arch, x86: add support for arrays as memory operands
[gem5.git] / src / arch / isa_parser.py
1 # Copyright (c) 2014 ARM Limited
2 # All rights reserved
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2003-2005 The Regents of The University of Michigan
14 # Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15 # All rights reserved.
16 #
17 # Redistribution and use in source and binary forms, with or without
18 # modification, are permitted provided that the following conditions are
19 # met: redistributions of source code must retain the above copyright
20 # notice, this list of conditions and the following disclaimer;
21 # redistributions in binary form must reproduce the above copyright
22 # notice, this list of conditions and the following disclaimer in the
23 # documentation and/or other materials provided with the distribution;
24 # neither the name of the copyright holders nor the names of its
25 # contributors may be used to endorse or promote products derived from
26 # this software without specific prior written permission.
27 #
28 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #
40 # Authors: Steve Reinhardt
41
42 from __future__ import with_statement
43 import os
44 import sys
45 import re
46 import string
47 import inspect, traceback
48 # get type names
49 from types import *
50
51 from m5.util.grammar import Grammar
52
53 debug=False
54
55 ###################
56 # Utility functions
57
58 #
59 # Indent every line in string 's' by two spaces
60 # (except preprocessor directives).
61 # Used to make nested code blocks look pretty.
62 #
63 def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66 #
67 # Munge a somewhat arbitrarily formatted piece of Python code
68 # (e.g. from a format 'let' block) into something whose indentation
69 # will get by the Python parser.
70 #
71 # The two keys here are that Python will give a syntax error if
72 # there's any whitespace at the beginning of the first line, and that
73 # all lines at the same lexical nesting level must have identical
74 # indentation. Unfortunately the way code literals work, an entire
75 # let block tends to have some initial indentation. Rather than
76 # trying to figure out what that is and strip it off, we prepend 'if
77 # 1:' to make the let code the nested block inside the if (and have
78 # the parser automatically deal with the indentation for us).
79 #
80 # We don't want to do this if (1) the code block is empty or (2) the
81 # first line of the block doesn't have any whitespace at the front.
82
83 def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90 class ISAParserError(Exception):
91 """Exception class for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 self.lineno = first
98 self.string = second
99
100 def __str__(self):
101 return self.string
102
103 def error(*args):
104 raise ISAParserError(*args)
105
106 ####################
107 # Template objects.
108 #
109 # Template objects are format strings that allow substitution from
110 # the attribute spaces of other objects (e.g. InstObjParams instances).
111
112 labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114 class Template(object):
115 def __init__(self, parser, t):
116 self.parser = parser
117 self.template = t
118
119 def subst(self, d):
120 myDict = None
121
122 # Protect non-Python-dict substitutions (e.g. if there's a printf
123 # in the templated C++ code)
124 template = self.parser.protectNonSubstPercents(self.template)
125 # CPU-model-specific substitutions are handled later (in GenCode).
126 template = self.parser.protectCpuSymbols(template)
127
128 # Build a dict ('myDict') to use for the template substitution.
129 # Start with the template namespace. Make a copy since we're
130 # going to modify it.
131 myDict = self.parser.templateMap.copy()
132
133 if isinstance(d, InstObjParams):
134 # If we're dealing with an InstObjParams object, we need
135 # to be a little more sophisticated. The instruction-wide
136 # parameters are already formed, but the parameters which
137 # are only function wide still need to be generated.
138 compositeCode = ''
139
140 myDict.update(d.__dict__)
141 # The "operands" and "snippets" attributes of the InstObjParams
142 # objects are for internal use and not substitution.
143 del myDict['operands']
144 del myDict['snippets']
145
146 snippetLabels = [l for l in labelRE.findall(template)
147 if d.snippets.has_key(l)]
148
149 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150 for s in snippetLabels])
151
152 myDict.update(snippets)
153
154 compositeCode = ' '.join(map(str, snippets.values()))
155
156 # Add in template itself in case it references any
157 # operands explicitly (like Mem)
158 compositeCode += ' ' + template
159
160 operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163 if operands.readPC or operands.setPC:
164 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166 # In case there are predicated register reads and write, declare
167 # the variables for register indicies. It is being assumed that
168 # all the operands in the OperandList are also in the
169 # SubOperandList and in the same order. Otherwise, it is
170 # expected that predication would not be used for the operands.
171 if operands.predRead:
172 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173 if operands.predWrite:
174 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176 is_src = lambda op: op.is_src
177 is_dest = lambda op: op.is_dest
178
179 myDict['op_src_decl'] = \
180 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181 myDict['op_dest_decl'] = \
182 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183 if operands.readPC:
184 myDict['op_src_decl'] += \
185 'TheISA::PCState __parserAutoPCState;\n'
186 if operands.setPC:
187 myDict['op_dest_decl'] += \
188 'TheISA::PCState __parserAutoPCState;\n'
189
190 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191 if operands.readPC:
192 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193 myDict['op_rd']
194
195 # Compose the op_wb string. If we're going to write back the
196 # PC state because we changed some of its elements, we'll need to
197 # do that as early as possible. That allows later uncoordinated
198 # modifications to the PC to layer appropriately.
199 reordered = list(operands.items)
200 reordered.reverse()
201 op_wb_str = ''
202 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203 for op_desc in reordered:
204 if op_desc.isPCPart() and op_desc.is_dest:
205 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206 pcWbStr = ''
207 else:
208 op_wb_str = op_desc.op_wb + op_wb_str
209 myDict['op_wb'] = op_wb_str
210
211 elif isinstance(d, dict):
212 # if the argument is a dictionary, we just use it.
213 myDict.update(d)
214 elif hasattr(d, '__dict__'):
215 # if the argument is an object, we use its attribute map.
216 myDict.update(d.__dict__)
217 else:
218 raise TypeError, "Template.subst() arg must be or have dictionary"
219 return template % myDict
220
221 # Convert to string. This handles the case when a template with a
222 # CPU-specific term gets interpolated into another template or into
223 # an output block.
224 def __str__(self):
225 return self.parser.expandCpuSymbolsToString(self.template)
226
227 ################
228 # Format object.
229 #
230 # A format object encapsulates an instruction format. It must provide
231 # a defineInst() method that generates the code for an instruction
232 # definition.
233
234 class Format(object):
235 def __init__(self, id, params, code):
236 self.id = id
237 self.params = params
238 label = 'def format ' + id
239 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240 param_list = string.join(params, ", ")
241 f = '''def defInst(_code, _context, %s):
242 my_locals = vars().copy()
243 exec _code in _context, my_locals
244 return my_locals\n''' % param_list
245 c = compile(f, label + ' wrapper', 'exec')
246 exec c
247 self.func = defInst
248
249 def defineInst(self, parser, name, args, lineno):
250 parser.updateExportContext()
251 context = parser.exportContext.copy()
252 if len(name):
253 Name = name[0].upper()
254 if len(name) > 1:
255 Name += name[1:]
256 context.update({ 'name' : name, 'Name' : Name })
257 try:
258 vars = self.func(self.user_code, context, *args[0], **args[1])
259 except Exception, exc:
260 if debug:
261 raise
262 error(lineno, 'error defining "%s": %s.' % (name, exc))
263 for k in vars.keys():
264 if k not in ('header_output', 'decoder_output',
265 'exec_output', 'decode_block'):
266 del vars[k]
267 return GenCode(parser, **vars)
268
269 # Special null format to catch an implicit-format instruction
270 # definition outside of any format block.
271 class NoFormat(object):
272 def __init__(self):
273 self.defaultInst = ''
274
275 def defineInst(self, parser, name, args, lineno):
276 error(lineno,
277 'instruction definition "%s" with no active format!' % name)
278
279 ###############
280 # GenCode class
281 #
282 # The GenCode class encapsulates generated code destined for various
283 # output files. The header_output and decoder_output attributes are
284 # strings containing code destined for decoder.hh and decoder.cc
285 # respectively. The decode_block attribute contains code to be
286 # incorporated in the decode function itself (that will also end up in
287 # decoder.cc). The exec_output attribute is a dictionary with a key
288 # for each CPU model name; the value associated with a particular key
289 # is the string of code for that CPU model's exec.cc file. The
290 # has_decode_default attribute is used in the decode block to allow
291 # explicit default clauses to override default default clauses.
292
293 class GenCode(object):
294 # Constructor. At this point we substitute out all CPU-specific
295 # symbols. For the exec output, these go into the per-model
296 # dictionary. For all other output types they get collapsed into
297 # a single string.
298 def __init__(self, parser,
299 header_output = '', decoder_output = '', exec_output = '',
300 decode_block = '', has_decode_default = False):
301 self.parser = parser
302 self.header_output = parser.expandCpuSymbolsToString(header_output)
303 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304 self.exec_output = exec_output
305 self.decode_block = decode_block
306 self.has_decode_default = has_decode_default
307
308 # Write these code chunks out to the filesystem. They will be properly
309 # interwoven by the write_top_level_files().
310 def emit(self):
311 if self.header_output:
312 self.parser.get_file('header').write(self.header_output)
313 if self.decoder_output:
314 self.parser.get_file('decoder').write(self.decoder_output)
315 if self.exec_output:
316 self.parser.get_file('exec').write(self.exec_output)
317 if self.decode_block:
318 self.parser.get_file('decode_block').write(self.decode_block)
319
320 # Override '+' operator: generate a new GenCode object that
321 # concatenates all the individual strings in the operands.
322 def __add__(self, other):
323 return GenCode(self.parser,
324 self.header_output + other.header_output,
325 self.decoder_output + other.decoder_output,
326 self.exec_output + other.exec_output,
327 self.decode_block + other.decode_block,
328 self.has_decode_default or other.has_decode_default)
329
330 # Prepend a string (typically a comment) to all the strings.
331 def prepend_all(self, pre):
332 self.header_output = pre + self.header_output
333 self.decoder_output = pre + self.decoder_output
334 self.decode_block = pre + self.decode_block
335 self.exec_output = pre + self.exec_output
336
337 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338 # and 'break;'). Used to build the big nested switch statement.
