X86: Ignore the size part of XMM/MMX operands. The instructions know what they want.
[gem5.git] / src / arch / x86 / isa / specialize.isa
1 // -*- mode:c++ -*-
2
3 // Copyright (c) 2007 The Hewlett-Packard Development Company
4 // All rights reserved.
5 //
6 // Redistribution and use of this software in source and binary forms,
7 // with or without modification, are permitted provided that the
8 // following conditions are met:
9 //
10 // The software must be used only for Non-Commercial Use which means any
11 // use which is NOT directed to receiving any direct monetary
12 // compensation for, or commercial advantage from such use. Illustrative
13 // examples of non-commercial use are academic research, personal study,
14 // teaching, education and corporate research & development.
15 // Illustrative examples of commercial use are distributing products for
16 // commercial advantage and providing services using the software for
17 // commercial advantage.
18 //
19 // If you wish to use this software or functionality therein that may be
20 // covered by patents for commercial use, please contact:
21 // Director of Intellectual Property Licensing
22 // Office of Strategy and Technology
23 // Hewlett-Packard Company
24 // 1501 Page Mill Road
25 // Palo Alto, California 94304
26 //
27 // Redistributions of source code must retain the above copyright notice,
28 // this list of conditions and the following disclaimer. Redistributions
29 // in binary form must reproduce the above copyright notice, this list of
30 // conditions and the following disclaimer in the documentation and/or
31 // other materials provided with the distribution. Neither the name of
32 // the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
33 // contributors may be used to endorse or promote products derived from
34 // this software without specific prior written permission. No right of
35 // sublicense is granted herewith. Derivatives of the software and
36 // output created using the software may be prepared, but only for
37 // Non-Commercial Uses. Derivatives of the software may be shared with
38 // others provided: (i) the others agree to abide by the list of
39 // conditions herein which includes the Non-Commercial Use restrictions;
40 // and (ii) such Derivatives of the software include the above copyright
41 // notice to acknowledge the contribution from this software where
42 // applicable, this list of conditions and the disclaimer below.
43 //
44 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
47 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
48 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
50 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
51 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
52 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
53 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
54 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 //
56 // Authors: Gabe Black
57
58 ////////////////////////////////////////////////////////////////////
59 //
60 // Code to "specialize" a microcode sequence to use a particular
61 // variety of operands
62 //
63
64 let {{
65 # This code builds up a decode block which decodes based on switchval.
66 # vals is a dict which matches case values with what should be decoded to.
67 # Each element of the dict is a list containing a function and then the
68 # arguments to pass to it.
69 def doSplitDecode(switchVal, vals, default = None):
70 blocks = OutputBlocks()
71 blocks.decode_block = 'switch(%s) {\n' % switchVal
72 for (val, todo) in vals.items():
73 new_blocks = todo[0](*todo[1:])
74 new_blocks.decode_block = \
75 '\tcase %s: %s\n' % (val, new_blocks.decode_block)
76 blocks.append(new_blocks)
77 if default:
78 new_blocks = default[0](*default[1:])
79 new_blocks.decode_block = \
80 '\tdefault: %s\n' % new_blocks.decode_block
81 blocks.append(new_blocks)
82 blocks.decode_block += '}\n'
83 return blocks
84 }};
85
86 let {{
87 def doRipRelativeDecode(Name, opTypes, env):
88 # print "RIPing %s with opTypes %s" % (Name, opTypes)
89 env.memoryInst = True
90 normEnv = copy.copy(env)
91 normEnv.addToDisassembly(
92 '''printMem(out, env.seg, env.scale, env.index, env.base,
93 machInst.displacement, env.addressSize, false);''')
94 normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), normEnv)
95 ripEnv = copy.copy(env)
96 ripEnv.addToDisassembly(
97 '''printMem(out, env.seg, 1, 0, 0,
98 machInst.displacement, env.addressSize, true);''')
99 ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), ripEnv)
100
101 blocks = OutputBlocks()
102 blocks.append(normBlocks)
103 blocks.append(ripBlocks)
104
105 blocks.decode_block = '''
106 if(machInst.modRM.mod == 0 &&
107 machInst.modRM.rm == 5 &&
108 machInst.mode.submode == SixtyFourBitMode)
109 { %s }
110 else
111 { %s }''' % \
112 (ripBlocks.decode_block, normBlocks.decode_block)
113 return blocks
114 }};
115
116 let {{
117 class OpType(object):
118 parser = re.compile(r"(?P<tag>[A-Z]+)(?P<size>[a-z]*)|(r(?P<reg>[A-Z0-9]+)(?P<rsize>[a-z]*))")
119 def __init__(self, opTypeString):
120 match = OpType.parser.search(opTypeString)
121 if match == None:
122 raise Exception, "Problem parsing operand type %s" % opTypeString
123 self.reg = match.group("reg")
124 self.tag = match.group("tag")
125 self.size = match.group("size")
126 if not self.size:
127 self.size = match.group("rsize")
128
129 ModRMRegIndex = "(MODRM_REG | (REX_R << 3))"
130 ModRMRMIndex = "(MODRM_RM | (REX_B << 3))"
131 InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))"
132
133 # This function specializes the given piece of code to use a particular
134 # set of argument types described by "opTypes".
