ISA parser: Allow alternative read/write code for operands.
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2003-2005 The Regents of The University of Michigan
2 # All rights reserved.
3 #
4 # Redistribution and use in source and binary forms, with or without
5 # modification, are permitted provided that the following conditions are
6 # met: redistributions of source code must retain the above copyright
7 # notice, this list of conditions and the following disclaimer;
8 # redistributions in binary form must reproduce the above copyright
9 # notice, this list of conditions and the following disclaimer in the
10 # documentation and/or other materials provided with the distribution;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission.
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 #
27 # Authors: Steve Reinhardt
28
29 import os
30 import sys
31 import re
32 import string
33 import traceback
34 # get type names
35 from types import *
36
37 # Prepend the directory where the PLY lex & yacc modules are found
38 # to the search path. Assumes we're compiling in a subdirectory
39 # of 'build' in the current tree.
40 sys.path[0:0] = [os.environ['M5_PLY']]
41
42 from ply import lex
43 from ply import yacc
44
45 #####################################################################
46 #
47 # Lexer
48 #
49 # The PLY lexer module takes two things as input:
50 # - A list of token names (the string list 'tokens')
51 # - A regular expression describing a match for each token. The
52 # regexp for token FOO can be provided in two ways:
53 # - as a string variable named t_FOO
54 # - as the doc string for a function named t_FOO. In this case,
55 # the function is also executed, allowing an action to be
56 # associated with each token match.
57 #
58 #####################################################################
59
60 # Reserved words. These are listed separately as they are matched
61 # using the same regexp as generic IDs, but distinguished in the
62 # t_ID() function. The PLY documentation suggests this approach.
63 reserved = (
64 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
65 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
66 'OUTPUT', 'SIGNED', 'TEMPLATE'
67 )
68
69 # List of tokens. The lex module requires this.
70 tokens = reserved + (
71 # identifier
72 'ID',
73
74 # integer literal
75 'INTLIT',
76
77 # string literal
78 'STRLIT',
79
80 # code literal
81 'CODELIT',
82
83 # ( ) [ ] { } < > , ; . : :: *
84 'LPAREN', 'RPAREN',
85 'LBRACKET', 'RBRACKET',
86 'LBRACE', 'RBRACE',
87 'LESS', 'GREATER', 'EQUALS',
88 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
89 'ASTERISK',
90
91 # C preprocessor directives
92 'CPPDIRECTIVE'
93
94 # The following are matched but never returned. commented out to
95 # suppress PLY warning
96 # newfile directive
97 # 'NEWFILE',
98
99 # endfile directive
100 # 'ENDFILE'
101 )
102
103 # Regular expressions for token matching
104 t_LPAREN = r'\('
105 t_RPAREN = r'\)'
106 t_LBRACKET = r'\['
107 t_RBRACKET = r'\]'
108 t_LBRACE = r'\{'
109 t_RBRACE = r'\}'
110 t_LESS = r'\<'
111 t_GREATER = r'\>'
112 t_EQUALS = r'='
113 t_COMMA = r','
114 t_SEMI = r';'
115 t_DOT = r'\.'
116 t_COLON = r':'
117 t_DBLCOLON = r'::'
118 t_ASTERISK = r'\*'
119
120 # Identifiers and reserved words
121 reserved_map = { }
122 for r in reserved:
123 reserved_map[r.lower()] = r
124
125 def t_ID(t):
126 r'[A-Za-z_]\w*'
127 t.type = reserved_map.get(t.value,'ID')
128 return t
129
130 # Integer literal
131 def t_INTLIT(t):
132 r'(0x[\da-fA-F]+)|\d+'
133 try:
134 t.value = int(t.value,0)
135 except ValueError:
136 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
137 t.value = 0
138 return t
139
140 # String literal. Note that these use only single quotes, and
141 # can span multiple lines.
142 def t_STRLIT(t):
143 r"(?m)'([^'])+'"
144 # strip off quotes
145 t.value = t.value[1:-1]
146 t.lexer.lineno += t.value.count('\n')
147 return t
148
149
150 # "Code literal"... like a string literal, but delimiters are
151 # '{{' and '}}' so they get formatted nicely under emacs c-mode
152 def t_CODELIT(t):
153 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
154 # strip off {{ & }}
155 t.value = t.value[2:-2]
156 t.lexer.lineno += t.value.count('\n')
157 return t
158
159 def t_CPPDIRECTIVE(t):
160 r'^\#[^\#].*\n'
161 t.lexer.lineno += t.value.count('\n')
162 return t
163
164 def t_NEWFILE(t):
165 r'^\#\#newfile\s+"[\w/.-]*"'
166 fileNameStack.push((t.value[11:-1], t.lexer.lineno))
167 t.lexer.lineno = 0
168
169 def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (old_filename, t.lexer.lineno) = fileNameStack.pop()
172
173 #
174 # The functions t_NEWLINE, t_ignore, and t_error are
175 # special for the lex module.
176 #
177
178 # Newlines
179 def t_NEWLINE(t):
180 r'\n+'
181 t.lexer.lineno += t.value.count('\n')
182
183 # Comments
184 def t_comment(t):
185 r'//.*'
186
187 # Completely ignored characters
188 t_ignore = ' \t\x0c'
189
190 # Error handler
191 def t_error(t):
192 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195 # Build the lexer
196 lexer = lex.lex()
197
198 #####################################################################
199 #
200 # Parser
201 #
202 # Every function whose name starts with 'p_' defines a grammar rule.
203 # The rule is encoded in the function's doc string, while the
204 # function body provides the action taken when the rule is matched.
205 # The argument to each function is a list of the values of the
206 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207 # on the RHS. For tokens, the value is copied from the t.value
208 # attribute provided by the lexer. For non-terminals, the value
209 # is assigned by the producing rule; i.e., the job of the grammar
210 # rule function is to set the value for the non-terminal on the LHS
211 # (by assigning to t[0]).
212 #####################################################################
213
214 # The LHS of the first grammar rule is used as the start symbol
215 # (in this case, 'specification'). Note that this rule enforces
216 # that there will be exactly one namespace declaration, with 0 or more
217 # global defs/decls before and after it. The defs & decls before
218 # the namespace decl will be outside the namespace; those after
219 # will be inside. The decoder function is always inside the namespace.
220 def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227 StaticInstPtr
228 %(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
229 {
230 using namespace %(namespace)s;
231 ''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237 # ISA name declaration looks like "namespace <foo>;"
238 def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242 # 'opt_defs_and_outputs' is a possibly empty sequence of
243 # def and/or output statements.
244 def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248 def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252 def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256 def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260 # The list of possible definition/output statements.
261 def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_bitfield_struct
265 | def_template
266 | def_operand_types
267 | def_operands
268 | output_header
269 | output_decoder
270 | output_exec
271 | global_let'''
272 t[0] = t[1]
273
274 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
275 # directly to the appropriate output section.
276
277
278 # Protect any non-dict-substitution '%'s in a format string
279 # (i.e. those not followed by '(')
280 def protect_non_subst_percents(s):
281 return re.sub(r'%(?!\()', '%%', s)
282
283 # Massage output block by substituting in template definitions and bit
284 # operators. We handle '%'s embedded in the string that don't
285 # indicate template substitutions (or CPU-specific symbols, which get
286 # handled in GenCode) by doubling them first so that the format
287 # operation will reduce them back to single '%'s.
288 def process_output(s):
289 s = protect_non_subst_percents(s)
290 # protects cpu-specific symbols too
291 s = protect_cpu_symbols(s)
292 return substBitOps(s % templateMap)
293
294 def p_output_header(t):
295 'output_header : OUTPUT HEADER CODELIT SEMI'
296 t[0] = GenCode(header_output = process_output(t[3]))
297
298 def p_output_decoder(t):
299 'output_decoder : OUTPUT DECODER CODELIT SEMI'
300 t[0] = GenCode(decoder_output = process_output(t[3]))
301
302 def p_output_exec(t):
303 'output_exec : OUTPUT EXEC CODELIT SEMI'
304 t[0] = GenCode(exec_output = process_output(t[3]))
305
306 # global let blocks 'let {{...}}' (Python code blocks) are executed
307 # directly when seen. Note that these execute in a special variable
308 # context 'exportContext' to prevent the code from polluting this
309 # script's namespace.
310 def p_global_let(t):
311 'global_let : LET CODELIT SEMI'
312 updateExportContext()
313 exportContext["header_output"] = ''
314 exportContext["decoder_output"] = ''
315 exportContext["exec_output"] = ''
316 exportContext["decode_block"] = ''
317 try:
318 exec fixPythonIndentation(t[2]) in exportContext
319 except Exception, exc:
320 error(t.lexer.lineno,
321 'error: %s in global let block "%s".' % (exc, t[2]))
322 t[0] = GenCode(header_output = exportContext["header_output"],
323 decoder_output = exportContext["decoder_output"],
324 exec_output = exportContext["exec_output"],
325 decode_block = exportContext["decode_block"])
326
327 # Define the mapping from operand type extensions to C++ types and bit
328 # widths (stored in operandTypeMap).
