ARM: Get rid of unnecessary Re operand.
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2003-2005 The Regents of The University of Michigan
2 # All rights reserved.
3 #
4 # Redistribution and use in source and binary forms, with or without
5 # modification, are permitted provided that the following conditions are
6 # met: redistributions of source code must retain the above copyright
7 # notice, this list of conditions and the following disclaimer;
8 # redistributions in binary form must reproduce the above copyright
9 # notice, this list of conditions and the following disclaimer in the
10 # documentation and/or other materials provided with the distribution;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission.
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 #
27 # Authors: Steve Reinhardt
28
29 import os
30 import sys
31 import re
32 import string
33 import traceback
34 # get type names
35 from types import *
36
37 # Prepend the directory where the PLY lex & yacc modules are found
38 # to the search path. Assumes we're compiling in a subdirectory
39 # of 'build' in the current tree.
40 sys.path[0:0] = [os.environ['M5_PLY']]
41
42 from ply import lex
43 from ply import yacc
44
45 #####################################################################
46 #
47 # Lexer
48 #
49 # The PLY lexer module takes two things as input:
50 # - A list of token names (the string list 'tokens')
51 # - A regular expression describing a match for each token. The
52 # regexp for token FOO can be provided in two ways:
53 # - as a string variable named t_FOO
54 # - as the doc string for a function named t_FOO. In this case,
55 # the function is also executed, allowing an action to be
56 # associated with each token match.
57 #
58 #####################################################################
59
60 # Reserved words. These are listed separately as they are matched
61 # using the same regexp as generic IDs, but distinguished in the
62 # t_ID() function. The PLY documentation suggests this approach.
63 reserved = (
64 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
65 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
66 'OUTPUT', 'SIGNED', 'TEMPLATE'
67 )
68
69 # List of tokens. The lex module requires this.
70 tokens = reserved + (
71 # identifier
72 'ID',
73
74 # integer literal
75 'INTLIT',
76
77 # string literal
78 'STRLIT',
79
80 # code literal
81 'CODELIT',
82
83 # ( ) [ ] { } < > , ; . : :: *
84 'LPAREN', 'RPAREN',
85 'LBRACKET', 'RBRACKET',
86 'LBRACE', 'RBRACE',
87 'LESS', 'GREATER', 'EQUALS',
88 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
89 'ASTERISK',
90
91 # C preprocessor directives
92 'CPPDIRECTIVE'
93
94 # The following are matched but never returned. commented out to
95 # suppress PLY warning
96 # newfile directive
97 # 'NEWFILE',
98
99 # endfile directive
100 # 'ENDFILE'
101 )
102
103 # Regular expressions for token matching
104 t_LPAREN = r'\('
105 t_RPAREN = r'\)'
106 t_LBRACKET = r'\['
107 t_RBRACKET = r'\]'
108 t_LBRACE = r'\{'
109 t_RBRACE = r'\}'
110 t_LESS = r'\<'
111 t_GREATER = r'\>'
112 t_EQUALS = r'='
113 t_COMMA = r','
114 t_SEMI = r';'
115 t_DOT = r'\.'
116 t_COLON = r':'
117 t_DBLCOLON = r'::'
118 t_ASTERISK = r'\*'
119
120 # Identifiers and reserved words
121 reserved_map = { }
122 for r in reserved:
123 reserved_map[r.lower()] = r
124
125 def t_ID(t):
126 r'[A-Za-z_]\w*'
127 t.type = reserved_map.get(t.value,'ID')
128 return t
129
130 # Integer literal
131 def t_INTLIT(t):
132 r'(0x[\da-fA-F]+)|\d+'
133 try:
134 t.value = int(t.value,0)
135 except ValueError:
136 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
137 t.value = 0
138 return t
139
140 # String literal. Note that these use only single quotes, and
141 # can span multiple lines.
142 def t_STRLIT(t):
143 r"(?m)'([^'])+'"
144 # strip off quotes
145 t.value = t.value[1:-1]
146 t.lexer.lineno += t.value.count('\n')
147 return t
148
149
150 # "Code literal"... like a string literal, but delimiters are
151 # '{{' and '}}' so they get formatted nicely under emacs c-mode
152 def t_CODELIT(t):
153 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
154 # strip off {{ & }}
155 t.value = t.value[2:-2]
156 t.lexer.lineno += t.value.count('\n')
157 return t
158
159 def t_CPPDIRECTIVE(t):
160 r'^\#[^\#].*\n'
161 t.lexer.lineno += t.value.count('\n')
162 return t
163
164 def t_NEWFILE(t):
165 r'^\#\#newfile\s+"[\w/.-]*"'
166 fileNameStack.push((t.value[11:-1], t.lexer.lineno))
167 t.lexer.lineno = 0
168
169 def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (old_filename, t.lexer.lineno) = fileNameStack.pop()
172
173 #
174 # The functions t_NEWLINE, t_ignore, and t_error are
175 # special for the lex module.
176 #
177
178 # Newlines
179 def t_NEWLINE(t):
180 r'\n+'
181 t.lexer.lineno += t.value.count('\n')
182
183 # Comments
184 def t_comment(t):
185 r'//.*'
186
187 # Completely ignored characters
188 t_ignore = ' \t\x0c'
189
190 # Error handler
191 def t_error(t):
192 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195 # Build the lexer
196 lexer = lex.lex()
197
198 #####################################################################
199 #
200 # Parser
201 #
202 # Every function whose name starts with 'p_' defines a grammar rule.
203 # The rule is encoded in the function's doc string, while the
204 # function body provides the action taken when the rule is matched.
205 # The argument to each function is a list of the values of the
206 # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207 # on the RHS. For tokens, the value is copied from the t.value
208 # attribute provided by the lexer. For non-terminals, the value
209 # is assigned by the producing rule; i.e., the job of the grammar
210 # rule function is to set the value for the non-terminal on the LHS
211 # (by assigning to t[0]).
212 #####################################################################
213
214 # The LHS of the first grammar rule is used as the start symbol
215 # (in this case, 'specification'). Note that this rule enforces
216 # that there will be exactly one namespace declaration, with 0 or more
217 # global defs/decls before and after it. The defs & decls before
218 # the namespace decl will be outside the namespace; those after
219 # will be inside. The decoder function is always inside the namespace.
220 def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227 StaticInstPtr
228 %(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
229 {
230 using namespace %(namespace)s;
231 ''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237 # ISA name declaration looks like "namespace <foo>;"
238 def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242 # 'opt_defs_and_outputs' is a possibly empty sequence of
243 # def and/or output statements.
244 def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248 def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252 def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256 def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260 # The list of possible definition/output statements.
261 def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_bitfield_struct
265 | def_template
266 | def_operand_types
267 | def_operands
268 | output_header
269 | output_decoder
270 | output_exec
271 | global_let'''
272 t[0] = t[1]
273
274 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
275 # directly to the appropriate output section.
276
277
278 # Protect any non-dict-substitution '%'s in a format string
279 # (i.e. those not followed by '(')
280 def protect_non_subst_percents(s):
281 return re.sub(r'%(?!\()', '%%', s)
282
283 # Massage output block by substituting in template definitions and bit
284 # operators. We handle '%'s embedded in the string that don't
285 # indicate template substitutions (or CPU-specific symbols, which get
286 # handled in GenCode) by doubling them first so that the format
287 # operation will reduce them back to single '%'s.
288 def process_output(s):
289 s = protect_non_subst_percents(s)
290 # protects cpu-specific symbols too
291 s = protect_cpu_symbols(s)
292 return substBitOps(s % templateMap)
293
294 def p_output_header(t):
295 'output_header : OUTPUT HEADER CODELIT SEMI'
296 t[0] = GenCode(header_output = process_output(t[3]))
297
298 def p_output_decoder(t):
299 'output_decoder : OUTPUT DECODER CODELIT SEMI'
300 t[0] = GenCode(decoder_output = process_output(t[3]))
301
302 def p_output_exec(t):
303 'output_exec : OUTPUT EXEC CODELIT SEMI'
304 t[0] = GenCode(exec_output = process_output(t[3]))
305
306 # global let blocks 'let {{...}}' (Python code blocks) are executed
307 # directly when seen. Note that these execute in a special variable
308 # context 'exportContext' to prevent the code from polluting this
309 # script's namespace.
