mem-cache: Add multiple eviction stats
[gem5.git] / src / arch / x86 / process.cc
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45 #include "arch/x86/process.hh"
46
47 #include <string>
48 #include <vector>
49
50 #include "arch/x86/isa_traits.hh"
51 #include "arch/x86/regs/misc.hh"
52 #include "arch/x86/regs/segment.hh"
53 #include "arch/x86/system.hh"
54 #include "arch/x86/types.hh"
55 #include "base/loader/elf_object.hh"
56 #include "base/loader/object_file.hh"
57 #include "base/logging.hh"
58 #include "base/trace.hh"
59 #include "cpu/thread_context.hh"
60 #include "debug/Stack.hh"
61 #include "mem/multi_level_page_table.hh"
62 #include "mem/page_table.hh"
63 #include "params/Process.hh"
64 #include "sim/aux_vector.hh"
65 #include "sim/process_impl.hh"
66 #include "sim/syscall_desc.hh"
67 #include "sim/syscall_return.hh"
68 #include "sim/system.hh"
69
70 using namespace std;
71 using namespace X86ISA;
72
73 static const int ArgumentReg[] = {
74 INTREG_RDI,
75 INTREG_RSI,
76 INTREG_RDX,
77 // This argument register is r10 for syscalls and rcx for C.
78 INTREG_R10W,
79 // INTREG_RCX,
80 INTREG_R8W,
81 INTREG_R9W
82 };
83
84 static const int NumArgumentRegs M5_VAR_USED =
85 sizeof(ArgumentReg) / sizeof(const int);
86
87 static const int ArgumentReg32[] = {
88 INTREG_EBX,
89 INTREG_ECX,
90 INTREG_EDX,
91 INTREG_ESI,
92 INTREG_EDI,
93 INTREG_EBP
94 };
95
96 static const int NumArgumentRegs32 M5_VAR_USED =
97 sizeof(ArgumentReg) / sizeof(const int);
98
99 template class MultiLevelPageTable<LongModePTE<47, 39>,
100 LongModePTE<38, 30>,
101 LongModePTE<29, 21>,
102 LongModePTE<20, 12> >;
103 typedef MultiLevelPageTable<LongModePTE<47, 39>,
104 LongModePTE<38, 30>,
105 LongModePTE<29, 21>,
106 LongModePTE<20, 12> > ArchPageTable;
107
108 X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
109 SyscallDesc *_syscallDescs, int _numSyscallDescs)
110 : Process(params, params->useArchPT ?
111 static_cast<EmulationPageTable *>(
112 new ArchPageTable(params->name, params->pid,
113 params->system, PageBytes)) :
114 new EmulationPageTable(params->name, params->pid,
115 PageBytes),
116 objFile),
117 syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
118 {
119 }
120
121 void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
122 Process *p, RegVal flags)
123 {
124 Process::clone(old_tc, new_tc, p, flags);
125 X86Process *process = (X86Process*)p;
126 *process = *this;
127 }
128
129 X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
130 SyscallDesc *_syscallDescs, int _numSyscallDescs)
131 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
132 {
133
134 vsyscallPage.base = 0xffffffffff600000ULL;
135 vsyscallPage.size = PageBytes;
136 vsyscallPage.vtimeOffset = 0x400;
137 vsyscallPage.vgettimeofdayOffset = 0x0;
138
139 Addr brk_point = roundUp(image.maxAddr(), PageBytes);
140 Addr stack_base = 0x7FFFFFFFF000ULL;
141 Addr max_stack_size = 8 * 1024 * 1024;
142 Addr next_thread_stack_base = stack_base - max_stack_size;
143 Addr mmap_end = 0x7FFFF7FFF000ULL;
144
145 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
146 next_thread_stack_base, mmap_end);
147 }
148
149
150 I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
151 SyscallDesc *_syscallDescs, int _numSyscallDescs)
152 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
153 {
154 if (kvmInSE)
155 panic("KVM CPU model does not support 32 bit processes");
156
157 _gdtStart = ULL(0xffffd000);
158 _gdtSize = PageBytes;
159
160 vsyscallPage.base = 0xffffe000ULL;
161 vsyscallPage.size = PageBytes;
162 vsyscallPage.vsyscallOffset = 0x400;
163 vsyscallPage.vsysexitOffset = 0x410;
164
165 Addr brk_point = roundUp(image.maxAddr(), PageBytes);
166 Addr stack_base = _gdtStart;
167 Addr max_stack_size = 8 * 1024 * 1024;
168 Addr next_thread_stack_base = stack_base - max_stack_size;
169 Addr mmap_end = 0xB7FFF000ULL;
170
171 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
172 next_thread_stack_base, mmap_end);
173 }
174
175 SyscallDesc*
176 X86Process::getDesc(int callnum)
177 {
178 if (callnum < 0 || callnum >= numSyscallDescs)
179 return NULL;
180 return &syscallDescs[callnum];
181 }
182
183 void
184 X86_64Process::initState()
185 {
186 X86Process::initState();
187
188 if (useForClone)
189 return;
190
191 argsInit(PageBytes);
192
193 // Set up the vsyscall page for this process.
