ARM: move kernel func event to correct location.
[gem5.git] / src / arch / x86 / interrupts.cc
1 /*
2 * Copyright (c) 2008 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40 #include "arch/x86/regs/apic.hh"
41 #include "arch/x86/interrupts.hh"
42 #include "arch/x86/intmessage.hh"
43 #include "cpu/base.hh"
44 #include "debug/LocalApic.hh"
45 #include "dev/x86/i82094aa.hh"
46 #include "dev/x86/pc.hh"
47 #include "dev/x86/south_bridge.hh"
48 #include "mem/packet_access.hh"
49 #include "sim/system.hh"
50 #include "sim/full_system.hh"
51
52 int
53 divideFromConf(uint32_t conf)
54 {
55 // This figures out what division we want from the division configuration
56 // register in the local APIC. The encoding is a little odd but it can
57 // be deciphered fairly easily.
58 int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
59 shift = (shift + 1) % 8;
60 return 1 << shift;
61 }
62
63 namespace X86ISA
64 {
65
66 ApicRegIndex
67 decodeAddr(Addr paddr)
68 {
69 ApicRegIndex regNum;
70 paddr &= ~mask(3);
71 switch (paddr)
72 {
73 case 0x20:
74 regNum = APIC_ID;
75 break;
76 case 0x30:
77 regNum = APIC_VERSION;
78 break;
79 case 0x80:
80 regNum = APIC_TASK_PRIORITY;
81 break;
82 case 0x90:
83 regNum = APIC_ARBITRATION_PRIORITY;
84 break;
85 case 0xA0:
86 regNum = APIC_PROCESSOR_PRIORITY;
87 break;
88 case 0xB0:
89 regNum = APIC_EOI;
90 break;
91 case 0xD0:
92 regNum = APIC_LOGICAL_DESTINATION;
93 break;
94 case 0xE0:
95 regNum = APIC_DESTINATION_FORMAT;
96 break;
97 case 0xF0:
98 regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
99 break;
100 case 0x100:
101 case 0x108:
102 case 0x110:
103 case 0x118:
104 case 0x120:
105 case 0x128:
106 case 0x130:
107 case 0x138:
108 case 0x140:
109 case 0x148:
110 case 0x150:
111 case 0x158:
112 case 0x160:
113 case 0x168:
114 case 0x170:
115 case 0x178:
116 regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x8);
117 break;
118 case 0x180:
119 case 0x188:
120 case 0x190:
121 case 0x198:
122 case 0x1A0:
123 case 0x1A8:
124 case 0x1B0:
125 case 0x1B8:
126 case 0x1C0:
127 case 0x1C8:
128 case 0x1D0:
129 case 0x1D8:
130 case 0x1E0:
131 case 0x1E8:
132 case 0x1F0:
133 case 0x1F8:
134 regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x8);
135 break;
136 case 0x200:
137 case 0x208:
138 case 0x210:
139 case 0x218:
140 case 0x220:
141 case 0x228:
142 case 0x230:
143 case 0x238:
144 case 0x240:
145 case 0x248:
146 case 0x250:
147 case 0x258:
148 case 0x260:
149 case 0x268:
150 case 0x270:
151 case 0x278:
152 regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x8);
153 break;
154 case 0x280:
155 regNum = APIC_ERROR_STATUS;
156 break;
157 case 0x300:
158 regNum = APIC_INTERRUPT_COMMAND_LOW;
159 break;
160 case 0x310:
161 regNum = APIC_INTERRUPT_COMMAND_HIGH;
162 break;
163 case 0x320:
164 regNum = APIC_LVT_TIMER;
165 break;
166 case 0x330:
167 regNum = APIC_LVT_THERMAL_SENSOR;
168 break;
169 case 0x340:
170 regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
171 break;
172 case 0x350:
173 regNum = APIC_LVT_LINT0;
174 break;
175 case 0x360:
176 regNum = APIC_LVT_LINT1;
177 break;
178 case 0x370:
179 regNum = APIC_LVT_ERROR;
180 break;
181 case 0x380:
182 regNum = APIC_INITIAL_COUNT;
183 break;
184 case 0x390:
185 regNum = APIC_CURRENT_COUNT;
186 break;
187 case 0x3E0:
188 regNum = APIC_DIVIDE_CONFIGURATION;
189 break;
190 default:
191 // A reserved register field.
