Update to ply 2.3
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2003-2005 The Regents of The University of Michigan
2 # All rights reserved.
3 #
4 # Redistribution and use in source and binary forms, with or without
5 # modification, are permitted provided that the following conditions are
6 # met: redistributions of source code must retain the above copyright
7 # notice, this list of conditions and the following disclaimer;
8 # redistributions in binary form must reproduce the above copyright
9 # notice, this list of conditions and the following disclaimer in the
10 # documentation and/or other materials provided with the distribution;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission.
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 #
27 # Authors: Steve Reinhardt
28 # Korey Sewell
29
30 import os
31 import sys
32 import re
33 import string
34 import traceback
35 # get type names
36 from types import *
37
38 # Prepend the directory where the PLY lex & yacc modules are found
39 # to the search path. Assumes we're compiling in a subdirectory
40 # of 'build' in the current tree.
41 sys.path[0:0] = [os.environ['M5_PLY']]
42
43 from ply import lex
44 from ply import yacc
45
46 #####################################################################
47 #
48 # Lexer
49 #
50 # The PLY lexer module takes two things as input:
51 # - A list of token names (the string list 'tokens')
52 # - A regular expression describing a match for each token. The
53 # regexp for token FOO can be provided in two ways:
54 # - as a string variable named t_FOO
55 # - as the doc string for a function named t_FOO. In this case,
56 # the function is also executed, allowing an action to be
57 # associated with each token match.
58 #
59 #####################################################################
60
61 # Reserved words. These are listed separately as they are matched
62 # using the same regexp as generic IDs, but distinguished in the
63 # t_ID() function. The PLY documentation suggests this approach.
64 reserved = (
65 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
66 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
67 'OUTPUT', 'SIGNED', 'TEMPLATE'
68 )
69
70 # List of tokens. The lex module requires this.
71 tokens = reserved + (
72 # identifier
73 'ID',
74
75 # integer literal
76 'INTLIT',
77
78 # string literal
79 'STRLIT',
80
81 # code literal
82 'CODELIT',
83
84 # ( ) [ ] { } < > , ; . : :: *
85 'LPAREN', 'RPAREN',
86 'LBRACKET', 'RBRACKET',
87 'LBRACE', 'RBRACE',
88 'LESS', 'GREATER', 'EQUALS',
89 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
90 'ASTERISK',
91
92 # C preprocessor directives
93 'CPPDIRECTIVE'
94
95 # The following are matched but never returned. commented out to
96 # suppress PLY warning
97 # newfile directive
98 # 'NEWFILE',
99
100 # endfile directive
101 # 'ENDFILE'
102 )
103
104 # Regular expressions for token matching
105 t_LPAREN = r'\('
106 t_RPAREN = r'\)'
107 t_LBRACKET = r'\['
108 t_RBRACKET = r'\]'
109 t_LBRACE = r'\{'
110 t_RBRACE = r'\}'
111 t_LESS = r'\<'
112 t_GREATER = r'\>'
113 t_EQUALS = r'='
114 t_COMMA = r','
115 t_SEMI = r';'
116 t_DOT = r'\.'
117 t_COLON = r':'
118 t_DBLCOLON = r'::'
119 t_ASTERISK = r'\*'
120
121 # Identifiers and reserved words
122 reserved_map = { }
123 for r in reserved:
124 reserved_map[r.lower()] = r
125
126 def t_ID(t):
127 r'[A-Za-z_]\w*'
128 t.type = reserved_map.get(t.value,'ID')
129 return t
130
131 # Integer literal
132 def t_INTLIT(t):
133 r'(0x[\da-fA-F]+)|\d+'
134 try:
135 t.value = int(t.value,0)
136 except ValueError:
137 error(t.lineno, 'Integer value "%s" too large' % t.value)
138 t.value = 0
139 return t
140
141 # String literal. Note that these use only single quotes, and
142 # can span multiple lines.
143 def t_STRLIT(t):
144 r"(?m)'([^'])+'"
145 # strip off quotes
146 t.value = t.value[1:-1]
147 t.lineno += t.value.count('\n')
148 return t
149
150
151 # "Code literal"... like a string literal, but delimiters are
152 # '{{' and '}}' so they get formatted nicely under emacs c-mode
153 def t_CODELIT(t):
154 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
155 # strip off {{ & }}
156 t.value = t.value[2:-2]
157 t.lineno += t.value.count('\n')
158 return t
159
160 def t_CPPDIRECTIVE(t):
161 r'^\#[^\#].*\n'
162 t.lineno += t.value.count('\n')
163 return t
164
165 def t_NEWFILE(t):
166 r'^\#\#newfile\s+"[\w/.-]*"'
167 fileNameStack.push((t.value[11:-1], t.lineno))
168 t.lineno = 0
169
170 def t_ENDFILE(t):
171 r'^\#\#endfile'
172 (old_filename, t.lineno) = fileNameStack.pop()
173
174 #
175 # The functions t_NEWLINE, t_ignore, and t_error are
176 # special for the lex module.
177 #
178
179 # Newlines
180 def t_NEWLINE(t):
181 r'\n+'
182 t.lineno += t.value.count('\n')
183
184 # Comments
185 def t_comment(t):
186 r'//.*'
187
188 # Completely ignored characters
189 t_ignore = ' \t\x0c'
190
191 # Error handler
192 def t_error(t):
193 error(t.lineno, "illegal character '%s'" % t.value[0])
194 t.skip(1)
195
196 # Build the lexer
197 lex.lex()
198
199 #####################################################################
200 #
201 # Parser
202 #
203 # Every function whose name starts with 'p_' defines a grammar rule.
204 # The rule is encoded in the function's doc string, while the
205 # function body provides the action taken when the rule is matched.
206 # The argument to each function is a list of the values of the
207 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
208 # on the RHS. For tokens, the value is copied from the t.value
209 # attribute provided by the lexer. For non-terminals, the value
210 # is assigned by the producing rule; i.e., the job of the grammar
211 # rule function is to set the value for the non-terminal on the LHS
212 # (by assigning to t[0]).
213 #####################################################################
214
215 # The LHS of the first grammar rule is used as the start symbol
216 # (in this case, 'specification'). Note that this rule enforces
217 # that there will be exactly one namespace declaration, with 0 or more
218 # global defs/decls before and after it. The defs & decls before
219 # the namespace decl will be outside the namespace; those after
220 # will be inside. The decoder function is always inside the namespace.
221 def p_specification(t):
222 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
223 global_code = t[1]
224 isa_name = t[2]
225 namespace = isa_name + "Inst"
226 # wrap the decode block as a function definition
227 t[4].wrap_decode_block('''
228 StaticInstPtr
229 %(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
230 {
231 using namespace %(namespace)s;
232 ''' % vars(), '}')
233 # both the latter output blocks and the decode block are in the namespace
234 namespace_code = t[3] + t[4]
235 # pass it all back to the caller of yacc.parse()
236 t[0] = (isa_name, namespace, global_code, namespace_code)
237
238 # ISA name declaration looks like "namespace <foo>;"
239 def p_name_decl(t):
240 'name_decl : NAMESPACE ID SEMI'
241 t[0] = t[2]
242
243 # 'opt_defs_and_outputs' is a possibly empty sequence of
244 # def and/or output statements.
245 def p_opt_defs_and_outputs_0(t):
246 'opt_defs_and_outputs : empty'
247 t[0] = GenCode()
248
249 def p_opt_defs_and_outputs_1(t):
250 'opt_defs_and_outputs : defs_and_outputs'
251 t[0] = t[1]
252
253 def p_defs_and_outputs_0(t):
254 'defs_and_outputs : def_or_output'
255 t[0] = t[1]
256
257 def p_defs_and_outputs_1(t):
258 'defs_and_outputs : defs_and_outputs def_or_output'
259 t[0] = t[1] + t[2]
260
261 # The list of possible definition/output statements.
262 def p_def_or_output(t):
263 '''def_or_output : def_format
264 | def_bitfield
265 | def_bitfield_struct
266 | def_template
267 | def_operand_types
268 | def_operands
269 | output_header
270 | output_decoder
271 | output_exec
272 | global_let'''
273 t[0] = t[1]
274
275 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
276 # directly to the appropriate output section.