194 allocateMem(vsyscallPage.base, vsyscallPage.size);
195 uint8_t vtimeBlob[] = {
196 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
197 0x0f,0x05, // syscall
198 0xc3 // retq
199 };
200 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
201 vtimeBlob, sizeof(vtimeBlob));
202
203 uint8_t vgettimeofdayBlob[] = {
204 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
205 0x0f,0x05, // syscall
206 0xc3 // retq
207 };
208 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
209 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
210
211 if (kvmInSE) {
212 PortProxy physProxy = system->physProxy;
213
214 Addr syscallCodePhysAddr = system->allocPhysPages(1);
215 Addr gdtPhysAddr = system->allocPhysPages(1);
216 Addr idtPhysAddr = system->allocPhysPages(1);
217 Addr istPhysAddr = system->allocPhysPages(1);
218 Addr tssPhysAddr = system->allocPhysPages(1);
219 Addr pfHandlerPhysAddr = system->allocPhysPages(1);
220
221 /*
222 * Set up the gdt.
223 */
224 uint8_t numGDTEntries = 0;
225 uint64_t nullDescriptor = 0;
226 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
227 &nullDescriptor, 8);
228 numGDTEntries++;
229
230 SegDescriptor initDesc = 0;
231 initDesc.type.codeOrData = 0; // code or data type
232 initDesc.type.c = 0; // conforming
233 initDesc.type.r = 1; // readable
234 initDesc.dpl = 0; // privilege
235 initDesc.p = 1; // present
236 initDesc.l = 1; // longmode - 64 bit
237 initDesc.d = 0; // operand size
238 initDesc.g = 1;
239 initDesc.s = 1; // system segment
240 initDesc.limit = 0xFFFFFFFF;
241 initDesc.base = 0;
242
243 //64 bit code segment
244 SegDescriptor csLowPLDesc = initDesc;
245 csLowPLDesc.type.codeOrData = 1;
246 csLowPLDesc.dpl = 0;
247 uint64_t csLowPLDescVal = csLowPLDesc;
248 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
249 &csLowPLDescVal, 8);
250
251 numGDTEntries++;
252
253 SegSelector csLowPL = 0;
254 csLowPL.si = numGDTEntries - 1;
255 csLowPL.rpl = 0;
256
257 //64 bit data segment
258 SegDescriptor dsLowPLDesc = initDesc;
259 dsLowPLDesc.type.codeOrData = 0;
260 dsLowPLDesc.dpl = 0;
261 uint64_t dsLowPLDescVal = dsLowPLDesc;
262 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
263 &dsLowPLDescVal, 8);
264
265 numGDTEntries++;
266
267 SegSelector dsLowPL = 0;
268 dsLowPL.si = numGDTEntries - 1;
269 dsLowPL.rpl = 0;
270
271 //64 bit data segment
272 SegDescriptor dsDesc = initDesc;
273 dsDesc.type.codeOrData = 0;
274 dsDesc.dpl = 3;
275 uint64_t dsDescVal = dsDesc;
276 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
277 &dsDescVal, 8);
278
279 numGDTEntries++;
280
281 SegSelector ds = 0;
282 ds.si = numGDTEntries - 1;
283 ds.rpl = 3;
284
285 //64 bit code segment
286 SegDescriptor csDesc = initDesc;
287 csDesc.type.codeOrData = 1;
288 csDesc.dpl = 3;
289 uint64_t csDescVal = csDesc;
290 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
291 &csDescVal, 8);
292
293 numGDTEntries++;
294
295 SegSelector cs = 0;
296 cs.si = numGDTEntries - 1;
297 cs.rpl = 3;
298
299 SegSelector scall = 0;
300 scall.si = csLowPL.si;
301 scall.rpl = 0;
302
303 SegSelector sret = 0;
304 sret.si = dsLowPL.si;
305 sret.rpl = 3;
306
307 /* In long mode the TSS has been extended to 16 Bytes */
308 TSSlow TSSDescLow = 0;
309 TSSDescLow.type = 0xB;
310 TSSDescLow.dpl = 0; // Privelege level 0
311 TSSDescLow.p = 1; // Present
312 TSSDescLow.limit = 0xFFFFFFFF;
313 TSSDescLow.base = bits(TSSVirtAddr, 31, 0);
314
315 TSShigh TSSDescHigh = 0;
316 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
317
318 struct TSSDesc {
319 uint64_t low;
320 uint64_t high;
321 } tssDescVal = {TSSDescLow, TSSDescHigh};
322
323 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
324 &tssDescVal, sizeof(tssDescVal));
325
326 numGDTEntries++;
327
328 SegSelector tssSel = 0;
329 tssSel.si = numGDTEntries - 1;
330
331 uint64_t tss_base_addr = (TSSDescHigh.base << 32) | TSSDescLow.base;
332 uint64_t tss_limit = TSSDescLow.limit;
333
334 SegAttr tss_attr = 0;
335
336 tss_attr.type = TSSDescLow.type;