192 panic("Accessed reserved register field %#x.\n", paddr);
193 break;
194 }
195 return regNum;
196 }
197 }
198
199 Tick
200 X86ISA::Interrupts::read(PacketPtr pkt)
201 {
202 Addr offset = pkt->getAddr() - pioAddr;
203 //Make sure we're at least only accessing one register.
204 if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
205 panic("Accessed more than one register at a time in the APIC!\n");
206 ApicRegIndex reg = decodeAddr(offset);
207 uint32_t val = htog(readReg(reg));
208 DPRINTF(LocalApic,
209 "Reading Local APIC register %d at offset %#x as %#x.\n",
210 reg, offset, val);
211 pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
212 pkt->makeAtomicResponse();
213 return latency;
214 }
215
216 Tick
217 X86ISA::Interrupts::write(PacketPtr pkt)
218 {
219 Addr offset = pkt->getAddr() - pioAddr;
220 //Make sure we're at least only accessing one register.
221 if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
222 panic("Accessed more than one register at a time in the APIC!\n");
223 ApicRegIndex reg = decodeAddr(offset);
224 uint32_t val = regs[reg];
225 pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
226 DPRINTF(LocalApic,
227 "Writing Local APIC register %d at offset %#x as %#x.\n",
228 reg, offset, gtoh(val));
229 setReg(reg, gtoh(val));
230 pkt->makeAtomicResponse();
231 return latency;
232 }
233 void
234 X86ISA::Interrupts::requestInterrupt(uint8_t vector,
235 uint8_t deliveryMode, bool level)
236 {
237 /*
238 * Fixed and lowest-priority delivery mode interrupts are handled
239 * using the IRR/ISR registers, checking against the TPR, etc.
240 * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
241 */
242 if (deliveryMode == DeliveryMode::Fixed ||
243 deliveryMode == DeliveryMode::LowestPriority) {
244 DPRINTF(LocalApic, "Interrupt is an %s.\n",
245 DeliveryMode::names[deliveryMode]);
246 // Queue up the interrupt in the IRR.
247 if (vector > IRRV)
248 IRRV = vector;
249 if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
250 setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
251 if (level) {
252 setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
253 } else {
254 clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
255 }
256 }
257 } else if (!DeliveryMode::isReserved(deliveryMode)) {
258 DPRINTF(LocalApic, "Interrupt is an %s.\n",
259 DeliveryMode::names[deliveryMode]);
260 if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
261 pendingUnmaskableInt = pendingSmi = true;
262 smiVector = vector;
263 } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
264 pendingUnmaskableInt = pendingNmi = true;
265 nmiVector = vector;
266 } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
267 pendingExtInt = true;
268 extIntVector = vector;
269 } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
270 pendingUnmaskableInt = pendingInit = true;
271 initVector = vector;
272 } else if (deliveryMode == DeliveryMode::SIPI &&
273 !pendingStartup && !startedUp) {
274 pendingUnmaskableInt = pendingStartup = true;
275 startupVector = vector;
276 }
277 }
278 if (FullSystem)
279 cpu->wakeup();
280 }
281
282
283 void
284 X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
285 {
286 assert(newCPU);
287 if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
288 panic("Local APICs can't be moved between CPUs"
289 " with different IDs.\n");
290 }
291 cpu = newCPU;
292 initialApicId = cpu->cpuId();
293 regs[APIC_ID] = (initialApicId << 24);
294 }
295
296
297 void
298 X86ISA::Interrupts::init()
299 {
300 //
301 // The local apic must register its address ranges on both its pio port
302 // via the basicpiodevice(piodevice) init() function and its int port
303 // that it inherited from IntDev. Note IntDev is not a SimObject itself.
