Fix x86 XCHG macro-op to use locked micro-ops for all memory accesses
[gem5.git] / src / arch / power / process.cc
1 /*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 * Timothy M. Jones
31 */
32
33 #include "arch/power/isa_traits.hh"
34 #include "arch/power/process.hh"
35 #include "arch/power/types.hh"
36 #include "base/loader/elf_object.hh"
37 #include "base/loader/object_file.hh"
38 #include "base/misc.hh"
39 #include "cpu/thread_context.hh"
40 #include "mem/page_table.hh"
41 #include "mem/translating_port.hh"
42 #include "sim/process_impl.hh"
43 #include "sim/system.hh"
44
45 using namespace std;
46 using namespace PowerISA;
47
48 PowerLiveProcess::PowerLiveProcess(LiveProcessParams *params,
49 ObjectFile *objFile)
50 : LiveProcess(params, objFile)
51 {
52 stack_base = 0xbf000000L;
53
54 // Set pointer for next thread stack. Reserve 8M for main stack.
55 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
56
57 // Set up break point (Top of Heap)
58 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
59 brk_point = roundUp(brk_point, VMPageSize);
60
61 // Set up region for mmaps. For now, start at bottom of kuseg space.
62 mmap_start = mmap_end = 0x70000000L;
63 }
64
65 void
66 PowerLiveProcess::startup()
67 {
68 argsInit(MachineBytes, VMPageSize);
69 }
70
71 void
72 PowerLiveProcess::argsInit(int intSize, int pageSize)
73 {
74 typedef AuxVector<uint32_t> auxv_t;
75 std::vector<auxv_t> auxv;
76
77 string filename;
78 if (argv.size() < 1)
79 filename = "";
80 else
81 filename = argv[0];
82
83 //We want 16 byte alignment
84 uint64_t align = 16;
85
86 // Overloaded argsInit so that we can fine-tune for POWER architecture
87 Process::startup();
88
89 // load object file into target memory
90 objFile->loadSections(initVirtMem);
91
92 //Setup the auxilliary vectors. These will already have endian conversion.
93 //Auxilliary vectors are loaded only for elf formatted executables.
94 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
95 if (elfObject) {
96 uint32_t features = 0;
97
98 //Bits which describe the system hardware capabilities
99 //XXX Figure out what these should be
100 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
101 //The system page size
102 auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::VMPageSize));
103 //Frequency at which times() increments
104 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
105 // For statically linked executables, this is the virtual address of the
106 // program header tables if they appear in the executable image
107 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
108 // This is the size of a program header entry from the elf file.
109 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
110 // This is the number of program headers from the original elf file.
111 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
112 //This is the address of the elf "interpreter", It should be set
113 //to 0 for regular executables. It should be something else
114 //(not sure what) for dynamic libraries.
115 auxv.push_back(auxv_t(M5_AT_BASE, 0));
116
117 //XXX Figure out what this should be.
118 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
119 //The entry point to the program
120 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
121 //Different user and group IDs
122 auxv.push_back(auxv_t(M5_AT_UID, uid()));
123 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
124 auxv.push_back(auxv_t(M5_AT_GID, gid()));
125 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
126 //Whether to enable "secure mode" in the executable
127 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
128 //The filename of the program
129 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
130 //The string "v51" with unknown meaning
131 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
132 }
133
134 //Figure out how big the initial stack nedes to be
135
136 // A sentry NULL void pointer at the top of the stack.
137 int sentry_size = intSize;
138
139 string platform = "v51";
140 int platform_size = platform.size() + 1;
141
142 // The aux vectors are put on the stack in two groups. The first group are
143 // the vectors that are generated as the elf is loaded. The second group
144 // are the ones that were computed ahead of time and include the platform
145 // string.
146 int aux_data_size = filename.size() + 1;
147
148 int env_data_size = 0;
149 for (int i = 0; i < envp.size(); ++i) {
150 env_data_size += envp[i].size() + 1;
151 }
152 int arg_data_size = 0;
153 for (int i = 0; i < argv.size(); ++i) {
154 arg_data_size += argv[i].size() + 1;
155 }
156
157 int info_block_size =
158 sentry_size + env_data_size + arg_data_size +
159 aux_data_size + platform_size;
160
161 //Each auxilliary vector is two 4 byte words
162 int aux_array_size = intSize * 2 * (auxv.size() + 1);
163
164 int envp_array_size = intSize * (envp.size() + 1);
165 int argv_array_size = intSize * (argv.size() + 1);
166
167 int argc_size = intSize;
168
169 //Figure out the size of the contents of the actual initial frame
170 int frame_size =
171 info_block_size +
172 aux_array_size +
173 envp_array_size +
174 argv_array_size +
175 argc_size;
176
177 //There needs to be padding after the auxiliary vector data so that the
178 //very bottom of the stack is aligned properly.
