
969 def substBitOps(code):
970 # first convert single-bit selectors to two-index form
971 # i.e., <n> --> <n:n>
972 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
973 # simple case: selector applied to ID (name)
974 # i.e., foo<a:b> --> bits(foo, a, b)
975 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
976 # if selector is applied to expression (ending in ')'),
977 # we need to search backward for matching '('
978 match = bitOpExprRE.search(code)
979 while match:
980 exprEnd = match.start()
981 here = exprEnd - 1
982 nestLevel = 1
983 while nestLevel > 0:
984 if code[here] == '(':
985 nestLevel -= 1
986 elif code[here] == ')':
987 nestLevel += 1
988 here -= 1
989 if here < 0:
990 sys.exit("Didn't find '('!")
991 exprStart = here+1
992 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
993 match.group(1), match.group(2))
994 code = code[:exprStart] + newExpr + code[match.end():]
995 match = bitOpExprRE.search(code)
996 return code
997
998
999 ####################
1000 # Template objects.
1001 #
1002 # Template objects are format strings that allow substitution from
1003 # the attribute spaces of other objects (e.g. InstObjParams instances).
1004
1005 labelRE = re.compile(r'[^%]%\(([^\)]+)\)[sd]')
1006
1007 class Template:
1008 def __init__(self, t):
1009 self.template = t
1010
1011 def subst(self, d):
1012 myDict = None
1013
1014 # Protect non-Python-dict substitutions (e.g. if there's a printf
1015 # in the templated C++ code)
1016 template = protect_non_subst_percents(self.template)
1017 # CPU-model-specific substitutions are handled later (in GenCode).
1018 template = protect_cpu_symbols(template)
1019
1020 # Build a dict ('myDict') to use for the template substitution.
1021 # Start with the template namespace. Make a copy since we're
1022 # going to modify it.
1023 myDict = templateMap.copy()
1024
1025 if isinstance(d, InstObjParams):
1026 # If we're dealing with an InstObjParams object, we need
1027 # to be a little more sophisticated. The instruction-wide
1028 # parameters are already formed, but the parameters which
1029 # are only function wide still need to be generated.
1030 compositeCode = ''
1031
1032 myDict.update(d.__dict__)
1033 # The "operands" and "snippets" attributes of the InstObjParams
1034 # objects are for internal use and not substitution.
1035 del myDict['operands']
1036 del myDict['snippets']
1037
1038 snippetLabels = [l for l in labelRE.findall(template)
1039 if d.snippets.has_key(l)]
1040
1041 snippets = dict([(s, mungeSnippet(d.snippets[s]))
1042 for s in snippetLabels])
1043
1044 myDict.update(snippets)
1045
1046 compositeCode = ' '.join(map(str, snippets.values()))
1047
1048 # Add in template itself in case it references any
1049 # operands explicitly (like Mem)
1050 compositeCode += ' ' + template
1051
1052 operands = SubOperandList(compositeCode, d.operands)
1053
1054 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
1055
1056 is_src = lambda op: op.is_src
1057 is_dest = lambda op: op.is_dest
1058
1059 myDict['op_src_decl'] = \
1060 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1061 myDict['op_dest_decl'] = \
1062 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1063
1064 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
1065 myDict['op_wb'] = operands.concatAttrStrings('op_wb')
1066
1067 if d.operands.memOperand:
1068 myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
1069 myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
1070
1071 elif isinstance(d, dict):
1072 # if the argument is a dictionary, we just use it.
1073 myDict.update(d)
1074 elif hasattr(d, '__dict__'):
1075 # if the argument is an object, we use its attribute map.
1076 myDict.update(d.__dict__)
1077 else:
1078 raise TypeError, "Template.subst() arg must be or have dictionary"
1079 return template % myDict
1080
1081 # Convert to string. This handles the case when a template with a
1082 # CPU-specific term gets interpolated into another template or into
1083 # an output block.