337 tss_attr.dpl = TSSDescLow.dpl;
338 tss_attr.present = TSSDescLow.p;
339 tss_attr.granularity = TSSDescLow.g;
340 tss_attr.unusable = 0;
341
342 for (int i = 0; i < contextIds.size(); i++) {
343 ThreadContext * tc = system->getThreadContext(contextIds[i]);
344
345 tc->setMiscReg(MISCREG_CS, cs);
346 tc->setMiscReg(MISCREG_DS, ds);
347 tc->setMiscReg(MISCREG_ES, ds);
348 tc->setMiscReg(MISCREG_FS, ds);
349 tc->setMiscReg(MISCREG_GS, ds);
350 tc->setMiscReg(MISCREG_SS, ds);
351
352 // LDT
353 tc->setMiscReg(MISCREG_TSL, 0);
354 SegAttr tslAttr = 0;
355 tslAttr.present = 1;
356 tslAttr.type = 2;
357 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
358
359 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
360 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
361
362 tc->setMiscReg(MISCREG_TR, tssSel);
363 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
364 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
365 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
366 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
367
368 //Start using longmode segments.
369 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
370 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
371 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
372 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
373 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
374 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
375
376 Efer efer = 0;
377 efer.sce = 1; // Enable system call extensions.
378 efer.lme = 1; // Enable long mode.
379 efer.lma = 1; // Activate long mode.
380 efer.nxe = 1; // Enable nx support.
381 efer.svme = 0; // Enable svm support for now.
382 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
383 tc->setMiscReg(MISCREG_EFER, efer);
384
385 //Set up the registers that describe the operating mode.
386 CR0 cr0 = 0;
387 cr0.pg = 1; // Turn on paging.
388 cr0.cd = 0; // Don't disable caching.
389 cr0.nw = 0; // This is bit is defined to be ignored.
390 cr0.am = 1; // No alignment checking
391 cr0.wp = 1; // Supervisor mode can write read only pages
392 cr0.ne = 1;
393 cr0.et = 1; // This should always be 1
394 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
395 // would be pointless.
396 cr0.em = 0; // Allow x87 instructions to execute natively.
397 cr0.mp = 1; // This doesn't really matter, but the manual suggests
398 // setting it to one.
399 cr0.pe = 1; // We're definitely in protected mode.
400 tc->setMiscReg(MISCREG_CR0, cr0);
401
402 CR0 cr2 = 0;
403 tc->setMiscReg(MISCREG_CR2, cr2);
404
405 CR3 cr3 = dynamic_cast<ArchPageTable *>(pTable)->basePtr();
406 tc->setMiscReg(MISCREG_CR3, cr3);
407
408 CR4 cr4 = 0;
409 //Turn on pae.
410 cr4.osxsave = 0; // Enable XSAVE and Proc Extended States
411 cr4.osxmmexcpt = 0; // Operating System Unmasked Exception
412 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
413 cr4.pce = 0; // Performance-Monitoring Counter Enable
414 cr4.pge = 0; // Page-Global Enable
415 cr4.mce = 0; // Machine Check Enable
416 cr4.pae = 1; // Physical-Address Extension
417 cr4.pse = 0; // Page Size Extensions
418 cr4.de = 0; // Debugging Extensions
419 cr4.tsd = 0; // Time Stamp Disable
420 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
421 cr4.vme = 0; // Virtual-8086 Mode Extensions
422
423 tc->setMiscReg(MISCREG_CR4, cr4);
424
425 CR4 cr8 = 0;
426 tc->setMiscReg(MISCREG_CR8, cr8);
427
428 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
429
430 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
431
432 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
433 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
434
435 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
436 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
437
438 /* enabling syscall and sysret */
439 RegVal star = ((RegVal)sret << 48) | ((RegVal)scall << 32);
440 tc->setMiscReg(MISCREG_STAR, star);
441 RegVal lstar = (RegVal)syscallCodeVirtAddr;