277
278
279 # Protect any non-dict-substitution '%'s in a format string
280 # (i.e. those not followed by '(')
281 def protect_non_subst_percents(s):
282 return re.sub(r'%(?!\()', '%%', s)
283
284 # Massage output block by substituting in template definitions and bit
285 # operators. We handle '%'s embedded in the string that don't
286 # indicate template substitutions (or CPU-specific symbols, which get
287 # handled in GenCode) by doubling them first so that the format
288 # operation will reduce them back to single '%'s.
289 def process_output(s):
290 s = protect_non_subst_percents(s)
291 # protects cpu-specific symbols too
292 s = protect_cpu_symbols(s)
293 return substBitOps(s % templateMap)
294
295 def p_output_header(t):
296 'output_header : OUTPUT HEADER CODELIT SEMI'
297 t[0] = GenCode(header_output = process_output(t[3]))
298
299 def p_output_decoder(t):
300 'output_decoder : OUTPUT DECODER CODELIT SEMI'
301 t[0] = GenCode(decoder_output = process_output(t[3]))
302
303 def p_output_exec(t):
304 'output_exec : OUTPUT EXEC CODELIT SEMI'
305 t[0] = GenCode(exec_output = process_output(t[3]))
306
307 # global let blocks 'let {{...}}' (Python code blocks) are executed
308 # directly when seen. Note that these execute in a special variable
309 # context 'exportContext' to prevent the code from polluting this
310 # script's namespace.
311 def p_global_let(t):
312 'global_let : LET CODELIT SEMI'
313 updateExportContext()
314 exportContext["header_output"] = ''
315 exportContext["decoder_output"] = ''
316 exportContext["exec_output"] = ''
317 exportContext["decode_block"] = ''
318 try:
319 exec fixPythonIndentation(t[2]) in exportContext
320 except Exception, exc:
321 error(t.lineno(1),
322 'error: %s in global let block "%s".' % (exc, t[2]))
323 t[0] = GenCode(header_output = exportContext["header_output"],
324 decoder_output = exportContext["decoder_output"],
325 exec_output = exportContext["exec_output"],
326 decode_block = exportContext["decode_block"])
327
328 # Define the mapping from operand type extensions to C++ types and bit
329 # widths (stored in operandTypeMap).
330 def p_def_operand_types(t):
331 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
332 try:
333 userDict = eval('{' + t[3] + '}')
334 except Exception, exc:
335 error(t.lineno(1),
336 'error: %s in def operand_types block "%s".' % (exc, t[3]))
337 buildOperandTypeMap(userDict, t.lineno(1))
338 t[0] = GenCode() # contributes nothing to the output C++ file
339
340 # Define the mapping from operand names to operand classes and other
341 # traits. Stored in operandNameMap.
342 def p_def_operands(t):
343 'def_operands : DEF OPERANDS CODELIT SEMI'
344 if not globals().has_key('operandTypeMap'):
345 error(t.lineno(1),
346 'error: operand types must be defined before operands')
347 try:
348 userDict = eval('{' + t[3] + '}')
349 except Exception, exc:
350 error(t.lineno(1),
351 'error: %s in def operands block "%s".' % (exc, t[3]))
352 buildOperandNameMap(userDict, t.lineno(1))
353 t[0] = GenCode() # contributes nothing to the output C++ file
354
355 # A bitfield definition looks like:
356 # 'def [signed] bitfield <ID> [<first>:<last>]'
357 # This generates a preprocessor macro in the output file.
358 def p_def_bitfield_0(t):
359 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
360 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
361 if (t[2] == 'signed'):
362 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
363 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364 t[0] = GenCode(header_output = hash_define)
365
366 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
367 def p_def_bitfield_1(t):
368 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
369 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
370 if (t[2] == 'signed'):
371 expr = 'sext<%d>(%s)' % (1, expr)
372 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
373 t[0] = GenCode(header_output = hash_define)
374
375 # alternate form for structure member: 'def bitfield <ID> <ID>'
376 def p_def_bitfield_struct(t):
377 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
378 if (t[2] != ''):
379 error(t.lineno(1), 'error: structure bitfields are always unsigned.')
380 expr = 'machInst.%s' % t[5]
381 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
382 t[0] = GenCode(header_output = hash_define)
383
384 def p_id_with_dot_0(t):
385 'id_with_dot : ID'
386 t[0] = t[1]
387
388 def p_id_with_dot_1(t):
389 'id_with_dot : ID DOT id_with_dot'
390 t[0] = t[1] + t[2] + t[3]
391
392 def p_opt_signed_0(t):
393 'opt_signed : SIGNED'
394 t[0] = t[1]
395
396 def p_opt_signed_1(t):
397 'opt_signed : empty'
398 t[0] = ''
399
400 # Global map variable to hold templates
401 templateMap = {}
402
403 def p_def_template(t):
404 'def_template : DEF TEMPLATE ID CODELIT SEMI'
405 templateMap[t[3]] = Template(t[4])
406 t[0] = GenCode()
407
408 # An instruction format definition looks like
409 # "def format <fmt>(<params>) {{...}};"
410 def p_def_format(t):
411 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
412 (id, params, code) = (t[3], t[5], t[7])
413 defFormat(id, params, code, t.lineno(1))
414 t[0] = GenCode()
415
416 # The formal parameter list for an instruction format is a possibly
417 # empty list of comma-separated parameters. Positional (standard,
418 # non-keyword) parameters must come first, followed by keyword
419 # parameters, followed by a '*foo' parameter that gets excess
420 # positional arguments (as in Python). Each of these three parameter
421 # categories is optional.
422 #
423 # Note that we do not support the '**foo' parameter for collecting
424 # otherwise undefined keyword args. Otherwise the parameter list is
425 # (I believe) identical to what is supported in Python.
426 #
427 # The param list generates a tuple, where the first element is a list of
428 # the positional params and the second element is a dict containing the
429 # keyword params.
430 def p_param_list_0(t):
431 'param_list : positional_param_list COMMA nonpositional_param_list'
432 t[0] = t[1] + t[3]
433
434 def p_param_list_1(t):
435 '''param_list : positional_param_list
436 | nonpositional_param_list'''
437 t[0] = t[1]
438
439 def p_positional_param_list_0(t):
440 'positional_param_list : empty'
441 t[0] = []
442
443 def p_positional_param_list_1(t):
444 'positional_param_list : ID'
445 t[0] = [t[1]]
446
447 def p_positional_param_list_2(t):
448 'positional_param_list : positional_param_list COMMA ID'
449 t[0] = t[1] + [t[3]]
450
451 def p_nonpositional_param_list_0(t):
452 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
453 t[0] = t[1] + t[3]
454
455 def p_nonpositional_param_list_1(t):
456 '''nonpositional_param_list : keyword_param_list
457 | excess_args_param'''
458 t[0] = t[1]
459
460 def p_keyword_param_list_0(t):
461 'keyword_param_list : keyword_param'
462 t[0] = [t[1]]
463
464 def p_keyword_param_list_1(t):
465 'keyword_param_list : keyword_param_list COMMA keyword_param'
466 t[0] = t[1] + [t[3]]
467
468 def p_keyword_param(t):
469 'keyword_param : ID EQUALS expr'
470 t[0] = t[1] + ' = ' + t[3].__repr__()
471
472 def p_excess_args_param(t):
473 'excess_args_param : ASTERISK ID'
474 # Just concatenate them: '*ID'. Wrap in list to be consistent
475 # with positional_param_list and keyword_param_list.
476 t[0] = [t[1] + t[2]]
477
478 # End of format definition-related rules.
