dd9f2e8732b2e46bd6a3a77425d067b48c2814f3
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2003-2005 The Regents of The University of Michigan
2 # Copyright (c) 2013 Advanced Micro Devices, Inc.
3 # All rights reserved.
4 #
5 # Redistribution and use in source and binary forms, with or without
6 # modification, are permitted provided that the following conditions are
7 # met: redistributions of source code must retain the above copyright
8 # notice, this list of conditions and the following disclaimer;
9 # redistributions in binary form must reproduce the above copyright
10 # notice, this list of conditions and the following disclaimer in the
11 # documentation and/or other materials provided with the distribution;
12 # neither the name of the copyright holders nor the names of its
13 # contributors may be used to endorse or promote products derived from
14 # this software without specific prior written permission.
15 #
16 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #
28 # Authors: Steve Reinhardt
29
30 import os
31 import sys
32 import re
33 import string
34 import inspect, traceback
35 # get type names
36 from types import *
37
38 from m5.util.grammar import Grammar
39
40 debug=False
41
42 ###################
43 # Utility functions
44
45 #
46 # Indent every line in string 's' by two spaces
47 # (except preprocessor directives).
48 # Used to make nested code blocks look pretty.
49 #
50 def indent(s):
51 return re.sub(r'(?m)^(?!#)', ' ', s)
52
53 #
54 # Munge a somewhat arbitrarily formatted piece of Python code
55 # (e.g. from a format 'let' block) into something whose indentation
56 # will get by the Python parser.
57 #
58 # The two keys here are that Python will give a syntax error if
59 # there's any whitespace at the beginning of the first line, and that
60 # all lines at the same lexical nesting level must have identical
61 # indentation. Unfortunately the way code literals work, an entire
62 # let block tends to have some initial indentation. Rather than
63 # trying to figure out what that is and strip it off, we prepend 'if
64 # 1:' to make the let code the nested block inside the if (and have
65 # the parser automatically deal with the indentation for us).
66 #
67 # We don't want to do this if (1) the code block is empty or (2) the
68 # first line of the block doesn't have any whitespace at the front.
69
70 def fixPythonIndentation(s):
71 # get rid of blank lines first
72 s = re.sub(r'(?m)^\s*\n', '', s);
73 if (s != '' and re.match(r'[ \t]', s[0])):
74 s = 'if 1:\n' + s
75 return s
76
77 class ISAParserError(Exception):
78 """Error handler for parser errors"""
79 def __init__(self, first, second=None):
80 if second is None:
81 self.lineno = 0
82 self.string = first
83 else:
84 if hasattr(first, 'lexer'):
85 first = first.lexer.lineno
86 self.lineno = first
87 self.string = second
88
89 def display(self, filename_stack, print_traceback=debug):
90 # Output formatted to work under Emacs compile-mode. Optional
91 # 'print_traceback' arg, if set to True, prints a Python stack
92 # backtrace too (can be handy when trying to debug the parser
93 # itself).
94
95 spaces = ""
96 for (filename, line) in filename_stack[:-1]:
97 print "%sIn file included from %s:" % (spaces, filename)
98 spaces += " "
99
100 # Print a Python stack backtrace if requested.
101 if print_traceback or not self.lineno:
102 traceback.print_exc()
103
104 line_str = "%s:" % (filename_stack[-1][0], )
105 if self.lineno:
106 line_str += "%d:" % (self.lineno, )
107
108 return "%s%s %s" % (spaces, line_str, self.string)
109
110 def exit(self, filename_stack, print_traceback=debug):
111 # Just call exit.
112
113 sys.exit(self.display(filename_stack, print_traceback))
114
115 def error(*args):
116 raise ISAParserError(*args)
117
118 ####################
119 # Template objects.
120 #
121 # Template objects are format strings that allow substitution from
122 # the attribute spaces of other objects (e.g. InstObjParams instances).
123
124 labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
125
126 class Template(object):
127 def __init__(self, parser, t):
128 self.parser = parser
129 self.template = t
130
131 def subst(self, d):
132 myDict = None
133
134 # Protect non-Python-dict substitutions (e.g. if there's a printf
135 # in the templated C++ code)
136 template = self.parser.protectNonSubstPercents(self.template)
137 # CPU-model-specific substitutions are handled later (in GenCode).
138 template = self.parser.protectCpuSymbols(template)
139
140 # Build a dict ('myDict') to use for the template substitution.
141 # Start with the template namespace. Make a copy since we're
142 # going to modify it.
143 myDict = self.parser.templateMap.copy()
144
145 if isinstance(d, InstObjParams):
146 # If we're dealing with an InstObjParams object, we need
147 # to be a little more sophisticated. The instruction-wide
148 # parameters are already formed, but the parameters which
149 # are only function wide still need to be generated.
150 compositeCode = ''
151
152 myDict.update(d.__dict__)
153 # The "operands" and "snippets" attributes of the InstObjParams
154 # objects are for internal use and not substitution.
155 del myDict['operands']
156 del myDict['snippets']
157
158 snippetLabels = [l for l in labelRE.findall(template)
159 if d.snippets.has_key(l)]
160
161 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
162 for s in snippetLabels])
163
164 myDict.update(snippets)
165
166 compositeCode = ' '.join(map(str, snippets.values()))
167
168 # Add in template itself in case it references any
169 # operands explicitly (like Mem)
170 compositeCode += ' ' + template
171
172 operands = SubOperandList(self.parser, compositeCode, d.operands)
173
174 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
175 if operands.readPC or operands.setPC:
176 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
177
178 # In case there are predicated register reads and write, declare
179 # the variables for register indicies. It is being assumed that
180 # all the operands in the OperandList are also in the
181 # SubOperandList and in the same order. Otherwise, it is
182 # expected that predication would not be used for the operands.
183 if operands.predRead:
184 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
185 if operands.predWrite:
186 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
187
188 is_src = lambda op: op.is_src
189 is_dest = lambda op: op.is_dest
190
191 myDict['op_src_decl'] = \
192 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
193 myDict['op_dest_decl'] = \
194 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
195 if operands.readPC:
196 myDict['op_src_decl'] += \
197 'TheISA::PCState __parserAutoPCState;\n'
198 if operands.setPC:
199 myDict['op_dest_decl'] += \
200 'TheISA::PCState __parserAutoPCState;\n'
201
202 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
203 if operands.readPC:
204 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
205 myDict['op_rd']
206
207 # Compose the op_wb string. If we're going to write back the
208 # PC state because we changed some of its elements, we'll need to
209 # do that as early as possible. That allows later uncoordinated
210 # modifications to the PC to layer appropriately.
211 reordered = list(operands.items)
212 reordered.reverse()
213 op_wb_str = ''
214 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
215 for op_desc in reordered:
216 if op_desc.isPCPart() and op_desc.is_dest:
217 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
218 pcWbStr = ''
219 else:
220 op_wb_str = op_desc.op_wb + op_wb_str
221 myDict['op_wb'] = op_wb_str
222
223 elif isinstance(d, dict):
224 # if the argument is a dictionary, we just use it.
225 myDict.update(d)
226 elif hasattr(d, '__dict__'):
227 # if the argument is an object, we use its attribute map.
228 myDict.update(d.__dict__)
229 else:
230 raise TypeError, "Template.subst() arg must be or have dictionary"
231 return template % myDict
232
233 # Convert to string. This handles the case when a template with a
234 # CPU-specific term gets interpolated into another template or into
235 # an output block.
236 def __str__(self):
237 return self.parser.expandCpuSymbolsToString(self.template)
238
239 ################
240 # Format object.
241 #
242 # A format object encapsulates an instruction format. It must provide
243 # a defineInst() method that generates the code for an instruction
244 # definition.
245
246 class Format(object):
247 def __init__(self, id, params, code):
248 self.id = id
249 self.params = params
250 label = 'def format ' + id
251 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
252 param_list = string.join(params, ", ")
253 f = '''def defInst(_code, _context, %s):
254 my_locals = vars().copy()
255 exec _code in _context, my_locals
256 return my_locals\n''' % param_list
257 c = compile(f, label + ' wrapper', 'exec')
258 exec c
259 self.func = defInst
260
261 def defineInst(self, parser, name, args, lineno):
262 parser.updateExportContext()
263 context = parser.exportContext.copy()
264 if len(name):
265 Name = name[0].upper()
266 if len(name) > 1:
267 Name += name[1:]
268 context.update({ 'name' : name, 'Name' : Name })
269 try:
270 vars = self.func(self.user_code, context, *args[0], **args[1])
271 except Exception, exc:
272 if debug:
273 raise
274 error(lineno, 'error defining "%s": %s.' % (name, exc))
275 for k in vars.keys():
276 if k not in ('header_output', 'decoder_output',
277 'exec_output', 'decode_block'):
278 del vars[k]
279 return GenCode(parser, **vars)
280
281 # Special null format to catch an implicit-format instruction
282 # definition outside of any format block.
283 class NoFormat(object):
284 def __init__(self):
285 self.defaultInst = ''
286
287 def defineInst(self, parser, name, args, lineno):
288 error(lineno,
289 'instruction definition "%s" with no active format!' % name)
290
291 ###############
292 # GenCode class
293 #
294 # The GenCode class encapsulates generated code destined for various
295 # output files. The header_output and decoder_output attributes are
296 # strings containing code destined for decoder.hh and decoder.cc
297 # respectively. The decode_block attribute contains code to be
298 # incorporated in the decode function itself (that will also end up in
299 # decoder.cc). The exec_output attribute is a dictionary with a key
300 # for each CPU model name; the value associated with a particular key
301 # is the string of code for that CPU model's exec.cc file. The
302 # has_decode_default attribute is used in the decode block to allow
303 # explicit default clauses to override default default clauses.
