gpu-compute: add gpu_isa.hh to switch hdrs, add GPUISA to WF
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2014 ARM Limited
2 # All rights reserved
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2003-2005 The Regents of The University of Michigan
14 # Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15 # All rights reserved.
16 #
17 # Redistribution and use in source and binary forms, with or without
18 # modification, are permitted provided that the following conditions are
19 # met: redistributions of source code must retain the above copyright
20 # notice, this list of conditions and the following disclaimer;
21 # redistributions in binary form must reproduce the above copyright
22 # notice, this list of conditions and the following disclaimer in the
23 # documentation and/or other materials provided with the distribution;
24 # neither the name of the copyright holders nor the names of its
25 # contributors may be used to endorse or promote products derived from
26 # this software without specific prior written permission.
27 #
28 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #
40 # Authors: Steve Reinhardt
41
42 from __future__ import with_statement
43 import os
44 import sys
45 import re
46 import string
47 import inspect, traceback
48 # get type names
49 from types import *
50
51 from m5.util.grammar import Grammar
52
53 debug=False
54
55 ###################
56 # Utility functions
57
58 #
59 # Indent every line in string 's' by two spaces
60 # (except preprocessor directives).
61 # Used to make nested code blocks look pretty.
62 #
63 def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66 #
67 # Munge a somewhat arbitrarily formatted piece of Python code
68 # (e.g. from a format 'let' block) into something whose indentation
69 # will get by the Python parser.
70 #
71 # The two keys here are that Python will give a syntax error if
72 # there's any whitespace at the beginning of the first line, and that
73 # all lines at the same lexical nesting level must have identical
74 # indentation. Unfortunately the way code literals work, an entire
75 # let block tends to have some initial indentation. Rather than
76 # trying to figure out what that is and strip it off, we prepend 'if
77 # 1:' to make the let code the nested block inside the if (and have
78 # the parser automatically deal with the indentation for us).
79 #
80 # We don't want to do this if (1) the code block is empty or (2) the
81 # first line of the block doesn't have any whitespace at the front.
82
83 def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90 class ISAParserError(Exception):
91 """Exception class for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 self.lineno = first
98 self.string = second
99
100 def __str__(self):
101 return self.string
102
103 def error(*args):
104 raise ISAParserError(*args)
105
106 ####################
107 # Template objects.
108 #
109 # Template objects are format strings that allow substitution from
110 # the attribute spaces of other objects (e.g. InstObjParams instances).
111
112 labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114 class Template(object):
115 def __init__(self, parser, t):
116 self.parser = parser
117 self.template = t
118
119 def subst(self, d):
120 myDict = None
121
122 # Protect non-Python-dict substitutions (e.g. if there's a printf
123 # in the templated C++ code)
124 template = self.parser.protectNonSubstPercents(self.template)
125 # CPU-model-specific substitutions are handled later (in GenCode).
126 template = self.parser.protectCpuSymbols(template)
127
128 # Build a dict ('myDict') to use for the template substitution.
129 # Start with the template namespace. Make a copy since we're
130 # going to modify it.
131 myDict = self.parser.templateMap.copy()
132
133 if isinstance(d, InstObjParams):
134 # If we're dealing with an InstObjParams object, we need
135 # to be a little more sophisticated. The instruction-wide
136 # parameters are already formed, but the parameters which
137 # are only function wide still need to be generated.
138 compositeCode = ''
139
140 myDict.update(d.__dict__)
141 # The "operands" and "snippets" attributes of the InstObjParams
142 # objects are for internal use and not substitution.
143 del myDict['operands']
144 del myDict['snippets']
145
146 snippetLabels = [l for l in labelRE.findall(template)
147 if d.snippets.has_key(l)]
148
149 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150 for s in snippetLabels])
151
152 myDict.update(snippets)
153
154 compositeCode = ' '.join(map(str, snippets.values()))
155
156 # Add in template itself in case it references any
157 # operands explicitly (like Mem)
158 compositeCode += ' ' + template
159
160 operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163 if operands.readPC or operands.setPC:
164 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166 # In case there are predicated register reads and write, declare
167 # the variables for register indicies. It is being assumed that
168 # all the operands in the OperandList are also in the
169 # SubOperandList and in the same order. Otherwise, it is
170 # expected that predication would not be used for the operands.
171 if operands.predRead:
172 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173 if operands.predWrite:
174 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176 is_src = lambda op: op.is_src
177 is_dest = lambda op: op.is_dest
178
179 myDict['op_src_decl'] = \
180 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181 myDict['op_dest_decl'] = \
182 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183 if operands.readPC:
184 myDict['op_src_decl'] += \
185 'TheISA::PCState __parserAutoPCState;\n'
186 if operands.setPC:
187 myDict['op_dest_decl'] += \
188 'TheISA::PCState __parserAutoPCState;\n'
189
190 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191 if operands.readPC:
192 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193 myDict['op_rd']
194
195 # Compose the op_wb string. If we're going to write back the
196 # PC state because we changed some of its elements, we'll need to
197 # do that as early as possible. That allows later uncoordinated
198 # modifications to the PC to layer appropriately.
199 reordered = list(operands.items)
200 reordered.reverse()
201 op_wb_str = ''
202 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203 for op_desc in reordered:
204 if op_desc.isPCPart() and op_desc.is_dest:
205 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206 pcWbStr = ''
207 else:
208 op_wb_str = op_desc.op_wb + op_wb_str
209 myDict['op_wb'] = op_wb_str
210
211 elif isinstance(d, dict):
212 # if the argument is a dictionary, we just use it.
213 myDict.update(d)
214 elif hasattr(d, '__dict__'):
215 # if the argument is an object, we use its attribute map.
216 myDict.update(d.__dict__)
217 else:
218 raise TypeError, "Template.subst() arg must be or have dictionary"
219 return template % myDict
220
221 # Convert to string. This handles the case when a template with a
222 # CPU-specific term gets interpolated into another template or into
223 # an output block.
224 def __str__(self):
225 return self.parser.expandCpuSymbolsToString(self.template)
226
227 ################
228 # Format object.
229 #
230 # A format object encapsulates an instruction format. It must provide
231 # a defineInst() method that generates the code for an instruction
232 # definition.
233
234 class Format(object):
235 def __init__(self, id, params, code):
236 self.id = id
237 self.params = params
238 label = 'def format ' + id
239 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240 param_list = string.join(params, ", ")
241 f = '''def defInst(_code, _context, %s):
242 my_locals = vars().copy()
243 exec _code in _context, my_locals
244 return my_locals\n''' % param_list
245 c = compile(f, label + ' wrapper', 'exec')
246 exec c
247 self.func = defInst
248
249 def defineInst(self, parser, name, args, lineno):
250 parser.updateExportContext()
251 context = parser.exportContext.copy()
252 if len(name):
253 Name = name[0].upper()
254 if len(name) > 1:
255 Name += name[1:]
256 context.update({ 'name' : name, 'Name' : Name })
257 try:
258 vars = self.func(self.user_code, context, *args[0], **args[1])
259 except Exception, exc:
260 if debug:
261 raise
262 error(lineno, 'error defining "%s": %s.' % (name, exc))
263 for k in vars.keys():
264 if k not in ('header_output', 'decoder_output',
265 'exec_output', 'decode_block'):
266 del vars[k]
267 return GenCode(parser, **vars)
268
269 # Special null format to catch an implicit-format instruction
270 # definition outside of any format block.
271 class NoFormat(object):
272 def __init__(self):
273 self.defaultInst = ''
274
275 def defineInst(self, parser, name, args, lineno):
276 error(lineno,
277 'instruction definition "%s" with no active format!' % name)
278
279 ###############
280 # GenCode class
281 #
282 # The GenCode class encapsulates generated code destined for various
283 # output files. The header_output and decoder_output attributes are
284 # strings containing code destined for decoder.hh and decoder.cc
285 # respectively. The decode_block attribute contains code to be
286 # incorporated in the decode function itself (that will also end up in
287 # decoder.cc). The exec_output attribute is a dictionary with a key
288 # for each CPU model name; the value associated with a particular key
289 # is the string of code for that CPU model's exec.cc file. The
290 # has_decode_default attribute is used in the decode block to allow
291 # explicit default clauses to override default default clauses.
292
293 class GenCode(object):
294 # Constructor. At this point we substitute out all CPU-specific
295 # symbols. For the exec output, these go into the per-model
296 # dictionary. For all other output types they get collapsed into
297 # a single string.
298 def __init__(self, parser,
299 header_output = '', decoder_output = '', exec_output = '',
300 decode_block = '', has_decode_default = False):
301 self.parser = parser
302 self.header_output = parser.expandCpuSymbolsToString(header_output)
303 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304 self.exec_output = exec_output
305 self.decode_block = decode_block
306 self.has_decode_default = has_decode_default
307
308 # Write these code chunks out to the filesystem. They will be properly
309 # interwoven by the write_top_level_files().
310 def emit(self):
311 if self.header_output:
312 self.parser.get_file('header').write(self.header_output)
313 if self.decoder_output:
314 self.parser.get_file('decoder').write(self.decoder_output)
315 if self.exec_output:
316 self.parser.get_file('exec').write(self.exec_output)
317 if self.decode_block:
318 self.parser.get_file('decode_block').write(self.decode_block)
319
320 # Override '+' operator: generate a new GenCode object that
321 # concatenates all the individual strings in the operands.
322 def __add__(self, other):
323 return GenCode(self.parser,
324 self.header_output + other.header_output,
325 self.decoder_output + other.decoder_output,
326 self.exec_output + other.exec_output,
327 self.decode_block + other.decode_block,
328 self.has_decode_default or other.has_decode_default)
329
330 # Prepend a string (typically a comment) to all the strings.
331 def prepend_all(self, pre):
332 self.header_output = pre + self.header_output
333 self.decoder_output = pre + self.decoder_output
334 self.decode_block = pre + self.decode_block
335 self.exec_output = pre + self.exec_output
336
337 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338 # and 'break;'). Used to build the big nested switch statement.