329 def p_def_operand_types(t):
330 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
331 try:
332 userDict = eval('{' + t[3] + '}')
333 except Exception, exc:
334 error(t.lexer.lineno,
335 'error: %s in def operand_types block "%s".' % (exc, t[3]))
336 buildOperandTypeMap(userDict, t.lexer.lineno)
337 t[0] = GenCode() # contributes nothing to the output C++ file
338
339 # Define the mapping from operand names to operand classes and other
340 # traits. Stored in operandNameMap.
341 def p_def_operands(t):
342 'def_operands : DEF OPERANDS CODELIT SEMI'
343 if not globals().has_key('operandTypeMap'):
344 error(t.lexer.lineno,
345 'error: operand types must be defined before operands')
346 try:
347 userDict = eval('{' + t[3] + '}', exportContext)
348 except Exception, exc:
349 error(t.lexer.lineno,
350 'error: %s in def operands block "%s".' % (exc, t[3]))
351 buildOperandNameMap(userDict, t.lexer.lineno)
352 t[0] = GenCode() # contributes nothing to the output C++ file
353
354 # A bitfield definition looks like:
355 # 'def [signed] bitfield <ID> [<first>:<last>]'
356 # This generates a preprocessor macro in the output file.
357 def p_def_bitfield_0(t):
358 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
359 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
360 if (t[2] == 'signed'):
361 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
362 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
363 t[0] = GenCode(header_output = hash_define)
364
365 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
366 def p_def_bitfield_1(t):
367 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
368 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
369 if (t[2] == 'signed'):
370 expr = 'sext<%d>(%s)' % (1, expr)
371 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
372 t[0] = GenCode(header_output = hash_define)
373
374 # alternate form for structure member: 'def bitfield <ID> <ID>'
375 def p_def_bitfield_struct(t):
376 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
377 if (t[2] != ''):
378 error(t.lexer.lineno, 'error: structure bitfields are always unsigned.')
379 expr = 'machInst.%s' % t[5]
380 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
381 t[0] = GenCode(header_output = hash_define)
382
383 def p_id_with_dot_0(t):
384 'id_with_dot : ID'
385 t[0] = t[1]
386
387 def p_id_with_dot_1(t):
388 'id_with_dot : ID DOT id_with_dot'
389 t[0] = t[1] + t[2] + t[3]
390
391 def p_opt_signed_0(t):
392 'opt_signed : SIGNED'
393 t[0] = t[1]
394
395 def p_opt_signed_1(t):
396 'opt_signed : empty'
397 t[0] = ''
398
399 # Global map variable to hold templates
400 templateMap = {}
401
402 def p_def_template(t):
403 'def_template : DEF TEMPLATE ID CODELIT SEMI'
404 templateMap[t[3]] = Template(t[4])
405 t[0] = GenCode()
406
407 # An instruction format definition looks like
408 # "def format <fmt>(<params>) {{...}};"
409 def p_def_format(t):
410 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
411 (id, params, code) = (t[3], t[5], t[7])
412 defFormat(id, params, code, t.lexer.lineno)
413 t[0] = GenCode()
414
415 # The formal parameter list for an instruction format is a possibly
416 # empty list of comma-separated parameters. Positional (standard,
417 # non-keyword) parameters must come first, followed by keyword
418 # parameters, followed by a '*foo' parameter that gets excess
419 # positional arguments (as in Python). Each of these three parameter
420 # categories is optional.
421 #
422 # Note that we do not support the '**foo' parameter for collecting
423 # otherwise undefined keyword args. Otherwise the parameter list is
424 # (I believe) identical to what is supported in Python.
425 #
426 # The param list generates a tuple, where the first element is a list of
427 # the positional params and the second element is a dict containing the
428 # keyword params.
429 def p_param_list_0(t):
430 'param_list : positional_param_list COMMA nonpositional_param_list'
431 t[0] = t[1] + t[3]
432
433 def p_param_list_1(t):
434 '''param_list : positional_param_list
435 | nonpositional_param_list'''
436 t[0] = t[1]
437
438 def p_positional_param_list_0(t):
439 'positional_param_list : empty'
440 t[0] = []
441
442 def p_positional_param_list_1(t):
443 'positional_param_list : ID'
444 t[0] = [t[1]]
445
446 def p_positional_param_list_2(t):
447 'positional_param_list : positional_param_list COMMA ID'
448 t[0] = t[1] + [t[3]]
449
450 def p_nonpositional_param_list_0(t):
451 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
452 t[0] = t[1] + t[3]
453
454 def p_nonpositional_param_list_1(t):
455 '''nonpositional_param_list : keyword_param_list
456 | excess_args_param'''
457 t[0] = t[1]
458
459 def p_keyword_param_list_0(t):
460 'keyword_param_list : keyword_param'
461 t[0] = [t[1]]
462
463 def p_keyword_param_list_1(t):
464 'keyword_param_list : keyword_param_list COMMA keyword_param'
465 t[0] = t[1] + [t[3]]
466
467 def p_keyword_param(t):
468 'keyword_param : ID EQUALS expr'
469 t[0] = t[1] + ' = ' + t[3].__repr__()
470
471 def p_excess_args_param(t):
472 'excess_args_param : ASTERISK ID'
473 # Just concatenate them: '*ID'. Wrap in list to be consistent
474 # with positional_param_list and keyword_param_list.
475 t[0] = [t[1] + t[2]]
476
477 # End of format definition-related rules.
478 ##############
479
480 #
481 # A decode block looks like:
482 # decode <field1> [, <field2>]* [default <inst>] { ... }
483 #
484 def p_decode_block(t):
485 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
486 default_defaults = defaultStack.pop()
487 codeObj = t[5]
488 # use the "default defaults" only if there was no explicit
489 # default statement in decode_stmt_list
490 if not codeObj.has_decode_default:
491 codeObj += default_defaults
492 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
493 t[0] = codeObj
494
495 # The opt_default statement serves only to push the "default defaults"
496 # onto defaultStack. This value will be used by nested decode blocks,
497 # and used and popped off when the current decode_block is processed
498 # (in p_decode_block() above).
499 def p_opt_default_0(t):
500 'opt_default : empty'
501 # no default specified: reuse the one currently at the top of the stack
502 defaultStack.push(defaultStack.top())
503 # no meaningful value returned
504 t[0] = None
505
506 def p_opt_default_1(t):
507 'opt_default : DEFAULT inst'
508 # push the new default
509 codeObj = t[2]
510 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
511 defaultStack.push(codeObj)
512 # no meaningful value returned
513 t[0] = None
514
515 def p_decode_stmt_list_0(t):
516 'decode_stmt_list : decode_stmt'
517 t[0] = t[1]
518
519 def p_decode_stmt_list_1(t):
520 'decode_stmt_list : decode_stmt decode_stmt_list'
521 if (t[1].has_decode_default and t[2].has_decode_default):
522 error(t.lexer.lineno, 'Two default cases in decode block')
523 t[0] = t[1] + t[2]
524
525 #
526 # Decode statement rules
527 #
528 # There are four types of statements allowed in a decode block:
529 # 1. Format blocks 'format <foo> { ... }'
530 # 2. Nested decode blocks
531 # 3. Instruction definitions.
532 # 4. C preprocessor directives.
533
534
535 # Preprocessor directives found in a decode statement list are passed
536 # through to the output, replicated to all of the output code
537 # streams. This works well for ifdefs, so we can ifdef out both the
538 # declarations and the decode cases generated by an instruction
539 # definition. Handling them as part of the grammar makes it easy to
540 # keep them in the right place with respect to the code generated by
541 # the other statements.
542 def p_decode_stmt_cpp(t):
543 'decode_stmt : CPPDIRECTIVE'
544 t[0] = GenCode(t[1], t[1], t[1], t[1])
545
546 # A format block 'format <foo> { ... }' sets the default instruction
547 # format used to handle instruction definitions inside the block.
548 # This format can be overridden by using an explicit format on the
549 # instruction definition or with a nested format block.
550 def p_decode_stmt_format(t):
551 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
552 # The format will be pushed on the stack when 'push_format_id' is
553 # processed (see below). Once the parser has recognized the full
554 # production (though the right brace), we're done with the format,
555 # so now we can pop it.
556 formatStack.pop()
557 t[0] = t[4]
558
559 # This rule exists so we can set the current format (& push the stack)
560 # when we recognize the format name part of the format block.
561 def p_push_format_id(t):
562 'push_format_id : ID'
563 try:
564 formatStack.push(formatMap[t[1]])
565 t[0] = ('', '// format %s' % t[1])
566 except KeyError:
567 error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
568
569 # Nested decode block: if the value of the current field matches the
570 # specified constant, do a nested decode on some other field.
