Automated merge with ssh://m5sim.org//repo/m5
[gem5.git] / src / arch / mips / isa / decoder.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2007 MIPS Technologies, Inc.
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are
8 // met: redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer;
10 // redistributions in binary form must reproduce the above copyright
11 // notice, this list of conditions and the following disclaimer in the
12 // documentation and/or other materials provided with the distribution;
13 // neither the name of the copyright holders nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Authors: Korey Sewell
30 // Brett Miller
31 // Jaidev Patwardhan
32
33 ////////////////////////////////////////////////////////////////////
34 //
35 // The actual MIPS32 ISA decoder
36 // -----------------------------
37 // The following instructions are specified in the MIPS32 ISA
38 // Specification. Decoding closely follows the style specified
39 // in the MIPS32 ISA specification document starting with Table
40 // A-2 (document available @ http://www.mips.com)
41 //
42 decode OPCODE_HI default Unknown::unknown() {
43 //Table A-2
44 0x0: decode OPCODE_LO {
45 0x0: decode FUNCTION_HI {
46 0x0: decode FUNCTION_LO {
47 0x1: decode MOVCI {
48 format BasicOp {
49 0: movf({{ Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs; }});
50 1: movt({{ Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs; }});
51 }
52 }
53
54 format BasicOp {
55 //Table A-3 Note: "Specific encodings of the rd, rs, and
56 //rt fields are used to distinguish SLL, SSNOP, and EHB
57 //functions
58 0x0: decode RS {
59 0x0: decode RT_RD {
60 0x0: decode SA default Nop::nop() {
61 0x1: ssnop({{;}});
62 0x3: ehb({{;}});
63 }
64 default: sll({{ Rd = Rt.uw << SA; }});
65 }
66 }
67
68 0x2: decode RS_SRL {
69 0x0:decode SRL {
70 0: srl({{ Rd = Rt.uw >> SA; }});
71
72 //Hardcoded assuming 32-bit ISA, probably need parameter here
73 1: rotr({{ Rd = (Rt.uw << (32 - SA)) | (Rt.uw >> SA);}});
74 }
75 }
76
77 0x3: decode RS {
78 0x0: sra({{
79 uint32_t temp = Rt >> SA;
80 if ( (Rt & 0x80000000) > 0 ) {
81 uint32_t mask = 0x80000000;
82 for(int i=0; i < SA; i++) {
83 temp |= mask;
84 mask = mask >> 1;
85 }
86 }
87 Rd = temp;
88 }});
89 }
90
91 0x4: sllv({{ Rd = Rt.uw << Rs<4:0>; }});
92
93 0x6: decode SRLV {
94 0: srlv({{ Rd = Rt.uw >> Rs<4:0>; }});
95
96 //Hardcoded assuming 32-bit ISA, probably need parameter here
97 1: rotrv({{ Rd = (Rt.uw << (32 - Rs<4:0>)) | (Rt.uw >> Rs<4:0>);}});
98 }
99
100 0x7: srav({{
101 int shift_amt = Rs<4:0>;
102
103 uint32_t temp = Rt >> shift_amt;
104
105 if ( (Rt & 0x80000000) > 0 ) {
106 uint32_t mask = 0x80000000;
107 for(int i=0; i < shift_amt; i++) {
108 temp |= mask;
109 mask = mask >> 1;
110 }
111 }
112
113 Rd = temp;
114 }});
115 }
116 }
117
118 0x1: decode FUNCTION_LO {
119 //Table A-3 Note: "Specific encodings of the hint field are
120 //used to distinguish JR from JR.HB and JALR from JALR.HB"
121 format Jump {
122 0x0: decode HINT {
123 0x1: jr_hb({{
124 Config1Reg config1 = Config1;
125 if (config1.ca == 0) {
126 NNPC = Rs;
127 } else {
128 panic("MIPS16e not supported\n");
129 }
130 }}, IsReturn, ClearHazards);
131 default: jr({{
132 Config1Reg config1 = Config1;
133 if (config1.ca == 0) {
134 NNPC = Rs;
135 } else {
136 panic("MIPS16e not supported\n");
137 }
138 }}, IsReturn);
139 }
140
141 0x1: decode HINT {
142 0x1: jalr_hb({{ Rd = NNPC; NNPC = Rs; }}, IsCall
143 , ClearHazards);
144 default: jalr({{ Rd = NNPC; NNPC = Rs; }}, IsCall);
145 }
146 }
147
148 format BasicOp {
149 0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }});
150 0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }});
151 #if FULL_SYSTEM
152 0x4: syscall({{
153 fault = new SystemCallFault();
154 }});
155 #else
156 0x4: syscall({{ xc->syscall(R2); }},
157 IsSerializeAfter, IsNonSpeculative);
158 #endif
159 0x7: sync({{ ; }}, IsMemBarrier);
160 0x5: break({{fault = new BreakpointFault();}});
161 }
162
163 }
164
165 0x2: decode FUNCTION_LO {
166 0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }}, IntMultOp, IsIprAccess);
167 0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }});
168 0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }}, IntMultOp, IsIprAccess);
169 0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }});
170 }
171
172 0x3: decode FUNCTION_LO {
173 format HiLoRdSelValOp {
174 0x0: mult({{ val = Rs.sd * Rt.sd; }}, IntMultOp);
175 0x1: multu({{ val = Rs.ud * Rt.ud; }}, IntMultOp);
176 }
177
178 format HiLoOp {
179 0x2: div({{ if (Rt.sd != 0) {
180 HI0 = Rs.sd % Rt.sd;
181 LO0 = Rs.sd / Rt.sd;
182 }
183 }}, IntDivOp);
184
185 0x3: divu({{ if (Rt.ud != 0) {
186 HI0 = Rs.ud % Rt.ud;
187 LO0 = Rs.ud / Rt.ud;
188 }
189 }}, IntDivOp);
190 }
191 }
192
193 0x4: decode HINT {
194 0x0: decode FUNCTION_LO {
195 format IntOp {
196 0x0: add({{ /* More complicated since an ADD can cause an arithmetic overflow exception */
197 int64_t Src1 = Rs.sw;
198 int64_t Src2 = Rt.sw;
199 int64_t temp_result;
200 #if FULL_SYSTEM
201 if(((Src1 >> 31) & 1) == 1)
202 Src1 |= 0x100000000LL;
203 #endif
204 temp_result = Src1 + Src2;
205 #if FULL_SYSTEM
206 if(((temp_result >> 31) & 1) == ((temp_result >> 32) & 1)){
207 #endif
208 Rd.sw = temp_result;
209 #if FULL_SYSTEM
210 } else{
211 fault = new ArithmeticFault();
212 }
213 #endif
214
215 }});
216 0x1: addu({{ Rd.sw = Rs.sw + Rt.sw;}});
217 0x2: sub({{
218 /* More complicated since an SUB can cause an arithmetic overflow exception */
219 int64_t Src1 = Rs.sw;
220 int64_t Src2 = Rt.sw;
221 int64_t temp_result = Src1 - Src2;
222 #if FULL_SYSTEM
223 if(((temp_result >> 31) & 1) == ((temp_result>>32) & 1)){
224 #endif
225 Rd.sw = temp_result;
226 #if FULL_SYSTEM
227 } else{
228 fault = new ArithmeticFault();
229 }
230 #endif
231 }});
232 0x3: subu({{ Rd.sw = Rs.sw - Rt.sw;}});
233 0x4: and({{ Rd = Rs & Rt;}});
234 0x5: or({{ Rd = Rs | Rt;}});
235 0x6: xor({{ Rd = Rs ^ Rt;}});
236 0x7: nor({{ Rd = ~(Rs | Rt);}});
237 }
238 }
239 }
240
241 0x5: decode HINT {
242 0x0: decode FUNCTION_LO {
243 format IntOp{
244 0x2: slt({{ Rd.sw = ( Rs.sw < Rt.sw ) ? 1 : 0}});
245 0x3: sltu({{ Rd.uw = ( Rs.uw < Rt.uw ) ? 1 : 0}});
246 }
247 }
248 }
249
250 0x6: decode FUNCTION_LO {
251 format Trap {
252 0x0: tge({{ cond = (Rs.sw >= Rt.sw); }});
253 0x1: tgeu({{ cond = (Rs.uw >= Rt.uw); }});
254 0x2: tlt({{ cond = (Rs.sw < Rt.sw); }});
255 0x3: tltu({{ cond = (Rs.uw < Rt.uw); }});
256 0x4: teq({{ cond = (Rs.sw == Rt.sw); }});
257 0x6: tne({{ cond = (Rs.sw != Rt.sw); }});
258 }
259 }
260 }
261
262 0x1: decode REGIMM_HI {
263 0x0: decode REGIMM_LO {
264 format Branch {
265 0x0: bltz({{ cond = (Rs.sw < 0); }});
266 0x1: bgez({{ cond = (Rs.sw >= 0); }});
267 0x2: bltzl({{ cond = (Rs.sw < 0); }}, Likely);
268 0x3: bgezl({{ cond = (Rs.sw >= 0); }}, Likely);
269 }
270 }
271
272 0x1: decode REGIMM_LO {
273 format TrapImm {
274 0x0: tgei( {{ cond = (Rs.sw >= (int16_t)INTIMM); }});
275 0x1: tgeiu({{ cond = (Rs.uw >= (uint32_t)((int32_t)((int16_t)INTIMM))); }});
276 0x2: tlti( {{ cond = (Rs.sw < (int16_t)INTIMM); }});
277 0x3: tltiu({{ cond = (Rs.uw < (uint32_t)((int32_t)((int16_t)INTIMM))); }});
278 0x4: teqi( {{ cond = (Rs.sw == (int16_t)INTIMM);}});
279 0x6: tnei( {{ cond = (Rs.sw != (int16_t)INTIMM);}});
280 }
281 }
282
283 0x2: decode REGIMM_LO {
284 format Branch {
285 0x0: bltzal({{ cond = (Rs.sw < 0); }}, Link);
286 0x1: decode RS {
287 0x0: bal ({{ cond = 1; }}, IsCall, Link);
288 default: bgezal({{ cond = (Rs.sw >= 0); }}, Link);
289 }
290 0x2: bltzall({{ cond = (Rs.sw < 0); }}, Link, Likely);
291 0x3: bgezall({{ cond = (Rs.sw >= 0); }}, Link, Likely);
292 }
293 }
294
295 0x3: decode REGIMM_LO {
296 // from Table 5-4 MIPS32 REGIMM Encoding of rt Field (DSP ASE MANUAL)
297 0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }});
298 format WarnUnimpl {
299 0x7: synci();
300 }
301 }
302 }
303
304 format Jump {
305 0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2);}});
306 0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }}, IsCall,
307 Link);
308 }
309
310 format Branch {
311 0x4: decode RS_RT {
312 0x0: b({{ cond = 1; }});
313 default: beq({{ cond = (Rs.sw == Rt.sw); }});
314 }