339 def wrap_decode_block(self, pre, post = ''):
340 self.decode_block = pre + indent(self.decode_block) + post
341
342 #####################################################################
343 #
344 # Bitfield Operator Support
345 #
346 #####################################################################
347
348 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353 def substBitOps(code):
354 # first convert single-bit selectors to two-index form
355 # i.e., <n> --> <n:n>
356 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357 # simple case: selector applied to ID (name)
358 # i.e., foo<a:b> --> bits(foo, a, b)
359 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360 # if selector is applied to expression (ending in ')'),
361 # we need to search backward for matching '('
362 match = bitOpExprRE.search(code)
363 while match:
364 exprEnd = match.start()
365 here = exprEnd - 1
366 nestLevel = 1
367 while nestLevel > 0:
368 if code[here] == '(':
369 nestLevel -= 1
370 elif code[here] == ')':
371 nestLevel += 1
372 here -= 1
373 if here < 0:
374 sys.exit("Didn't find '('!")
375 exprStart = here+1
376 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377 match.group(1), match.group(2))
378 code = code[:exprStart] + newExpr + code[match.end():]
379 match = bitOpExprRE.search(code)
380 return code
381
382
383 #####################################################################
384 #
385 # Code Parser
386 #
387 # The remaining code is the support for automatically extracting
388 # instruction characteristics from pseudocode.
389 #
390 #####################################################################
391
392 # Force the argument to be a list. Useful for flags, where a caller
393 # can specify a singleton flag or a list of flags. Also usful for
394 # converting tuples to lists so they can be modified.
395 def makeList(arg):
396 if isinstance(arg, list):
397 return arg
398 elif isinstance(arg, tuple):
399 return list(arg)
400 elif not arg:
401 return []
402 else:
403 return [ arg ]
404
405 class Operand(object):
406 '''Base class for operand descriptors. An instance of this class
407 (or actually a class derived from this one) represents a specific
408 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409 derived classes encapsulates the traits of a particular operand
410 type (e.g., "32-bit integer register").'''
411
412 def buildReadCode(self, func = None):
413 subst_dict = {"name": self.base_name,
414 "func": func,
415 "reg_idx": self.reg_spec,
416 "ctype": self.ctype}
417 if hasattr(self, 'src_reg_idx'):
418 subst_dict['op_idx'] = self.src_reg_idx
419 code = self.read_code % subst_dict
420 return '%s = %s;\n' % (self.base_name, code)
421
422 def buildWriteCode(self, func = None):
423 subst_dict = {"name": self.base_name,
424 "func": func,
425 "reg_idx": self.reg_spec,
426 "ctype": self.ctype,
427 "final_val": self.base_name}
428 if hasattr(self, 'dest_reg_idx'):
429 subst_dict['op_idx'] = self.dest_reg_idx
430 code = self.write_code % subst_dict
431 return '''
432 {
433 %s final_val = %s;
434 %s;
435 if (traceData) { traceData->setData(final_val); }
436 }''' % (self.dflt_ctype, self.base_name, code)
437
438 def __init__(self, parser, full_name, ext, is_src, is_dest):
439 self.full_name = full_name
440 self.ext = ext
441 self.is_src = is_src
442 self.is_dest = is_dest
443 # The 'effective extension' (eff_ext) is either the actual
444 # extension, if one was explicitly provided, or the default.
445 if ext:
446 self.eff_ext = ext
447 elif hasattr(self, 'dflt_ext'):
448 self.eff_ext = self.dflt_ext
449
450 if hasattr(self, 'eff_ext'):
451 self.ctype = parser.operandTypeMap[self.eff_ext]
452
453 # Finalize additional fields (primarily code fields). This step
454 # is done separately since some of these fields may depend on the
455 # register index enumeration that hasn't been performed yet at the
456 # time of __init__(). The register index enumeration is affected
457 # by predicated register reads/writes. Hence, we forward the flags
458 # that indicate whether or not predication is in use.
459 def finalize(self, predRead, predWrite):
460 self.flags = self.getFlags()
461 self.constructor = self.makeConstructor(predRead, predWrite)
462 self.op_decl = self.makeDecl()
463
464 if self.is_src:
465 self.op_rd = self.makeRead(predRead)
466 self.op_src_decl = self.makeDecl()
467 else:
468 self.op_rd = ''
469 self.op_src_decl = ''
470
471 if self.is_dest:
472 self.op_wb = self.makeWrite(predWrite)
473 self.op_dest_decl = self.makeDecl()
474 else:
475 self.op_wb = ''
476 self.op_dest_decl = ''
477
478 def isMem(self):
479 return 0
480
481 def isReg(self):
482 return 0
483
484 def isFloatReg(self):
485 return 0
486
487 def isIntReg(self):
488 return 0
489
490 def isCCReg(self):
491 return 0
492
493 def isControlReg(self):
494 return 0
495
496 def isPCState(self):
497 return 0
498
499 def isPCPart(self):
500 return self.isPCState() and self.reg_spec
501
502 def hasReadPred(self):
503 return self.read_predicate != None
504
505 def hasWritePred(self):
506 return self.write_predicate != None
507
508 def getFlags(self):
509 # note the empty slice '[:]' gives us a copy of self.flags[0]
510 # instead of a reference to it
511 my_flags = self.flags[0][:]
512 if self.is_src:
513 my_flags += self.flags[1]
514 if self.is_dest:
515 my_flags += self.flags[2]
516 return my_flags
517
518 def makeDecl(self):
519 # Note that initializations in the declarations are solely
520 # to avoid 'uninitialized variable' errors from the compiler.
521 return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523 class IntRegOperand(Operand):
524 def isReg(self):
525 return 1
526
527 def isIntReg(self):
528 return 1
529
530 def makeConstructor(self, predRead, predWrite):
531 c_src = ''
532 c_dest = ''
533
534 if self.is_src:
535 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
536 if self.hasReadPred():
537 c_src = '\n\tif (%s) {%s\n\t}' % \
538 (self.read_predicate, c_src)
539
540 if self.is_dest:
541 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
542 (self.reg_spec)
543 c_dest += '\n\t_numIntDestRegs++;'
544 if self.hasWritePred():
545 c_dest = '\n\tif (%s) {%s\n\t}' % \
546 (self.write_predicate, c_dest)
547
548 return c_src + c_dest
549
550 def makeRead(self, predRead):
551 if (self.ctype == 'float' or self.ctype == 'double'):
552 error('Attempt to read integer register as FP')
553 if self.read_code != None:
554 return self.buildReadCode('readIntRegOperand')
555
556 int_reg_val = ''
557 if predRead:
558 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
559 if self.hasReadPred():
560 int_reg_val = '(%s) ? %s : 0' % \
561 (self.read_predicate, int_reg_val)
562 else:
563 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
564
565 return '%s = %s;\n' % (self.base_name, int_reg_val)
566
567 def makeWrite(self, predWrite):
568 if (self.ctype == 'float' or self.ctype == 'double'):
569 error('Attempt to write integer register as FP')
570 if self.write_code != None:
571 return self.buildWriteCode('setIntRegOperand')
572
573 if predWrite:
574 wp = 'true'
575 if self.hasWritePred():
576 wp = self.write_predicate
577
578 wcond = 'if (%s)' % (wp)
579 windex = '_destIndex++'
580 else:
581 wcond = ''
582 windex = '%d' % self.dest_reg_idx
583
584 wb = '''
585 %s
586 {
587 %s final_val = %s;
588 xc->setIntRegOperand(this, %s, final_val);\n
589 if (traceData) { traceData->setData(final_val); }
590 }''' % (wcond, self.ctype, self.base_name, windex)
591
592 return wb
593
594 class FloatRegOperand(Operand):
595 def isReg(self):
596 return 1
597
598 def isFloatReg(self):
599 return 1
600
601 def makeConstructor(self, predRead, predWrite):
602 c_src = ''
603 c_dest = ''
604
605 if self.is_src:
606 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
607 (self.reg_spec)
608
609 if self.is_dest:
610 c_dest = \
611 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
612 (self.reg_spec)
613 c_dest += '\n\t_numFPDestRegs++;'
614
615 return c_src + c_dest
616
617 def makeRead(self, predRead):
618 bit_select = 0
619 if (self.ctype == 'float' or self.ctype == 'double'):
620 func = 'readFloatRegOperand'
621 else:
622 func = 'readFloatRegOperandBits'
623 if self.read_code != None:
624 return self.buildReadCode(func)
625
626 if predRead:
627 rindex = '_sourceIndex++'
628 else:
629 rindex = '%d' % self.src_reg_idx
630
631 return '%s = xc->%s(this, %s);\n' % \
632 (self.base_name, func, rindex)
633
634 def makeWrite(self, predWrite):
635 if (self.ctype == 'float' or self.ctype == 'double'):
636 func = 'setFloatRegOperand'
637 else:
638 func = 'setFloatRegOperandBits'
639 if self.write_code != None:
640 return self.buildWriteCode(func)
641
642 if predWrite:
643 wp = '_destIndex++'
644 else:
645 wp = '%d' % self.dest_reg_idx
646 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
647
648 wb = '''
649 {
650 %s final_val = %s;
651 %s\n
652 if (traceData) { traceData->setData(final_val); }
653 }''' % (self.ctype, self.base_name, wp)
654 return wb
655
656 class CCRegOperand(Operand):
657 def isReg(self):
658 return 1
659
660 def isCCReg(self):
661 return 1
662
663 def makeConstructor(self, predRead, predWrite):
664 c_src = ''
665 c_dest = ''
666
667 if self.is_src:
668 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
669 (self.reg_spec)
670 if self.hasReadPred():
671 c_src = '\n\tif (%s) {%s\n\t}' % \
672 (self.read_predicate, c_src)
673
674 if self.is_dest:
675 c_dest = \
676 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
677 (self.reg_spec)
678 c_dest += '\n\t_numCCDestRegs++;'
679 if self.hasWritePred():
680 c_dest = '\n\tif (%s) {%s\n\t}' % \
681 (self.write_predicate, c_dest)
682
683 return c_src + c_dest
684
685 def makeRead(self, predRead):
686 if (self.ctype == 'float' or self.ctype == 'double'):
687 error('Attempt to read condition-code register as FP')
688 if self.read_code != None:
689 return self.buildReadCode('readCCRegOperand')
690
691 int_reg_val = ''
692 if predRead:
693 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
694 if self.hasReadPred():
695 int_reg_val = '(%s) ? %s : 0' % \
696 (self.read_predicate, int_reg_val)
697 else:
698 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
699
700 return '%s = %s;\n' % (self.base_name, int_reg_val)
701
702 def makeWrite(self, predWrite):
703 if (self.ctype == 'float' or self.ctype == 'double'):
704 error('Attempt to write condition-code register as FP')
705 if self.write_code != None:
706 return self.buildWriteCode('setCCRegOperand')
707
708 if predWrite:
709 wp = 'true'
710 if self.hasWritePred():
711 wp = self.write_predicate
712
713 wcond = 'if (%s)' % (wp)
714 windex = '_destIndex++'
715 else:
716 wcond = ''
717 windex = '%d' % self.dest_reg_idx
718
719 wb = '''
720 %s
721 {
722 %s final_val = %s;
723 xc->setCCRegOperand(this, %s, final_val);\n
724 if (traceData) { traceData->setData(final_val); }
725 }''' % (wcond, self.ctype, self.base_name, windex)
726
727 return wb
728
729 class ControlRegOperand(Operand):
730 def isReg(self):
731 return 1
732
733 def isControlReg(self):
734 return 1
735
736 def makeConstructor(self, predRead, predWrite):
737 c_src = ''
738 c_dest = ''
739
740 if self.is_src:
741 c_src = \
742 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
743 (self.reg_spec)
744
745 if self.is_dest:
746 c_dest = \
747 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
748 (self.reg_spec)
749
750 return c_src + c_dest
751
752 def makeRead(self, predRead):
753 bit_select = 0
754 if (self.ctype == 'float' or self.ctype == 'double'):
755 error('Attempt to read control register as FP')
756 if self.read_code != None:
757 return self.buildReadCode('readMiscRegOperand')
758
759 if predRead:
760 rindex = '_sourceIndex++'
761 else:
762 rindex = '%d' % self.src_reg_idx
763
764 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
765 (self.base_name, rindex)
766
767 def makeWrite(self, predWrite):
768 if (self.ctype == 'float' or self.ctype == 'double'):
769 error('Attempt to write control register as FP')
770 if self.write_code != None:
771 return self.buildWriteCode('setMiscRegOperand')
772
773 if predWrite:
774 windex = '_destIndex++'
775 else:
776 windex = '%d' % self.dest_reg_idx
777
778 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
779 (windex, self.base_name)
780 wb += 'if (traceData) { traceData->setData(%s); }' % \
781 self.base_name
782
783 return wb
784
785 class MemOperand(Operand):
786 def isMem(self):
787 return 1
788
789 def makeConstructor(self, predRead, predWrite):
790 return ''
791
792 def makeDecl(self):
793 # Declare memory data variable.
