x86, mem: Pass the multi level page table layout in as a parameter.
[gem5.git] / src / arch / x86 / process.cc
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45 #include "arch/x86/process.hh"
46
47 #include <string>
48 #include <vector>
49
50 #include "arch/x86/isa_traits.hh"
51 #include "arch/x86/regs/misc.hh"
52 #include "arch/x86/regs/segment.hh"
53 #include "arch/x86/system.hh"
54 #include "arch/x86/types.hh"
55 #include "base/loader/elf_object.hh"
56 #include "base/loader/object_file.hh"
57 #include "base/logging.hh"
58 #include "base/trace.hh"
59 #include "cpu/thread_context.hh"
60 #include "debug/Stack.hh"
61 #include "mem/multi_level_page_table.hh"
62 #include "mem/page_table.hh"
63 #include "params/Process.hh"
64 #include "sim/aux_vector.hh"
65 #include "sim/process_impl.hh"
66 #include "sim/syscall_desc.hh"
67 #include "sim/syscall_return.hh"
68 #include "sim/system.hh"
69
70 using namespace std;
71 using namespace X86ISA;
72
73 static const int ArgumentReg[] = {
74 INTREG_RDI,
75 INTREG_RSI,
76 INTREG_RDX,
77 // This argument register is r10 for syscalls and rcx for C.
78 INTREG_R10W,
79 // INTREG_RCX,
80 INTREG_R8W,
81 INTREG_R9W
82 };
83
84 static const int NumArgumentRegs M5_VAR_USED =
85 sizeof(ArgumentReg) / sizeof(const int);
86
87 static const int ArgumentReg32[] = {
88 INTREG_EBX,
89 INTREG_ECX,
90 INTREG_EDX,
91 INTREG_ESI,
92 INTREG_EDI,
93 INTREG_EBP
94 };
95
96 static const int NumArgumentRegs32 M5_VAR_USED =
97 sizeof(ArgumentReg) / sizeof(const int);
98
99 X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
100 SyscallDesc *_syscallDescs, int _numSyscallDescs)
101 : Process(params, params->useArchPT ?
102 static_cast<EmulationPageTable *>(
103 new ArchPageTable(params->name, params->pid,
104 params->system, PageBytes,
105 PageTableLayout)) :
106 new EmulationPageTable(params->name, params->pid,
107 PageBytes),
108 objFile),
109 syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
110 {
111 }
112
113 void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
114 Process *p, TheISA::IntReg flags)
115 {
116 Process::clone(old_tc, new_tc, p, flags);
117 X86Process *process = (X86Process*)p;
118 *process = *this;
119 }
120
121 X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
122 SyscallDesc *_syscallDescs, int _numSyscallDescs)
123 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
124 {
125
126 vsyscallPage.base = 0xffffffffff600000ULL;
127 vsyscallPage.size = PageBytes;
128 vsyscallPage.vtimeOffset = 0x400;
129 vsyscallPage.vgettimeofdayOffset = 0x0;
130
131 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
132 objFile->bssSize(), PageBytes);
133 Addr stack_base = 0x7FFFFFFFF000ULL;
134 Addr max_stack_size = 8 * 1024 * 1024;
135 Addr next_thread_stack_base = stack_base - max_stack_size;
136 Addr mmap_end = 0x7FFFF7FFF000ULL;
137
138 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
139 next_thread_stack_base, mmap_end);
140 }
141
142 void
143 I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
144 {
145 TheISA::PCState pc = tc->pcState();
146 Addr eip = pc.pc();
147 if (eip >= vsyscallPage.base &&
148 eip < vsyscallPage.base + vsyscallPage.size) {
149 pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
150 tc->pcState(pc);
151 }
152 X86Process::syscall(callnum, tc, fault);
153 }
154
155
156 I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
157 SyscallDesc *_syscallDescs, int _numSyscallDescs)
158 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
159 {
160 _gdtStart = ULL(0xffffd000);
161 _gdtSize = PageBytes;
162
163 vsyscallPage.base = 0xffffe000ULL;
164 vsyscallPage.size = PageBytes;
165 vsyscallPage.vsyscallOffset = 0x400;
166 vsyscallPage.vsysexitOffset = 0x410;
167
168 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
169 objFile->bssSize(), PageBytes);
170 Addr stack_base = _gdtStart;
171 Addr max_stack_size = 8 * 1024 * 1024;
172 Addr next_thread_stack_base = stack_base - max_stack_size;
173 Addr mmap_end = 0xB7FFF000ULL;
174
175 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
176 next_thread_stack_base, mmap_end);
177 }
178
179 SyscallDesc*
180 X86Process::getDesc(int callnum)
181 {
182 if (callnum < 0 || callnum >= numSyscallDescs)
183 return NULL;
184 return &syscallDescs[callnum];
185 }
186
187 void
188 X86_64Process::initState()
189 {
190 X86Process::initState();
191
192 argsInit(PageBytes);
193
194 // Set up the vsyscall page for this process.