1084 def __str__(self):
1085 return expand_cpu_symbols_to_string(self.template)
1086
1087 #####################################################################
1088 #
1089 # Code Parser
1090 #
1091 # The remaining code is the support for automatically extracting
1092 # instruction characteristics from pseudocode.
1093 #
1094 #####################################################################
1095
1096 # Force the argument to be a list. Useful for flags, where a caller
1097 # can specify a singleton flag or a list of flags. Also usful for
1098 # converting tuples to lists so they can be modified.
1099 def makeList(arg):
1100 if isinstance(arg, list):
1101 return arg
1102 elif isinstance(arg, tuple):
1103 return list(arg)
1104 elif not arg:
1105 return []
1106 else:
1107 return [ arg ]
1108
1109 # Generate operandTypeMap from the user's 'def operand_types'
1110 # statement.
1111 def buildOperandTypeMap(userDict, lineno):
1112 global operandTypeMap
1113 operandTypeMap = {}
1114 for (ext, (desc, size)) in userDict.iteritems():
1115 if desc == 'signed int':
1116 ctype = 'int%d_t' % size
1117 is_signed = 1
1118 elif desc == 'unsigned int':
1119 ctype = 'uint%d_t' % size
1120 is_signed = 0
1121 elif desc == 'float':
1122 is_signed = 1 # shouldn't really matter
1123 if size == 32:
1124 ctype = 'float'
1125 elif size == 64:
1126 ctype = 'double'
1127 if ctype == '':
1128 error(lineno, 'Unrecognized type description "%s" in userDict')
1129 operandTypeMap[ext] = (size, ctype, is_signed)
1130
1131 #
1132 #
1133 #
1134 # Base class for operand descriptors. An instance of this class (or
1135 # actually a class derived from this one) represents a specific
1136 # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1137 # derived classes encapsulates the traits of a particular operand type
1138 # (e.g., "32-bit integer register").
1139 #
1140 class Operand(object):
1141 def __init__(self, full_name, ext, is_src, is_dest):
1142 self.full_name = full_name
1143 self.ext = ext
1144 self.is_src = is_src
1145 self.is_dest = is_dest
1146 # The 'effective extension' (eff_ext) is either the actual
1147 # extension, if one was explicitly provided, or the default.
1148 if ext:
1149 self.eff_ext = ext
1150 else:
1151 self.eff_ext = self.dflt_ext
1152
1153 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1154
1155 # note that mem_acc_size is undefined for non-mem operands...
1156 # template must be careful not to use it if it doesn't apply.
1157 if self.isMem():
1158 self.mem_acc_size = self.makeAccSize()
1159 self.mem_acc_type = self.ctype
1160
1161 # Finalize additional fields (primarily code fields). This step
1162 # is done separately since some of these fields may depend on the
1163 # register index enumeration that hasn't been performed yet at the
1164 # time of __init__().
1165 def finalize(self):
1166 self.flags = self.getFlags()
1167 self.constructor = self.makeConstructor()
1168 self.op_decl = self.makeDecl()
1169
1170 if self.is_src:
1171 self.op_rd = self.makeRead()
1172 self.op_src_decl = self.makeDecl()
1173 else:
1174 self.op_rd = ''
1175 self.op_src_decl = ''
1176
1177 if self.is_dest:
1178 self.op_wb = self.makeWrite()
1179 self.op_dest_decl = self.makeDecl()
1180 else:
1181 self.op_wb = ''
1182 self.op_dest_decl = ''
1183
1184 def isMem(self):
1185 return 0
1186
1187 def isReg(self):
1188 return 0
1189
1190 def isFloatReg(self):
1191 return 0
1192
1193 def isIntReg(self):
1194 return 0
1195
1196 def isControlReg(self):
1197 return 0
1198
1199 def getFlags(self):
1200 # note the empty slice '[:]' gives us a copy of self.flags[0]
1201 # instead of a reference to it
1202 my_flags = self.flags[0][:]
1203 if self.is_src:
1204 my_flags += self.flags[1]
1205 if self.is_dest:
1206 my_flags += self.flags[2]
1207 return my_flags
1208
1209 def makeDecl(self):
1210 # Note that initializations in the declarations are solely
1211 # to avoid 'uninitialized variable' errors from the compiler.
