2745004ee1fbc988804475944116761aaf25e8df
[gem5.git] / src / arch / micro_asm.py
1 # Copyright (c) 2003-2005 The Regents of The University of Michigan
2 # All rights reserved.
3 #
4 # Redistribution and use in source and binary forms, with or without
5 # modification, are permitted provided that the following conditions are
6 # met: redistributions of source code must retain the above copyright
7 # notice, this list of conditions and the following disclaimer;
8 # redistributions in binary form must reproduce the above copyright
9 # notice, this list of conditions and the following disclaimer in the
10 # documentation and/or other materials provided with the distribution;
11 # neither the name of the copyright holders nor the names of its
12 # contributors may be used to endorse or promote products derived from
13 # this software without specific prior written permission.
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 from __future__ import print_function
28
29 import os
30 import sys
31 import re
32 import string
33 import traceback
34 # get type names
35 from types import *
36
37 from ply import lex
38 from ply import yacc
39
40 ##########################################################################
41 #
42 # Base classes for use outside of the assembler
43 #
44 ##########################################################################
45
46 class Micro_Container(object):
47 def __init__(self, name):
48 self.microops = []
49 self.name = name
50 self.directives = {}
51 self.micro_classes = {}
52 self.labels = {}
53
54 def add_microop(self, mnemonic, microop):
55 self.microops.append(microop)
56
57 def __str__(self):
58 string = "%s:\n" % self.name
59 for microop in self.microops:
60 string += " %s\n" % microop
61 return string
62
63 class Combinational_Macroop(Micro_Container):
64 pass
65
66 class Rom_Macroop(object):
67 def __init__(self, name, target):
68 self.name = name
69 self.target = target
70
71 def __str__(self):
72 return "%s: %s\n" % (self.name, self.target)
73
74 class Rom(Micro_Container):
75 def __init__(self, name):
76 super(Rom, self).__init__(name)
77 self.externs = {}
78
79 ##########################################################################
80 #
81 # Support classes
82 #
83 ##########################################################################
84
85 class Label(object):
86 def __init__(self):
87 self.extern = False
88 self.name = ""
89
90 class Block(object):
91 def __init__(self):
92 self.statements = []
93
94 class Statement(object):
95 def __init__(self):
96 self.is_microop = False
97 self.is_directive = False
98 self.params = ""
99
100 class Microop(Statement):
101 def __init__(self):
102 super(Microop, self).__init__()
103 self.mnemonic = ""
104 self.labels = []
105 self.is_microop = True
106
107 class Directive(Statement):
108 def __init__(self):
109 super(Directive, self).__init__()
110 self.name = ""
111 self.is_directive = True
112
113 ##########################################################################
114 #
115 # Functions that handle common tasks
116 #
117 ##########################################################################
118
119 def print_error(message):
120 print()
121 print("*** %s" % message)
122 print()
123
124 def handle_statement(parser, container, statement):
125 if statement.is_microop:
126 if statement.mnemonic not in parser.microops.keys():
127 raise Exception, "Unrecognized mnemonic: %s" % statement.mnemonic
128 parser.symbols["__microopClassFromInsideTheAssembler"] = \
129 parser.microops[statement.mnemonic]
130 try:
131 microop = eval('__microopClassFromInsideTheAssembler(%s)' %
132 statement.params, {}, parser.symbols)
133 except:
134 print_error("Error creating microop object with mnemonic %s." % \
135 statement.mnemonic)
136 raise
137 try:
138 for label in statement.labels:
139 container.labels[label.text] = microop
140 if label.is_extern:
141 container.externs[label.text] = microop
142 container.add_microop(statement.mnemonic, microop)
143 except:
144 print_error("Error adding microop.")
145 raise
146 elif statement.is_directive:
147 if statement.name not in container.directives.keys():
148 raise Exception, "Unrecognized directive: %s" % statement.name
149 parser.symbols["__directiveFunctionFromInsideTheAssembler"] = \
150 container.directives[statement.name]
151 try:
152 eval('__directiveFunctionFromInsideTheAssembler(%s)' %
153 statement.params, {}, parser.symbols)
154 except:
155 print_error("Error executing directive.")
156 print(container.directives)
157 raise
158 else:
159 raise Exception, "Didn't recognize the type of statement", statement
160
161 ##########################################################################
162 #
163 # Lexer specification
164 #
165 ##########################################################################
166
167 # Error handler. Just call exit. Output formatted to work under
168 # Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
169 # prints a Python stack backtrace too (can be handy when trying to
170 # debug the parser itself).
171 def error(lineno, string, print_traceback = False):
172 # Print a Python stack backtrace if requested.