442 tc->setMiscReg(MISCREG_LSTAR, lstar);
443 RegVal sfmask = (1 << 8) | (1 << 10); // TF | DF
444 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
445 }
446
447 /* Set up the content of the TSS and write it to physical memory. */
448
449 struct {
450 uint32_t reserved0; // +00h
451 uint32_t RSP0_low; // +04h
452 uint32_t RSP0_high; // +08h
453 uint32_t RSP1_low; // +0Ch
454 uint32_t RSP1_high; // +10h
455 uint32_t RSP2_low; // +14h
456 uint32_t RSP2_high; // +18h
457 uint32_t reserved1; // +1Ch
458 uint32_t reserved2; // +20h
459 uint32_t IST1_low; // +24h
460 uint32_t IST1_high; // +28h
461 uint32_t IST2_low; // +2Ch
462 uint32_t IST2_high; // +30h
463 uint32_t IST3_low; // +34h
464 uint32_t IST3_high; // +38h
465 uint32_t IST4_low; // +3Ch
466 uint32_t IST4_high; // +40h
467 uint32_t IST5_low; // +44h
468 uint32_t IST5_high; // +48h
469 uint32_t IST6_low; // +4Ch
470 uint32_t IST6_high; // +50h
471 uint32_t IST7_low; // +54h
472 uint32_t IST7_high; // +58h
473 uint32_t reserved3; // +5Ch
474 uint32_t reserved4; // +60h
475 uint16_t reserved5; // +64h
476 uint16_t IO_MapBase; // +66h
477 } tss;
478
479 /** setting Interrupt Stack Table */
480 uint64_t IST_start = ISTVirtAddr + PageBytes;
481 tss.IST1_low = IST_start;
482 tss.IST1_high = IST_start >> 32;
483 tss.RSP0_low = tss.IST1_low;
484 tss.RSP0_high = tss.IST1_high;
485 tss.RSP1_low = tss.IST1_low;
486 tss.RSP1_high = tss.IST1_high;
487 tss.RSP2_low = tss.IST1_low;
488 tss.RSP2_high = tss.IST1_high;
489 physProxy.writeBlob(tssPhysAddr, &tss, sizeof(tss));
490
491 /* Setting IDT gates */
492 GateDescriptorLow PFGateLow = 0;
493 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
494 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
495 PFGateLow.selector = csLowPL;
496 PFGateLow.p = 1;
497 PFGateLow.dpl = 0;
498 PFGateLow.type = 0xe; // gate interrupt type
499 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
500
501 GateDescriptorHigh PFGateHigh = 0;
502 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
503
504 struct {
505 uint64_t low;
506 uint64_t high;
507 } PFGate = {PFGateLow, PFGateHigh};
508
509 physProxy.writeBlob(idtPhysAddr + 0xE0, &PFGate, sizeof(PFGate));
510
511 /* System call handler */
512 uint8_t syscallBlob[] = {
513 // mov %rax, (0xffffc90000005600)
514 0x48, 0xa3, 0x00, 0x60, 0x00,
515 0x00, 0x00, 0xc9, 0xff, 0xff,
516 // sysret
517 0x48, 0x0f, 0x07
518 };
519
520 physProxy.writeBlob(syscallCodePhysAddr,
521 syscallBlob, sizeof(syscallBlob));
522
523 /** Page fault handler */
524 uint8_t faultBlob[] = {
525 // mov %rax, (0xffffc90000005700)
526 0x48, 0xa3, 0x00, 0x61, 0x00,
527 0x00, 0x00, 0xc9, 0xff, 0xff,
528 // add $0x8, %rsp # skip error
529 0x48, 0x83, 0xc4, 0x08,
530 // iretq
531 0x48, 0xcf
532 };
533
534 physProxy.writeBlob(pfHandlerPhysAddr, faultBlob, sizeof(faultBlob));
535
536 /* Syscall handler */
537 pTable->map(syscallCodeVirtAddr, syscallCodePhysAddr,
538 PageBytes, false);
539 /* GDT */
540 pTable->map(GDTVirtAddr, gdtPhysAddr, PageBytes, false);
541 /* IDT */
542 pTable->map(IDTVirtAddr, idtPhysAddr, PageBytes, false);
543 /* TSS */
544 pTable->map(TSSVirtAddr, tssPhysAddr, PageBytes, false);
545 /* IST */
546 pTable->map(ISTVirtAddr, istPhysAddr, PageBytes, false);
547 /* PF handler */
548 pTable->map(PFHandlerVirtAddr, pfHandlerPhysAddr, PageBytes, false);
549 /* MMIO region for m5ops */
550 pTable->map(MMIORegionVirtAddr, MMIORegionPhysAddr,
551 16 * PageBytes, false);
552 } else {
553 for (int i = 0; i < contextIds.size(); i++) {
554 ThreadContext * tc = system->getThreadContext(contextIds[i]);
555
556 SegAttr dataAttr = 0;
557 dataAttr.dpl = 3;
558 dataAttr.unusable = 0;
559 dataAttr.defaultSize = 1;
560 dataAttr.longMode = 1;
561 dataAttr.avl = 0;
562 dataAttr.granularity = 1;
563 dataAttr.present = 1;
564 dataAttr.type = 3;
565 dataAttr.writable = 1;
566 dataAttr.readable = 1;
567 dataAttr.expandDown = 0;
568 dataAttr.system = 1;
569
570 // Initialize the segment registers.