195 allocateMem(vsyscallPage.base, vsyscallPage.size);
196 uint8_t vtimeBlob[] = {
197 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
198 0x0f,0x05, // syscall
199 0xc3 // retq
200 };
201 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
202 vtimeBlob, sizeof(vtimeBlob));
203
204 uint8_t vgettimeofdayBlob[] = {
205 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
206 0x0f,0x05, // syscall
207 0xc3 // retq
208 };
209 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
210 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
211
212 if (kvmInSE) {
213 PortProxy physProxy = system->physProxy;
214
215 /*
216 * Set up the gdt.
217 */
218 uint8_t numGDTEntries = 0;
219 uint64_t nullDescriptor = 0;
220 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
221 (uint8_t *)(&nullDescriptor), 8);
222 numGDTEntries++;
223
224 SegDescriptor initDesc = 0;
225 initDesc.type.codeOrData = 0; // code or data type
226 initDesc.type.c = 0; // conforming
227 initDesc.type.r = 1; // readable
228 initDesc.dpl = 0; // privilege
229 initDesc.p = 1; // present
230 initDesc.l = 1; // longmode - 64 bit
231 initDesc.d = 0; // operand size
232 initDesc.g = 1; // granularity
233 initDesc.s = 1; // system segment
234 initDesc.limitHigh = 0xFFFF;
235 initDesc.limitLow = 0xF;
236 initDesc.baseHigh = 0x0;
237 initDesc.baseLow = 0x0;
238
239 //64 bit code segment
240 SegDescriptor csLowPLDesc = initDesc;
241 csLowPLDesc.type.codeOrData = 1;
242 csLowPLDesc.dpl = 0;
243 uint64_t csLowPLDescVal = csLowPLDesc;
244 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
245 (uint8_t *)(&csLowPLDescVal), 8);
246
247 numGDTEntries++;
248
249 SegSelector csLowPL = 0;
250 csLowPL.si = numGDTEntries - 1;
251 csLowPL.rpl = 0;
252
253 //64 bit data segment
254 SegDescriptor dsLowPLDesc = initDesc;
255 dsLowPLDesc.type.codeOrData = 0;
256 dsLowPLDesc.dpl = 0;
257 uint64_t dsLowPLDescVal = dsLowPLDesc;
258 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
259 (uint8_t *)(&dsLowPLDescVal), 8);
260
261 numGDTEntries++;
262
263 SegSelector dsLowPL = 0;
264 dsLowPL.si = numGDTEntries - 1;
265 dsLowPL.rpl = 0;
266
267 //64 bit data segment
268 SegDescriptor dsDesc = initDesc;
269 dsDesc.type.codeOrData = 0;
270 dsDesc.dpl = 3;
271 uint64_t dsDescVal = dsDesc;
272 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
273 (uint8_t *)(&dsDescVal), 8);
274
275 numGDTEntries++;
276
277 SegSelector ds = 0;
278 ds.si = numGDTEntries - 1;
279 ds.rpl = 3;
280
281 //64 bit code segment
282 SegDescriptor csDesc = initDesc;
283 csDesc.type.codeOrData = 1;
284 csDesc.dpl = 3;
285 uint64_t csDescVal = csDesc;
286 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
287 (uint8_t *)(&csDescVal), 8);
288
289 numGDTEntries++;
290
291 SegSelector cs = 0;
292 cs.si = numGDTEntries - 1;
293 cs.rpl = 3;
294
295 SegSelector scall = 0;
296 scall.si = csLowPL.si;
297 scall.rpl = 0;
298
299 SegSelector sret = 0;
300 sret.si = dsLowPL.si;
301 sret.rpl = 3;
302
303 /* In long mode the TSS has been extended to 16 Bytes */
304 TSSlow TSSDescLow = 0;
305 TSSDescLow.type = 0xB;
306 TSSDescLow.dpl = 0; // Privelege level 0
307 TSSDescLow.p = 1; // Present
308 TSSDescLow.g = 1; // Page granularity
309 TSSDescLow.limitHigh = 0xF;