173 if (print_traceback):
174 traceback.print_exc()
175 if lineno != 0:
176 line_str = "%d:" % lineno
177 else:
178 line_str = ""
179 sys.exit("%s %s" % (line_str, string))
180
181 reserved = ('DEF', 'MACROOP', 'ROM', 'EXTERN')
182
183 tokens = reserved + (
184 # identifier
185 'ID',
186 # arguments for microops and directives
187 'PARAMS',
188
189 'LPAREN', 'RPAREN',
190 'LBRACE', 'RBRACE',
191 'COLON', 'SEMI', 'DOT',
192 'NEWLINE'
193 )
194
195 # New lines are ignored at the top level, but they end statements in the
196 # assembler
197 states = (
198 ('asm', 'exclusive'),
199 ('params', 'exclusive'),
200 )
201
202 reserved_map = { }
203 for r in reserved:
204 reserved_map[r.lower()] = r
205
206 # Ignore comments
207 def t_ANY_COMMENT(t):
208 r'\#[^\n]*(?=\n)'
209
210 def t_ANY_MULTILINECOMMENT(t):
211 r'/\*([^/]|((?<!\*)/))*\*/'
212
213 # A colon marks the end of a label. It should follow an ID which will
214 # put the lexer in the "params" state. Seeing the colon will put it back
215 # in the "asm" state since it knows it saw a label and not a mnemonic.
216 def t_params_COLON(t):
217 r':'
218 t.lexer.begin('asm')
219 return t
220
221 # Parameters are a string of text which don't contain an unescaped statement
222 # statement terminator, ie a newline or semi colon.
223 def t_params_PARAMS(t):
224 r'([^\n;\\]|(\\[\n;\\]))+'
225 t.lineno += t.value.count('\n')
226 unescapeParamsRE = re.compile(r'(\\[\n;\\])')
227 def unescapeParams(mo):
228 val = mo.group(0)
229 return val[1]
230 t.value = unescapeParamsRE.sub(unescapeParams, t.value)
231 t.lexer.begin('asm')
232 return t
233
234 # An "ID" in the micro assembler is either a label, directive, or mnemonic
235 # If it's either a directive or a mnemonic, it will be optionally followed by
236 # parameters. If it's a label, the following colon will make the lexer stop
237 # looking for parameters.
238 def t_asm_ID(t):
239 r'[A-Za-z_]\w*'
240 t.type = reserved_map.get(t.value, 'ID')
241 # If the ID is really "extern", we shouldn't start looking for parameters
242 # yet. The real ID, the label itself, is coming up.
243 if t.type != 'EXTERN':
244 t.lexer.begin('params')
245 return t
246
247 # If there is a label and you're -not- in the assembler (which would be caught
248 # above), don't start looking for parameters.
249 def t_ANY_ID(t):
250 r'[A-Za-z_]\w*'
251 t.type = reserved_map.get(t.value, 'ID')
252 return t
253
254 # Braces enter and exit micro assembly
255 def t_INITIAL_LBRACE(t):
256 r'\{'
257 t.lexer.begin('asm')
258 return t
259
260 def t_asm_RBRACE(t):
261 r'\}'
262 t.lexer.begin('INITIAL')
263 return t
264
265 # At the top level, keep track of newlines only for line counting.
266 def t_INITIAL_NEWLINE(t):
267 r'\n+'
268 t.lineno += t.value.count('\n')
269
270 # In the micro assembler, do line counting but also return a token. The
271 # token is needed by the parser to detect the end of a statement.
272 def t_asm_NEWLINE(t):
273 r'\n+'
274 t.lineno += t.value.count('\n')
275 return t
276
277 # A newline or semi colon when looking for params signals that the statement
278 # is over and the lexer should go back to looking for regular assembly.
279 def t_params_NEWLINE(t):
280 r'\n+'
281 t.lineno += t.value.count('\n')
282 t.lexer.begin('asm')
283 return t
284
285 def t_params_SEMI(t):
286 r';'
287 t.lexer.begin('asm')
288 return t
289
290 # Basic regular expressions to pick out simple tokens
291 t_ANY_LPAREN = r'\('
292 t_ANY_RPAREN = r'\)'
293 t_ANY_SEMI = r';'
294 t_ANY_DOT = r'\.'
295
296 t_ANY_ignore = ' \t\x0c'
297
298 def t_ANY_error(t):
299 error(t.lineno, "illegal character '%s'" % t.value[0])
300 t.skip(1)
301
302 ##########################################################################
303 #
304 # Parser specification
305 #
306 ##########################################################################
307
308 # Start symbol for a file which may have more than one macroop or rom
309 # specification.
310 def p_file(t):
311 'file : opt_rom_or_macros'
312
313 def p_opt_rom_or_macros_0(t):
314 'opt_rom_or_macros : '
315
316 def p_opt_rom_or_macros_1(t):
317 'opt_rom_or_macros : rom_or_macros'
318
319 def p_rom_or_macros_0(t):
320 'rom_or_macros : rom_or_macro'
321
322 def p_rom_or_macros_1(t):
323 'rom_or_macros : rom_or_macros rom_or_macro'
324
325 def p_rom_or_macro_0(t):
326 '''rom_or_macro : rom_block
327 | macroop_def'''
328
329 # Defines a section of microcode that should go in the current ROM
330 def p_rom_block(t):
331 'rom_block : DEF ROM block SEMI'
332 if not t.parser.rom:
333 print_error("Rom block found, but no Rom object specified.")
334 raise TypeError, "Rom block found, but no Rom object was specified."