1212 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1213
1214 class IntRegOperand(Operand):
1215 def isReg(self):
1216 return 1
1217
1218 def isIntReg(self):
1219 return 1
1220
1221 def makeConstructor(self):
1222 c = ''
1223 if self.is_src:
1224 c += '\n\t_srcRegIdx[%d] = %s;' % \
1225 (self.src_reg_idx, self.reg_spec)
1226 if self.is_dest:
1227 c += '\n\t_destRegIdx[%d] = %s;' % \
1228 (self.dest_reg_idx, self.reg_spec)
1229 return c
1230
1231 def makeRead(self):
1232 if (self.ctype == 'float' or self.ctype == 'double'):
1233 error(0, 'Attempt to read integer register as FP')
1234 if (self.size == self.dflt_size):
1235 return '%s = xc->readIntRegOperand(this, %d);\n' % \
1236 (self.base_name, self.src_reg_idx)
1237 elif (self.size > self.dflt_size):
1238 int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
1239 (self.src_reg_idx)
1240 if (self.is_signed):
1241 int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1242 return '%s = %s;\n' % (self.base_name, int_reg_val)
1243 else:
1244 return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
1245 (self.base_name, self.src_reg_idx, self.size-1)
1246
1247 def makeWrite(self):
1248 if (self.ctype == 'float' or self.ctype == 'double'):
1249 error(0, 'Attempt to write integer register as FP')
1250 if (self.size != self.dflt_size and self.is_signed):
1251 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1252 else:
1253 final_val = self.base_name
1254 wb = '''
1255 {
1256 %s final_val = %s;
1257 xc->setIntRegOperand(this, %d, final_val);\n
1258 if (traceData) { traceData->setData(final_val); }
1259 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1260 return wb
1261
1262 class FloatRegOperand(Operand):
1263 def isReg(self):
1264 return 1
1265
1266 def isFloatReg(self):
1267 return 1
1268
1269 def makeConstructor(self):
1270 c = ''
1271 if self.is_src:
1272 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1273 (self.src_reg_idx, self.reg_spec)
1274 if self.is_dest:
1275 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1276 (self.dest_reg_idx, self.reg_spec)
1277 return c
1278
1279 def makeRead(self):
1280 bit_select = 0
1281 width = 0;
1282 if (self.ctype == 'float'):
1283 func = 'readFloatRegOperand'
1284 width = 32;
1285 elif (self.ctype == 'double'):
1286 func = 'readFloatRegOperand'
1287 width = 64;
1288 else:
1289 func = 'readFloatRegOperandBits'
1290 if (self.ctype == 'uint32_t'):
1291 width = 32;
1292 elif (self.ctype == 'uint64_t'):
1293 width = 64;
1294 if (self.size != self.dflt_size):
1295 bit_select = 1
1296 if width:
1297 base = 'xc->%s(this, %d, %d)' % \
1298 (func, self.src_reg_idx, width)
1299 else:
1300 base = 'xc->%s(this, %d)' % \
1301 (func, self.src_reg_idx)
1302 if bit_select:
1303 return '%s = bits(%s, %d, 0);\n' % \
1304 (self.base_name, base, self.size-1)
1305 else:
1306 return '%s = %s;\n' % (self.base_name, base)
1307
1308 def makeWrite(self):
1309 final_val = self.base_name
1310 final_ctype = self.ctype
1311 widthSpecifier = ''
1312 width = 0
1313 if (self.ctype == 'float'):
1314 width = 32
1315 func = 'setFloatRegOperand'
1316 elif (self.ctype == 'double'):
1317 width = 64
1318 func = 'setFloatRegOperand'
1319 elif (self.ctype == 'uint32_t'):
1320 func = 'setFloatRegOperandBits'
1321 width = 32
1322 elif (self.ctype == 'uint64_t'):
1323 func = 'setFloatRegOperandBits'
1324 width = 64
1325 else:
1326 func = 'setFloatRegOperandBits'