310 def p_global_let(t):
311 'global_let : LET CODELIT SEMI'
312 updateExportContext()
313 exportContext["header_output"] = ''
314 exportContext["decoder_output"] = ''
315 exportContext["exec_output"] = ''
316 exportContext["decode_block"] = ''
317 try:
318 exec fixPythonIndentation(t[2]) in exportContext
319 except Exception, exc:
320 error(t.lexer.lineno,
321 'error: %s in global let block "%s".' % (exc, t[2]))
322 t[0] = GenCode(header_output = exportContext["header_output"],
323 decoder_output = exportContext["decoder_output"],
324 exec_output = exportContext["exec_output"],
325 decode_block = exportContext["decode_block"])
326
327 # Define the mapping from operand type extensions to C++ types and bit
328 # widths (stored in operandTypeMap).
329 def p_def_operand_types(t):
330 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
331 try:
332 userDict = eval('{' + t[3] + '}')
333 except Exception, exc:
334 error(t.lexer.lineno,
335 'error: %s in def operand_types block "%s".' % (exc, t[3]))
336 buildOperandTypeMap(userDict, t.lexer.lineno)
337 t[0] = GenCode() # contributes nothing to the output C++ file
338
339 # Define the mapping from operand names to operand classes and other
340 # traits. Stored in operandNameMap.
341 def p_def_operands(t):
342 'def_operands : DEF OPERANDS CODELIT SEMI'
343 if not globals().has_key('operandTypeMap'):
344 error(t.lexer.lineno,
345 'error: operand types must be defined before operands')
346 try:
347 userDict = eval('{' + t[3] + '}')
348 except Exception, exc:
349 error(t.lexer.lineno,
350 'error: %s in def operands block "%s".' % (exc, t[3]))
351 buildOperandNameMap(userDict, t.lexer.lineno)
352 t[0] = GenCode() # contributes nothing to the output C++ file
353
354 # A bitfield definition looks like:
355 # 'def [signed] bitfield <ID> [<first>:<last>]'
356 # This generates a preprocessor macro in the output file.
357 def p_def_bitfield_0(t):
358 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
359 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
360 if (t[2] == 'signed'):
361 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
362 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
363 t[0] = GenCode(header_output = hash_define)
364
365 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
366 def p_def_bitfield_1(t):
367 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
368 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
369 if (t[2] == 'signed'):
370 expr = 'sext<%d>(%s)' % (1, expr)
371 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
372 t[0] = GenCode(header_output = hash_define)
373
374 # alternate form for structure member: 'def bitfield <ID> <ID>'
375 def p_def_bitfield_struct(t):
376 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
377 if (t[2] != ''):
378 error(t.lexer.lineno, 'error: structure bitfields are always unsigned.')
379 expr = 'machInst.%s' % t[5]
380 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
381 t[0] = GenCode(header_output = hash_define)
382
383 def p_id_with_dot_0(t):
384 'id_with_dot : ID'
385 t[0] = t[1]
386
387 def p_id_with_dot_1(t):
388 'id_with_dot : ID DOT id_with_dot'
389 t[0] = t[1] + t[2] + t[3]
390
391 def p_opt_signed_0(t):
392 'opt_signed : SIGNED'
393 t[0] = t[1]
394
395 def p_opt_signed_1(t):
396 'opt_signed : empty'
397 t[0] = ''
398
399 # Global map variable to hold templates
400 templateMap = {}
401
402 def p_def_template(t):
403 'def_template : DEF TEMPLATE ID CODELIT SEMI'
404 templateMap[t[3]] = Template(t[4])
405 t[0] = GenCode()
406
407 # An instruction format definition looks like
408 # "def format <fmt>(<params>) {{...}};"
409 def p_def_format(t):
410 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
411 (id, params, code) = (t[3], t[5], t[7])
412 defFormat(id, params, code, t.lexer.lineno)
413 t[0] = GenCode()
414
415 # The formal parameter list for an instruction format is a possibly
416 # empty list of comma-separated parameters. Positional (standard,
417 # non-keyword) parameters must come first, followed by keyword
418 # parameters, followed by a '*foo' parameter that gets excess
419 # positional arguments (as in Python). Each of these three parameter
420 # categories is optional.
421 #
422 # Note that we do not support the '**foo' parameter for collecting
423 # otherwise undefined keyword args. Otherwise the parameter list is
424 # (I believe) identical to what is supported in Python.
425 #
426 # The param list generates a tuple, where the first element is a list of
427 # the positional params and the second element is a dict containing the
428 # keyword params.
429 def p_param_list_0(t):
430 'param_list : positional_param_list COMMA nonpositional_param_list'
431 t[0] = t[1] + t[3]
432
433 def p_param_list_1(t):
434 '''param_list : positional_param_list
435 | nonpositional_param_list'''
436 t[0] = t[1]
437
438 def p_positional_param_list_0(t):
439 'positional_param_list : empty'
440 t[0] = []
441
442 def p_positional_param_list_1(t):
443 'positional_param_list : ID'
444 t[0] = [t[1]]
445
446 def p_positional_param_list_2(t):
447 'positional_param_list : positional_param_list COMMA ID'
448 t[0] = t[1] + [t[3]]
449
450 def p_nonpositional_param_list_0(t):
451 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
452 t[0] = t[1] + t[3]
453
454 def p_nonpositional_param_list_1(t):
455 '''nonpositional_param_list : keyword_param_list
456 | excess_args_param'''
457 t[0] = t[1]
458
459 def p_keyword_param_list_0(t):
460 'keyword_param_list : keyword_param'
461 t[0] = [t[1]]
462
463 def p_keyword_param_list_1(t):
464 'keyword_param_list : keyword_param_list COMMA keyword_param'
465 t[0] = t[1] + [t[3]]
466
467 def p_keyword_param(t):
468 'keyword_param : ID EQUALS expr'
469 t[0] = t[1] + ' = ' + t[3].__repr__()
470
471 def p_excess_args_param(t):
472 'excess_args_param : ASTERISK ID'
473 # Just concatenate them: '*ID'. Wrap in list to be consistent
474 # with positional_param_list and keyword_param_list.
475 t[0] = [t[1] + t[2]]
476
477 # End of format definition-related rules.
478 ##############
479
480 #
481 # A decode block looks like:
482 # decode <field1> [, <field2>]* [default <inst>] { ... }
483 #
484 def p_decode_block(t):
485 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
486 default_defaults = defaultStack.pop()
487 codeObj = t[5]
488 # use the "default defaults" only if there was no explicit
489 # default statement in decode_stmt_list
490 if not codeObj.has_decode_default:
491 codeObj += default_defaults
492 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
493 t[0] = codeObj
494
495 # The opt_default statement serves only to push the "default defaults"
496 # onto defaultStack. This value will be used by nested decode blocks,
497 # and used and popped off when the current decode_block is processed
498 # (in p_decode_block() above).
499 def p_opt_default_0(t):
500 'opt_default : empty'
501 # no default specified: reuse the one currently at the top of the stack
502 defaultStack.push(defaultStack.top())
503 # no meaningful value returned
504 t[0] = None
505
506 def p_opt_default_1(t):
507 'opt_default : DEFAULT inst'
508 # push the new default
509 codeObj = t[2]
510 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
511 defaultStack.push(codeObj)
512 # no meaningful value returned
513 t[0] = None
514
515 def p_decode_stmt_list_0(t):
516 'decode_stmt_list : decode_stmt'
517 t[0] = t[1]
518
519 def p_decode_stmt_list_1(t):
520 'decode_stmt_list : decode_stmt decode_stmt_list'
521 if (t[1].has_decode_default and t[2].has_decode_default):
522 error(t.lexer.lineno, 'Two default cases in decode block')
523 t[0] = t[1] + t[2]
524
525 #
526 # Decode statement rules
527 #
528 # There are four types of statements allowed in a decode block:
529 # 1. Format blocks 'format <foo> { ... }'
530 # 2. Nested decode blocks
531 # 3. Instruction definitions.
532 # 4. C preprocessor directives.
533
534
535 # Preprocessor directives found in a decode statement list are passed
536 # through to the output, replicated to all of the output code
537 # streams. This works well for ifdefs, so we can ifdef out both the
538 # declarations and the decode cases generated by an instruction
539 # definition. Handling them as part of the grammar makes it easy to
540 # keep them in the right place with respect to the code generated by
541 # the other statements.
542 def p_decode_stmt_cpp(t):
543 'decode_stmt : CPPDIRECTIVE'
544 t[0] = GenCode(t[1], t[1], t[1], t[1])
545
546 # A format block 'format <foo> { ... }' sets the default instruction
547 # format used to handle instruction definitions inside the block.