315 0x5: bne({{ cond = (Rs.sw != Rt.sw); }});
316 0x6: blez({{ cond = (Rs.sw <= 0); }});
317 0x7: bgtz({{ cond = (Rs.sw > 0); }});
318 }
319 }
320
321 0x1: decode OPCODE_LO {
322 format IntImmOp {
323 0x0: addi({{
324 int64_t Src1 = Rs.sw;
325 int64_t Src2 = imm;
326 int64_t temp_result;
327 #if FULL_SYSTEM
328 if(((Src1 >> 31) & 1) == 1)
329 Src1 |= 0x100000000LL;
330 #endif
331 temp_result = Src1 + Src2;
332 #if FULL_SYSTEM
333 if(((temp_result >> 31) & 1) == ((temp_result >> 32) & 1)){
334 #endif
335 Rt.sw = temp_result;
336 #if FULL_SYSTEM
337 } else{
338 fault = new ArithmeticFault();
339 }
340 #endif
341 }});
342 0x1: addiu({{ Rt.sw = Rs.sw + imm;}});
343 0x2: slti({{ Rt.sw = ( Rs.sw < imm) ? 1 : 0 }});
344
345 //Edited to include MIPS AVP Pass/Fail instructions and
346 //default to the sltiu instruction
347 0x3: decode RS_RT_INTIMM {
348 0xabc1: BasicOp::fail({{ exitSimLoop("AVP/SRVP Test Failed"); }});
349 0xabc2: BasicOp::pass({{ exitSimLoop("AVP/SRVP Test Passed"); }});
350 default: sltiu({{ Rt.uw = ( Rs.uw < (uint32_t)sextImm ) ? 1 : 0 }});
351 }
352
353 0x4: andi({{ Rt.sw = Rs.sw & zextImm;}});
354 0x5: ori({{ Rt.sw = Rs.sw | zextImm;}});
355 0x6: xori({{ Rt.sw = Rs.sw ^ zextImm;}});
356
357 0x7: decode RS {
358 0x0: lui({{ Rt = imm << 16}});
359 }
360 }
361 }
362
363 0x2: decode OPCODE_LO {
364 //Table A-11 MIPS32 COP0 Encoding of rs Field
365 0x0: decode RS_MSB {
366 0x0: decode RS {
367 format CP0Control {
368 0x0: mfc0({{
369 Config3Reg config3 = Config3;
370 PageGrainReg pageGrain = PageGrain;
371 Rt = CP0_RD_SEL;
372 /* Hack for PageMask */
373 if (RD == 5) {
374 // PageMask
375 if(config3.sp == 0 || pageGrain.esp == 0)
376 Rt &= 0xFFFFE7FF;
377 }
378 }});
379 0x4: mtc0({{
380 CP0_RD_SEL = Rt;
381 CauseReg cause = Cause;
382 IntCtlReg intCtl = IntCtl;
383 if (RD == 11) {
384 // Compare
385 if (cause.ti == 1) {
386 cause.ti = 0;
387 int offset = 10; // corresponding to cause.ip0
388 offset += intCtl.ipti - 2;
389 replaceBits(cause, offset, offset, 0);
390 }
391 }
392 Cause = cause;
393 }});
394 }
395 format CP0Unimpl {
396 0x1: dmfc0();
397 0x5: dmtc0();
398 default: unknown();
399 }
400 format MT_MFTR { // Decode MIPS MT MFTR instruction into sub-instructions
401 0x8: decode MT_U {
402 0x0: mftc0({{
403 data = xc->readRegOtherThread((RT << 3 | SEL) +
404 Ctrl_Base_DepTag);
405 }});
406 0x1: decode SEL {
407 0x0: mftgpr({{ data = xc->readRegOtherThread(RT); }});
408 0x1: decode RT {
409 0x0: mftlo_dsp0({{ data = xc->readRegOtherThread(MipsISA::DSPLo0); }});
410 0x1: mfthi_dsp0({{ data = xc->readRegOtherThread(MipsISA::DSPHi0); }});
411 0x2: mftacx_dsp0({{ data = xc->readRegOtherThread(MipsISA::DSPACX0); }});
412 0x4: mftlo_dsp1({{ data = xc->readRegOtherThread(MipsISA::DSPLo1); }});
413 0x5: mfthi_dsp1({{ data = xc->readRegOtherThread(MipsISA::DSPHi1); }});
414 0x6: mftacx_dsp1({{ data = xc->readRegOtherThread(MipsISA::DSPACX1); }});
415 0x8: mftlo_dsp2({{ data = xc->readRegOtherThread(MipsISA::DSPLo2); }});
416 0x9: mfthi_dsp2({{ data = xc->readRegOtherThread(MipsISA::DSPHi2); }});
417 0x10: mftacx_dsp2({{ data = xc->readRegOtherThread(MipsISA::DSPACX2); }});
418 0x12: mftlo_dsp3({{ data = xc->readRegOtherThread(MipsISA::DSPLo3); }});
419 0x13: mfthi_dsp3({{ data = xc->readRegOtherThread(MipsISA::DSPHi3); }});
420 0x14: mftacx_dsp3({{ data = xc->readRegOtherThread(MipsISA::DSPACX3); }});
421 0x16: mftdsp({{ data = xc->readRegOtherThread(MipsISA::DSPControl); }});
422 default: CP0Unimpl::unknown();
423 }
424 0x2: decode MT_H {
425 0x0: mftc1({{ data = xc->readRegOtherThread(RT +
426 FP_Base_DepTag);
427 }});
428 0x1: mfthc1({{ data = xc->readRegOtherThread(RT +
429 FP_Base_DepTag);
430 }});
431 }
432 0x3: cftc1({{ uint32_t fcsr_val = xc->readRegOtherThread(MipsISA::FCSR +
433 FP_Base_DepTag);
434 switch (RT)
435 {
436 case 0:
437 data = xc->readRegOtherThread(MipsISA::FIR +
438 Ctrl_Base_DepTag);
439 break;
440 case 25:
441 data = (fcsr_val & 0xFE000000 >> 24)
442 | (fcsr_val & 0x00800000 >> 23);
443 break;
444 case 26:
445 data = fcsr_val & 0x0003F07C;
446 break;
447 case 28:
448 data = (fcsr_val & 0x00000F80)
449 | (fcsr_val & 0x01000000 >> 21)
450 | (fcsr_val & 0x00000003);
451 break;
452 case 31:
453 data = fcsr_val;
454 break;
455 default:
456 fatal("FP Control Value (%d) Not Valid");
457 }
458 }});
459 default: CP0Unimpl::unknown();
460 }
461 }
462 }
463
464 format MT_MTTR { // Decode MIPS MT MTTR instruction into sub-instructions
465 0xC: decode MT_U {
466 0x0: mttc0({{ xc->setRegOtherThread((RD << 3 | SEL) + Ctrl_Base_DepTag,
467 Rt);
468 }});
469 0x1: decode SEL {
470 0x0: mttgpr({{ xc->setRegOtherThread(RD, Rt); }});
471 0x1: decode RT {
472 0x0: mttlo_dsp0({{ xc->setRegOtherThread(MipsISA::DSPLo0, Rt);
473 }});
474 0x1: mtthi_dsp0({{ xc->setRegOtherThread(MipsISA::DSPHi0,
475 Rt);
476 }});
477 0x2: mttacx_dsp0({{ xc->setRegOtherThread(MipsISA::DSPACX0,
478 Rt);
479 }});
480 0x4: mttlo_dsp1({{ xc->setRegOtherThread(MipsISA::DSPLo1,
481 Rt);
482 }});
483 0x5: mtthi_dsp1({{ xc->setRegOtherThread(MipsISA::DSPHi1,
484 Rt);
485 }});
486 0x6: mttacx_dsp1({{ xc->setRegOtherThread(MipsISA::DSPACX1,
487 Rt);
488 }});
489 0x8: mttlo_dsp2({{ xc->setRegOtherThread(MipsISA::DSPLo2,
490 Rt);
491 }});
492 0x9: mtthi_dsp2({{ xc->setRegOtherThread(MipsISA::DSPHi2,
493 Rt);
494 }});
495 0x10: mttacx_dsp2({{ xc->setRegOtherThread(MipsISA::DSPACX2,
496 Rt);
497 }});
498 0x12: mttlo_dsp3({{ xc->setRegOtherThread(MipsISA::DSPLo3,
499 Rt);
500 }});
501 0x13: mtthi_dsp3({{ xc->setRegOtherThread(MipsISA::DSPHi3,
502 Rt);
503 }});
504 0x14: mttacx_dsp3({{ xc->setRegOtherThread(MipsISA::DSPACX3, Rt);
505 }});
506 0x16: mttdsp({{ xc->setRegOtherThread(MipsISA::DSPControl, Rt); }});
507 default: CP0Unimpl::unknown();
508
509 }
510 0x2: mttc1({{ uint64_t data = xc->readRegOtherThread(RD +
511 FP_Base_DepTag);
512 data = insertBits(data, top_bit, bottom_bit, Rt);
513 xc->setRegOtherThread(RD + FP_Base_DepTag, data);
514 }});
515 0x3: cttc1({{ uint32_t data;
516 switch (RD)
517 {
518 case 25:
519 data = 0 | (Rt.uw<7:1> << 25) // move 31...25
520 | (FCSR & 0x01000000) // bit 24
521 | (FCSR & 0x004FFFFF);// bit 22...0
522 break;
523
524 case 26:
525 data = 0 | (FCSR & 0xFFFC0000) // move 31...18
526 | Rt.uw<17:12> << 12 // bit 17...12
527 | (FCSR & 0x00000F80) << 7// bit 11...7
528 | Rt.uw<6:2> << 2 // bit 6...2
529 | (FCSR & 0x00000002); // bit 1...0
530 break;
531
532 case 28:
533 data = 0 | (FCSR & 0xFE000000) // move 31...25
534 | Rt.uw<2:2> << 24 // bit 24
535 | (FCSR & 0x00FFF000) << 23// bit 23...12
536 | Rt.uw<11:7> << 7 // bit 24
537 | (FCSR & 0x000007E)
538 | Rt.uw<1:0>;// bit 22...0
539 break;
540
541 case 31:
542 data = Rt.uw;
543 break;
544
545 default:
546 panic("FP Control Value (%d) Not Available. Ignoring Access to"
547 "Floating Control Status Register", FS);
548 }
549 xc->setRegOtherThread(FCSR, data);
550 }});
551 default: CP0Unimpl::unknown();
552 }
553 }
554 }
555
556
557 0xB: decode RD {
558 format MT_Control {
559 0x0: decode POS {
560 0x0: decode SEL {
561 0x1: decode SC {
562 0x0: dvpe({{
563 MVPControlReg mvpControl = MVPControl;
564 VPEConf0Reg vpeConf0 = VPEConf0;
565 Rt = MVPControl;
566 if (vpeConf0.mvp == 1)
567 mvpControl.evp = 0;
568 MVPControl = mvpControl;
569 }});
570 0x1: evpe({{
571 MVPControlReg mvpControl = MVPControl;
572 VPEConf0Reg vpeConf0 = VPEConf0;
573 Rt = MVPControl;
574 if (vpeConf0.mvp == 1)
575 mvpControl.evp = 1;
576 MVPControl = mvpControl;
577 }});
578 default:CP0Unimpl::unknown();
579 }
580 default:CP0Unimpl::unknown();
581 }
582 default:CP0Unimpl::unknown();
583 }
584
585 0x1: decode POS {
586 0xF: decode SEL {
587 0x1: decode SC {
588 0x0: dmt({{
589 VPEControlReg vpeControl = VPEControl;
590 Rt = vpeControl;
591 vpeControl.te = 0;
592 VPEControl = vpeControl;
593 }});
594 0x1: emt({{
595 VPEControlReg vpeControl = VPEControl;
596 Rt = vpeControl;
597 vpeControl.te = 1;
598 VPEControl = vpeControl;
599 }});
600 default:CP0Unimpl::unknown();
601 }
602 default:CP0Unimpl::unknown();
603 }
604 default:CP0Unimpl::unknown();
605 }
606 }
607 0xC: decode POS {
608 0x0: decode SC {
609 0x0: CP0Control::di({{
610 StatusReg status = Status;
611 ConfigReg config = Config;
612 // Rev 2.0 or beyond?