1327 final_ctype = 'uint%d_t' % self.dflt_size
1328 if (self.size != self.dflt_size and self.is_signed):
1329 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1330 if width:
1331 widthSpecifier = ', %d' % width
1332 wb = '''
1333 {
1334 %s final_val = %s;
1335 xc->%s(this, %d, final_val%s);\n
1336 if (traceData) { traceData->setData(final_val); }
1337 }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1338 widthSpecifier)
1339 return wb
1340
1341 class ControlRegOperand(Operand):
1342 def isReg(self):
1343 return 1
1344
1345 def isControlReg(self):
1346 return 1
1347
1348 def makeConstructor(self):
1349 c = ''
1350 if self.is_src:
1351 c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1352 (self.src_reg_idx, self.reg_spec)
1353 if self.is_dest:
1354 c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1355 (self.dest_reg_idx, self.reg_spec)
1356 return c
1357
1358 def makeRead(self):
1359 bit_select = 0
1360 if (self.ctype == 'float' or self.ctype == 'double'):
1361 error(0, 'Attempt to read control register as FP')
1362 base = 'xc->readMiscRegOperandWithEffect(this, %s)' % self.src_reg_idx
1363 if self.size == self.dflt_size:
1364 return '%s = %s;\n' % (self.base_name, base)
1365 else:
1366 return '%s = bits(%s, %d, 0);\n' % \
1367 (self.base_name, base, self.size-1)
1368
1369 def makeWrite(self):
1370 if (self.ctype == 'float' or self.ctype == 'double'):
1371 error(0, 'Attempt to write control register as FP')
1372 wb = 'xc->setMiscRegOperandWithEffect(this, %s, %s);\n' % \
1373 (self.dest_reg_idx, self.base_name)
1374 wb += 'if (traceData) { traceData->setData(%s); }' % \
1375 self.base_name
1376 return wb
1377
1378 class MemOperand(Operand):
1379 def isMem(self):
1380 return 1
1381
1382 def makeConstructor(self):
1383 return ''
1384
1385 def makeDecl(self):
1386 # Note that initializations in the declarations are solely
1387 # to avoid 'uninitialized variable' errors from the compiler.
1388 # Declare memory data variable.
1389 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1390 return c
1391
1392 def makeRead(self):
1393 return ''
1394
1395 def makeWrite(self):
1396 return ''
1397
1398 # Return the memory access size *in bits*, suitable for
1399 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1400 def makeAccSize(self):
1401 return self.size
1402
1403
1404 class NPCOperand(Operand):
1405 def makeConstructor(self):
1406 return ''
1407
1408 def makeRead(self):
1409 return '%s = xc->readNextPC();\n' % self.base_name
1410
1411 def makeWrite(self):
1412 return 'xc->setNextPC(%s);\n' % self.base_name
1413
1414 class NNPCOperand(Operand):
1415 def makeConstructor(self):
1416 return ''
1417
1418 def makeRead(self):
1419 return '%s = xc->readNextNPC();\n' % self.base_name
1420
1421 def makeWrite(self):
1422 return 'xc->setNextNPC(%s);\n' % self.base_name
1423
1424 def buildOperandNameMap(userDict, lineno):
1425 global operandNameMap
1426 operandNameMap = {}
1427 for (op_name, val) in userDict.iteritems():
1428 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1429 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1430 # Canonical flag structure is a triple of lists, where each list
1431 # indicates the set of flags implied by this operand always, when
1432 # used as a source, and when used as a dest, respectively.
1433 # For simplicity this can be initialized using a variety of fairly
1434 # obvious shortcuts; we convert these to canonical form here.