304
305 class GenCode(object):
306 # Constructor. At this point we substitute out all CPU-specific
307 # symbols. For the exec output, these go into the per-model
308 # dictionary. For all other output types they get collapsed into
309 # a single string.
310 def __init__(self, parser,
311 header_output = '', decoder_output = '', exec_output = '',
312 decode_block = '', has_decode_default = False):
313 self.parser = parser
314 self.header_output = parser.expandCpuSymbolsToString(header_output)
315 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
316 if isinstance(exec_output, dict):
317 self.exec_output = exec_output
318 elif isinstance(exec_output, str):
319 # If the exec_output arg is a single string, we replicate
320 # it for each of the CPU models, substituting and
321 # %(CPU_foo)s params appropriately.
322 self.exec_output = parser.expandCpuSymbolsToDict(exec_output)
323 self.decode_block = parser.expandCpuSymbolsToString(decode_block)
324 self.has_decode_default = has_decode_default
325
326 # Override '+' operator: generate a new GenCode object that
327 # concatenates all the individual strings in the operands.
328 def __add__(self, other):
329 exec_output = {}
330 for cpu in self.parser.cpuModels:
331 n = cpu.name
332 exec_output[n] = self.exec_output[n] + other.exec_output[n]
333 return GenCode(self.parser,
334 self.header_output + other.header_output,
335 self.decoder_output + other.decoder_output,
336 exec_output,
337 self.decode_block + other.decode_block,
338 self.has_decode_default or other.has_decode_default)
339
340 # Prepend a string (typically a comment) to all the strings.
341 def prepend_all(self, pre):
342 self.header_output = pre + self.header_output
343 self.decoder_output = pre + self.decoder_output
344 self.decode_block = pre + self.decode_block
345 for cpu in self.parser.cpuModels:
346 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
347
348 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
349 # and 'break;'). Used to build the big nested switch statement.
350 def wrap_decode_block(self, pre, post = ''):
351 self.decode_block = pre + indent(self.decode_block) + post
352
353 #####################################################################
354 #
355 # Bitfield Operator Support
356 #
357 #####################################################################
358
359 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
360
361 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
362 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
363
364 def substBitOps(code):
365 # first convert single-bit selectors to two-index form
366 # i.e., <n> --> <n:n>
367 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
368 # simple case: selector applied to ID (name)
369 # i.e., foo<a:b> --> bits(foo, a, b)
370 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
371 # if selector is applied to expression (ending in ')'),
372 # we need to search backward for matching '('
373 match = bitOpExprRE.search(code)
374 while match:
375 exprEnd = match.start()
376 here = exprEnd - 1
377 nestLevel = 1
378 while nestLevel > 0:
379 if code[here] == '(':
380 nestLevel -= 1
381 elif code[here] == ')':
382 nestLevel += 1
383 here -= 1
384 if here < 0:
385 sys.exit("Didn't find '('!")
386 exprStart = here+1
387 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
388 match.group(1), match.group(2))
389 code = code[:exprStart] + newExpr + code[match.end():]
390 match = bitOpExprRE.search(code)
391 return code
392
393
394 #####################################################################
395 #
396 # Code Parser
397 #
398 # The remaining code is the support for automatically extracting
399 # instruction characteristics from pseudocode.
400 #
401 #####################################################################
402
403 # Force the argument to be a list. Useful for flags, where a caller
404 # can specify a singleton flag or a list of flags. Also usful for
405 # converting tuples to lists so they can be modified.
406 def makeList(arg):
407 if isinstance(arg, list):
408 return arg
409 elif isinstance(arg, tuple):
410 return list(arg)
411 elif not arg:
412 return []
413 else:
414 return [ arg ]
415
416 class Operand(object):
417 '''Base class for operand descriptors. An instance of this class
418 (or actually a class derived from this one) represents a specific
419 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
420 derived classes encapsulates the traits of a particular operand
421 type (e.g., "32-bit integer register").'''
422
423 def buildReadCode(self, func = None):
424 subst_dict = {"name": self.base_name,
425 "func": func,
426 "reg_idx": self.reg_spec,
427 "ctype": self.ctype}
428 if hasattr(self, 'src_reg_idx'):
429 subst_dict['op_idx'] = self.src_reg_idx
430 code = self.read_code % subst_dict
431 return '%s = %s;\n' % (self.base_name, code)
432
433 def buildWriteCode(self, func = None):
434 subst_dict = {"name": self.base_name,
435 "func": func,
436 "reg_idx": self.reg_spec,
437 "ctype": self.ctype,
438 "final_val": self.base_name}
439 if hasattr(self, 'dest_reg_idx'):
440 subst_dict['op_idx'] = self.dest_reg_idx
441 code = self.write_code % subst_dict
442 return '''
443 {
444 %s final_val = %s;
445 %s;
446 if (traceData) { traceData->setData(final_val); }
447 }''' % (self.dflt_ctype, self.base_name, code)
448
449 def __init__(self, parser, full_name, ext, is_src, is_dest):
450 self.full_name = full_name
451 self.ext = ext
452 self.is_src = is_src
453 self.is_dest = is_dest
454 # The 'effective extension' (eff_ext) is either the actual
455 # extension, if one was explicitly provided, or the default.
456 if ext:
457 self.eff_ext = ext
458 elif hasattr(self, 'dflt_ext'):
459 self.eff_ext = self.dflt_ext
460
461 if hasattr(self, 'eff_ext'):
462 self.ctype = parser.operandTypeMap[self.eff_ext]
463
464 # Finalize additional fields (primarily code fields). This step
465 # is done separately since some of these fields may depend on the
466 # register index enumeration that hasn't been performed yet at the
467 # time of __init__(). The register index enumeration is affected
468 # by predicated register reads/writes. Hence, we forward the flags
469 # that indicate whether or not predication is in use.
470 def finalize(self, predRead, predWrite):
471 self.flags = self.getFlags()
472 self.constructor = self.makeConstructor(predRead, predWrite)
473 self.op_decl = self.makeDecl()
474
475 if self.is_src:
476 self.op_rd = self.makeRead(predRead)
477 self.op_src_decl = self.makeDecl()
478 else:
479 self.op_rd = ''
480 self.op_src_decl = ''
481
482 if self.is_dest:
483 self.op_wb = self.makeWrite(predWrite)
484 self.op_dest_decl = self.makeDecl()
485 else:
486 self.op_wb = ''
487 self.op_dest_decl = ''
488
489 def isMem(self):
490 return 0
491
492 def isReg(self):
493 return 0
494
495 def isFloatReg(self):
496 return 0
497
498 def isIntReg(self):
499 return 0
500
501 def isCCReg(self):
502 return 0
503
504 def isControlReg(self):
505 return 0
506
507 def isPCState(self):
508 return 0
509
510 def isPCPart(self):
511 return self.isPCState() and self.reg_spec
512
513 def hasReadPred(self):
514 return self.read_predicate != None
515
516 def hasWritePred(self):
517 return self.write_predicate != None
518
519 def getFlags(self):
520 # note the empty slice '[:]' gives us a copy of self.flags[0]
521 # instead of a reference to it
522 my_flags = self.flags[0][:]
523 if self.is_src:
524 my_flags += self.flags[1]
525 if self.is_dest:
526 my_flags += self.flags[2]
527 return my_flags
528
529 def makeDecl(self):
530 # Note that initializations in the declarations are solely
531 # to avoid 'uninitialized variable' errors from the compiler.