794 return '%s %s;\n' % (self.ctype, self.base_name)
795
796 def makeRead(self, predRead):
797 if self.read_code != None:
798 return self.buildReadCode()
799 return ''
800
801 def makeWrite(self, predWrite):
802 if self.write_code != None:
803 return self.buildWriteCode()
804 return ''
805
806 class PCStateOperand(Operand):
807 def makeConstructor(self, predRead, predWrite):
808 return ''
809
810 def makeRead(self, predRead):
811 if self.reg_spec:
812 # A component of the PC state.
813 return '%s = __parserAutoPCState.%s();\n' % \
814 (self.base_name, self.reg_spec)
815 else:
816 # The whole PC state itself.
817 return '%s = xc->pcState();\n' % self.base_name
818
819 def makeWrite(self, predWrite):
820 if self.reg_spec:
821 # A component of the PC state.
822 return '__parserAutoPCState.%s(%s);\n' % \
823 (self.reg_spec, self.base_name)
824 else:
825 # The whole PC state itself.
826 return 'xc->pcState(%s);\n' % self.base_name
827
828 def makeDecl(self):
829 ctype = 'TheISA::PCState'
830 if self.isPCPart():
831 ctype = self.ctype
832 # Note that initializations in the declarations are solely
833 # to avoid 'uninitialized variable' errors from the compiler.
834 return '%s %s = 0;\n' % (ctype, self.base_name)
835
836 def isPCState(self):
837 return 1
838
839 class OperandList(object):
840 '''Find all the operands in the given code block. Returns an operand
841 descriptor list (instance of class OperandList).'''
842 def __init__(self, parser, code):
843 self.items = []
844 self.bases = {}
845 # delete strings and comments so we don't match on operands inside
846 for regEx in (stringRE, commentRE):
847 code = regEx.sub('', code)
848 # search for operands
849 next_pos = 0
850 while 1:
851 match = parser.operandsRE.search(code, next_pos)
852 if not match:
853 # no more matches: we're done
854 break
855 op = match.groups()
856 # regexp groups are operand full name, base, and extension
857 (op_full, op_base, op_ext) = op
858 # if the token following the operand is an assignment, this is
859 # a destination (LHS), else it's a source (RHS)
860 is_dest = (assignRE.match(code, match.end()) != None)
861 is_src = not is_dest
862 # see if we've already seen this one
863 op_desc = self.find_base(op_base)
864 if op_desc:
865 if op_desc.ext != op_ext:
866 error('Inconsistent extensions for operand %s' % \
867 op_base)
868 op_desc.is_src = op_desc.is_src or is_src
869 op_desc.is_dest = op_desc.is_dest or is_dest
870 else:
871 # new operand: create new descriptor
872 op_desc = parser.operandNameMap[op_base](parser,
873 op_full, op_ext, is_src, is_dest)
874 self.append(op_desc)
875 # start next search after end of current match
876 next_pos = match.end()
877 self.sort()
878 # enumerate source & dest register operands... used in building
879 # constructor later
880 self.numSrcRegs = 0
881 self.numDestRegs = 0
882 self.numFPDestRegs = 0
883 self.numIntDestRegs = 0
884 self.numCCDestRegs = 0
885 self.numMiscDestRegs = 0
886 self.memOperand = None
887
888 # Flags to keep track if one or more operands are to be read/written
889 # conditionally.
890 self.predRead = False
891 self.predWrite = False
892
893 for op_desc in self.items:
894 if op_desc.isReg():
895 if op_desc.is_src:
896 op_desc.src_reg_idx = self.numSrcRegs
897 self.numSrcRegs += 1
898 if op_desc.is_dest:
899 op_desc.dest_reg_idx = self.numDestRegs
900 self.numDestRegs += 1
901 if op_desc.isFloatReg():
902 self.numFPDestRegs += 1
903 elif op_desc.isIntReg():
904 self.numIntDestRegs += 1
905 elif op_desc.isCCReg():
906 self.numCCDestRegs += 1
907 elif op_desc.isControlReg():
908 self.numMiscDestRegs += 1
909 elif op_desc.isMem():
910 if self.memOperand:
911 error("Code block has more than one memory operand.")
912 self.memOperand = op_desc
913
914 # Check if this operand has read/write predication. If true, then
915 # the microop will dynamically index source/dest registers.
916 self.predRead = self.predRead or op_desc.hasReadPred()
917 self.predWrite = self.predWrite or op_desc.hasWritePred()
918
919 if parser.maxInstSrcRegs < self.numSrcRegs:
920 parser.maxInstSrcRegs = self.numSrcRegs
921 if parser.maxInstDestRegs < self.numDestRegs:
922 parser.maxInstDestRegs = self.numDestRegs
923 if parser.maxMiscDestRegs < self.numMiscDestRegs:
924 parser.maxMiscDestRegs = self.numMiscDestRegs
925
926 # now make a final pass to finalize op_desc fields that may depend
927 # on the register enumeration
928 for op_desc in self.items:
929 op_desc.finalize(self.predRead, self.predWrite)
930
931 def __len__(self):
932 return len(self.items)
933
934 def __getitem__(self, index):
935 return self.items[index]
936
937 def append(self, op_desc):
938 self.items.append(op_desc)
939 self.bases[op_desc.base_name] = op_desc
940
941 def find_base(self, base_name):
942 # like self.bases[base_name], but returns None if not found
943 # (rather than raising exception)
944 return self.bases.get(base_name)
945
946 # internal helper function for concat[Some]Attr{Strings|Lists}
947 def __internalConcatAttrs(self, attr_name, filter, result):
948 for op_desc in self.items:
949 if filter(op_desc):
950 result += getattr(op_desc, attr_name)
951 return result
952
953 # return a single string that is the concatenation of the (string)
954 # values of the specified attribute for all operands
955 def concatAttrStrings(self, attr_name):
956 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
957
958 # like concatAttrStrings, but only include the values for the operands
959 # for which the provided filter function returns true
960 def concatSomeAttrStrings(self, filter, attr_name):
961 return self.__internalConcatAttrs(attr_name, filter, '')
962
963 # return a single list that is the concatenation of the (list)
964 # values of the specified attribute for all operands
965 def concatAttrLists(self, attr_name):
966 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
967
968 # like concatAttrLists, but only include the values for the operands
969 # for which the provided filter function returns true
970 def concatSomeAttrLists(self, filter, attr_name):
971 return self.__internalConcatAttrs(attr_name, filter, [])
972
973 def sort(self):
974 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
975
976 class SubOperandList(OperandList):
977 '''Find all the operands in the given code block. Returns an operand
978 descriptor list (instance of class OperandList).'''
979 def __init__(self, parser, code, master_list):
980 self.items = []
981 self.bases = {}
982 # delete strings and comments so we don't match on operands inside
983 for regEx in (stringRE, commentRE):
984 code = regEx.sub('', code)
985 # search for operands
986 next_pos = 0
987 while 1:
988 match = parser.operandsRE.search(code, next_pos)
989 if not match:
990 # no more matches: we're done
991 break
992 op = match.groups()
993 # regexp groups are operand full name, base, and extension
994 (op_full, op_base, op_ext) = op
995 # find this op in the master list
996 op_desc = master_list.find_base(op_base)
997 if not op_desc:
998 error('Found operand %s which is not in the master list!'
999 % op_base)
1000 else:
1001 # See if we've already found this operand
1002 op_desc = self.find_base(op_base)
1003 if not op_desc:
1004 # if not, add a reference to it to this sub list
1005 self.append(master_list.bases[op_base])
1006
1007 # start next search after end of current match
1008 next_pos = match.end()
1009 self.sort()
1010 self.memOperand = None
1011 # Whether the whole PC needs to be read so parts of it can be accessed
1012 self.readPC = False
1013 # Whether the whole PC needs to be written after parts of it were
1014 # changed
1015 self.setPC = False
1016 # Whether this instruction manipulates the whole PC or parts of it.