304 //
305 BasicPioDevice::init();
306 IntDev::init();
307 }
308
309
310 Tick
311 X86ISA::Interrupts::recvMessage(PacketPtr pkt)
312 {
313 Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
314 assert(pkt->cmd == MemCmd::MessageReq);
315 switch(offset)
316 {
317 case 0:
318 {
319 TriggerIntMessage message = pkt->get<TriggerIntMessage>();
320 DPRINTF(LocalApic,
321 "Got Trigger Interrupt message with vector %#x.\n",
322 message.vector);
323
324 requestInterrupt(message.vector,
325 message.deliveryMode, message.trigger);
326 }
327 break;
328 default:
329 panic("Local apic got unknown interrupt message at offset %#x.\n",
330 offset);
331 break;
332 }
333 pkt->makeAtomicResponse();
334 return latency;
335 }
336
337
338 Tick
339 X86ISA::Interrupts::recvResponse(PacketPtr pkt)
340 {
341 assert(!pkt->isError());
342 assert(pkt->cmd == MemCmd::MessageResp);
343 if (--pendingIPIs == 0) {
344 InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
345 // Record that the ICR is now idle.
346 low.deliveryStatus = 0;
347 regs[APIC_INTERRUPT_COMMAND_LOW] = low;
348 }
349 DPRINTF(LocalApic, "ICR is now idle.\n");
350 return 0;
351 }
352
353
354 AddrRangeList
355 X86ISA::Interrupts::getAddrRanges()
356 {
357 AddrRangeList ranges;
358 Range<Addr> range = RangeEx(x86LocalAPICAddress(initialApicId, 0),
359 x86LocalAPICAddress(initialApicId, 0) +
360 PageBytes);
361 ranges.push_back(range);
362 pioAddr = range.start;
363 return ranges;
364 }
365
366
367 AddrRangeList
368 X86ISA::Interrupts::getIntAddrRange()
369 {
370 AddrRangeList ranges;
371 ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
372 x86InterruptAddress(initialApicId, 0) +
373 PhysAddrAPICRangeSize));
374 return ranges;
375 }
376
377
378 uint32_t
379 X86ISA::Interrupts::readReg(ApicRegIndex reg)
380 {
381 if (reg >= APIC_TRIGGER_MODE(0) &&
382 reg <= APIC_TRIGGER_MODE(15)) {
383 panic("Local APIC Trigger Mode registers are unimplemented.\n");
384 }
385 switch (reg) {
386 case APIC_ARBITRATION_PRIORITY:
387 panic("Local APIC Arbitration Priority register unimplemented.\n");
388 break;
389 case APIC_PROCESSOR_PRIORITY:
390 panic("Local APIC Processor Priority register unimplemented.\n");
391 break;
392 case APIC_ERROR_STATUS:
393 regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
394 break;
395 case APIC_CURRENT_COUNT:
396 {
397 if (apicTimerEvent.scheduled()) {
398 assert(clock);
399 // Compute how many m5 ticks happen per count.
400 uint64_t ticksPerCount = clock *
401 divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
402 // Compute how many m5 ticks are left.
403 uint64_t val = apicTimerEvent.when() - curTick();
404 // Turn that into a count.
405 val = (val + ticksPerCount - 1) / ticksPerCount;
406 return val;
407 } else {
408 return 0;
409 }
410 }
411 default:
412 break;
413 }
414 return regs[reg];
415 }
416
417 void
418 X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
419 {
420 uint32_t newVal = val;
421 if (reg >= APIC_IN_SERVICE(0) &&
422 reg <= APIC_IN_SERVICE(15)) {
423 panic("Local APIC In-Service registers are unimplemented.\n");
424 }
425 if (reg >= APIC_TRIGGER_MODE(0) &&
426 reg <= APIC_TRIGGER_MODE(15)) {
427 panic("Local APIC Trigger Mode registers are unimplemented.\n");
428 }
429 if (reg >= APIC_INTERRUPT_REQUEST(0) &&
430 reg <= APIC_INTERRUPT_REQUEST(15)) {
431 panic("Local APIC Interrupt Request registers "
432 "are unimplemented.\n");
433 }
434 switch (reg) {
435 case APIC_ID:
436 newVal = val & 0xFF;
437 break;
438 case APIC_VERSION:
439 // The Local APIC Version register is read only.