571 def p_decode_stmt_decode(t):
572 'decode_stmt : case_label COLON decode_block'
573 label = t[1]
574 codeObj = t[3]
575 # just wrap the decoding code from the block as a case in the
576 # outer switch statement.
577 codeObj.wrap_decode_block('\n%s:\n' % label)
578 codeObj.has_decode_default = (label == 'default')
579 t[0] = codeObj
580
581 # Instruction definition (finally!).
582 def p_decode_stmt_inst(t):
583 'decode_stmt : case_label COLON inst SEMI'
584 label = t[1]
585 codeObj = t[3]
586 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
587 codeObj.has_decode_default = (label == 'default')
588 t[0] = codeObj
589
590 # The case label is either a list of one or more constants or 'default'
591 def p_case_label_0(t):
592 'case_label : intlit_list'
593 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
594
595 def p_case_label_1(t):
596 'case_label : DEFAULT'
597 t[0] = 'default'
598
599 #
600 # The constant list for a decode case label must be non-empty, but may have
601 # one or more comma-separated integer literals in it.
602 #
603 def p_intlit_list_0(t):
604 'intlit_list : INTLIT'
605 t[0] = [t[1]]
606
607 def p_intlit_list_1(t):
608 'intlit_list : intlit_list COMMA INTLIT'
609 t[0] = t[1]
610 t[0].append(t[3])
611
612 # Define an instruction using the current instruction format (specified
613 # by an enclosing format block).
614 # "<mnemonic>(<args>)"
615 def p_inst_0(t):
616 'inst : ID LPAREN arg_list RPAREN'
617 # Pass the ID and arg list to the current format class to deal with.
618 currentFormat = formatStack.top()
619 codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
620 args = ','.join(map(str, t[3]))
621 args = re.sub('(?m)^', '//', args)
622 args = re.sub('^//', '', args)
623 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
624 codeObj.prepend_all(comment)
625 t[0] = codeObj
626
627 # Define an instruction using an explicitly specified format:
628 # "<fmt>::<mnemonic>(<args>)"
629 def p_inst_1(t):
630 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
631 try:
632 format = formatMap[t[1]]
633 except KeyError:
634 error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
635 codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
636 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
637 codeObj.prepend_all(comment)
638 t[0] = codeObj
639
640 # The arg list generates a tuple, where the first element is a list of
641 # the positional args and the second element is a dict containing the
642 # keyword args.
643 def p_arg_list_0(t):
644 'arg_list : positional_arg_list COMMA keyword_arg_list'
645 t[0] = ( t[1], t[3] )
646
647 def p_arg_list_1(t):
648 'arg_list : positional_arg_list'
649 t[0] = ( t[1], {} )
650
651 def p_arg_list_2(t):
652 'arg_list : keyword_arg_list'
653 t[0] = ( [], t[1] )
654
655 def p_positional_arg_list_0(t):
656 'positional_arg_list : empty'
657 t[0] = []
658
659 def p_positional_arg_list_1(t):
660 'positional_arg_list : expr'
661 t[0] = [t[1]]
662
663 def p_positional_arg_list_2(t):
664 'positional_arg_list : positional_arg_list COMMA expr'
665 t[0] = t[1] + [t[3]]
666
667 def p_keyword_arg_list_0(t):
668 'keyword_arg_list : keyword_arg'
669 t[0] = t[1]
670
671 def p_keyword_arg_list_1(t):
672 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
673 t[0] = t[1]
674 t[0].update(t[3])
675
676 def p_keyword_arg(t):
677 'keyword_arg : ID EQUALS expr'
678 t[0] = { t[1] : t[3] }
679
680 #
681 # Basic expressions. These constitute the argument values of
682 # "function calls" (i.e. instruction definitions in the decode block)
683 # and default values for formal parameters of format functions.
684 #
685 # Right now, these are either strings, integers, or (recursively)
686 # lists of exprs (using Python square-bracket list syntax). Note that
687 # bare identifiers are trated as string constants here (since there
688 # isn't really a variable namespace to refer to).
689 #
690 def p_expr_0(t):
691 '''expr : ID
692 | INTLIT
693 | STRLIT
694 | CODELIT'''
695 t[0] = t[1]
696
697 def p_expr_1(t):
698 '''expr : LBRACKET list_expr RBRACKET'''
699 t[0] = t[2]
700
701 def p_list_expr_0(t):
702 'list_expr : expr'
703 t[0] = [t[1]]
704
705 def p_list_expr_1(t):
706 'list_expr : list_expr COMMA expr'
707 t[0] = t[1] + [t[3]]
708
709 def p_list_expr_2(t):
710 'list_expr : empty'
711 t[0] = []
712
713 #
714 # Empty production... use in other rules for readability.
715 #
716 def p_empty(t):
717 'empty :'
718 pass
719
720 # Parse error handler. Note that the argument here is the offending
721 # *token*, not a grammar symbol (hence the need to use t.value)
722 def p_error(t):
723 if t:
724 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
725 else:
726 error(0, "unknown syntax error", True)
727
728 # END OF GRAMMAR RULES
729 #
730 # Now build the parser.
731 parser = yacc.yacc()
732
733
734 #####################################################################
735 #
736 # Support Classes
737 #
738 #####################################################################
739
740 # Expand template with CPU-specific references into a dictionary with
741 # an entry for each CPU model name. The entry key is the model name
742 # and the corresponding value is the template with the CPU-specific
743 # refs substituted for that model.
744 def expand_cpu_symbols_to_dict(template):
745 # Protect '%'s that don't go with CPU-specific terms
746 t = re.sub(r'%(?!\(CPU_)', '%%', template)
747 result = {}
748 for cpu in cpu_models:
749 result[cpu.name] = t % cpu.strings
750 return result
751
752 # *If* the template has CPU-specific references, return a single
753 # string containing a copy of the template for each CPU model with the
754 # corresponding values substituted in. If the template has no
755 # CPU-specific references, it is returned unmodified.
756 def expand_cpu_symbols_to_string(template):
757 if template.find('%(CPU_') != -1:
758 return reduce(lambda x,y: x+y,
759 expand_cpu_symbols_to_dict(template).values())
760 else:
761 return template
762
763 # Protect CPU-specific references by doubling the corresponding '%'s
764 # (in preparation for substituting a different set of references into
765 # the template).
766 def protect_cpu_symbols(template):
767 return re.sub(r'%(?=\(CPU_)', '%%', template)
768
769 ###############
770 # GenCode class
771 #
772 # The GenCode class encapsulates generated code destined for various
773 # output files. The header_output and decoder_output attributes are
774 # strings containing code destined for decoder.hh and decoder.cc
775 # respectively. The decode_block attribute contains code to be
776 # incorporated in the decode function itself (that will also end up in
777 # decoder.cc). The exec_output attribute is a dictionary with a key
778 # for each CPU model name; the value associated with a particular key
779 # is the string of code for that CPU model's exec.cc file. The
780 # has_decode_default attribute is used in the decode block to allow
781 # explicit default clauses to override default default clauses.
782
783 class GenCode:
784 # Constructor. At this point we substitute out all CPU-specific
785 # symbols. For the exec output, these go into the per-model
786 # dictionary. For all other output types they get collapsed into
787 # a single string.
788 def __init__(self,
789 header_output = '', decoder_output = '', exec_output = '',
790 decode_block = '', has_decode_default = False):
791 self.header_output = expand_cpu_symbols_to_string(header_output)
792 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
793 if isinstance(exec_output, dict):
794 self.exec_output = exec_output
795 elif isinstance(exec_output, str):
796 # If the exec_output arg is a single string, we replicate
797 # it for each of the CPU models, substituting and
798 # %(CPU_foo)s params appropriately.
799 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
800 self.decode_block = expand_cpu_symbols_to_string(decode_block)
801 self.has_decode_default = has_decode_default
802
803 # Override '+' operator: generate a new GenCode object that
804 # concatenates all the individual strings in the operands.
805 def __add__(self, other):
806 exec_output = {}
807 for cpu in cpu_models:
808 n = cpu.name
809 exec_output[n] = self.exec_output[n] + other.exec_output[n]
810 return GenCode(self.header_output + other.header_output,
811 self.decoder_output + other.decoder_output,
812 exec_output,
813 self.decode_block + other.decode_block,
814 self.has_decode_default or other.has_decode_default)
815
816 # Prepend a string (typically a comment) to all the strings.
817 def prepend_all(self, pre):
818 self.header_output = pre + self.header_output
819 self.decoder_output = pre + self.decoder_output
820 self.decode_block = pre + self.decode_block
821 for cpu in cpu_models:
822 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
823
824 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
825 # and 'break;'). Used to build the big nested switch statement.
826 def wrap_decode_block(self, pre, post = ''):
827 self.decode_block = pre + indent(self.decode_block) + post
828
829 ################
830 # Format object.