1017 # Mixing the two is a bad idea and flagged as an error.
1018 self.pcPart = None
1019
1020 # Flags to keep track if one or more operands are to be read/written
1021 # conditionally.
1022 self.predRead = False
1023 self.predWrite = False
1024
1025 for op_desc in self.items:
1026 if op_desc.isPCPart():
1027 self.readPC = True
1028 if op_desc.is_dest:
1029 self.setPC = True
1030
1031 if op_desc.isPCState():
1032 if self.pcPart is not None:
1033 if self.pcPart and not op_desc.isPCPart() or \
1034 not self.pcPart and op_desc.isPCPart():
1035 error("Mixed whole and partial PC state operands.")
1036 self.pcPart = op_desc.isPCPart()
1037
1038 if op_desc.isMem():
1039 if self.memOperand:
1040 error("Code block has more than one memory operand.")
1041 self.memOperand = op_desc
1042
1043 # Check if this operand has read/write predication. If true, then
1044 # the microop will dynamically index source/dest registers.
1045 self.predRead = self.predRead or op_desc.hasReadPred()
1046 self.predWrite = self.predWrite or op_desc.hasWritePred()
1047
1048 # Regular expression object to match C++ strings
1049 stringRE = re.compile(r'"([^"\\]|\\.)*"')
1050
1051 # Regular expression object to match C++ comments
1052 # (used in findOperands())
1053 commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1054 re.DOTALL | re.MULTILINE)
1055
1056 # Regular expression object to match assignment statements (used in
1057 # findOperands()). If the code immediately following the first
1058 # appearance of the operand matches this regex, then the operand
1059 # appears to be on the LHS of an assignment, and is thus a
1060 # destination. basically we're looking for an '=' that's not '=='.
1061 # The heinous tangle before that handles the case where the operand
1062 # has an array subscript.
1063 assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1064
1065 def makeFlagConstructor(flag_list):
1066 if len(flag_list) == 0:
1067 return ''
1068 # filter out repeated flags
1069 flag_list.sort()
1070 i = 1
1071 while i < len(flag_list):
1072 if flag_list[i] == flag_list[i-1]:
1073 del flag_list[i]
1074 else:
1075 i += 1
1076 pre = '\n\tflags['
1077 post = '] = true;'
1078 code = pre + string.join(flag_list, post + pre) + post
1079 return code
1080
1081 # Assume all instruction flags are of the form 'IsFoo'
1082 instFlagRE = re.compile(r'Is.*')
1083
1084 # OpClass constants end in 'Op' except No_OpClass
1085 opClassRE = re.compile(r'.*Op|No_OpClass')
1086
1087 class InstObjParams(object):
1088 def __init__(self, parser, mnem, class_name, base_class = '',
1089 snippets = {}, opt_args = []):
1090 self.mnemonic = mnem
1091 self.class_name = class_name
1092 self.base_class = base_class
1093 if not isinstance(snippets, dict):
1094 snippets = {'code' : snippets}
1095 compositeCode = ' '.join(map(str, snippets.values()))
1096 self.snippets = snippets
1097
1098 self.operands = OperandList(parser, compositeCode)
1099
1100 # The header of the constructor declares the variables to be used
1101 # in the body of the constructor.
1102 header = ''
1103 header += '\n\t_numSrcRegs = 0;'
1104 header += '\n\t_numDestRegs = 0;'
1105 header += '\n\t_numFPDestRegs = 0;'
1106 header += '\n\t_numIntDestRegs = 0;'
1107 header += '\n\t_numCCDestRegs = 0;'
1108
1109 self.constructor = header + \
1110 self.operands.concatAttrStrings('constructor')
1111
1112 self.flags = self.operands.concatAttrLists('flags')
1113
1114 self.op_class = None
1115
1116 # Optional arguments are assumed to be either StaticInst flags
1117 # or an OpClass value. To avoid having to import a complete
1118 # list of these values to match against, we do it ad-hoc
1119 # with regexps.
1120 for oa in opt_args:
1121 if instFlagRE.match(oa):
1122 self.flags.append(oa)
1123 elif opClassRE.match(oa):
1124 self.op_class = oa
1125 else:
1126 error('InstObjParams: optional arg "%s" not recognized '
1127 'as StaticInst::Flag or OpClass.' % oa)
1128
1129 # Make a basic guess on the operand class if not set.
1130 # These are good enough for most cases.
1131 if not self.op_class:
1132 if 'IsStore' in self.flags:
1133 # The order matters here: 'IsFloating' and 'IsInteger' are
1134 # usually set in FP instructions because of the base
1135 # register
1136 if 'IsFloating' in self.flags:
1137 self.op_class = 'FloatMemWriteOp'
1138 else:
1139 self.op_class = 'MemWriteOp'
1140 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1141 # The order matters here: 'IsFloating' and 'IsInteger' are
1142 # usually set in FP instructions because of the base
1143 # register
1144 if 'IsFloating' in self.flags:
1145 self.op_class = 'FloatMemReadOp'
1146 else:
1147 self.op_class = 'MemReadOp'
1148 elif 'IsFloating' in self.flags:
1149 self.op_class = 'FloatAddOp'
1150 else:
1151 self.op_class = 'IntAluOp'
1152
1153 # add flag initialization to contructor here to include
1154 # any flags added via opt_args
1155 self.constructor += makeFlagConstructor(self.flags)
1156
1157 # if 'IsFloating' is set, add call to the FP enable check
1158 # function (which should be provided by isa_desc via a declare)
1159 if 'IsFloating' in self.flags:
1160 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1161 else:
1162 self.fp_enable_check = ''
1163
1164 ##############
1165 # Stack: a simple stack object. Used for both formats (formatStack)
1166 # and default cases (defaultStack). Simply wraps a list to give more
1167 # stack-like syntax and enable initialization with an argument list
1168 # (as opposed to an argument that's a list).
1169
1170 class Stack(list):
1171 def __init__(self, *items):
1172 list.__init__(self, items)
1173
1174 def push(self, item):
1175 self.append(item);
1176
1177 def top(self):
1178 return self[-1]
1179
1180 # Format a file include stack backtrace as a string
1181 def backtrace(filename_stack):
1182 fmt = "In file included from %s:"
1183 return "\n".join([fmt % f for f in filename_stack])
1184
1185
1186 #######################
1187 #
1188 # LineTracker: track filenames along with line numbers in PLY lineno fields
1189 # PLY explicitly doesn't do anything with 'lineno' except propagate
1190 # it. This class lets us tie filenames with the line numbers with a
1191 # minimum of disruption to existing increment code.
1192 #
1193
1194 class LineTracker(object):
1195 def __init__(self, filename, lineno=1):
1196 self.filename = filename
1197 self.lineno = lineno
1198
1199 # Overload '+=' for increments. We need to create a new object on
1200 # each update else every token ends up referencing the same
1201 # constantly incrementing instance.
1202 def __iadd__(self, incr):
1203 return LineTracker(self.filename, self.lineno + incr)
1204
1205 def __str__(self):
1206 return "%s:%d" % (self.filename, self.lineno)
1207
1208 # In case there are places where someone really expects a number
1209 def __int__(self):
1210 return self.lineno
1211
1212
1213 #######################
1214 #
1215 # ISA Parser
1216 # parses ISA DSL and emits C++ headers and source
1217 #
1218
1219 class ISAParser(Grammar):
1220 class CpuModel(object):
1221 def __init__(self, name, filename, includes, strings):
1222 self.name = name
1223 self.filename = filename
1224 self.includes = includes
1225 self.strings = strings
1226
1227 def __init__(self, output_dir):
1228 super(ISAParser, self).__init__()
1229 self.output_dir = output_dir
1230
1231 self.filename = None # for output file watermarking/scaremongering
1232
1233 self.cpuModels = [
1234 ISAParser.CpuModel('ExecContext',
1235 'generic_cpu_exec.cc',
1236 '#include "cpu/exec_context.hh"',
1237 { "CPU_exec_context" : "ExecContext" }),
1238 ]
1239
1240 # variable to hold templates
1241 self.templateMap = {}
1242
1243 # This dictionary maps format name strings to Format objects.
1244 self.formatMap = {}
1245
1246 # Track open files and, if applicable, how many chunks it has been
1247 # split into so far.
1248 self.files = {}
1249 self.splits = {}
1250
1251 # isa_name / namespace identifier from namespace declaration.
1252 # before the namespace declaration, None.
1253 self.isa_name = None
1254 self.namespace = None
1255
1256 # The format stack.
1257 self.formatStack = Stack(NoFormat())
1258
1259 # The default case stack.
1260 self.defaultStack = Stack(None)
1261
1262 # Stack that tracks current file and line number. Each
1263 # element is a tuple (filename, lineno) that records the
1264 # *current* filename and the line number in the *previous*
1265 # file where it was included.
1266 self.fileNameStack = Stack()
1267
1268 symbols = ('makeList', 're', 'string')
1269 self.exportContext = dict([(s, eval(s)) for s in symbols])
1270
1271 self.maxInstSrcRegs = 0
1272 self.maxInstDestRegs = 0
1273 self.maxMiscDestRegs = 0
1274
1275 def __getitem__(self, i): # Allow object (self) to be
1276 return getattr(self, i) # passed to %-substitutions
1277
1278 # Change the file suffix of a base filename:
1279 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1280 def suffixize(self, s, sec):
1281 extn = re.compile('(\.[^\.]+)$') # isolate extension
1282 if self.namespace:
1283 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1284 else:
1285 return extn.sub(r'-g\1.inc', s)
1286
1287 # Get the file object for emitting code into the specified section
1288 # (header, decoder, exec, decode_block).