548 # This format can be overridden by using an explicit format on the
549 # instruction definition or with a nested format block.
550 def p_decode_stmt_format(t):
551 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
552 # The format will be pushed on the stack when 'push_format_id' is
553 # processed (see below). Once the parser has recognized the full
554 # production (though the right brace), we're done with the format,
555 # so now we can pop it.
556 formatStack.pop()
557 t[0] = t[4]
558
559 # This rule exists so we can set the current format (& push the stack)
560 # when we recognize the format name part of the format block.
561 def p_push_format_id(t):
562 'push_format_id : ID'
563 try:
564 formatStack.push(formatMap[t[1]])
565 t[0] = ('', '// format %s' % t[1])
566 except KeyError:
567 error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
568
569 # Nested decode block: if the value of the current field matches the
570 # specified constant, do a nested decode on some other field.
571 def p_decode_stmt_decode(t):
572 'decode_stmt : case_label COLON decode_block'
573 label = t[1]
574 codeObj = t[3]
575 # just wrap the decoding code from the block as a case in the
576 # outer switch statement.
577 codeObj.wrap_decode_block('\n%s:\n' % label)
578 codeObj.has_decode_default = (label == 'default')
579 t[0] = codeObj
580
581 # Instruction definition (finally!).
582 def p_decode_stmt_inst(t):
583 'decode_stmt : case_label COLON inst SEMI'
584 label = t[1]
585 codeObj = t[3]
586 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
587 codeObj.has_decode_default = (label == 'default')
588 t[0] = codeObj
589
590 # The case label is either a list of one or more constants or 'default'
591 def p_case_label_0(t):
592 'case_label : intlit_list'
593 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
594
595 def p_case_label_1(t):
596 'case_label : DEFAULT'
597 t[0] = 'default'
598
599 #
600 # The constant list for a decode case label must be non-empty, but may have
601 # one or more comma-separated integer literals in it.
602 #
603 def p_intlit_list_0(t):
604 'intlit_list : INTLIT'
605 t[0] = [t[1]]
606
607 def p_intlit_list_1(t):
608 'intlit_list : intlit_list COMMA INTLIT'
609 t[0] = t[1]
610 t[0].append(t[3])
611
612 # Define an instruction using the current instruction format (specified
613 # by an enclosing format block).
614 # "<mnemonic>(<args>)"
615 def p_inst_0(t):
616 'inst : ID LPAREN arg_list RPAREN'
617 # Pass the ID and arg list to the current format class to deal with.
618 currentFormat = formatStack.top()
619 codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
620 args = ','.join(map(str, t[3]))
621 args = re.sub('(?m)^', '//', args)
622 args = re.sub('^//', '', args)
623 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
624 codeObj.prepend_all(comment)
625 t[0] = codeObj
626
627 # Define an instruction using an explicitly specified format:
628 # "<fmt>::<mnemonic>(<args>)"
629 def p_inst_1(t):
630 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
631 try:
632 format = formatMap[t[1]]
633 except KeyError:
634 error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
635 codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
636 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
637 codeObj.prepend_all(comment)
638 t[0] = codeObj
639
640 # The arg list generates a tuple, where the first element is a list of
641 # the positional args and the second element is a dict containing the
642 # keyword args.
643 def p_arg_list_0(t):
644 'arg_list : positional_arg_list COMMA keyword_arg_list'
645 t[0] = ( t[1], t[3] )
646
647 def p_arg_list_1(t):
648 'arg_list : positional_arg_list'
649 t[0] = ( t[1], {} )
650
651 def p_arg_list_2(t):
652 'arg_list : keyword_arg_list'
653 t[0] = ( [], t[1] )
654
655 def p_positional_arg_list_0(t):
656 'positional_arg_list : empty'
657 t[0] = []
658
659 def p_positional_arg_list_1(t):
660 'positional_arg_list : expr'
661 t[0] = [t[1]]
662
663 def p_positional_arg_list_2(t):
664 'positional_arg_list : positional_arg_list COMMA expr'
665 t[0] = t[1] + [t[3]]
666
667 def p_keyword_arg_list_0(t):
668 'keyword_arg_list : keyword_arg'
669 t[0] = t[1]
670
671 def p_keyword_arg_list_1(t):
672 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
673 t[0] = t[1]
674 t[0].update(t[3])
675
676 def p_keyword_arg(t):
677 'keyword_arg : ID EQUALS expr'
678 t[0] = { t[1] : t[3] }
679
680 #
681 # Basic expressions. These constitute the argument values of
682 # "function calls" (i.e. instruction definitions in the decode block)
683 # and default values for formal parameters of format functions.
684 #
685 # Right now, these are either strings, integers, or (recursively)
686 # lists of exprs (using Python square-bracket list syntax). Note that
687 # bare identifiers are trated as string constants here (since there
688 # isn't really a variable namespace to refer to).
689 #
690 def p_expr_0(t):
691 '''expr : ID
692 | INTLIT
693 | STRLIT
694 | CODELIT'''
695 t[0] = t[1]
696
697 def p_expr_1(t):
698 '''expr : LBRACKET list_expr RBRACKET'''
699 t[0] = t[2]
700
701 def p_list_expr_0(t):
702 'list_expr : expr'
703 t[0] = [t[1]]
704
705 def p_list_expr_1(t):
706 'list_expr : list_expr COMMA expr'
707 t[0] = t[1] + [t[3]]
708
709 def p_list_expr_2(t):
710 'list_expr : empty'
711 t[0] = []
712
713 #
714 # Empty production... use in other rules for readability.
715 #
716 def p_empty(t):
717 'empty :'
718 pass
719
720 # Parse error handler. Note that the argument here is the offending
721 # *token*, not a grammar symbol (hence the need to use t.value)
722 def p_error(t):
723 if t:
724 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
725 else:
726 error(0, "unknown syntax error", True)
727
728 # END OF GRAMMAR RULES
729 #
730 # Now build the parser.
731 parser = yacc.yacc()
732
733
734 #####################################################################
735 #
736 # Support Classes
737 #
738 #####################################################################
739
740 # Expand template with CPU-specific references into a dictionary with
741 # an entry for each CPU model name. The entry key is the model name
742 # and the corresponding value is the template with the CPU-specific
743 # refs substituted for that model.
744 def expand_cpu_symbols_to_dict(template):
745 # Protect '%'s that don't go with CPU-specific terms
746 t = re.sub(r'%(?!\(CPU_)', '%%', template)
747 result = {}
748 for cpu in cpu_models:
749 result[cpu.name] = t % cpu.strings
750 return result
751
752 # *If* the template has CPU-specific references, return a single
753 # string containing a copy of the template for each CPU model with the
754 # corresponding values substituted in. If the template has no
755 # CPU-specific references, it is returned unmodified.
756 def expand_cpu_symbols_to_string(template):
757 if template.find('%(CPU_') != -1:
758 return reduce(lambda x,y: x+y,
759 expand_cpu_symbols_to_dict(template).values())
760 else:
761 return template
762
763 # Protect CPU-specific references by doubling the corresponding '%'s
764 # (in preparation for substituting a different set of references into
765 # the template).
766 def protect_cpu_symbols(template):
767 return re.sub(r'%(?=\(CPU_)', '%%', template)
768
769 ###############
770 # GenCode class
771 #
772 # The GenCode class encapsulates generated code destined for various
773 # output files. The header_output and decoder_output attributes are
774 # strings containing code destined for decoder.hh and decoder.cc
775 # respectively. The decode_block attribute contains code to be
776 # incorporated in the decode function itself (that will also end up in
777 # decoder.cc). The exec_output attribute is a dictionary with a key
778 # for each CPU model name; the value associated with a particular key
779 # is the string of code for that CPU model's exec.cc file. The
780 # has_decode_default attribute is used in the decode block to allow
781 # explicit default clauses to override default default clauses.
782
783 class GenCode:
784 # Constructor. At this point we substitute out all CPU-specific
785 # symbols. For the exec output, these go into the per-model
786 # dictionary. For all other output types they get collapsed into
787 # a single string.
788 def __init__(self,
789 header_output = '', decoder_output = '', exec_output = '',
790 decode_block = '', has_decode_default = False):
791 self.header_output = expand_cpu_symbols_to_string(header_output)
792 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
793 if isinstance(exec_output, dict):
794 self.exec_output = exec_output
795 elif isinstance(exec_output, str):
796 # If the exec_output arg is a single string, we replicate
797 # it for each of the CPU models, substituting and
798 # %(CPU_foo)s params appropriately.