440 return;
441 case APIC_TASK_PRIORITY:
442 newVal = val & 0xFF;
443 break;
444 case APIC_ARBITRATION_PRIORITY:
445 panic("Local APIC Arbitration Priority register unimplemented.\n");
446 break;
447 case APIC_PROCESSOR_PRIORITY:
448 panic("Local APIC Processor Priority register unimplemented.\n");
449 break;
450 case APIC_EOI:
451 // Remove the interrupt that just completed from the local apic state.
452 clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
453 updateISRV();
454 return;
455 case APIC_LOGICAL_DESTINATION:
456 newVal = val & 0xFF000000;
457 break;
458 case APIC_DESTINATION_FORMAT:
459 newVal = val | 0x0FFFFFFF;
460 break;
461 case APIC_SPURIOUS_INTERRUPT_VECTOR:
462 regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
463 regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
464 if (val & (1 << 9))
465 warn("Focus processor checking not implemented.\n");
466 break;
467 case APIC_ERROR_STATUS:
468 {
469 if (regs[APIC_INTERNAL_STATE] & 0x1) {
470 regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
471 newVal = 0;
472 } else {
473 regs[APIC_INTERNAL_STATE] |= ULL(0x1);
474 return;
475 }
476
477 }
478 break;
479 case APIC_INTERRUPT_COMMAND_LOW:
480 {
481 InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
482 // Check if we're already sending an IPI.
483 if (low.deliveryStatus) {
484 newVal = low;
485 break;
486 }
487 low = val;
488 InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
489 // Record that an IPI is being sent.
490 low.deliveryStatus = 1;
491 TriggerIntMessage message = 0;
492 message.destination = high.destination;
493 message.vector = low.vector;
494 message.deliveryMode = low.deliveryMode;
495 message.destMode = low.destMode;
496 message.level = low.level;
497 message.trigger = low.trigger;
498 bool timing = sys->getMemoryMode() == Enums::timing;
499 // Be careful no updates of the delivery status bit get lost.
500 regs[APIC_INTERRUPT_COMMAND_LOW] = low;
501 ApicList apics;
502 int numContexts = sys->numContexts();
503 switch (low.destShorthand) {
504 case 0:
505 if (message.deliveryMode == DeliveryMode::LowestPriority) {
506 panic("Lowest priority delivery mode "
507 "IPIs aren't implemented.\n");
508 }
509 if (message.destMode == 1) {
510 int dest = message.destination;
511 hack_once("Assuming logical destinations are 1 << id.\n");
512 for (int i = 0; i < numContexts; i++) {
513 if (dest & 0x1)
514 apics.push_back(i);
515 dest = dest >> 1;
516 }
517 } else {
518 if (message.destination == 0xFF) {
519 for (int i = 0; i < numContexts; i++) {
520 if (i == initialApicId) {
521 requestInterrupt(message.vector,
522 message.deliveryMode, message.trigger);
523 } else {
524 apics.push_back(i);
525 }
526 }
527 } else {
528 if (message.destination == initialApicId) {
529 requestInterrupt(message.vector,
530 message.deliveryMode, message.trigger);
531 } else {
532 apics.push_back(message.destination);
533 }
534 }
535 }
536 break;
537 case 1:
538 newVal = val;
539 requestInterrupt(message.vector,
540 message.deliveryMode, message.trigger);
541 break;
542 case 2:
543 requestInterrupt(message.vector,
544 message.deliveryMode, message.trigger);
545 // Fall through
546 case 3:
547 {
548 for (int i = 0; i < numContexts; i++) {
549 if (i != initialApicId) {
550 apics.push_back(i);
551 }
552 }
553 }
554 break;
555 }
556 pendingIPIs += apics.size();
557 intPort.sendMessage(apics, message, timing);
558 newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
559 }
560 break;
561 case APIC_LVT_TIMER:
562 case APIC_LVT_THERMAL_SENSOR:
563 case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
564 case APIC_LVT_LINT0:
565 case APIC_LVT_LINT1:
566 case APIC_LVT_ERROR:
567 {
568 uint64_t readOnlyMask = (1 << 12) | (1 << 14);
569 newVal = (val & ~readOnlyMask) |
570 (regs[reg] & readOnlyMask);
571 }
572 break;
573 case APIC_INITIAL_COUNT:
574 {
575 assert(clock);
576 newVal = bits(val, 31, 0);
577 // Compute how many timer ticks we're being programmed for.