1289 def get_file(self, section):
1290 if section == 'decode_block':
1291 filename = 'decode-method.cc.inc'
1292 else:
1293 if section == 'header':
1294 file = 'decoder.hh'
1295 else:
1296 file = '%s.cc' % section
1297 filename = self.suffixize(file, section)
1298 try:
1299 return self.files[filename]
1300 except KeyError: pass
1301
1302 f = self.open(filename)
1303 self.files[filename] = f
1304
1305 # The splittable files are the ones with many independent
1306 # per-instruction functions - the decoder's instruction constructors
1307 # and the instruction execution (execute()) methods. These both have
1308 # the suffix -ns.cc.inc, meaning they are within the namespace part
1309 # of the ISA, contain object-emitting C++ source, and are included
1310 # into other top-level files. These are the files that need special
1311 # #define's to allow parts of them to be compiled separately. Rather
1312 # than splitting the emissions into separate files, the monolithic
1313 # output of the ISA parser is maintained, but the value (or lack
1314 # thereof) of the __SPLIT definition during C preprocessing will
1315 # select the different chunks. If no 'split' directives are used,
1316 # the cpp emissions have no effect.
1317 if re.search('-ns.cc.inc$', filename):
1318 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1319 self.splits[f] = 1
1320 # ensure requisite #include's
1321 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1322 print >>f, '#include "decoder.hh"'
1323 elif filename == 'decoder-g.hh.inc':
1324 print >>f, '#include "base/bitfield.hh"'
1325
1326 return f
1327
1328 # Weave together the parts of the different output sections by
1329 # #include'ing them into some very short top-level .cc/.hh files.
1330 # These small files make it much clearer how this tool works, since
1331 # you directly see the chunks emitted as files that are #include'd.
1332 def write_top_level_files(self):
1333 dep = self.open('inc.d', bare=True)
1334
1335 # decoder header - everything depends on this
1336 file = 'decoder.hh'
1337 with self.open(file) as f:
1338 inc = []
1339
1340 fn = 'decoder-g.hh.inc'
1341 assert(fn in self.files)
1342 f.write('#include "%s"\n' % fn)
1343 inc.append(fn)
1344
1345 fn = 'decoder-ns.hh.inc'
1346 assert(fn in self.files)
1347 f.write('namespace %s {\n#include "%s"\n}\n'
1348 % (self.namespace, fn))
1349 inc.append(fn)
1350
1351 print >>dep, file+':', ' '.join(inc)
1352
1353 # decoder method - cannot be split
1354 file = 'decoder.cc'
1355 with self.open(file) as f:
1356 inc = []
1357
1358 fn = 'decoder-g.cc.inc'
1359 assert(fn in self.files)
1360 f.write('#include "%s"\n' % fn)
1361 inc.append(fn)
1362
1363 fn = 'decode-method.cc.inc'
1364 # is guaranteed to have been written for parse to complete
1365 f.write('#include "%s"\n' % fn)
1366 inc.append(fn)
1367
1368 inc.append("decoder.hh")
1369 print >>dep, file+':', ' '.join(inc)
1370
1371 extn = re.compile('(\.[^\.]+)$')
1372
1373 # instruction constructors
1374 splits = self.splits[self.get_file('decoder')]
1375 file_ = 'inst-constrs.cc'
1376 for i in range(1, splits+1):
1377 if splits > 1:
1378 file = extn.sub(r'-%d\1' % i, file_)
1379 else:
1380 file = file_
1381 with self.open(file) as f:
1382 inc = []
1383
1384 fn = 'decoder-g.cc.inc'
1385 assert(fn in self.files)
1386 f.write('#include "%s"\n' % fn)
1387 inc.append(fn)
1388
1389 fn = 'decoder-ns.cc.inc'
1390 assert(fn in self.files)
1391 print >>f, 'namespace %s {' % self.namespace
1392 if splits > 1:
1393 print >>f, '#define __SPLIT %u' % i
1394 print >>f, '#include "%s"' % fn
1395 print >>f, '}'
1396 inc.append(fn)
1397
1398 inc.append("decoder.hh")
1399 print >>dep, file+':', ' '.join(inc)
1400
1401 # instruction execution per-CPU model
1402 splits = self.splits[self.get_file('exec')]
1403 for cpu in self.cpuModels:
1404 for i in range(1, splits+1):
1405 if splits > 1:
1406 file = extn.sub(r'_%d\1' % i, cpu.filename)
1407 else:
1408 file = cpu.filename
1409 with self.open(file) as f:
1410 inc = []
1411
1412 fn = 'exec-g.cc.inc'
1413 assert(fn in self.files)
1414 f.write('#include "%s"\n' % fn)
1415 inc.append(fn)
1416
1417 f.write(cpu.includes+"\n")
1418
1419 fn = 'exec-ns.cc.inc'
1420 assert(fn in self.files)
1421 print >>f, 'namespace %s {' % self.namespace
1422 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1423 % cpu.strings['CPU_exec_context']
1424 if splits > 1:
1425 print >>f, '#define __SPLIT %u' % i
1426 print >>f, '#include "%s"' % fn
1427 print >>f, '}'
1428 inc.append(fn)
1429
1430 inc.append("decoder.hh")
1431 print >>dep, file+':', ' '.join(inc)
1432
1433 # max_inst_regs.hh
1434 self.update('max_inst_regs.hh',
1435 '''namespace %(namespace)s {
1436 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1437 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1438 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1439 print >>dep, 'max_inst_regs.hh:'
1440
1441 dep.close()
1442
1443
1444 scaremonger_template ='''// DO NOT EDIT
1445 // This file was automatically generated from an ISA description:
1446 // %(filename)s
1447
1448 ''';
1449
1450 #####################################################################
1451 #
1452 # Lexer
1453 #
1454 # The PLY lexer module takes two things as input:
1455 # - A list of token names (the string list 'tokens')
1456 # - A regular expression describing a match for each token. The
1457 # regexp for token FOO can be provided in two ways:
1458 # - as a string variable named t_FOO
1459 # - as the doc string for a function named t_FOO. In this case,
1460 # the function is also executed, allowing an action to be
1461 # associated with each token match.
1462 #
1463 #####################################################################
1464
1465 # Reserved words. These are listed separately as they are matched
1466 # using the same regexp as generic IDs, but distinguished in the
1467 # t_ID() function. The PLY documentation suggests this approach.
1468 reserved = (
1469 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1470 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1471 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1472 )
1473
1474 # List of tokens. The lex module requires this.
1475 tokens = reserved + (
1476 # identifier
1477 'ID',
1478
1479 # integer literal
1480 'INTLIT',
1481
1482 # string literal
1483 'STRLIT',
1484
1485 # code literal
1486 'CODELIT',
1487
1488 # ( ) [ ] { } < > , ; . : :: *
1489 'LPAREN', 'RPAREN',
1490 'LBRACKET', 'RBRACKET',
1491 'LBRACE', 'RBRACE',
1492 'LESS', 'GREATER', 'EQUALS',
1493 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1494 'ASTERISK',
1495
1496 # C preprocessor directives
1497 'CPPDIRECTIVE'
1498
1499 # The following are matched but never returned. commented out to
1500 # suppress PLY warning
1501 # newfile directive
1502 # 'NEWFILE',
1503
1504 # endfile directive
1505 # 'ENDFILE'
1506 )
1507
1508 # Regular expressions for token matching
1509 t_LPAREN = r'\('
1510 t_RPAREN = r'\)'
1511 t_LBRACKET = r'\['
1512 t_RBRACKET = r'\]'
1513 t_LBRACE = r'\{'
1514 t_RBRACE = r'\}'
1515 t_LESS = r'\<'
1516 t_GREATER = r'\>'
1517 t_EQUALS = r'='
1518 t_COMMA = r','
1519 t_SEMI = r';'
1520 t_DOT = r'\.'
1521 t_COLON = r':'
1522 t_DBLCOLON = r'::'
1523 t_ASTERISK = r'\*'
1524
1525 # Identifiers and reserved words
1526 reserved_map = { }
1527 for r in reserved:
1528 reserved_map[r.lower()] = r
1529
1530 def t_ID(self, t):
1531 r'[A-Za-z_]\w*'
1532 t.type = self.reserved_map.get(t.value, 'ID')
1533 return t
1534
1535 # Integer literal
1536 def t_INTLIT(self, t):
1537 r'-?(0x[\da-fA-F]+)|\d+'
1538 try:
1539 t.value = int(t.value,0)
1540 except ValueError:
1541 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1542 t.value = 0
1543 return t
1544
1545 # String literal. Note that these use only single quotes, and
1546 # can span multiple lines.
1547 def t_STRLIT(self, t):
1548 r"(?m)'([^'])+'"
1549 # strip off quotes
1550 t.value = t.value[1:-1]
1551 t.lexer.lineno += t.value.count('\n')
1552 return t
1553
1554
1555 # "Code literal"... like a string literal, but delimiters are
1556 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1557 def t_CODELIT(self, t):
1558 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1559 # strip off {{ & }}
1560 t.value = t.value[2:-2]
1561 t.lexer.lineno += t.value.count('\n')
1562 return t
1563
1564 def t_CPPDIRECTIVE(self, t):
1565 r'^\#[^\#].*\n'
1566 t.lexer.lineno += t.value.count('\n')
1567 return t
1568
1569 def t_NEWFILE(self, t):
1570 r'^\#\#newfile\s+"[^"]*"\n'
1571 self.fileNameStack.push(t.lexer.lineno)
1572 t.lexer.lineno = LineTracker(t.value[11:-2])
1573
1574 def t_ENDFILE(self, t):
1575 r'^\#\#endfile\n'
1576 t.lexer.lineno = self.fileNameStack.pop()
1577
1578 #
1579 # The functions t_NEWLINE, t_ignore, and t_error are
1580 # special for the lex module.
1581 #
1582
1583 # Newlines
1584 def t_NEWLINE(self, t):
1585 r'\n+'
1586 t.lexer.lineno += t.value.count('\n')
1587
1588 # Comments
1589 def t_comment(self, t):
1590 r'//.*'
1591
1592 # Completely ignored characters
1593 t_ignore = ' \t\x0c'
1594
1595 # Error handler
1596 def t_error(self, t):
1597 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1598 t.skip(1)
1599
1600 #####################################################################
1601 #
1602 # Parser
1603 #
1604 # Every function whose name starts with 'p_' defines a grammar
1605 # rule. The rule is encoded in the function's doc string, while
1606 # the function body provides the action taken when the rule is
1607 # matched. The argument to each function is a list of the values
1608 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1609 # symbols on the RHS. For tokens, the value is copied from the
1610 # t.value attribute provided by the lexer. For non-terminals, the
1611 # value is assigned by the producing rule; i.e., the job of the
1612 # grammar rule function is to set the value for the non-terminal
1613 # on the LHS (by assigning to t[0]).