799 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
800 self.decode_block = expand_cpu_symbols_to_string(decode_block)
801 self.has_decode_default = has_decode_default
802
803 # Override '+' operator: generate a new GenCode object that
804 # concatenates all the individual strings in the operands.
805 def __add__(self, other):
806 exec_output = {}
807 for cpu in cpu_models:
808 n = cpu.name
809 exec_output[n] = self.exec_output[n] + other.exec_output[n]
810 return GenCode(self.header_output + other.header_output,
811 self.decoder_output + other.decoder_output,
812 exec_output,
813 self.decode_block + other.decode_block,
814 self.has_decode_default or other.has_decode_default)
815
816 # Prepend a string (typically a comment) to all the strings.
817 def prepend_all(self, pre):
818 self.header_output = pre + self.header_output
819 self.decoder_output = pre + self.decoder_output
820 self.decode_block = pre + self.decode_block
821 for cpu in cpu_models:
822 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
823
824 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
825 # and 'break;'). Used to build the big nested switch statement.
826 def wrap_decode_block(self, pre, post = ''):
827 self.decode_block = pre + indent(self.decode_block) + post
828
829 ################
830 # Format object.
831 #
832 # A format object encapsulates an instruction format. It must provide
833 # a defineInst() method that generates the code for an instruction
834 # definition.
835
836 exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
837
838 exportContext = {}
839
840 def updateExportContext():
841 exportContext.update(exportDict(*exportContextSymbols))
842 exportContext.update(templateMap)
843
844 def exportDict(*symNames):
845 return dict([(s, eval(s)) for s in symNames])
846
847
848 class Format:
849 def __init__(self, id, params, code):
850 # constructor: just save away arguments
851 self.id = id
852 self.params = params
853 label = 'def format ' + id
854 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
855 param_list = string.join(params, ", ")
856 f = '''def defInst(_code, _context, %s):
857 my_locals = vars().copy()
858 exec _code in _context, my_locals
859 return my_locals\n''' % param_list
860 c = compile(f, label + ' wrapper', 'exec')
861 exec c
862 self.func = defInst
863
864 def defineInst(self, name, args, lineno):
865 context = {}
866 updateExportContext()
867 context.update(exportContext)
868 if len(name):
869 Name = name[0].upper()
870 if len(name) > 1:
871 Name += name[1:]
872 context.update({ 'name': name, 'Name': Name })
873 try:
874 vars = self.func(self.user_code, context, *args[0], **args[1])
875 except Exception, exc:
876 error(lineno, 'error defining "%s": %s.' % (name, exc))
877 for k in vars.keys():
878 if k not in ('header_output', 'decoder_output',
879 'exec_output', 'decode_block'):
880 del vars[k]
881 return GenCode(**vars)
882
883 # Special null format to catch an implicit-format instruction
884 # definition outside of any format block.
885 class NoFormat:
886 def __init__(self):
887 self.defaultInst = ''
888
889 def defineInst(self, name, args, lineno):
890 error(lineno,
891 'instruction definition "%s" with no active format!' % name)
892
893 # This dictionary maps format name strings to Format objects.
894 formatMap = {}
895
896 # Define a new format
897 def defFormat(id, params, code, lineno):
898 # make sure we haven't already defined this one
899 if formatMap.get(id, None) != None:
900 error(lineno, 'format %s redefined.' % id)
901 # create new object and store in global map
902 formatMap[id] = Format(id, params, code)
903
904
905 ##############
906 # Stack: a simple stack object. Used for both formats (formatStack)
907 # and default cases (defaultStack). Simply wraps a list to give more
908 # stack-like syntax and enable initialization with an argument list
909 # (as opposed to an argument that's a list).
910
911 class Stack(list):
912 def __init__(self, *items):
913 list.__init__(self, items)
914
915 def push(self, item):
916 self.append(item);
917
918 def top(self):
919 return self[-1]
920
921 # The global format stack.
922 formatStack = Stack(NoFormat())
923
924 # The global default case stack.
925 defaultStack = Stack( None )
926
927 # Global stack that tracks current file and line number.
928 # Each element is a tuple (filename, lineno) that records the
929 # *current* filename and the line number in the *previous* file where
930 # it was included.
931 fileNameStack = Stack()
932
933 ###################
934 # Utility functions
935
936 #
937 # Indent every line in string 's' by two spaces
938 # (except preprocessor directives).
939 # Used to make nested code blocks look pretty.
940 #
941 def indent(s):
942 return re.sub(r'(?m)^(?!#)', ' ', s)
943
944 #
945 # Munge a somewhat arbitrarily formatted piece of Python code
946 # (e.g. from a format 'let' block) into something whose indentation
947 # will get by the Python parser.
948 #
949 # The two keys here are that Python will give a syntax error if
950 # there's any whitespace at the beginning of the first line, and that
951 # all lines at the same lexical nesting level must have identical
952 # indentation. Unfortunately the way code literals work, an entire
953 # let block tends to have some initial indentation. Rather than
954 # trying to figure out what that is and strip it off, we prepend 'if
955 # 1:' to make the let code the nested block inside the if (and have
956 # the parser automatically deal with the indentation for us).
957 #
958 # We don't want to do this if (1) the code block is empty or (2) the
959 # first line of the block doesn't have any whitespace at the front.
960
961 def fixPythonIndentation(s):
962 # get rid of blank lines first
963 s = re.sub(r'(?m)^\s*\n', '', s);
964 if (s != '' and re.match(r'[ \t]', s[0])):
965 s = 'if 1:\n' + s
966 return s
967
968 # Error handler. Just call exit. Output formatted to work under
969 # Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
970 # prints a Python stack backtrace too (can be handy when trying to
971 # debug the parser itself).
972 def error(lineno, string, print_traceback = False):
973 spaces = ""
974 for (filename, line) in fileNameStack[0:-1]:
975 print spaces + "In file included from " + filename + ":"
976 spaces += " "
977 # Print a Python stack backtrace if requested.
978 if (print_traceback):
979 traceback.print_exc()
980 if lineno != 0:
981 line_str = "%d:" % lineno
982 else:
983 line_str = ""
984 sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
985
986
987 #####################################################################
988 #
989 # Bitfield Operator Support
990 #
991 #####################################################################
992
993 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
994
995 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
996 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
997
998 def substBitOps(code):
999 # first convert single-bit selectors to two-index form
1000 # i.e., <n> --> <n:n>
1001 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
1002 # simple case: selector applied to ID (name)
1003 # i.e., foo<a:b> --> bits(foo, a, b)
1004 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
1005 # if selector is applied to expression (ending in ')'),
1006 # we need to search backward for matching '('
1007 match = bitOpExprRE.search(code)
1008 while match:
1009 exprEnd = match.start()
1010 here = exprEnd - 1
1011 nestLevel = 1
1012 while nestLevel > 0:
1013 if code[here] == '(':
1014 nestLevel -= 1
1015 elif code[here] == ')':
1016 nestLevel += 1
1017 here -= 1
1018 if here < 0:
1019 sys.exit("Didn't find '('!")
1020 exprStart = here+1
1021 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
1022 match.group(1), match.group(2))
1023 code = code[:exprStart] + newExpr + code[match.end():]
1024 match = bitOpExprRE.search(code)
1025 return code
1026
1027
1028 ####################
1029 # Template objects.
1030 #
1031 # Template objects are format strings that allow substitution from
1032 # the attribute spaces of other objects (e.g. InstObjParams instances).
1033
1034 labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
1035
1036 class Template:
1037 def __init__(self, t):
1038 self.template = t
1039
1040 def subst(self, d):
1041 myDict = None
1042
1043 # Protect non-Python-dict substitutions (e.g. if there's a printf
1044 # in the templated C++ code)
1045 template = protect_non_subst_percents(self.template)
1046 # CPU-model-specific substitutions are handled later (in GenCode).
1047 template = protect_cpu_symbols(template)
1048
1049 # Build a dict ('myDict') to use for the template substitution.
1050 # Start with the template namespace. Make a copy since we're
1051 # going to modify it.
1052 myDict = templateMap.copy()
1053
1054 if isinstance(d, InstObjParams):
1055 # If we're dealing with an InstObjParams object, we need
1056 # to be a little more sophisticated. The instruction-wide
1057 # parameters are already formed, but the parameters which
1058 # are only function wide still need to be generated.