310 TSSDescLow.limitLow = 0xFFFF;
311 TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
312 TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
313
314 TSShigh TSSDescHigh = 0;
315 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
316
317 struct TSSDesc {
318 uint64_t low;
319 uint64_t high;
320 } tssDescVal = {TSSDescLow, TSSDescHigh};
321
322 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
323 (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
324
325 numGDTEntries++;
326
327 SegSelector tssSel = 0;
328 tssSel.si = numGDTEntries - 1;
329
330 uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
331 (TSSDescLow.baseHigh << 24) |
332 TSSDescLow.baseLow;
333 uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
334
335 SegAttr tss_attr = 0;
336
337 tss_attr.type = TSSDescLow.type;
338 tss_attr.dpl = TSSDescLow.dpl;
339 tss_attr.present = TSSDescLow.p;
340 tss_attr.granularity = TSSDescLow.g;
341 tss_attr.unusable = 0;
342
343 for (int i = 0; i < contextIds.size(); i++) {
344 ThreadContext * tc = system->getThreadContext(contextIds[i]);
345
346 tc->setMiscReg(MISCREG_CS, cs);
347 tc->setMiscReg(MISCREG_DS, ds);
348 tc->setMiscReg(MISCREG_ES, ds);
349 tc->setMiscReg(MISCREG_FS, ds);
350 tc->setMiscReg(MISCREG_GS, ds);
351 tc->setMiscReg(MISCREG_SS, ds);
352
353 // LDT
354 tc->setMiscReg(MISCREG_TSL, 0);
355 SegAttr tslAttr = 0;
356 tslAttr.present = 1;
357 tslAttr.type = 2;
358 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
359
360 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
361 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
362
363 tc->setMiscReg(MISCREG_TR, tssSel);
364 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
365 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
366 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
367 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
368
369 //Start using longmode segments.
370 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
371 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
372 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
373 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
374 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
375 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
376
377 Efer efer = 0;
378 efer.sce = 1; // Enable system call extensions.
379 efer.lme = 1; // Enable long mode.
380 efer.lma = 1; // Activate long mode.
381 efer.nxe = 0; // Enable nx support.
382 efer.svme = 1; // Enable svm support for now.
383 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
384 tc->setMiscReg(MISCREG_EFER, efer);
385
386 //Set up the registers that describe the operating mode.
387 CR0 cr0 = 0;
388 cr0.pg = 1; // Turn on paging.
389 cr0.cd = 0; // Don't disable caching.
390 cr0.nw = 0; // This is bit is defined to be ignored.
391 cr0.am = 1; // No alignment checking
392 cr0.wp = 1; // Supervisor mode can write read only pages
393 cr0.ne = 1;
394 cr0.et = 1; // This should always be 1
395 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
396 // would be pointless.
397 cr0.em = 0; // Allow x87 instructions to execute natively.
398 cr0.mp = 1; // This doesn't really matter, but the manual suggests
399 // setting it to one.