532 return self.ctype + ' ' + self.base_name + ' = 0;\n';
533
534 class IntRegOperand(Operand):
535 def isReg(self):
536 return 1
537
538 def isIntReg(self):
539 return 1
540
541 def makeConstructor(self, predRead, predWrite):
542 c_src = ''
543 c_dest = ''
544
545 if self.is_src:
546 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
547 if self.hasReadPred():
548 c_src = '\n\tif (%s) {%s\n\t}' % \
549 (self.read_predicate, c_src)
550
551 if self.is_dest:
552 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
553 (self.reg_spec)
554 c_dest += '\n\t_numIntDestRegs++;'
555 if self.hasWritePred():
556 c_dest = '\n\tif (%s) {%s\n\t}' % \
557 (self.write_predicate, c_dest)
558
559 return c_src + c_dest
560
561 def makeRead(self, predRead):
562 if (self.ctype == 'float' or self.ctype == 'double'):
563 error('Attempt to read integer register as FP')
564 if self.read_code != None:
565 return self.buildReadCode('readIntRegOperand')
566
567 int_reg_val = ''
568 if predRead:
569 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
570 if self.hasReadPred():
571 int_reg_val = '(%s) ? %s : 0' % \
572 (self.read_predicate, int_reg_val)
573 else:
574 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
575
576 return '%s = %s;\n' % (self.base_name, int_reg_val)
577
578 def makeWrite(self, predWrite):
579 if (self.ctype == 'float' or self.ctype == 'double'):
580 error('Attempt to write integer register as FP')
581 if self.write_code != None:
582 return self.buildWriteCode('setIntRegOperand')
583
584 if predWrite:
585 wp = 'true'
586 if self.hasWritePred():
587 wp = self.write_predicate
588
589 wcond = 'if (%s)' % (wp)
590 windex = '_destIndex++'
591 else:
592 wcond = ''
593 windex = '%d' % self.dest_reg_idx
594
595 wb = '''
596 %s
597 {
598 %s final_val = %s;
599 xc->setIntRegOperand(this, %s, final_val);\n
600 if (traceData) { traceData->setData(final_val); }
601 }''' % (wcond, self.ctype, self.base_name, windex)
602
603 return wb
604
605 class FloatRegOperand(Operand):
606 def isReg(self):
607 return 1
608
609 def isFloatReg(self):
610 return 1
611
612 def makeConstructor(self, predRead, predWrite):
613 c_src = ''
614 c_dest = ''
615
616 if self.is_src:
617 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
618 (self.reg_spec)
619
620 if self.is_dest:
621 c_dest = \
622 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
623 (self.reg_spec)
624 c_dest += '\n\t_numFPDestRegs++;'
625
626 return c_src + c_dest
627
628 def makeRead(self, predRead):
629 bit_select = 0
630 if (self.ctype == 'float' or self.ctype == 'double'):
631 func = 'readFloatRegOperand'
632 else:
633 func = 'readFloatRegOperandBits'
634 if self.read_code != None:
635 return self.buildReadCode(func)
636
637 if predRead:
638 rindex = '_sourceIndex++'
639 else:
640 rindex = '%d' % self.src_reg_idx
641
642 return '%s = xc->%s(this, %s);\n' % \
643 (self.base_name, func, rindex)
644
645 def makeWrite(self, predWrite):
646 if (self.ctype == 'float' or self.ctype == 'double'):
647 func = 'setFloatRegOperand'
648 else:
649 func = 'setFloatRegOperandBits'
650 if self.write_code != None:
651 return self.buildWriteCode(func)
652
653 if predWrite:
654 wp = '_destIndex++'
655 else:
656 wp = '%d' % self.dest_reg_idx
657 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
658
659 wb = '''
660 {
661 %s final_val = %s;
662 %s\n
663 if (traceData) { traceData->setData(final_val); }
664 }''' % (self.ctype, self.base_name, wp)
665 return wb
666
667 class CCRegOperand(Operand):
668 def isReg(self):
669 return 1
670
671 def isCCReg(self):
672 return 1
673
674 def makeConstructor(self, predRead, predWrite):
675 c_src = ''
676 c_dest = ''
677
678 if self.is_src:
679 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
680 (self.reg_spec)
681 if self.hasReadPred():
682 c_src = '\n\tif (%s) {%s\n\t}' % \
683 (self.read_predicate, c_src)
684
685 if self.is_dest:
686 c_dest = \
687 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
688 (self.reg_spec)
689 c_dest += '\n\t_numCCDestRegs++;'
690 if self.hasWritePred():
691 c_dest = '\n\tif (%s) {%s\n\t}' % \
692 (self.write_predicate, c_dest)
693
694 return c_src + c_dest
695
696 def makeRead(self, predRead):
697 if (self.ctype == 'float' or self.ctype == 'double'):
698 error('Attempt to read condition-code register as FP')
699 if self.read_code != None:
700 return self.buildReadCode('readCCRegOperand')
701
702 int_reg_val = ''
703 if predRead:
704 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
705 if self.hasReadPred():
706 int_reg_val = '(%s) ? %s : 0' % \
707 (self.read_predicate, int_reg_val)
708 else:
709 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
710
711 return '%s = %s;\n' % (self.base_name, int_reg_val)
712
713 def makeWrite(self, predWrite):
714 if (self.ctype == 'float' or self.ctype == 'double'):
715 error('Attempt to write condition-code register as FP')
716 if self.write_code != None:
717 return self.buildWriteCode('setCCRegOperand')
718
719 if predWrite:
720 wp = 'true'
721 if self.hasWritePred():
722 wp = self.write_predicate
723
724 wcond = 'if (%s)' % (wp)
725 windex = '_destIndex++'
726 else:
727 wcond = ''
728 windex = '%d' % self.dest_reg_idx
729
730 wb = '''
731 %s
732 {
733 %s final_val = %s;
734 xc->setCCRegOperand(this, %s, final_val);\n
735 if (traceData) { traceData->setData(final_val); }
736 }''' % (wcond, self.ctype, self.base_name, windex)
737
738 return wb
739
740 class ControlRegOperand(Operand):
741 def isReg(self):
742 return 1
743
744 def isControlReg(self):
745 return 1
746
747 def makeConstructor(self, predRead, predWrite):
748 c_src = ''
749 c_dest = ''
750
751 if self.is_src:
752 c_src = \
753 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
754 (self.reg_spec)
755
756 if self.is_dest:
757 c_dest = \
758 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
759 (self.reg_spec)
760
761 return c_src + c_dest
762
763 def makeRead(self, predRead):
764 bit_select = 0
765 if (self.ctype == 'float' or self.ctype == 'double'):
766 error('Attempt to read control register as FP')
767 if self.read_code != None:
768 return self.buildReadCode('readMiscRegOperand')
769
770 if predRead:
771 rindex = '_sourceIndex++'
772 else:
773 rindex = '%d' % self.src_reg_idx
774
775 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
776 (self.base_name, rindex)
777
778 def makeWrite(self, predWrite):
779 if (self.ctype == 'float' or self.ctype == 'double'):
780 error('Attempt to write control register as FP')
781 if self.write_code != None:
782 return self.buildWriteCode('setMiscRegOperand')
783
784 if predWrite:
785 windex = '_destIndex++'
786 else:
787 windex = '%d' % self.dest_reg_idx
788
789 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
790 (windex, self.base_name)
791 wb += 'if (traceData) { traceData->setData(%s); }' % \
792 self.base_name
793
794 return wb
795
796 class MemOperand(Operand):
797 def isMem(self):
798 return 1
799
800 def makeConstructor(self, predRead, predWrite):
801 return ''
802
803 def makeDecl(self):
804 # Note that initializations in the declarations are solely
805 # to avoid 'uninitialized variable' errors from the compiler.
806 # Declare memory data variable.
807 return '%s %s = 0;\n' % (self.ctype, self.base_name)
808
809 def makeRead(self, predRead):
810 if self.read_code != None:
811 return self.buildReadCode()
812 return ''
813
814 def makeWrite(self, predWrite):
815 if self.write_code != None:
816 return self.buildWriteCode()
817 return ''
818
819 class PCStateOperand(Operand):
820 def makeConstructor(self, predRead, predWrite):
821 return ''
822
823 def makeRead(self, predRead):
824 if self.reg_spec:
825 # A component of the PC state.
826 return '%s = __parserAutoPCState.%s();\n' % \
827 (self.base_name, self.reg_spec)
828 else:
829 # The whole PC state itself.
830 return '%s = xc->pcState();\n' % self.base_name
831
832 def makeWrite(self, predWrite):
833 if self.reg_spec:
834 # A component of the PC state.
835 return '__parserAutoPCState.%s(%s);\n' % \
836 (self.reg_spec, self.base_name)
837 else:
838 # The whole PC state itself.
839 return 'xc->pcState(%s);\n' % self.base_name
840
841 def makeDecl(self):
842 ctype = 'TheISA::PCState'
843 if self.isPCPart():
844 ctype = self.ctype
845 return "%s %s;\n" % (ctype, self.base_name)
846
847 def isPCState(self):
848 return 1
849
850 class OperandList(object):
851 '''Find all the operands in the given code block. Returns an operand
852 descriptor list (instance of class OperandList).'''
853 def __init__(self, parser, code):
854 self.items = []
855 self.bases = {}
856 # delete strings and comments so we don't match on operands inside
857 for regEx in (stringRE, commentRE):
858 code = regEx.sub('', code)
859 # search for operands
860 next_pos = 0
861 while 1:
862 match = parser.operandsRE.search(code, next_pos)
863 if not match:
864 # no more matches: we're done
865 break
866 op = match.groups()
867 # regexp groups are operand full name, base, and extension
868 (op_full, op_base, op_ext) = op
869 # if the token following the operand is an assignment, this is
870 # a destination (LHS), else it's a source (RHS)
871 is_dest = (assignRE.match(code, match.end()) != None)
872 is_src = not is_dest
873 # see if we've already seen this one
874 op_desc = self.find_base(op_base)
875 if op_desc:
876 if op_desc.ext != op_ext:
877 error('Inconsistent extensions for operand %s' % \
878 op_base)
879 op_desc.is_src = op_desc.is_src or is_src
880 op_desc.is_dest = op_desc.is_dest or is_dest
881 else:
882 # new operand: create new descriptor
883 op_desc = parser.operandNameMap[op_base](parser,
884 op_full, op_ext, is_src, is_dest)
885 self.append(op_desc)
886 # start next search after end of current match
887 next_pos = match.end()
888 self.sort()
889 # enumerate source & dest register operands... used in building
890 # constructor later
891 self.numSrcRegs = 0
892 self.numDestRegs = 0
893 self.numFPDestRegs = 0
894 self.numIntDestRegs = 0
895 self.numCCDestRegs = 0
896 self.numMiscDestRegs = 0
897 self.memOperand = None
898
899 # Flags to keep track if one or more operands are to be read/written
900 # conditionally.