831 #
832 # A format object encapsulates an instruction format. It must provide
833 # a defineInst() method that generates the code for an instruction
834 # definition.
835
836 exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
837
838 exportContext = {}
839
840 def updateExportContext():
841 exportContext.update(exportDict(*exportContextSymbols))
842 exportContext.update(templateMap)
843
844 def exportDict(*symNames):
845 return dict([(s, eval(s)) for s in symNames])
846
847
848 class Format:
849 def __init__(self, id, params, code):
850 # constructor: just save away arguments
851 self.id = id
852 self.params = params
853 label = 'def format ' + id
854 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
855 param_list = string.join(params, ", ")
856 f = '''def defInst(_code, _context, %s):
857 my_locals = vars().copy()
858 exec _code in _context, my_locals
859 return my_locals\n''' % param_list
860 c = compile(f, label + ' wrapper', 'exec')
861 exec c
862 self.func = defInst
863
864 def defineInst(self, name, args, lineno):
865 context = {}
866 updateExportContext()
867 context.update(exportContext)
868 if len(name):
869 Name = name[0].upper()
870 if len(name) > 1:
871 Name += name[1:]
872 context.update({ 'name': name, 'Name': Name })
873 try:
874 vars = self.func(self.user_code, context, *args[0], **args[1])
875 except Exception, exc:
876 error(lineno, 'error defining "%s": %s.' % (name, exc))
877 for k in vars.keys():
878 if k not in ('header_output', 'decoder_output',
879 'exec_output', 'decode_block'):
880 del vars[k]
881 return GenCode(**vars)
882
883 # Special null format to catch an implicit-format instruction
884 # definition outside of any format block.
885 class NoFormat:
886 def __init__(self):
887 self.defaultInst = ''
888
889 def defineInst(self, name, args, lineno):
890 error(lineno,
891 'instruction definition "%s" with no active format!' % name)
892
893 # This dictionary maps format name strings to Format objects.
894 formatMap = {}
895
896 # Define a new format
897 def defFormat(id, params, code, lineno):
898 # make sure we haven't already defined this one
899 if formatMap.get(id, None) != None:
900 error(lineno, 'format %s redefined.' % id)
901 # create new object and store in global map
902 formatMap[id] = Format(id, params, code)
903
904
905 ##############
906 # Stack: a simple stack object. Used for both formats (formatStack)
907 # and default cases (defaultStack). Simply wraps a list to give more
908 # stack-like syntax and enable initialization with an argument list
909 # (as opposed to an argument that's a list).
910
911 class Stack(list):
912 def __init__(self, *items):
913 list.__init__(self, items)
914
915 def push(self, item):
916 self.append(item);
917
918 def top(self):
919 return self[-1]
920
921 # The global format stack.
922 formatStack = Stack(NoFormat())
923
924 # The global default case stack.
925 defaultStack = Stack( None )
926
927 # Global stack that tracks current file and line number.
928 # Each element is a tuple (filename, lineno) that records the
929 # *current* filename and the line number in the *previous* file where
930 # it was included.
931 fileNameStack = Stack()
932
933 ###################
934 # Utility functions
935
936 #
937 # Indent every line in string 's' by two spaces
938 # (except preprocessor directives).
939 # Used to make nested code blocks look pretty.
940 #
941 def indent(s):
942 return re.sub(r'(?m)^(?!#)', ' ', s)
943
944 #
945 # Munge a somewhat arbitrarily formatted piece of Python code
946 # (e.g. from a format 'let' block) into something whose indentation
947 # will get by the Python parser.
948 #
949 # The two keys here are that Python will give a syntax error if
950 # there's any whitespace at the beginning of the first line, and that
951 # all lines at the same lexical nesting level must have identical
952 # indentation. Unfortunately the way code literals work, an entire
953 # let block tends to have some initial indentation. Rather than
954 # trying to figure out what that is and strip it off, we prepend 'if
955 # 1:' to make the let code the nested block inside the if (and have
956 # the parser automatically deal with the indentation for us).
957 #
958 # We don't want to do this if (1) the code block is empty or (2) the
959 # first line of the block doesn't have any whitespace at the front.
960
961 def fixPythonIndentation(s):
962 # get rid of blank lines first
963 s = re.sub(r'(?m)^\s*\n', '', s);
964 if (s != '' and re.match(r'[ \t]', s[0])):
965 s = 'if 1:\n' + s
966 return s
967
968 # Error handler. Just call exit. Output formatted to work under
969 # Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
970 # prints a Python stack backtrace too (can be handy when trying to
971 # debug the parser itself).
972 def error(lineno, string, print_traceback = False):
973 spaces = ""
974 for (filename, line) in fileNameStack[0:-1]:
975 print spaces + "In file included from " + filename + ":"
976 spaces += " "
977 # Print a Python stack backtrace if requested.
978 if (print_traceback):
979 traceback.print_exc()
980 if lineno != 0:
981 line_str = "%d:" % lineno
982 else:
983 line_str = ""
984 sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
985
986
987 #####################################################################
988 #
989 # Bitfield Operator Support
990 #
991 #####################################################################
992
993 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
994
995 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
996 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
997
998 def substBitOps(code):
999 # first convert single-bit selectors to two-index form
1000 # i.e., <n> --> <n:n>
1001 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
1002 # simple case: selector applied to ID (name)
1003 # i.e., foo<a:b> --> bits(foo, a, b)
1004 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
1005 # if selector is applied to expression (ending in ')'),
1006 # we need to search backward for matching '('
1007 match = bitOpExprRE.search(code)
1008 while match:
1009 exprEnd = match.start()
1010 here = exprEnd - 1
1011 nestLevel = 1
1012 while nestLevel > 0:
1013 if code[here] == '(':
1014 nestLevel -= 1
1015 elif code[here] == ')':
1016 nestLevel += 1
1017 here -= 1
1018 if here < 0:
1019 sys.exit("Didn't find '('!")
1020 exprStart = here+1
1021 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
1022 match.group(1), match.group(2))
1023 code = code[:exprStart] + newExpr + code[match.end():]
1024 match = bitOpExprRE.search(code)
1025 return code
1026
1027
1028 ####################
1029 # Template objects.
1030 #
1031 # Template objects are format strings that allow substitution from
1032 # the attribute spaces of other objects (e.g. InstObjParams instances).
1033
1034 labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
1035
1036 class Template:
1037 def __init__(self, t):
1038 self.template = t
1039
1040 def subst(self, d):
1041 myDict = None
1042
1043 # Protect non-Python-dict substitutions (e.g. if there's a printf
1044 # in the templated C++ code)
1045 template = protect_non_subst_percents(self.template)
1046 # CPU-model-specific substitutions are handled later (in GenCode).
1047 template = protect_cpu_symbols(template)
1048
1049 # Build a dict ('myDict') to use for the template substitution.
1050 # Start with the template namespace. Make a copy since we're
1051 # going to modify it.
1052 myDict = templateMap.copy()
1053
1054 if isinstance(d, InstObjParams):
1055 # If we're dealing with an InstObjParams object, we need
1056 # to be a little more sophisticated. The instruction-wide
1057 # parameters are already formed, but the parameters which
1058 # are only function wide still need to be generated.
1059 compositeCode = ''
1060
1061 myDict.update(d.__dict__)
1062 # The "operands" and "snippets" attributes of the InstObjParams
1063 # objects are for internal use and not substitution.
1064 del myDict['operands']
1065 del myDict['snippets']
1066
1067 snippetLabels = [l for l in labelRE.findall(template)
1068 if d.snippets.has_key(l)]
1069
1070 snippets = dict([(s, mungeSnippet(d.snippets[s]))
1071 for s in snippetLabels])
1072
1073 myDict.update(snippets)
1074
1075 compositeCode = ' '.join(map(str, snippets.values()))
1076
1077 # Add in template itself in case it references any
1078 # operands explicitly (like Mem)
1079 compositeCode += ' ' + template
1080
1081 operands = SubOperandList(compositeCode, d.operands)
1082
1083 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
1084
1085 is_src = lambda op: op.is_src
1086 is_dest = lambda op: op.is_dest
1087
1088 myDict['op_src_decl'] = \
1089 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1090 myDict['op_dest_decl'] = \
1091 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1092
1093 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
1094 myDict['op_wb'] = operands.concatAttrStrings('op_wb')
1095
1096 if d.operands.memOperand:
1097 myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
1098 myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
1099
1100 elif isinstance(d, dict):
1101 # if the argument is a dictionary, we just use it.
1102 myDict.update(d)
1103 elif hasattr(d, '__dict__'):
1104 # if the argument is an object, we use its attribute map.
1105 myDict.update(d.__dict__)
1106 else:
1107 raise TypeError, "Template.subst() arg must be or have dictionary"
1108 return template % myDict
1109
1110 # Convert to string. This handles the case when a template with a
1111 # CPU-specific term gets interpolated into another template or into
1112 # an output block.