400 cr0.pe = 1; // We're definitely in protected mode.
401 tc->setMiscReg(MISCREG_CR0, cr0);
402
403 CR0 cr2 = 0;
404 tc->setMiscReg(MISCREG_CR2, cr2);
405
406 CR3 cr3 = pageTablePhysAddr;
407 tc->setMiscReg(MISCREG_CR3, cr3);
408
409 CR4 cr4 = 0;
410 //Turn on pae.
411 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
412 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
413 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
414 cr4.pce = 0; // Performance-Monitoring Counter Enable
415 cr4.pge = 0; // Page-Global Enable
416 cr4.mce = 0; // Machine Check Enable
417 cr4.pae = 1; // Physical-Address Extension
418 cr4.pse = 0; // Page Size Extensions
419 cr4.de = 0; // Debugging Extensions
420 cr4.tsd = 0; // Time Stamp Disable
421 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
422 cr4.vme = 0; // Virtual-8086 Mode Extensions
423
424 tc->setMiscReg(MISCREG_CR4, cr4);
425
426 CR4 cr8 = 0;
427 tc->setMiscReg(MISCREG_CR8, cr8);
428
429 const Addr PageMapLevel4 = pageTablePhysAddr;
430 //Point to the page tables.
431 tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
432
433 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
434
435 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
436
437 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
438 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
439
440 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
441 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
442
443 /* enabling syscall and sysret */
444 MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
445 tc->setMiscReg(MISCREG_STAR, star);
446 MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
447 tc->setMiscReg(MISCREG_LSTAR, lstar);
448 MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
449 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
450 }
451
452 /* Set up the content of the TSS and write it to physical memory. */
453
454 struct {
455 uint32_t reserved0; // +00h
456 uint32_t RSP0_low; // +04h
457 uint32_t RSP0_high; // +08h
458 uint32_t RSP1_low; // +0Ch
459 uint32_t RSP1_high; // +10h
460 uint32_t RSP2_low; // +14h
461 uint32_t RSP2_high; // +18h
462 uint32_t reserved1; // +1Ch
463 uint32_t reserved2; // +20h
464 uint32_t IST1_low; // +24h
465 uint32_t IST1_high; // +28h
466 uint32_t IST2_low; // +2Ch
467 uint32_t IST2_high; // +30h
468 uint32_t IST3_low; // +34h
469 uint32_t IST3_high; // +38h
470 uint32_t IST4_low; // +3Ch
471 uint32_t IST4_high; // +40h
472 uint32_t IST5_low; // +44h
473 uint32_t IST5_high; // +48h
474 uint32_t IST6_low; // +4Ch
475 uint32_t IST6_high; // +50h
476 uint32_t IST7_low; // +54h
477 uint32_t IST7_high; // +58h
478 uint32_t reserved3; // +5Ch
479 uint32_t reserved4; // +60h
480 uint16_t reserved5; // +64h
481 uint16_t IO_MapBase; // +66h
482 } tss;
483
484 /** setting Interrupt Stack Table */
485 uint64_t IST_start = ISTVirtAddr + PageBytes;
486 tss.IST1_low = IST_start;
487 tss.IST1_high = IST_start >> 32;
488 tss.RSP0_low = tss.IST1_low;
489 tss.RSP0_high = tss.IST1_high;
490 tss.RSP1_low = tss.IST1_low;
491 tss.RSP1_high = tss.IST1_high;
492 tss.RSP2_low = tss.IST1_low;
493 tss.RSP2_high = tss.IST1_high;
494 physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
495
496 /* Setting IDT gates */
497 GateDescriptorLow PFGateLow = 0;
498 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
499 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
500 PFGateLow.selector = csLowPL;
501 PFGateLow.p = 1;
502 PFGateLow.dpl = 0;
503 PFGateLow.type = 0xe; // gate interrupt type
504 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
505
506 GateDescriptorHigh PFGateHigh = 0;
507 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