578 uint64_t newCount = newVal *
579 (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
580 // Schedule on the edge of the next tick plus the new count.
581 Tick offset = curTick() % clock;
582 if (offset) {
583 reschedule(apicTimerEvent,
584 curTick() + (newCount + 1) * clock - offset, true);
585 } else {
586 reschedule(apicTimerEvent,
587 curTick() + newCount * clock, true);
588 }
589 }
590 break;
591 case APIC_CURRENT_COUNT:
592 //Local APIC Current Count register is read only.
593 return;
594 case APIC_DIVIDE_CONFIGURATION:
595 newVal = val & 0xB;
596 break;
597 default:
598 break;
599 }
600 regs[reg] = newVal;
601 return;
602 }
603
604
605 X86ISA::Interrupts::Interrupts(Params * p) :
606 BasicPioDevice(p), IntDev(this, p->int_latency), latency(p->pio_latency),
607 clock(0),
608 apicTimerEvent(this),
609 pendingSmi(false), smiVector(0),
610 pendingNmi(false), nmiVector(0),
611 pendingExtInt(false), extIntVector(0),
612 pendingInit(false), initVector(0),
613 pendingStartup(false), startupVector(0),
614 startedUp(false), pendingUnmaskableInt(false),
615 pendingIPIs(0), cpu(NULL),
616 intSlavePort(name() + ".int_slave", this, this, latency)
617 {
618 pioSize = PageBytes;
619 memset(regs, 0, sizeof(regs));
620 //Set the local apic DFR to the flat model.
621 regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
622 ISRV = 0;
623 IRRV = 0;
624 }
625
626
627 bool
628 X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
629 {
630 RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
631 if (pendingUnmaskableInt) {
632 DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
633 return true;
634 }
635 if (rflags.intf) {
636 if (pendingExtInt) {
637 DPRINTF(LocalApic, "Reported pending external interrupt.\n");
638 return true;
639 }
640 if (IRRV > ISRV && bits(IRRV, 7, 4) >
641 bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
642 DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
643 return true;
644 }
645 }
646 return false;
647 }
648
649 Fault
650 X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
651 {
652 assert(checkInterrupts(tc));
653 // These are all probably fairly uncommon, so we'll make them easier to
654 // check for.
655 if (pendingUnmaskableInt) {
656 if (pendingSmi) {
657 DPRINTF(LocalApic, "Generated SMI fault object.\n");
658 return new SystemManagementInterrupt();
659 } else if (pendingNmi) {
660 DPRINTF(LocalApic, "Generated NMI fault object.\n");
661 return new NonMaskableInterrupt(nmiVector);
662 } else if (pendingInit) {
663 DPRINTF(LocalApic, "Generated INIT fault object.\n");
664 return new InitInterrupt(initVector);
665 } else if (pendingStartup) {
666 DPRINTF(LocalApic, "Generating SIPI fault object.\n");
667 return new StartupInterrupt(startupVector);
668 } else {
669 panic("pendingUnmaskableInt set, but no unmaskable "
670 "ints were pending.\n");
671 return NoFault;
672 }
673 } else if (pendingExtInt) {
674 DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
675 return new ExternalInterrupt(extIntVector);
676 } else {
677 DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
678 // The only thing left are fixed and lowest priority interrupts.