339 def wrap_decode_block(self, pre, post = ''):
340 self.decode_block = pre + indent(self.decode_block) + post
341
342 #####################################################################
343 #
344 # Bitfield Operator Support
345 #
346 #####################################################################
347
348 bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350 bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351 bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353 def substBitOps(code):
354 # first convert single-bit selectors to two-index form
355 # i.e., <n> --> <n:n>
356 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357 # simple case: selector applied to ID (name)
358 # i.e., foo<a:b> --> bits(foo, a, b)
359 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360 # if selector is applied to expression (ending in ')'),
361 # we need to search backward for matching '('
362 match = bitOpExprRE.search(code)
363 while match:
364 exprEnd = match.start()
365 here = exprEnd - 1
366 nestLevel = 1
367 while nestLevel > 0:
368 if code[here] == '(':
369 nestLevel -= 1
370 elif code[here] == ')':
371 nestLevel += 1
372 here -= 1
373 if here < 0:
374 sys.exit("Didn't find '('!")
375 exprStart = here+1
376 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377 match.group(1), match.group(2))
378 code = code[:exprStart] + newExpr + code[match.end():]
379 match = bitOpExprRE.search(code)
380 return code
381
382
383 #####################################################################
384 #
385 # Code Parser
386 #
387 # The remaining code is the support for automatically extracting
388 # instruction characteristics from pseudocode.
389 #
390 #####################################################################
391
392 # Force the argument to be a list. Useful for flags, where a caller
393 # can specify a singleton flag or a list of flags. Also usful for
394 # converting tuples to lists so they can be modified.
395 def makeList(arg):
396 if isinstance(arg, list):
397 return arg
398 elif isinstance(arg, tuple):
399 return list(arg)
400 elif not arg:
401 return []
402 else:
403 return [ arg ]
404
405 class Operand(object):
406 '''Base class for operand descriptors. An instance of this class
407 (or actually a class derived from this one) represents a specific
408 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409 derived classes encapsulates the traits of a particular operand
410 type (e.g., "32-bit integer register").'''
411
412 def buildReadCode(self, func = None):
413 subst_dict = {"name": self.base_name,
414 "func": func,
415 "reg_idx": self.reg_spec,
416 "ctype": self.ctype}
417 if hasattr(self, 'src_reg_idx'):
418 subst_dict['op_idx'] = self.src_reg_idx
419 code = self.read_code % subst_dict
420 return '%s = %s;\n' % (self.base_name, code)
421
422 def buildWriteCode(self, func = None):
423 subst_dict = {"name": self.base_name,
424 "func": func,
425 "reg_idx": self.reg_spec,
426 "ctype": self.ctype,
427 "final_val": self.base_name}
428 if hasattr(self, 'dest_reg_idx'):
429 subst_dict['op_idx'] = self.dest_reg_idx
430 code = self.write_code % subst_dict
431 return '''
432 {
433 %s final_val = %s;
434 %s;
435 if (traceData) { traceData->setData(final_val); }
436 }''' % (self.dflt_ctype, self.base_name, code)
437
438 def __init__(self, parser, full_name, ext, is_src, is_dest):
439 self.full_name = full_name
440 self.ext = ext
441 self.is_src = is_src
442 self.is_dest = is_dest
443 # The 'effective extension' (eff_ext) is either the actual
444 # extension, if one was explicitly provided, or the default.
445 if ext:
446 self.eff_ext = ext
447 elif hasattr(self, 'dflt_ext'):
448 self.eff_ext = self.dflt_ext
449
450 if hasattr(self, 'eff_ext'):
451 self.ctype = parser.operandTypeMap[self.eff_ext]
452
453 # Finalize additional fields (primarily code fields). This step
454 # is done separately since some of these fields may depend on the
455 # register index enumeration that hasn't been performed yet at the
456 # time of __init__(). The register index enumeration is affected
457 # by predicated register reads/writes. Hence, we forward the flags
458 # that indicate whether or not predication is in use.
459 def finalize(self, predRead, predWrite):
460 self.flags = self.getFlags()
461 self.constructor = self.makeConstructor(predRead, predWrite)
462 self.op_decl = self.makeDecl()
463
464 if self.is_src:
465 self.op_rd = self.makeRead(predRead)
466 self.op_src_decl = self.makeDecl()
467 else:
468 self.op_rd = ''
469 self.op_src_decl = ''
470
471 if self.is_dest:
472 self.op_wb = self.makeWrite(predWrite)
473 self.op_dest_decl = self.makeDecl()
474 else:
475 self.op_wb = ''
476 self.op_dest_decl = ''
477
478 def isMem(self):
479 return 0
480
481 def isReg(self):
482 return 0
483
484 def isFloatReg(self):
485 return 0
486
487 def isIntReg(self):
488 return 0
489
490 def isCCReg(self):
491 return 0
492
493 def isControlReg(self):
494 return 0
495
496 def isPCState(self):
497 return 0
498
499 def isPCPart(self):
500 return self.isPCState() and self.reg_spec
501
502 def hasReadPred(self):
503 return self.read_predicate != None
504
505 def hasWritePred(self):
506 return self.write_predicate != None
507
508 def getFlags(self):
509 # note the empty slice '[:]' gives us a copy of self.flags[0]
510 # instead of a reference to it
511 my_flags = self.flags[0][:]
512 if self.is_src:
513 my_flags += self.flags[1]
514 if self.is_dest:
515 my_flags += self.flags[2]
516 return my_flags
517
518 def makeDecl(self):
519 # Note that initializations in the declarations are solely
520 # to avoid 'uninitialized variable' errors from the compiler.
521 return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523 class IntRegOperand(Operand):
524 def isReg(self):
525 return 1
526
527 def isIntReg(self):
528 return 1
529
530 def makeConstructor(self, predRead, predWrite):
531 c_src = ''
532 c_dest = ''
533
534 if self.is_src:
535 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
536 if self.hasReadPred():
537 c_src = '\n\tif (%s) {%s\n\t}' % \
538 (self.read_predicate, c_src)
539
540 if self.is_dest:
541 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
542 (self.reg_spec)
543 c_dest += '\n\t_numIntDestRegs++;'
544 if self.hasWritePred():
545 c_dest = '\n\tif (%s) {%s\n\t}' % \
546 (self.write_predicate, c_dest)
547
548 return c_src + c_dest
549
550 def makeRead(self, predRead):
551 if (self.ctype == 'float' or self.ctype == 'double'):
552 error('Attempt to read integer register as FP')
553 if self.read_code != None:
554 return self.buildReadCode('readIntRegOperand')
555
556 int_reg_val = ''
557 if predRead:
558 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
559 if self.hasReadPred():
560 int_reg_val = '(%s) ? %s : 0' % \
561 (self.read_predicate, int_reg_val)
562 else:
563 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
564
565 return '%s = %s;\n' % (self.base_name, int_reg_val)
566
567 def makeWrite(self, predWrite):
568 if (self.ctype == 'float' or self.ctype == 'double'):
569 error('Attempt to write integer register as FP')
570 if self.write_code != None:
571 return self.buildWriteCode('setIntRegOperand')
572
573 if predWrite:
574 wp = 'true'
575 if self.hasWritePred():
576 wp = self.write_predicate
577
578 wcond = 'if (%s)' % (wp)
579 windex = '_destIndex++'
580 else:
581 wcond = ''
582 windex = '%d' % self.dest_reg_idx
583
584 wb = '''
585 %s
586 {
587 %s final_val = %s;
588 xc->setIntRegOperand(this, %s, final_val);\n
589 if (traceData) { traceData->setData(final_val); }
590 }''' % (wcond, self.ctype, self.base_name, windex)
591
592 return wb
593
594 class FloatRegOperand(Operand):
595 def isReg(self):
596 return 1
597
598 def isFloatReg(self):
599 return 1
600
601 def makeConstructor(self, predRead, predWrite):
602 c_src = ''
603 c_dest = ''
604
605 if self.is_src:
606 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
607 (self.reg_spec)
608
609 if self.is_dest:
610 c_dest = \
611 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
612 (self.reg_spec)
613 c_dest += '\n\t_numFPDestRegs++;'
614
615 return c_src + c_dest
616
617 def makeRead(self, predRead):
618 bit_select = 0
619 if (self.ctype == 'float' or self.ctype == 'double'):
620 func = 'readFloatRegOperand'
621 else:
622 func = 'readFloatRegOperandBits'
623 if self.read_code != None:
624 return self.buildReadCode(func)
625
626 if predRead:
627 rindex = '_sourceIndex++'
628 else:
629 rindex = '%d' % self.src_reg_idx
630
631 return '%s = xc->%s(this, %s);\n' % \
632 (self.base_name, func, rindex)
633
634 def makeWrite(self, predWrite):
635 if (self.ctype == 'float' or self.ctype == 'double'):
636 func = 'setFloatRegOperand'
637 else:
638 func = 'setFloatRegOperandBits'
639 if self.write_code != None:
640 return self.buildWriteCode(func)
641
642 if predWrite:
643 wp = '_destIndex++'
644 else:
645 wp = '%d' % self.dest_reg_idx
646 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
647
648 wb = '''
649 {
650 %s final_val = %s;
651 %s\n
652 if (traceData) { traceData->setData(final_val); }
653 }''' % (self.ctype, self.base_name, wp)
654 return wb
655
656 class CCRegOperand(Operand):
657 def isReg(self):
658 return 1
659
660 def isCCReg(self):
661 return 1
662
663 def makeConstructor(self, predRead, predWrite):
664 c_src = ''
665 c_dest = ''
666
667 if self.is_src:
668 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
669 (self.reg_spec)
670 if self.hasReadPred():
671 c_src = '\n\tif (%s) {%s\n\t}' % \
672 (self.read_predicate, c_src)
673
674 if self.is_dest:
675 c_dest = \
676 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
677 (self.reg_spec)
678 c_dest += '\n\t_numCCDestRegs++;'
679 if self.hasWritePred():
680 c_dest = '\n\tif (%s) {%s\n\t}' % \
681 (self.write_predicate, c_dest)
682
683 return c_src + c_dest
684
685 def makeRead(self, predRead):
686 if (self.ctype == 'float' or self.ctype == 'double'):
687 error('Attempt to read condition-code register as FP')
688 if self.read_code != None:
689 return self.buildReadCode('readCCRegOperand')
690
691 int_reg_val = ''
692 if predRead:
693 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
694 if self.hasReadPred():
695 int_reg_val = '(%s) ? %s : 0' % \
696 (self.read_predicate, int_reg_val)
697 else:
698 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
699
700 return '%s = %s;\n' % (self.base_name, int_reg_val)
701
702 def makeWrite(self, predWrite):
703 if (self.ctype == 'float' or self.ctype == 'double'):
704 error('Attempt to write condition-code register as FP')
705 if self.write_code != None:
706 return self.buildWriteCode('setCCRegOperand')
707
708 if predWrite:
709 wp = 'true'
710 if self.hasWritePred():
711 wp = self.write_predicate
712
713 wcond = 'if (%s)' % (wp)
714 windex = '_destIndex++'
715 else:
716 wcond = ''
717 windex = '%d' % self.dest_reg_idx
718
719 wb = '''
720 %s
721 {
722 %s final_val = %s;
723 xc->setCCRegOperand(this, %s, final_val);\n
724 if (traceData) { traceData->setData(final_val); }
725 }''' % (wcond, self.ctype, self.base_name, windex)
726
727 return wb
728
729 class ControlRegOperand(Operand):
730 def isReg(self):
731 return 1
732
733 def isControlReg(self):
734 return 1
735
736 def makeConstructor(self, predRead, predWrite):
737 c_src = ''
738 c_dest = ''
739
740 if self.is_src:
741 c_src = \
742 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
743 (self.reg_spec)
744
745 if self.is_dest:
746 c_dest = \
747 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
748 (self.reg_spec)
749
750 return c_src + c_dest
751
752 def makeRead(self, predRead):
753 bit_select = 0
754 if (self.ctype == 'float' or self.ctype == 'double'):
755 error('Attempt to read control register as FP')
756 if self.read_code != None:
757 return self.buildReadCode('readMiscRegOperand')
758
759 if predRead:
760 rindex = '_sourceIndex++'
761 else:
762 rindex = '%d' % self.src_reg_idx
763
764 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
765 (self.base_name, rindex)
766
767 def makeWrite(self, predWrite):
768 if (self.ctype == 'float' or self.ctype == 'double'):
769 error('Attempt to write control register as FP')
770 if self.write_code != None:
771 return self.buildWriteCode('setMiscRegOperand')
772
773 if predWrite:
774 windex = '_destIndex++'
775 else:
776 windex = '%d' % self.dest_reg_idx
777
778 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
779 (windex, self.base_name)
780 wb += 'if (traceData) { traceData->setData(%s); }' % \
781 self.base_name
782
783 return wb
784
785 class MemOperand(Operand):
786 def isMem(self):
787 return 1
788
789 def makeConstructor(self, predRead, predWrite):
790 return ''
791
792 def makeDecl(self):
793 # Declare memory data variable.