1435 if not flags:
1436 # no flags specified (e.g., 'None')
1437 flags = ( [], [], [] )
1438 elif isinstance(flags, str):
1439 # a single flag: assumed to be unconditional
1440 flags = ( [ flags ], [], [] )
1441 elif isinstance(flags, list):
1442 # a list of flags: also assumed to be unconditional
1443 flags = ( flags, [], [] )
1444 elif isinstance(flags, tuple):
1445 # it's a tuple: it should be a triple,
1446 # but each item could be a single string or a list
1447 (uncond_flags, src_flags, dest_flags) = flags
1448 flags = (makeList(uncond_flags),
1449 makeList(src_flags), makeList(dest_flags))
1450 # Accumulate attributes of new operand class in tmp_dict
1451 tmp_dict = {}
1452 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1453 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1454 tmp_dict[attr] = eval(attr)
1455 tmp_dict['base_name'] = op_name
1456 # New class name will be e.g. "IntReg_Ra"
1457 cls_name = base_cls_name + '_' + op_name
1458 # Evaluate string arg to get class object. Note that the
1459 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1460 # have to append "Operand".
1461 try:
1462 base_cls = eval(base_cls_name + 'Operand')
1463 except NameError:
1464 error(lineno,
1465 'error: unknown operand base class "%s"' % base_cls_name)
1466 # The following statement creates a new class called
1467 # <cls_name> as a subclass of <base_cls> with the attributes
1468 # in tmp_dict, just as if we evaluated a class declaration.
1469 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1470
1471 # Define operand variables.
1472 operands = userDict.keys()
1473
1474 operandsREString = (r'''
1475 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1476 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1477 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1478 '''
1479 % string.join(operands, '|'))
1480
1481 global operandsRE
1482 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1483
1484 # Same as operandsREString, but extension is mandatory, and only two
1485 # groups are returned (base and ext, not full name as above).
1486 # Used for subtituting '_' for '.' to make C++ identifiers.
1487 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1488 % string.join(operands, '|'))
1489
1490 global operandsWithExtRE
1491 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1492
1493
1494 class OperandList:
1495
1496 # Find all the operands in the given code block. Returns an operand
1497 # descriptor list (instance of class OperandList).
1498 def __init__(self, code):
1499 self.items = []
1500 self.bases = {}
1501 # delete comments so we don't match on reg specifiers inside
1502 code = commentRE.sub('', code)
1503 # search for operands
1504 next_pos = 0
1505 while 1:
1506 match = operandsRE.search(code, next_pos)
1507 if not match:
1508 # no more matches: we're done
1509 break
1510 op = match.groups()
1511 # regexp groups are operand full name, base, and extension
1512 (op_full, op_base, op_ext) = op
1513 # if the token following the operand is an assignment, this is
1514 # a destination (LHS), else it's a source (RHS)
1515 is_dest = (assignRE.match(code, match.end()) != None)
1516 is_src = not is_dest
1517 # see if we've already seen this one
1518 op_desc = self.find_base(op_base)
1519 if op_desc:
1520 if op_desc.ext != op_ext:
1521 error(0, 'Inconsistent extensions for operand %s' % \
1522 op_base)
1523 op_desc.is_src = op_desc.is_src or is_src
1524 op_desc.is_dest = op_desc.is_dest or is_dest
1525 else:
1526 # new operand: create new descriptor
1527 op_desc = operandNameMap[op_base](op_full, op_ext,
1528 is_src, is_dest)
1529 self.append(op_desc)
1530 # start next search after end of current match
1531 next_pos = match.end()
1532 self.sort()
1533 # enumerate source & dest register operands... used in building
1534 # constructor later
1535 self.numSrcRegs = 0
1536 self.numDestRegs = 0
1537 self.numFPDestRegs = 0
1538 self.numIntDestRegs = 0
1539 self.memOperand = None
1540 for op_desc in self.items:
1541 if op_desc.isReg():
1542 if op_desc.is_src:
1543 op_desc.src_reg_idx = self.numSrcRegs
1544 self.numSrcRegs += 1
1545 if op_desc.is_dest:
1546 op_desc.dest_reg_idx = self.numDestRegs
1547 self.numDestRegs += 1
1548 if op_desc.isFloatReg():
1549 self.numFPDestRegs += 1
1550 elif op_desc.isIntReg():
1551 self.numIntDestRegs += 1
1552 elif op_desc.isMem():
1553 if self.memOperand:
1554 error(0, "Code block has more than one memory operand.")