179 int partial_size = frame_size;
180 int aligned_partial_size = roundUp(partial_size, align);
181 int aux_padding = aligned_partial_size - partial_size;
182
183 int space_needed = frame_size + aux_padding;
184
185 stack_min = stack_base - space_needed;
186 stack_min = roundDown(stack_min, align);
187 stack_size = stack_base - stack_min;
188
189 // map memory
190 pTable->allocate(roundDown(stack_min, pageSize),
191 roundUp(stack_size, pageSize));
192
193 // map out initial stack contents
194 uint32_t sentry_base = stack_base - sentry_size;
195 uint32_t aux_data_base = sentry_base - aux_data_size;
196 uint32_t env_data_base = aux_data_base - env_data_size;
197 uint32_t arg_data_base = env_data_base - arg_data_size;
198 uint32_t platform_base = arg_data_base - platform_size;
199 uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
200 uint32_t envp_array_base = auxv_array_base - envp_array_size;
201 uint32_t argv_array_base = envp_array_base - argv_array_size;
202 uint32_t argc_base = argv_array_base - argc_size;
203
204 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
205 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
206 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
207 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
208 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
209 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
210 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
211 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
212 DPRINTF(Stack, "0x%x - argc \n", argc_base);
213 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
214
215 // write contents to stack
216
217 // figure out argc
218 uint32_t argc = argv.size();
219 uint32_t guestArgc = PowerISA::htog(argc);
220
221 //Write out the sentry void *
222 uint32_t sentry_NULL = 0;
223 initVirtMem->writeBlob(sentry_base,
224 (uint8_t*)&sentry_NULL, sentry_size);
225
226 //Fix up the aux vectors which point to other data
227 for (int i = auxv.size() - 1; i >= 0; i--) {
228 if (auxv[i].a_type == M5_AT_PLATFORM) {
229 auxv[i].a_val = platform_base;
230 initVirtMem->writeString(platform_base, platform.c_str());
231 } else if (auxv[i].a_type == M5_AT_EXECFN) {
232 auxv[i].a_val = aux_data_base;
233 initVirtMem->writeString(aux_data_base, filename.c_str());
234 }
235 }
236
237 //Copy the aux stuff
238 for (int x = 0; x < auxv.size(); x++)
239 {
240 initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
241 (uint8_t*)&(auxv[x].a_type), intSize);
242 initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
243 (uint8_t*)&(auxv[x].a_val), intSize);
244 }
245 //Write out the terminating zeroed auxilliary vector
246 const uint64_t zero = 0;
247 initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
248 (uint8_t*)&zero, 2 * intSize);
249
250 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
251 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
252
253 initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
254
255 ThreadContext *tc = system->getThreadContext(contextIds[0]);
256
257 //Set the stack pointer register
258 tc->setIntReg(StackPointerReg, stack_min);
259
260 Addr prog_entry = objFile->entryPoint();
261 tc->setPC(prog_entry);
262 tc->setNextPC(prog_entry + sizeof(MachInst));
263
264 //Align the "stack_min" to a page boundary.
265 stack_min = roundDown(stack_min, pageSize);
266 }
267
268 PowerISA::IntReg
269 PowerLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
270 {
271 assert(i < 5);
272 return tc->readIntReg(ArgumentReg0 + i++);
273 }
274
275 void
276 PowerLiveProcess::setSyscallArg(ThreadContext *tc,
277 int i, PowerISA::IntReg val)
278 {
279 assert(i < 5);
280 tc->setIntReg(ArgumentReg0 + i, val);
281 }
282
283 void
284 PowerLiveProcess::setSyscallReturn(ThreadContext *tc,
285 SyscallReturn return_value)
286 {
287 tc->setIntReg(ReturnValueReg, return_value.value());
288 }