794 return '%s %s;\n' % (self.ctype, self.base_name)
795
796 def makeRead(self, predRead):
797 if self.read_code != None:
798 return self.buildReadCode()
799 return ''
800
801 def makeWrite(self, predWrite):
802 if self.write_code != None:
803 return self.buildWriteCode()
804 return ''
805
806 class PCStateOperand(Operand):
807 def makeConstructor(self, predRead, predWrite):
808 return ''
809
810 def makeRead(self, predRead):
811 if self.reg_spec:
812 # A component of the PC state.
813 return '%s = __parserAutoPCState.%s();\n' % \
814 (self.base_name, self.reg_spec)
815 else:
816 # The whole PC state itself.
817 return '%s = xc->pcState();\n' % self.base_name
818
819 def makeWrite(self, predWrite):
820 if self.reg_spec:
821 # A component of the PC state.
822 return '__parserAutoPCState.%s(%s);\n' % \
823 (self.reg_spec, self.base_name)
824 else:
825 # The whole PC state itself.
826 return 'xc->pcState(%s);\n' % self.base_name
827
828 def makeDecl(self):
829 ctype = 'TheISA::PCState'
830 if self.isPCPart():
831 ctype = self.ctype
832 # Note that initializations in the declarations are solely
833 # to avoid 'uninitialized variable' errors from the compiler.
834 return '%s %s = 0;\n' % (ctype, self.base_name)
835
836 def isPCState(self):
837 return 1
838
839 class OperandList(object):
840 '''Find all the operands in the given code block. Returns an operand
841 descriptor list (instance of class OperandList).'''
842 def __init__(self, parser, code):
843 self.items = []
844 self.bases = {}
845 # delete strings and comments so we don't match on operands inside
846 for regEx in (stringRE, commentRE):
847 code = regEx.sub('', code)
848 # search for operands
849 next_pos = 0
850 while 1:
851 match = parser.operandsRE.search(code, next_pos)
852 if not match:
853 # no more matches: we're done
854 break
855 op = match.groups()
856 # regexp groups are operand full name, base, and extension
857 (op_full, op_base, op_ext) = op
858 # if the token following the operand is an assignment, this is
859 # a destination (LHS), else it's a source (RHS)
860 is_dest = (assignRE.match(code, match.end()) != None)
861 is_src = not is_dest
862 # see if we've already seen this one
863 op_desc = self.find_base(op_base)
864 if op_desc:
865 if op_desc.ext != op_ext:
866 error('Inconsistent extensions for operand %s' % \
867 op_base)
868 op_desc.is_src = op_desc.is_src or is_src
869 op_desc.is_dest = op_desc.is_dest or is_dest
870 else:
871 # new operand: create new descriptor
872 op_desc = parser.operandNameMap[op_base](parser,
873 op_full, op_ext, is_src, is_dest)
874 self.append(op_desc)
875 # start next search after end of current match
876 next_pos = match.end()
877 self.sort()
878 # enumerate source & dest register operands... used in building
879 # constructor later
880 self.numSrcRegs = 0
881 self.numDestRegs = 0
882 self.numFPDestRegs = 0
883 self.numIntDestRegs = 0
884 self.numCCDestRegs = 0
885 self.numMiscDestRegs = 0
886 self.memOperand = None
887
888 # Flags to keep track if one or more operands are to be read/written
889 # conditionally.
890 self.predRead = False
891 self.predWrite = False
892
893 for op_desc in self.items:
894 if op_desc.isReg():
895 if op_desc.is_src:
896 op_desc.src_reg_idx = self.numSrcRegs
897 self.numSrcRegs += 1
898 if op_desc.is_dest:
899 op_desc.dest_reg_idx = self.numDestRegs
900 self.numDestRegs += 1
901 if op_desc.isFloatReg():
902 self.numFPDestRegs += 1
903 elif op_desc.isIntReg():
904 self.numIntDestRegs += 1
905 elif op_desc.isCCReg():
906 self.numCCDestRegs += 1
907 elif op_desc.isControlReg():
908 self.numMiscDestRegs += 1
909 elif op_desc.isMem():
910 if self.memOperand:
911 error("Code block has more than one memory operand.")
912 self.memOperand = op_desc
913
914 # Check if this operand has read/write predication. If true, then
915 # the microop will dynamically index source/dest registers.
916 self.predRead = self.predRead or op_desc.hasReadPred()
917 self.predWrite = self.predWrite or op_desc.hasWritePred()
918
919 if parser.maxInstSrcRegs < self.numSrcRegs:
920 parser.maxInstSrcRegs = self.numSrcRegs
921 if parser.maxInstDestRegs < self.numDestRegs:
922 parser.maxInstDestRegs = self.numDestRegs
923 if parser.maxMiscDestRegs < self.numMiscDestRegs:
924 parser.maxMiscDestRegs = self.numMiscDestRegs
925
926 # now make a final pass to finalize op_desc fields that may depend
927 # on the register enumeration
928 for op_desc in self.items:
929 op_desc.finalize(self.predRead, self.predWrite)
930
931 def __len__(self):
932 return len(self.items)
933
934 def __getitem__(self, index):
935 return self.items[index]
936
937 def append(self, op_desc):
938 self.items.append(op_desc)
939 self.bases[op_desc.base_name] = op_desc
940
941 def find_base(self, base_name):
942 # like self.bases[base_name], but returns None if not found
943 # (rather than raising exception)
944 return self.bases.get(base_name)
945
946 # internal helper function for concat[Some]Attr{Strings|Lists}
947 def __internalConcatAttrs(self, attr_name, filter, result):
948 for op_desc in self.items:
949 if filter(op_desc):
950 result += getattr(op_desc, attr_name)
951 return result
952
953 # return a single string that is the concatenation of the (string)
954 # values of the specified attribute for all operands
955 def concatAttrStrings(self, attr_name):
956 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
957
958 # like concatAttrStrings, but only include the values for the operands
959 # for which the provided filter function returns true
960 def concatSomeAttrStrings(self, filter, attr_name):
961 return self.__internalConcatAttrs(attr_name, filter, '')
962
963 # return a single list that is the concatenation of the (list)
964 # values of the specified attribute for all operands
965 def concatAttrLists(self, attr_name):
966 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
967
968 # like concatAttrLists, but only include the values for the operands
969 # for which the provided filter function returns true
970 def concatSomeAttrLists(self, filter, attr_name):
971 return self.__internalConcatAttrs(attr_name, filter, [])
972
973 def sort(self):
974 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
975
976 class SubOperandList(OperandList):
977 '''Find all the operands in the given code block. Returns an operand
978 descriptor list (instance of class OperandList).'''
979 def __init__(self, parser, code, master_list):
980 self.items = []
981 self.bases = {}
982 # delete strings and comments so we don't match on operands inside
983 for regEx in (stringRE, commentRE):
984 code = regEx.sub('', code)
985 # search for operands
986 next_pos = 0
987 while 1:
988 match = parser.operandsRE.search(code, next_pos)
989 if not match:
990 # no more matches: we're done
991 break
992 op = match.groups()
993 # regexp groups are operand full name, base, and extension
994 (op_full, op_base, op_ext) = op
995 # find this op in the master list
996 op_desc = master_list.find_base(op_base)
997 if not op_desc:
998 error('Found operand %s which is not in the master list!'