1113 def __str__(self):
1114 return expand_cpu_symbols_to_string(self.template)
1115
1116 #####################################################################
1117 #
1118 # Code Parser
1119 #
1120 # The remaining code is the support for automatically extracting
1121 # instruction characteristics from pseudocode.
1122 #
1123 #####################################################################
1124
1125 # Force the argument to be a list. Useful for flags, where a caller
1126 # can specify a singleton flag or a list of flags. Also usful for
1127 # converting tuples to lists so they can be modified.
1128 def makeList(arg):
1129 if isinstance(arg, list):
1130 return arg
1131 elif isinstance(arg, tuple):
1132 return list(arg)
1133 elif not arg:
1134 return []
1135 else:
1136 return [ arg ]
1137
1138 # Generate operandTypeMap from the user's 'def operand_types'
1139 # statement.
1140 def buildOperandTypeMap(userDict, lineno):
1141 global operandTypeMap
1142 operandTypeMap = {}
1143 for (ext, (desc, size)) in userDict.iteritems():
1144 if desc == 'signed int':
1145 ctype = 'int%d_t' % size
1146 is_signed = 1
1147 elif desc == 'unsigned int':
1148 ctype = 'uint%d_t' % size
1149 is_signed = 0
1150 elif desc == 'float':
1151 is_signed = 1 # shouldn't really matter
1152 if size == 32:
1153 ctype = 'float'
1154 elif size == 64:
1155 ctype = 'double'
1156 elif desc == 'twin64 int':
1157 is_signed = 0
1158 ctype = 'Twin64_t'
1159 elif desc == 'twin32 int':
1160 is_signed = 0
1161 ctype = 'Twin32_t'
1162 if ctype == '':
1163 error(lineno, 'Unrecognized type description "%s" in userDict')
1164 operandTypeMap[ext] = (size, ctype, is_signed)
1165
1166 #
1167 #
1168 #
1169 # Base class for operand descriptors. An instance of this class (or
1170 # actually a class derived from this one) represents a specific
1171 # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1172 # derived classes encapsulates the traits of a particular operand type
1173 # (e.g., "32-bit integer register").
1174 #
1175 class Operand(object):
1176 def buildReadCode(self, func = None, width = None):
1177 code = self.read_code % {"name": self.base_name,
1178 "func": func,
1179 "width": width,
1180 "op_idx": self.src_reg_idx,
1181 "reg_idx": self.reg_spec,
1182 "size": self.size,
1183 "ctype": self.ctype}
1184 if self.size != self.dflt_size:
1185 return '%s = bits(%s, %d, 0);\n' % \
1186 (self.base_name, code, self.size-1)
1187 else:
1188 return '%s = %s;\n' % \
1189 (self.base_name, code)
1190
1191 def buildWriteCode(self, func = None, width = None):
1192 if (self.size != self.dflt_size and self.is_signed):
1193 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1194 else:
1195 final_val = self.base_name
1196 code = self.write_code % {"name": self.base_name,
1197 "func": func,
1198 "width": width,
1199 "op_idx": self.dest_reg_idx,
1200 "reg_idx": self.reg_spec,
1201 "size": self.size,
1202 "ctype": self.ctype,
1203 "final_val": final_val}
1204 return '''
1205 {
1206 %s final_val = %s;
1207 %s;
1208 if (traceData) { traceData->setData(final_val); }
1209 }''' % (self.dflt_ctype, final_val, code)
1210
1211 def __init__(self, full_name, ext, is_src, is_dest):
1212 self.full_name = full_name
1213 self.ext = ext
1214 self.is_src = is_src
1215 self.is_dest = is_dest
1216 # The 'effective extension' (eff_ext) is either the actual
1217 # extension, if one was explicitly provided, or the default.
1218 if ext:
1219 self.eff_ext = ext
1220 else:
1221 self.eff_ext = self.dflt_ext
1222
1223 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1224
1225 # note that mem_acc_size is undefined for non-mem operands...
1226 # template must be careful not to use it if it doesn't apply.
1227 if self.isMem():
1228 self.mem_acc_size = self.makeAccSize()
1229 if self.ctype in ['Twin32_t', 'Twin64_t']:
1230 self.mem_acc_type = 'Twin'
1231 else:
1232 self.mem_acc_type = 'uint'
1233
1234 # Finalize additional fields (primarily code fields). This step
1235 # is done separately since some of these fields may depend on the
1236 # register index enumeration that hasn't been performed yet at the
1237 # time of __init__().
1238 def finalize(self):
1239 self.flags = self.getFlags()
1240 self.constructor = self.makeConstructor()
1241 self.op_decl = self.makeDecl()
1242
1243 if self.is_src:
1244 self.op_rd = self.makeRead()
1245 self.op_src_decl = self.makeDecl()
1246 else:
1247 self.op_rd = ''
1248 self.op_src_decl = ''
1249
1250 if self.is_dest:
1251 self.op_wb = self.makeWrite()
1252 self.op_dest_decl = self.makeDecl()
1253 else:
1254 self.op_wb = ''
1255 self.op_dest_decl = ''
1256
1257 def isMem(self):
1258 return 0
1259
1260 def isReg(self):
1261 return 0
1262
1263 def isFloatReg(self):
1264 return 0
1265
1266 def isIntReg(self):
1267 return 0
1268
1269 def isControlReg(self):
1270 return 0
1271
1272 def isIControlReg(self):
1273 return 0
1274
1275 def getFlags(self):
1276 # note the empty slice '[:]' gives us a copy of self.flags[0]
1277 # instead of a reference to it
1278 my_flags = self.flags[0][:]
1279 if self.is_src:
1280 my_flags += self.flags[1]
1281 if self.is_dest:
1282 my_flags += self.flags[2]
1283 return my_flags
1284
1285 def makeDecl(self):
1286 # Note that initializations in the declarations are solely
1287 # to avoid 'uninitialized variable' errors from the compiler.
1288 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1289
1290 class IntRegOperand(Operand):
1291 def isReg(self):
1292 return 1
1293
1294 def isIntReg(self):
1295 return 1
1296
1297 def makeConstructor(self):
1298 c = ''
1299 if self.is_src:
1300 c += '\n\t_srcRegIdx[%d] = %s;' % \
1301 (self.src_reg_idx, self.reg_spec)
1302 if self.is_dest:
1303 c += '\n\t_destRegIdx[%d] = %s;' % \
1304 (self.dest_reg_idx, self.reg_spec)
1305 return c
1306
1307 def makeRead(self):
1308 if (self.ctype == 'float' or self.ctype == 'double'):
1309 error(0, 'Attempt to read integer register as FP')
1310 if self.read_code != None:
1311 return self.buildReadCode('readIntRegOperand')
1312 if (self.size == self.dflt_size):
1313 return '%s = xc->readIntRegOperand(this, %d);\n' % \
1314 (self.base_name, self.src_reg_idx)
1315 elif (self.size > self.dflt_size):
1316 int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
1317 (self.src_reg_idx)
1318 if (self.is_signed):
1319 int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1320 return '%s = %s;\n' % (self.base_name, int_reg_val)
1321 else:
1322 return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
1323 (self.base_name, self.src_reg_idx, self.size-1)
1324
1325 def makeWrite(self):
1326 if (self.ctype == 'float' or self.ctype == 'double'):
1327 error(0, 'Attempt to write integer register as FP')
1328 if self.write_code != None:
1329 return self.buildWriteCode('setIntRegOperand')
1330 if (self.size != self.dflt_size and self.is_signed):
1331 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1332 else:
1333 final_val = self.base_name
1334 wb = '''
1335 {
1336 %s final_val = %s;
1337 xc->setIntRegOperand(this, %d, final_val);\n
1338 if (traceData) { traceData->setData(final_val); }
1339 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1340 return wb
1341
1342 class FloatRegOperand(Operand):
1343 def isReg(self):
1344 return 1
1345
1346 def isFloatReg(self):
1347 return 1
1348
1349 def makeConstructor(self):
1350 c = ''
1351 if self.is_src:
1352 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1353 (self.src_reg_idx, self.reg_spec)
1354 if self.is_dest:
1355 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1356 (self.dest_reg_idx, self.reg_spec)
1357 return c
1358
1359 def makeRead(self):
1360 bit_select = 0
1361 width = 0;
1362 if (self.ctype == 'float'):
1363 func = 'readFloatRegOperand'
1364 width = 32;
1365 elif (self.ctype == 'double'):
1366 func = 'readFloatRegOperand'
1367 width = 64;
1368 else:
1369 func = 'readFloatRegOperandBits'
1370 if (self.ctype == 'uint32_t'):
1371 width = 32;
1372 elif (self.ctype == 'uint64_t'):
1373 width = 64;
1374 if (self.size != self.dflt_size):
1375 bit_select = 1
1376 if width:
1377 base = 'xc->%s(this, %d, %d)' % \
1378 (func, self.src_reg_idx, width)
1379 else:
1380 base = 'xc->%s(this, %d)' % \
1381 (func, self.src_reg_idx)
1382 if self.read_code != None:
1383 return self.buildReadCode(func, width)