1059 compositeCode = ''
1060
1061 myDict.update(d.__dict__)
1062 # The "operands" and "snippets" attributes of the InstObjParams
1063 # objects are for internal use and not substitution.
1064 del myDict['operands']
1065 del myDict['snippets']
1066
1067 snippetLabels = [l for l in labelRE.findall(template)
1068 if d.snippets.has_key(l)]
1069
1070 snippets = dict([(s, mungeSnippet(d.snippets[s]))
1071 for s in snippetLabels])
1072
1073 myDict.update(snippets)
1074
1075 compositeCode = ' '.join(map(str, snippets.values()))
1076
1077 # Add in template itself in case it references any
1078 # operands explicitly (like Mem)
1079 compositeCode += ' ' + template
1080
1081 operands = SubOperandList(compositeCode, d.operands)
1082
1083 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
1084
1085 is_src = lambda op: op.is_src
1086 is_dest = lambda op: op.is_dest
1087
1088 myDict['op_src_decl'] = \
1089 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1090 myDict['op_dest_decl'] = \
1091 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1092
1093 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
1094 myDict['op_wb'] = operands.concatAttrStrings('op_wb')
1095
1096 if d.operands.memOperand:
1097 myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
1098 myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
1099
1100 elif isinstance(d, dict):
1101 # if the argument is a dictionary, we just use it.
1102 myDict.update(d)
1103 elif hasattr(d, '__dict__'):
1104 # if the argument is an object, we use its attribute map.
1105 myDict.update(d.__dict__)
1106 else:
1107 raise TypeError, "Template.subst() arg must be or have dictionary"
1108 return template % myDict
1109
1110 # Convert to string. This handles the case when a template with a
1111 # CPU-specific term gets interpolated into another template or into
1112 # an output block.
1113 def __str__(self):
1114 return expand_cpu_symbols_to_string(self.template)
1115
1116 #####################################################################
1117 #
1118 # Code Parser
1119 #
1120 # The remaining code is the support for automatically extracting
1121 # instruction characteristics from pseudocode.
1122 #
1123 #####################################################################
1124
1125 # Force the argument to be a list. Useful for flags, where a caller
1126 # can specify a singleton flag or a list of flags. Also usful for
1127 # converting tuples to lists so they can be modified.
1128 def makeList(arg):
1129 if isinstance(arg, list):
1130 return arg
1131 elif isinstance(arg, tuple):
1132 return list(arg)
1133 elif not arg:
1134 return []
1135 else:
1136 return [ arg ]
1137
1138 # Generate operandTypeMap from the user's 'def operand_types'
1139 # statement.
1140 def buildOperandTypeMap(userDict, lineno):
1141 global operandTypeMap
1142 operandTypeMap = {}
1143 for (ext, (desc, size)) in userDict.iteritems():
1144 if desc == 'signed int':
1145 ctype = 'int%d_t' % size
1146 is_signed = 1
1147 elif desc == 'unsigned int':
1148 ctype = 'uint%d_t' % size
1149 is_signed = 0
1150 elif desc == 'float':
1151 is_signed = 1 # shouldn't really matter
1152 if size == 32:
1153 ctype = 'float'
1154 elif size == 64:
1155 ctype = 'double'
1156 elif desc == 'twin64 int':
1157 is_signed = 0
1158 ctype = 'Twin64_t'
1159 elif desc == 'twin32 int':
1160 is_signed = 0
1161 ctype = 'Twin32_t'
1162 if ctype == '':
1163 error(lineno, 'Unrecognized type description "%s" in userDict')
1164 operandTypeMap[ext] = (size, ctype, is_signed)
1165
1166 #
1167 #
1168 #
1169 # Base class for operand descriptors. An instance of this class (or
1170 # actually a class derived from this one) represents a specific
1171 # operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1172 # derived classes encapsulates the traits of a particular operand type
1173 # (e.g., "32-bit integer register").
1174 #
1175 class Operand(object):
1176 def __init__(self, full_name, ext, is_src, is_dest):
1177 self.full_name = full_name
1178 self.ext = ext
1179 self.is_src = is_src
1180 self.is_dest = is_dest
1181 # The 'effective extension' (eff_ext) is either the actual
1182 # extension, if one was explicitly provided, or the default.
1183 if ext:
1184 self.eff_ext = ext
1185 else:
1186 self.eff_ext = self.dflt_ext
1187
1188 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1189
1190 # note that mem_acc_size is undefined for non-mem operands...
1191 # template must be careful not to use it if it doesn't apply.
1192 if self.isMem():
1193 self.mem_acc_size = self.makeAccSize()
1194 if self.ctype in ['Twin32_t', 'Twin64_t']:
1195 self.mem_acc_type = 'Twin'
1196 else:
1197 self.mem_acc_type = 'uint'
1198
1199 # Finalize additional fields (primarily code fields). This step
1200 # is done separately since some of these fields may depend on the
1201 # register index enumeration that hasn't been performed yet at the
1202 # time of __init__().
1203 def finalize(self):
1204 self.flags = self.getFlags()
1205 self.constructor = self.makeConstructor()
1206 self.op_decl = self.makeDecl()
1207
1208 if self.is_src:
1209 self.op_rd = self.makeRead()
1210 self.op_src_decl = self.makeDecl()
1211 else:
1212 self.op_rd = ''
1213 self.op_src_decl = ''
1214
1215 if self.is_dest:
1216 self.op_wb = self.makeWrite()
1217 self.op_dest_decl = self.makeDecl()
1218 else:
1219 self.op_wb = ''
1220 self.op_dest_decl = ''
1221
1222 def isMem(self):
1223 return 0
1224
1225 def isReg(self):
1226 return 0
1227
1228 def isFloatReg(self):
1229 return 0
1230
1231 def isIntReg(self):
1232 return 0
1233
1234 def isControlReg(self):
1235 return 0
1236
1237 def isIControlReg(self):
1238 return 0
1239
1240 def getFlags(self):
1241 # note the empty slice '[:]' gives us a copy of self.flags[0]
1242 # instead of a reference to it
1243 my_flags = self.flags[0][:]
1244 if self.is_src:
1245 my_flags += self.flags[1]
1246 if self.is_dest:
1247 my_flags += self.flags[2]
1248 return my_flags
1249
1250 def makeDecl(self):
1251 # Note that initializations in the declarations are solely
1252 # to avoid 'uninitialized variable' errors from the compiler.