901 self.predRead = False
902 self.predWrite = False
903
904 for op_desc in self.items:
905 if op_desc.isReg():
906 if op_desc.is_src:
907 op_desc.src_reg_idx = self.numSrcRegs
908 self.numSrcRegs += 1
909 if op_desc.is_dest:
910 op_desc.dest_reg_idx = self.numDestRegs
911 self.numDestRegs += 1
912 if op_desc.isFloatReg():
913 self.numFPDestRegs += 1
914 elif op_desc.isIntReg():
915 self.numIntDestRegs += 1
916 elif op_desc.isCCReg():
917 self.numCCDestRegs += 1
918 elif op_desc.isControlReg():
919 self.numMiscDestRegs += 1
920 elif op_desc.isMem():
921 if self.memOperand:
922 error("Code block has more than one memory operand.")
923 self.memOperand = op_desc
924
925 # Check if this operand has read/write predication. If true, then
926 # the microop will dynamically index source/dest registers.
927 self.predRead = self.predRead or op_desc.hasReadPred()
928 self.predWrite = self.predWrite or op_desc.hasWritePred()
929
930 if parser.maxInstSrcRegs < self.numSrcRegs:
931 parser.maxInstSrcRegs = self.numSrcRegs
932 if parser.maxInstDestRegs < self.numDestRegs:
933 parser.maxInstDestRegs = self.numDestRegs
934 if parser.maxMiscDestRegs < self.numMiscDestRegs:
935 parser.maxMiscDestRegs = self.numMiscDestRegs
936
937 # now make a final pass to finalize op_desc fields that may depend
938 # on the register enumeration
939 for op_desc in self.items:
940 op_desc.finalize(self.predRead, self.predWrite)
941
942 def __len__(self):
943 return len(self.items)
944
945 def __getitem__(self, index):
946 return self.items[index]
947
948 def append(self, op_desc):
949 self.items.append(op_desc)
950 self.bases[op_desc.base_name] = op_desc
951
952 def find_base(self, base_name):
953 # like self.bases[base_name], but returns None if not found
954 # (rather than raising exception)
955 return self.bases.get(base_name)
956
957 # internal helper function for concat[Some]Attr{Strings|Lists}
958 def __internalConcatAttrs(self, attr_name, filter, result):
959 for op_desc in self.items:
960 if filter(op_desc):
961 result += getattr(op_desc, attr_name)
962 return result
963
964 # return a single string that is the concatenation of the (string)
965 # values of the specified attribute for all operands
966 def concatAttrStrings(self, attr_name):
967 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
968
969 # like concatAttrStrings, but only include the values for the operands
970 # for which the provided filter function returns true
971 def concatSomeAttrStrings(self, filter, attr_name):
972 return self.__internalConcatAttrs(attr_name, filter, '')
973
974 # return a single list that is the concatenation of the (list)
975 # values of the specified attribute for all operands
976 def concatAttrLists(self, attr_name):
977 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
978
979 # like concatAttrLists, but only include the values for the operands
980 # for which the provided filter function returns true
981 def concatSomeAttrLists(self, filter, attr_name):
982 return self.__internalConcatAttrs(attr_name, filter, [])
983
984 def sort(self):
985 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
986
987 class SubOperandList(OperandList):
988 '''Find all the operands in the given code block. Returns an operand
989 descriptor list (instance of class OperandList).'''
990 def __init__(self, parser, code, master_list):
991 self.items = []
992 self.bases = {}
993 # delete strings and comments so we don't match on operands inside
994 for regEx in (stringRE, commentRE):
995 code = regEx.sub('', code)
996 # search for operands
997 next_pos = 0
998 while 1:
999 match = parser.operandsRE.search(code, next_pos)
1000 if not match:
1001 # no more matches: we're done
1002 break
1003 op = match.groups()
1004 # regexp groups are operand full name, base, and extension
1005 (op_full, op_base, op_ext) = op
1006 # find this op in the master list
1007 op_desc = master_list.find_base(op_base)
1008 if not op_desc:
1009 error('Found operand %s which is not in the master list!' \
1010 ' This is an internal error' % op_base)
1011 else:
1012 # See if we've already found this operand
1013 op_desc = self.find_base(op_base)
1014 if not op_desc:
1015 # if not, add a reference to it to this sub list
1016 self.append(master_list.bases[op_base])
1017
1018 # start next search after end of current match
1019 next_pos = match.end()
1020 self.sort()
1021 self.memOperand = None
1022 # Whether the whole PC needs to be read so parts of it can be accessed
1023 self.readPC = False
1024 # Whether the whole PC needs to be written after parts of it were
1025 # changed
1026 self.setPC = False
1027 # Whether this instruction manipulates the whole PC or parts of it.
1028 # Mixing the two is a bad idea and flagged as an error.
1029 self.pcPart = None
1030
1031 # Flags to keep track if one or more operands are to be read/written
1032 # conditionally.
1033 self.predRead = False
1034 self.predWrite = False
1035
1036 for op_desc in self.items:
1037 if op_desc.isPCPart():
1038 self.readPC = True
1039 if op_desc.is_dest:
1040 self.setPC = True
1041
1042 if op_desc.isPCState():
1043 if self.pcPart is not None:
1044 if self.pcPart and not op_desc.isPCPart() or \
1045 not self.pcPart and op_desc.isPCPart():
1046 error("Mixed whole and partial PC state operands.")
1047 self.pcPart = op_desc.isPCPart()
1048
1049 if op_desc.isMem():
1050 if self.memOperand:
1051 error("Code block has more than one memory operand.")
1052 self.memOperand = op_desc
1053
1054 # Check if this operand has read/write predication. If true, then
1055 # the microop will dynamically index source/dest registers.
1056 self.predRead = self.predRead or op_desc.hasReadPred()
1057 self.predWrite = self.predWrite or op_desc.hasWritePred()
1058
1059 # Regular expression object to match C++ strings
1060 stringRE = re.compile(r'"([^"\\]|\\.)*"')
1061
1062 # Regular expression object to match C++ comments
1063 # (used in findOperands())
1064 commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1065 re.DOTALL | re.MULTILINE)
1066
1067 # Regular expression object to match assignment statements
1068 # (used in findOperands())
1069 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1070
1071 def makeFlagConstructor(flag_list):
1072 if len(flag_list) == 0:
1073 return ''
1074 # filter out repeated flags
1075 flag_list.sort()
1076 i = 1
1077 while i < len(flag_list):
1078 if flag_list[i] == flag_list[i-1]:
1079 del flag_list[i]
1080 else:
1081 i += 1
1082 pre = '\n\tflags['
1083 post = '] = true;'
1084 code = pre + string.join(flag_list, post + pre) + post
1085 return code
1086
1087 # Assume all instruction flags are of the form 'IsFoo'
1088 instFlagRE = re.compile(r'Is.*')
1089
1090 # OpClass constants end in 'Op' except No_OpClass
1091 opClassRE = re.compile(r'.*Op|No_OpClass')
1092
1093 class InstObjParams(object):
1094 def __init__(self, parser, mnem, class_name, base_class = '',
1095 snippets = {}, opt_args = []):
1096 self.mnemonic = mnem
1097 self.class_name = class_name
1098 self.base_class = base_class
1099 if not isinstance(snippets, dict):
1100 snippets = {'code' : snippets}
1101 compositeCode = ' '.join(map(str, snippets.values()))
1102 self.snippets = snippets
1103
1104 self.operands = OperandList(parser, compositeCode)
1105
1106 # The header of the constructor declares the variables to be used
1107 # in the body of the constructor.
1108 header = ''
1109 header += '\n\t_numSrcRegs = 0;'
1110 header += '\n\t_numDestRegs = 0;'
1111 header += '\n\t_numFPDestRegs = 0;'
1112 header += '\n\t_numIntDestRegs = 0;'
1113 header += '\n\t_numCCDestRegs = 0;'
1114
1115 self.constructor = header + \
1116 self.operands.concatAttrStrings('constructor')
1117
1118 self.flags = self.operands.concatAttrLists('flags')
1119
1120 # Make a basic guess on the operand class (function unit type).
1121 # These are good enough for most cases, and can be overridden
1122 # later otherwise.
1123 if 'IsStore' in self.flags:
1124 self.op_class = 'MemWriteOp'
1125 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1126 self.op_class = 'MemReadOp'
1127 elif 'IsFloating' in self.flags:
1128 self.op_class = 'FloatAddOp'
1129 else:
1130 self.op_class = 'IntAluOp'
1131
1132 # Optional arguments are assumed to be either StaticInst flags
1133 # or an OpClass value. To avoid having to import a complete
1134 # list of these values to match against, we do it ad-hoc
1135 # with regexps.
1136 for oa in opt_args:
1137 if instFlagRE.match(oa):
1138 self.flags.append(oa)
1139 elif opClassRE.match(oa):
1140 self.op_class = oa
1141 else:
1142 error('InstObjParams: optional arg "%s" not recognized '
1143 'as StaticInst::Flag or OpClass.' % oa)
1144
1145 # add flag initialization to contructor here to include
1146 # any flags added via opt_args
1147 self.constructor += makeFlagConstructor(self.flags)
1148
1149 # if 'IsFloating' is set, add call to the FP enable check
1150 # function (which should be provided by isa_desc via a declare)
1151 if 'IsFloating' in self.flags:
1152 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1153 else:
1154 self.fp_enable_check = ''
1155
1156 ##############
1157 # Stack: a simple stack object. Used for both formats (formatStack)
1158 # and default cases (defaultStack). Simply wraps a list to give more
1159 # stack-like syntax and enable initialization with an argument list
1160 # (as opposed to an argument that's a list).