1384 if bit_select:
1385 return '%s = bits(%s, %d, 0);\n' % \
1386 (self.base_name, base, self.size-1)
1387 else:
1388 return '%s = %s;\n' % (self.base_name, base)
1389
1390 def makeWrite(self):
1391 final_val = self.base_name
1392 final_ctype = self.ctype
1393 widthSpecifier = ''
1394 width = 0
1395 if (self.ctype == 'float'):
1396 width = 32
1397 func = 'setFloatRegOperand'
1398 elif (self.ctype == 'double'):
1399 width = 64
1400 func = 'setFloatRegOperand'
1401 elif (self.ctype == 'uint32_t'):
1402 func = 'setFloatRegOperandBits'
1403 width = 32
1404 elif (self.ctype == 'uint64_t'):
1405 func = 'setFloatRegOperandBits'
1406 width = 64
1407 else:
1408 func = 'setFloatRegOperandBits'
1409 final_ctype = 'uint%d_t' % self.dflt_size
1410 if (self.size != self.dflt_size and self.is_signed):
1411 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1412 if self.write_code != None:
1413 return self.buildWriteCode(func, width)
1414 if width:
1415 widthSpecifier = ', %d' % width
1416 wb = '''
1417 {
1418 %s final_val = %s;
1419 xc->%s(this, %d, final_val%s);\n
1420 if (traceData) { traceData->setData(final_val); }
1421 }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1422 widthSpecifier)
1423 return wb
1424
1425 class ControlRegOperand(Operand):
1426 def isReg(self):
1427 return 1
1428
1429 def isControlReg(self):
1430 return 1
1431
1432 def makeConstructor(self):
1433 c = ''
1434 if self.is_src:
1435 c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1436 (self.src_reg_idx, self.reg_spec)
1437 if self.is_dest:
1438 c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1439 (self.dest_reg_idx, self.reg_spec)
1440 return c
1441
1442 def makeRead(self):
1443 bit_select = 0
1444 if (self.ctype == 'float' or self.ctype == 'double'):
1445 error(0, 'Attempt to read control register as FP')
1446 if self.read_code != None:
1447 return self.buildReadCode('readMiscRegOperand')
1448 base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
1449 if self.size == self.dflt_size:
1450 return '%s = %s;\n' % (self.base_name, base)
1451 else:
1452 return '%s = bits(%s, %d, 0);\n' % \
1453 (self.base_name, base, self.size-1)
1454
1455 def makeWrite(self):
1456 if (self.ctype == 'float' or self.ctype == 'double'):
1457 error(0, 'Attempt to write control register as FP')
1458 if self.write_code != None:
1459 return self.buildWriteCode('setMiscRegOperand')
1460 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
1461 (self.dest_reg_idx, self.base_name)
1462 wb += 'if (traceData) { traceData->setData(%s); }' % \
1463 self.base_name
1464 return wb
1465
1466 class IControlRegOperand(Operand):
1467 def isReg(self):
1468 return 1
1469
1470 def isIControlReg(self):
1471 return 1
1472
1473 def makeConstructor(self):
1474 c = ''
1475 if self.is_src:
1476 c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1477 (self.src_reg_idx, self.reg_spec)
1478 if self.is_dest:
1479 c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1480 (self.dest_reg_idx, self.reg_spec)
1481 return c
1482
1483 def makeRead(self):
1484 bit_select = 0
1485 if (self.ctype == 'float' or self.ctype == 'double'):
1486 error(0, 'Attempt to read control register as FP')
1487 if self.read_code != None:
1488 return self.buildReadCode('readMiscReg')
1489 base = 'xc->readMiscReg(%s)' % self.reg_spec
1490 if self.size == self.dflt_size:
1491 return '%s = %s;\n' % (self.base_name, base)
1492 else:
1493 return '%s = bits(%s, %d, 0);\n' % \
1494 (self.base_name, base, self.size-1)
1495
1496 def makeWrite(self):
1497 if (self.ctype == 'float' or self.ctype == 'double'):
1498 error(0, 'Attempt to write control register as FP')
1499 if self.write_code != None:
1500 return self.buildWriteCode('setMiscReg')
1501 wb = 'xc->setMiscReg(%s, %s);\n' % \
1502 (self.reg_spec, self.base_name)
1503 wb += 'if (traceData) { traceData->setData(%s); }' % \
1504 self.base_name
1505 return wb
1506
1507 class ControlBitfieldOperand(ControlRegOperand):
1508 def makeRead(self):
1509 bit_select = 0
1510 if (self.ctype == 'float' or self.ctype == 'double'):
1511 error(0, 'Attempt to read control register as FP')
1512 if self.read_code != None:
1513 return self.buildReadCode('readMiscReg')
1514 base = 'xc->readMiscReg(%s)' % self.reg_spec
1515 name = self.base_name
1516 return '%s = bits(%s, %s_HI, %s_LO);' % \
1517 (name, base, name, name)
1518
1519 def makeWrite(self):
1520 if (self.ctype == 'float' or self.ctype == 'double'):
1521 error(0, 'Attempt to write control register as FP')
1522 if self.write_code != None:
1523 return self.buildWriteCode('setMiscReg')
1524 base = 'xc->readMiscReg(%s)' % self.reg_spec
1525 name = self.base_name
1526 wb_val = 'insertBits(%s, %s_HI, %s_LO, %s)' % \
1527 (base, name, name, self.base_name)
1528 wb = 'xc->setMiscRegOperand(this, %s, %s );\n' % (self.dest_reg_idx, wb_val)
1529 wb += 'if (traceData) { traceData->setData(%s); }' % \
1530 self.base_name
1531 return wb
1532
1533 class MemOperand(Operand):
1534 def isMem(self):
1535 return 1
1536
1537 def makeConstructor(self):
1538 return ''
1539
1540 def makeDecl(self):
1541 # Note that initializations in the declarations are solely
1542 # to avoid 'uninitialized variable' errors from the compiler.
1543 # Declare memory data variable.
1544 if self.ctype in ['Twin32_t','Twin64_t']:
1545 return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
1546 self.base_name, self.base_name)
1547 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1548 return c
1549
1550 def makeRead(self):
1551 if self.read_code != None:
1552 return self.buildReadCode()
1553 return ''
1554
1555 def makeWrite(self):
1556 if self.write_code != None:
1557 return self.buildWriteCode()
1558 return ''
1559
1560 # Return the memory access size *in bits*, suitable for
1561 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1562 def makeAccSize(self):
1563 return self.size
1564
1565 class UPCOperand(Operand):
1566 def makeConstructor(self):
1567 return ''
1568
1569 def makeRead(self):
1570 if self.read_code != None:
1571 return self.buildReadCode('readMicroPC')
1572 return '%s = xc->readMicroPC();\n' % self.base_name
1573
1574 def makeWrite(self):
1575 if self.write_code != None:
1576 return self.buildWriteCode('setMicroPC')
1577 return 'xc->setMicroPC(%s);\n' % self.base_name
1578
1579 class NUPCOperand(Operand):
1580 def makeConstructor(self):
1581 return ''
1582
1583 def makeRead(self):
1584 if self.read_code != None:
1585 return self.buildReadCode('readNextMicroPC')
1586 return '%s = xc->readNextMicroPC();\n' % self.base_name
1587
1588 def makeWrite(self):
1589 if self.write_code != None:
1590 return self.buildWriteCode('setNextMicroPC')
1591 return 'xc->setNextMicroPC(%s);\n' % self.base_name
1592
1593 class NPCOperand(Operand):
1594 def makeConstructor(self):
1595 return ''
1596
1597 def makeRead(self):
1598 if self.read_code != None:
1599 return self.buildReadCode('readNextPC')
1600 return '%s = xc->readNextPC();\n' % self.base_name
1601
1602 def makeWrite(self):
1603 if self.write_code != None:
1604 return self.buildWriteCode('setNextPC')
1605 return 'xc->setNextPC(%s);\n' % self.base_name
1606
1607 class NNPCOperand(Operand):
1608 def makeConstructor(self):
1609 return ''
1610
1611 def makeRead(self):
1612 if self.read_code != None:
1613 return self.buildReadCode('readNextNPC')
1614 return '%s = xc->readNextNPC();\n' % self.base_name
1615
1616 def makeWrite(self):
1617 if self.write_code != None:
1618 return self.buildWriteCode('setNextNPC')
1619 return 'xc->setNextNPC(%s);\n' % self.base_name
1620
1621 def buildOperandNameMap(userDict, lineno):
1622 global operandNameMap
1623 operandNameMap = {}
1624 for (op_name, val) in userDict.iteritems():
1625 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val[:5]
1626 if len(val) > 5:
1627 read_code = val[5]
1628 else:
1629 read_code = None
1630 if len(val) > 6:
1631 write_code = val[6]
1632 else:
1633 write_code = None
1634 if len(val) > 7:
1635 error(lineno,
1636 'error: too many attributes for operand "%s"' %
1637 base_cls_name)
1638
1639 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1640 # Canonical flag structure is a triple of lists, where each list
1641 # indicates the set of flags implied by this operand always, when
1642 # used as a source, and when used as a dest, respectively.