1253 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1254
1255 class IntRegOperand(Operand):
1256 def isReg(self):
1257 return 1
1258
1259 def isIntReg(self):
1260 return 1
1261
1262 def makeConstructor(self):
1263 c = ''
1264 if self.is_src:
1265 c += '\n\t_srcRegIdx[%d] = %s;' % \
1266 (self.src_reg_idx, self.reg_spec)
1267 if self.is_dest:
1268 c += '\n\t_destRegIdx[%d] = %s;' % \
1269 (self.dest_reg_idx, self.reg_spec)
1270 return c
1271
1272 def makeRead(self):
1273 if (self.ctype == 'float' or self.ctype == 'double'):
1274 error(0, 'Attempt to read integer register as FP')
1275 if (self.size == self.dflt_size):
1276 return '%s = xc->readIntRegOperand(this, %d);\n' % \
1277 (self.base_name, self.src_reg_idx)
1278 elif (self.size > self.dflt_size):
1279 int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
1280 (self.src_reg_idx)
1281 if (self.is_signed):
1282 int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1283 return '%s = %s;\n' % (self.base_name, int_reg_val)
1284 else:
1285 return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
1286 (self.base_name, self.src_reg_idx, self.size-1)
1287
1288 def makeWrite(self):
1289 if (self.ctype == 'float' or self.ctype == 'double'):
1290 error(0, 'Attempt to write integer register as FP')
1291 if (self.size != self.dflt_size and self.is_signed):
1292 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1293 else:
1294 final_val = self.base_name
1295 wb = '''
1296 {
1297 %s final_val = %s;
1298 xc->setIntRegOperand(this, %d, final_val);\n
1299 if (traceData) { traceData->setData(final_val); }
1300 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1301 return wb
1302
1303 class FloatRegOperand(Operand):
1304 def isReg(self):
1305 return 1
1306
1307 def isFloatReg(self):
1308 return 1
1309
1310 def makeConstructor(self):
1311 c = ''
1312 if self.is_src:
1313 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1314 (self.src_reg_idx, self.reg_spec)
1315 if self.is_dest:
1316 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1317 (self.dest_reg_idx, self.reg_spec)
1318 return c
1319
1320 def makeRead(self):
1321 bit_select = 0
1322 width = 0;
1323 if (self.ctype == 'float'):
1324 func = 'readFloatRegOperand'
1325 width = 32;
1326 elif (self.ctype == 'double'):
1327 func = 'readFloatRegOperand'
1328 width = 64;
1329 else:
1330 func = 'readFloatRegOperandBits'
1331 if (self.ctype == 'uint32_t'):
1332 width = 32;
1333 elif (self.ctype == 'uint64_t'):
1334 width = 64;
1335 if (self.size != self.dflt_size):
1336 bit_select = 1
1337 if width:
1338 base = 'xc->%s(this, %d, %d)' % \
1339 (func, self.src_reg_idx, width)
1340 else:
1341 base = 'xc->%s(this, %d)' % \
1342 (func, self.src_reg_idx)
1343 if bit_select:
1344 return '%s = bits(%s, %d, 0);\n' % \
1345 (self.base_name, base, self.size-1)
1346 else:
1347 return '%s = %s;\n' % (self.base_name, base)
1348
1349 def makeWrite(self):
1350 final_val = self.base_name
1351 final_ctype = self.ctype
1352 widthSpecifier = ''
1353 width = 0
1354 if (self.ctype == 'float'):
1355 width = 32
1356 func = 'setFloatRegOperand'
1357 elif (self.ctype == 'double'):
1358 width = 64
1359 func = 'setFloatRegOperand'
1360 elif (self.ctype == 'uint32_t'):
1361 func = 'setFloatRegOperandBits'
1362 width = 32
1363 elif (self.ctype == 'uint64_t'):
1364 func = 'setFloatRegOperandBits'
1365 width = 64
1366 else:
1367 func = 'setFloatRegOperandBits'
1368 final_ctype = 'uint%d_t' % self.dflt_size
1369 if (self.size != self.dflt_size and self.is_signed):
1370 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1371 if width:
1372 widthSpecifier = ', %d' % width
1373 wb = '''
1374 {
1375 %s final_val = %s;
1376 xc->%s(this, %d, final_val%s);\n
1377 if (traceData) { traceData->setData(final_val); }
1378 }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1379 widthSpecifier)
1380 return wb
1381
1382 class ControlRegOperand(Operand):
1383 def isReg(self):
1384 return 1
1385
1386 def isControlReg(self):
1387 return 1
1388
1389 def makeConstructor(self):
1390 c = ''
1391 if self.is_src:
1392 c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1393 (self.src_reg_idx, self.reg_spec)
1394 if self.is_dest:
1395 c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1396 (self.dest_reg_idx, self.reg_spec)
1397 return c
1398
1399 def makeRead(self):
1400 bit_select = 0
1401 if (self.ctype == 'float' or self.ctype == 'double'):
1402 error(0, 'Attempt to read control register as FP')
1403 base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
1404 if self.size == self.dflt_size:
1405 return '%s = %s;\n' % (self.base_name, base)
1406 else:
1407 return '%s = bits(%s, %d, 0);\n' % \
1408 (self.base_name, base, self.size-1)
1409
1410 def makeWrite(self):
1411 if (self.ctype == 'float' or self.ctype == 'double'):
1412 error(0, 'Attempt to write control register as FP')
1413 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
1414 (self.dest_reg_idx, self.base_name)
1415 wb += 'if (traceData) { traceData->setData(%s); }' % \
1416 self.base_name
1417 return wb
1418
1419 class IControlRegOperand(Operand):
1420 def isReg(self):
1421 return 1
1422
1423 def isIControlReg(self):
1424 return 1
1425
1426 def makeConstructor(self):
1427 c = ''
1428 if self.is_src:
1429 c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1430 (self.src_reg_idx, self.reg_spec)
1431 if self.is_dest:
1432 c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1433 (self.dest_reg_idx, self.reg_spec)
1434 return c
1435
1436 def makeRead(self):
1437 bit_select = 0
1438 if (self.ctype == 'float' or self.ctype == 'double'):
1439 error(0, 'Attempt to read control register as FP')
1440 base = 'xc->readMiscReg(%s)' % self.reg_spec
1441 if self.size == self.dflt_size:
1442 return '%s = %s;\n' % (self.base_name, base)
1443 else:
1444 return '%s = bits(%s, %d, 0);\n' % \
1445 (self.base_name, base, self.size-1)
1446
1447 def makeWrite(self):
1448 if (self.ctype == 'float' or self.ctype == 'double'):
1449 error(0, 'Attempt to write control register as FP')
1450 wb = 'xc->setMiscReg(%s, %s);\n' % \
1451 (self.reg_spec, self.base_name)
1452 wb += 'if (traceData) { traceData->setData(%s); }' % \
1453 self.base_name
1454 return wb
1455
1456 class ControlBitfieldOperand(ControlRegOperand):
1457 def makeRead(self):
1458 bit_select = 0
1459 if (self.ctype == 'float' or self.ctype == 'double'):
1460 error(0, 'Attempt to read control register as FP')
1461 base = 'xc->readMiscReg(%s)' % self.reg_spec
1462 name = self.base_name
1463 return '%s = bits(%s, %s_HI, %s_LO);' % \
1464 (name, base, name, name)
1465
1466 def makeWrite(self):
1467 if (self.ctype == 'float' or self.ctype == 'double'):
1468 error(0, 'Attempt to write control register as FP')
1469 base = 'xc->readMiscReg(%s)' % self.reg_spec
1470 name = self.base_name
1471 wb_val = 'insertBits(%s, %s_HI, %s_LO, %s)' % \
1472 (base, name, name, self.base_name)
1473 wb = 'xc->setMiscRegOperand(this, %s, %s );\n' % (self.dest_reg_idx, wb_val)
1474 wb += 'if (traceData) { traceData->setData(%s); }' % \
1475 self.base_name
1476 return wb
1477
1478 class MemOperand(Operand):
1479 def isMem(self):
1480 return 1
1481
1482 def makeConstructor(self):
1483 return ''
1484
1485 def makeDecl(self):
1486 # Note that initializations in the declarations are solely
1487 # to avoid 'uninitialized variable' errors from the compiler.
1488 # Declare memory data variable.
1489 if self.ctype in ['Twin32_t','Twin64_t']:
1490 return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
1491 self.base_name, self.base_name)
1492 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1493 return c
1494
1495 def makeRead(self):
1496 return ''
1497
1498 def makeWrite(self):
1499 return ''
1500
1501 # Return the memory access size *in bits*, suitable for
1502 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1503 def makeAccSize(self):
1504 return self.size
1505
1506 class UPCOperand(Operand):
1507 def makeConstructor(self):
1508 return ''
1509
1510 def makeRead(self):
1511 return '%s = xc->readMicroPC();\n' % self.base_name
1512
1513 def makeWrite(self):
1514 return 'xc->setMicroPC(%s);\n' % self.base_name
1515
1516 class NUPCOperand(Operand):
1517 def makeConstructor(self):
1518 return ''
1519
1520 def makeRead(self):
1521 return '%s = xc->readNextMicroPC();\n' % self.base_name
1522
1523 def makeWrite(self):
1524 return 'xc->setNextMicroPC(%s);\n' % self.base_name
1525
1526 class NPCOperand(Operand):
1527 def makeConstructor(self):
1528 return ''
1529
1530 def makeRead(self):
1531 return '%s = xc->readNextPC();\n' % self.base_name
1532
1533 def makeWrite(self):
1534 return 'xc->setNextPC(%s);\n' % self.base_name
1535
1536 class NNPCOperand(Operand):
1537 def makeConstructor(self):
1538 return ''
1539
1540 def makeRead(self):
1541 return '%s = xc->readNextNPC();\n' % self.base_name
1542
1543 def makeWrite(self):
1544 return 'xc->setNextNPC(%s);\n' % self.base_name
1545
1546 def buildOperandNameMap(userDict, lineno):
1547 global operandNameMap
1548 operandNameMap = {}
1549 for (op_name, val) in userDict.iteritems():
1550 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1551 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1552 # Canonical flag structure is a triple of lists, where each list
1553 # indicates the set of flags implied by this operand always, when
1554 # used as a source, and when used as a dest, respectively.
1555 # For simplicity this can be initialized using a variety of fairly
1556 # obvious shortcuts; we convert these to canonical form here.