1555 self.memOperand = op_desc
1556 # now make a final pass to finalize op_desc fields that may depend
1557 # on the register enumeration
1558 for op_desc in self.items:
1559 op_desc.finalize()
1560
1561 def __len__(self):
1562 return len(self.items)
1563
1564 def __getitem__(self, index):
1565 return self.items[index]
1566
1567 def append(self, op_desc):
1568 self.items.append(op_desc)
1569 self.bases[op_desc.base_name] = op_desc
1570
1571 def find_base(self, base_name):
1572 # like self.bases[base_name], but returns None if not found
1573 # (rather than raising exception)
1574 return self.bases.get(base_name)
1575
1576 # internal helper function for concat[Some]Attr{Strings|Lists}
1577 def __internalConcatAttrs(self, attr_name, filter, result):
1578 for op_desc in self.items:
1579 if filter(op_desc):
1580 result += getattr(op_desc, attr_name)
1581 return result
1582
1583 # return a single string that is the concatenation of the (string)
1584 # values of the specified attribute for all operands
1585 def concatAttrStrings(self, attr_name):
1586 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1587
1588 # like concatAttrStrings, but only include the values for the operands
1589 # for which the provided filter function returns true
1590 def concatSomeAttrStrings(self, filter, attr_name):
1591 return self.__internalConcatAttrs(attr_name, filter, '')
1592
1593 # return a single list that is the concatenation of the (list)
1594 # values of the specified attribute for all operands
1595 def concatAttrLists(self, attr_name):
1596 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1597
1598 # like concatAttrLists, but only include the values for the operands
1599 # for which the provided filter function returns true
1600 def concatSomeAttrLists(self, filter, attr_name):
1601 return self.__internalConcatAttrs(attr_name, filter, [])
1602
1603 def sort(self):
1604 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1605
1606 class SubOperandList(OperandList):
1607
1608 # Find all the operands in the given code block. Returns an operand
1609 # descriptor list (instance of class OperandList).
1610 def __init__(self, code, master_list):
1611 self.items = []
1612 self.bases = {}
1613 # delete comments so we don't match on reg specifiers inside
1614 code = commentRE.sub('', code)
1615 # search for operands
1616 next_pos = 0
1617 while 1:
1618 match = operandsRE.search(code, next_pos)
1619 if not match:
1620 # no more matches: we're done
1621 break
1622 op = match.groups()
1623 # regexp groups are operand full name, base, and extension
1624 (op_full, op_base, op_ext) = op
1625 # find this op in the master list
1626 op_desc = master_list.find_base(op_base)
1627 if not op_desc:
1628 error(0, 'Found operand %s which is not in the master list!' \
1629 ' This is an internal error' % \
1630 op_base)
1631 else:
1632 # See if we've already found this operand
1633 op_desc = self.find_base(op_base)
1634 if not op_desc:
1635 # if not, add a reference to it to this sub list
1636 self.append(master_list.bases[op_base])
1637
1638 # start next search after end of current match
1639 next_pos = match.end()
1640 self.sort()
1641 self.memOperand = None
1642 for op_desc in self.items:
1643 if op_desc.isMem():
1644 if self.memOperand:
1645 error(0, "Code block has more than one memory operand.")
1646 self.memOperand = op_desc
1647
1648 # Regular expression object to match C++ comments
1649 # (used in findOperands())
1650 commentRE = re.compile(r'//.*\n')
1651
1652 # Regular expression object to match assignment statements
1653 # (used in findOperands())
1654 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1655
1656 # Munge operand names in code string to make legal C++ variable names.