679 return new ExternalInterrupt(IRRV);
680 }
681 }
682
683 void
684 X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
685 {
686 assert(checkInterrupts(tc));
687 if (pendingUnmaskableInt) {
688 if (pendingSmi) {
689 DPRINTF(LocalApic, "SMI sent to core.\n");
690 pendingSmi = false;
691 } else if (pendingNmi) {
692 DPRINTF(LocalApic, "NMI sent to core.\n");
693 pendingNmi = false;
694 } else if (pendingInit) {
695 DPRINTF(LocalApic, "Init sent to core.\n");
696 pendingInit = false;
697 startedUp = false;
698 } else if (pendingStartup) {
699 DPRINTF(LocalApic, "SIPI sent to core.\n");
700 pendingStartup = false;
701 startedUp = true;
702 }
703 if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
704 pendingUnmaskableInt = false;
705 } else if (pendingExtInt) {
706 pendingExtInt = false;
707 } else {
708 DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
709 // Mark the interrupt as "in service".
710 ISRV = IRRV;
711 setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
712 // Clear it out of the IRR.
713 clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
714 updateIRRV();
715 }
716 }
717
718 void
719 X86ISA::Interrupts::serialize(std::ostream &os)
720 {
721 SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
722 SERIALIZE_SCALAR(clock);
723 SERIALIZE_SCALAR(pendingSmi);
724 SERIALIZE_SCALAR(smiVector);
725 SERIALIZE_SCALAR(pendingNmi);
726 SERIALIZE_SCALAR(nmiVector);
727 SERIALIZE_SCALAR(pendingExtInt);
728 SERIALIZE_SCALAR(extIntVector);
729 SERIALIZE_SCALAR(pendingInit);
730 SERIALIZE_SCALAR(initVector);
731 SERIALIZE_SCALAR(pendingStartup);
732 SERIALIZE_SCALAR(startupVector);
733 SERIALIZE_SCALAR(startedUp);
734 SERIALIZE_SCALAR(pendingUnmaskableInt);
735 SERIALIZE_SCALAR(pendingIPIs);
736 SERIALIZE_SCALAR(IRRV);
737 SERIALIZE_SCALAR(ISRV);
738 bool apicTimerEventScheduled = apicTimerEvent.scheduled();
739 SERIALIZE_SCALAR(apicTimerEventScheduled);
740 Tick apicTimerEventTick = apicTimerEvent.when();
741 SERIALIZE_SCALAR(apicTimerEventTick);
742 }
743
744 void
745 X86ISA::Interrupts::unserialize(Checkpoint *cp, const std::string &section)
746 {
747 UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
748 UNSERIALIZE_SCALAR(clock);
749 UNSERIALIZE_SCALAR(pendingSmi);
750 UNSERIALIZE_SCALAR(smiVector);
751 UNSERIALIZE_SCALAR(pendingNmi);
752 UNSERIALIZE_SCALAR(nmiVector);
753 UNSERIALIZE_SCALAR(pendingExtInt);
754 UNSERIALIZE_SCALAR(extIntVector);
755 UNSERIALIZE_SCALAR(pendingInit);
756 UNSERIALIZE_SCALAR(initVector);
757 UNSERIALIZE_SCALAR(pendingStartup);
758 UNSERIALIZE_SCALAR(startupVector);
759 UNSERIALIZE_SCALAR(startedUp);
760 UNSERIALIZE_SCALAR(pendingUnmaskableInt);
761 UNSERIALIZE_SCALAR(pendingIPIs);
762 UNSERIALIZE_SCALAR(IRRV);
763 UNSERIALIZE_SCALAR(ISRV);
764 bool apicTimerEventScheduled;
765 UNSERIALIZE_SCALAR(apicTimerEventScheduled);
766 if (apicTimerEventScheduled) {
767 Tick apicTimerEventTick;
768 UNSERIALIZE_SCALAR(apicTimerEventTick);
769 if (apicTimerEvent.scheduled()) {
770 reschedule(apicTimerEvent, apicTimerEventTick, true);
771 } else {
772 schedule(apicTimerEvent, apicTimerEventTick);
773 }
774 }
775 }
776
777 X86ISA::Interrupts *
778 X86LocalApicParams::create()
779 {
780 return new X86ISA::Interrupts(this);
781 }