571 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
572 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
573 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
574 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
575 }
576
577 SegAttr csAttr = 0;
578 csAttr.dpl = 3;
579 csAttr.unusable = 0;
580 csAttr.defaultSize = 0;
581 csAttr.longMode = 1;
582 csAttr.avl = 0;
583 csAttr.granularity = 1;
584 csAttr.present = 1;
585 csAttr.type = 10;
586 csAttr.writable = 0;
587 csAttr.readable = 1;
588 csAttr.expandDown = 0;
589 csAttr.system = 1;
590
591 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
592
593 Efer efer = 0;
594 efer.sce = 1; // Enable system call extensions.
595 efer.lme = 1; // Enable long mode.
596 efer.lma = 1; // Activate long mode.
597 efer.nxe = 1; // Enable nx support.
598 efer.svme = 0; // Disable svm support for now. It isn't implemented.
599 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
600 tc->setMiscReg(MISCREG_EFER, efer);
601
602 // Set up the registers that describe the operating mode.
603 CR0 cr0 = 0;
604 cr0.pg = 1; // Turn on paging.
605 cr0.cd = 0; // Don't disable caching.
606 cr0.nw = 0; // This is bit is defined to be ignored.
607 cr0.am = 0; // No alignment checking
608 cr0.wp = 0; // Supervisor mode can write read only pages
609 cr0.ne = 1;
610 cr0.et = 1; // This should always be 1
611 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
612 // would be pointless.
613 cr0.em = 0; // Allow x87 instructions to execute natively.
614 cr0.mp = 1; // This doesn't really matter, but the manual suggests
615 // setting it to one.
616 cr0.pe = 1; // We're definitely in protected mode.
617 tc->setMiscReg(MISCREG_CR0, cr0);
618
619 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
620 }
621 }
622 }
623
624 void
625 I386Process::initState()
626 {
627 X86Process::initState();
628
629 argsInit(PageBytes);
630
631 /*
632 * Set up a GDT for this process. The whole GDT wouldn't really be for
633 * this process, but the only parts we care about are.
634 */
635 allocateMem(_gdtStart, _gdtSize);
636 uint64_t zero = 0;
637 assert(_gdtSize % sizeof(zero) == 0);
638 for (Addr gdtCurrent = _gdtStart;
639 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
640 initVirtMem.write(gdtCurrent, zero);
641 }
642
643 // Set up the vsyscall page for this process.
644 allocateMem(vsyscallPage.base, vsyscallPage.size);
645 uint8_t vsyscallBlob[] = {
646 0x51, // push %ecx
647 0x52, // push %edp
648 0x55, // push %ebp
649 0x89, 0xe5, // mov %esp, %ebp
650 0x0f, 0x34 // sysenter
651 };
652 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
653 vsyscallBlob, sizeof(vsyscallBlob));
654
655 uint8_t vsysexitBlob[] = {
656 0x5d, // pop %ebp
657 0x5a, // pop %edx
658 0x59, // pop %ecx
659 0xc3 // ret
660 };
661 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
662 vsysexitBlob, sizeof(vsysexitBlob));
663
664 for (int i = 0; i < contextIds.size(); i++) {
665 ThreadContext * tc = system->getThreadContext(contextIds[i]);
666
667 SegAttr dataAttr = 0;
668 dataAttr.dpl = 3;
669 dataAttr.unusable = 0;
670 dataAttr.defaultSize = 1;
671 dataAttr.longMode = 0;
672 dataAttr.avl = 0;
673 dataAttr.granularity = 1;
674 dataAttr.present = 1;
675 dataAttr.type = 3;
676 dataAttr.writable = 1;
677 dataAttr.readable = 1;
678 dataAttr.expandDown = 0;
679 dataAttr.system = 1;
680
681 // Initialize the segment registers.
682 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
683 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
684 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
685 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
686 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
687 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
688 }
689
690 SegAttr csAttr = 0;
691 csAttr.dpl = 3;
692 csAttr.unusable = 0;
693 csAttr.defaultSize = 1;
694 csAttr.longMode = 0;
695 csAttr.avl = 0;
696 csAttr.granularity = 1;
697 csAttr.present = 1;
698 csAttr.type = 0xa;
699 csAttr.writable = 0;
700 csAttr.readable = 1;
701 csAttr.expandDown = 0;
702 csAttr.system = 1;
703
704 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
705
706 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
707 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
708 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
709
710 // Set the LDT selector to 0 to deactivate it.