999 % op_base)
1000 else:
1001 # See if we've already found this operand
1002 op_desc = self.find_base(op_base)
1003 if not op_desc:
1004 # if not, add a reference to it to this sub list
1005 self.append(master_list.bases[op_base])
1006
1007 # start next search after end of current match
1008 next_pos = match.end()
1009 self.sort()
1010 self.memOperand = None
1011 # Whether the whole PC needs to be read so parts of it can be accessed
1012 self.readPC = False
1013 # Whether the whole PC needs to be written after parts of it were
1014 # changed
1015 self.setPC = False
1016 # Whether this instruction manipulates the whole PC or parts of it.
1017 # Mixing the two is a bad idea and flagged as an error.
1018 self.pcPart = None
1019
1020 # Flags to keep track if one or more operands are to be read/written
1021 # conditionally.
1022 self.predRead = False
1023 self.predWrite = False
1024
1025 for op_desc in self.items:
1026 if op_desc.isPCPart():
1027 self.readPC = True
1028 if op_desc.is_dest:
1029 self.setPC = True
1030
1031 if op_desc.isPCState():
1032 if self.pcPart is not None:
1033 if self.pcPart and not op_desc.isPCPart() or \
1034 not self.pcPart and op_desc.isPCPart():
1035 error("Mixed whole and partial PC state operands.")
1036 self.pcPart = op_desc.isPCPart()
1037
1038 if op_desc.isMem():
1039 if self.memOperand:
1040 error("Code block has more than one memory operand.")
1041 self.memOperand = op_desc
1042
1043 # Check if this operand has read/write predication. If true, then
1044 # the microop will dynamically index source/dest registers.
1045 self.predRead = self.predRead or op_desc.hasReadPred()
1046 self.predWrite = self.predWrite or op_desc.hasWritePred()
1047
1048 # Regular expression object to match C++ strings
1049 stringRE = re.compile(r'"([^"\\]|\\.)*"')
1050
1051 # Regular expression object to match C++ comments
1052 # (used in findOperands())
1053 commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1054 re.DOTALL | re.MULTILINE)
1055
1056 # Regular expression object to match assignment statements (used in
1057 # findOperands()). If the code immediately following the first
1058 # appearance of the operand matches this regex, then the operand
1059 # appears to be on the LHS of an assignment, and is thus a
1060 # destination. basically we're looking for an '=' that's not '=='.
1061 # The heinous tangle before that handles the case where the operand
1062 # has an array subscript.
1063 assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1064
1065 def makeFlagConstructor(flag_list):
1066 if len(flag_list) == 0:
1067 return ''
1068 # filter out repeated flags
1069 flag_list.sort()
1070 i = 1
1071 while i < len(flag_list):
1072 if flag_list[i] == flag_list[i-1]:
1073 del flag_list[i]
1074 else:
1075 i += 1
1076 pre = '\n\tflags['
1077 post = '] = true;'
1078 code = pre + string.join(flag_list, post + pre) + post
1079 return code
1080
1081 # Assume all instruction flags are of the form 'IsFoo'
1082 instFlagRE = re.compile(r'Is.*')
1083
1084 # OpClass constants end in 'Op' except No_OpClass
1085 opClassRE = re.compile(r'.*Op|No_OpClass')
1086
1087 class InstObjParams(object):
1088 def __init__(self, parser, mnem, class_name, base_class = '',
1089 snippets = {}, opt_args = []):
1090 self.mnemonic = mnem
1091 self.class_name = class_name
1092 self.base_class = base_class
1093 if not isinstance(snippets, dict):
1094 snippets = {'code' : snippets}
1095 compositeCode = ' '.join(map(str, snippets.values()))
1096 self.snippets = snippets
1097
1098 self.operands = OperandList(parser, compositeCode)
1099
1100 # The header of the constructor declares the variables to be used
1101 # in the body of the constructor.
1102 header = ''
1103 header += '\n\t_numSrcRegs = 0;'
1104 header += '\n\t_numDestRegs = 0;'
1105 header += '\n\t_numFPDestRegs = 0;'
1106 header += '\n\t_numIntDestRegs = 0;'
1107 header += '\n\t_numCCDestRegs = 0;'
1108
1109 self.constructor = header + \
1110 self.operands.concatAttrStrings('constructor')
1111
1112 self.flags = self.operands.concatAttrLists('flags')
1113
1114 self.op_class = None
1115
1116 # Optional arguments are assumed to be either StaticInst flags
1117 # or an OpClass value. To avoid having to import a complete
1118 # list of these values to match against, we do it ad-hoc
1119 # with regexps.
1120 for oa in opt_args:
1121 if instFlagRE.match(oa):
1122 self.flags.append(oa)
1123 elif opClassRE.match(oa):
1124 self.op_class = oa
1125 else:
1126 error('InstObjParams: optional arg "%s" not recognized '
1127 'as StaticInst::Flag or OpClass.' % oa)
1128
1129 # Make a basic guess on the operand class if not set.
1130 # These are good enough for most cases.
1131 if not self.op_class:
1132 if 'IsStore' in self.flags:
1133 self.op_class = 'MemWriteOp'
1134 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1135 self.op_class = 'MemReadOp'
1136 elif 'IsFloating' in self.flags:
1137 self.op_class = 'FloatAddOp'
1138 else:
1139 self.op_class = 'IntAluOp'
1140
1141 # add flag initialization to contructor here to include
1142 # any flags added via opt_args
1143 self.constructor += makeFlagConstructor(self.flags)
1144
1145 # if 'IsFloating' is set, add call to the FP enable check
1146 # function (which should be provided by isa_desc via a declare)
1147 if 'IsFloating' in self.flags:
1148 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1149 else:
1150 self.fp_enable_check = ''
1151
1152 ##############
1153 # Stack: a simple stack object. Used for both formats (formatStack)
1154 # and default cases (defaultStack). Simply wraps a list to give more
1155 # stack-like syntax and enable initialization with an argument list
1156 # (as opposed to an argument that's a list).
1157
1158 class Stack(list):
1159 def __init__(self, *items):
1160 list.__init__(self, items)
1161
1162 def push(self, item):
1163 self.append(item);
1164
1165 def top(self):
1166 return self[-1]
1167
1168 # Format a file include stack backtrace as a string
1169 def backtrace(filename_stack):
1170 fmt = "In file included from %s:"
1171 return "\n".join([fmt % f for f in filename_stack])
1172
1173
1174 #######################
1175 #
1176 # LineTracker: track filenames along with line numbers in PLY lineno fields
1177 # PLY explicitly doesn't do anything with 'lineno' except propagate
1178 # it. This class lets us tie filenames with the line numbers with a
1179 # minimum of disruption to existing increment code.
1180 #
1181
1182 class LineTracker(object):
1183 def __init__(self, filename, lineno=1):
1184 self.filename = filename
1185 self.lineno = lineno
1186
1187 # Overload '+=' for increments. We need to create a new object on
1188 # each update else every token ends up referencing the same
1189 # constantly incrementing instance.
1190 def __iadd__(self, incr):
1191 return LineTracker(self.filename, self.lineno + incr)
1192
1193 def __str__(self):
1194 return "%s:%d" % (self.filename, self.lineno)
1195
1196 # In case there are places where someone really expects a number
1197 def __int__(self):
1198 return self.lineno
1199
1200
1201 #######################
1202 #
1203 # ISA Parser
1204 # parses ISA DSL and emits C++ headers and source
1205 #
1206
1207 class ISAParser(Grammar):
1208 class CpuModel(object):
1209 def __init__(self, name, filename, includes, strings):
1210 self.name = name
1211 self.filename = filename
1212 self.includes = includes
1213 self.strings = strings
1214
1215 def __init__(self, output_dir):
1216 super(ISAParser, self).__init__()
1217 self.output_dir = output_dir
1218
1219 self.filename = None # for output file watermarking/scaremongering
1220
1221 self.cpuModels = [
1222 ISAParser.CpuModel('ExecContext',
1223 'generic_cpu_exec.cc',
1224 '#include "cpu/exec_context.hh"',
1225 { "CPU_exec_context" : "ExecContext" }),
1226 ]
1227
1228 # variable to hold templates
1229 self.templateMap = {}
1230
1231 # This dictionary maps format name strings to Format objects.
1232 self.formatMap = {}
1233
1234 # Track open files and, if applicable, how many chunks it has been
1235 # split into so far.
1236 self.files = {}
1237 self.splits = {}
1238
1239 # isa_name / namespace identifier from namespace declaration.
1240 # before the namespace declaration, None.
1241 self.isa_name = None
1242 self.namespace = None
1243
1244 # The format stack.
1245 self.formatStack = Stack(NoFormat())
1246
1247 # The default case stack.
1248 self.defaultStack = Stack(None)
1249
1250 # Stack that tracks current file and line number. Each
1251 # element is a tuple (filename, lineno) that records the
1252 # *current* filename and the line number in the *previous*
1253 # file where it was included.
1254 self.fileNameStack = Stack()
1255
1256 symbols = ('makeList', 're', 'string')
1257 self.exportContext = dict([(s, eval(s)) for s in symbols])
1258
1259 self.maxInstSrcRegs = 0
1260 self.maxInstDestRegs = 0
1261 self.maxMiscDestRegs = 0
1262
1263 def __getitem__(self, i): # Allow object (self) to be
1264 return getattr(self, i) # passed to %-substitutions
1265
1266 # Change the file suffix of a base filename:
1267 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1268 def suffixize(self, s, sec):
1269 extn = re.compile('(\.[^\.]+)$') # isolate extension
1270 if self.namespace:
1271 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1272 else:
1273 return extn.sub(r'-g\1.inc', s)
1274
1275 # Get the file object for emitting code into the specified section
1276 # (header, decoder, exec, decode_block).