1614 #####################################################################
1615
1616 # The LHS of the first grammar rule is used as the start symbol
1617 # (in this case, 'specification'). Note that this rule enforces
1618 # that there will be exactly one namespace declaration, with 0 or
1619 # more global defs/decls before and after it. The defs & decls
1620 # before the namespace decl will be outside the namespace; those
1621 # after will be inside. The decoder function is always inside the
1622 # namespace.
1623 def p_specification(self, t):
1624 'specification : opt_defs_and_outputs top_level_decode_block'
1625
1626 for f in self.splits.iterkeys():
1627 f.write('\n#endif\n')
1628
1629 for f in self.files.itervalues(): # close ALL the files;
1630 f.close() # not doing so can cause compilation to fail
1631
1632 self.write_top_level_files()
1633
1634 t[0] = True
1635
1636 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1637 # output statements. Its productions do the hard work of eventually
1638 # instantiating a GenCode, which are generally emitted (written to disk)
1639 # as soon as possible, except for the decode_block, which has to be
1640 # accumulated into one large function of nested switch/case blocks.
1641 def p_opt_defs_and_outputs_0(self, t):
1642 'opt_defs_and_outputs : empty'
1643
1644 def p_opt_defs_and_outputs_1(self, t):
1645 'opt_defs_and_outputs : defs_and_outputs'
1646
1647 def p_defs_and_outputs_0(self, t):
1648 'defs_and_outputs : def_or_output'
1649
1650 def p_defs_and_outputs_1(self, t):
1651 'defs_and_outputs : defs_and_outputs def_or_output'
1652
1653 # The list of possible definition/output statements.
1654 # They are all processed as they are seen.
1655 def p_def_or_output(self, t):
1656 '''def_or_output : name_decl
1657 | def_format
1658 | def_bitfield
1659 | def_bitfield_struct
1660 | def_template
1661 | def_operand_types
1662 | def_operands
1663 | output
1664 | global_let
1665 | split'''
1666
1667 # Utility function used by both invocations of splitting - explicit
1668 # 'split' keyword and split() function inside "let {{ }};" blocks.
1669 def split(self, sec, write=False):
1670 assert(sec != 'header' and "header cannot be split")
1671
1672 f = self.get_file(sec)
1673 self.splits[f] += 1
1674 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1675 if write:
1676 f.write(s)
1677 else:
1678 return s
1679
1680 # split output file to reduce compilation time
1681 def p_split(self, t):
1682 'split : SPLIT output_type SEMI'
1683 assert(self.isa_name and "'split' not allowed before namespace decl")
1684
1685 self.split(t[2], True)
1686
1687 def p_output_type(self, t):
1688 '''output_type : DECODER
1689 | HEADER
1690 | EXEC'''
1691 t[0] = t[1]
1692
1693 # ISA name declaration looks like "namespace <foo>;"
1694 def p_name_decl(self, t):
1695 'name_decl : NAMESPACE ID SEMI'
1696 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1697 self.isa_name = t[2]
1698 self.namespace = t[2] + 'Inst'
1699
1700 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1701 # directly to the appropriate output section.
1702
1703 # Massage output block by substituting in template definitions and
1704 # bit operators. We handle '%'s embedded in the string that don't
1705 # indicate template substitutions (or CPU-specific symbols, which
1706 # get handled in GenCode) by doubling them first so that the
1707 # format operation will reduce them back to single '%'s.
1708 def process_output(self, s):
1709 s = self.protectNonSubstPercents(s)
1710 # protects cpu-specific symbols too
1711 s = self.protectCpuSymbols(s)
1712 return substBitOps(s % self.templateMap)
1713
1714 def p_output(self, t):
1715 'output : OUTPUT output_type CODELIT SEMI'
1716 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1717 GenCode(self, **kwargs).emit()
1718
1719 # global let blocks 'let {{...}}' (Python code blocks) are
1720 # executed directly when seen. Note that these execute in a
1721 # special variable context 'exportContext' to prevent the code
1722 # from polluting this script's namespace.
1723 def p_global_let(self, t):
1724 'global_let : LET CODELIT SEMI'
1725 def _split(sec):
1726 return self.split(sec)
1727 self.updateExportContext()
1728 self.exportContext["header_output"] = ''
1729 self.exportContext["decoder_output"] = ''
1730 self.exportContext["exec_output"] = ''
1731 self.exportContext["decode_block"] = ''
1732 self.exportContext["split"] = _split
1733 split_setup = '''
1734 def wrap(func):
1735 def split(sec):
1736 globals()[sec + '_output'] += func(sec)
1737 return split
1738 split = wrap(split)
1739 del wrap
1740 '''
1741 # This tricky setup (immediately above) allows us to just write
1742 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1743 # will automatically be added to the exec_output variable. The inner
1744 # Python execution environment doesn't know about the split points,
1745 # so we carefully inject and wrap a closure that can retrieve the
1746 # next split's #define from the parser and add it to the current
1747 # emission-in-progress.
1748 try:
1749 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1750 except Exception, exc:
1751 if debug:
1752 raise
1753 error(t.lineno(1), 'In global let block: %s' % exc)
1754 GenCode(self,
1755 header_output=self.exportContext["header_output"],
1756 decoder_output=self.exportContext["decoder_output"],
1757 exec_output=self.exportContext["exec_output"],
1758 decode_block=self.exportContext["decode_block"]).emit()
1759
1760 # Define the mapping from operand type extensions to C++ types and
1761 # bit widths (stored in operandTypeMap).
1762 def p_def_operand_types(self, t):
1763 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1764 try:
1765 self.operandTypeMap = eval('{' + t[3] + '}')
1766 except Exception, exc:
1767 if debug:
1768 raise
1769 error(t.lineno(1),
1770 'In def operand_types: %s' % exc)
1771
1772 # Define the mapping from operand names to operand classes and
1773 # other traits. Stored in operandNameMap.
1774 def p_def_operands(self, t):
1775 'def_operands : DEF OPERANDS CODELIT SEMI'
1776 if not hasattr(self, 'operandTypeMap'):
1777 error(t.lineno(1),
1778 'error: operand types must be defined before operands')
1779 try:
1780 user_dict = eval('{' + t[3] + '}', self.exportContext)
1781 except Exception, exc:
1782 if debug:
1783 raise
1784 error(t.lineno(1), 'In def operands: %s' % exc)
1785 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1786
1787 # A bitfield definition looks like:
1788 # 'def [signed] bitfield <ID> [<first>:<last>]'
1789 # This generates a preprocessor macro in the output file.
1790 def p_def_bitfield_0(self, t):
1791 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1792 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1793 if (t[2] == 'signed'):
1794 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1795 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1796 GenCode(self, header_output=hash_define).emit()
1797
1798 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1799 def p_def_bitfield_1(self, t):
1800 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1801 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1802 if (t[2] == 'signed'):
1803 expr = 'sext<%d>(%s)' % (1, expr)
1804 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1805 GenCode(self, header_output=hash_define).emit()
1806
1807 # alternate form for structure member: 'def bitfield <ID> <ID>'
1808 def p_def_bitfield_struct(self, t):
1809 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1810 if (t[2] != ''):
1811 error(t.lineno(1),
1812 'error: structure bitfields are always unsigned.')
1813 expr = 'machInst.%s' % t[5]
1814 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1815 GenCode(self, header_output=hash_define).emit()
1816
1817 def p_id_with_dot_0(self, t):
1818 'id_with_dot : ID'
1819 t[0] = t[1]
1820
1821 def p_id_with_dot_1(self, t):
1822 'id_with_dot : ID DOT id_with_dot'
1823 t[0] = t[1] + t[2] + t[3]
1824
1825 def p_opt_signed_0(self, t):
1826 'opt_signed : SIGNED'
1827 t[0] = t[1]
1828
1829 def p_opt_signed_1(self, t):
1830 'opt_signed : empty'
1831 t[0] = ''
1832
1833 def p_def_template(self, t):
1834 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1835 if t[3] in self.templateMap:
1836 print "warning: template %s already defined" % t[3]
1837 self.templateMap[t[3]] = Template(self, t[4])
1838
1839 # An instruction format definition looks like
1840 # "def format <fmt>(<params>) {{...}};"
1841 def p_def_format(self, t):
1842 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1843 (id, params, code) = (t[3], t[5], t[7])
1844 self.defFormat(id, params, code, t.lexer.lineno)
1845
1846 # The formal parameter list for an instruction format is a
1847 # possibly empty list of comma-separated parameters. Positional
1848 # (standard, non-keyword) parameters must come first, followed by
1849 # keyword parameters, followed by a '*foo' parameter that gets
1850 # excess positional arguments (as in Python). Each of these three
1851 # parameter categories is optional.
1852 #
1853 # Note that we do not support the '**foo' parameter for collecting
1854 # otherwise undefined keyword args. Otherwise the parameter list
1855 # is (I believe) identical to what is supported in Python.
1856 #
1857 # The param list generates a tuple, where the first element is a
1858 # list of the positional params and the second element is a dict
1859 # containing the keyword params.
1860 def p_param_list_0(self, t):
1861 'param_list : positional_param_list COMMA nonpositional_param_list'
1862 t[0] = t[1] + t[3]
1863
1864 def p_param_list_1(self, t):
1865 '''param_list : positional_param_list
1866 | nonpositional_param_list'''
1867 t[0] = t[1]
1868
1869 def p_positional_param_list_0(self, t):
1870 'positional_param_list : empty'
1871 t[0] = []
1872
1873 def p_positional_param_list_1(self, t):
1874 'positional_param_list : ID'
1875 t[0] = [t[1]]
1876
1877 def p_positional_param_list_2(self, t):
1878 'positional_param_list : positional_param_list COMMA ID'
1879 t[0] = t[1] + [t[3]]
1880
1881 def p_nonpositional_param_list_0(self, t):
1882 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1883 t[0] = t[1] + t[3]
1884
1885 def p_nonpositional_param_list_1(self, t):
1886 '''nonpositional_param_list : keyword_param_list
1887 | excess_args_param'''
1888 t[0] = t[1]
1889
1890 def p_keyword_param_list_0(self, t):
1891 'keyword_param_list : keyword_param'
1892 t[0] = [t[1]]
1893
1894 def p_keyword_param_list_1(self, t):
1895 'keyword_param_list : keyword_param_list COMMA keyword_param'
1896 t[0] = t[1] + [t[3]]
1897
1898 def p_keyword_param(self, t):
1899 'keyword_param : ID EQUALS expr'
1900 t[0] = t[1] + ' = ' + t[3].__repr__()
1901
1902 def p_excess_args_param(self, t):
1903 'excess_args_param : ASTERISK ID'
1904 # Just concatenate them: '*ID'. Wrap in list to be consistent
1905 # with positional_param_list and keyword_param_list.