1161
1162 class Stack(list):
1163 def __init__(self, *items):
1164 list.__init__(self, items)
1165
1166 def push(self, item):
1167 self.append(item);
1168
1169 def top(self):
1170 return self[-1]
1171
1172 #######################
1173 #
1174 # Output file template
1175 #
1176
1177 file_template = '''
1178 /*
1179 * DO NOT EDIT THIS FILE!!!
1180 *
1181 * It was automatically generated from the ISA description in %(filename)s
1182 */
1183
1184 %(includes)s
1185
1186 %(global_output)s
1187
1188 namespace %(namespace)s {
1189
1190 %(namespace_output)s
1191
1192 } // namespace %(namespace)s
1193
1194 %(decode_function)s
1195 '''
1196
1197 max_inst_regs_template = '''
1198 /*
1199 * DO NOT EDIT THIS FILE!!!
1200 *
1201 * It was automatically generated from the ISA description in %(filename)s
1202 */
1203
1204 namespace %(namespace)s {
1205
1206 const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
1207 const int MaxInstDestRegs = %(MaxInstDestRegs)d;
1208 const int MaxMiscDestRegs = %(MaxMiscDestRegs)d;
1209
1210 } // namespace %(namespace)s
1211
1212 '''
1213
1214 class ISAParser(Grammar):
1215 def __init__(self, output_dir, cpu_models):
1216 super(ISAParser, self).__init__()
1217 self.output_dir = output_dir
1218
1219 self.cpuModels = cpu_models
1220
1221 # variable to hold templates
1222 self.templateMap = {}
1223
1224 # This dictionary maps format name strings to Format objects.
1225 self.formatMap = {}
1226
1227 # The format stack.
1228 self.formatStack = Stack(NoFormat())
1229
1230 # The default case stack.
1231 self.defaultStack = Stack(None)
1232
1233 # Stack that tracks current file and line number. Each
1234 # element is a tuple (filename, lineno) that records the
1235 # *current* filename and the line number in the *previous*
1236 # file where it was included.
1237 self.fileNameStack = Stack()
1238
1239 symbols = ('makeList', 're', 'string')
1240 self.exportContext = dict([(s, eval(s)) for s in symbols])
1241
1242 self.maxInstSrcRegs = 0
1243 self.maxInstDestRegs = 0
1244 self.maxMiscDestRegs = 0
1245
1246 #####################################################################
1247 #
1248 # Lexer
1249 #
1250 # The PLY lexer module takes two things as input:
1251 # - A list of token names (the string list 'tokens')
1252 # - A regular expression describing a match for each token. The
1253 # regexp for token FOO can be provided in two ways:
1254 # - as a string variable named t_FOO
1255 # - as the doc string for a function named t_FOO. In this case,
1256 # the function is also executed, allowing an action to be
1257 # associated with each token match.
1258 #
1259 #####################################################################
1260
1261 # Reserved words. These are listed separately as they are matched
1262 # using the same regexp as generic IDs, but distinguished in the
1263 # t_ID() function. The PLY documentation suggests this approach.
1264 reserved = (
1265 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1266 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1267 'OUTPUT', 'SIGNED', 'TEMPLATE'
1268 )
1269
1270 # List of tokens. The lex module requires this.
1271 tokens = reserved + (
1272 # identifier
1273 'ID',
1274
1275 # integer literal
1276 'INTLIT',
1277
1278 # string literal
1279 'STRLIT',
1280
1281 # code literal
1282 'CODELIT',
1283
1284 # ( ) [ ] { } < > , ; . : :: *
1285 'LPAREN', 'RPAREN',
1286 'LBRACKET', 'RBRACKET',
1287 'LBRACE', 'RBRACE',
1288 'LESS', 'GREATER', 'EQUALS',
1289 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1290 'ASTERISK',
1291
1292 # C preprocessor directives
1293 'CPPDIRECTIVE'
1294
1295 # The following are matched but never returned. commented out to
1296 # suppress PLY warning
1297 # newfile directive
1298 # 'NEWFILE',
1299
1300 # endfile directive
1301 # 'ENDFILE'
1302 )
1303
1304 # Regular expressions for token matching
1305 t_LPAREN = r'\('
1306 t_RPAREN = r'\)'
1307 t_LBRACKET = r'\['
1308 t_RBRACKET = r'\]'
1309 t_LBRACE = r'\{'
1310 t_RBRACE = r'\}'
1311 t_LESS = r'\<'
1312 t_GREATER = r'\>'
1313 t_EQUALS = r'='
1314 t_COMMA = r','
1315 t_SEMI = r';'
1316 t_DOT = r'\.'
1317 t_COLON = r':'
1318 t_DBLCOLON = r'::'
1319 t_ASTERISK = r'\*'
1320
1321 # Identifiers and reserved words
1322 reserved_map = { }
1323 for r in reserved:
1324 reserved_map[r.lower()] = r
1325
1326 def t_ID(self, t):
1327 r'[A-Za-z_]\w*'
1328 t.type = self.reserved_map.get(t.value, 'ID')
1329 return t
1330
1331 # Integer literal
1332 def t_INTLIT(self, t):
1333 r'-?(0x[\da-fA-F]+)|\d+'
1334 try:
1335 t.value = int(t.value,0)
1336 except ValueError:
1337 error(t, 'Integer value "%s" too large' % t.value)
1338 t.value = 0
1339 return t
1340
1341 # String literal. Note that these use only single quotes, and
1342 # can span multiple lines.
1343 def t_STRLIT(self, t):
1344 r"(?m)'([^'])+'"
1345 # strip off quotes
1346 t.value = t.value[1:-1]
1347 t.lexer.lineno += t.value.count('\n')
1348 return t
1349
1350
1351 # "Code literal"... like a string literal, but delimiters are
1352 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1353 def t_CODELIT(self, t):
1354 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1355 # strip off {{ & }}
1356 t.value = t.value[2:-2]
1357 t.lexer.lineno += t.value.count('\n')
1358 return t
1359
1360 def t_CPPDIRECTIVE(self, t):
1361 r'^\#[^\#].*\n'
1362 t.lexer.lineno += t.value.count('\n')
1363 return t
1364
1365 def t_NEWFILE(self, t):
1366 r'^\#\#newfile\s+"[^"]*"'
1367 self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1368 t.lexer.lineno = 0
1369
1370 def t_ENDFILE(self, t):
1371 r'^\#\#endfile'
1372 (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1373
1374 #
1375 # The functions t_NEWLINE, t_ignore, and t_error are
1376 # special for the lex module.
1377 #
1378
1379 # Newlines
1380 def t_NEWLINE(self, t):
1381 r'\n+'
1382 t.lexer.lineno += t.value.count('\n')
1383
1384 # Comments
1385 def t_comment(self, t):
1386 r'//.*'
1387
1388 # Completely ignored characters
1389 t_ignore = ' \t\x0c'
1390
1391 # Error handler
1392 def t_error(self, t):
1393 error(t, "illegal character '%s'" % t.value[0])
1394 t.skip(1)
1395
1396 #####################################################################
1397 #
1398 # Parser
1399 #
1400 # Every function whose name starts with 'p_' defines a grammar
1401 # rule. The rule is encoded in the function's doc string, while
1402 # the function body provides the action taken when the rule is
1403 # matched. The argument to each function is a list of the values
1404 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1405 # symbols on the RHS. For tokens, the value is copied from the
1406 # t.value attribute provided by the lexer. For non-terminals, the
1407 # value is assigned by the producing rule; i.e., the job of the
1408 # grammar rule function is to set the value for the non-terminal
1409 # on the LHS (by assigning to t[0]).
1410 #####################################################################
1411
1412 # The LHS of the first grammar rule is used as the start symbol
1413 # (in this case, 'specification'). Note that this rule enforces
1414 # that there will be exactly one namespace declaration, with 0 or
1415 # more global defs/decls before and after it. The defs & decls
1416 # before the namespace decl will be outside the namespace; those
1417 # after will be inside. The decoder function is always inside the
1418 # namespace.
1419 def p_specification(self, t):
1420 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
1421 global_code = t[1]
1422 isa_name = t[2]
1423 namespace = isa_name + "Inst"
1424 # wrap the decode block as a function definition
1425 t[4].wrap_decode_block('''
1426 StaticInstPtr
1427 %(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1428 {
1429 using namespace %(namespace)s;
1430 ''' % vars(), '}')
1431 # both the latter output blocks and the decode block are in
1432 # the namespace
1433 namespace_code = t[3] + t[4]
1434 # pass it all back to the caller of yacc.parse()
1435 t[0] = (isa_name, namespace, global_code, namespace_code)
1436
1437 # ISA name declaration looks like "namespace <foo>;"
1438 def p_name_decl(self, t):
1439 'name_decl : NAMESPACE ID SEMI'
1440 t[0] = t[2]
1441
1442 # 'opt_defs_and_outputs' is a possibly empty sequence of
1443 # def and/or output statements.
1444 def p_opt_defs_and_outputs_0(self, t):
1445 'opt_defs_and_outputs : empty'
1446 t[0] = GenCode(self)
1447
1448 def p_opt_defs_and_outputs_1(self, t):
1449 'opt_defs_and_outputs : defs_and_outputs'
1450 t[0] = t[1]
1451
1452 def p_defs_and_outputs_0(self, t):
1453 'defs_and_outputs : def_or_output'
1454 t[0] = t[1]
1455
1456 def p_defs_and_outputs_1(self, t):
1457 'defs_and_outputs : defs_and_outputs def_or_output'
1458 t[0] = t[1] + t[2]
1459
1460 # The list of possible definition/output statements.