1657 # This means getting rid of the type extension if any.
1658 # (Will match base_name attribute of Operand object.)
1659 def substMungedOpNames(code):
1660 return operandsWithExtRE.sub(r'\1', code)
1661
1662 # Fix up code snippets for final substitution in templates.
1663 def mungeSnippet(s):
1664 if isinstance(s, str):
1665 return substMungedOpNames(substBitOps(s))
1666 else:
1667 return s
1668
1669 def makeFlagConstructor(flag_list):
1670 if len(flag_list) == 0:
1671 return ''
1672 # filter out repeated flags
1673 flag_list.sort()
1674 i = 1
1675 while i < len(flag_list):
1676 if flag_list[i] == flag_list[i-1]:
1677 del flag_list[i]
1678 else:
1679 i += 1
1680 pre = '\n\tflags['
1681 post = '] = true;'
1682 code = pre + string.join(flag_list, post + pre) + post
1683 return code
1684
1685 # Assume all instruction flags are of the form 'IsFoo'
1686 instFlagRE = re.compile(r'Is.*')
1687
1688 # OpClass constants end in 'Op' except No_OpClass
1689 opClassRE = re.compile(r'.*Op|No_OpClass')
1690
1691 class InstObjParams:
1692 def __init__(self, mnem, class_name, base_class = '',
1693 snippets = {}, opt_args = []):
1694 self.mnemonic = mnem
1695 self.class_name = class_name
1696 self.base_class = base_class
1697 if not isinstance(snippets, dict):
1698 snippets = {'code' : snippets}
1699 compositeCode = ' '.join(map(str, snippets.values()))
1700 self.snippets = snippets
1701
1702 self.operands = OperandList(compositeCode)
1703 self.constructor = self.operands.concatAttrStrings('constructor')
1704 self.constructor += \
1705 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1706 self.constructor += \
1707 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1708 self.constructor += \
1709 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1710 self.constructor += \
1711 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1712 self.flags = self.operands.concatAttrLists('flags')
1713
1714 # Make a basic guess on the operand class (function unit type).
1715 # These are good enough for most cases, and can be overridden
1716 # later otherwise.
1717 if 'IsStore' in self.flags:
1718 self.op_class = 'MemWriteOp'
1719 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1720 self.op_class = 'MemReadOp'
1721 elif 'IsFloating' in self.flags:
1722 self.op_class = 'FloatAddOp'
1723 else:
1724 self.op_class = 'IntAluOp'
1725
1726 # Optional arguments are assumed to be either StaticInst flags
1727 # or an OpClass value. To avoid having to import a complete
1728 # list of these values to match against, we do it ad-hoc
1729 # with regexps.
1730 for oa in opt_args:
1731 if instFlagRE.match(oa):
1732 self.flags.append(oa)
1733 elif opClassRE.match(oa):
1734 self.op_class = oa
1735 else:
1736 error(0, 'InstObjParams: optional arg "%s" not recognized '
1737 'as StaticInst::Flag or OpClass.' % oa)
1738
1739 # add flag initialization to contructor here to include
1740 # any flags added via opt_args
1741 self.constructor += makeFlagConstructor(self.flags)
1742
1743 # if 'IsFloating' is set, add call to the FP enable check
1744 # function (which should be provided by isa_desc via a declare)
1745 if 'IsFloating' in self.flags:
1746 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1747 else:
1748 self.fp_enable_check = ''
1749
1750 #######################
1751 #
1752 # Output file template
1753 #
1754
1755 file_template = '''
1756 /*
1757 * DO NOT EDIT THIS FILE!!!