1277 def get_file(self, section):
1278 if section == 'decode_block':
1279 filename = 'decode-method.cc.inc'
1280 else:
1281 if section == 'header':
1282 file = 'decoder.hh'
1283 else:
1284 file = '%s.cc' % section
1285 filename = self.suffixize(file, section)
1286 try:
1287 return self.files[filename]
1288 except KeyError: pass
1289
1290 f = self.open(filename)
1291 self.files[filename] = f
1292
1293 # The splittable files are the ones with many independent
1294 # per-instruction functions - the decoder's instruction constructors
1295 # and the instruction execution (execute()) methods. These both have
1296 # the suffix -ns.cc.inc, meaning they are within the namespace part
1297 # of the ISA, contain object-emitting C++ source, and are included
1298 # into other top-level files. These are the files that need special
1299 # #define's to allow parts of them to be compiled separately. Rather
1300 # than splitting the emissions into separate files, the monolithic
1301 # output of the ISA parser is maintained, but the value (or lack
1302 # thereof) of the __SPLIT definition during C preprocessing will
1303 # select the different chunks. If no 'split' directives are used,
1304 # the cpp emissions have no effect.
1305 if re.search('-ns.cc.inc$', filename):
1306 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1307 self.splits[f] = 1
1308 # ensure requisite #include's
1309 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1310 print >>f, '#include "decoder.hh"'
1311 elif filename == 'decoder-g.hh.inc':
1312 print >>f, '#include "base/bitfield.hh"'
1313
1314 return f
1315
1316 # Weave together the parts of the different output sections by
1317 # #include'ing them into some very short top-level .cc/.hh files.
1318 # These small files make it much clearer how this tool works, since
1319 # you directly see the chunks emitted as files that are #include'd.
1320 def write_top_level_files(self):
1321 dep = self.open('inc.d', bare=True)
1322
1323 # decoder header - everything depends on this
1324 file = 'decoder.hh'
1325 with self.open(file) as f:
1326 inc = []
1327
1328 fn = 'decoder-g.hh.inc'
1329 assert(fn in self.files)
1330 f.write('#include "%s"\n' % fn)
1331 inc.append(fn)
1332
1333 fn = 'decoder-ns.hh.inc'
1334 assert(fn in self.files)
1335 f.write('namespace %s {\n#include "%s"\n}\n'
1336 % (self.namespace, fn))
1337 inc.append(fn)
1338
1339 print >>dep, file+':', ' '.join(inc)
1340
1341 # decoder method - cannot be split
1342 file = 'decoder.cc'
1343 with self.open(file) as f:
1344 inc = []
1345
1346 fn = 'decoder-g.cc.inc'
1347 assert(fn in self.files)
1348 f.write('#include "%s"\n' % fn)
1349 inc.append(fn)
1350
1351 fn = 'decode-method.cc.inc'
1352 # is guaranteed to have been written for parse to complete
1353 f.write('#include "%s"\n' % fn)
1354 inc.append(fn)
1355
1356 inc.append("decoder.hh")
1357 print >>dep, file+':', ' '.join(inc)
1358
1359 extn = re.compile('(\.[^\.]+)$')
1360
1361 # instruction constructors
1362 splits = self.splits[self.get_file('decoder')]
1363 file_ = 'inst-constrs.cc'
1364 for i in range(1, splits+1):
1365 if splits > 1:
1366 file = extn.sub(r'-%d\1' % i, file_)
1367 else:
1368 file = file_
1369 with self.open(file) as f:
1370 inc = []
1371
1372 fn = 'decoder-g.cc.inc'
1373 assert(fn in self.files)
1374 f.write('#include "%s"\n' % fn)
1375 inc.append(fn)
1376
1377 fn = 'decoder-ns.cc.inc'
1378 assert(fn in self.files)
1379 print >>f, 'namespace %s {' % self.namespace
1380 if splits > 1:
1381 print >>f, '#define __SPLIT %u' % i
1382 print >>f, '#include "%s"' % fn
1383 print >>f, '}'
1384 inc.append(fn)
1385
1386 inc.append("decoder.hh")
1387 print >>dep, file+':', ' '.join(inc)
1388
1389 # instruction execution per-CPU model
1390 splits = self.splits[self.get_file('exec')]
1391 for cpu in self.cpuModels:
1392 for i in range(1, splits+1):
1393 if splits > 1:
1394 file = extn.sub(r'_%d\1' % i, cpu.filename)
1395 else:
1396 file = cpu.filename
1397 with self.open(file) as f:
1398 inc = []
1399
1400 fn = 'exec-g.cc.inc'
1401 assert(fn in self.files)
1402 f.write('#include "%s"\n' % fn)
1403 inc.append(fn)
1404
1405 f.write(cpu.includes+"\n")
1406
1407 fn = 'exec-ns.cc.inc'
1408 assert(fn in self.files)
1409 print >>f, 'namespace %s {' % self.namespace
1410 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1411 % cpu.strings['CPU_exec_context']
1412 if splits > 1:
1413 print >>f, '#define __SPLIT %u' % i
1414 print >>f, '#include "%s"' % fn
1415 print >>f, '}'
1416 inc.append(fn)
1417
1418 inc.append("decoder.hh")
1419 print >>dep, file+':', ' '.join(inc)
1420
1421 # max_inst_regs.hh
1422 self.update('max_inst_regs.hh',
1423 '''namespace %(namespace)s {
1424 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1425 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1426 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1427 print >>dep, 'max_inst_regs.hh:'
1428
1429 dep.close()
1430
1431
1432 scaremonger_template ='''// DO NOT EDIT
1433 // This file was automatically generated from an ISA description:
1434 // %(filename)s
1435
1436 ''';
1437
1438 #####################################################################
1439 #
1440 # Lexer
1441 #
1442 # The PLY lexer module takes two things as input:
1443 # - A list of token names (the string list 'tokens')
1444 # - A regular expression describing a match for each token. The
1445 # regexp for token FOO can be provided in two ways:
1446 # - as a string variable named t_FOO
1447 # - as the doc string for a function named t_FOO. In this case,
1448 # the function is also executed, allowing an action to be
1449 # associated with each token match.
1450 #
1451 #####################################################################
1452
1453 # Reserved words. These are listed separately as they are matched
1454 # using the same regexp as generic IDs, but distinguished in the
1455 # t_ID() function. The PLY documentation suggests this approach.
1456 reserved = (
1457 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1458 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1459 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1460 )
1461
1462 # List of tokens. The lex module requires this.
1463 tokens = reserved + (
1464 # identifier
1465 'ID',
1466
1467 # integer literal
1468 'INTLIT',
1469
1470 # string literal
1471 'STRLIT',
1472
1473 # code literal
1474 'CODELIT',
1475
1476 # ( ) [ ] { } < > , ; . : :: *
1477 'LPAREN', 'RPAREN',
1478 'LBRACKET', 'RBRACKET',
1479 'LBRACE', 'RBRACE',
1480 'LESS', 'GREATER', 'EQUALS',
1481 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1482 'ASTERISK',
1483
1484 # C preprocessor directives
1485 'CPPDIRECTIVE'
1486
1487 # The following are matched but never returned. commented out to
1488 # suppress PLY warning
1489 # newfile directive
1490 # 'NEWFILE',
1491
1492 # endfile directive
1493 # 'ENDFILE'
1494 )
1495
1496 # Regular expressions for token matching
1497 t_LPAREN = r'\('
1498 t_RPAREN = r'\)'
1499 t_LBRACKET = r'\['
1500 t_RBRACKET = r'\]'
1501 t_LBRACE = r'\{'
1502 t_RBRACE = r'\}'
1503 t_LESS = r'\<'
1504 t_GREATER = r'\>'
1505 t_EQUALS = r'='
1506 t_COMMA = r','
1507 t_SEMI = r';'
1508 t_DOT = r'\.'
1509 t_COLON = r':'
1510 t_DBLCOLON = r'::'
1511 t_ASTERISK = r'\*'
1512
1513 # Identifiers and reserved words
1514 reserved_map = { }
1515 for r in reserved:
1516 reserved_map[r.lower()] = r
1517
1518 def t_ID(self, t):
1519 r'[A-Za-z_]\w*'
1520 t.type = self.reserved_map.get(t.value, 'ID')
1521 return t
1522
1523 # Integer literal
1524 def t_INTLIT(self, t):
1525 r'-?(0x[\da-fA-F]+)|\d+'
1526 try:
1527 t.value = int(t.value,0)
1528 except ValueError:
1529 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1530 t.value = 0
1531 return t
1532
1533 # String literal. Note that these use only single quotes, and
1534 # can span multiple lines.
1535 def t_STRLIT(self, t):
1536 r"(?m)'([^'])+'"
1537 # strip off quotes
1538 t.value = t.value[1:-1]
1539 t.lexer.lineno += t.value.count('\n')
1540 return t
1541
1542
1543 # "Code literal"... like a string literal, but delimiters are
1544 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1545 def t_CODELIT(self, t):
1546 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1547 # strip off {{ & }}
1548 t.value = t.value[2:-2]
1549 t.lexer.lineno += t.value.count('\n')
1550 return t
1551
1552 def t_CPPDIRECTIVE(self, t):
1553 r'^\#[^\#].*\n'
1554 t.lexer.lineno += t.value.count('\n')
1555 return t
1556
1557 def t_NEWFILE(self, t):
1558 r'^\#\#newfile\s+"[^"]*"\n'
1559 self.fileNameStack.push(t.lexer.lineno)
1560 t.lexer.lineno = LineTracker(t.value[11:-2])
1561
1562 def t_ENDFILE(self, t):
1563 r'^\#\#endfile\n'
1564 t.lexer.lineno = self.fileNameStack.pop()
1565
1566 #
1567 # The functions t_NEWLINE, t_ignore, and t_error are
1568 # special for the lex module.
1569 #
1570
1571 # Newlines
1572 def t_NEWLINE(self, t):
1573 r'\n+'
1574 t.lexer.lineno += t.value.count('\n')
1575
1576 # Comments
1577 def t_comment(self, t):
1578 r'//.*'
1579
1580 # Completely ignored characters
1581 t_ignore = ' \t\x0c'
1582
1583 # Error handler
1584 def t_error(self, t):
1585 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1586 t.skip(1)
1587
1588 #####################################################################
1589 #
1590 # Parser
1591 #
1592 # Every function whose name starts with 'p_' defines a grammar
1593 # rule. The rule is encoded in the function's doc string, while
1594 # the function body provides the action taken when the rule is
1595 # matched. The argument to each function is a list of the values
1596 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1597 # symbols on the RHS. For tokens, the value is copied from the
1598 # t.value attribute provided by the lexer. For non-terminals, the
1599 # value is assigned by the producing rule; i.e., the job of the
1600 # grammar rule function is to set the value for the non-terminal
1601 # on the LHS (by assigning to t[0]).