1461 def p_def_or_output(self, t):
1462 '''def_or_output : def_format
1463 | def_bitfield
1464 | def_bitfield_struct
1465 | def_template
1466 | def_operand_types
1467 | def_operands
1468 | output_header
1469 | output_decoder
1470 | output_exec
1471 | global_let'''
1472 t[0] = t[1]
1473
1474 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1475 # directly to the appropriate output section.
1476
1477 # Massage output block by substituting in template definitions and
1478 # bit operators. We handle '%'s embedded in the string that don't
1479 # indicate template substitutions (or CPU-specific symbols, which
1480 # get handled in GenCode) by doubling them first so that the
1481 # format operation will reduce them back to single '%'s.
1482 def process_output(self, s):
1483 s = self.protectNonSubstPercents(s)
1484 # protects cpu-specific symbols too
1485 s = self.protectCpuSymbols(s)
1486 return substBitOps(s % self.templateMap)
1487
1488 def p_output_header(self, t):
1489 'output_header : OUTPUT HEADER CODELIT SEMI'
1490 t[0] = GenCode(self, header_output = self.process_output(t[3]))
1491
1492 def p_output_decoder(self, t):
1493 'output_decoder : OUTPUT DECODER CODELIT SEMI'
1494 t[0] = GenCode(self, decoder_output = self.process_output(t[3]))
1495
1496 def p_output_exec(self, t):
1497 'output_exec : OUTPUT EXEC CODELIT SEMI'
1498 t[0] = GenCode(self, exec_output = self.process_output(t[3]))
1499
1500 # global let blocks 'let {{...}}' (Python code blocks) are
1501 # executed directly when seen. Note that these execute in a
1502 # special variable context 'exportContext' to prevent the code
1503 # from polluting this script's namespace.
1504 def p_global_let(self, t):
1505 'global_let : LET CODELIT SEMI'
1506 self.updateExportContext()
1507 self.exportContext["header_output"] = ''
1508 self.exportContext["decoder_output"] = ''
1509 self.exportContext["exec_output"] = ''
1510 self.exportContext["decode_block"] = ''
1511 try:
1512 exec fixPythonIndentation(t[2]) in self.exportContext
1513 except Exception, exc:
1514 if debug:
1515 raise
1516 error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1517 t[0] = GenCode(self,
1518 header_output=self.exportContext["header_output"],
1519 decoder_output=self.exportContext["decoder_output"],
1520 exec_output=self.exportContext["exec_output"],
1521 decode_block=self.exportContext["decode_block"])
1522
1523 # Define the mapping from operand type extensions to C++ types and
1524 # bit widths (stored in operandTypeMap).
1525 def p_def_operand_types(self, t):
1526 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1527 try:
1528 self.operandTypeMap = eval('{' + t[3] + '}')
1529 except Exception, exc:
1530 if debug:
1531 raise
1532 error(t,
1533 'error: %s in def operand_types block "%s".' % (exc, t[3]))
1534 t[0] = GenCode(self) # contributes nothing to the output C++ file
1535
1536 # Define the mapping from operand names to operand classes and
1537 # other traits. Stored in operandNameMap.
1538 def p_def_operands(self, t):
1539 'def_operands : DEF OPERANDS CODELIT SEMI'
1540 if not hasattr(self, 'operandTypeMap'):
1541 error(t, 'error: operand types must be defined before operands')
1542 try:
1543 user_dict = eval('{' + t[3] + '}', self.exportContext)
1544 except Exception, exc:
1545 if debug:
1546 raise
1547 error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1548 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1549 t[0] = GenCode(self) # contributes nothing to the output C++ file
1550
1551 # A bitfield definition looks like:
1552 # 'def [signed] bitfield <ID> [<first>:<last>]'
1553 # This generates a preprocessor macro in the output file.
1554 def p_def_bitfield_0(self, t):
1555 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1556 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1557 if (t[2] == 'signed'):
1558 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1559 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1560 t[0] = GenCode(self, header_output=hash_define)
1561
1562 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1563 def p_def_bitfield_1(self, t):
1564 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1565 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1566 if (t[2] == 'signed'):
1567 expr = 'sext<%d>(%s)' % (1, expr)
1568 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1569 t[0] = GenCode(self, header_output=hash_define)
1570
1571 # alternate form for structure member: 'def bitfield <ID> <ID>'
1572 def p_def_bitfield_struct(self, t):
1573 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1574 if (t[2] != ''):
1575 error(t, 'error: structure bitfields are always unsigned.')
1576 expr = 'machInst.%s' % t[5]
1577 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1578 t[0] = GenCode(self, header_output=hash_define)
1579
1580 def p_id_with_dot_0(self, t):
1581 'id_with_dot : ID'
1582 t[0] = t[1]
1583
1584 def p_id_with_dot_1(self, t):
1585 'id_with_dot : ID DOT id_with_dot'
1586 t[0] = t[1] + t[2] + t[3]
1587
1588 def p_opt_signed_0(self, t):
1589 'opt_signed : SIGNED'
1590 t[0] = t[1]
1591
1592 def p_opt_signed_1(self, t):
1593 'opt_signed : empty'
1594 t[0] = ''
1595
1596 def p_def_template(self, t):
1597 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1598 self.templateMap[t[3]] = Template(self, t[4])
1599 t[0] = GenCode(self)
1600
1601 # An instruction format definition looks like
1602 # "def format <fmt>(<params>) {{...}};"
1603 def p_def_format(self, t):
1604 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1605 (id, params, code) = (t[3], t[5], t[7])
1606 self.defFormat(id, params, code, t.lexer.lineno)
1607 t[0] = GenCode(self)
1608
1609 # The formal parameter list for an instruction format is a
1610 # possibly empty list of comma-separated parameters. Positional
1611 # (standard, non-keyword) parameters must come first, followed by
1612 # keyword parameters, followed by a '*foo' parameter that gets
1613 # excess positional arguments (as in Python). Each of these three
1614 # parameter categories is optional.
1615 #
1616 # Note that we do not support the '**foo' parameter for collecting
1617 # otherwise undefined keyword args. Otherwise the parameter list
1618 # is (I believe) identical to what is supported in Python.
1619 #
1620 # The param list generates a tuple, where the first element is a
1621 # list of the positional params and the second element is a dict
1622 # containing the keyword params.
1623 def p_param_list_0(self, t):
1624 'param_list : positional_param_list COMMA nonpositional_param_list'
1625 t[0] = t[1] + t[3]
1626
1627 def p_param_list_1(self, t):
1628 '''param_list : positional_param_list
1629 | nonpositional_param_list'''
1630 t[0] = t[1]
1631
1632 def p_positional_param_list_0(self, t):
1633 'positional_param_list : empty'
1634 t[0] = []
1635
1636 def p_positional_param_list_1(self, t):
1637 'positional_param_list : ID'
1638 t[0] = [t[1]]
1639
1640 def p_positional_param_list_2(self, t):
1641 'positional_param_list : positional_param_list COMMA ID'
1642 t[0] = t[1] + [t[3]]
1643
1644 def p_nonpositional_param_list_0(self, t):
1645 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1646 t[0] = t[1] + t[3]
1647
1648 def p_nonpositional_param_list_1(self, t):
1649 '''nonpositional_param_list : keyword_param_list
1650 | excess_args_param'''
1651 t[0] = t[1]
1652
1653 def p_keyword_param_list_0(self, t):
1654 'keyword_param_list : keyword_param'
1655 t[0] = [t[1]]
1656
1657 def p_keyword_param_list_1(self, t):
1658 'keyword_param_list : keyword_param_list COMMA keyword_param'
1659 t[0] = t[1] + [t[3]]
1660
1661 def p_keyword_param(self, t):
1662 'keyword_param : ID EQUALS expr'
1663 t[0] = t[1] + ' = ' + t[3].__repr__()
1664
1665 def p_excess_args_param(self, t):
1666 'excess_args_param : ASTERISK ID'
1667 # Just concatenate them: '*ID'. Wrap in list to be consistent
1668 # with positional_param_list and keyword_param_list.
1669 t[0] = [t[1] + t[2]]
1670
1671 # End of format definition-related rules.
1672 ##############
1673
1674 #
1675 # A decode block looks like:
1676 # decode <field1> [, <field2>]* [default <inst>] { ... }
1677 #
1678 def p_decode_block(self, t):
1679 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1680 default_defaults = self.defaultStack.pop()
1681 codeObj = t[5]
1682 # use the "default defaults" only if there was no explicit
1683 # default statement in decode_stmt_list
1684 if not codeObj.has_decode_default:
1685 codeObj += default_defaults
1686 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1687 t[0] = codeObj
1688
1689 # The opt_default statement serves only to push the "default
1690 # defaults" onto defaultStack. This value will be used by nested
1691 # decode blocks, and used and popped off when the current
1692 # decode_block is processed (in p_decode_block() above).