1758 *
1759 * It was automatically generated from the ISA description in %(filename)s
1760 */
1761
1762 %(includes)s
1763
1764 %(global_output)s
1765
1766 namespace %(namespace)s {
1767
1768 %(namespace_output)s
1769
1770 } // namespace %(namespace)s
1771
1772 %(decode_function)s
1773 '''
1774
1775
1776 # Update the output file only if the new contents are different from
1777 # the current contents. Minimizes the files that need to be rebuilt
1778 # after minor changes.
1779 def update_if_needed(file, contents):
1780 update = False
1781 if os.access(file, os.R_OK):
1782 f = open(file, 'r')
1783 old_contents = f.read()
1784 f.close()
1785 if contents != old_contents:
1786 print 'Updating', file
1787 os.remove(file) # in case it's write-protected
1788 update = True
1789 else:
1790 print 'File', file, 'is unchanged'
1791 else:
1792 print 'Generating', file
1793 update = True
1794 if update:
1795 f = open(file, 'w')
1796 f.write(contents)
1797 f.close()
1798
1799 # This regular expression matches '##include' directives
1800 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1801 re.MULTILINE)
1802
1803 # Function to replace a matched '##include' directive with the
1804 # contents of the specified file (with nested ##includes replaced
1805 # recursively). 'matchobj' is an re match object (from a match of
1806 # includeRE) and 'dirname' is the directory relative to which the file
1807 # path should be resolved.
1808 def replace_include(matchobj, dirname):
1809 fname = matchobj.group('filename')
1810 full_fname = os.path.normpath(os.path.join(dirname, fname))
1811 contents = '##newfile "%s"\n%s\n##endfile\n' % \
1812 (full_fname, read_and_flatten(full_fname))
1813 return contents
1814
1815 # Read a file and recursively flatten nested '##include' files.
1816 def read_and_flatten(filename):
1817 current_dir = os.path.dirname(filename)
1818 try:
1819 contents = open(filename).read()
1820 except IOError:
1821 error(0, 'Error including file "%s"' % filename)
1822 fileNameStack.push((filename, 0))
1823 # Find any includes and include them
1824 contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1825 contents)
1826 fileNameStack.pop()
1827 return contents
1828
1829 #
1830 # Read in and parse the ISA description.
1831 #
1832 def parse_isa_desc(isa_desc_file, output_dir):
1833 # Read file and (recursively) all included files into a string.
1834 # PLY requires that the input be in a single string so we have to
1835 # do this up front.
1836 isa_desc = read_and_flatten(isa_desc_file)
1837
1838 # Initialize filename stack with outer file.
1839 fileNameStack.push((isa_desc_file, 0))
1840
1841 # Parse it.
1842 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1843
1844 # grab the last three path components of isa_desc_file to put in
1845 # the output
1846 filename = '/'.join(isa_desc_file.split('/')[-3:])
1847
1848 # generate decoder.hh
1849 includes = '#include "base/bitfield.hh" // for bitfield support'
1850 global_output = global_code.header_output
1851 namespace_output = namespace_code.header_output
1852 decode_function = ''
1853 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1854
1855 # generate decoder.cc
1856 includes = '#include "decoder.hh"'
1857 global_output = global_code.decoder_output
1858 namespace_output = namespace_code.decoder_output
1859 # namespace_output += namespace_code.decode_block
1860 decode_function = namespace_code.decode_block
1861 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1862
1863 # generate per-cpu exec files
1864 for cpu in cpu_models:
1865 includes = '#include "decoder.hh"\n'
1866 includes += cpu.includes
1867 global_output = global_code.exec_output[cpu.name]
1868 namespace_output = namespace_code.exec_output[cpu.name]
1869 decode_function = ''
1870 update_if_needed(output_dir + '/' + cpu.filename,
1871 file_template % vars())
1872
1873 # global list of CpuModel objects (see cpu_models.py)
1874 cpu_models = []
1875
1876 # Called as script: get args from command line.
1877 # Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1878 if __name__ == '__main__':
1879 execfile(sys.argv[1]) # read in CpuModel definitions
1880 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1881 parse_isa_desc(sys.argv[2], sys.argv[3])