508
509 struct {
510 uint64_t low;
511 uint64_t high;
512 } PFGate = {PFGateLow, PFGateHigh};
513
514 physProxy.writeBlob(IDTPhysAddr + 0xE0,
515 (uint8_t *)(&PFGate), sizeof(PFGate));
516
517 /* System call handler */
518 uint8_t syscallBlob[] = {
519 // mov %rax, (0xffffc90000005600)
520 0x48, 0xa3, 0x00, 0x60, 0x00,
521 0x00, 0x00, 0xc9, 0xff, 0xff,
522 // sysret
523 0x48, 0x0f, 0x07
524 };
525
526 physProxy.writeBlob(syscallCodePhysAddr,
527 syscallBlob, sizeof(syscallBlob));
528
529 /** Page fault handler */
530 uint8_t faultBlob[] = {
531 // mov %rax, (0xffffc90000005700)
532 0x48, 0xa3, 0x00, 0x61, 0x00,
533 0x00, 0x00, 0xc9, 0xff, 0xff,
534 // add $0x8, %rsp # skip error
535 0x48, 0x83, 0xc4, 0x08,
536 // iretq
537 0x48, 0xcf
538 };
539
540 physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
541
542 MultiLevelPageTable<PageTableOps> *pt =
543 dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
544
545 /* Syscall handler */
546 pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
547 /* GDT */
548 pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
549 /* IDT */
550 pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
551 /* TSS */
552 pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
553 /* IST */
554 pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
555 /* PF handler */
556 pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
557 /* MMIO region for m5ops */
558 pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
559 } else {
560 for (int i = 0; i < contextIds.size(); i++) {
561 ThreadContext * tc = system->getThreadContext(contextIds[i]);
562
563 SegAttr dataAttr = 0;
564 dataAttr.dpl = 3;
565 dataAttr.unusable = 0;
566 dataAttr.defaultSize = 1;
567 dataAttr.longMode = 1;
568 dataAttr.avl = 0;
569 dataAttr.granularity = 1;
570 dataAttr.present = 1;
571 dataAttr.type = 3;
572 dataAttr.writable = 1;
573 dataAttr.readable = 1;
574 dataAttr.expandDown = 0;
575 dataAttr.system = 1;
576
577 // Initialize the segment registers.
578 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
579 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
580 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
581 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
582 }
583
584 SegAttr csAttr = 0;
585 csAttr.dpl = 3;
586 csAttr.unusable = 0;
587 csAttr.defaultSize = 0;
588 csAttr.longMode = 1;
589 csAttr.avl = 0;
590 csAttr.granularity = 1;
591 csAttr.present = 1;
592 csAttr.type = 10;
593 csAttr.writable = 0;
594 csAttr.readable = 1;
595 csAttr.expandDown = 0;
596 csAttr.system = 1;
597
598 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
599
600 Efer efer = 0;
601 efer.sce = 1; // Enable system call extensions.
602 efer.lme = 1; // Enable long mode.
603 efer.lma = 1; // Activate long mode.
604 efer.nxe = 1; // Enable nx support.
605 efer.svme = 0; // Disable svm support for now. It isn't implemented.
606 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
607 tc->setMiscReg(MISCREG_EFER, efer);
608
609 // Set up the registers that describe the operating mode.
610 CR0 cr0 = 0;
611 cr0.pg = 1; // Turn on paging.
612 cr0.cd = 0; // Don't disable caching.
613 cr0.nw = 0; // This is bit is defined to be ignored.
614 cr0.am = 0; // No alignment checking
615 cr0.wp = 0; // Supervisor mode can write read only pages
616 cr0.ne = 1;
617 cr0.et = 1; // This should always be 1
618 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
619 // would be pointless.
620 cr0.em = 0; // Allow x87 instructions to execute natively.
621 cr0.mp = 1; // This doesn't really matter, but the manual suggests
622 // setting it to one.
623 cr0.pe = 1; // We're definitely in protected mode.