1602 #####################################################################
1603
1604 # The LHS of the first grammar rule is used as the start symbol
1605 # (in this case, 'specification'). Note that this rule enforces
1606 # that there will be exactly one namespace declaration, with 0 or
1607 # more global defs/decls before and after it. The defs & decls
1608 # before the namespace decl will be outside the namespace; those
1609 # after will be inside. The decoder function is always inside the
1610 # namespace.
1611 def p_specification(self, t):
1612 'specification : opt_defs_and_outputs top_level_decode_block'
1613
1614 for f in self.splits.iterkeys():
1615 f.write('\n#endif\n')
1616
1617 for f in self.files.itervalues(): # close ALL the files;
1618 f.close() # not doing so can cause compilation to fail
1619
1620 self.write_top_level_files()
1621
1622 t[0] = True
1623
1624 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1625 # output statements. Its productions do the hard work of eventually
1626 # instantiating a GenCode, which are generally emitted (written to disk)
1627 # as soon as possible, except for the decode_block, which has to be
1628 # accumulated into one large function of nested switch/case blocks.
1629 def p_opt_defs_and_outputs_0(self, t):
1630 'opt_defs_and_outputs : empty'
1631
1632 def p_opt_defs_and_outputs_1(self, t):
1633 'opt_defs_and_outputs : defs_and_outputs'
1634
1635 def p_defs_and_outputs_0(self, t):
1636 'defs_and_outputs : def_or_output'
1637
1638 def p_defs_and_outputs_1(self, t):
1639 'defs_and_outputs : defs_and_outputs def_or_output'
1640
1641 # The list of possible definition/output statements.
1642 # They are all processed as they are seen.
1643 def p_def_or_output(self, t):
1644 '''def_or_output : name_decl
1645 | def_format
1646 | def_bitfield
1647 | def_bitfield_struct
1648 | def_template
1649 | def_operand_types
1650 | def_operands
1651 | output
1652 | global_let
1653 | split'''
1654
1655 # Utility function used by both invocations of splitting - explicit
1656 # 'split' keyword and split() function inside "let {{ }};" blocks.
1657 def split(self, sec, write=False):
1658 assert(sec != 'header' and "header cannot be split")
1659
1660 f = self.get_file(sec)
1661 self.splits[f] += 1
1662 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1663 if write:
1664 f.write(s)
1665 else:
1666 return s
1667
1668 # split output file to reduce compilation time
1669 def p_split(self, t):
1670 'split : SPLIT output_type SEMI'
1671 assert(self.isa_name and "'split' not allowed before namespace decl")
1672
1673 self.split(t[2], True)
1674
1675 def p_output_type(self, t):
1676 '''output_type : DECODER
1677 | HEADER
1678 | EXEC'''
1679 t[0] = t[1]
1680
1681 # ISA name declaration looks like "namespace <foo>;"
1682 def p_name_decl(self, t):
1683 'name_decl : NAMESPACE ID SEMI'
1684 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1685 self.isa_name = t[2]
1686 self.namespace = t[2] + 'Inst'
1687
1688 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1689 # directly to the appropriate output section.
1690
1691 # Massage output block by substituting in template definitions and
1692 # bit operators. We handle '%'s embedded in the string that don't
1693 # indicate template substitutions (or CPU-specific symbols, which
1694 # get handled in GenCode) by doubling them first so that the
1695 # format operation will reduce them back to single '%'s.
1696 def process_output(self, s):
1697 s = self.protectNonSubstPercents(s)
1698 # protects cpu-specific symbols too
1699 s = self.protectCpuSymbols(s)
1700 return substBitOps(s % self.templateMap)
1701
1702 def p_output(self, t):
1703 'output : OUTPUT output_type CODELIT SEMI'
1704 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1705 GenCode(self, **kwargs).emit()
1706
1707 # global let blocks 'let {{...}}' (Python code blocks) are
1708 # executed directly when seen. Note that these execute in a
1709 # special variable context 'exportContext' to prevent the code
1710 # from polluting this script's namespace.
1711 def p_global_let(self, t):
1712 'global_let : LET CODELIT SEMI'
1713 def _split(sec):
1714 return self.split(sec)
1715 self.updateExportContext()
1716 self.exportContext["header_output"] = ''
1717 self.exportContext["decoder_output"] = ''
1718 self.exportContext["exec_output"] = ''
1719 self.exportContext["decode_block"] = ''
1720 self.exportContext["split"] = _split
1721 split_setup = '''
1722 def wrap(func):
1723 def split(sec):
1724 globals()[sec + '_output'] += func(sec)
1725 return split
1726 split = wrap(split)
1727 del wrap
1728 '''
1729 # This tricky setup (immediately above) allows us to just write
1730 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1731 # will automatically be added to the exec_output variable. The inner
1732 # Python execution environment doesn't know about the split points,
1733 # so we carefully inject and wrap a closure that can retrieve the
1734 # next split's #define from the parser and add it to the current
1735 # emission-in-progress.
1736 try:
1737 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1738 except Exception, exc:
1739 if debug:
1740 raise
1741 error(t.lineno(1), 'In global let block: %s' % exc)
1742 GenCode(self,
1743 header_output=self.exportContext["header_output"],
1744 decoder_output=self.exportContext["decoder_output"],
1745 exec_output=self.exportContext["exec_output"],
1746 decode_block=self.exportContext["decode_block"]).emit()
1747
1748 # Define the mapping from operand type extensions to C++ types and
1749 # bit widths (stored in operandTypeMap).
1750 def p_def_operand_types(self, t):
1751 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1752 try:
1753 self.operandTypeMap = eval('{' + t[3] + '}')
1754 except Exception, exc:
1755 if debug:
1756 raise
1757 error(t.lineno(1),
1758 'In def operand_types: %s' % exc)
1759
1760 # Define the mapping from operand names to operand classes and
1761 # other traits. Stored in operandNameMap.
1762 def p_def_operands(self, t):
1763 'def_operands : DEF OPERANDS CODELIT SEMI'
1764 if not hasattr(self, 'operandTypeMap'):
1765 error(t.lineno(1),
1766 'error: operand types must be defined before operands')
1767 try:
1768 user_dict = eval('{' + t[3] + '}', self.exportContext)
1769 except Exception, exc:
1770 if debug:
1771 raise
1772 error(t.lineno(1), 'In def operands: %s' % exc)
1773 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1774
1775 # A bitfield definition looks like:
1776 # 'def [signed] bitfield <ID> [<first>:<last>]'
1777 # This generates a preprocessor macro in the output file.
1778 def p_def_bitfield_0(self, t):
1779 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1780 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1781 if (t[2] == 'signed'):
1782 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1783 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1784 GenCode(self, header_output=hash_define).emit()
1785
1786 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1787 def p_def_bitfield_1(self, t):
1788 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1789 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1790 if (t[2] == 'signed'):
1791 expr = 'sext<%d>(%s)' % (1, expr)
1792 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1793 GenCode(self, header_output=hash_define).emit()
1794
1795 # alternate form for structure member: 'def bitfield <ID> <ID>'
1796 def p_def_bitfield_struct(self, t):
1797 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1798 if (t[2] != ''):
1799 error(t.lineno(1),
1800 'error: structure bitfields are always unsigned.')
1801 expr = 'machInst.%s' % t[5]
1802 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1803 GenCode(self, header_output=hash_define).emit()
1804
1805 def p_id_with_dot_0(self, t):
1806 'id_with_dot : ID'
1807 t[0] = t[1]
1808
1809 def p_id_with_dot_1(self, t):
1810 'id_with_dot : ID DOT id_with_dot'
1811 t[0] = t[1] + t[2] + t[3]
1812
1813 def p_opt_signed_0(self, t):
1814 'opt_signed : SIGNED'
1815 t[0] = t[1]
1816
1817 def p_opt_signed_1(self, t):
1818 'opt_signed : empty'
1819 t[0] = ''
1820
1821 def p_def_template(self, t):
1822 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1823 if t[3] in self.templateMap:
1824 print "warning: template %s already defined" % t[3]
1825 self.templateMap[t[3]] = Template(self, t[4])
1826
1827 # An instruction format definition looks like
1828 # "def format <fmt>(<params>) {{...}};"
1829 def p_def_format(self, t):
1830 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1831 (id, params, code) = (t[3], t[5], t[7])
1832 self.defFormat(id, params, code, t.lexer.lineno)
1833
1834 # The formal parameter list for an instruction format is a
1835 # possibly empty list of comma-separated parameters. Positional
1836 # (standard, non-keyword) parameters must come first, followed by
1837 # keyword parameters, followed by a '*foo' parameter that gets
1838 # excess positional arguments (as in Python). Each of these three
1839 # parameter categories is optional.
1840 #
1841 # Note that we do not support the '**foo' parameter for collecting
1842 # otherwise undefined keyword args. Otherwise the parameter list
1843 # is (I believe) identical to what is supported in Python.
1844 #
1845 # The param list generates a tuple, where the first element is a
1846 # list of the positional params and the second element is a dict
1847 # containing the keyword params.
1848 def p_param_list_0(self, t):
1849 'param_list : positional_param_list COMMA nonpositional_param_list'
1850 t[0] = t[1] + t[3]
1851
1852 def p_param_list_1(self, t):
1853 '''param_list : positional_param_list
1854 | nonpositional_param_list'''
1855 t[0] = t[1]
1856
1857 def p_positional_param_list_0(self, t):
1858 'positional_param_list : empty'
1859 t[0] = []
1860
1861 def p_positional_param_list_1(self, t):
1862 'positional_param_list : ID'
1863 t[0] = [t[1]]
1864
1865 def p_positional_param_list_2(self, t):
1866 'positional_param_list : positional_param_list COMMA ID'
1867 t[0] = t[1] + [t[3]]
1868
1869 def p_nonpositional_param_list_0(self, t):
1870 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1871 t[0] = t[1] + t[3]
1872
1873 def p_nonpositional_param_list_1(self, t):
1874 '''nonpositional_param_list : keyword_param_list
1875 | excess_args_param'''
1876 t[0] = t[1]
1877
1878 def p_keyword_param_list_0(self, t):
1879 'keyword_param_list : keyword_param'
1880 t[0] = [t[1]]
1881
1882 def p_keyword_param_list_1(self, t):
1883 'keyword_param_list : keyword_param_list COMMA keyword_param'
1884 t[0] = t[1] + [t[3]]
1885
1886 def p_keyword_param(self, t):
1887 'keyword_param : ID EQUALS expr'
1888 t[0] = t[1] + ' = ' + t[3].__repr__()
1889
1890 def p_excess_args_param(self, t):
1891 'excess_args_param : ASTERISK ID'
1892 # Just concatenate them: '*ID'. Wrap in list to be consistent
1893 # with positional_param_list and keyword_param_list.