479 ##############
480
481 #
482 # A decode block looks like:
483 # decode <field1> [, <field2>]* [default <inst>] { ... }
484 #
485 def p_decode_block(t):
486 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
487 default_defaults = defaultStack.pop()
488 codeObj = t[5]
489 # use the "default defaults" only if there was no explicit
490 # default statement in decode_stmt_list
491 if not codeObj.has_decode_default:
492 codeObj += default_defaults
493 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
494 t[0] = codeObj
495
496 # The opt_default statement serves only to push the "default defaults"
497 # onto defaultStack. This value will be used by nested decode blocks,
498 # and used and popped off when the current decode_block is processed
499 # (in p_decode_block() above).
500 def p_opt_default_0(t):
501 'opt_default : empty'
502 # no default specified: reuse the one currently at the top of the stack
503 defaultStack.push(defaultStack.top())
504 # no meaningful value returned
505 t[0] = None
506
507 def p_opt_default_1(t):
508 'opt_default : DEFAULT inst'
509 # push the new default
510 codeObj = t[2]
511 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
512 defaultStack.push(codeObj)
513 # no meaningful value returned
514 t[0] = None
515
516 def p_decode_stmt_list_0(t):
517 'decode_stmt_list : decode_stmt'
518 t[0] = t[1]
519
520 def p_decode_stmt_list_1(t):
521 'decode_stmt_list : decode_stmt decode_stmt_list'
522 if (t[1].has_decode_default and t[2].has_decode_default):
523 error(t.lineno(1), 'Two default cases in decode block')
524 t[0] = t[1] + t[2]
525
526 #
527 # Decode statement rules
528 #
529 # There are four types of statements allowed in a decode block:
530 # 1. Format blocks 'format <foo> { ... }'
531 # 2. Nested decode blocks
532 # 3. Instruction definitions.
533 # 4. C preprocessor directives.
534
535
536 # Preprocessor directives found in a decode statement list are passed
537 # through to the output, replicated to all of the output code
538 # streams. This works well for ifdefs, so we can ifdef out both the
539 # declarations and the decode cases generated by an instruction
540 # definition. Handling them as part of the grammar makes it easy to
541 # keep them in the right place with respect to the code generated by
542 # the other statements.
543 def p_decode_stmt_cpp(t):
544 'decode_stmt : CPPDIRECTIVE'
545 t[0] = GenCode(t[1], t[1], t[1], t[1])
546
547 # A format block 'format <foo> { ... }' sets the default instruction
548 # format used to handle instruction definitions inside the block.
549 # This format can be overridden by using an explicit format on the
550 # instruction definition or with a nested format block.
551 def p_decode_stmt_format(t):
552 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
553 # The format will be pushed on the stack when 'push_format_id' is
554 # processed (see below). Once the parser has recognized the full
555 # production (though the right brace), we're done with the format,
556 # so now we can pop it.
557 formatStack.pop()
558 t[0] = t[4]
559
560 # This rule exists so we can set the current format (& push the stack)
561 # when we recognize the format name part of the format block.
562 def p_push_format_id(t):
563 'push_format_id : ID'
564 try:
565 formatStack.push(formatMap[t[1]])
566 t[0] = ('', '// format %s' % t[1])
567 except KeyError:
568 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
569
570 # Nested decode block: if the value of the current field matches the
571 # specified constant, do a nested decode on some other field.
572 def p_decode_stmt_decode(t):
573 'decode_stmt : case_label COLON decode_block'
574 label = t[1]
575 codeObj = t[3]
576 # just wrap the decoding code from the block as a case in the
577 # outer switch statement.
578 codeObj.wrap_decode_block('\n%s:\n' % label)
579 codeObj.has_decode_default = (label == 'default')
580 t[0] = codeObj
581
582 # Instruction definition (finally!).
583 def p_decode_stmt_inst(t):
584 'decode_stmt : case_label COLON inst SEMI'
585 label = t[1]
586 codeObj = t[3]
587 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
588 codeObj.has_decode_default = (label == 'default')
589 t[0] = codeObj
590
591 # The case label is either a list of one or more constants or 'default'
592 def p_case_label_0(t):
593 'case_label : intlit_list'
594 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
595
596 def p_case_label_1(t):
597 'case_label : DEFAULT'
598 t[0] = 'default'
599
600 #
601 # The constant list for a decode case label must be non-empty, but may have
602 # one or more comma-separated integer literals in it.
603 #
604 def p_intlit_list_0(t):
605 'intlit_list : INTLIT'
606 t[0] = [t[1]]
607
608 def p_intlit_list_1(t):
609 'intlit_list : intlit_list COMMA INTLIT'
610 t[0] = t[1]
611 t[0].append(t[3])
612
613 # Define an instruction using the current instruction format (specified
614 # by an enclosing format block).
615 # "<mnemonic>(<args>)"
616 def p_inst_0(t):
617 'inst : ID LPAREN arg_list RPAREN'
618 # Pass the ID and arg list to the current format class to deal with.
619 currentFormat = formatStack.top()
620 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
621 args = ','.join(map(str, t[3]))
622 args = re.sub('(?m)^', '//', args)
623 args = re.sub('^//', '', args)
624 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
625 codeObj.prepend_all(comment)
626 t[0] = codeObj
627
628 # Define an instruction using an explicitly specified format:
629 # "<fmt>::<mnemonic>(<args>)"
630 def p_inst_1(t):
631 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
632 try:
633 format = formatMap[t[1]]
634 except KeyError:
635 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
636 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
637 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
638 codeObj.prepend_all(comment)
639 t[0] = codeObj
640
641 # The arg list generates a tuple, where the first element is a list of
642 # the positional args and the second element is a dict containing the
643 # keyword args.
644 def p_arg_list_0(t):
645 'arg_list : positional_arg_list COMMA keyword_arg_list'
646 t[0] = ( t[1], t[3] )
647
648 def p_arg_list_1(t):
649 'arg_list : positional_arg_list'
650 t[0] = ( t[1], {} )
651
652 def p_arg_list_2(t):
653 'arg_list : keyword_arg_list'
654 t[0] = ( [], t[1] )
655
656 def p_positional_arg_list_0(t):
657 'positional_arg_list : empty'
658 t[0] = []
659
660 def p_positional_arg_list_1(t):
661 'positional_arg_list : expr'
662 t[0] = [t[1]]
663
664 def p_positional_arg_list_2(t):
665 'positional_arg_list : positional_arg_list COMMA expr'
666 t[0] = t[1] + [t[3]]
667
668 def p_keyword_arg_list_0(t):
669 'keyword_arg_list : keyword_arg'
670 t[0] = t[1]
671
672 def p_keyword_arg_list_1(t):
673 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
674 t[0] = t[1]
675 t[0].update(t[3])
676
677 def p_keyword_arg(t):
678 'keyword_arg : ID EQUALS expr'
679 t[0] = { t[1] : t[3] }
680
681 #
682 # Basic expressions. These constitute the argument values of
683 # "function calls" (i.e. instruction definitions in the decode block)
684 # and default values for formal parameters of format functions.
685 #
686 # Right now, these are either strings, integers, or (recursively)
687 # lists of exprs (using Python square-bracket list syntax). Note that
688 # bare identifiers are trated as string constants here (since there
689 # isn't really a variable namespace to refer to).
690 #
691 def p_expr_0(t):
692 '''expr : ID
693 | INTLIT
694 | STRLIT
695 | CODELIT'''
696 t[0] = t[1]
697
698 def p_expr_1(t):
699 '''expr : LBRACKET list_expr RBRACKET'''
700 t[0] = t[2]
701
702 def p_list_expr_0(t):
703 'list_expr : expr'
704 t[0] = [t[1]]
705
706 def p_list_expr_1(t):
707 'list_expr : list_expr COMMA expr'
708 t[0] = t[1] + [t[3]]
709
710 def p_list_expr_2(t):
711 'list_expr : empty'
712 t[0] = []
713
714 #
715 # Empty production... use in other rules for readability.
716 #
717 def p_empty(t):
718 'empty :'
719 pass
720
721 # Parse error handler. Note that the argument here is the offending
722 # *token*, not a grammar symbol (hence the need to use t.value)
723 def p_error(t):
724 if t:
725 error(t.lineno, "syntax error at '%s'" % t.value)
726 else:
727 error(0, "unknown syntax error", True)
728
729 # END OF GRAMMAR RULES
730 #
731 # Now build the parser.