624 tc->setMiscReg(MISCREG_CR0, cr0);
625
626 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
627 }
628 }
629 }
630
631 void
632 I386Process::initState()
633 {
634 X86Process::initState();
635
636 argsInit(PageBytes);
637
638 /*
639 * Set up a GDT for this process. The whole GDT wouldn't really be for
640 * this process, but the only parts we care about are.
641 */
642 allocateMem(_gdtStart, _gdtSize);
643 uint64_t zero = 0;
644 assert(_gdtSize % sizeof(zero) == 0);
645 for (Addr gdtCurrent = _gdtStart;
646 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
647 initVirtMem.write(gdtCurrent, zero);
648 }
649
650 // Set up the vsyscall page for this process.
651 allocateMem(vsyscallPage.base, vsyscallPage.size);
652 uint8_t vsyscallBlob[] = {
653 0x51, // push %ecx
654 0x52, // push %edp
655 0x55, // push %ebp
656 0x89, 0xe5, // mov %esp, %ebp
657 0x0f, 0x34 // sysenter
658 };
659 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
660 vsyscallBlob, sizeof(vsyscallBlob));
661
662 uint8_t vsysexitBlob[] = {
663 0x5d, // pop %ebp
664 0x5a, // pop %edx
665 0x59, // pop %ecx
666 0xc3 // ret
667 };
668 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
669 vsysexitBlob, sizeof(vsysexitBlob));
670
671 for (int i = 0; i < contextIds.size(); i++) {
672 ThreadContext * tc = system->getThreadContext(contextIds[i]);
673
674 SegAttr dataAttr = 0;
675 dataAttr.dpl = 3;
676 dataAttr.unusable = 0;
677 dataAttr.defaultSize = 1;
678 dataAttr.longMode = 0;
679 dataAttr.avl = 0;
680 dataAttr.granularity = 1;
681 dataAttr.present = 1;
682 dataAttr.type = 3;
683 dataAttr.writable = 1;
684 dataAttr.readable = 1;
685 dataAttr.expandDown = 0;
686 dataAttr.system = 1;
687
688 // Initialize the segment registers.
689 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
690 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
691 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
692 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
693 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
694 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
695 }
696
697 SegAttr csAttr = 0;
698 csAttr.dpl = 3;
699 csAttr.unusable = 0;
700 csAttr.defaultSize = 1;
701 csAttr.longMode = 0;
702 csAttr.avl = 0;
703 csAttr.granularity = 1;
704 csAttr.present = 1;
705 csAttr.type = 0xa;
706 csAttr.writable = 0;
707 csAttr.readable = 1;
708 csAttr.expandDown = 0;
709 csAttr.system = 1;
710
711 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
712
713 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
714 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
715 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
716
717 // Set the LDT selector to 0 to deactivate it.
718 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
719
720 Efer efer = 0;
721 efer.sce = 1; // Enable system call extensions.
722 efer.lme = 1; // Enable long mode.
723 efer.lma = 0; // Deactivate long mode.
724 efer.nxe = 1; // Enable nx support.
725 efer.svme = 0; // Disable svm support for now. It isn't implemented.
726 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
727 tc->setMiscReg(MISCREG_EFER, efer);
728
729 // Set up the registers that describe the operating mode.
730 CR0 cr0 = 0;
731 cr0.pg = 1; // Turn on paging.
732 cr0.cd = 0; // Don't disable caching.
733 cr0.nw = 0; // This is bit is defined to be ignored.
734 cr0.am = 0; // No alignment checking
735 cr0.wp = 0; // Supervisor mode can write read only pages
736 cr0.ne = 1;
737 cr0.et = 1; // This should always be 1
738 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
739 // would be pointless.
740 cr0.em = 0; // Allow x87 instructions to execute natively.
741 cr0.mp = 1; // This doesn't really matter, but the manual suggests
742 // setting it to one.
743 cr0.pe = 1; // We're definitely in protected mode.