1693 def p_opt_default_0(self, t):
1694 'opt_default : empty'
1695 # no default specified: reuse the one currently at the top of
1696 # the stack
1697 self.defaultStack.push(self.defaultStack.top())
1698 # no meaningful value returned
1699 t[0] = None
1700
1701 def p_opt_default_1(self, t):
1702 'opt_default : DEFAULT inst'
1703 # push the new default
1704 codeObj = t[2]
1705 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1706 self.defaultStack.push(codeObj)
1707 # no meaningful value returned
1708 t[0] = None
1709
1710 def p_decode_stmt_list_0(self, t):
1711 'decode_stmt_list : decode_stmt'
1712 t[0] = t[1]
1713
1714 def p_decode_stmt_list_1(self, t):
1715 'decode_stmt_list : decode_stmt decode_stmt_list'
1716 if (t[1].has_decode_default and t[2].has_decode_default):
1717 error(t, 'Two default cases in decode block')
1718 t[0] = t[1] + t[2]
1719
1720 #
1721 # Decode statement rules
1722 #
1723 # There are four types of statements allowed in a decode block:
1724 # 1. Format blocks 'format <foo> { ... }'
1725 # 2. Nested decode blocks
1726 # 3. Instruction definitions.
1727 # 4. C preprocessor directives.
1728
1729
1730 # Preprocessor directives found in a decode statement list are
1731 # passed through to the output, replicated to all of the output
1732 # code streams. This works well for ifdefs, so we can ifdef out
1733 # both the declarations and the decode cases generated by an
1734 # instruction definition. Handling them as part of the grammar
1735 # makes it easy to keep them in the right place with respect to
1736 # the code generated by the other statements.
1737 def p_decode_stmt_cpp(self, t):
1738 'decode_stmt : CPPDIRECTIVE'
1739 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1740
1741 # A format block 'format <foo> { ... }' sets the default
1742 # instruction format used to handle instruction definitions inside
1743 # the block. This format can be overridden by using an explicit
1744 # format on the instruction definition or with a nested format
1745 # block.
1746 def p_decode_stmt_format(self, t):
1747 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1748 # The format will be pushed on the stack when 'push_format_id'
1749 # is processed (see below). Once the parser has recognized
1750 # the full production (though the right brace), we're done
1751 # with the format, so now we can pop it.
1752 self.formatStack.pop()
1753 t[0] = t[4]
1754
1755 # This rule exists so we can set the current format (& push the
1756 # stack) when we recognize the format name part of the format
1757 # block.
1758 def p_push_format_id(self, t):
1759 'push_format_id : ID'
1760 try:
1761 self.formatStack.push(self.formatMap[t[1]])
1762 t[0] = ('', '// format %s' % t[1])
1763 except KeyError:
1764 error(t, 'instruction format "%s" not defined.' % t[1])
1765
1766 # Nested decode block: if the value of the current field matches
1767 # the specified constant, do a nested decode on some other field.
1768 def p_decode_stmt_decode(self, t):
1769 'decode_stmt : case_label COLON decode_block'
1770 label = t[1]
1771 codeObj = t[3]
1772 # just wrap the decoding code from the block as a case in the
1773 # outer switch statement.
1774 codeObj.wrap_decode_block('\n%s:\n' % label)
1775 codeObj.has_decode_default = (label == 'default')
1776 t[0] = codeObj
1777
1778 # Instruction definition (finally!).
1779 def p_decode_stmt_inst(self, t):
1780 'decode_stmt : case_label COLON inst SEMI'
1781 label = t[1]
1782 codeObj = t[3]
1783 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
1784 codeObj.has_decode_default = (label == 'default')
1785 t[0] = codeObj
1786
1787 # The case label is either a list of one or more constants or
1788 # 'default'
1789 def p_case_label_0(self, t):
1790 'case_label : intlit_list'
1791 def make_case(intlit):
1792 if intlit >= 2**32:
1793 return 'case ULL(%#x)' % intlit
1794 else:
1795 return 'case %#x' % intlit
1796 t[0] = ': '.join(map(make_case, t[1]))
1797
1798 def p_case_label_1(self, t):
1799 'case_label : DEFAULT'
1800 t[0] = 'default'
1801
1802 #
1803 # The constant list for a decode case label must be non-empty, but
1804 # may have one or more comma-separated integer literals in it.
1805 #
1806 def p_intlit_list_0(self, t):
1807 'intlit_list : INTLIT'
1808 t[0] = [t[1]]
1809
1810 def p_intlit_list_1(self, t):
1811 'intlit_list : intlit_list COMMA INTLIT'
1812 t[0] = t[1]
1813 t[0].append(t[3])
1814
1815 # Define an instruction using the current instruction format
1816 # (specified by an enclosing format block).
1817 # "<mnemonic>(<args>)"
1818 def p_inst_0(self, t):
1819 'inst : ID LPAREN arg_list RPAREN'
1820 # Pass the ID and arg list to the current format class to deal with.
1821 currentFormat = self.formatStack.top()
1822 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
1823 args = ','.join(map(str, t[3]))
1824 args = re.sub('(?m)^', '//', args)
1825 args = re.sub('^//', '', args)
1826 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
1827 codeObj.prepend_all(comment)
1828 t[0] = codeObj
1829
1830 # Define an instruction using an explicitly specified format:
1831 # "<fmt>::<mnemonic>(<args>)"
1832 def p_inst_1(self, t):
1833 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
1834 try:
1835 format = self.formatMap[t[1]]
1836 except KeyError:
1837 error(t, 'instruction format "%s" not defined.' % t[1])
1838
1839 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
1840 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
1841 codeObj.prepend_all(comment)
1842 t[0] = codeObj
1843
1844 # The arg list generates a tuple, where the first element is a
1845 # list of the positional args and the second element is a dict
1846 # containing the keyword args.
1847 def p_arg_list_0(self, t):
1848 'arg_list : positional_arg_list COMMA keyword_arg_list'
1849 t[0] = ( t[1], t[3] )
1850
1851 def p_arg_list_1(self, t):
1852 'arg_list : positional_arg_list'
1853 t[0] = ( t[1], {} )
1854
1855 def p_arg_list_2(self, t):
1856 'arg_list : keyword_arg_list'
1857 t[0] = ( [], t[1] )
1858
1859 def p_positional_arg_list_0(self, t):
1860 'positional_arg_list : empty'
1861 t[0] = []
1862
1863 def p_positional_arg_list_1(self, t):
1864 'positional_arg_list : expr'
1865 t[0] = [t[1]]
1866
1867 def p_positional_arg_list_2(self, t):
1868 'positional_arg_list : positional_arg_list COMMA expr'
1869 t[0] = t[1] + [t[3]]
1870
1871 def p_keyword_arg_list_0(self, t):
1872 'keyword_arg_list : keyword_arg'
1873 t[0] = t[1]
1874
1875 def p_keyword_arg_list_1(self, t):
1876 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
1877 t[0] = t[1]
1878 t[0].update(t[3])
1879
1880 def p_keyword_arg(self, t):
1881 'keyword_arg : ID EQUALS expr'
1882 t[0] = { t[1] : t[3] }
1883
1884 #
1885 # Basic expressions. These constitute the argument values of
1886 # "function calls" (i.e. instruction definitions in the decode
1887 # block) and default values for formal parameters of format
1888 # functions.
1889 #
1890 # Right now, these are either strings, integers, or (recursively)
1891 # lists of exprs (using Python square-bracket list syntax). Note
1892 # that bare identifiers are trated as string constants here (since
1893 # there isn't really a variable namespace to refer to).
1894 #
1895 def p_expr_0(self, t):
1896 '''expr : ID
1897 | INTLIT
1898 | STRLIT
1899 | CODELIT'''
1900 t[0] = t[1]
1901
1902 def p_expr_1(self, t):
1903 '''expr : LBRACKET list_expr RBRACKET'''
1904 t[0] = t[2]
1905
1906 def p_list_expr_0(self, t):
1907 'list_expr : expr'
1908 t[0] = [t[1]]
1909
1910 def p_list_expr_1(self, t):
1911 'list_expr : list_expr COMMA expr'
1912 t[0] = t[1] + [t[3]]
1913
1914 def p_list_expr_2(self, t):
1915 'list_expr : empty'
1916 t[0] = []
1917
1918 #
1919 # Empty production... use in other rules for readability.
1920 #
1921 def p_empty(self, t):
1922 'empty :'
1923 pass
1924
1925 # Parse error handler. Note that the argument here is the
1926 # offending *token*, not a grammar symbol (hence the need to use
1927 # t.value)
1928 def p_error(self, t):
1929 if t:
1930 error(t, "syntax error at '%s'" % t.value)
1931 else:
1932 error("unknown syntax error")
1933
1934 # END OF GRAMMAR RULES
1935
1936 def updateExportContext(self):
1937
1938 # create a continuation that allows us to grab the current parser
1939 def wrapInstObjParams(*args):
1940 return InstObjParams(self, *args)
1941 self.exportContext['InstObjParams'] = wrapInstObjParams
1942 self.exportContext.update(self.templateMap)
1943
1944 def defFormat(self, id, params, code, lineno):
1945 '''Define a new format'''
1946
1947 # make sure we haven't already defined this one
1948 if id in self.formatMap:
1949 error(lineno, 'format %s redefined.' % id)
1950
1951 # create new object and store in global map
1952 self.formatMap[id] = Format(id, params, code)
1953
1954 def expandCpuSymbolsToDict(self, template):
1955 '''Expand template with CPU-specific references into a
1956 dictionary with an entry for each CPU model name. The entry
1957 key is the model name and the corresponding value is the
1958 template with the CPU-specific refs substituted for that
1959 model.'''
1960
1961 # Protect '%'s that don't go with CPU-specific terms
1962 t = re.sub(r'%(?!\(CPU_)', '%%', template)
1963 result = {}
1964 for cpu in self.cpuModels:
1965 result[cpu.name] = t % cpu.strings
1966 return result
1967
1968 def expandCpuSymbolsToString(self, template):
1969 '''*If* the template has CPU-specific references, return a
1970 single string containing a copy of the template for each CPU
1971 model with the corresponding values substituted in. If the
1972 template has no CPU-specific references, it is returned
1973 unmodified.'''