732 yacc.yacc()
733
734
735 #####################################################################
736 #
737 # Support Classes
738 #
739 #####################################################################
740
741 # Expand template with CPU-specific references into a dictionary with
742 # an entry for each CPU model name. The entry key is the model name
743 # and the corresponding value is the template with the CPU-specific
744 # refs substituted for that model.
745 def expand_cpu_symbols_to_dict(template):
746 # Protect '%'s that don't go with CPU-specific terms
747 t = re.sub(r'%(?!\(CPU_)', '%%', template)
748 result = {}
749 for cpu in cpu_models:
750 result[cpu.name] = t % cpu.strings
751 return result
752
753 # *If* the template has CPU-specific references, return a single
754 # string containing a copy of the template for each CPU model with the
755 # corresponding values substituted in. If the template has no
756 # CPU-specific references, it is returned unmodified.
757 def expand_cpu_symbols_to_string(template):
758 if template.find('%(CPU_') != -1:
759 return reduce(lambda x,y: x+y,
760 expand_cpu_symbols_to_dict(template).values())
761 else:
762 return template
763
764 # Protect CPU-specific references by doubling the corresponding '%'s
765 # (in preparation for substituting a different set of references into
766 # the template).
767 def protect_cpu_symbols(template):
768 return re.sub(r'%(?=\(CPU_)', '%%', template)
769
770 ###############
771 # GenCode class
772 #
773 # The GenCode class encapsulates generated code destined for various
774 # output files. The header_output and decoder_output attributes are
775 # strings containing code destined for decoder.hh and decoder.cc
776 # respectively. The decode_block attribute contains code to be
777 # incorporated in the decode function itself (that will also end up in
778 # decoder.cc). The exec_output attribute is a dictionary with a key
779 # for each CPU model name; the value associated with a particular key
780 # is the string of code for that CPU model's exec.cc file. The
781 # has_decode_default attribute is used in the decode block to allow
782 # explicit default clauses to override default default clauses.
783
784 class GenCode:
785 # Constructor. At this point we substitute out all CPU-specific
786 # symbols. For the exec output, these go into the per-model
787 # dictionary. For all other output types they get collapsed into
788 # a single string.
789 def __init__(self,
790 header_output = '', decoder_output = '', exec_output = '',
791 decode_block = '', has_decode_default = False):
792 self.header_output = expand_cpu_symbols_to_string(header_output)
793 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
794 if isinstance(exec_output, dict):
795 self.exec_output = exec_output
796 elif isinstance(exec_output, str):
797 # If the exec_output arg is a single string, we replicate
798 # it for each of the CPU models, substituting and
799 # %(CPU_foo)s params appropriately.
800 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
801 self.decode_block = expand_cpu_symbols_to_string(decode_block)
802 self.has_decode_default = has_decode_default
803
804 # Override '+' operator: generate a new GenCode object that
805 # concatenates all the individual strings in the operands.
806 def __add__(self, other):
807 exec_output = {}
808 for cpu in cpu_models:
809 n = cpu.name
810 exec_output[n] = self.exec_output[n] + other.exec_output[n]
811 return GenCode(self.header_output + other.header_output,
812 self.decoder_output + other.decoder_output,
813 exec_output,
814 self.decode_block + other.decode_block,
815 self.has_decode_default or other.has_decode_default)
816
817 # Prepend a string (typically a comment) to all the strings.
818 def prepend_all(self, pre):
819 self.header_output = pre + self.header_output
820 self.decoder_output = pre + self.decoder_output
821 self.decode_block = pre + self.decode_block
822 for cpu in cpu_models:
823 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
824
825 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
826 # and 'break;'). Used to build the big nested switch statement.
827 def wrap_decode_block(self, pre, post = ''):
828 self.decode_block = pre + indent(self.decode_block) + post
829
830 ################
831 # Format object.
832 #
833 # A format object encapsulates an instruction format. It must provide
834 # a defineInst() method that generates the code for an instruction
835 # definition.
836
837 exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
838
839 exportContext = {}
840
841 def updateExportContext():
842 exportContext.update(exportDict(*exportContextSymbols))
843 exportContext.update(templateMap)
844
845 def exportDict(*symNames):
846 return dict([(s, eval(s)) for s in symNames])
847
848
849 class Format:
850 def __init__(self, id, params, code):
851 # constructor: just save away arguments
852 self.id = id
853 self.params = params
854 label = 'def format ' + id
855 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
856 param_list = string.join(params, ", ")
857 f = '''def defInst(_code, _context, %s):
858 my_locals = vars().copy()
859 exec _code in _context, my_locals
860 return my_locals\n''' % param_list
861 c = compile(f, label + ' wrapper', 'exec')
862 exec c
863 self.func = defInst
864
865 def defineInst(self, name, args, lineno):
866 context = {}
867 updateExportContext()
868 context.update(exportContext)
869 if len(name):
870 Name = name[0].upper()
871 if len(name) > 1:
872 Name += name[1:]
873 context.update({ 'name': name, 'Name': Name })
874 try:
875 vars = self.func(self.user_code, context, *args[0], **args[1])
876 except Exception, exc:
877 error(lineno, 'error defining "%s": %s.' % (name, exc))
878 for k in vars.keys():
879 if k not in ('header_output', 'decoder_output',
880 'exec_output', 'decode_block'):
881 del vars[k]
882 return GenCode(**vars)
883
884 # Special null format to catch an implicit-format instruction
885 # definition outside of any format block.
886 class NoFormat:
887 def __init__(self):
888 self.defaultInst = ''
889
890 def defineInst(self, name, args, lineno):
891 error(lineno,
892 'instruction definition "%s" with no active format!' % name)
893
894 # This dictionary maps format name strings to Format objects.
895 formatMap = {}
896
897 # Define a new format
898 def defFormat(id, params, code, lineno):
899 # make sure we haven't already defined this one
900 if formatMap.get(id, None) != None:
901 error(lineno, 'format %s redefined.' % id)
902 # create new object and store in global map
903 formatMap[id] = Format(id, params, code)
904
905
906 ##############
907 # Stack: a simple stack object. Used for both formats (formatStack)
908 # and default cases (defaultStack). Simply wraps a list to give more
909 # stack-like syntax and enable initialization with an argument list
910 # (as opposed to an argument that's a list).
911
912 class Stack(list):
913 def __init__(self, *items):
914 list.__init__(self, items)
915
916 def push(self, item):
917 self.append(item);
918
919 def top(self):
920 return self[-1]
921
922 # The global format stack.
923 formatStack = Stack(NoFormat())
924
925 # The global default case stack.
926 defaultStack = Stack( None )
927
928 # Global stack that tracks current file and line number.
929 # Each element is a tuple (filename, lineno) that records the
930 # *current* filename and the line number in the *previous* file where
931 # it was included.
932 fileNameStack = Stack()
933
934 ###################
935 # Utility functions
936
937 #
938 # Indent every line in string 's' by two spaces
939 # (except preprocessor directives).
940 # Used to make nested code blocks look pretty.
941 #
942 def indent(s):
943 return re.sub(r'(?m)^(?!#)', ' ', s)
944
945 #
946 # Munge a somewhat arbitrarily formatted piece of Python code
947 # (e.g. from a format 'let' block) into something whose indentation
948 # will get by the Python parser.
949 #
950 # The two keys here are that Python will give a syntax error if
951 # there's any whitespace at the beginning of the first line, and that
952 # all lines at the same lexical nesting level must have identical
953 # indentation. Unfortunately the way code literals work, an entire
954 # let block tends to have some initial indentation. Rather than
955 # trying to figure out what that is and strip it off, we prepend 'if
956 # 1:' to make the let code the nested block inside the if (and have
957 # the parser automatically deal with the indentation for us).
958 #
959 # We don't want to do this if (1) the code block is empty or (2) the
960 # first line of the block doesn't have any whitespace at the front.