1643 # For simplicity this can be initialized using a variety of fairly
1644 # obvious shortcuts; we convert these to canonical form here.
1645 if not flags:
1646 # no flags specified (e.g., 'None')
1647 flags = ( [], [], [] )
1648 elif isinstance(flags, str):
1649 # a single flag: assumed to be unconditional
1650 flags = ( [ flags ], [], [] )
1651 elif isinstance(flags, list):
1652 # a list of flags: also assumed to be unconditional
1653 flags = ( flags, [], [] )
1654 elif isinstance(flags, tuple):
1655 # it's a tuple: it should be a triple,
1656 # but each item could be a single string or a list
1657 (uncond_flags, src_flags, dest_flags) = flags
1658 flags = (makeList(uncond_flags),
1659 makeList(src_flags), makeList(dest_flags))
1660 # Accumulate attributes of new operand class in tmp_dict
1661 tmp_dict = {}
1662 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1663 'dflt_size', 'dflt_ctype', 'dflt_is_signed',
1664 'read_code', 'write_code'):
1665 tmp_dict[attr] = eval(attr)
1666 tmp_dict['base_name'] = op_name
1667 # New class name will be e.g. "IntReg_Ra"
1668 cls_name = base_cls_name + '_' + op_name
1669 # Evaluate string arg to get class object. Note that the
1670 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1671 # have to append "Operand".
1672 try:
1673 base_cls = eval(base_cls_name + 'Operand')
1674 except NameError:
1675 error(lineno,
1676 'error: unknown operand base class "%s"' % base_cls_name)
1677 # The following statement creates a new class called
1678 # <cls_name> as a subclass of <base_cls> with the attributes
1679 # in tmp_dict, just as if we evaluated a class declaration.
1680 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1681
1682 # Define operand variables.
1683 operands = userDict.keys()
1684
1685 operandsREString = (r'''
1686 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1687 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1688 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1689 '''
1690 % string.join(operands, '|'))
1691
1692 global operandsRE
1693 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1694
1695 # Same as operandsREString, but extension is mandatory, and only two
1696 # groups are returned (base and ext, not full name as above).
1697 # Used for subtituting '_' for '.' to make C++ identifiers.
1698 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1699 % string.join(operands, '|'))
1700
1701 global operandsWithExtRE
1702 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1703
1704 maxInstSrcRegs = 0
1705 maxInstDestRegs = 0
1706
1707 class OperandList:
1708
1709 # Find all the operands in the given code block. Returns an operand
1710 # descriptor list (instance of class OperandList).
1711 def __init__(self, code):
1712 self.items = []
1713 self.bases = {}
1714 # delete comments so we don't match on reg specifiers inside
1715 code = commentRE.sub('', code)
1716 # search for operands
1717 next_pos = 0
1718 while 1:
1719 match = operandsRE.search(code, next_pos)
1720 if not match:
1721 # no more matches: we're done
1722 break
1723 op = match.groups()
1724 # regexp groups are operand full name, base, and extension
1725 (op_full, op_base, op_ext) = op
1726 # if the token following the operand is an assignment, this is
1727 # a destination (LHS), else it's a source (RHS)
1728 is_dest = (assignRE.match(code, match.end()) != None)
1729 is_src = not is_dest
1730 # see if we've already seen this one
1731 op_desc = self.find_base(op_base)
1732 if op_desc:
1733 if op_desc.ext != op_ext:
1734 error(0, 'Inconsistent extensions for operand %s' % \
1735 op_base)
1736 op_desc.is_src = op_desc.is_src or is_src
1737 op_desc.is_dest = op_desc.is_dest or is_dest
1738 else:
1739 # new operand: create new descriptor
1740 op_desc = operandNameMap[op_base](op_full, op_ext,
1741 is_src, is_dest)
1742 self.append(op_desc)
1743 # start next search after end of current match
1744 next_pos = match.end()
1745 self.sort()
1746 # enumerate source & dest register operands... used in building
1747 # constructor later
1748 self.numSrcRegs = 0
1749 self.numDestRegs = 0
1750 self.numFPDestRegs = 0
1751 self.numIntDestRegs = 0
1752 self.memOperand = None
1753 for op_desc in self.items:
1754 if op_desc.isReg():
1755 if op_desc.is_src:
1756 op_desc.src_reg_idx = self.numSrcRegs
1757 self.numSrcRegs += 1
1758 if op_desc.is_dest:
1759 op_desc.dest_reg_idx = self.numDestRegs
1760 self.numDestRegs += 1
1761 if op_desc.isFloatReg():
1762 self.numFPDestRegs += 1
1763 elif op_desc.isIntReg():
1764 self.numIntDestRegs += 1
1765 elif op_desc.isMem():
1766 if self.memOperand:
1767 error(0, "Code block has more than one memory operand.")
1768 self.memOperand = op_desc
1769 global maxInstSrcRegs
1770 global maxInstDestRegs
1771 if maxInstSrcRegs < self.numSrcRegs:
1772 maxInstSrcRegs = self.numSrcRegs
1773 if maxInstDestRegs < self.numDestRegs:
1774 maxInstDestRegs = self.numDestRegs
1775 # now make a final pass to finalize op_desc fields that may depend
1776 # on the register enumeration
1777 for op_desc in self.items:
1778 op_desc.finalize()
1779
1780 def __len__(self):
1781 return len(self.items)
1782
1783 def __getitem__(self, index):
1784 return self.items[index]
1785
1786 def append(self, op_desc):
1787 self.items.append(op_desc)
1788 self.bases[op_desc.base_name] = op_desc
1789
1790 def find_base(self, base_name):
1791 # like self.bases[base_name], but returns None if not found
1792 # (rather than raising exception)
1793 return self.bases.get(base_name)
1794
1795 # internal helper function for concat[Some]Attr{Strings|Lists}
1796 def __internalConcatAttrs(self, attr_name, filter, result):
1797 for op_desc in self.items:
1798 if filter(op_desc):
1799 result += getattr(op_desc, attr_name)
1800 return result
1801
1802 # return a single string that is the concatenation of the (string)
1803 # values of the specified attribute for all operands
1804 def concatAttrStrings(self, attr_name):
1805 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1806
1807 # like concatAttrStrings, but only include the values for the operands
1808 # for which the provided filter function returns true
1809 def concatSomeAttrStrings(self, filter, attr_name):
1810 return self.__internalConcatAttrs(attr_name, filter, '')
1811
1812 # return a single list that is the concatenation of the (list)
1813 # values of the specified attribute for all operands
1814 def concatAttrLists(self, attr_name):
1815 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1816
1817 # like concatAttrLists, but only include the values for the operands
1818 # for which the provided filter function returns true
1819 def concatSomeAttrLists(self, filter, attr_name):
1820 return self.__internalConcatAttrs(attr_name, filter, [])
1821
1822 def sort(self):
1823 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1824
1825 class SubOperandList(OperandList):
1826
1827 # Find all the operands in the given code block. Returns an operand
1828 # descriptor list (instance of class OperandList).
1829 def __init__(self, code, master_list):
1830 self.items = []
1831 self.bases = {}
1832 # delete comments so we don't match on reg specifiers inside
1833 code = commentRE.sub('', code)
1834 # search for operands
1835 next_pos = 0
1836 while 1:
1837 match = operandsRE.search(code, next_pos)
1838 if not match:
1839 # no more matches: we're done
1840 break
1841 op = match.groups()
1842 # regexp groups are operand full name, base, and extension
1843 (op_full, op_base, op_ext) = op
1844 # find this op in the master list
1845 op_desc = master_list.find_base(op_base)
1846 if not op_desc:
1847 error(0, 'Found operand %s which is not in the master list!' \
1848 ' This is an internal error' % \
1849 op_base)
1850 else:
1851 # See if we've already found this operand
1852 op_desc = self.find_base(op_base)
1853 if not op_desc:
1854 # if not, add a reference to it to this sub list
1855 self.append(master_list.bases[op_base])
1856
1857 # start next search after end of current match
1858 next_pos = match.end()
1859 self.sort()
1860 self.memOperand = None
1861 for op_desc in self.items:
1862 if op_desc.isMem():
1863 if self.memOperand:
1864 error(0, "Code block has more than one memory operand.")