1557 if not flags:
1558 # no flags specified (e.g., 'None')
1559 flags = ( [], [], [] )
1560 elif isinstance(flags, str):
1561 # a single flag: assumed to be unconditional
1562 flags = ( [ flags ], [], [] )
1563 elif isinstance(flags, list):
1564 # a list of flags: also assumed to be unconditional
1565 flags = ( flags, [], [] )
1566 elif isinstance(flags, tuple):
1567 # it's a tuple: it should be a triple,
1568 # but each item could be a single string or a list
1569 (uncond_flags, src_flags, dest_flags) = flags
1570 flags = (makeList(uncond_flags),
1571 makeList(src_flags), makeList(dest_flags))
1572 # Accumulate attributes of new operand class in tmp_dict
1573 tmp_dict = {}
1574 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1575 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1576 tmp_dict[attr] = eval(attr)
1577 tmp_dict['base_name'] = op_name
1578 # New class name will be e.g. "IntReg_Ra"
1579 cls_name = base_cls_name + '_' + op_name
1580 # Evaluate string arg to get class object. Note that the
1581 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1582 # have to append "Operand".
1583 try:
1584 base_cls = eval(base_cls_name + 'Operand')
1585 except NameError:
1586 error(lineno,
1587 'error: unknown operand base class "%s"' % base_cls_name)
1588 # The following statement creates a new class called
1589 # <cls_name> as a subclass of <base_cls> with the attributes
1590 # in tmp_dict, just as if we evaluated a class declaration.
1591 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1592
1593 # Define operand variables.
1594 operands = userDict.keys()
1595
1596 operandsREString = (r'''
1597 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1598 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1599 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1600 '''
1601 % string.join(operands, '|'))
1602
1603 global operandsRE
1604 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1605
1606 # Same as operandsREString, but extension is mandatory, and only two
1607 # groups are returned (base and ext, not full name as above).
1608 # Used for subtituting '_' for '.' to make C++ identifiers.
1609 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1610 % string.join(operands, '|'))
1611
1612 global operandsWithExtRE
1613 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1614
1615 maxInstSrcRegs = 0
1616 maxInstDestRegs = 0
1617
1618 class OperandList:
1619
1620 # Find all the operands in the given code block. Returns an operand
1621 # descriptor list (instance of class OperandList).
1622 def __init__(self, code):
1623 self.items = []
1624 self.bases = {}
1625 # delete comments so we don't match on reg specifiers inside
1626 code = commentRE.sub('', code)
1627 # search for operands
1628 next_pos = 0
1629 while 1:
1630 match = operandsRE.search(code, next_pos)
1631 if not match:
1632 # no more matches: we're done
1633 break
1634 op = match.groups()
1635 # regexp groups are operand full name, base, and extension
1636 (op_full, op_base, op_ext) = op
1637 # if the token following the operand is an assignment, this is
1638 # a destination (LHS), else it's a source (RHS)
1639 is_dest = (assignRE.match(code, match.end()) != None)
1640 is_src = not is_dest
1641 # see if we've already seen this one
1642 op_desc = self.find_base(op_base)
1643 if op_desc:
1644 if op_desc.ext != op_ext:
1645 error(0, 'Inconsistent extensions for operand %s' % \
1646 op_base)
1647 op_desc.is_src = op_desc.is_src or is_src
1648 op_desc.is_dest = op_desc.is_dest or is_dest
1649 else:
1650 # new operand: create new descriptor
1651 op_desc = operandNameMap[op_base](op_full, op_ext,
1652 is_src, is_dest)
1653 self.append(op_desc)
1654 # start next search after end of current match
1655 next_pos = match.end()
1656 self.sort()
1657 # enumerate source & dest register operands... used in building
1658 # constructor later
1659 self.numSrcRegs = 0
1660 self.numDestRegs = 0
1661 self.numFPDestRegs = 0
1662 self.numIntDestRegs = 0
1663 self.memOperand = None
1664 for op_desc in self.items:
1665 if op_desc.isReg():
1666 if op_desc.is_src:
1667 op_desc.src_reg_idx = self.numSrcRegs
1668 self.numSrcRegs += 1
1669 if op_desc.is_dest:
1670 op_desc.dest_reg_idx = self.numDestRegs
1671 self.numDestRegs += 1
1672 if op_desc.isFloatReg():
1673 self.numFPDestRegs += 1
1674 elif op_desc.isIntReg():
1675 self.numIntDestRegs += 1
1676 elif op_desc.isMem():
1677 if self.memOperand:
1678 error(0, "Code block has more than one memory operand.")
1679 self.memOperand = op_desc
1680 global maxInstSrcRegs
1681 global maxInstDestRegs
1682 if maxInstSrcRegs < self.numSrcRegs:
1683 maxInstSrcRegs = self.numSrcRegs
1684 if maxInstDestRegs < self.numDestRegs:
1685 maxInstDestRegs = self.numDestRegs
1686 # now make a final pass to finalize op_desc fields that may depend
1687 # on the register enumeration
1688 for op_desc in self.items:
1689 op_desc.finalize()
1690
1691 def __len__(self):
1692 return len(self.items)
1693
1694 def __getitem__(self, index):
1695 return self.items[index]
1696
1697 def append(self, op_desc):
1698 self.items.append(op_desc)
1699 self.bases[op_desc.base_name] = op_desc
1700
1701 def find_base(self, base_name):
1702 # like self.bases[base_name], but returns None if not found
1703 # (rather than raising exception)
1704 return self.bases.get(base_name)
1705
1706 # internal helper function for concat[Some]Attr{Strings|Lists}
1707 def __internalConcatAttrs(self, attr_name, filter, result):
1708 for op_desc in self.items:
1709 if filter(op_desc):
1710 result += getattr(op_desc, attr_name)
1711 return result
1712
1713 # return a single string that is the concatenation of the (string)
1714 # values of the specified attribute for all operands
1715 def concatAttrStrings(self, attr_name):
1716 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1717
1718 # like concatAttrStrings, but only include the values for the operands
1719 # for which the provided filter function returns true
1720 def concatSomeAttrStrings(self, filter, attr_name):
1721 return self.__internalConcatAttrs(attr_name, filter, '')
1722
1723 # return a single list that is the concatenation of the (list)
1724 # values of the specified attribute for all operands
1725 def concatAttrLists(self, attr_name):
1726 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1727
1728 # like concatAttrLists, but only include the values for the operands
1729 # for which the provided filter function returns true
1730 def concatSomeAttrLists(self, filter, attr_name):
1731 return self.__internalConcatAttrs(attr_name, filter, [])
1732
1733 def sort(self):
1734 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1735
1736 class SubOperandList(OperandList):
1737
1738 # Find all the operands in the given code block. Returns an operand
1739 # descriptor list (instance of class OperandList).
1740 def __init__(self, code, master_list):
1741 self.items = []
1742 self.bases = {}
1743 # delete comments so we don't match on reg specifiers inside
1744 code = commentRE.sub('', code)
1745 # search for operands
1746 next_pos = 0
1747 while 1:
1748 match = operandsRE.search(code, next_pos)
1749 if not match:
1750 # no more matches: we're done
1751 break
1752 op = match.groups()
1753 # regexp groups are operand full name, base, and extension
1754 (op_full, op_base, op_ext) = op
1755 # find this op in the master list
1756 op_desc = master_list.find_base(op_base)
1757 if not op_desc:
1758 error(0, 'Found operand %s which is not in the master list!' \
1759 ' This is an internal error' % \
1760 op_base)
1761 else:
1762 # See if we've already found this operand
1763 op_desc = self.find_base(op_base)
1764 if not op_desc:
1765 # if not, add a reference to it to this sub list
1766 self.append(master_list.bases[op_base])
1767
1768 # start next search after end of current match
1769 next_pos = match.end()
1770 self.sort()
1771 self.memOperand = None
1772 for op_desc in self.items:
1773 if op_desc.isMem():
1774 if self.memOperand:
1775 error(0, "Code block has more than one memory operand.")
1776 self.memOperand = op_desc
1777
1778 # Regular expression object to match C++ comments
1779 # (used in findOperands())
1780 commentRE = re.compile(r'//.*\n')
1781
1782 # Regular expression object to match assignment statements
1783 # (used in findOperands())
1784 assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1785
1786 # Munge operand names in code string to make legal C++ variable names.
1787 # This means getting rid of the type extension if any.
1788 # (Will match base_name attribute of Operand object.)
1789 def substMungedOpNames(code):
1790 return operandsWithExtRE.sub(r'\1', code)
1791
1792 # Fix up code snippets for final substitution in templates.