744 tc->setMiscReg(MISCREG_CR0, cr0);
745
746 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
747 }
748 }
749
750 template<class IntType>
751 void
752 X86Process::argsInit(int pageSize,
753 std::vector<AuxVector<IntType> > extraAuxvs)
754 {
755 int intSize = sizeof(IntType);
756
757 typedef AuxVector<IntType> auxv_t;
758 std::vector<auxv_t> auxv = extraAuxvs;
759
760 string filename;
761 if (argv.size() < 1)
762 filename = "";
763 else
764 filename = argv[0];
765
766 // We want 16 byte alignment
767 uint64_t align = 16;
768
769 // Patch the ld_bias for dynamic executables.
770 updateBias();
771
772 // load object file into target memory
773 objFile->loadSections(initVirtMem);
774
775 enum X86CpuFeature {
776 X86_OnboardFPU = 1 << 0,
777 X86_VirtualModeExtensions = 1 << 1,
778 X86_DebuggingExtensions = 1 << 2,
779 X86_PageSizeExtensions = 1 << 3,
780
781 X86_TimeStampCounter = 1 << 4,
782 X86_ModelSpecificRegisters = 1 << 5,
783 X86_PhysicalAddressExtensions = 1 << 6,
784 X86_MachineCheckExtensions = 1 << 7,
785
786 X86_CMPXCHG8Instruction = 1 << 8,
787 X86_OnboardAPIC = 1 << 9,
788 X86_SYSENTER_SYSEXIT = 1 << 11,
789
790 X86_MemoryTypeRangeRegisters = 1 << 12,
791 X86_PageGlobalEnable = 1 << 13,
792 X86_MachineCheckArchitecture = 1 << 14,
793 X86_CMOVInstruction = 1 << 15,
794
795 X86_PageAttributeTable = 1 << 16,
796 X86_36BitPSEs = 1 << 17,
797 X86_ProcessorSerialNumber = 1 << 18,
798 X86_CLFLUSHInstruction = 1 << 19,
799
800 X86_DebugTraceStore = 1 << 21,
801 X86_ACPIViaMSR = 1 << 22,
802 X86_MultimediaExtensions = 1 << 23,
803
804 X86_FXSAVE_FXRSTOR = 1 << 24,
805 X86_StreamingSIMDExtensions = 1 << 25,
806 X86_StreamingSIMDExtensions2 = 1 << 26,
807 X86_CPUSelfSnoop = 1 << 27,
808
809 X86_HyperThreading = 1 << 28,
810 X86_AutomaticClockControl = 1 << 29,
811 X86_IA64Processor = 1 << 30
812 };
813
814 // Setup the auxiliary vectors. These will already have endian
815 // conversion. Auxiliary vectors are loaded only for elf formatted
816 // executables; the auxv is responsible for passing information from
817 // the OS to the interpreter.
818 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
819 if (elfObject) {
820 uint64_t features =
821 X86_OnboardFPU |
822 X86_VirtualModeExtensions |
823 X86_DebuggingExtensions |
824 X86_PageSizeExtensions |
825 X86_TimeStampCounter |
826 X86_ModelSpecificRegisters |
827 X86_PhysicalAddressExtensions |
828 X86_MachineCheckExtensions |
829 X86_CMPXCHG8Instruction |
830 X86_OnboardAPIC |
831 X86_SYSENTER_SYSEXIT |
832 X86_MemoryTypeRangeRegisters |
833 X86_PageGlobalEnable |
834 X86_MachineCheckArchitecture |
835 X86_CMOVInstruction |
836 X86_PageAttributeTable |
837 X86_36BitPSEs |
838 // X86_ProcessorSerialNumber |
839 X86_CLFLUSHInstruction |
840 // X86_DebugTraceStore |
841 // X86_ACPIViaMSR |
842 X86_MultimediaExtensions |
843 X86_FXSAVE_FXRSTOR |
844 X86_StreamingSIMDExtensions |
845 X86_StreamingSIMDExtensions2 |
846 // X86_CPUSelfSnoop |
847 // X86_HyperThreading |
848 // X86_AutomaticClockControl |
849 // X86_IA64Processor |
850 0;
851
852 // Bits which describe the system hardware capabilities
853 // XXX Figure out what these should be
854 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
855 // The system page size
856 auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
857 // Frequency at which times() increments
858 // Defined to be 100 in the kernel source.
