592941d04d62578a0a59deb468d950ade1af1070
[gem5.git] / src / arch / x86 / isa / microasm.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2007 The Hewlett-Packard Development Company
4 // All rights reserved.
5 //
6 // Redistribution and use of this software in source and binary forms,
7 // with or without modification, are permitted provided that the
8 // following conditions are met:
9 //
10 // The software must be used only for Non-Commercial Use which means any
11 // use which is NOT directed to receiving any direct monetary
12 // compensation for, or commercial advantage from such use. Illustrative
13 // examples of non-commercial use are academic research, personal study,
14 // teaching, education and corporate research & development.
15 // Illustrative examples of commercial use are distributing products for
16 // commercial advantage and providing services using the software for
17 // commercial advantage.
18 //
19 // If you wish to use this software or functionality therein that may be
20 // covered by patents for commercial use, please contact:
21 // Director of Intellectual Property Licensing
22 // Office of Strategy and Technology
23 // Hewlett-Packard Company
24 // 1501 Page Mill Road
25 // Palo Alto, California 94304
26 //
27 // Redistributions of source code must retain the above copyright notice,
28 // this list of conditions and the following disclaimer. Redistributions
29 // in binary form must reproduce the above copyright notice, this list of
30 // conditions and the following disclaimer in the documentation and/or
31 // other materials provided with the distribution. Neither the name of
32 // the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33 // contributors may be used to endorse or promote products derived from
34 // this software without specific prior written permission. No right of
35 // sublicense is granted herewith. Derivatives of the software and
36 // output created using the software may be prepared, but only for
37 // Non-Commercial Uses. Derivatives of the software may be shared with
38 // others provided: (i) the others agree to abide by the list of
39 // conditions herein which includes the Non-Commercial Use restrictions;
40 // and (ii) such Derivatives of the software include the above copyright
41 // notice to acknowledge the contribution from this software where
42 // applicable, this list of conditions and the disclaimer below.
43 //
44 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 //
56 // Authors: Gabe Black
57
58 ////////////////////////////////////////////////////////////////////
59 //
60 // Code to "specialize" a microcode sequence to use a particular
61 // variety of operands
62 //
63
64 let {{
65 # This code builds up a decode block which decodes based on switchval.
66 # vals is a dict which matches case values with what should be decoded to.
67 # builder is called on the exploded contents of "vals" values to generate
68 # whatever code should be used.
69 def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
70 header_output = ''
71 decoder_output = ''
72 decode_block = 'switch(%s) {\n' % switchVal
73 exec_output = ''
74 for (val, todo) in vals.items():
75 (new_header_output,
76 new_decoder_output,
77 new_decode_block,
78 new_exec_output) = builder(name, Name, *todo)
79 header_output += new_header_output
80 decoder_output += new_decoder_output
81 decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
82 exec_output += new_exec_output
83 if default:
84 (new_header_output,
85 new_decoder_output,
86 new_decode_block,
87 new_exec_output) = builder(name, Name, *default)
88 header_output += new_header_output
89 decoder_output += new_decoder_output
90 decode_block += '\tdefault: %s\n' % new_decode_block
91 exec_output += new_exec_output
92 decode_block += '}\n'
93 return (header_output, decoder_output, decode_block, exec_output)
94 }};
95
96 let {{
97 class OpType(object):
98 parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
99 def __init__(self, opTypeString):
100 match = OpType.parser.search(opTypeString)
101 if match == None:
102 raise Exception, "Problem parsing operand type %s" % opTypeString
103 self.reg = match.group("reg")
104 self.tag = match.group("tag")
105 self.size = match.group("size")
106
107 # This function specializes the given piece of code to use a particular
108 # set of argument types described by "opTypes". These are "implemented"
109 # in reverse order.
110 def specializeInst(name, Name, code, opTypes):
111 opNum = len(opTypes) - 1
112 while len(opTypes):
113 # print "Building a composite op with tags", opTypes
114 # print "And code", code
115 opNum = len(opTypes) - 1
116 # A regular expression to find the operand placeholders we're
117 # interested in.