1894 t[0] = [t[1] + t[2]]
1895
1896 # End of format definition-related rules.
1897 ##############
1898
1899 #
1900 # A decode block looks like:
1901 # decode <field1> [, <field2>]* [default <inst>] { ... }
1902 #
1903 def p_top_level_decode_block(self, t):
1904 'top_level_decode_block : decode_block'
1905 codeObj = t[1]
1906 codeObj.wrap_decode_block('''
1907 StaticInstPtr
1908 %(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1909 {
1910 using namespace %(namespace)s;
1911 ''' % self, '}')
1912
1913 codeObj.emit()
1914
1915 def p_decode_block(self, t):
1916 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1917 default_defaults = self.defaultStack.pop()
1918 codeObj = t[5]
1919 # use the "default defaults" only if there was no explicit
1920 # default statement in decode_stmt_list
1921 if not codeObj.has_decode_default:
1922 codeObj += default_defaults
1923 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1924 t[0] = codeObj
1925
1926 # The opt_default statement serves only to push the "default
1927 # defaults" onto defaultStack. This value will be used by nested
1928 # decode blocks, and used and popped off when the current
1929 # decode_block is processed (in p_decode_block() above).
1930 def p_opt_default_0(self, t):
1931 'opt_default : empty'
1932 # no default specified: reuse the one currently at the top of
1933 # the stack
1934 self.defaultStack.push(self.defaultStack.top())
1935 # no meaningful value returned
1936 t[0] = None
1937
1938 def p_opt_default_1(self, t):
1939 'opt_default : DEFAULT inst'
1940 # push the new default
1941 codeObj = t[2]
1942 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1943 self.defaultStack.push(codeObj)
1944 # no meaningful value returned
1945 t[0] = None
1946
1947 def p_decode_stmt_list_0(self, t):
1948 'decode_stmt_list : decode_stmt'
1949 t[0] = t[1]
1950
1951 def p_decode_stmt_list_1(self, t):
1952 'decode_stmt_list : decode_stmt decode_stmt_list'
1953 if (t[1].has_decode_default and t[2].has_decode_default):
1954 error(t.lineno(1), 'Two default cases in decode block')
1955 t[0] = t[1] + t[2]
1956
1957 #
1958 # Decode statement rules
1959 #
1960 # There are four types of statements allowed in a decode block:
1961 # 1. Format blocks 'format <foo> { ... }'
1962 # 2. Nested decode blocks
1963 # 3. Instruction definitions.
1964 # 4. C preprocessor directives.
1965
1966
1967 # Preprocessor directives found in a decode statement list are
1968 # passed through to the output, replicated to all of the output
1969 # code streams. This works well for ifdefs, so we can ifdef out
1970 # both the declarations and the decode cases generated by an
1971 # instruction definition. Handling them as part of the grammar
1972 # makes it easy to keep them in the right place with respect to
1973 # the code generated by the other statements.
1974 def p_decode_stmt_cpp(self, t):
1975 'decode_stmt : CPPDIRECTIVE'
1976 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1977
1978 # A format block 'format <foo> { ... }' sets the default
1979 # instruction format used to handle instruction definitions inside
1980 # the block. This format can be overridden by using an explicit
1981 # format on the instruction definition or with a nested format
1982 # block.
1983 def p_decode_stmt_format(self, t):
1984 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1985 # The format will be pushed on the stack when 'push_format_id'
1986 # is processed (see below). Once the parser has recognized
1987 # the full production (though the right brace), we're done
1988 # with the format, so now we can pop it.
1989 self.formatStack.pop()
1990 t[0] = t[4]
1991
1992 # This rule exists so we can set the current format (& push the
1993 # stack) when we recognize the format name part of the format
1994 # block.
1995 def p_push_format_id(self, t):
1996 'push_format_id : ID'
1997 try:
1998 self.formatStack.push(self.formatMap[t[1]])
1999 t[0] = ('', '// format %s' % t[1])
2000 except KeyError:
2001 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2002
2003 # Nested decode block: if the value of the current field matches
2004 # the specified constant(s), do a nested decode on some other field.
2005 def p_decode_stmt_decode(self, t):
2006 'decode_stmt : case_list COLON decode_block'
2007 case_list = t[1]
2008 codeObj = t[3]
2009 # just wrap the decoding code from the block as a case in the
2010 # outer switch statement.
2011 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2012 codeObj.has_decode_default = (case_list == ['default:'])
2013 t[0] = codeObj
2014
2015 # Instruction definition (finally!).
2016 def p_decode_stmt_inst(self, t):
2017 'decode_stmt : case_list COLON inst SEMI'
2018 case_list = t[1]
2019 codeObj = t[3]
2020 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2021 codeObj.has_decode_default = (case_list == ['default:'])
2022 t[0] = codeObj
2023
2024 # The constant list for a decode case label must be non-empty, and must
2025 # either be the keyword 'default', or made up of one or more
2026 # comma-separated integer literals or strings which evaluate to
2027 # constants when compiled as C++.
2028 def p_case_list_0(self, t):
2029 'case_list : DEFAULT'
2030 t[0] = ['default:']
2031
2032 def prep_int_lit_case_label(self, lit):
2033 if lit >= 2**32:
2034 return 'case ULL(%#x): ' % lit
2035 else:
2036 return 'case %#x: ' % lit
2037
2038 def prep_str_lit_case_label(self, lit):
2039 return 'case %s: ' % lit
2040
2041 def p_case_list_1(self, t):
2042 'case_list : INTLIT'
2043 t[0] = [self.prep_int_lit_case_label(t[1])]
2044
2045 def p_case_list_2(self, t):
2046 'case_list : STRLIT'
2047 t[0] = [self.prep_str_lit_case_label(t[1])]
2048
2049 def p_case_list_3(self, t):
2050 'case_list : case_list COMMA INTLIT'
2051 t[0] = t[1]
2052 t[0].append(self.prep_int_lit_case_label(t[3]))
2053
2054 def p_case_list_4(self, t):
2055 'case_list : case_list COMMA STRLIT'
2056 t[0] = t[1]
2057 t[0].append(self.prep_str_lit_case_label(t[3]))
2058
2059 # Define an instruction using the current instruction format
2060 # (specified by an enclosing format block).
2061 # "<mnemonic>(<args>)"
2062 def p_inst_0(self, t):
2063 'inst : ID LPAREN arg_list RPAREN'
2064 # Pass the ID and arg list to the current format class to deal with.
2065 currentFormat = self.formatStack.top()
2066 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2067 args = ','.join(map(str, t[3]))
2068 args = re.sub('(?m)^', '//', args)
2069 args = re.sub('^//', '', args)
2070 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2071 codeObj.prepend_all(comment)
2072 t[0] = codeObj
2073
2074 # Define an instruction using an explicitly specified format:
2075 # "<fmt>::<mnemonic>(<args>)"
2076 def p_inst_1(self, t):
2077 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2078 try:
2079 format = self.formatMap[t[1]]
2080 except KeyError:
2081 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2082
2083 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2084 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2085 codeObj.prepend_all(comment)
2086 t[0] = codeObj
2087
2088 # The arg list generates a tuple, where the first element is a
2089 # list of the positional args and the second element is a dict
2090 # containing the keyword args.
2091 def p_arg_list_0(self, t):
2092 'arg_list : positional_arg_list COMMA keyword_arg_list'
2093 t[0] = ( t[1], t[3] )
2094
2095 def p_arg_list_1(self, t):
2096 'arg_list : positional_arg_list'
2097 t[0] = ( t[1], {} )
2098
2099 def p_arg_list_2(self, t):
2100 'arg_list : keyword_arg_list'
2101 t[0] = ( [], t[1] )
2102
2103 def p_positional_arg_list_0(self, t):
2104 'positional_arg_list : empty'
2105 t[0] = []
2106
2107 def p_positional_arg_list_1(self, t):
2108 'positional_arg_list : expr'
2109 t[0] = [t[1]]
2110
2111 def p_positional_arg_list_2(self, t):
2112 'positional_arg_list : positional_arg_list COMMA expr'
2113 t[0] = t[1] + [t[3]]
2114
2115 def p_keyword_arg_list_0(self, t):
2116 'keyword_arg_list : keyword_arg'
2117 t[0] = t[1]
2118
2119 def p_keyword_arg_list_1(self, t):
2120 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2121 t[0] = t[1]
2122 t[0].update(t[3])
2123
2124 def p_keyword_arg(self, t):
2125 'keyword_arg : ID EQUALS expr'
2126 t[0] = { t[1] : t[3] }
2127
2128 #
2129 # Basic expressions. These constitute the argument values of
2130 # "function calls" (i.e. instruction definitions in the decode
2131 # block) and default values for formal parameters of format
2132 # functions.
2133 #
2134 # Right now, these are either strings, integers, or (recursively)
2135 # lists of exprs (using Python square-bracket list syntax). Note
2136 # that bare identifiers are trated as string constants here (since
2137 # there isn't really a variable namespace to refer to).
2138 #
2139 def p_expr_0(self, t):
2140 '''expr : ID
2141 | INTLIT
2142 | STRLIT
2143 | CODELIT'''
2144 t[0] = t[1]
2145
2146 def p_expr_1(self, t):
2147 '''expr : LBRACKET list_expr RBRACKET'''
2148 t[0] = t[2]
2149
2150 def p_list_expr_0(self, t):
2151 'list_expr : expr'
2152 t[0] = [t[1]]
2153
2154 def p_list_expr_1(self, t):
2155 'list_expr : list_expr COMMA expr'
2156 t[0] = t[1] + [t[3]]
2157
2158 def p_list_expr_2(self, t):
2159 'list_expr : empty'
2160 t[0] = []
2161
2162 #
2163 # Empty production... use in other rules for readability.