613 if (config.ar >= 1) {
614 Rt = status;
615 status.ie = 0;
616 } else {
617 // Enable this else branch once we
618 // actually set values for Config on init
619 fault = new ReservedInstructionFault();
620 }
621 Status = status;
622 }});
623 0x1: CP0Control::ei({{
624 StatusReg status = Status;
625 ConfigReg config = Config;
626 if (config.ar >= 1) {
627 Rt = status;
628 status.ie = 1;
629 } else {
630 fault = new ReservedInstructionFault();
631 }
632 }});
633 default:CP0Unimpl::unknown();
634 }
635 }
636 default: CP0Unimpl::unknown();
637 }
638 format CP0Control {
639 0xA: rdpgpr({{
640 ConfigReg config = Config;
641 if (config.ar >= 1) {
642 // Rev 2 of the architecture
643 panic("Shadow Sets Not Fully Implemented.\n");
644 } else {
645 fault = new ReservedInstructionFault();
646 }
647 }});
648 0xE: wrpgpr({{
649 ConfigReg config = Config;
650 if (config.ar >= 1) {
651 // Rev 2 of the architecture
652 panic("Shadow Sets Not Fully Implemented.\n");
653 } else {
654 fault = new ReservedInstructionFault();
655 }
656 }});
657 }
658
659 }
660
661 //Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
662 0x1: decode FUNCTION {
663 format CP0Control {
664 0x18: eret({{
665 StatusReg status = Status;
666 ConfigReg config = Config;
667 SRSCtlReg srsCtl = SRSCtl;
668 DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC);
669 if (status.erl == 1) {
670 status.erl = 0;
671 NPC = ErrorEPC;
672 // Need to adjust NNPC, otherwise things break
673 NNPC = ErrorEPC + sizeof(MachInst);
674 } else {
675 NPC = EPC;
676 // Need to adjust NNPC, otherwise things break
677 NNPC = EPC + sizeof(MachInst);
678 status.exl = 0;
679 if (config.ar >=1 &&
680 srsCtl.hss > 0 &&
681 status.bev == 0) {
682 srsCtl.css = srsCtl.pss;
683 //xc->setShadowSet(srsCtl.pss);
684 }
685 }
686 LLFlag = 0;
687 Status = status;
688 SRSCtl = srsCtl;
689 }},IsReturn,IsSerializing,IsERET);
690
691 0x1F: deret({{
692 DebugReg debug = Debug;
693 if (debug.dm == 1) {
694 debug.dm = 1;
695 debug.iexi = 0;
696 NPC = DEPC;
697 } else {
698 // Undefined;
699 }
700 Debug = debug;
701 }}, IsReturn, IsSerializing, IsERET);
702 }
703 format CP0TLB {
704 0x01: tlbr({{
705 MipsISA::PTE *PTEntry = xc->tcBase()->getITBPtr()->getEntry(Index & 0x7FFFFFFF);
706 if(PTEntry == NULL)
707 {
708 fatal("Invalid PTE Entry received on a TLBR instruction\n");
709 }
710 /* Setup PageMask */
711 PageMask = (PTEntry->Mask << 11); // If 1KB pages are not enabled, a read of PageMask must return 0b00 in bits 12, 11
712 /* Setup EntryHi */
713 EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid));
714 /* Setup Entry Lo0 */
715 EntryLo0 = ((PTEntry->PFN0 << 6) | (PTEntry->C0 << 3) | (PTEntry->D0 << 2) | (PTEntry->V0 << 1) | PTEntry->G);
716 /* Setup Entry Lo1 */
717 EntryLo1 = ((PTEntry->PFN1 << 6) | (PTEntry->C1 << 3) | (PTEntry->D1 << 2) | (PTEntry->V1 << 1) | PTEntry->G);
718 }}); // Need to hook up to TLB
719
720 0x02: tlbwi({{
721 //Create PTE
722 MipsISA::PTE NewEntry;
723 //Write PTE
724 NewEntry.Mask = (Addr)(PageMask >> 11);
725 NewEntry.VPN = (Addr)(EntryHi >> 11);
726 /* PageGrain _ ESP Config3 _ SP */
727 if(((PageGrain>>28) & 1) == 0 || ((Config3>>4)&1) ==0) {
728 // If 1KB pages are *NOT* enabled, lowest bits of the
729 // mask are 0b11 for TLB writes
730 NewEntry.Mask |= 0x3;
731 // Reset bits 0 and 1 if 1KB pages are not enabled
732 NewEntry.VPN &= 0xFFFFFFFC;
733 }
734 NewEntry.asid = (uint8_t)(EntryHi & 0xFF);
735
736 NewEntry.PFN0 = (Addr)(EntryLo0 >> 6);
737 NewEntry.PFN1 = (Addr)(EntryLo1 >> 6);
738 NewEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
739 NewEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
740 NewEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
741 NewEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
742 NewEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
743 NewEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
744 NewEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
745 /* Now, compute the AddrShiftAmount and OffsetMask - TLB
746 optimizations */
747 /* Addr Shift Amount for 1KB or larger pages */
748 if ((NewEntry.Mask & 0xFFFF) == 3) {
749 NewEntry.AddrShiftAmount = 12;
750 } else if ((NewEntry.Mask & 0xFFFF) == 0x0000) {
751 NewEntry.AddrShiftAmount = 10;
752 } else if ((NewEntry.Mask & 0xFFFC) == 0x000C) {
753 NewEntry.AddrShiftAmount = 14;
754 } else if ((NewEntry.Mask & 0xFFF0) == 0x0030) {
755 NewEntry.AddrShiftAmount = 16;
756 } else if ((NewEntry.Mask & 0xFFC0) == 0x00C0) {
757 NewEntry.AddrShiftAmount = 18;
758 } else if ((NewEntry.Mask & 0xFF00) == 0x0300) {
759 NewEntry.AddrShiftAmount = 20;
760 } else if ((NewEntry.Mask & 0xFC00) == 0x0C00) {
761 NewEntry.AddrShiftAmount = 22;
762 } else if ((NewEntry.Mask & 0xF000) == 0x3000) {
763 NewEntry.AddrShiftAmount = 24;
764 } else if ((NewEntry.Mask & 0xC000) == 0xC000) {
765 NewEntry.AddrShiftAmount = 26;
766 } else if ((NewEntry.Mask & 0x30000) == 0x30000) {
767 NewEntry.AddrShiftAmount = 28;
768 } else {
769 fatal("Invalid Mask Pattern Detected!\n");
770 }
771 NewEntry.OffsetMask = ((1<<NewEntry.AddrShiftAmount)-1);
772
773 MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
774 Config3Reg config3 = Config3;
775 PageGrainReg pageGrain = PageGrain;
776 int SP = 0;
777 if (bits(config3, config3.sp) == 1 &&
778 bits(pageGrain, pageGrain.esp) == 1) {
779 SP = 1;
780 }
781 IndexReg index = Index;
782 Ptr->insertAt(NewEntry, Index & 0x7FFFFFFF, SP);
783 }});
784 0x06: tlbwr({{
785 //Create PTE
786 MipsISA::PTE NewEntry;
787 //Write PTE
788 NewEntry.Mask = (Addr)(PageMask >> 11);
789 NewEntry.VPN = (Addr)(EntryHi >> 11);
790 /* PageGrain _ ESP Config3 _ SP */
791 if (((PageGrain >> 28) & 1) == 0 ||
792 (( Config3 >> 4) & 1) ==0) {
793 // If 1KB pages are *NOT* enabled, lowest bits of
794 // the mask are 0b11 for TLB writes
795 NewEntry.Mask |= 0x3;
796 // Reset bits 0 and 1 if 1KB pages are not enabled
797 NewEntry.VPN &= 0xFFFFFFFC;
798 }
799 NewEntry.asid = (uint8_t)(EntryHi & 0xFF);
800
801 NewEntry.PFN0 = (Addr)(EntryLo0 >> 6);
802 NewEntry.PFN1 = (Addr)(EntryLo1 >> 6);
803 NewEntry.D0 = (bool)((EntryLo0 >> 2) & 1);
804 NewEntry.D1 = (bool)((EntryLo1 >> 2) & 1);
805 NewEntry.V1 = (bool)((EntryLo1 >> 1) & 1);
806 NewEntry.V0 = (bool)((EntryLo0 >> 1) & 1);
807 NewEntry.G = (bool)((EntryLo0 & EntryLo1) & 1);
808 NewEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7);
809 NewEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7);
810 /* Now, compute the AddrShiftAmount and OffsetMask -
811 TLB optimizations */
812 /* Addr Shift Amount for 1KB or larger pages */
813 if ((NewEntry.Mask & 0xFFFF) == 3){
814 NewEntry.AddrShiftAmount = 12;
815 } else if ((NewEntry.Mask & 0xFFFF) == 0x0000) {
816 NewEntry.AddrShiftAmount = 10;
817 } else if ((NewEntry.Mask & 0xFFFC) == 0x000C) {
818 NewEntry.AddrShiftAmount = 14;
819 } else if ((NewEntry.Mask & 0xFFF0) == 0x0030) {
820 NewEntry.AddrShiftAmount = 16;
821 } else if ((NewEntry.Mask & 0xFFC0) == 0x00C0) {
822 NewEntry.AddrShiftAmount = 18;
823 } else if ((NewEntry.Mask & 0xFF00) == 0x0300) {
824 NewEntry.AddrShiftAmount = 20;
825 } else if ((NewEntry.Mask & 0xFC00) == 0x0C00) {
826 NewEntry.AddrShiftAmount = 22;
827 } else if ((NewEntry.Mask & 0xF000) == 0x3000) {
828 NewEntry.AddrShiftAmount = 24;
829 } else if ((NewEntry.Mask & 0xC000) == 0xC000) {
830 NewEntry.AddrShiftAmount = 26;
831 } else if ((NewEntry.Mask & 0x30000) == 0x30000) {
832 NewEntry.AddrShiftAmount = 28;
833 } else {
834 fatal("Invalid Mask Pattern Detected!\n");
835 }
836 NewEntry.OffsetMask = ((1 << NewEntry.AddrShiftAmount) - 1);
837
838 MipsISA::TLB *Ptr = xc->tcBase()->getITBPtr();
839 Config3Reg config3 = Config3;
840 PageGrainReg pageGrain = PageGrain;
841 int SP = 0;
842 if (bits(config3, config3.sp) == 1 &&
843 bits(pageGrain, pageGrain.esp) == 1) {
844 SP = 1;
845 }
846 IndexReg index = Index;
847 Ptr->insertAt(NewEntry, Random, SP);
848 }});
849
850 0x08: tlbp({{
851 Config3Reg config3 = Config3;
852 PageGrainReg pageGrain = PageGrain;
853 EntryHiReg entryHi = EntryHi;