118 opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
119
120 # Parse the operand type strign we're working with
121 opType = OpType(opTypes[opNum])
122
123 if opType.reg:
124 #Figure out what to do with fixed register operands
125 if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
126 code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
127 elif opType.reg == "Al":
128 # We need a way to specify register width
129 code = opRe.sub("%{INTREG_RAX}", code)
130 else:
131 print "Didn't know how to encode fixed register %s!" % opType.reg
132 elif opType.tag == None or opType.size == None:
133 raise Exception, "Problem parsing operand tag: %s" % opType.tag
134 elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
135 # Use the "reg" field of the ModRM byte to select the register
136 code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
137 elif opType.tag in ("E", "Q", "W"):
138 # This might refer to memory or to a register. We need to
139 # divide it up farther.
140 regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
141 regTypes = copy.copy(opTypes)
142 regTypes.pop(-1)
143 # This needs to refer to memory, but we'll fill in the details
144 # later. It needs to take into account unaligned memory
145 # addresses.
146 memCode = opRe.sub("%0", code)
147 memTypes = copy.copy(opTypes)
148 memTypes.pop(-1)
149 return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
150 {"3" : (regCode, regTypes)}, (memCode, memTypes))
151 elif opType.tag in ("I", "J"):
152 # Immediates are already in the instruction, so don't leave in
153 # those parameters
154 code = opRe.sub("${IMMEDIATE}", code)
155 elif opType.tag == "M":
156 # This needs to refer to memory, but we'll fill in the details
157 # later. It needs to take into account unaligned memory
158 # addresses.
159 code = opRe.sub("%0", code)
160 elif opType.tag in ("PR", "R", "VR"):
161 # There should probably be a check here to verify that mod
162 # is equal to 11b
163 code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
164 else:
165 raise Exception, "Unrecognized tag %s." % opType.tag
166 opTypes.pop(-1)
167
168 # At this point, we've built up "code" to have all the necessary extra
169 # instructions needed to implement whatever types of operands were
170 # specified. Now we'll assemble it it into a StaticInst.
171 return assembleMicro(name, Name, code)
172 }};
173
174 ////////////////////////////////////////////////////////////////////
175 //
176 // The microcode assembler
177 //
178
179 let {{
180 # These are used when setting up microops so that they can specialize their
181 # base class template properly.
182 RegOpType = "RegisterOperand"
183 ImmOpType = "ImmediateOperand"
184 }};
185
186 let {{
187 class MicroOpStatement(object):
188 def __init__(self):
189 self.className = ''
190 self.label = ''
191 self.args = []
192
193 # This converts a list of python bools into
194 # a comma seperated list of C++ bools.
195 def microFlagsText(self, vals):
196 text = ""
197 for val in vals:
198 if val:
199 text += ", true"
200 else:
201 text += ", false"
202 return text
203
204 def getAllocator(self, *microFlags):
205 args = ''
206 signature = "<"
207 emptySig = True
208 for arg in self.args:
209 if not emptySig:
210 signature += ", "
211 emptySig = False
212 if arg.has_key("operandImm"):
213 args += ", %s" % arg["operandImm"]
214 signature += ImmOpType
215 elif arg.has_key("operandReg"):
216 args += ", %s" % arg["operandReg"]
217 signature += RegOpType
218 elif arg.has_key("operandLabel"):
219 raise Exception, "Found a label while creating allocator string."
220 else:
221 raise Exception, "Unrecognized operand type."
222 signature += ">"
223 return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args)
224 }};
225
226 let{{
227 def assembleMicro(name, Name, code):
228
229 # This function takes in a block of microcode assembly and returns
230 # a python list of objects which describe it.
231
232 # Keep this around in case we need it later
233 orig_code = code
234 # A list of the statements we've found thus far
235 statements = []
236
237 # Regular expressions to pull each piece of the statement out at a
238 # time. Each expression expects the thing it's looking for to be at
239 # the beginning of the line, so the previous component is stripped
240 # before continuing.