711 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
712
713 Efer efer = 0;
714 efer.sce = 1; // Enable system call extensions.
715 efer.lme = 1; // Enable long mode.
716 efer.lma = 0; // Deactivate long mode.
717 efer.nxe = 1; // Enable nx support.
718 efer.svme = 0; // Disable svm support for now. It isn't implemented.
719 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
720 tc->setMiscReg(MISCREG_EFER, efer);
721
722 // Set up the registers that describe the operating mode.
723 CR0 cr0 = 0;
724 cr0.pg = 1; // Turn on paging.
725 cr0.cd = 0; // Don't disable caching.
726 cr0.nw = 0; // This is bit is defined to be ignored.
727 cr0.am = 0; // No alignment checking
728 cr0.wp = 0; // Supervisor mode can write read only pages
729 cr0.ne = 1;
730 cr0.et = 1; // This should always be 1
731 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
732 // would be pointless.
733 cr0.em = 0; // Allow x87 instructions to execute natively.
734 cr0.mp = 1; // This doesn't really matter, but the manual suggests
735 // setting it to one.
736 cr0.pe = 1; // We're definitely in protected mode.
737 tc->setMiscReg(MISCREG_CR0, cr0);
738
739 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
740 }
741 }
742
743 template<class IntType>
744 void
745 X86Process::argsInit(int pageSize,
746 std::vector<AuxVector<IntType> > extraAuxvs)
747 {
748 int intSize = sizeof(IntType);
749
750 std::vector<AuxVector<IntType>> auxv = extraAuxvs;
751
752 string filename;
753 if (argv.size() < 1)
754 filename = "";
755 else
756 filename = argv[0];
757
758 // We want 16 byte alignment
759 uint64_t align = 16;
760
761 enum X86CpuFeature {
762 X86_OnboardFPU = 1 << 0,
763 X86_VirtualModeExtensions = 1 << 1,
764 X86_DebuggingExtensions = 1 << 2,
765 X86_PageSizeExtensions = 1 << 3,
766
767 X86_TimeStampCounter = 1 << 4,
768 X86_ModelSpecificRegisters = 1 << 5,
769 X86_PhysicalAddressExtensions = 1 << 6,
770 X86_MachineCheckExtensions = 1 << 7,
771
772 X86_CMPXCHG8Instruction = 1 << 8,
773 X86_OnboardAPIC = 1 << 9,
774 X86_SYSENTER_SYSEXIT = 1 << 11,
775
776 X86_MemoryTypeRangeRegisters = 1 << 12,
777 X86_PageGlobalEnable = 1 << 13,
778 X86_MachineCheckArchitecture = 1 << 14,
779 X86_CMOVInstruction = 1 << 15,
780
781 X86_PageAttributeTable = 1 << 16,
782 X86_36BitPSEs = 1 << 17,
783 X86_ProcessorSerialNumber = 1 << 18,
784 X86_CLFLUSHInstruction = 1 << 19,
785
786 X86_DebugTraceStore = 1 << 21,
787 X86_ACPIViaMSR = 1 << 22,
788 X86_MultimediaExtensions = 1 << 23,
789
790 X86_FXSAVE_FXRSTOR = 1 << 24,
791 X86_StreamingSIMDExtensions = 1 << 25,
792 X86_StreamingSIMDExtensions2 = 1 << 26,
793 X86_CPUSelfSnoop = 1 << 27,
794
795 X86_HyperThreading = 1 << 28,
796 X86_AutomaticClockControl = 1 << 29,
797 X86_IA64Processor = 1 << 30
798 };
799
800 // Setup the auxiliary vectors. These will already have endian
801 // conversion. Auxiliary vectors are loaded only for elf formatted
802 // executables; the auxv is responsible for passing information from
803 // the OS to the interpreter.
804 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
805 if (elfObject) {
806 uint64_t features =
807 X86_OnboardFPU |
808 X86_VirtualModeExtensions |
809 X86_DebuggingExtensions |
810 X86_PageSizeExtensions |
811 X86_TimeStampCounter |
812 X86_ModelSpecificRegisters |
813 X86_PhysicalAddressExtensions |
814 X86_MachineCheckExtensions |
815 X86_CMPXCHG8Instruction |
816 X86_OnboardAPIC |
817 X86_SYSENTER_SYSEXIT |
818 X86_MemoryTypeRangeRegisters |
819 X86_PageGlobalEnable |
820 X86_MachineCheckArchitecture |
821 X86_CMOVInstruction |
822 X86_PageAttributeTable |
823 X86_36BitPSEs |
824 // X86_ProcessorSerialNumber |
825 X86_CLFLUSHInstruction |
826 // X86_DebugTraceStore |
827 // X86_ACPIViaMSR |
828 X86_MultimediaExtensions |
829 X86_FXSAVE_FXRSTOR |
830 X86_StreamingSIMDExtensions |
831 X86_StreamingSIMDExtensions2 |
832 // X86_CPUSelfSnoop |
833 // X86_HyperThreading |
834 // X86_AutomaticClockControl |
835 // X86_IA64Processor |
836 0;
837
838 // Bits which describe the system hardware capabilities
839 // XXX Figure out what these should be
840 auxv.emplace_back(M5_AT_HWCAP, features);
841 // The system page size
842 auxv.emplace_back(M5_AT_PAGESZ, X86ISA::PageBytes);
843 // Frequency at which times() increments
844 // Defined to be 100 in the kernel source.