854 int TLB_Index;
855 Addr VPN;
856 if (pageGrain.esp == 1 && config3.sp ==1) {
857 VPN = EntryHi >> 11;
858 } else {
859 // Mask off lower 2 bits
860 VPN = ((EntryHi >> 11) & 0xFFFFFFFC);
861 }
862 TLB_Index = xc->tcBase()->getITBPtr()->
863 probeEntry(VPN, entryHi.asid);
864 // Check TLB for entry matching EntryHi
865 if (TLB_Index != -1) {
866 Index = TLB_Index;
867 } else {
868 // else, set Index = 1 << 31
869 Index = (1 << 31);
870 }
871 }});
872 }
873 format CP0Unimpl {
874 0x20: wait();
875 }
876 default: CP0Unimpl::unknown();
877
878 }
879 }
880
881 //Table A-13 MIPS32 COP1 Encoding of rs Field
882 0x1: decode RS_MSB {
883
884 0x0: decode RS_HI {
885 0x0: decode RS_LO {
886 format CP1Control {
887 0x0: mfc1 ({{ Rt.uw = Fs.uw; }});
888
889 0x2: cfc1({{
890 switch (FS)
891 {
892 case 0:
893 Rt = FIR;
894 break;
895 case 25:
896 Rt = 0 | (FCSR & 0xFE000000) >> 24 | (FCSR & 0x00800000) >> 23;
897 break;
898 case 26:
899 Rt = 0 | (FCSR & 0x0003F07C);
900 break;
901 case 28:
902 Rt = 0 | (FCSR & 0x00000F80) | (FCSR & 0x01000000) >> 21 | (FCSR & 0x00000003);
903 break;
904 case 31:
905 Rt = FCSR;
906 break;
907 default:
908 warn("FP Control Value (%d) Not Valid");
909 }
910 // warn("FCSR: %x, FS: %d, FIR: %x, Rt: %x\n",FCSR, FS, FIR, Rt);
911 }});
912
913 0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>;}});
914
915 0x4: mtc1 ({{ Fs.uw = Rt.uw; }});
916
917 0x6: ctc1({{
918 switch (FS)
919 {
920 case 25:
921 FCSR = 0 | (Rt.uw<7:1> << 25) // move 31...25
922 | (FCSR & 0x01000000) // bit 24
923 | (FCSR & 0x004FFFFF);// bit 22...0
924 break;
925
926 case 26:
927 FCSR = 0 | (FCSR & 0xFFFC0000) // move 31...18
928 | Rt.uw<17:12> << 12 // bit 17...12
929 | (FCSR & 0x00000F80) << 7// bit 11...7
930 | Rt.uw<6:2> << 2 // bit 6...2
931 | (FCSR & 0x00000002); // bit 1...0
932 break;
933
934 case 28:
935 FCSR = 0 | (FCSR & 0xFE000000) // move 31...25
936 | Rt.uw<2:2> << 24 // bit 24
937 | (FCSR & 0x00FFF000) << 23// bit 23...12
938 | Rt.uw<11:7> << 7 // bit 24
939 | (FCSR & 0x000007E)
940 | Rt.uw<1:0>;// bit 22...0
941 break;
942
943 case 31:
944 FCSR = Rt.uw;
945 break;
946
947 default:
948 panic("FP Control Value (%d) Not Available. Ignoring Access to"
949 "Floating Control Status Register", FS);
950 }
951 }});
952
953 0x7: mthc1({{
954 uint64_t fs_hi = Rt.uw;
955 uint64_t fs_lo = Fs.ud & 0x0FFFFFFFF;
956 Fs.ud = (fs_hi << 32) | fs_lo;
957 }});
958
959 }
960 format CP1Unimpl {
961 0x1: dmfc1();
962 0x5: dmtc1();
963 }
964 }
965
966 0x1:
967 decode RS_LO {
968 0x0:
969 decode ND {
970 format Branch {
971 0x0: decode TF {
972 0x0: bc1f({{ cond = getCondCode(FCSR, BRANCH_CC) == 0;
973 }});
974 0x1: bc1t({{ cond = getCondCode(FCSR, BRANCH_CC) == 1;
975 }});
976 }
977 0x1: decode TF {
978 0x0: bc1fl({{ cond = getCondCode(FCSR, BRANCH_CC) == 0;
979 }}, Likely);
980 0x1: bc1tl({{ cond = getCondCode(FCSR, BRANCH_CC) == 1;
981 }}, Likely);
982 }
983 }
984 }
985 format CP1Unimpl {
986 0x1: bc1any2();
987 0x2: bc1any4();
988 default: unknown();
989 }
990 }
991 }
992
993 0x1: decode RS_HI {
994 0x2: decode RS_LO {
995 //Table A-14 MIPS32 COP1 Encoding of Function Field When rs=S
996 //(( single-precision floating point))
997 0x0: decode FUNCTION_HI {
998 0x0: decode FUNCTION_LO {
999 format FloatOp {
1000 0x0: add_s({{ Fd.sf = Fs.sf + Ft.sf;}});
1001 0x1: sub_s({{ Fd.sf = Fs.sf - Ft.sf;}});
1002 0x2: mul_s({{ Fd.sf = Fs.sf * Ft.sf;}});
1003 0x3: div_s({{ Fd.sf = Fs.sf / Ft.sf;}});
1004 0x4: sqrt_s({{ Fd.sf = sqrt(Fs.sf);}});
1005 0x5: abs_s({{ Fd.sf = fabs(Fs.sf);}});
1006 0x7: neg_s({{ Fd.sf = -Fs.sf;}});
1007 }
1008
1009 0x6: BasicOp::mov_s({{ Fd.sf = Fs.sf;}});
1010 }
1011
1012 0x1: decode FUNCTION_LO {
1013 format FloatConvertOp {
1014 0x0: round_l_s({{ val = Fs.sf; }}, ToLong,
1015 Round);
1016 0x1: trunc_l_s({{ val = Fs.sf; }}, ToLong,
1017 Trunc);
1018 0x2: ceil_l_s({{ val = Fs.sf; }}, ToLong,
1019 Ceil);
1020 0x3: floor_l_s({{ val = Fs.sf; }}, ToLong,
1021 Floor);
1022 0x4: round_w_s({{ val = Fs.sf; }}, ToWord,
1023 Round);
1024 0x5: trunc_w_s({{ val = Fs.sf; }}, ToWord,
1025 Trunc);
1026 0x6: ceil_w_s({{ val = Fs.sf; }}, ToWord,
1027 Ceil);
1028 0x7: floor_w_s({{ val = Fs.sf; }}, ToWord,
1029 Floor);
1030 }
1031 }
1032
1033 0x2: decode FUNCTION_LO {
1034 0x1: decode MOVCF {
1035 format BasicOp {
1036 0x0: movf_s({{ Fd = (getCondCode(FCSR,CC) == 0) ? Fs : Fd; }});
1037 0x1: movt_s({{ Fd = (getCondCode(FCSR,CC) == 1) ? Fs : Fd; }});
1038 }
1039 }
1040
1041 format BasicOp {
1042 0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }});
1043 0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }});
1044 }
1045
1046 format FloatOp {
1047 0x5: recip_s({{ Fd = 1 / Fs; }});
1048 0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs);}});
1049 }
1050 format CP1Unimpl {
1051 default: unknown();
1052 }
1053 }
1054 0x3: CP1Unimpl::unknown();
1055
1056 0x4: decode FUNCTION_LO {
1057 format FloatConvertOp {
1058 0x1: cvt_d_s({{ val = Fs.sf; }}, ToDouble);
1059 0x4: cvt_w_s({{ val = Fs.sf; }}, ToWord);
1060 0x5: cvt_l_s({{ val = Fs.sf; }}, ToLong);
1061 }
1062
1063 0x6: FloatOp::cvt_ps_s({{
1064 Fd.ud = (uint64_t) Fs.uw << 32 |
1065 (uint64_t) Ft.uw;
1066 }});
1067 format CP1Unimpl {
1068 default: unknown();
1069 }
1070 }
1071 0x5: CP1Unimpl::unknown();
1072
1073 0x6: decode FUNCTION_LO {
1074 format FloatCompareOp {
1075 0x0: c_f_s({{ cond = 0; }}, SinglePrecision,
1076 UnorderedFalse);
1077 0x1: c_un_s({{ cond = 0; }}, SinglePrecision,
1078 UnorderedTrue);
1079 0x2: c_eq_s({{ cond = (Fs.sf == Ft.sf); }},
1080 UnorderedFalse);
1081 0x3: c_ueq_s({{ cond = (Fs.sf == Ft.sf); }},
1082 UnorderedTrue);
1083 0x4: c_olt_s({{ cond = (Fs.sf < Ft.sf); }},
1084 UnorderedFalse);
1085 0x5: c_ult_s({{ cond = (Fs.sf < Ft.sf); }},
1086 UnorderedTrue);
1087 0x6: c_ole_s({{ cond = (Fs.sf <= Ft.sf); }},
1088 UnorderedFalse);
1089 0x7: c_ule_s({{ cond = (Fs.sf <= Ft.sf); }},
1090 UnorderedTrue);
1091 }
1092 }
1093
1094 0x7: decode FUNCTION_LO {
1095 format FloatCompareOp {
1096 0x0: c_sf_s({{ cond = 0; }}, SinglePrecision,
1097 UnorderedFalse, QnanException);
1098 0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision,
1099 UnorderedTrue, QnanException);
1100 0x2: c_seq_s({{ cond = (Fs.sf == Ft.sf);}},
1101 UnorderedFalse, QnanException);
1102 0x3: c_ngl_s({{ cond = (Fs.sf == Ft.sf); }},
1103 UnorderedTrue, QnanException);
1104 0x4: c_lt_s({{ cond = (Fs.sf < Ft.sf); }},
1105 UnorderedFalse, QnanException);
1106 0x5: c_nge_s({{ cond = (Fs.sf < Ft.sf); }},
1107 UnorderedTrue, QnanException);
1108 0x6: c_le_s({{ cond = (Fs.sf <= Ft.sf); }},
1109 UnorderedFalse, QnanException);
1110 0x7: c_ngt_s({{ cond = (Fs.sf <= Ft.sf); }},
1111 UnorderedTrue, QnanException);
1112 }
1113 }
1114 }
1115
1116 //Table A-15 MIPS32 COP1 Encoding of Function Field When rs=D
1117 0x1: decode FUNCTION_HI {
1118 0x0: decode FUNCTION_LO {
1119 format FloatOp {
1120 0x0: add_d({{ Fd.df = Fs.df + Ft.df; }});
1121 0x1: sub_d({{ Fd.df = Fs.df - Ft.df; }});
1122 0x2: mul_d({{ Fd.df = Fs.df * Ft.df; }});
1123 0x3: div_d({{ Fd.df = Fs.df / Ft.df; }});
1124 0x4: sqrt_d({{ Fd.df = sqrt(Fs.df); }});
1125 0x5: abs_d({{ Fd.df = fabs(Fs.df); }});
1126 0x7: neg_d({{ Fd.df = -1 * Fs.df; }});
1127 }
1128
1129 0x6: BasicOp::mov_d({{ Fd.df = Fs.df; }});
1130 }
1131
1132 0x1: decode FUNCTION_LO {
1133 format FloatConvertOp {
1134 0x0: round_l_d({{ val = Fs.df; }}, ToLong,
1135 Round);
1136 0x1: trunc_l_d({{ val = Fs.df; }}, ToLong,
1137 Trunc);
1138 0x2: ceil_l_d({{ val = Fs.df; }}, ToLong,
1139 Ceil);
1140 0x3: floor_l_d({{ val = Fs.df; }}, ToLong,
1141 Floor);
1142 0x4: round_w_d({{ val = Fs.df; }}, ToWord,
1143 Round);
1144 0x5: trunc_w_d({{ val = Fs.df; }}, ToWord,
1145 Trunc);
1146 0x6: ceil_w_d({{ val = Fs.df; }}, ToWord,
1147 Ceil);
1148 0x7: floor_w_d({{ val = Fs.df; }}, ToWord,
1149 Floor);
1150 }
1151 }
1152
1153 0x2: decode FUNCTION_LO {
1154 0x1: decode MOVCF {
1155 format BasicOp {
1156 0x0: movf_d({{ Fd.df = (getCondCode(FCSR,CC) == 0) ?
1157 Fs.df : Fd.df;
1158 }});
1159 0x1: movt_d({{ Fd.df = (getCondCode(FCSR,CC) == 1) ?