241 labelRe = re.compile(r'^[ \t]*(?P<label>\w\w*)[ \t]:')
242 lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
243 classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
244 # This recognizes three different flavors of operands:
245 # 1. Raw decimal numbers composed of digits between 0 and 9
246 # 2. Code beginning with "{" and continuing until the first "}"
247 # ^ This one might need revising
248 # 3. A label, which starts with a capital or small letter, or
249 # underscore, which is optionally followed by a sequence of
250 # capital or small letters, underscores, or digts between 0 and 9
251 opRe = re.compile( \
252 r'^[ \t]*((\@(?P<operandLabel0>\w\w*))|' +
253 r'(\@\{(?P<operandLabel1>[^}]*)\})|' +
254 r'(\%(?P<operandReg0>\w\w*))|' +
255 r'(\%\{(?P<operandReg1>[^}]*)\})|' +
256 r'(\$(?P<operandImm0>\w\w*))|' +
257 r'(\$\{(?P<operandImm1>[^}]*)\}))')
258 lineMatch = lineRe.search(code)
259 while lineMatch != None:
260 statement = MicroOpStatement()
261 # Get a line and seperate it from the rest of the code
262 line = lineMatch.group("line")
263 orig_line = line
264 # print "Parsing line %s" % line
265 code = lineRe.sub('', code, 1)
266
267 # Find the label, if any
268 labelMatch = labelRe.search(line)
269 if labelMatch != None:
270 statement.label = labelMatch.group("label")
271 # print "Found label %s." % statement.label
272 # Clear the label from the statement
273 line = labelRe.sub('', line, 1)
274
275 # Find the class name which is roughly equivalent to the op name
276 classMatch = classRe.search(line)
277 if classMatch == None:
278 raise Exception, "Couldn't find class name in statement: %s" \
279 % orig_line
280 else:
281 statement.className = classMatch.group("className")
282 # print "Found class name %s." % statement.className
283
284 # Clear the class name from the statement
285 line = classRe.sub('', line, 1)
286
287 #Find as many arguments as you can
288 statement.args = []
289 opMatch = opRe.search(line)
290 while opMatch is not None:
291 statement.args.append({})
292 # args is a list of dicts which collect different
293 # representations of operand values. Different forms might be
294 # needed in different places, for instance to replace a label
295 # with an offset.
296 for opType in ("operandLabel0", "operandReg0", "operandImm0",
297 "operandLabel1", "operandReg1", "operandImm1"):
298 if opMatch.group(opType):
299 statement.args[-1][opType[:-1]] = opMatch.group(opType)
300 if len(statement.args[-1]) == 0:
301 print "Problem parsing operand in statement: %s" \
302 % orig_line
303 line = opRe.sub('', line, 1)
304 # print "Found operand %s." % statement.args[-1]
305 opMatch = opRe.search(line)
306 # print "Found operands", statement.args
307
308 # Add this statement to our collection
309 statements.append(statement)
310
311 # Get the next line
312 lineMatch = lineRe.search(code)
313
314 # Decode the labels into displacements
315
316 labels = {}
317 micropc = 0
318 for statement in statements:
319 if statement.label:
320 labels[statement.label] = count
321 micropc += 1
322 micropc = 0
323 for statement in statements:
324 for arg in statement.args:
325 if arg.has_key("operandLabel"):
326 if not labels.has_key(arg["operandLabel"]):
327 raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
328 # This is assuming that intra microcode branches go to
329 # the next micropc + displacement, or
330 # micropc + 1 + displacement.
331 arg["operandImm"] = labels[arg["operandLabel"]] - micropc - 1
332 micropc += 1
333
334 # If we can implement this instruction with exactly one microop, just
335 # use that directly.
336 if len(statements) == 1:
337 decode_block = "return %s;" % \
338 statements[0].getAllocator()
339 return ('', '', decode_block, '')
340 else:
341 # Build a macroop to contain the sequence of microops we've
342 # been given.
343 return genMacroOp(name, Name, statements)
344 }};