335 for statement in t[3].statements:
336 handle_statement(t.parser, t.parser.rom, statement)
337 t[0] = t.parser.rom
338
339 # Defines a macroop that jumps to an external label in the ROM
340 def p_macroop_def_0(t):
341 'macroop_def : DEF MACROOP ID LPAREN ID RPAREN SEMI'
342 if not t.parser.rom_macroop_type:
343 print_error("ROM based macroop found, but no ROM macroop class was specified.")
344 raise TypeError, "ROM based macroop found, but no ROM macroop class was specified."
345 macroop = t.parser.rom_macroop_type(t[3], t[5])
346 t.parser.macroops[t[3]] = macroop
347
348
349 # Defines a macroop that is combinationally generated
350 def p_macroop_def_1(t):
351 'macroop_def : DEF MACROOP ID block SEMI'
352 try:
353 curop = t.parser.macro_type(t[3])
354 except TypeError:
355 print_error("Error creating macroop object.")
356 raise
357 for statement in t[4].statements:
358 handle_statement(t.parser, curop, statement)
359 t.parser.macroops[t[3]] = curop
360
361 # A block of statements
362 def p_block(t):
363 'block : LBRACE statements RBRACE'
364 block = Block()
365 block.statements = t[2]
366 t[0] = block
367
368 def p_statements_0(t):
369 'statements : statement'
370 if t[1]:
371 t[0] = [t[1]]
372 else:
373 t[0] = []
374
375 def p_statements_1(t):
376 'statements : statements statement'
377 if t[2]:
378 t[1].append(t[2])
379 t[0] = t[1]
380
381 def p_statement(t):
382 'statement : content_of_statement end_of_statement'
383 t[0] = t[1]
384
385 # A statement can be a microop or an assembler directive
386 def p_content_of_statement_0(t):
387 '''content_of_statement : microop
388 | directive'''
389 t[0] = t[1]
390
391 # Ignore empty statements
392 def p_content_of_statement_1(t):
393 'content_of_statement : '
394 pass
395
396 # Statements are ended by newlines or a semi colon
397 def p_end_of_statement(t):
398 '''end_of_statement : NEWLINE
399 | SEMI'''
400 pass
401
402 # Different flavors of microop to avoid shift/reduce errors
403 def p_microop_0(t):
404 'microop : labels ID'
405 microop = Microop()
406 microop.labels = t[1]
407 microop.mnemonic = t[2]
408 t[0] = microop
409
410 def p_microop_1(t):
411 'microop : ID'
412 microop = Microop()
413 microop.mnemonic = t[1]
414 t[0] = microop
415
416 def p_microop_2(t):
417 'microop : labels ID PARAMS'
418 microop = Microop()
419 microop.labels = t[1]
420 microop.mnemonic = t[2]
421 microop.params = t[3]
422 t[0] = microop
423
424 def p_microop_3(t):
425 'microop : ID PARAMS'
426 microop = Microop()
427 microop.mnemonic = t[1]
428 microop.params = t[2]
429 t[0] = microop
430
431 # Labels in the microcode
432 def p_labels_0(t):
433 'labels : label'
434 t[0] = [t[1]]
435
436 def p_labels_1(t):
437 'labels : labels label'
438 t[1].append(t[2])
439 t[0] = t[1]
440
441 # labels on lines by themselves are attached to the following instruction.
442 def p_labels_2(t):
443 'labels : labels NEWLINE'
444 t[0] = t[1]
445
446 def p_label_0(t):
447 'label : ID COLON'
448 label = Label()
449 label.is_extern = False
450 label.text = t[1]
451 t[0] = label
452
453 def p_label_1(t):
454 'label : EXTERN ID COLON'
455 label = Label()
456 label.is_extern = True
457 label.text = t[2]
458 t[0] = label
459
460 # Directives for the macroop
461 def p_directive_0(t):
462 'directive : DOT ID'
463 directive = Directive()
464 directive.name = t[2]
465 t[0] = directive
466
467 def p_directive_1(t):
468 'directive : DOT ID PARAMS'
469 directive = Directive()
470 directive.name = t[2]
471 directive.params = t[3]
472 t[0] = directive
473
474 # Parse error handler. Note that the argument here is the offending
475 # *token*, not a grammar symbol (hence the need to use t.value)
476 def p_error(t):
477 if t:
478 error(t.lineno, "syntax error at '%s'" % t.value)
479 else:
480 error(0, "unknown syntax error", True)
481
482 class MicroAssembler(object):
483
484 def __init__(self, macro_type, microops,
485 rom = None, rom_macroop_type = None):
486 self.lexer = lex.lex()
487 self.parser = yacc.yacc()
488 self.parser.macro_type = macro_type
489 self.parser.macroops = {}
490 self.parser.microops = microops
491 self.parser.rom = rom
492 self.parser.rom_macroop_type = rom_macroop_type
493 self.parser.symbols = {}
494 self.symbols = self.parser.symbols
495
496 def assemble(self, asm):
497 self.parser.parse(asm, lexer=self.lexer)
498 macroops = self.parser.macroops
499 self.parser.macroops = {}
500 return macroops