961
962 def fixPythonIndentation(s):
963 # get rid of blank lines first
964 s = re.sub(r'(?m)^\s*\n', '', s);
965 if (s != '' and re.match(r'[ \t]', s[0])):
966 s = 'if 1:\n' + s
967 return s
968
969 # Error handler. Just call exit. Output formatted to work under
970 # Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
971 # prints a Python stack backtrace too (can be handy when trying to
972 # debug the parser itself).
973 def error(lineno, string, print_traceback = False):
974 spaces = ""
975 for (filename, line) in fileNameStack[0:-1]:
976 print spaces + "In file included from " + filename + ":"
977 spaces += " "
978 # Print a Python stack backtrace if requested.
979 if (print_traceback):
980 traceback.print_exc()
981 if lineno != 0:
982 line_str = "%d:" % lineno
983 else:
984 line_str = ""
985 sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
986
987
988 #####################################################################
989 #
990 # Bitfield Operator Support
991 #
992 #####################################################################
993
994 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
995
996 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
997 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
998
999 def substBitOps(code):
1000 # first convert single-bit selectors to two-index form
1001 # i.e., <n> --> <n:n>
1002 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
1003 # simple case: selector applied to ID (name)
1004 # i.e., foo<a:b> --> bits(foo, a, b)
1005 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
1006 # if selector is applied to expression (ending in ')'),
1007 # we need to search backward for matching '('
1008 match = bitOpExprRE.search(code)
1009 while match:
1010 exprEnd = match.start()
1011 here = exprEnd - 1
1012 nestLevel = 1
1013 while nestLevel > 0:
1014 if code[here] == '(':
1015 nestLevel -= 1
1016 elif code[here] == ')':
1017 nestLevel += 1
1018 here -= 1
1019 if here < 0:
1020 sys.exit("Didn't find '('!")
1021 exprStart = here+1
1022 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
1023 match.group(1), match.group(2))
1024 code = code[:exprStart] + newExpr + code[match.end():]
1025 match = bitOpExprRE.search(code)
1026 return code
1027
1028
1029 ####################
1030 # Template objects.
1031 #
1032 # Template objects are format strings that allow substitution from
1033 # the attribute spaces of other objects (e.g. InstObjParams instances).
1034
1035 labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
1036
1037 class Template:
1038 def __init__(self, t):
1039 self.template = t
1040
1041 def subst(self, d):
1042 myDict = None
1043
1044 # Protect non-Python-dict substitutions (e.g. if there's a printf
1045 # in the templated C++ code)
1046 template = protect_non_subst_percents(self.template)
1047 # CPU-model-specific substitutions are handled later (in GenCode).
1048 template = protect_cpu_symbols(template)
1049
1050 # Build a dict ('myDict') to use for the template substitution.
1051 # Start with the template namespace. Make a copy since we're
1052 # going to modify it.
1053 myDict = templateMap.copy()
1054
1055 if isinstance(d, InstObjParams):
1056 # If we're dealing with an InstObjParams object, we need
1057 # to be a little more sophisticated. The instruction-wide
1058 # parameters are already formed, but the parameters which
1059 # are only function wide still need to be generated.
1060 compositeCode = ''
1061
1062 myDict.update(d.__dict__)
1063 # The "operands" and "snippets" attributes of the InstObjParams
1064 # objects are for internal use and not substitution.
1065 del myDict['operands']
1066 del myDict['snippets']
1067
1068 snippetLabels = [l for l in labelRE.findall(template)
1069 if d.snippets.has_key(l)]
1070
1071 snippets = dict([(s, mungeSnippet(d.snippets[s]))
1072 for s in snippetLabels])
1073
1074 myDict.update(snippets)
1075
1076 compositeCode = ' '.join(map(str, snippets.values()))
1077
1078 # Add in template itself in case it references any
1079 # operands explicitly (like Mem)
1080 compositeCode += ' ' + template
1081
1082 operands = SubOperandList(compositeCode, d.operands)
1083
1084 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
1085
1086 is_src = lambda op: op.is_src
1087 is_dest = lambda op: op.is_dest
1088
1089 myDict['op_src_decl'] = \
1090 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1091 myDict['op_dest_decl'] = \
1092 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1093
1094 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
1095 myDict['op_wb'] = operands.concatAttrStrings('op_wb')
1096
1097 if d.operands.memOperand:
1098 myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
1099 myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
1100
1101 elif isinstance(d, dict):
1102 # if the argument is a dictionary, we just use it.
1103 myDict.update(d)
1104 elif hasattr(d, '__dict__'):
1105 # if the argument is an object, we use its attribute map.
1106 myDict.update(d.__dict__)
1107 else:
1108 raise TypeError, "Template.subst() arg must be or have dictionary"
1109 return template % myDict
1110
1111 # Convert to string. This handles the case when a template with a
1112 # CPU-specific term gets interpolated into another template or into
1113 # an output block.
1114 def __str__(self):
1115 return expand_cpu_symbols_to_string(self.template)
1116
1117 #####################################################################
1118 #
1119 # Code Parser
1120 #
1121 # The remaining code is the support for automatically extracting
1122 # instruction characteristics from pseudocode.
1123 #
1124 #####################################################################
1125
1126 # Force the argument to be a list. Useful for flags, where a caller
1127 # can specify a singleton flag or a list of flags. Also usful for
1128 # converting tuples to lists so they can be modified.
1129 def makeList(arg):
1130 if isinstance(arg, list):
1131 return arg
1132 elif isinstance(arg, tuple):
1133 return list(arg)
1134 elif not arg:
1135 return []
1136 else:
1137 return [ arg ]
1138
1139 # Generate operandTypeMap from the user's 'def operand_types'
1140 # statement.
1141 def buildOperandTypeMap(userDict, lineno):
1142 global operandTypeMap
1143 operandTypeMap = {}
1144 for (ext, (desc, size)) in userDict.iteritems():
1145 if desc == 'signed int':
1146 ctype = 'int%d_t' % size
1147 is_signed = 1
1148 elif desc == 'unsigned int':
1149 ctype = 'uint%d_t' % size
1150 is_signed = 0
1151 elif desc == 'float':
1152 is_signed = 1 # shouldn't really matter
1153 if size == 32:
1154 ctype = 'float'
1155 elif size == 64:
1156 ctype = 'double'
1157 elif desc == 'twin64 int':
1158 is_signed = 0
1159 ctype = 'Twin64_t'
1160 elif desc == 'twin32 int':
1161 is_signed = 0
1162 ctype = 'Twin32_t'
1163 if ctype == '':
1164 error(lineno, 'Unrecognized type description "%s" in userDict')
1165 operandTypeMap[ext] = (size, ctype, is_signed)
1166
1167 #
1168 #
1169 #
1170 # Base class for operand descriptors. An instance of this class (or
1171 # actually a class derived from this one) represents a specific
1172 # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1173 # derived classes encapsulates the traits of a particular operand type
1174 # (e.g., "32-bit integer register").
1175 #
1176 class Operand(object):
1177 def __init__(self, full_name, ext, is_src, is_dest):
1178 self.full_name = full_name
1179 self.ext = ext
1180 self.is_src = is_src
1181 self.is_dest = is_dest
1182 # The 'effective extension' (eff_ext) is either the actual
1183 # extension, if one was explicitly provided, or the default.
1184 if ext:
1185 self.eff_ext = ext
1186 else:
1187 self.eff_ext = self.dflt_ext
1188
1189 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1190
1191 # note that mem_acc_size is undefined for non-mem operands...
1192 # template must be careful not to use it if it doesn't apply.
1193 if self.isMem():
1194 self.mem_acc_size = self.makeAccSize()
1195 if self.ctype in ['Twin32_t', 'Twin64_t']:
1196 self.mem_acc_type = 'Twin'
1197 else:
1198 self.mem_acc_type = 'uint'
1199
1200 # Finalize additional fields (primarily code fields). This step
1201 # is done separately since some of these fields may depend on the
1202 # register index enumeration that hasn't been performed yet at the
1203 # time of __init__().