1974
1975 if template.find('%(CPU_') != -1:
1976 return reduce(lambda x,y: x+y,
1977 self.expandCpuSymbolsToDict(template).values())
1978 else:
1979 return template
1980
1981 def protectCpuSymbols(self, template):
1982 '''Protect CPU-specific references by doubling the
1983 corresponding '%'s (in preparation for substituting a different
1984 set of references into the template).'''
1985
1986 return re.sub(r'%(?=\(CPU_)', '%%', template)
1987
1988 def protectNonSubstPercents(self, s):
1989 '''Protect any non-dict-substitution '%'s in a format string
1990 (i.e. those not followed by '(')'''
1991
1992 return re.sub(r'%(?!\()', '%%', s)
1993
1994 def buildOperandNameMap(self, user_dict, lineno):
1995 operand_name = {}
1996 for op_name, val in user_dict.iteritems():
1997
1998 # Check if extra attributes have been specified.
1999 if len(val) > 9:
2000 error(lineno, 'error: too many attributes for operand "%s"' %
2001 base_cls_name)
2002
2003 # Pad val with None in case optional args are missing
2004 val += (None, None, None, None)
2005 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2006 read_code, write_code, read_predicate, write_predicate = val[:9]
2007
2008 # Canonical flag structure is a triple of lists, where each list
2009 # indicates the set of flags implied by this operand always, when
2010 # used as a source, and when used as a dest, respectively.
2011 # For simplicity this can be initialized using a variety of fairly
2012 # obvious shortcuts; we convert these to canonical form here.
2013 if not flags:
2014 # no flags specified (e.g., 'None')
2015 flags = ( [], [], [] )
2016 elif isinstance(flags, str):
2017 # a single flag: assumed to be unconditional
2018 flags = ( [ flags ], [], [] )
2019 elif isinstance(flags, list):
2020 # a list of flags: also assumed to be unconditional
2021 flags = ( flags, [], [] )
2022 elif isinstance(flags, tuple):
2023 # it's a tuple: it should be a triple,
2024 # but each item could be a single string or a list
2025 (uncond_flags, src_flags, dest_flags) = flags
2026 flags = (makeList(uncond_flags),
2027 makeList(src_flags), makeList(dest_flags))
2028
2029 # Accumulate attributes of new operand class in tmp_dict
2030 tmp_dict = {}
2031 attrList = ['reg_spec', 'flags', 'sort_pri',
2032 'read_code', 'write_code',
2033 'read_predicate', 'write_predicate']
2034 if dflt_ext:
2035 dflt_ctype = self.operandTypeMap[dflt_ext]
2036 attrList.extend(['dflt_ctype', 'dflt_ext'])
2037 for attr in attrList:
2038 tmp_dict[attr] = eval(attr)
2039 tmp_dict['base_name'] = op_name
2040
2041 # New class name will be e.g. "IntReg_Ra"
2042 cls_name = base_cls_name + '_' + op_name
2043 # Evaluate string arg to get class object. Note that the
2044 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2045 # have to append "Operand".
2046 try:
2047 base_cls = eval(base_cls_name + 'Operand')
2048 except NameError:
2049 error(lineno,
2050 'error: unknown operand base class "%s"' % base_cls_name)
2051 # The following statement creates a new class called
2052 # <cls_name> as a subclass of <base_cls> with the attributes
2053 # in tmp_dict, just as if we evaluated a class declaration.
2054 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2055
2056 self.operandNameMap = operand_name
2057
2058 # Define operand variables.
2059 operands = user_dict.keys()
2060 extensions = self.operandTypeMap.keys()
2061
2062 operandsREString = r'''
2063 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2064 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2065 (?!\w) # neg. lookahead assertion: prevent partial matches
2066 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2067
2068 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2069
2070 # Same as operandsREString, but extension is mandatory, and only two
2071 # groups are returned (base and ext, not full name as above).
2072 # Used for subtituting '_' for '.' to make C++ identifiers.
2073 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2074 % (string.join(operands, '|'), string.join(extensions, '|'))
2075
2076 self.operandsWithExtRE = \
2077 re.compile(operandsWithExtREString, re.MULTILINE)
2078
2079 def substMungedOpNames(self, code):
2080 '''Munge operand names in code string to make legal C++
2081 variable names. This means getting rid of the type extension
2082 if any. Will match base_name attribute of Operand object.)'''
2083 return self.operandsWithExtRE.sub(r'\1', code)
2084
2085 def mungeSnippet(self, s):
2086 '''Fix up code snippets for final substitution in templates.'''
2087 if isinstance(s, str):
2088 return self.substMungedOpNames(substBitOps(s))
2089 else:
2090 return s
2091
2092 def update_if_needed(self, file, contents):
2093 '''Update the output file only if the new contents are
2094 different from the current contents. Minimizes the files that
2095 need to be rebuilt after minor changes.'''
2096
2097 file = os.path.join(self.output_dir, file)
2098 update = False
2099 if os.access(file, os.R_OK):
2100 f = open(file, 'r')
2101 old_contents = f.read()
2102 f.close()
2103 if contents != old_contents:
2104 os.remove(file) # in case it's write-protected
2105 update = True
2106 else:
2107 print 'File', file, 'is unchanged'
2108 else:
2109 update = True
2110 if update:
2111 f = open(file, 'w')
2112 f.write(contents)
2113 f.close()
2114
2115 # This regular expression matches '##include' directives
2116 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2117 re.MULTILINE)
2118
2119 def replace_include(self, matchobj, dirname):
2120 """Function to replace a matched '##include' directive with the
2121 contents of the specified file (with nested ##includes
2122 replaced recursively). 'matchobj' is an re match object
2123 (from a match of includeRE) and 'dirname' is the directory
2124 relative to which the file path should be resolved."""
2125
2126 fname = matchobj.group('filename')
2127 full_fname = os.path.normpath(os.path.join(dirname, fname))
2128 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2129 (full_fname, self.read_and_flatten(full_fname))
2130 return contents
2131
2132 def read_and_flatten(self, filename):
2133 """Read a file and recursively flatten nested '##include' files."""
2134
2135 current_dir = os.path.dirname(filename)
2136 try:
2137 contents = open(filename).read()
2138 except IOError:
2139 error('Error including file "%s"' % filename)
2140
2141 self.fileNameStack.push((filename, 0))
2142
2143 # Find any includes and include them
2144 def replace(matchobj):
2145 return self.replace_include(matchobj, current_dir)
2146 contents = self.includeRE.sub(replace, contents)
2147
2148 self.fileNameStack.pop()
2149 return contents
2150
2151 def _parse_isa_desc(self, isa_desc_file):
2152 '''Read in and parse the ISA description.'''
2153
2154 # Read file and (recursively) all included files into a string.
2155 # PLY requires that the input be in a single string so we have to
2156 # do this up front.
2157 isa_desc = self.read_and_flatten(isa_desc_file)
2158
2159 # Initialize filename stack with outer file.
2160 self.fileNameStack.push((isa_desc_file, 0))
2161
2162 # Parse it.
2163 (isa_name, namespace, global_code, namespace_code) = \
2164 self.parse_string(isa_desc)
2165
2166 # grab the last three path components of isa_desc_file to put in
2167 # the output
2168 filename = '/'.join(isa_desc_file.split('/')[-3:])
2169
2170 # generate decoder.hh
2171 includes = '#include "base/bitfield.hh" // for bitfield support'
2172 global_output = global_code.header_output
2173 namespace_output = namespace_code.header_output
2174 decode_function = ''
2175 self.update_if_needed('decoder.hh', file_template % vars())
2176
2177 # generate decoder.cc
2178 includes = '#include "decoder.hh"'
2179 global_output = global_code.decoder_output
2180 namespace_output = namespace_code.decoder_output
2181 # namespace_output += namespace_code.decode_block
2182 decode_function = namespace_code.decode_block
2183 self.update_if_needed('decoder.cc', file_template % vars())
2184
2185 # generate per-cpu exec files
2186 for cpu in self.cpuModels:
2187 includes = '#include "decoder.hh"\n'
2188 includes += cpu.includes
2189 global_output = global_code.exec_output[cpu.name]
2190 namespace_output = namespace_code.exec_output[cpu.name]
2191 decode_function = ''
2192 self.update_if_needed(cpu.filename, file_template % vars())
2193
2194 # The variable names here are hacky, but this will creat local
2195 # variables which will be referenced in vars() which have the
2196 # value of the globals.
2197 MaxInstSrcRegs = self.maxInstSrcRegs
2198 MaxInstDestRegs = self.maxInstDestRegs
2199 MaxMiscDestRegs = self.maxMiscDestRegs
2200 # max_inst_regs.hh
2201 self.update_if_needed('max_inst_regs.hh',
2202 max_inst_regs_template % vars())
2203
2204 def parse_isa_desc(self, *args, **kwargs):
2205 try:
2206 self._parse_isa_desc(*args, **kwargs)
2207 except ISAParserError, e:
2208 e.exit(self.fileNameStack)
2209
2210 # Called as script: get args from command line.
2211 # Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
2212 if __name__ == '__main__':
2213 execfile(sys.argv[1]) # read in CpuModel definitions
2214 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
2215 ISAParser(sys.argv[3], cpu_models).parse_isa_desc(sys.argv[2])