1793 def mungeSnippet(s):
1794 if isinstance(s, str):
1795 return substMungedOpNames(substBitOps(s))
1796 else:
1797 return s
1798
1799 def makeFlagConstructor(flag_list):
1800 if len(flag_list) == 0:
1801 return ''
1802 # filter out repeated flags
1803 flag_list.sort()
1804 i = 1
1805 while i < len(flag_list):
1806 if flag_list[i] == flag_list[i-1]:
1807 del flag_list[i]
1808 else:
1809 i += 1
1810 pre = '\n\tflags['
1811 post = '] = true;'
1812 code = pre + string.join(flag_list, post + pre) + post
1813 return code
1814
1815 # Assume all instruction flags are of the form 'IsFoo'
1816 instFlagRE = re.compile(r'Is.*')
1817
1818 # OpClass constants end in 'Op' except No_OpClass
1819 opClassRE = re.compile(r'.*Op|No_OpClass')
1820
1821 class InstObjParams:
1822 def __init__(self, mnem, class_name, base_class = '',
1823 snippets = {}, opt_args = []):
1824 self.mnemonic = mnem
1825 self.class_name = class_name
1826 self.base_class = base_class
1827 if not isinstance(snippets, dict):
1828 snippets = {'code' : snippets}
1829 compositeCode = ' '.join(map(str, snippets.values()))
1830 self.snippets = snippets
1831
1832 self.operands = OperandList(compositeCode)
1833 self.constructor = self.operands.concatAttrStrings('constructor')
1834 self.constructor += \
1835 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1836 self.constructor += \
1837 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1838 self.constructor += \
1839 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1840 self.constructor += \
1841 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1842 self.flags = self.operands.concatAttrLists('flags')
1843
1844 # Make a basic guess on the operand class (function unit type).
1845 # These are good enough for most cases, and can be overridden
1846 # later otherwise.
1847 if 'IsStore' in self.flags:
1848 self.op_class = 'MemWriteOp'
1849 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1850 self.op_class = 'MemReadOp'
1851 elif 'IsFloating' in self.flags:
1852 self.op_class = 'FloatAddOp'
1853 else:
1854 self.op_class = 'IntAluOp'
1855
1856 # Optional arguments are assumed to be either StaticInst flags
1857 # or an OpClass value. To avoid having to import a complete
1858 # list of these values to match against, we do it ad-hoc
1859 # with regexps.
1860 for oa in opt_args:
1861 if instFlagRE.match(oa):
1862 self.flags.append(oa)
1863 elif opClassRE.match(oa):
1864 self.op_class = oa
1865 else:
1866 error(0, 'InstObjParams: optional arg "%s" not recognized '
1867 'as StaticInst::Flag or OpClass.' % oa)
1868
1869 # add flag initialization to contructor here to include
1870 # any flags added via opt_args
1871 self.constructor += makeFlagConstructor(self.flags)
1872
1873 # if 'IsFloating' is set, add call to the FP enable check
1874 # function (which should be provided by isa_desc via a declare)
1875 if 'IsFloating' in self.flags:
1876 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1877 else:
1878 self.fp_enable_check = ''
1879
1880 #######################
1881 #
1882 # Output file template
1883 #
1884
1885 file_template = '''
1886 /*
1887 * DO NOT EDIT THIS FILE!!!
1888 *
1889 * It was automatically generated from the ISA description in %(filename)s
1890 */
1891
1892 %(includes)s
1893
1894 %(global_output)s
1895
1896 namespace %(namespace)s {
1897
1898 %(namespace_output)s
1899
1900 } // namespace %(namespace)s
1901
1902 %(decode_function)s
1903 '''
1904
1905 max_inst_regs_template = '''
1906 /*
1907 * DO NOT EDIT THIS FILE!!!
1908 *
1909 * It was automatically generated from the ISA description in %(filename)s
1910 */
1911
1912 namespace %(namespace)s {
1913
1914 const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
1915 const int MaxInstDestRegs = %(MaxInstDestRegs)d;
1916
1917 } // namespace %(namespace)s
1918
1919 '''
1920
1921
1922 # Update the output file only if the new contents are different from
1923 # the current contents. Minimizes the files that need to be rebuilt
1924 # after minor changes.
1925 def update_if_needed(file, contents):
1926 update = False
1927 if os.access(file, os.R_OK):
1928 f = open(file, 'r')
1929 old_contents = f.read()
1930 f.close()
1931 if contents != old_contents:
1932 print 'Updating', file
1933 os.remove(file) # in case it's write-protected
1934 update = True
1935 else:
1936 print 'File', file, 'is unchanged'
1937 else:
1938 print 'Generating', file
1939 update = True
1940 if update:
1941 f = open(file, 'w')
1942 f.write(contents)
1943 f.close()
1944
1945 # This regular expression matches '##include' directives
1946 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1947 re.MULTILINE)
1948
1949 # Function to replace a matched '##include' directive with the
1950 # contents of the specified file (with nested ##includes replaced
1951 # recursively). 'matchobj' is an re match object (from a match of
1952 # includeRE) and 'dirname' is the directory relative to which the file
1953 # path should be resolved.
1954 def replace_include(matchobj, dirname):
1955 fname = matchobj.group('filename')
1956 full_fname = os.path.normpath(os.path.join(dirname, fname))
1957 contents = '##newfile "%s"\n%s\n##endfile\n' % \
1958 (full_fname, read_and_flatten(full_fname))
1959 return contents
1960
1961 # Read a file and recursively flatten nested '##include' files.
1962 def read_and_flatten(filename):
1963 current_dir = os.path.dirname(filename)
1964 try:
1965 contents = open(filename).read()
1966 except IOError:
1967 error(0, 'Error including file "%s"' % filename)
1968 fileNameStack.push((filename, 0))
1969 # Find any includes and include them
1970 contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1971 contents)
1972 fileNameStack.pop()
1973 return contents
1974
1975 #
1976 # Read in and parse the ISA description.
1977 #
1978 def parse_isa_desc(isa_desc_file, output_dir):
1979 # Read file and (recursively) all included files into a string.
1980 # PLY requires that the input be in a single string so we have to
1981 # do this up front.
1982 isa_desc = read_and_flatten(isa_desc_file)
1983
1984 # Initialize filename stack with outer file.
1985 fileNameStack.push((isa_desc_file, 0))
1986
1987 # Parse it.
1988 (isa_name, namespace, global_code, namespace_code) = \
1989 parser.parse(isa_desc, lexer=lexer)
1990
1991 # grab the last three path components of isa_desc_file to put in
1992 # the output
1993 filename = '/'.join(isa_desc_file.split('/')[-3:])
1994
1995 # generate decoder.hh
1996 includes = '#include "base/bitfield.hh" // for bitfield support'
1997 global_output = global_code.header_output
1998 namespace_output = namespace_code.header_output
1999 decode_function = ''
2000 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
2001
2002 # generate decoder.cc
2003 includes = '#include "decoder.hh"'
2004 global_output = global_code.decoder_output
2005 namespace_output = namespace_code.decoder_output
2006 # namespace_output += namespace_code.decode_block
2007 decode_function = namespace_code.decode_block
2008 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
2009
2010 # generate per-cpu exec files
2011 for cpu in cpu_models:
2012 includes = '#include "decoder.hh"\n'
2013 includes += cpu.includes
2014 global_output = global_code.exec_output[cpu.name]
2015 namespace_output = namespace_code.exec_output[cpu.name]
2016 decode_function = ''
2017 update_if_needed(output_dir + '/' + cpu.filename,
2018 file_template % vars())
2019
2020 # The variable names here are hacky, but this will creat local variables
2021 # which will be referenced in vars() which have the value of the globals.
2022 global maxInstSrcRegs
2023 MaxInstSrcRegs = maxInstSrcRegs
2024 global maxInstDestRegs
2025 MaxInstDestRegs = maxInstDestRegs
2026 # max_inst_regs.hh
2027 update_if_needed(output_dir + '/max_inst_regs.hh', \
2028 max_inst_regs_template % vars())
2029
2030 # global list of CpuModel objects (see cpu_models.py)
2031 cpu_models = []
2032
2033 # Called as script: get args from command line.
2034 # Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
2035 if __name__ == '__main__':
2036 execfile(sys.argv[1]) # read in CpuModel definitions
2037 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
2038 parse_isa_desc(sys.argv[2], sys.argv[3])