1204 def finalize(self):
1205 self.flags = self.getFlags()
1206 self.constructor = self.makeConstructor()
1207 self.op_decl = self.makeDecl()
1208
1209 if self.is_src:
1210 self.op_rd = self.makeRead()
1211 self.op_src_decl = self.makeDecl()
1212 else:
1213 self.op_rd = ''
1214 self.op_src_decl = ''
1215
1216 if self.is_dest:
1217 self.op_wb = self.makeWrite()
1218 self.op_dest_decl = self.makeDecl()
1219 else:
1220 self.op_wb = ''
1221 self.op_dest_decl = ''
1222
1223 def isMem(self):
1224 return 0
1225
1226 def isReg(self):
1227 return 0
1228
1229 def isFloatReg(self):
1230 return 0
1231
1232 def isIntReg(self):
1233 return 0
1234
1235 def isControlReg(self):
1236 return 0
1237
1238 def getFlags(self):
1239 # note the empty slice '[:]' gives us a copy of self.flags[0]
1240 # instead of a reference to it
1241 my_flags = self.flags[0][:]
1242 if self.is_src:
1243 my_flags += self.flags[1]
1244 if self.is_dest:
1245 my_flags += self.flags[2]
1246 return my_flags
1247
1248 def makeDecl(self):
1249 # Note that initializations in the declarations are solely
1250 # to avoid 'uninitialized variable' errors from the compiler.
1251 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1252
1253 class IntRegOperand(Operand):
1254 def isReg(self):
1255 return 1
1256
1257 def isIntReg(self):
1258 return 1
1259
1260 def makeConstructor(self):
1261 c = ''
1262 if self.is_src:
1263 c += '\n\t_srcRegIdx[%d] = %s;' % \
1264 (self.src_reg_idx, self.reg_spec)
1265 if self.is_dest:
1266 c += '\n\t_destRegIdx[%d] = %s;' % \
1267 (self.dest_reg_idx, self.reg_spec)
1268 return c
1269
1270 def makeRead(self):
1271 if (self.ctype == 'float' or self.ctype == 'double'):
1272 error(0, 'Attempt to read integer register as FP')
1273 if (self.size == self.dflt_size):
1274 return '%s = xc->readIntRegOperand(this, %d);\n' % \
1275 (self.base_name, self.src_reg_idx)
1276 elif (self.size > self.dflt_size):
1277 int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
1278 (self.src_reg_idx)
1279 if (self.is_signed):
1280 int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1281 return '%s = %s;\n' % (self.base_name, int_reg_val)
1282 else:
1283 return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
1284 (self.base_name, self.src_reg_idx, self.size-1)
1285
1286 def makeWrite(self):
1287 if (self.ctype == 'float' or self.ctype == 'double'):
1288 error(0, 'Attempt to write integer register as FP')
1289 if (self.size != self.dflt_size and self.is_signed):
1290 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1291 else:
1292 final_val = self.base_name
1293 wb = '''
1294 {
1295 %s final_val = %s;
1296 xc->setIntRegOperand(this, %d, final_val);\n
1297 if (traceData) { traceData->setData(final_val); }
1298 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1299 return wb
1300
1301 class FloatRegOperand(Operand):
1302 def isReg(self):
1303 return 1
1304
1305 def isFloatReg(self):
1306 return 1
1307
1308 def makeConstructor(self):
1309 c = ''
1310 if self.is_src:
1311 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1312 (self.src_reg_idx, self.reg_spec)
1313 if self.is_dest:
1314 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1315 (self.dest_reg_idx, self.reg_spec)
1316 return c
1317
1318 def makeRead(self):
1319 bit_select = 0
1320 width = 0;
1321 if (self.ctype == 'float'):
1322 func = 'readFloatRegOperand'
1323 width = 32;
1324 elif (self.ctype == 'double'):
1325 func = 'readFloatRegOperand'
1326 width = 64;
1327 else:
1328 func = 'readFloatRegOperandBits'
1329 if (self.ctype == 'uint32_t'):
1330 width = 32;
1331 elif (self.ctype == 'uint64_t'):
1332 width = 64;
1333 if (self.size != self.dflt_size):
1334 bit_select = 1
1335 if width:
1336 base = 'xc->%s(this, %d, %d)' % \
1337 (func, self.src_reg_idx, width)
1338 else:
1339 base = 'xc->%s(this, %d)' % \
1340 (func, self.src_reg_idx)
1341 if bit_select:
1342 return '%s = bits(%s, %d, 0);\n' % \
1343 (self.base_name, base, self.size-1)
1344 else:
1345 return '%s = %s;\n' % (self.base_name, base)
1346
1347 def makeWrite(self):
1348 final_val = self.base_name
1349 final_ctype = self.ctype
1350 widthSpecifier = ''
1351 width = 0
1352 if (self.ctype == 'float'):
1353 width = 32
1354 func = 'setFloatRegOperand'
1355 elif (self.ctype == 'double'):
1356 width = 64
1357 func = 'setFloatRegOperand'
1358 elif (self.ctype == 'uint32_t'):
1359 func = 'setFloatRegOperandBits'
1360 width = 32
1361 elif (self.ctype == 'uint64_t'):
1362 func = 'setFloatRegOperandBits'
1363 width = 64
1364 else:
1365 func = 'setFloatRegOperandBits'
1366 final_ctype = 'uint%d_t' % self.dflt_size
1367 if (self.size != self.dflt_size and self.is_signed):
1368 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1369 if width:
1370 widthSpecifier = ', %d' % width
1371 wb = '''
1372 {
1373 %s final_val = %s;
1374 xc->%s(this, %d, final_val%s);\n
1375 if (traceData) { traceData->setData(final_val); }
1376 }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1377 widthSpecifier)
1378 return wb
1379
1380 class ControlRegOperand(Operand):
1381 def isReg(self):
1382 return 1
1383
1384 def isControlReg(self):
1385 return 1
1386
1387 def makeConstructor(self):
1388 c = ''
1389 if self.is_src:
1390 c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1391 (self.src_reg_idx, self.reg_spec)
1392 if self.is_dest:
1393 c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1394 (self.dest_reg_idx, self.reg_spec)
1395 return c
1396
1397 def makeRead(self):
1398 bit_select = 0
1399 if (self.ctype == 'float' or self.ctype == 'double'):
1400 error(0, 'Attempt to read control register as FP')
1401 base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
1402 if self.size == self.dflt_size:
1403 return '%s = %s;\n' % (self.base_name, base)
1404 else:
1405 return '%s = bits(%s, %d, 0);\n' % \
1406 (self.base_name, base, self.size-1)
1407
1408 def makeWrite(self):
1409 if (self.ctype == 'float' or self.ctype == 'double'):
1410 error(0, 'Attempt to write control register as FP')
1411 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
1412 (self.dest_reg_idx, self.base_name)
1413 wb += 'if (traceData) { traceData->setData(%s); }' % \
1414 self.base_name
1415 return wb
1416
1417 class MemOperand(Operand):
1418 def isMem(self):
1419 return 1
1420
1421 def makeConstructor(self):
1422 return ''
1423
1424 def makeDecl(self):
1425 # Note that initializations in the declarations are solely
1426 # to avoid 'uninitialized variable' errors from the compiler.
1427 # Declare memory data variable.
1428 if self.ctype in ['Twin32_t','Twin64_t']:
1429 return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
1430 self.base_name, self.base_name)
1431 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1432 return c
1433
1434 def makeRead(self):
1435 return ''
1436
1437 def makeWrite(self):
1438 return ''
1439
1440 # Return the memory access size *in bits*, suitable for
1441 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1442 def makeAccSize(self):
1443 return self.size
1444
1445
1446 class NPCOperand(Operand):
1447 def makeConstructor(self):
1448 return ''
1449
1450 def makeRead(self):
1451 return '%s = xc->readNextPC();\n' % self.base_name
1452
1453 def makeWrite(self):
1454 return 'xc->setNextPC(%s);\n' % self.base_name
1455
1456 class NNPCOperand(Operand):
1457 def makeConstructor(self):
1458 return ''
1459
1460 def makeRead(self):
1461 return '%s = xc->readNextNPC();\n' % self.base_name
1462
1463 def makeWrite(self):
1464 return 'xc->setNextNPC(%s);\n' % self.base_name
1465
1466 def buildOperandNameMap(userDict, lineno):
1467 global operandNameMap
1468 operandNameMap = {}
1469 for (op_name, val) in userDict.iteritems():
1470 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1471 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1472 # Canonical flag structure is a triple of lists, where each list
1473 # indicates the set of flags implied by this operand always, when
1474 # used as a source, and when used as a dest, respectively.