2164 #
2165 def p_empty(self, t):
2166 'empty :'
2167 pass
2168
2169 # Parse error handler. Note that the argument here is the
2170 # offending *token*, not a grammar symbol (hence the need to use
2171 # t.value)
2172 def p_error(self, t):
2173 if t:
2174 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2175 else:
2176 error("unknown syntax error")
2177
2178 # END OF GRAMMAR RULES
2179
2180 def updateExportContext(self):
2181
2182 # create a continuation that allows us to grab the current parser
2183 def wrapInstObjParams(*args):
2184 return InstObjParams(self, *args)
2185 self.exportContext['InstObjParams'] = wrapInstObjParams
2186 self.exportContext.update(self.templateMap)
2187
2188 def defFormat(self, id, params, code, lineno):
2189 '''Define a new format'''
2190
2191 # make sure we haven't already defined this one
2192 if id in self.formatMap:
2193 error(lineno, 'format %s redefined.' % id)
2194
2195 # create new object and store in global map
2196 self.formatMap[id] = Format(id, params, code)
2197
2198 def expandCpuSymbolsToDict(self, template):
2199 '''Expand template with CPU-specific references into a
2200 dictionary with an entry for each CPU model name. The entry
2201 key is the model name and the corresponding value is the
2202 template with the CPU-specific refs substituted for that
2203 model.'''
2204
2205 # Protect '%'s that don't go with CPU-specific terms
2206 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2207 result = {}
2208 for cpu in self.cpuModels:
2209 result[cpu.name] = t % cpu.strings
2210 return result
2211
2212 def expandCpuSymbolsToString(self, template):
2213 '''*If* the template has CPU-specific references, return a
2214 single string containing a copy of the template for each CPU
2215 model with the corresponding values substituted in. If the
2216 template has no CPU-specific references, it is returned
2217 unmodified.'''
2218
2219 if template.find('%(CPU_') != -1:
2220 return reduce(lambda x,y: x+y,
2221 self.expandCpuSymbolsToDict(template).values())
2222 else:
2223 return template
2224
2225 def protectCpuSymbols(self, template):
2226 '''Protect CPU-specific references by doubling the
2227 corresponding '%'s (in preparation for substituting a different
2228 set of references into the template).'''
2229
2230 return re.sub(r'%(?=\(CPU_)', '%%', template)
2231
2232 def protectNonSubstPercents(self, s):
2233 '''Protect any non-dict-substitution '%'s in a format string
2234 (i.e. those not followed by '(')'''
2235
2236 return re.sub(r'%(?!\()', '%%', s)
2237
2238 def buildOperandNameMap(self, user_dict, lineno):
2239 operand_name = {}
2240 for op_name, val in user_dict.iteritems():
2241
2242 # Check if extra attributes have been specified.
2243 if len(val) > 9:
2244 error(lineno, 'error: too many attributes for operand "%s"' %
2245 base_cls_name)
2246
2247 # Pad val with None in case optional args are missing
2248 val += (None, None, None, None)
2249 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2250 read_code, write_code, read_predicate, write_predicate = val[:9]
2251
2252 # Canonical flag structure is a triple of lists, where each list
2253 # indicates the set of flags implied by this operand always, when
2254 # used as a source, and when used as a dest, respectively.
2255 # For simplicity this can be initialized using a variety of fairly
2256 # obvious shortcuts; we convert these to canonical form here.
2257 if not flags:
2258 # no flags specified (e.g., 'None')
2259 flags = ( [], [], [] )
2260 elif isinstance(flags, str):
2261 # a single flag: assumed to be unconditional
2262 flags = ( [ flags ], [], [] )
2263 elif isinstance(flags, list):
2264 # a list of flags: also assumed to be unconditional
2265 flags = ( flags, [], [] )
2266 elif isinstance(flags, tuple):
2267 # it's a tuple: it should be a triple,
2268 # but each item could be a single string or a list
2269 (uncond_flags, src_flags, dest_flags) = flags
2270 flags = (makeList(uncond_flags),
2271 makeList(src_flags), makeList(dest_flags))
2272
2273 # Accumulate attributes of new operand class in tmp_dict
2274 tmp_dict = {}
2275 attrList = ['reg_spec', 'flags', 'sort_pri',
2276 'read_code', 'write_code',
2277 'read_predicate', 'write_predicate']
2278 if dflt_ext:
2279 dflt_ctype = self.operandTypeMap[dflt_ext]
2280 attrList.extend(['dflt_ctype', 'dflt_ext'])
2281 for attr in attrList:
2282 tmp_dict[attr] = eval(attr)
2283 tmp_dict['base_name'] = op_name
2284
2285 # New class name will be e.g. "IntReg_Ra"
2286 cls_name = base_cls_name + '_' + op_name
2287 # Evaluate string arg to get class object. Note that the
2288 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2289 # have to append "Operand".
2290 try:
2291 base_cls = eval(base_cls_name + 'Operand')
2292 except NameError:
2293 error(lineno,
2294 'error: unknown operand base class "%s"' % base_cls_name)
2295 # The following statement creates a new class called
2296 # <cls_name> as a subclass of <base_cls> with the attributes
2297 # in tmp_dict, just as if we evaluated a class declaration.
2298 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2299
2300 self.operandNameMap = operand_name
2301
2302 # Define operand variables.
2303 operands = user_dict.keys()
2304 extensions = self.operandTypeMap.keys()
2305
2306 operandsREString = r'''
2307 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2308 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2309 (?!\w) # neg. lookahead assertion: prevent partial matches
2310 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2311
2312 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2313
2314 # Same as operandsREString, but extension is mandatory, and only two
2315 # groups are returned (base and ext, not full name as above).
2316 # Used for subtituting '_' for '.' to make C++ identifiers.
2317 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2318 % (string.join(operands, '|'), string.join(extensions, '|'))
2319
2320 self.operandsWithExtRE = \
2321 re.compile(operandsWithExtREString, re.MULTILINE)
2322
2323 def substMungedOpNames(self, code):
2324 '''Munge operand names in code string to make legal C++
2325 variable names. This means getting rid of the type extension
2326 if any. Will match base_name attribute of Operand object.)'''
2327 return self.operandsWithExtRE.sub(r'\1', code)
2328
2329 def mungeSnippet(self, s):
2330 '''Fix up code snippets for final substitution in templates.'''
2331 if isinstance(s, str):
2332 return self.substMungedOpNames(substBitOps(s))
2333 else:
2334 return s
2335
2336 def open(self, name, bare=False):
2337 '''Open the output file for writing and include scary warning.'''
2338 filename = os.path.join(self.output_dir, name)
2339 f = open(filename, 'w')
2340 if f:
2341 if not bare:
2342 f.write(ISAParser.scaremonger_template % self)
2343 return f
2344
2345 def update(self, file, contents):
2346 '''Update the output file only. Scons should handle the case when
2347 the new contents are unchanged using its built-in hash feature.'''
2348 f = self.open(file)
2349 f.write(contents)
2350 f.close()
2351
2352 # This regular expression matches '##include' directives
2353 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2354 re.MULTILINE)
2355
2356 def replace_include(self, matchobj, dirname):
2357 """Function to replace a matched '##include' directive with the
2358 contents of the specified file (with nested ##includes
2359 replaced recursively). 'matchobj' is an re match object
2360 (from a match of includeRE) and 'dirname' is the directory
2361 relative to which the file path should be resolved."""
2362
2363 fname = matchobj.group('filename')
2364 full_fname = os.path.normpath(os.path.join(dirname, fname))
2365 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2366 (full_fname, self.read_and_flatten(full_fname))
2367 return contents
2368
2369 def read_and_flatten(self, filename):
2370 """Read a file and recursively flatten nested '##include' files."""
2371
2372 current_dir = os.path.dirname(filename)
2373 try:
2374 contents = open(filename).read()
2375 except IOError:
2376 error('Error including file "%s"' % filename)
2377
2378 self.fileNameStack.push(LineTracker(filename))
2379
2380 # Find any includes and include them
2381 def replace(matchobj):
2382 return self.replace_include(matchobj, current_dir)
2383 contents = self.includeRE.sub(replace, contents)
2384
2385 self.fileNameStack.pop()
2386 return contents
2387
2388 AlreadyGenerated = {}
2389
2390 def _parse_isa_desc(self, isa_desc_file):
2391 '''Read in and parse the ISA description.'''
2392
2393 # The build system can end up running the ISA parser twice: once to
2394 # finalize the build dependencies, and then to actually generate
2395 # the files it expects (in src/arch/$ARCH/generated). This code
2396 # doesn't do anything different either time, however; the SCons
2397 # invocations just expect different things. Since this code runs
2398 # within SCons, we can just remember that we've already run and
2399 # not perform a completely unnecessary run, since the ISA parser's
2400 # effect is idempotent.
2401 if isa_desc_file in ISAParser.AlreadyGenerated:
2402 return
2403
2404 # grab the last three path components of isa_desc_file
2405 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2406
2407 # Read file and (recursively) all included files into a string.
2408 # PLY requires that the input be in a single string so we have to
2409 # do this up front.
2410 isa_desc = self.read_and_flatten(isa_desc_file)
2411
2412 # Initialize lineno tracker
2413 self.lex.lineno = LineTracker(isa_desc_file)
2414
2415 # Parse.
2416 self.parse_string(isa_desc)
2417
2418 ISAParser.AlreadyGenerated[isa_desc_file] = None
2419
2420 def parse_isa_desc(self, *args, **kwargs):
2421 try:
2422 self._parse_isa_desc(*args, **kwargs)
2423 except ISAParserError, e:
2424 print backtrace(self.fileNameStack)
2425 print "At %s:" % e.lineno
2426 print e
2427 sys.exit(1)
2428
2429 # Called as script: get args from command line.
2430 # Args are: <isa desc file> <output dir>
2431 if __name__ == '__main__':
2432 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])