1865 self.memOperand = op_desc
1866
1867 # Regular expression object to match C++ comments
1868 # (used in findOperands())
1869 commentRE = re.compile(r'//.*\n')
1870
1871 # Regular expression object to match assignment statements
1872 # (used in findOperands())
1873 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1874
1875 # Munge operand names in code string to make legal C++ variable names.
1876 # This means getting rid of the type extension if any.
1877 # (Will match base_name attribute of Operand object.)
1878 def substMungedOpNames(code):
1879 return operandsWithExtRE.sub(r'\1', code)
1880
1881 # Fix up code snippets for final substitution in templates.
1882 def mungeSnippet(s):
1883 if isinstance(s, str):
1884 return substMungedOpNames(substBitOps(s))
1885 else:
1886 return s
1887
1888 def makeFlagConstructor(flag_list):
1889 if len(flag_list) == 0:
1890 return ''
1891 # filter out repeated flags
1892 flag_list.sort()
1893 i = 1
1894 while i < len(flag_list):
1895 if flag_list[i] == flag_list[i-1]:
1896 del flag_list[i]
1897 else:
1898 i += 1
1899 pre = '\n\tflags['
1900 post = '] = true;'
1901 code = pre + string.join(flag_list, post + pre) + post
1902 return code
1903
1904 # Assume all instruction flags are of the form 'IsFoo'
1905 instFlagRE = re.compile(r'Is.*')
1906
1907 # OpClass constants end in 'Op' except No_OpClass
1908 opClassRE = re.compile(r'.*Op|No_OpClass')
1909
1910 class InstObjParams:
1911 def __init__(self, mnem, class_name, base_class = '',
1912 snippets = {}, opt_args = []):
1913 self.mnemonic = mnem
1914 self.class_name = class_name
1915 self.base_class = base_class
1916 if not isinstance(snippets, dict):
1917 snippets = {'code' : snippets}
1918 compositeCode = ' '.join(map(str, snippets.values()))
1919 self.snippets = snippets
1920
1921 self.operands = OperandList(compositeCode)
1922 self.constructor = self.operands.concatAttrStrings('constructor')
1923 self.constructor += \
1924 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1925 self.constructor += \
1926 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1927 self.constructor += \
1928 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1929 self.constructor += \
1930 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1931 self.flags = self.operands.concatAttrLists('flags')
1932
1933 # Make a basic guess on the operand class (function unit type).
1934 # These are good enough for most cases, and can be overridden
1935 # later otherwise.
1936 if 'IsStore' in self.flags:
1937 self.op_class = 'MemWriteOp'
1938 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1939 self.op_class = 'MemReadOp'
1940 elif 'IsFloating' in self.flags:
1941 self.op_class = 'FloatAddOp'
1942 else:
1943 self.op_class = 'IntAluOp'
1944
1945 # Optional arguments are assumed to be either StaticInst flags
1946 # or an OpClass value. To avoid having to import a complete
1947 # list of these values to match against, we do it ad-hoc
1948 # with regexps.
1949 for oa in opt_args:
1950 if instFlagRE.match(oa):
1951 self.flags.append(oa)
1952 elif opClassRE.match(oa):
1953 self.op_class = oa
1954 else:
1955 error(0, 'InstObjParams: optional arg "%s" not recognized '
1956 'as StaticInst::Flag or OpClass.' % oa)
1957
1958 # add flag initialization to contructor here to include
1959 # any flags added via opt_args
1960 self.constructor += makeFlagConstructor(self.flags)
1961
1962 # if 'IsFloating' is set, add call to the FP enable check
1963 # function (which should be provided by isa_desc via a declare)
1964 if 'IsFloating' in self.flags:
1965 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1966 else:
1967 self.fp_enable_check = ''
1968
1969 #######################
1970 #
1971 # Output file template
1972 #
1973
1974 file_template = '''
1975 /*
1976 * DO NOT EDIT THIS FILE!!!
1977 *
1978 * It was automatically generated from the ISA description in %(filename)s
1979 */
1980
1981 %(includes)s
1982
1983 %(global_output)s
1984
1985 namespace %(namespace)s {
1986
1987 %(namespace_output)s
1988
1989 } // namespace %(namespace)s
1990
1991 %(decode_function)s
1992 '''
1993
1994 max_inst_regs_template = '''
1995 /*
1996 * DO NOT EDIT THIS FILE!!!
1997 *
1998 * It was automatically generated from the ISA description in %(filename)s
1999 */
2000
2001 namespace %(namespace)s {
2002
2003 const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
2004 const int MaxInstDestRegs = %(MaxInstDestRegs)d;
2005
2006 } // namespace %(namespace)s
2007
2008 '''
2009
2010
2011 # Update the output file only if the new contents are different from
2012 # the current contents. Minimizes the files that need to be rebuilt
2013 # after minor changes.
2014 def update_if_needed(file, contents):
2015 update = False
2016 if os.access(file, os.R_OK):
2017 f = open(file, 'r')
2018 old_contents = f.read()
2019 f.close()
2020 if contents != old_contents:
2021 print 'Updating', file
2022 os.remove(file) # in case it's write-protected
2023 update = True
2024 else:
2025 print 'File', file, 'is unchanged'
2026 else:
2027 print 'Generating', file
2028 update = True
2029 if update:
2030 f = open(file, 'w')
2031 f.write(contents)
2032 f.close()
2033
2034 # This regular expression matches '##include' directives
2035 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
2036 re.MULTILINE)
2037
2038 # Function to replace a matched '##include' directive with the
2039 # contents of the specified file (with nested ##includes replaced
2040 # recursively). 'matchobj' is an re match object (from a match of
2041 # includeRE) and 'dirname' is the directory relative to which the file
2042 # path should be resolved.
2043 def replace_include(matchobj, dirname):
2044 fname = matchobj.group('filename')
2045 full_fname = os.path.normpath(os.path.join(dirname, fname))
2046 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2047 (full_fname, read_and_flatten(full_fname))
2048 return contents
2049
2050 # Read a file and recursively flatten nested '##include' files.
2051 def read_and_flatten(filename):
2052 current_dir = os.path.dirname(filename)
2053 try:
2054 contents = open(filename).read()
2055 except IOError:
2056 error(0, 'Error including file "%s"' % filename)
2057 fileNameStack.push((filename, 0))
2058 # Find any includes and include them
2059 contents = includeRE.sub(lambda m: replace_include(m, current_dir),
2060 contents)
2061 fileNameStack.pop()
2062 return contents
2063
2064 #
2065 # Read in and parse the ISA description.
2066 #
2067 def parse_isa_desc(isa_desc_file, output_dir):
2068 # Read file and (recursively) all included files into a string.
2069 # PLY requires that the input be in a single string so we have to
2070 # do this up front.
2071 isa_desc = read_and_flatten(isa_desc_file)
2072
2073 # Initialize filename stack with outer file.
2074 fileNameStack.push((isa_desc_file, 0))
2075
2076 # Parse it.
2077 (isa_name, namespace, global_code, namespace_code) = \
2078 parser.parse(isa_desc, lexer=lexer)
2079
2080 # grab the last three path components of isa_desc_file to put in
2081 # the output
2082 filename = '/'.join(isa_desc_file.split('/')[-3:])
2083
2084 # generate decoder.hh
2085 includes = '#include "base/bitfield.hh" // for bitfield support'
2086 global_output = global_code.header_output
2087 namespace_output = namespace_code.header_output
2088 decode_function = ''
2089 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
2090
2091 # generate decoder.cc
2092 includes = '#include "decoder.hh"'
2093 global_output = global_code.decoder_output
2094 namespace_output = namespace_code.decoder_output
2095 # namespace_output += namespace_code.decode_block
2096 decode_function = namespace_code.decode_block
2097 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
2098
2099 # generate per-cpu exec files
2100 for cpu in cpu_models:
2101 includes = '#include "decoder.hh"\n'
2102 includes += cpu.includes
2103 global_output = global_code.exec_output[cpu.name]
2104 namespace_output = namespace_code.exec_output[cpu.name]
2105 decode_function = ''
2106 update_if_needed(output_dir + '/' + cpu.filename,
2107 file_template % vars())
2108
2109 # The variable names here are hacky, but this will creat local variables
2110 # which will be referenced in vars() which have the value of the globals.
2111 global maxInstSrcRegs
2112 MaxInstSrcRegs = maxInstSrcRegs
2113 global maxInstDestRegs
2114 MaxInstDestRegs = maxInstDestRegs
2115 # max_inst_regs.hh
2116 update_if_needed(output_dir + '/max_inst_regs.hh', \
2117 max_inst_regs_template % vars())
2118
2119 # global list of CpuModel objects (see cpu_models.py)
2120 cpu_models = []
2121
2122 # Called as script: get args from command line.
2123 # Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
2124 if __name__ == '__main__':
2125 execfile(sys.argv[1]) # read in CpuModel definitions
2126 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
2127 parse_isa_desc(sys.argv[2], sys.argv[3])