1475 # For simplicity this can be initialized using a variety of fairly
1476 # obvious shortcuts; we convert these to canonical form here.
1477 if not flags:
1478 # no flags specified (e.g., 'None')
1479 flags = ( [], [], [] )
1480 elif isinstance(flags, str):
1481 # a single flag: assumed to be unconditional
1482 flags = ( [ flags ], [], [] )
1483 elif isinstance(flags, list):
1484 # a list of flags: also assumed to be unconditional
1485 flags = ( flags, [], [] )
1486 elif isinstance(flags, tuple):
1487 # it's a tuple: it should be a triple,
1488 # but each item could be a single string or a list
1489 (uncond_flags, src_flags, dest_flags) = flags
1490 flags = (makeList(uncond_flags),
1491 makeList(src_flags), makeList(dest_flags))
1492 # Accumulate attributes of new operand class in tmp_dict
1493 tmp_dict = {}
1494 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1495 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1496 tmp_dict[attr] = eval(attr)
1497 tmp_dict['base_name'] = op_name
1498 # New class name will be e.g. "IntReg_Ra"
1499 cls_name = base_cls_name + '_' + op_name
1500 # Evaluate string arg to get class object. Note that the
1501 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1502 # have to append "Operand".
1503 try:
1504 base_cls = eval(base_cls_name + 'Operand')
1505 except NameError:
1506 error(lineno,
1507 'error: unknown operand base class "%s"' % base_cls_name)
1508 # The following statement creates a new class called
1509 # <cls_name> as a subclass of <base_cls> with the attributes
1510 # in tmp_dict, just as if we evaluated a class declaration.
1511 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1512
1513 # Define operand variables.
1514 operands = userDict.keys()
1515
1516 operandsREString = (r'''
1517 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1518 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1519 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1520 '''
1521 % string.join(operands, '|'))
1522
1523 global operandsRE
1524 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1525
1526 # Same as operandsREString, but extension is mandatory, and only two
1527 # groups are returned (base and ext, not full name as above).
1528 # Used for subtituting '_' for '.' to make C++ identifiers.
1529 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1530 % string.join(operands, '|'))
1531
1532 global operandsWithExtRE
1533 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1534
1535
1536 class OperandList:
1537
1538 # Find all the operands in the given code block. Returns an operand
1539 # descriptor list (instance of class OperandList).
1540 def __init__(self, code):
1541 self.items = []
1542 self.bases = {}
1543 # delete comments so we don't match on reg specifiers inside
1544 code = commentRE.sub('', code)
1545 # search for operands
1546 next_pos = 0
1547 while 1:
1548 match = operandsRE.search(code, next_pos)
1549 if not match:
1550 # no more matches: we're done
1551 break
1552 op = match.groups()
1553 # regexp groups are operand full name, base, and extension
1554 (op_full, op_base, op_ext) = op
1555 # if the token following the operand is an assignment, this is
1556 # a destination (LHS), else it's a source (RHS)
1557 is_dest = (assignRE.match(code, match.end()) != None)
1558 is_src = not is_dest
1559 # see if we've already seen this one
1560 op_desc = self.find_base(op_base)
1561 if op_desc:
1562 if op_desc.ext != op_ext:
1563 error(0, 'Inconsistent extensions for operand %s' % \
1564 op_base)
1565 op_desc.is_src = op_desc.is_src or is_src
1566 op_desc.is_dest = op_desc.is_dest or is_dest
1567 else:
1568 # new operand: create new descriptor
1569 op_desc = operandNameMap[op_base](op_full, op_ext,
1570 is_src, is_dest)
1571 self.append(op_desc)
1572 # start next search after end of current match
1573 next_pos = match.end()
1574 self.sort()
1575 # enumerate source & dest register operands... used in building
1576 # constructor later
1577 self.numSrcRegs = 0
1578 self.numDestRegs = 0
1579 self.numFPDestRegs = 0
1580 self.numIntDestRegs = 0
1581 self.memOperand = None
1582 for op_desc in self.items:
1583 if op_desc.isReg():
1584 if op_desc.is_src:
1585 op_desc.src_reg_idx = self.numSrcRegs
1586 self.numSrcRegs += 1
1587 if op_desc.is_dest:
1588 op_desc.dest_reg_idx = self.numDestRegs
1589 self.numDestRegs += 1
1590 if op_desc.isFloatReg():
1591 self.numFPDestRegs += 1
1592 elif op_desc.isIntReg():
1593 self.numIntDestRegs += 1
1594 elif op_desc.isMem():
1595 if self.memOperand:
1596 error(0, "Code block has more than one memory operand.")
1597 self.memOperand = op_desc
1598 # now make a final pass to finalize op_desc fields that may depend
1599 # on the register enumeration
1600 for op_desc in self.items:
1601 op_desc.finalize()
1602
1603 def __len__(self):
1604 return len(self.items)
1605
1606 def __getitem__(self, index):
1607 return self.items[index]
1608
1609 def append(self, op_desc):
1610 self.items.append(op_desc)
1611 self.bases[op_desc.base_name] = op_desc
1612
1613 def find_base(self, base_name):
1614 # like self.bases[base_name], but returns None if not found
1615 # (rather than raising exception)
1616 return self.bases.get(base_name)
1617
1618 # internal helper function for concat[Some]Attr{Strings|Lists}
1619 def __internalConcatAttrs(self, attr_name, filter, result):
1620 for op_desc in self.items:
1621 if filter(op_desc):
1622 result += getattr(op_desc, attr_name)
1623 return result
1624
1625 # return a single string that is the concatenation of the (string)
1626 # values of the specified attribute for all operands
1627 def concatAttrStrings(self, attr_name):
1628 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1629
1630 # like concatAttrStrings, but only include the values for the operands
1631 # for which the provided filter function returns true
1632 def concatSomeAttrStrings(self, filter, attr_name):
1633 return self.__internalConcatAttrs(attr_name, filter, '')
1634
1635 # return a single list that is the concatenation of the (list)
1636 # values of the specified attribute for all operands
1637 def concatAttrLists(self, attr_name):
1638 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1639
1640 # like concatAttrLists, but only include the values for the operands
1641 # for which the provided filter function returns true
1642 def concatSomeAttrLists(self, filter, attr_name):
1643 return self.__internalConcatAttrs(attr_name, filter, [])
1644
1645 def sort(self):
1646 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1647
1648 class SubOperandList(OperandList):
1649
1650 # Find all the operands in the given code block. Returns an operand
1651 # descriptor list (instance of class OperandList).
1652 def __init__(self, code, master_list):
1653 self.items = []
1654 self.bases = {}
1655 # delete comments so we don't match on reg specifiers inside
1656 code = commentRE.sub('', code)
1657 # search for operands
1658 next_pos = 0
1659 while 1:
1660 match = operandsRE.search(code, next_pos)
1661 if not match:
1662 # no more matches: we're done
1663 break
1664 op = match.groups()
1665 # regexp groups are operand full name, base, and extension
1666 (op_full, op_base, op_ext) = op
1667 # find this op in the master list
1668 op_desc = master_list.find_base(op_base)
1669 if not op_desc:
1670 error(0, 'Found operand %s which is not in the master list!' \
1671 ' This is an internal error' % \
1672 op_base)
1673 else:
1674 # See if we've already found this operand
1675 op_desc = self.find_base(op_base)
1676 if not op_desc:
1677 # if not, add a reference to it to this sub list
1678 self.append(master_list.bases[op_base])
1679
1680 # start next search after end of current match
1681 next_pos = match.end()
1682 self.sort()
1683 self.memOperand = None
1684 for op_desc in self.items:
1685 if op_desc.isMem():
1686 if self.memOperand:
1687 error(0, "Code block has more than one memory operand.")