1160 Fs.df : Fd.df;
1161 }});
1162 }
1163 }
1164
1165 format BasicOp {
1166 0x2: movz_d({{ Fd.df = (Rt == 0) ? Fs.df : Fd.df; }});
1167 0x3: movn_d({{ Fd.df = (Rt != 0) ? Fs.df : Fd.df; }});
1168 }
1169
1170 format FloatOp {
1171 0x5: recip_d({{ Fd.df = 1 / Fs.df }});
1172 0x6: rsqrt_d({{ Fd.df = 1 / sqrt(Fs.df) }});
1173 }
1174 format CP1Unimpl {
1175 default: unknown();
1176 }
1177
1178 }
1179 0x4: decode FUNCTION_LO {
1180 format FloatConvertOp {
1181 0x0: cvt_s_d({{ val = Fs.df; }}, ToSingle);
1182 0x4: cvt_w_d({{ val = Fs.df; }}, ToWord);
1183 0x5: cvt_l_d({{ val = Fs.df; }}, ToLong);
1184 }
1185 default: CP1Unimpl::unknown();
1186 }
1187
1188 0x6: decode FUNCTION_LO {
1189 format FloatCompareOp {
1190 0x0: c_f_d({{ cond = 0; }}, DoublePrecision,
1191 UnorderedFalse);
1192 0x1: c_un_d({{ cond = 0; }}, DoublePrecision,
1193 UnorderedTrue);
1194 0x2: c_eq_d({{ cond = (Fs.df == Ft.df); }},
1195 UnorderedFalse);
1196 0x3: c_ueq_d({{ cond = (Fs.df == Ft.df); }},
1197 UnorderedTrue);
1198 0x4: c_olt_d({{ cond = (Fs.df < Ft.df); }},
1199 UnorderedFalse);
1200 0x5: c_ult_d({{ cond = (Fs.df < Ft.df); }},
1201 UnorderedTrue);
1202 0x6: c_ole_d({{ cond = (Fs.df <= Ft.df); }},
1203 UnorderedFalse);
1204 0x7: c_ule_d({{ cond = (Fs.df <= Ft.df); }},
1205 UnorderedTrue);
1206 }
1207 }
1208
1209 0x7: decode FUNCTION_LO {
1210 format FloatCompareOp {
1211 0x0: c_sf_d({{ cond = 0; }}, DoublePrecision,
1212 UnorderedFalse, QnanException);
1213 0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision,
1214 UnorderedTrue, QnanException);
1215 0x2: c_seq_d({{ cond = (Fs.df == Ft.df); }},
1216 UnorderedFalse, QnanException);
1217 0x3: c_ngl_d({{ cond = (Fs.df == Ft.df); }},
1218 UnorderedTrue, QnanException);
1219 0x4: c_lt_d({{ cond = (Fs.df < Ft.df); }},
1220 UnorderedFalse, QnanException);
1221 0x5: c_nge_d({{ cond = (Fs.df < Ft.df); }},
1222 UnorderedTrue, QnanException);
1223 0x6: c_le_d({{ cond = (Fs.df <= Ft.df); }},
1224 UnorderedFalse, QnanException);
1225 0x7: c_ngt_d({{ cond = (Fs.df <= Ft.df); }},
1226 UnorderedTrue, QnanException);
1227 }
1228 }
1229 default: CP1Unimpl::unknown();
1230 }
1231 0x2: CP1Unimpl::unknown();
1232 0x3: CP1Unimpl::unknown();
1233 0x7: CP1Unimpl::unknown();
1234
1235 //Table A-16 MIPS32 COP1 Encoding of Function Field When rs=W
1236 0x4: decode FUNCTION {
1237 format FloatConvertOp {
1238 0x20: cvt_s_w({{ val = Fs.uw; }}, ToSingle);
1239 0x21: cvt_d_w({{ val = Fs.uw; }}, ToDouble);
1240 0x26: CP1Unimpl::cvt_ps_w();
1241 }
1242 default: CP1Unimpl::unknown();
1243 }
1244
1245 //Table A-16 MIPS32 COP1 Encoding of Function Field When rs=L1
1246 //Note: "1. Format type L is legal only if 64-bit floating point operations
1247 //are enabled."
1248 0x5: decode FUNCTION_HI {
1249 format FloatConvertOp {
1250 0x20: cvt_s_l({{ val = Fs.ud; }}, ToSingle);
1251 0x21: cvt_d_l({{ val = Fs.ud; }}, ToDouble);
1252 0x26: CP1Unimpl::cvt_ps_l();
1253 }
1254 default: CP1Unimpl::unknown();
1255 }
1256
1257 //Table A-17 MIPS64 COP1 Encoding of Function Field When rs=PS1
1258 //Note: "1. Format type PS is legal only if 64-bit floating point operations
1259 //are enabled. "
1260 0x6: decode FUNCTION_HI {
1261 0x0: decode FUNCTION_LO {
1262 format Float64Op {
1263 0x0: add_ps({{
1264 Fd1.sf = Fs1.sf + Ft2.sf;
1265 Fd2.sf = Fs2.sf + Ft2.sf;
1266 }});
1267 0x1: sub_ps({{
1268 Fd1.sf = Fs1.sf - Ft2.sf;
1269 Fd2.sf = Fs2.sf - Ft2.sf;
1270 }});
1271 0x2: mul_ps({{
1272 Fd1.sf = Fs1.sf * Ft2.sf;
1273 Fd2.sf = Fs2.sf * Ft2.sf;
1274 }});
1275 0x5: abs_ps({{
1276 Fd1.sf = fabs(Fs1.sf);
1277 Fd2.sf = fabs(Fs2.sf);
1278 }});
1279 0x6: mov_ps({{
1280 Fd1.sf = Fs1.sf;
1281 Fd2.sf = Fs2.sf;
1282 }});
1283 0x7: neg_ps({{
1284 Fd1.sf = -(Fs1.sf);
1285 Fd2.sf = -(Fs2.sf);
1286 }});
1287 default: CP1Unimpl::unknown();
1288 }
1289 }
1290 0x1: CP1Unimpl::unknown();
1291 0x2: decode FUNCTION_LO {
1292 0x1: decode MOVCF {
1293 format Float64Op {
1294 0x0: movf_ps({{
1295 Fd1 = (getCondCode(FCSR, CC) == 0) ?
1296 Fs1 : Fd1;
1297 Fd2 = (getCondCode(FCSR, CC+1) == 0) ?
1298 Fs2 : Fd2;
1299 }});
1300 0x1: movt_ps({{
1301 Fd2 = (getCondCode(FCSR, CC) == 1) ?
1302 Fs1 : Fd1;
1303 Fd2 = (getCondCode(FCSR, CC+1) == 1) ?
1304 Fs2 : Fd2;
1305 }});
1306 }
1307 }
1308
1309 format Float64Op {
1310 0x2: movz_ps({{
1311 Fd1 = (getCondCode(FCSR, CC) == 0) ?
1312 Fs1 : Fd1;
1313 Fd2 = (getCondCode(FCSR, CC) == 0) ?
1314 Fs2 : Fd2;
1315 }});
1316 0x3: movn_ps({{
1317 Fd1 = (getCondCode(FCSR, CC) == 1) ?
1318 Fs1 : Fd1;
1319 Fd2 = (getCondCode(FCSR, CC) == 1) ?
1320 Fs2 : Fd2;
1321 }});
1322 }
1323 default: CP1Unimpl::unknown();
1324
1325 }
1326 0x3: CP1Unimpl::unknown();
1327 0x4: decode FUNCTION_LO {
1328 0x0: FloatOp::cvt_s_pu({{ Fd.sf = Fs2.sf; }});
1329 default: CP1Unimpl::unknown();
1330 }
1331
1332 0x5: decode FUNCTION_LO {
1333 0x0: FloatOp::cvt_s_pl({{ Fd.sf = Fs1.sf; }});
1334
1335 format Float64Op {
1336 0x4: pll({{ Fd.ud = (uint64_t) Fs1.uw << 32 |
1337 Ft1.uw;
1338 }});
1339 0x5: plu({{ Fd.ud = (uint64_t) Fs1.uw << 32 |
1340 Ft2.uw;
1341 }});
1342 0x6: pul({{ Fd.ud = (uint64_t) Fs2.uw << 32 |
1343 Ft1.uw;
1344 }});
1345 0x7: puu({{ Fd.ud = (uint64_t) Fs2.uw << 32 |
1346 Ft2.uw;
1347 }});
1348 }
1349 default: CP1Unimpl::unknown();
1350 }
1351
1352 0x6: decode FUNCTION_LO {
1353 format FloatPSCompareOp {
1354 0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
1355 UnorderedFalse);
1356 0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
1357 UnorderedTrue);
1358 0x2: c_eq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
1359 {{ cond2 = (Fs2.sf == Ft2.sf); }},
1360 UnorderedFalse);
1361 0x3: c_ueq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
1362 {{ cond2 = (Fs2.sf == Ft2.sf); }},
1363 UnorderedTrue);
1364 0x4: c_olt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
1365 {{ cond2 = (Fs2.sf < Ft2.sf); }},
1366 UnorderedFalse);
1367 0x5: c_ult_ps({{ cond1 = (Fs.sf < Ft.sf); }},
1368 {{ cond2 = (Fs2.sf < Ft2.sf); }},
1369 UnorderedTrue);
1370 0x6: c_ole_ps({{ cond1 = (Fs.sf <= Ft.sf); }},
1371 {{ cond2 = (Fs2.sf <= Ft2.sf); }},
1372 UnorderedFalse);
1373 0x7: c_ule_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
1374 {{ cond2 = (Fs2.sf <= Ft2.sf); }},
1375 UnorderedTrue);
1376 }
1377 }
1378
1379 0x7: decode FUNCTION_LO {
1380 format FloatPSCompareOp {
1381 0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }},
1382 UnorderedFalse, QnanException);
1383 0x1: c_ngle_ps({{ cond1 = 0; }},
1384 {{ cond2 = 0; }},
1385 UnorderedTrue, QnanException);
1386 0x2: c_seq_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
1387 {{ cond2 = (Fs2.sf == Ft2.sf); }},
1388 UnorderedFalse, QnanException);
1389 0x3: c_ngl_ps({{ cond1 = (Fs1.sf == Ft1.sf); }},
1390 {{ cond2 = (Fs2.sf == Ft2.sf); }},
1391 UnorderedTrue, QnanException);
1392 0x4: c_lt_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
1393 {{ cond2 = (Fs2.sf < Ft2.sf); }},
1394 UnorderedFalse, QnanException);
1395 0x5: c_nge_ps({{ cond1 = (Fs1.sf < Ft1.sf); }},
1396 {{ cond2 = (Fs2.sf < Ft2.sf); }},
1397 UnorderedTrue, QnanException);
1398 0x6: c_le_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
1399 {{ cond2 = (Fs2.sf <= Ft2.sf); }},
1400 UnorderedFalse, QnanException);
1401 0x7: c_ngt_ps({{ cond1 = (Fs1.sf <= Ft1.sf); }},
1402 {{ cond2 = (Fs2.sf <= Ft2.sf); }},
1403 UnorderedTrue, QnanException);
1404 }
1405 }
1406 }
1407 }
1408 default: CP1Unimpl::unknown();
1409 }
1410 }
1411
1412 //Table A-19 MIPS32 COP2 Encoding of rs Field
1413 0x2: decode RS_MSB {
1414 format CP2Unimpl {
1415 0x0: decode RS_HI {
1416 0x0: decode RS_LO {
1417 0x0: mfc2();
1418 0x2: cfc2();
1419 0x3: mfhc2();
1420 0x4: mtc2();
1421 0x6: ctc2();
1422 0x7: mftc2();
1423 default: unknown();
1424 }
1425
1426 0x1: decode ND {
1427 0x0: decode TF {
1428 0x0: bc2f();
1429 0x1: bc2t();
1430 default: unknown();
1431 }
1432
1433 0x1: decode TF {
1434 0x0: bc2fl();
1435 0x1: bc2tl();
1436 default: unknown();
1437 }
1438 default: unknown();
1439
1440 }
1441 default: unknown();
1442
1443 }
1444 default: unknown();
1445 }
1446 }
1447
1448 //Table A-20 MIPS64 COP1X Encoding of Function Field 1
1449 //Note: "COP1X instructions are legal only if 64-bit floating point
1450 //operations are enabled."