135 def specializeInst(Name, opTypes, env):
136 # print "Specializing %s with opTypes %s" % (Name, opTypes)
137 while len(opTypes):
138 # Parse the operand type string we're working with
139 opType = OpType(opTypes[0])
140 opTypes.pop(0)
141
142 if opType.tag not in ("I", "J", "P", "PR", "Q", "V", "VR", "W"):
143 if opType.size:
144 env.setSize(opType.size)
145
146 if opType.reg:
147 #Figure out what to do with fixed register operands
148 #This is the index to use, so we should stick it some place.
149 if opType.reg in ("A", "B", "C", "D"):
150 regString = "INTREG_R%sX" % opType.reg
151 else:
152 regString = "INTREG_R%s" % opType.reg
153 env.addReg(regString)
154 env.addToDisassembly(
155 "printReg(out, %s, regSize);\n" % regString)
156 Name += "_R"
157 elif opType.tag == "B":
158 # This refers to registers whose index is encoded as part of the opcode
159 env.addToDisassembly(
160 "printReg(out, %s, regSize);\n" % InstRegIndex)
161 Name += "_R"
162 env.addReg(InstRegIndex)
163 elif opType.tag == "M":
164 # This refers to memory. The macroop constructor sets up modrm
165 # addressing. Non memory modrm settings should cause an error.
166 env.doModRM = True
167 return doRipRelativeDecode(Name, opTypes, env)
168 elif opType.tag == None or opType.size == None:
169 raise Exception, "Problem parsing operand tag: %s" % opType.tag
170 elif opType.tag == "C":
171 # A control register indexed by the "reg" field
172 env.addReg(ModRMRegIndex)
173 env.addToDisassembly(
174 "ccprintf(out, \"CR%%d\", %s);\n" % ModRMRegIndex)
175 Name += "_C"
176 elif opType.tag == "D":
177 # A debug register indexed by the "reg" field
178 env.addReg(ModRMRegIndex)
179 env.addToDisassembly(
180 "ccprintf(out, \"DR%%d\", %s);\n" % ModRMRegIndex)
181 Name += "_D"
182 elif opType.tag == "S":
183 # A segment selector register indexed by the "reg" field
184 env.addReg(ModRMRegIndex)
185 env.addToDisassembly(
186 "printSegment(out, %s);\n" % ModRMRegIndex)
187 Name += "_S"
188 elif opType.tag in ("G", "P", "T", "V"):
189 # Use the "reg" field of the ModRM byte to select the register
190 env.addReg(ModRMRegIndex)
191 env.addToDisassembly(
192 "printReg(out, %s, regSize);\n" % ModRMRegIndex)
193 if opType.tag == "P":
194 Name += "_MMX"
195 elif opType.tag == "V":
196 Name += "_XMM"
197 else:
198 Name += "_R"
199 elif opType.tag in ("E", "Q", "W"):
200 # This might refer to memory or to a register. We need to
201 # divide it up farther.
202 regEnv = copy.copy(env)
203 regEnv.addReg(ModRMRMIndex)
204 regEnv.addToDisassembly(
205 "printReg(out, %s, regSize);\n" % ModRMRMIndex)
206 # This refers to memory. The macroop constructor should set up
207 # modrm addressing.
208 memEnv = copy.copy(env)
209 memEnv.doModRM = True
210 regSuffix = "_R"
211 if opType.tag == "Q":
212 regSuffix = "_MMX"
213 elif opType.tag == "W":
214 regSuffix = "_XMM"
215 return doSplitDecode("MODRM_MOD",
216 {"3" : (specializeInst, Name + regSuffix,
217 copy.copy(opTypes), regEnv)},
218 (doRipRelativeDecode, Name,
219 copy.copy(opTypes), memEnv))
220 elif opType.tag in ("I", "J"):
221 # Immediates
222 env.addToDisassembly(
223 "ccprintf(out, \"%#x\", machInst.immediate);\n")
224 Name += "_I"
225 elif opType.tag == "O":
226 # Immediate containing a memory offset
227 Name += "_MI"
228 elif opType.tag in ("PR", "R", "VR"):
229 # Non register modrm settings should cause an error
230 env.addReg(ModRMRMIndex)
231 env.addToDisassembly(
232 "printReg(out, %s, regSize);\n" % ModRMRMIndex)
233 if opType.tag == "PR":
234 Name += "_MMX"
235 elif opType.tag == "VR":
236 Name += "_XMM"
237 else:
238 Name += "_R"
239 elif opType.tag in ("X", "Y"):
240 # This type of memory addressing is for string instructions.
241 # They'll use the right index and segment internally.
242 if opType.tag == "X":
243 env.addToDisassembly(
244 '''printMem(out, env.seg,
245 1, X86ISA::ZeroReg, X86ISA::INTREG_RSI, 0,
246 env.addressSize, false);''')
247 else:
248 env.addToDisassembly(
249 '''printMem(out, SEGMENT_REG_ES,
250 1, X86ISA::ZeroReg, X86ISA::INTREG_RDI, 0,
251 env.addressSize, false);''')
252 Name += "_M"
253 else:
254 raise Exception, "Unrecognized tag %s." % opType.tag
255
256 # Generate code to return a macroop of the given name which will
257 # operate in the "emulation environment" env
258 return genMacroop(Name, env)
259 }};