845 auxv.emplace_back(M5_AT_CLKTCK, 100);
846 // This is the virtual address of the program header tables if they
847 // appear in the executable image.
848 auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable());
849 // This is the size of a program header entry from the elf file.
850 auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize());
851 // This is the number of program headers from the original elf file.
852 auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount());
853 // This is the base address of the ELF interpreter; it should be
854 // zero for static executables or contain the base address for
855 // dynamic executables.
856 auxv.emplace_back(M5_AT_BASE, getBias());
857 // XXX Figure out what this should be.
858 auxv.emplace_back(M5_AT_FLAGS, 0);
859 // The entry point to the program
860 auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint());
861 // Different user and group IDs
862 auxv.emplace_back(M5_AT_UID, uid());
863 auxv.emplace_back(M5_AT_EUID, euid());
864 auxv.emplace_back(M5_AT_GID, gid());
865 auxv.emplace_back(M5_AT_EGID, egid());
866 // Whether to enable "secure mode" in the executable
867 auxv.emplace_back(M5_AT_SECURE, 0);
868 // The address of 16 "random" bytes.
869 auxv.emplace_back(M5_AT_RANDOM, 0);
870 // The name of the program
871 auxv.emplace_back(M5_AT_EXECFN, 0);
872 // The platform string
873 auxv.emplace_back(M5_AT_PLATFORM, 0);
874 }
875
876 // Figure out how big the initial stack needs to be
877
878 // A sentry NULL void pointer at the top of the stack.
879 int sentry_size = intSize;
880
881 // This is the name of the file which is present on the initial stack
882 // It's purpose is to let the user space linker examine the original file.
883 int file_name_size = filename.size() + 1;
884
885 const int numRandomBytes = 16;
886 int aux_data_size = numRandomBytes;
887
888 string platform = "x86_64";
889 aux_data_size += platform.size() + 1;
890
891 int env_data_size = 0;
892 for (int i = 0; i < envp.size(); ++i)
893 env_data_size += envp[i].size() + 1;
894 int arg_data_size = 0;
895 for (int i = 0; i < argv.size(); ++i)
896 arg_data_size += argv[i].size() + 1;
897
898 // The info_block needs to be padded so its size is a multiple of the
899 // alignment mask. Also, it appears that there needs to be at least some
900 // padding, so if the size is already a multiple, we need to increase it
901 // anyway.
902 int base_info_block_size =
903 sentry_size + file_name_size + env_data_size + arg_data_size;
904
905 int info_block_size = roundUp(base_info_block_size, align);
906
907 int info_block_padding = info_block_size - base_info_block_size;
908
909 // Each auxiliary vector is two 8 byte words
910 int aux_array_size = intSize * 2 * (auxv.size() + 1);
911
912 int envp_array_size = intSize * (envp.size() + 1);
913 int argv_array_size = intSize * (argv.size() + 1);
914
915 int argc_size = intSize;
916
917 // Figure out the size of the contents of the actual initial frame
918 int frame_size =
919 aux_array_size +
920 envp_array_size +
921 argv_array_size +
922 argc_size;
923
924 // There needs to be padding after the auxiliary vector data so that the
925 // very bottom of the stack is aligned properly.