1451 0x3: decode FUNCTION_HI {
1452 0x0: decode FUNCTION_LO {
1453 format LoadIndexedMemory {
1454 0x0: lwxc1({{ Fd.uw = Mem.uw;}});
1455 0x1: ldxc1({{ Fd.ud = Mem.ud;}});
1456 0x5: luxc1({{ Fd.ud = Mem.ud;}},
1457 {{ EA = (Rs + Rt) & ~7; }});
1458 }
1459 }
1460
1461 0x1: decode FUNCTION_LO {
1462 format StoreIndexedMemory {
1463 0x0: swxc1({{ Mem.uw = Fs.uw;}});
1464 0x1: sdxc1({{ Mem.ud = Fs.ud;}});
1465 0x5: suxc1({{ Mem.ud = Fs.ud;}},
1466 {{ EA = (Rs + Rt) & ~7; }});
1467 }
1468
1469 0x7: Prefetch::prefx({{ EA = Rs + Rt; }});
1470 }
1471
1472 0x3: decode FUNCTION_LO {
1473 0x6: Float64Op::alnv_ps({{ if (Rs<2:0> == 0) {
1474 Fd.ud = Fs.ud;
1475 } else if (Rs<2:0> == 4) {
1476 #if BYTE_ORDER == BIG_ENDIAN
1477 Fd.ud = Fs.ud<31:0> << 32 |
1478 Ft.ud<63:32>;
1479 #elif BYTE_ORDER == LITTLE_ENDIAN
1480 Fd.ud = Ft.ud<31:0> << 32 |
1481 Fs.ud<63:32>;
1482 #endif
1483 } else {
1484 Fd.ud = Fd.ud;
1485 }
1486 }});
1487 }
1488
1489 format FloatAccOp {
1490 0x4: decode FUNCTION_LO {
1491 0x0: madd_s({{ Fd.sf = (Fs.sf * Ft.sf) + Fr.sf; }});
1492 0x1: madd_d({{ Fd.df = (Fs.df * Ft.df) + Fr.df; }});
1493 0x6: madd_ps({{
1494 Fd1.sf = (Fs1.df * Ft1.df) + Fr1.df;
1495 Fd2.sf = (Fs2.df * Ft2.df) + Fr2.df;
1496 }});
1497 }
1498
1499 0x5: decode FUNCTION_LO {
1500 0x0: msub_s({{ Fd.sf = (Fs.sf * Ft.sf) - Fr.sf; }});
1501 0x1: msub_d({{ Fd.df = (Fs.df * Ft.df) - Fr.df; }});
1502 0x6: msub_ps({{
1503 Fd1.sf = (Fs1.df * Ft1.df) - Fr1.df;
1504 Fd2.sf = (Fs2.df * Ft2.df) - Fr2.df;
1505 }});
1506 }
1507
1508 0x6: decode FUNCTION_LO {
1509 0x0: nmadd_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
1510 0x1: nmadd_d({{ Fd.df = (-1 * Fs.df * Ft.df) + Fr.df; }});
1511 0x6: nmadd_ps({{
1512 Fd1.sf = -((Fs1.df * Ft1.df) + Fr1.df);
1513 Fd2.sf = -((Fs2.df * Ft2.df) + Fr2.df);
1514 }});
1515 }
1516
1517 0x7: decode FUNCTION_LO {
1518 0x0: nmsub_s({{ Fd.sf = (-1 * Fs.sf * Ft.sf) - Fr.sf; }});
1519 0x1: nmsub_d({{ Fd.df = (-1 * Fs.df * Ft.df) - Fr.df; }});
1520 0x6: nmsub_ps({{
1521 Fd1.sf = -((Fs1.df * Ft1.df) - Fr1.df);
1522 Fd2.sf = -((Fs2.df * Ft2.df) - Fr2.df);
1523 }});
1524 }
1525
1526 }
1527 }
1528
1529 format Branch {
1530 0x4: beql({{ cond = (Rs.sw == Rt.sw); }}, Likely);
1531 0x5: bnel({{ cond = (Rs.sw != Rt.sw); }}, Likely);
1532 0x6: blezl({{ cond = (Rs.sw <= 0); }}, Likely);
1533 0x7: bgtzl({{ cond = (Rs.sw > 0); }}, Likely);
1534 }
1535 }
1536
1537 0x3: decode OPCODE_LO {
1538 //Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
1539 0x4: decode FUNCTION_HI {
1540 0x0: decode FUNCTION_LO {
1541 0x2: IntOp::mul({{ int64_t temp1 = Rs.sd * Rt.sd;
1542 Rd.sw = temp1<31:0>;
1543 }}, IntMultOp);
1544
1545 format HiLoRdSelValOp {
1546 0x0: madd({{ val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) + (Rs.sd * Rt.sd); }}, IntMultOp);
1547 0x1: maddu({{ val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) + (Rs.ud * Rt.ud); }}, IntMultOp);
1548 0x4: msub({{ val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) - (Rs.sd * Rt.sd); }}, IntMultOp);
1549 0x5: msubu({{ val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) - (Rs.ud * Rt.ud); }}, IntMultOp);
1550 }
1551 }
1552
1553 0x4: decode FUNCTION_LO {
1554 format BasicOp {
1555 0x0: clz({{ int cnt = 32;
1556 for (int idx = 31; idx >= 0; idx--) {
1557 if( Rs<idx:idx> == 1) {
1558 cnt = 31 - idx;
1559 break;
1560 }
1561 }
1562 Rd.uw = cnt;
1563 }});
1564 0x1: clo({{ int cnt = 32;
1565 for (int idx = 31; idx >= 0; idx--) {
1566 if( Rs<idx:idx> == 0) {
1567 cnt = 31 - idx;
1568 break;
1569 }
1570 }
1571 Rd.uw = cnt;
1572 }});
1573 }
1574 }
1575
1576 0x7: decode FUNCTION_LO {
1577 0x7: FailUnimpl::sdbbp();
1578 }
1579 }
1580
1581 //Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2
1582 //of the Architecture
1583 0x7: decode FUNCTION_HI {
1584 0x0: decode FUNCTION_LO {
1585 format BasicOp {
1586 0x0: ext({{ Rt.uw = bits(Rs.uw, MSB+LSB, LSB); }});
1587 0x4: ins({{ Rt.uw = bits(Rt.uw, 31, MSB+1) << (MSB+1) |
1588 bits(Rs.uw, MSB-LSB, 0) << LSB |
1589 bits(Rt.uw, LSB-1, 0);
1590 }});
1591 }
1592 }
1593
1594 0x1: decode FUNCTION_LO {
1595 format MT_Control {
1596 0x0: fork({{ forkThread(xc->tcBase(), fault, RD, Rs, Rt); }},
1597 UserMode);
1598 0x1: yield({{ Rd.sw = yieldThread(xc->tcBase(), fault, Rs.sw, YQMask); }},
1599 UserMode);
1600 }
1601
1602 //Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL)
1603 0x2: decode OP_HI {
1604 0x0: decode OP_LO {
1605 format LoadIndexedMemory {
1606 0x0: lwx({{ Rd.sw = Mem.sw; }});
1607 0x4: lhx({{ Rd.sw = Mem.sh; }});
1608 0x6: lbux({{ Rd.uw = Mem.ub; }});
1609 }
1610 }
1611 }
1612 0x4: DspIntOp::insv({{ int pos = dspctl<5:0>;
1613 int size = dspctl<12:7>-1;
1614 Rt.uw = insertBits( Rt.uw, pos+size, pos, Rs.uw<size:0> ); }});
1615 }
1616
1617 0x2: decode FUNCTION_LO {
1618
1619 //Table 5-5 MIPS32 ADDU.QB Encoding of the op Field (DSP ASE MANUAL)
1620 0x0: decode OP_HI {
1621 0x0: decode OP_LO {
1622 format DspIntOp {
1623 0x0: addu_qb({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_QB,
1624 NOSATURATE, UNSIGNED, &dspctl ); }});
1625 0x1: subu_qb({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_QB,
1626 NOSATURATE, UNSIGNED, &dspctl ); }});
1627 0x4: addu_s_qb({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_QB,
1628 SATURATE, UNSIGNED, &dspctl ); }});
1629 0x5: subu_s_qb({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_QB,
1630 SATURATE, UNSIGNED, &dspctl ); }});
1631 0x6: muleu_s_ph_qbl({{ Rd.uw = dspMuleu( Rs.uw, Rt.uw,
1632 MODE_L, &dspctl ); }}, IntMultOp);
1633 0x7: muleu_s_ph_qbr({{ Rd.uw = dspMuleu( Rs.uw, Rt.uw,
1634 MODE_R, &dspctl ); }}, IntMultOp);
1635 }
1636 }
1637 0x1: decode OP_LO {
1638 format DspIntOp {
1639 0x0: addu_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
1640 NOSATURATE, UNSIGNED, &dspctl ); }});
1641 0x1: subu_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
1642 NOSATURATE, UNSIGNED, &dspctl ); }});
1643 0x2: addq_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
1644 NOSATURATE, SIGNED, &dspctl ); }});
1645 0x3: subq_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
1646 NOSATURATE, SIGNED, &dspctl ); }});
1647 0x4: addu_s_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
1648 SATURATE, UNSIGNED, &dspctl ); }});
1649 0x5: subu_s_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
1650 SATURATE, UNSIGNED, &dspctl ); }});
1651 0x6: addq_s_ph({{ Rd.uw = dspAdd( Rs.uw, Rt.uw, SIMD_FMT_PH,
1652 SATURATE, SIGNED, &dspctl ); }});
1653 0x7: subq_s_ph({{ Rd.uw = dspSub( Rs.uw, Rt.uw, SIMD_FMT_PH,
1654 SATURATE, SIGNED, &dspctl ); }});
1655 }
1656 }
1657 0x2: decode OP_LO {
1658 format DspIntOp {
1659 0x0: addsc({{ int64_t dresult;
1660 dresult = Rs.ud + Rt.ud;
1661 Rd.sw = dresult<31:0>;
1662 dspctl = insertBits( dspctl, 13, 13,
1663 dresult<32:32> ); }});
1664 0x1: addwc({{ int64_t dresult;
1665 dresult = Rs.sd + Rt.sd + dspctl<13:13>;
1666 Rd.sw = dresult<31:0>;
1667 if( dresult<32:32> != dresult<31:31> )
1668 dspctl = insertBits( dspctl, 20, 20, 1 ); }});
1669 0x2: modsub({{ Rd.sw = (Rs.sw == 0) ? Rt.sw<23:8> : Rs.sw - Rt.sw<7:0>; }});
1670 0x4: raddu_w_qb({{ Rd.uw = Rs.uw<31:24> + Rs.uw<23:16> +
1671 Rs.uw<15:8> + Rs.uw<7:0>; }});
1672 0x6: addq_s_w({{ Rd.sw = dspAdd( Rs.sw, Rt.sw, SIMD_FMT_W,
1673 SATURATE, SIGNED, &dspctl ); }});
1674 0x7: subq_s_w({{ Rd.sw = dspSub( Rs.sw, Rt.sw, SIMD_FMT_W,
1675 SATURATE, SIGNED, &dspctl ); }});
1676 }
1677 }
1678 0x3: decode OP_LO {
1679 format DspIntOp {
1680 0x4: muleq_s_w_phl({{ Rd.sw = dspMuleq( Rs.sw, Rt.sw,
1681 MODE_L, &dspctl ); }}, IntMultOp);
1682 0x5: muleq_s_w_phr({{ Rd.sw = dspMuleq( Rs.sw, Rt.sw,
1683 MODE_R, &dspctl ); }}, IntMultOp);
1684 0x6: mulq_s_ph({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_PH,
1685 SATURATE, NOROUND, &dspctl ); }}, IntMultOp);
1686 0x7: mulq_rs_ph({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_PH,
1687 SATURATE, ROUND, &dspctl ); }}, IntMultOp);
1688 }
1689 }
1690 }
1691
1692 //Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field (DSP ASE MANUAL)
1693 0x1: decode OP_HI {
1694 0x0: decode OP_LO {
1695 format DspIntOp {
1696 0x0: cmpu_eq_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
1697 UNSIGNED, CMP_EQ, &dspctl ); }});
1698 0x1: cmpu_lt_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
1699 UNSIGNED, CMP_LT, &dspctl ); }});
1700 0x2: cmpu_le_qb({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_QB,
1701 UNSIGNED, CMP_LE, &dspctl ); }});
1702 0x3: pick_qb({{ Rd.uw = dspPick( Rs.uw, Rt.uw,
1703 SIMD_FMT_QB, &dspctl ); }});
1704 0x4: cmpgu_eq_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
1705 UNSIGNED, CMP_EQ ); }});
1706 0x5: cmpgu_lt_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
1707 UNSIGNED, CMP_LT ); }});
1708 0x6: cmpgu_le_qb({{ Rd.uw = dspCmpg( Rs.uw, Rt.uw, SIMD_FMT_QB,