1906 t[0] = [t[1] + t[2]]
1907
1908 # End of format definition-related rules.
1909 ##############
1910
1911 #
1912 # A decode block looks like:
1913 # decode <field1> [, <field2>]* [default <inst>] { ... }
1914 #
1915 def p_top_level_decode_block(self, t):
1916 'top_level_decode_block : decode_block'
1917 codeObj = t[1]
1918 codeObj.wrap_decode_block('''
1919 StaticInstPtr
1920 %(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1921 {
1922 using namespace %(namespace)s;
1923 ''' % self, '}')
1924
1925 codeObj.emit()
1926
1927 def p_decode_block(self, t):
1928 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1929 default_defaults = self.defaultStack.pop()
1930 codeObj = t[5]
1931 # use the "default defaults" only if there was no explicit
1932 # default statement in decode_stmt_list
1933 if not codeObj.has_decode_default:
1934 codeObj += default_defaults
1935 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1936 t[0] = codeObj
1937
1938 # The opt_default statement serves only to push the "default
1939 # defaults" onto defaultStack. This value will be used by nested
1940 # decode blocks, and used and popped off when the current
1941 # decode_block is processed (in p_decode_block() above).
1942 def p_opt_default_0(self, t):
1943 'opt_default : empty'
1944 # no default specified: reuse the one currently at the top of
1945 # the stack
1946 self.defaultStack.push(self.defaultStack.top())
1947 # no meaningful value returned
1948 t[0] = None
1949
1950 def p_opt_default_1(self, t):
1951 'opt_default : DEFAULT inst'
1952 # push the new default
1953 codeObj = t[2]
1954 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1955 self.defaultStack.push(codeObj)
1956 # no meaningful value returned
1957 t[0] = None
1958
1959 def p_decode_stmt_list_0(self, t):
1960 'decode_stmt_list : decode_stmt'
1961 t[0] = t[1]
1962
1963 def p_decode_stmt_list_1(self, t):
1964 'decode_stmt_list : decode_stmt decode_stmt_list'
1965 if (t[1].has_decode_default and t[2].has_decode_default):
1966 error(t.lineno(1), 'Two default cases in decode block')
1967 t[0] = t[1] + t[2]
1968
1969 #
1970 # Decode statement rules
1971 #
1972 # There are four types of statements allowed in a decode block:
1973 # 1. Format blocks 'format <foo> { ... }'
1974 # 2. Nested decode blocks
1975 # 3. Instruction definitions.
1976 # 4. C preprocessor directives.
1977
1978
1979 # Preprocessor directives found in a decode statement list are
1980 # passed through to the output, replicated to all of the output
1981 # code streams. This works well for ifdefs, so we can ifdef out
1982 # both the declarations and the decode cases generated by an
1983 # instruction definition. Handling them as part of the grammar
1984 # makes it easy to keep them in the right place with respect to
1985 # the code generated by the other statements.
1986 def p_decode_stmt_cpp(self, t):
1987 'decode_stmt : CPPDIRECTIVE'
1988 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1989
1990 # A format block 'format <foo> { ... }' sets the default
1991 # instruction format used to handle instruction definitions inside
1992 # the block. This format can be overridden by using an explicit
1993 # format on the instruction definition or with a nested format
1994 # block.
1995 def p_decode_stmt_format(self, t):
1996 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1997 # The format will be pushed on the stack when 'push_format_id'
1998 # is processed (see below). Once the parser has recognized
1999 # the full production (though the right brace), we're done
2000 # with the format, so now we can pop it.
2001 self.formatStack.pop()
2002 t[0] = t[4]
2003
2004 # This rule exists so we can set the current format (& push the
2005 # stack) when we recognize the format name part of the format
2006 # block.
2007 def p_push_format_id(self, t):
2008 'push_format_id : ID'
2009 try:
2010 self.formatStack.push(self.formatMap[t[1]])
2011 t[0] = ('', '// format %s' % t[1])
2012 except KeyError:
2013 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2014
2015 # Nested decode block: if the value of the current field matches
2016 # the specified constant(s), do a nested decode on some other field.
2017 def p_decode_stmt_decode(self, t):
2018 'decode_stmt : case_list COLON decode_block'
2019 case_list = t[1]
2020 codeObj = t[3]
2021 # just wrap the decoding code from the block as a case in the
2022 # outer switch statement.
2023 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2024 codeObj.has_decode_default = (case_list == ['default:'])
2025 t[0] = codeObj
2026
2027 # Instruction definition (finally!).
2028 def p_decode_stmt_inst(self, t):
2029 'decode_stmt : case_list COLON inst SEMI'
2030 case_list = t[1]
2031 codeObj = t[3]
2032 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2033 codeObj.has_decode_default = (case_list == ['default:'])
2034 t[0] = codeObj
2035
2036 # The constant list for a decode case label must be non-empty, and must
2037 # either be the keyword 'default', or made up of one or more
2038 # comma-separated integer literals or strings which evaluate to
2039 # constants when compiled as C++.
2040 def p_case_list_0(self, t):
2041 'case_list : DEFAULT'
2042 t[0] = ['default:']
2043
2044 def prep_int_lit_case_label(self, lit):
2045 if lit >= 2**32:
2046 return 'case ULL(%#x): ' % lit
2047 else:
2048 return 'case %#x: ' % lit
2049
2050 def prep_str_lit_case_label(self, lit):
2051 return 'case %s: ' % lit
2052
2053 def p_case_list_1(self, t):
2054 'case_list : INTLIT'
2055 t[0] = [self.prep_int_lit_case_label(t[1])]
2056
2057 def p_case_list_2(self, t):
2058 'case_list : STRLIT'
2059 t[0] = [self.prep_str_lit_case_label(t[1])]
2060
2061 def p_case_list_3(self, t):
2062 'case_list : case_list COMMA INTLIT'
2063 t[0] = t[1]
2064 t[0].append(self.prep_int_lit_case_label(t[3]))
2065
2066 def p_case_list_4(self, t):
2067 'case_list : case_list COMMA STRLIT'
2068 t[0] = t[1]
2069 t[0].append(self.prep_str_lit_case_label(t[3]))
2070
2071 # Define an instruction using the current instruction format
2072 # (specified by an enclosing format block).
2073 # "<mnemonic>(<args>)"
2074 def p_inst_0(self, t):
2075 'inst : ID LPAREN arg_list RPAREN'
2076 # Pass the ID and arg list to the current format class to deal with.
2077 currentFormat = self.formatStack.top()
2078 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2079 args = ','.join(map(str, t[3]))
2080 args = re.sub('(?m)^', '//', args)
2081 args = re.sub('^//', '', args)
2082 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2083 codeObj.prepend_all(comment)
2084 t[0] = codeObj
2085
2086 # Define an instruction using an explicitly specified format:
2087 # "<fmt>::<mnemonic>(<args>)"
2088 def p_inst_1(self, t):
2089 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2090 try:
2091 format = self.formatMap[t[1]]
2092 except KeyError:
2093 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2094
2095 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2096 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2097 codeObj.prepend_all(comment)
2098 t[0] = codeObj
2099
2100 # The arg list generates a tuple, where the first element is a
2101 # list of the positional args and the second element is a dict
2102 # containing the keyword args.
2103 def p_arg_list_0(self, t):
2104 'arg_list : positional_arg_list COMMA keyword_arg_list'
2105 t[0] = ( t[1], t[3] )
2106
2107 def p_arg_list_1(self, t):
2108 'arg_list : positional_arg_list'
2109 t[0] = ( t[1], {} )
2110
2111 def p_arg_list_2(self, t):
2112 'arg_list : keyword_arg_list'
2113 t[0] = ( [], t[1] )
2114
2115 def p_positional_arg_list_0(self, t):
2116 'positional_arg_list : empty'
2117 t[0] = []
2118
2119 def p_positional_arg_list_1(self, t):
2120 'positional_arg_list : expr'
2121 t[0] = [t[1]]
2122
2123 def p_positional_arg_list_2(self, t):
2124 'positional_arg_list : positional_arg_list COMMA expr'
2125 t[0] = t[1] + [t[3]]
2126
2127 def p_keyword_arg_list_0(self, t):
2128 'keyword_arg_list : keyword_arg'
2129 t[0] = t[1]
2130
2131 def p_keyword_arg_list_1(self, t):
2132 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2133 t[0] = t[1]
2134 t[0].update(t[3])
2135
2136 def p_keyword_arg(self, t):
2137 'keyword_arg : ID EQUALS expr'
2138 t[0] = { t[1] : t[3] }
2139
2140 #
2141 # Basic expressions. These constitute the argument values of
2142 # "function calls" (i.e. instruction definitions in the decode
2143 # block) and default values for formal parameters of format
2144 # functions.
2145 #
2146 # Right now, these are either strings, integers, or (recursively)
2147 # lists of exprs (using Python square-bracket list syntax). Note
2148 # that bare identifiers are trated as string constants here (since
2149 # there isn't really a variable namespace to refer to).
2150 #
2151 def p_expr_0(self, t):
2152 '''expr : ID
2153 | INTLIT
2154 | STRLIT
2155 | CODELIT'''
2156 t[0] = t[1]
2157
2158 def p_expr_1(self, t):
2159 '''expr : LBRACKET list_expr RBRACKET'''
2160 t[0] = t[2]
2161
2162 def p_list_expr_0(self, t):
2163 'list_expr : expr'
2164 t[0] = [t[1]]
2165
2166 def p_list_expr_1(self, t):
2167 'list_expr : list_expr COMMA expr'
2168 t[0] = t[1] + [t[3]]
2169
2170 def p_list_expr_2(self, t):
2171 'list_expr : empty'
2172 t[0] = []
2173
2174 #
2175 # Empty production... use in other rules for readability.