926 int partial_size = frame_size + aux_data_size;
927 int aligned_partial_size = roundUp(partial_size, align);
928 int aux_padding = aligned_partial_size - partial_size;
929
930 int space_needed =
931 info_block_size +
932 aux_data_size +
933 aux_padding +
934 frame_size;
935
936 Addr stack_base = memState->getStackBase();
937
938 Addr stack_min = stack_base - space_needed;
939 stack_min = roundDown(stack_min, align);
940
941 unsigned stack_size = stack_base - stack_min;
942 stack_size = roundUp(stack_size, pageSize);
943 memState->setStackSize(stack_size);
944
945 // map memory
946 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
947
948 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
949 allocateMem(stack_end, stack_size);
950
951 // map out initial stack contents
952 IntType sentry_base = stack_base - sentry_size;
953 IntType file_name_base = sentry_base - file_name_size;
954 IntType env_data_base = file_name_base - env_data_size;
955 IntType arg_data_base = env_data_base - arg_data_size;
956 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
957 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
958 IntType envp_array_base = auxv_array_base - envp_array_size;
959 IntType argv_array_base = envp_array_base - argv_array_size;
960 IntType argc_base = argv_array_base - argc_size;
961
962 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
963 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
964 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
965 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
966 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
967 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
968 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
969 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
970 DPRINTF(Stack, "0x%x - argc \n", argc_base);
971 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
972
973 // write contents to stack
974
975 // figure out argc
976 IntType argc = argv.size();
977 IntType guestArgc = htole(argc);
978
979 // Write out the sentry void *
980 IntType sentry_NULL = 0;
981 initVirtMem.writeBlob(sentry_base, &sentry_NULL, sentry_size);
982
983 // Write the file name
984 initVirtMem.writeString(file_name_base, filename.c_str());
985
986 // Fix up the aux vectors which point to data
987 assert(auxv[auxv.size() - 3].type == M5_AT_RANDOM);
988 auxv[auxv.size() - 3].val = aux_data_base;
989 assert(auxv[auxv.size() - 2].type == M5_AT_EXECFN);
990 auxv[auxv.size() - 2].val = argv_array_base;
991 assert(auxv[auxv.size() - 1].type == M5_AT_PLATFORM);
992 auxv[auxv.size() - 1].val = aux_data_base + numRandomBytes;
993
994
995 // Copy the aux stuff
996 Addr auxv_array_end = auxv_array_base;
997 for (const auto &aux: auxv) {
998 initVirtMem.write(auxv_array_end, aux, GuestByteOrder);
999 auxv_array_end += sizeof(aux);
1000 }
1001 // Write out the terminating zeroed auxiliary vector
1002 const AuxVector<uint64_t> zero(0, 0);
1003 initVirtMem.write(auxv_array_end, zero);
1004 auxv_array_end += sizeof(zero);
1005
1006 initVirtMem.writeString(aux_data_base, platform.c_str());
1007
1008 copyStringArray(envp, envp_array_base, env_data_base,
1009 LittleEndianByteOrder, initVirtMem);
1010 copyStringArray(argv, argv_array_base, arg_data_base,
1011 LittleEndianByteOrder, initVirtMem);
1012
1013 initVirtMem.writeBlob(argc_base, &guestArgc, intSize);
1014
1015 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1016 // Set the stack pointer register
1017 tc->setIntReg(StackPointerReg, stack_min);
1018
1019 // There doesn't need to be any segment base added in since we're dealing
1020 // with the flat segmentation model.
1021 tc->pcState(getStartPC());
1022
1023 // Align the "stack_min" to a page boundary.
1024 memState->setStackMin(roundDown(stack_min, pageSize));
1025 }
1026
1027 void
1028 X86_64Process::argsInit(int pageSize)
1029 {
1030 std::vector<AuxVector<uint64_t> > extraAuxvs;
1031 extraAuxvs.emplace_back(M5_AT_SYSINFO_EHDR, vsyscallPage.base);
1032 X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1033 }
1034
1035 void
1036 I386Process::argsInit(int pageSize)
1037 {
1038 std::vector<AuxVector<uint32_t> > extraAuxvs;
1039 //Tell the binary where the vsyscall part of the vsyscall page is.
1040 extraAuxvs.emplace_back(M5_AT_SYSINFO,
1041 vsyscallPage.base + vsyscallPage.vsyscallOffset);
1042 extraAuxvs.emplace_back(M5_AT_SYSINFO_EHDR, vsyscallPage.base);
1043 X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1044 }
1045
1046 void
1047 X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1048 {
1049 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1050 }
1051
1052 RegVal
1053 X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1054 {
1055 assert(i < NumArgumentRegs);
1056 return tc->readIntReg(ArgumentReg[i++]);
1057 }
1058
1059 void
1060 X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1061 Process *p, RegVal flags)
1062 {
1063 X86Process::clone(old_tc, new_tc, p, flags);
1064 ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1065 }
1066
1067 RegVal
1068 I386Process::getSyscallArg(ThreadContext *tc, int &i)
1069 {
1070 assert(i < NumArgumentRegs32);
1071 return tc->readIntReg(ArgumentReg32[i++]);
1072 }
1073
1074 RegVal
1075 I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1076 {
1077 assert(width == 32 || width == 64);
1078 assert(i < NumArgumentRegs);
1079 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1080 if (width == 64)
1081 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1082 return retVal;
1083 }
1084
1085 void
1086 I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1087 Process *p, RegVal flags)
1088 {
1089 X86Process::clone(old_tc, new_tc, p, flags);
1090 ((I386Process*)p)->vsyscallPage = vsyscallPage;
1091 }