1709 UNSIGNED, CMP_LE ); }});
1710 }
1711 }
1712 0x1: decode OP_LO {
1713 format DspIntOp {
1714 0x0: cmp_eq_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
1715 SIGNED, CMP_EQ, &dspctl ); }});
1716 0x1: cmp_lt_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
1717 SIGNED, CMP_LT, &dspctl ); }});
1718 0x2: cmp_le_ph({{ dspCmp( Rs.uw, Rt.uw, SIMD_FMT_PH,
1719 SIGNED, CMP_LE, &dspctl ); }});
1720 0x3: pick_ph({{ Rd.uw = dspPick( Rs.uw, Rt.uw,
1721 SIMD_FMT_PH, &dspctl ); }});
1722 0x4: precrq_qb_ph({{ Rd.uw = Rs.uw<31:24> << 24 |
1723 Rs.uw<15:8> << 16 |
1724 Rt.uw<31:24> << 8 |
1725 Rt.uw<15:8>; }});
1726 0x5: precr_qb_ph({{ Rd.uw = Rs.uw<23:16> << 24 |
1727 Rs.uw<7:0> << 16 |
1728 Rt.uw<23:16> << 8 |
1729 Rt.uw<7:0>; }});
1730 0x6: packrl_ph({{ Rd.uw = dspPack( Rs.uw, Rt.uw,
1731 SIMD_FMT_PH ); }});
1732 0x7: precrqu_s_qb_ph({{ Rd.uw = dspPrecrqu( Rs.uw, Rt.uw, &dspctl ); }});
1733 }
1734 }
1735 0x2: decode OP_LO {
1736 format DspIntOp {
1737 0x4: precrq_ph_w({{ Rd.uw = Rs.uw<31:16> << 16 | Rt.uw<31:16>; }});
1738 0x5: precrq_rs_ph_w({{ Rd.uw = dspPrecrq( Rs.uw, Rt.uw, SIMD_FMT_W, &dspctl ); }});
1739 }
1740 }
1741 0x3: decode OP_LO {
1742 format DspIntOp {
1743 0x0: cmpgdu_eq_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
1744 UNSIGNED, CMP_EQ, &dspctl ); }});
1745 0x1: cmpgdu_lt_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
1746 UNSIGNED, CMP_LT, &dspctl ); }});
1747 0x2: cmpgdu_le_qb({{ Rd.uw = dspCmpgd( Rs.uw, Rt.uw, SIMD_FMT_QB,
1748 UNSIGNED, CMP_LE, &dspctl ); }});
1749 0x6: precr_sra_ph_w({{ Rt.uw = dspPrecrSra( Rt.uw, Rs.uw, RD,
1750 SIMD_FMT_W, NOROUND ); }});
1751 0x7: precr_sra_r_ph_w({{ Rt.uw = dspPrecrSra( Rt.uw, Rs.uw, RD,
1752 SIMD_FMT_W, ROUND ); }});
1753 }
1754 }
1755 }
1756
1757 //Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field (DSP ASE MANUAL)
1758 0x2: decode OP_HI {
1759 0x0: decode OP_LO {
1760 format DspIntOp {
1761 0x1: absq_s_qb({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_QB, &dspctl );}});
1762 0x2: repl_qb({{ Rd.uw = RS_RT<7:0> << 24 |
1763 RS_RT<7:0> << 16 |
1764 RS_RT<7:0> << 8 |
1765 RS_RT<7:0>; }});
1766 0x3: replv_qb({{ Rd.sw = Rt.uw<7:0> << 24 |
1767 Rt.uw<7:0> << 16 |
1768 Rt.uw<7:0> << 8 |
1769 Rt.uw<7:0>; }});
1770 0x4: precequ_ph_qbl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1771 SIMD_FMT_PH, SIGNED, MODE_L ); }});
1772 0x5: precequ_ph_qbr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1773 SIMD_FMT_PH, SIGNED, MODE_R ); }});
1774 0x6: precequ_ph_qbla({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1775 SIMD_FMT_PH, SIGNED, MODE_LA ); }});
1776 0x7: precequ_ph_qbra({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1777 SIMD_FMT_PH, SIGNED, MODE_RA ); }});
1778 }
1779 }
1780 0x1: decode OP_LO {
1781 format DspIntOp {
1782 0x1: absq_s_ph({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_PH, &dspctl ); }});
1783 0x2: repl_ph({{ Rd.uw = (sext<10>(RS_RT))<15:0> << 16 |
1784 (sext<10>(RS_RT))<15:0>; }});
1785 0x3: replv_ph({{ Rd.uw = Rt.uw<15:0> << 16 |
1786 Rt.uw<15:0>; }});
1787 0x4: preceq_w_phl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_PH, SIGNED,
1788 SIMD_FMT_W, SIGNED, MODE_L ); }});
1789 0x5: preceq_w_phr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_PH, SIGNED,
1790 SIMD_FMT_W, SIGNED, MODE_R ); }});
1791 }
1792 }
1793 0x2: decode OP_LO {
1794 format DspIntOp {
1795 0x1: absq_s_w({{ Rd.sw = dspAbs( Rt.sw, SIMD_FMT_W, &dspctl ); }});
1796 }
1797 }
1798 0x3: decode OP_LO {
1799 0x3: IntOp::bitrev({{ Rd.uw = bitrev( Rt.uw<15:0> ); }});
1800 format DspIntOp {
1801 0x4: preceu_ph_qbl({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1802 SIMD_FMT_PH, UNSIGNED, MODE_L ); }});
1803 0x5: preceu_ph_qbr({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1804 SIMD_FMT_PH, UNSIGNED, MODE_R ); }});
1805 0x6: preceu_ph_qbla({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1806 SIMD_FMT_PH, UNSIGNED, MODE_LA ); }});
1807 0x7: preceu_ph_qbra({{ Rd.uw = dspPrece( Rt.uw, SIMD_FMT_QB, UNSIGNED,
1808 SIMD_FMT_PH, UNSIGNED, MODE_RA ); }});
1809 }
1810 }
1811 }
1812
1813 //Table 5-8 MIPS32 SHLL.QB Encoding of the op Field (DSP ASE MANUAL)
1814 0x3: decode OP_HI {
1815 0x0: decode OP_LO {
1816 format DspIntOp {
1817 0x0: shll_qb({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_QB,
1818 NOSATURATE, UNSIGNED, &dspctl ); }});
1819 0x1: shrl_qb({{ Rd.sw = dspShrl( Rt.sw, RS, SIMD_FMT_QB,
1820 UNSIGNED ); }});
1821 0x2: shllv_qb({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_QB,
1822 NOSATURATE, UNSIGNED, &dspctl ); }});
1823 0x3: shrlv_qb({{ Rd.sw = dspShrl( Rt.sw, Rs.sw, SIMD_FMT_QB,
1824 UNSIGNED ); }});
1825 0x4: shra_qb({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_QB,
1826 NOROUND, SIGNED, &dspctl ); }});
1827 0x5: shra_r_qb({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_QB,
1828 ROUND, SIGNED, &dspctl ); }});
1829 0x6: shrav_qb({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_QB,
1830 NOROUND, SIGNED, &dspctl ); }});
1831 0x7: shrav_r_qb({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_QB,
1832 ROUND, SIGNED, &dspctl ); }});
1833 }
1834 }
1835 0x1: decode OP_LO {
1836 format DspIntOp {
1837 0x0: shll_ph({{ Rd.uw = dspShll( Rt.uw, RS, SIMD_FMT_PH,
1838 NOSATURATE, SIGNED, &dspctl ); }});
1839 0x1: shra_ph({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_PH,
1840 NOROUND, SIGNED, &dspctl ); }});
1841 0x2: shllv_ph({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_PH,
1842 NOSATURATE, SIGNED, &dspctl ); }});
1843 0x3: shrav_ph({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_PH,
1844 NOROUND, SIGNED, &dspctl ); }});
1845 0x4: shll_s_ph({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_PH,
1846 SATURATE, SIGNED, &dspctl ); }});
1847 0x5: shra_r_ph({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_PH,
1848 ROUND, SIGNED, &dspctl ); }});
1849 0x6: shllv_s_ph({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_PH,
1850 SATURATE, SIGNED, &dspctl ); }});
1851 0x7: shrav_r_ph({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_PH,
1852 ROUND, SIGNED, &dspctl ); }});
1853 }
1854 }
1855 0x2: decode OP_LO {
1856 format DspIntOp {
1857 0x4: shll_s_w({{ Rd.sw = dspShll( Rt.sw, RS, SIMD_FMT_W,
1858 SATURATE, SIGNED, &dspctl ); }});
1859 0x5: shra_r_w({{ Rd.sw = dspShra( Rt.sw, RS, SIMD_FMT_W,
1860 ROUND, SIGNED, &dspctl ); }});
1861 0x6: shllv_s_w({{ Rd.sw = dspShll( Rt.sw, Rs.sw, SIMD_FMT_W,
1862 SATURATE, SIGNED, &dspctl ); }});
1863 0x7: shrav_r_w({{ Rd.sw = dspShra( Rt.sw, Rs.sw, SIMD_FMT_W,
1864 ROUND, SIGNED, &dspctl ); }});
1865 }
1866 }
1867 0x3: decode OP_LO {
1868 format DspIntOp {
1869 0x1: shrl_ph({{ Rd.sw = dspShrl( Rt.sw, RS, SIMD_FMT_PH,
1870 UNSIGNED ); }});
1871 0x3: shrlv_ph({{ Rd.sw = dspShrl( Rt.sw, Rs.sw, SIMD_FMT_PH,
1872 UNSIGNED ); }});
1873 }
1874 }
1875 }
1876 }
1877
1878 0x3: decode FUNCTION_LO {
1879
1880 //Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field (DSP ASE Rev2 Manual)
1881 0x0: decode OP_HI {
1882 0x0: decode OP_LO {
1883 format DspIntOp {
1884 0x0: adduh_qb({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_QB,
1885 NOROUND, UNSIGNED ); }});
1886 0x1: subuh_qb({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_QB,
1887 NOROUND, UNSIGNED ); }});
1888 0x2: adduh_r_qb({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_QB,
1889 ROUND, UNSIGNED ); }});
1890 0x3: subuh_r_qb({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_QB,
1891 ROUND, UNSIGNED ); }});
1892 }
1893 }
1894 0x1: decode OP_LO {
1895 format DspIntOp {
1896 0x0: addqh_ph({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_PH,
1897 NOROUND, SIGNED ); }});
1898 0x1: subqh_ph({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_PH,
1899 NOROUND, SIGNED ); }});
1900 0x2: addqh_r_ph({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_PH,
1901 ROUND, SIGNED ); }});
1902 0x3: subqh_r_ph({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_PH,
1903 ROUND, SIGNED ); }});
1904 0x4: mul_ph({{ Rd.sw = dspMul( Rs.sw, Rt.sw, SIMD_FMT_PH,
1905 NOSATURATE, &dspctl ); }}, IntMultOp);
1906 0x6: mul_s_ph({{ Rd.sw = dspMul( Rs.sw, Rt.sw, SIMD_FMT_PH,
1907 SATURATE, &dspctl ); }}, IntMultOp);
1908
1909 }
1910 }
1911 0x2: decode OP_LO {
1912 format DspIntOp {
1913 0x0: addqh_w({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_W,
1914 NOROUND, SIGNED ); }});
1915 0x1: subqh_w({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_W,
1916 NOROUND, SIGNED ); }});
1917 0x2: addqh_r_w({{ Rd.uw = dspAddh( Rs.sw, Rt.sw, SIMD_FMT_W,
1918 ROUND, SIGNED ); }});
1919 0x3: subqh_r_w({{ Rd.uw = dspSubh( Rs.sw, Rt.sw, SIMD_FMT_W,
1920 ROUND, SIGNED ); }});
1921 0x6: mulq_s_w({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_W,
1922 SATURATE, NOROUND, &dspctl ); }}, IntMultOp);