2176 #
2177 def p_empty(self, t):
2178 'empty :'
2179 pass
2180
2181 # Parse error handler. Note that the argument here is the
2182 # offending *token*, not a grammar symbol (hence the need to use
2183 # t.value)
2184 def p_error(self, t):
2185 if t:
2186 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2187 else:
2188 error("unknown syntax error")
2189
2190 # END OF GRAMMAR RULES
2191
2192 def updateExportContext(self):
2193
2194 # create a continuation that allows us to grab the current parser
2195 def wrapInstObjParams(*args):
2196 return InstObjParams(self, *args)
2197 self.exportContext['InstObjParams'] = wrapInstObjParams
2198 self.exportContext.update(self.templateMap)
2199
2200 def defFormat(self, id, params, code, lineno):
2201 '''Define a new format'''
2202
2203 # make sure we haven't already defined this one
2204 if id in self.formatMap:
2205 error(lineno, 'format %s redefined.' % id)
2206
2207 # create new object and store in global map
2208 self.formatMap[id] = Format(id, params, code)
2209
2210 def expandCpuSymbolsToDict(self, template):
2211 '''Expand template with CPU-specific references into a
2212 dictionary with an entry for each CPU model name. The entry
2213 key is the model name and the corresponding value is the
2214 template with the CPU-specific refs substituted for that
2215 model.'''
2216
2217 # Protect '%'s that don't go with CPU-specific terms
2218 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2219 result = {}
2220 for cpu in self.cpuModels:
2221 result[cpu.name] = t % cpu.strings
2222 return result
2223
2224 def expandCpuSymbolsToString(self, template):
2225 '''*If* the template has CPU-specific references, return a
2226 single string containing a copy of the template for each CPU
2227 model with the corresponding values substituted in. If the
2228 template has no CPU-specific references, it is returned
2229 unmodified.'''
2230
2231 if template.find('%(CPU_') != -1:
2232 return reduce(lambda x,y: x+y,
2233 self.expandCpuSymbolsToDict(template).values())
2234 else:
2235 return template
2236
2237 def protectCpuSymbols(self, template):
2238 '''Protect CPU-specific references by doubling the
2239 corresponding '%'s (in preparation for substituting a different
2240 set of references into the template).'''
2241
2242 return re.sub(r'%(?=\(CPU_)', '%%', template)
2243
2244 def protectNonSubstPercents(self, s):
2245 '''Protect any non-dict-substitution '%'s in a format string
2246 (i.e. those not followed by '(')'''
2247
2248 return re.sub(r'%(?!\()', '%%', s)
2249
2250 def buildOperandNameMap(self, user_dict, lineno):
2251 operand_name = {}
2252 for op_name, val in user_dict.iteritems():
2253
2254 # Check if extra attributes have been specified.
2255 if len(val) > 9:
2256 error(lineno, 'error: too many attributes for operand "%s"' %
2257 base_cls_name)
2258
2259 # Pad val with None in case optional args are missing
2260 val += (None, None, None, None)
2261 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2262 read_code, write_code, read_predicate, write_predicate = val[:9]
2263
2264 # Canonical flag structure is a triple of lists, where each list
2265 # indicates the set of flags implied by this operand always, when
2266 # used as a source, and when used as a dest, respectively.
2267 # For simplicity this can be initialized using a variety of fairly
2268 # obvious shortcuts; we convert these to canonical form here.
2269 if not flags:
2270 # no flags specified (e.g., 'None')
2271 flags = ( [], [], [] )
2272 elif isinstance(flags, str):
2273 # a single flag: assumed to be unconditional
2274 flags = ( [ flags ], [], [] )
2275 elif isinstance(flags, list):
2276 # a list of flags: also assumed to be unconditional
2277 flags = ( flags, [], [] )
2278 elif isinstance(flags, tuple):
2279 # it's a tuple: it should be a triple,
2280 # but each item could be a single string or a list
2281 (uncond_flags, src_flags, dest_flags) = flags
2282 flags = (makeList(uncond_flags),
2283 makeList(src_flags), makeList(dest_flags))
2284
2285 # Accumulate attributes of new operand class in tmp_dict
2286 tmp_dict = {}
2287 attrList = ['reg_spec', 'flags', 'sort_pri',
2288 'read_code', 'write_code',
2289 'read_predicate', 'write_predicate']
2290 if dflt_ext:
2291 dflt_ctype = self.operandTypeMap[dflt_ext]
2292 attrList.extend(['dflt_ctype', 'dflt_ext'])
2293 for attr in attrList:
2294 tmp_dict[attr] = eval(attr)
2295 tmp_dict['base_name'] = op_name
2296
2297 # New class name will be e.g. "IntReg_Ra"
2298 cls_name = base_cls_name + '_' + op_name
2299 # Evaluate string arg to get class object. Note that the
2300 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2301 # have to append "Operand".
2302 try:
2303 base_cls = eval(base_cls_name + 'Operand')
2304 except NameError:
2305 error(lineno,
2306 'error: unknown operand base class "%s"' % base_cls_name)
2307 # The following statement creates a new class called
2308 # <cls_name> as a subclass of <base_cls> with the attributes
2309 # in tmp_dict, just as if we evaluated a class declaration.
2310 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2311
2312 self.operandNameMap = operand_name
2313
2314 # Define operand variables.
2315 operands = user_dict.keys()
2316 extensions = self.operandTypeMap.keys()
2317
2318 operandsREString = r'''
2319 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2320 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2321 (?!\w) # neg. lookahead assertion: prevent partial matches
2322 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2323
2324 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2325
2326 # Same as operandsREString, but extension is mandatory, and only two
2327 # groups are returned (base and ext, not full name as above).
2328 # Used for subtituting '_' for '.' to make C++ identifiers.
2329 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2330 % (string.join(operands, '|'), string.join(extensions, '|'))
2331
2332 self.operandsWithExtRE = \
2333 re.compile(operandsWithExtREString, re.MULTILINE)
2334
2335 def substMungedOpNames(self, code):
2336 '''Munge operand names in code string to make legal C++
2337 variable names. This means getting rid of the type extension
2338 if any. Will match base_name attribute of Operand object.)'''
2339 return self.operandsWithExtRE.sub(r'\1', code)
2340
2341 def mungeSnippet(self, s):
2342 '''Fix up code snippets for final substitution in templates.'''
2343 if isinstance(s, str):
2344 return self.substMungedOpNames(substBitOps(s))
2345 else:
2346 return s
2347
2348 def open(self, name, bare=False):
2349 '''Open the output file for writing and include scary warning.'''
2350 filename = os.path.join(self.output_dir, name)
2351 f = open(filename, 'w')
2352 if f:
2353 if not bare:
2354 f.write(ISAParser.scaremonger_template % self)
2355 return f
2356
2357 def update(self, file, contents):
2358 '''Update the output file only. Scons should handle the case when
2359 the new contents are unchanged using its built-in hash feature.'''
2360 f = self.open(file)
2361 f.write(contents)
2362 f.close()
2363
2364 # This regular expression matches '##include' directives
2365 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2366 re.MULTILINE)
2367
2368 def replace_include(self, matchobj, dirname):
2369 """Function to replace a matched '##include' directive with the
2370 contents of the specified file (with nested ##includes
2371 replaced recursively). 'matchobj' is an re match object
2372 (from a match of includeRE) and 'dirname' is the directory
2373 relative to which the file path should be resolved."""
2374
2375 fname = matchobj.group('filename')
2376 full_fname = os.path.normpath(os.path.join(dirname, fname))
2377 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2378 (full_fname, self.read_and_flatten(full_fname))
2379 return contents
2380
2381 def read_and_flatten(self, filename):
2382 """Read a file and recursively flatten nested '##include' files."""
2383
2384 current_dir = os.path.dirname(filename)
2385 try:
2386 contents = open(filename).read()
2387 except IOError:
2388 error('Error including file "%s"' % filename)
2389
2390 self.fileNameStack.push(LineTracker(filename))
2391
2392 # Find any includes and include them
2393 def replace(matchobj):
2394 return self.replace_include(matchobj, current_dir)
2395 contents = self.includeRE.sub(replace, contents)
2396
2397 self.fileNameStack.pop()
2398 return contents
2399
2400 AlreadyGenerated = {}
2401
2402 def _parse_isa_desc(self, isa_desc_file):
2403 '''Read in and parse the ISA description.'''
2404
2405 # The build system can end up running the ISA parser twice: once to
2406 # finalize the build dependencies, and then to actually generate
2407 # the files it expects (in src/arch/$ARCH/generated). This code
2408 # doesn't do anything different either time, however; the SCons
2409 # invocations just expect different things. Since this code runs
2410 # within SCons, we can just remember that we've already run and
2411 # not perform a completely unnecessary run, since the ISA parser's
2412 # effect is idempotent.
2413 if isa_desc_file in ISAParser.AlreadyGenerated:
2414 return
2415
2416 # grab the last three path components of isa_desc_file
2417 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2418
2419 # Read file and (recursively) all included files into a string.
2420 # PLY requires that the input be in a single string so we have to
2421 # do this up front.
2422 isa_desc = self.read_and_flatten(isa_desc_file)
2423
2424 # Initialize lineno tracker
2425 self.lex.lineno = LineTracker(isa_desc_file)
2426
2427 # Parse.
2428 self.parse_string(isa_desc)
2429
2430 ISAParser.AlreadyGenerated[isa_desc_file] = None
2431
2432 def parse_isa_desc(self, *args, **kwargs):
2433 try:
2434 self._parse_isa_desc(*args, **kwargs)
2435 except ISAParserError, e:
2436 print backtrace(self.fileNameStack)
2437 print "At %s:" % e.lineno
2438 print e
2439 sys.exit(1)
2440
2441 # Called as script: get args from command line.
2442 # Args are: <isa desc file> <output dir>
2443 if __name__ == '__main__':
2444 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])