1688 self.memOperand = op_desc
1689
1690 # Regular expression object to match C++ comments
1691 # (used in findOperands())
1692 commentRE = re.compile(r'//.*\n')
1693
1694 # Regular expression object to match assignment statements
1695 # (used in findOperands())
1696 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1697
1698 # Munge operand names in code string to make legal C++ variable names.
1699 # This means getting rid of the type extension if any.
1700 # (Will match base_name attribute of Operand object.)
1701 def substMungedOpNames(code):
1702 return operandsWithExtRE.sub(r'\1', code)
1703
1704 # Fix up code snippets for final substitution in templates.
1705 def mungeSnippet(s):
1706 if isinstance(s, str):
1707 return substMungedOpNames(substBitOps(s))
1708 else:
1709 return s
1710
1711 def makeFlagConstructor(flag_list):
1712 if len(flag_list) == 0:
1713 return ''
1714 # filter out repeated flags
1715 flag_list.sort()
1716 i = 1
1717 while i < len(flag_list):
1718 if flag_list[i] == flag_list[i-1]:
1719 del flag_list[i]
1720 else:
1721 i += 1
1722 pre = '\n\tflags['
1723 post = '] = true;'
1724 code = pre + string.join(flag_list, post + pre) + post
1725 return code
1726
1727 # Assume all instruction flags are of the form 'IsFoo'
1728 instFlagRE = re.compile(r'Is.*')
1729
1730 # OpClass constants end in 'Op' except No_OpClass
1731 opClassRE = re.compile(r'.*Op|No_OpClass')
1732
1733 class InstObjParams:
1734 def __init__(self, mnem, class_name, base_class = '',
1735 snippets = {}, opt_args = []):
1736 self.mnemonic = mnem
1737 self.class_name = class_name
1738 self.base_class = base_class
1739 if not isinstance(snippets, dict):
1740 snippets = {'code' : snippets}
1741 compositeCode = ' '.join(map(str, snippets.values()))
1742 self.snippets = snippets
1743
1744 self.operands = OperandList(compositeCode)
1745 self.constructor = self.operands.concatAttrStrings('constructor')
1746 self.constructor += \
1747 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1748 self.constructor += \
1749 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1750 self.constructor += \
1751 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1752 self.constructor += \
1753 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1754 self.flags = self.operands.concatAttrLists('flags')
1755
1756 # Make a basic guess on the operand class (function unit type).
1757 # These are good enough for most cases, and can be overridden
1758 # later otherwise.
1759 if 'IsStore' in self.flags:
1760 self.op_class = 'MemWriteOp'
1761 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1762 self.op_class = 'MemReadOp'
1763 elif 'IsFloating' in self.flags:
1764 self.op_class = 'FloatAddOp'
1765 else:
1766 self.op_class = 'IntAluOp'
1767
1768 # Optional arguments are assumed to be either StaticInst flags
1769 # or an OpClass value. To avoid having to import a complete
1770 # list of these values to match against, we do it ad-hoc
1771 # with regexps.
1772 for oa in opt_args:
1773 if instFlagRE.match(oa):
1774 self.flags.append(oa)
1775 elif opClassRE.match(oa):
1776 self.op_class = oa
1777 else:
1778 error(0, 'InstObjParams: optional arg "%s" not recognized '
1779 'as StaticInst::Flag or OpClass.' % oa)
1780
1781 # add flag initialization to contructor here to include
1782 # any flags added via opt_args
1783 self.constructor += makeFlagConstructor(self.flags)
1784
1785 # if 'IsFloating' is set, add call to the FP enable check
1786 # function (which should be provided by isa_desc via a declare)
1787 if 'IsFloating' in self.flags:
1788 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1789 else:
1790 self.fp_enable_check = ''
1791
1792 #######################
1793 #
1794 # Output file template
1795 #
1796
1797 file_template = '''
1798 /*
1799 * DO NOT EDIT THIS FILE!!!
1800 *
1801 * It was automatically generated from the ISA description in %(filename)s
1802 */
1803
1804 %(includes)s
1805
1806 %(global_output)s
1807
1808 namespace %(namespace)s {
1809
1810 %(namespace_output)s
1811
1812 } // namespace %(namespace)s
1813
1814 %(decode_function)s
1815 '''
1816
1817
1818 # Update the output file only if the new contents are different from
1819 # the current contents. Minimizes the files that need to be rebuilt
1820 # after minor changes.
1821 def update_if_needed(file, contents):
1822 update = False
1823 if os.access(file, os.R_OK):
1824 f = open(file, 'r')
1825 old_contents = f.read()
1826 f.close()
1827 if contents != old_contents:
1828 print 'Updating', file
1829 os.remove(file) # in case it's write-protected
1830 update = True
1831 else:
1832 print 'File', file, 'is unchanged'
1833 else:
1834 print 'Generating', file
1835 update = True
1836 if update:
1837 f = open(file, 'w')
1838 f.write(contents)
1839 f.close()
1840
1841 # This regular expression matches '##include' directives
1842 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1843 re.MULTILINE)
1844
1845 # Function to replace a matched '##include' directive with the
1846 # contents of the specified file (with nested ##includes replaced
1847 # recursively). 'matchobj' is an re match object (from a match of
1848 # includeRE) and 'dirname' is the directory relative to which the file
1849 # path should be resolved.
1850 def replace_include(matchobj, dirname):
1851 fname = matchobj.group('filename')
1852 full_fname = os.path.normpath(os.path.join(dirname, fname))
1853 contents = '##newfile "%s"\n%s\n##endfile\n' % \
1854 (full_fname, read_and_flatten(full_fname))
1855 return contents
1856
1857 # Read a file and recursively flatten nested '##include' files.
1858 def read_and_flatten(filename):
1859 current_dir = os.path.dirname(filename)
1860 try:
1861 contents = open(filename).read()
1862 except IOError:
1863 error(0, 'Error including file "%s"' % filename)
1864 fileNameStack.push((filename, 0))
1865 # Find any includes and include them
1866 contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1867 contents)
1868 fileNameStack.pop()
1869 return contents
1870
1871 #
1872 # Read in and parse the ISA description.
1873 #
1874 def parse_isa_desc(isa_desc_file, output_dir):
1875 # Read file and (recursively) all included files into a string.
1876 # PLY requires that the input be in a single string so we have to
1877 # do this up front.
1878 isa_desc = read_and_flatten(isa_desc_file)
1879
1880 # Initialize filename stack with outer file.
1881 fileNameStack.push((isa_desc_file, 0))
1882
1883 # Parse it.
1884 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1885
1886 # grab the last three path components of isa_desc_file to put in
1887 # the output
1888 filename = '/'.join(isa_desc_file.split('/')[-3:])
1889
1890 # generate decoder.hh
1891 includes = '#include "base/bitfield.hh" // for bitfield support'
1892 global_output = global_code.header_output
1893 namespace_output = namespace_code.header_output
1894 decode_function = ''
1895 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1896
1897 # generate decoder.cc
1898 includes = '#include "decoder.hh"'
1899 global_output = global_code.decoder_output
1900 namespace_output = namespace_code.decoder_output
1901 # namespace_output += namespace_code.decode_block
1902 decode_function = namespace_code.decode_block
1903 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1904
1905 # generate per-cpu exec files
1906 for cpu in cpu_models:
1907 includes = '#include "decoder.hh"\n'
1908 includes += cpu.includes
1909 global_output = global_code.exec_output[cpu.name]
1910 namespace_output = namespace_code.exec_output[cpu.name]
1911 decode_function = ''
1912 update_if_needed(output_dir + '/' + cpu.filename,
1913 file_template % vars())
1914
1915 # global list of CpuModel objects (see cpu_models.py)
1916 cpu_models = []
1917
1918 # Called as script: get args from command line.
1919 # Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1920 if __name__ == '__main__':
1921 execfile(sys.argv[1]) # read in CpuModel definitions
1922 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1923 parse_isa_desc(sys.argv[2], sys.argv[3])