1923 0x7: mulq_rs_w({{ Rd.sw = dspMulq( Rs.sw, Rt.sw, SIMD_FMT_W,
1924 SATURATE, ROUND, &dspctl ); }}, IntMultOp);
1925 }
1926 }
1927 }
1928 }
1929
1930 //Table A-10 MIPS32 BSHFL Encoding of sa Field
1931 0x4: decode SA {
1932 format BasicOp {
1933 0x02: wsbh({{ Rd.uw = Rt.uw<23:16> << 24 |
1934 Rt.uw<31:24> << 16 |
1935 Rt.uw<7:0> << 8 |
1936 Rt.uw<15:8>;
1937 }});
1938 0x10: seb({{ Rd.sw = Rt.sb; }});
1939 0x18: seh({{ Rd.sw = Rt.sh; }});
1940 }
1941 }
1942
1943 0x6: decode FUNCTION_LO {
1944
1945 //Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field (DSP ASE MANUAL)
1946 0x0: decode OP_HI {
1947 0x0: decode OP_LO {
1948 format DspHiLoOp {
1949 0x0: dpa_w_ph({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
1950 SIMD_FMT_PH, SIGNED, MODE_L ); }}, IntMultOp);
1951 0x1: dps_w_ph({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
1952 SIMD_FMT_PH, SIGNED, MODE_L ); }}, IntMultOp);
1953 0x2: mulsa_w_ph({{ dspac = dspMulsa( dspac, Rs.sw, Rt.sw,
1954 ACDST, SIMD_FMT_PH ); }}, IntMultOp);
1955 0x3: dpau_h_qbl({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
1956 SIMD_FMT_QB, UNSIGNED, MODE_L ); }}, IntMultOp);
1957 0x4: dpaq_s_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
1958 SIMD_FMT_W, NOSATURATE, MODE_L, &dspctl ); }}, IntMultOp);
1959 0x5: dpsq_s_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
1960 SIMD_FMT_W, NOSATURATE, MODE_L, &dspctl ); }}, IntMultOp);
1961 0x6: mulsaq_s_w_ph({{ dspac = dspMulsaq( dspac, Rs.sw, Rt.sw,
1962 ACDST, SIMD_FMT_PH, &dspctl ); }}, IntMultOp);
1963 0x7: dpau_h_qbr({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
1964 SIMD_FMT_QB, UNSIGNED, MODE_R ); }}, IntMultOp);
1965 }
1966 }
1967 0x1: decode OP_LO {
1968 format DspHiLoOp {
1969 0x0: dpax_w_ph({{ dspac = dspDpa( dspac, Rs.sw, Rt.sw, ACDST,
1970 SIMD_FMT_PH, SIGNED, MODE_X ); }}, IntMultOp);
1971 0x1: dpsx_w_ph({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
1972 SIMD_FMT_PH, SIGNED, MODE_X ); }}, IntMultOp);
1973 0x3: dpsu_h_qbl({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
1974 SIMD_FMT_QB, UNSIGNED, MODE_L ); }}, IntMultOp);
1975 0x4: dpaq_sa_l_w({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_W,
1976 SIMD_FMT_L, SATURATE, MODE_L, &dspctl ); }}, IntMultOp);
1977 0x5: dpsq_sa_l_w({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_W,
1978 SIMD_FMT_L, SATURATE, MODE_L, &dspctl ); }}, IntMultOp);
1979 0x7: dpsu_h_qbr({{ dspac = dspDps( dspac, Rs.sw, Rt.sw, ACDST,
1980 SIMD_FMT_QB, UNSIGNED, MODE_R ); }}, IntMultOp);
1981 }
1982 }
1983 0x2: decode OP_LO {
1984 format DspHiLoOp {
1985 0x0: maq_sa_w_phl({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
1986 MODE_L, SATURATE, &dspctl ); }}, IntMultOp);
1987 0x2: maq_sa_w_phr({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
1988 MODE_R, SATURATE, &dspctl ); }}, IntMultOp);
1989 0x4: maq_s_w_phl({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
1990 MODE_L, NOSATURATE, &dspctl ); }}, IntMultOp);
1991 0x6: maq_s_w_phr({{ dspac = dspMaq( dspac, Rs.uw, Rt.uw, ACDST, SIMD_FMT_PH,
1992 MODE_R, NOSATURATE, &dspctl ); }}, IntMultOp);
1993 }
1994 }
1995 0x3: decode OP_LO {
1996 format DspHiLoOp {
1997 0x0: dpaqx_s_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
1998 SIMD_FMT_W, NOSATURATE, MODE_X, &dspctl ); }}, IntMultOp);
1999 0x1: dpsqx_s_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
2000 SIMD_FMT_W, NOSATURATE, MODE_X, &dspctl ); }}, IntMultOp);
2001 0x2: dpaqx_sa_w_ph({{ dspac = dspDpaq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
2002 SIMD_FMT_W, SATURATE, MODE_X, &dspctl ); }}, IntMultOp);
2003 0x3: dpsqx_sa_w_ph({{ dspac = dspDpsq( dspac, Rs.sw, Rt.sw, ACDST, SIMD_FMT_PH,
2004 SIMD_FMT_W, SATURATE, MODE_X, &dspctl ); }}, IntMultOp);
2005 }
2006 }
2007 }
2008
2009 //Table 3.3 MIPS32 APPEND Encoding of the op Field
2010 0x1: decode OP_HI {
2011 0x0: decode OP_LO {
2012 format IntOp {
2013 0x0: append({{ Rt.uw = (Rt.uw << RD) | bits(Rs.uw,RD-1,0); }});
2014 0x1: prepend({{ Rt.uw = (Rt.uw >> RD) | (bits(Rs.uw, RD - 1, 0) << (32 - RD)); }});
2015 }
2016 }
2017 0x2: decode OP_LO {
2018 format IntOp {
2019 0x0: balign({{ Rt.uw = (Rt.uw << (8*BP)) | (Rs.uw >> (8*(4-BP))); }});
2020 }
2021 }
2022 }
2023
2024 }
2025 0x7: decode FUNCTION_LO {
2026
2027 //Table 5-11 MIPS32 EXTR.W Encoding of the op Field (DSP ASE MANUAL)
2028 0x0: decode OP_HI {
2029 0x0: decode OP_LO {
2030 format DspHiLoOp {
2031 0x0: extr_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
2032 NOROUND, NOSATURATE, &dspctl ); }});
2033 0x1: extrv_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
2034 NOROUND, NOSATURATE, &dspctl ); }});
2035 0x2: extp({{ Rt.uw = dspExtp( dspac, RS, &dspctl ); }});
2036 0x3: extpv({{ Rt.uw = dspExtp( dspac, Rs.uw, &dspctl ); }});
2037 0x4: extr_r_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
2038 ROUND, NOSATURATE, &dspctl ); }});
2039 0x5: extrv_r_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
2040 ROUND, NOSATURATE, &dspctl ); }});
2041 0x6: extr_rs_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, RS,
2042 ROUND, SATURATE, &dspctl ); }});
2043 0x7: extrv_rs_w({{ Rt.uw = dspExtr( dspac, SIMD_FMT_W, Rs.uw,
2044 ROUND, SATURATE, &dspctl ); }});
2045 }
2046 }
2047 0x1: decode OP_LO {
2048 format DspHiLoOp {
2049 0x2: extpdp({{ Rt.uw = dspExtpd( dspac, RS, &dspctl ); }});
2050 0x3: extpdpv({{ Rt.uw = dspExtpd( dspac, Rs.uw, &dspctl ); }});
2051 0x6: extr_s_h({{ Rt.uw = dspExtr( dspac, SIMD_FMT_PH, RS,
2052 NOROUND, SATURATE, &dspctl ); }});
2053 0x7: extrv_s_h({{ Rt.uw = dspExtr( dspac, SIMD_FMT_PH, Rs.uw,
2054 NOROUND, SATURATE, &dspctl ); }});
2055 }
2056 }
2057 0x2: decode OP_LO {
2058 format DspIntOp {
2059 0x2: rddsp({{ Rd.uw = readDSPControl( &dspctl, RDDSPMASK ); }});
2060 0x3: wrdsp({{ writeDSPControl( &dspctl, Rs.uw, WRDSPMASK ); }});
2061 }
2062 }
2063 0x3: decode OP_LO {
2064 format DspHiLoOp {
2065 0x2: shilo({{ if( sext<6>(HILOSA) < 0 )
2066 dspac = (uint64_t)dspac << -sext<6>(HILOSA);
2067 else
2068 dspac = (uint64_t)dspac >> sext<6>(HILOSA); }});
2069 0x3: shilov({{ if( sext<6>(Rs.sw<5:0>) < 0 )
2070 dspac = (uint64_t)dspac << -sext<6>(Rs.sw<5:0>);
2071 else
2072 dspac = (uint64_t)dspac >> sext<6>(Rs.sw<5:0>); }});
2073 0x7: mthlip({{ dspac = dspac << 32;
2074 dspac |= Rs.uw;
2075 dspctl = insertBits( dspctl, 5, 0,
2076 dspctl<5:0>+32 ); }});
2077 }
2078 }
2079 }
2080 0x3: decode OP_HI {
2081 0x2: decode OP_LO {
2082 0x3: FailUnimpl::rdhwr();
2083 }
2084 }
2085 }
2086 }
2087 }
2088
2089 0x4: decode OPCODE_LO {
2090 format LoadMemory {
2091 0x0: lb({{ Rt.sw = Mem.sb; }}, mem_flags = NO_ALIGN_FAULT);
2092 0x1: lh({{ Rt.sw = Mem.sh; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
2093 0x3: lw({{ Rt.sw = Mem.sw; }});
2094 0x4: lbu({{ Rt.uw = Mem.ub;}}, mem_flags = NO_ALIGN_FAULT);
2095 0x5: lhu({{ Rt.uw = Mem.uh; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
2096 }
2097
2098 format LoadUnalignedMemory {
2099 0x2: lwl({{ uint32_t mem_shift = 24 - (8 * byte_offset);
2100 Rt.uw = mem_word << mem_shift |
2101 (Rt.uw & mask(mem_shift));
2102 }});
2103 0x6: lwr({{ uint32_t mem_shift = 8 * byte_offset;
2104 Rt.uw = (Rt.uw & (mask(mem_shift) << (32 - mem_shift))) |
2105 (mem_word >> mem_shift);
2106 }});
2107 }
2108 }
2109
2110 0x5: decode OPCODE_LO {
2111 format StoreMemory {
2112 0x0: sb({{ Mem.ub = Rt<7:0>; }}, mem_flags = NO_ALIGN_FAULT);
2113 0x1: sh({{ Mem.uh = Rt<15:0>; }}, mem_flags = NO_HALF_WORD_ALIGN_FAULT);
2114 0x3: sw({{ Mem.uw = Rt<31:0>; }});
2115 }
2116
2117 format StoreUnalignedMemory {
2118 0x2: swl({{ uint32_t reg_shift = 24 - (8 * byte_offset);
2119 uint32_t mem_shift = 32 - reg_shift;
2120 mem_word = (mem_word & (mask(reg_shift) << mem_shift)) |
2121 (Rt.uw >> reg_shift);
2122 }});
2123 0x6: swr({{ uint32_t reg_shift = 8 * byte_offset;
2124 mem_word = Rt.uw << reg_shift |
2125 (mem_word & (mask(reg_shift)));
2126 }});
2127 }
2128 format CP0Control {
2129 0x7: cache({{
2130 //Addr CacheEA = Rs.uw + OFFSET;
2131 //fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA);
2132 }});
2133 }
2134 }
2135
2136 0x6: decode OPCODE_LO {
2137 format LoadMemory {
2138 0x0: ll({{ Rt.uw = Mem.uw; }}, mem_flags=LLSC);
2139 0x1: lwc1({{ Ft.uw = Mem.uw; }});
2140 0x5: ldc1({{ Ft.ud = Mem.ud; }});
2141 }
2142 0x2: CP2Unimpl::lwc2();
2143 0x6: CP2Unimpl::ldc2();
2144 0x3: Prefetch::pref();
2145 }
2146
2147
2148 0x7: decode OPCODE_LO {
2149 0x0: StoreCond::sc({{ Mem.uw = Rt.uw;}},
2150 {{ uint64_t tmp = write_result;
2151 Rt.uw = (tmp == 0 || tmp == 1) ? tmp : Rt.uw;
2152 }}, mem_flags=LLSC, inst_flags = IsStoreConditional);
2153
2154 format StoreMemory {
2155 0x1: swc1({{ Mem.uw = Ft.uw;}});
2156 0x5: sdc1({{ Mem.ud = Ft.ud;}});
2157 }
2158
2159 0x2: CP2Unimpl::swc2();
2160 0x6: CP2Unimpl::sdc2();
2161
2162 }
2163 }
2164
2165