859 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
860 // This is the virtual address of the program header tables if they
861 // appear in the executable image.
862 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
863 // This is the size of a program header entry from the elf file.
864 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
865 // This is the number of program headers from the original elf file.
866 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
867 // This is the base address of the ELF interpreter; it should be
868 // zero for static executables or contain the base address for
869 // dynamic executables.
870 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
871 // XXX Figure out what this should be.
872 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
873 // The entry point to the program
874 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
875 // Different user and group IDs
876 auxv.push_back(auxv_t(M5_AT_UID, uid()));
877 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
878 auxv.push_back(auxv_t(M5_AT_GID, gid()));
879 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
880 // Whether to enable "secure mode" in the executable
881 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
882 // The address of 16 "random" bytes.
883 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
884 // The name of the program
885 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
886 // The platform string
887 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
888 }
889
890 // Figure out how big the initial stack needs to be
891
892 // A sentry NULL void pointer at the top of the stack.
893 int sentry_size = intSize;
894
895 // This is the name of the file which is present on the initial stack
896 // It's purpose is to let the user space linker examine the original file.
897 int file_name_size = filename.size() + 1;
898
899 const int numRandomBytes = 16;
900 int aux_data_size = numRandomBytes;
901
902 string platform = "x86_64";
903 aux_data_size += platform.size() + 1;
904
905 int env_data_size = 0;
906 for (int i = 0; i < envp.size(); ++i)
907 env_data_size += envp[i].size() + 1;
908 int arg_data_size = 0;
909 for (int i = 0; i < argv.size(); ++i)
910 arg_data_size += argv[i].size() + 1;
911
912 // The info_block needs to be padded so its size is a multiple of the
913 // alignment mask. Also, it appears that there needs to be at least some
914 // padding, so if the size is already a multiple, we need to increase it
915 // anyway.
916 int base_info_block_size =
917 sentry_size + file_name_size + env_data_size + arg_data_size;
918
919 int info_block_size = roundUp(base_info_block_size, align);
920
921 int info_block_padding = info_block_size - base_info_block_size;
922
923 // Each auxiliary vector is two 8 byte words
924 int aux_array_size = intSize * 2 * (auxv.size() + 1);
925
926 int envp_array_size = intSize * (envp.size() + 1);
927 int argv_array_size = intSize * (argv.size() + 1);
928
929 int argc_size = intSize;
930
931 // Figure out the size of the contents of the actual initial frame
932 int frame_size =
933 aux_array_size +
934 envp_array_size +
935 argv_array_size +
936 argc_size;
937
938 // There needs to be padding after the auxiliary vector data so that the
939 // very bottom of the stack is aligned properly.
940 int partial_size = frame_size + aux_data_size;
941 int aligned_partial_size = roundUp(partial_size, align);
942 int aux_padding = aligned_partial_size - partial_size;
943
944 int space_needed =
945 info_block_size +
946 aux_data_size +
947 aux_padding +
948 frame_size;
949
950 Addr stack_base = memState->getStackBase();
951
952 Addr stack_min = stack_base - space_needed;
953 stack_min = roundDown(stack_min, align);
954
955 unsigned stack_size = stack_base - stack_min;
956 stack_size = roundUp(stack_size, pageSize);
957 memState->setStackSize(stack_size);
958
959 // map memory
960 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
961
962 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
963 allocateMem(stack_end, stack_size);
964
965 // map out initial stack contents
966 IntType sentry_base = stack_base - sentry_size;
967 IntType file_name_base = sentry_base - file_name_size;
968 IntType env_data_base = file_name_base - env_data_size;
969 IntType arg_data_base = env_data_base - arg_data_size;
970 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
971 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
972 IntType envp_array_base = auxv_array_base - envp_array_size;
973 IntType argv_array_base = envp_array_base - argv_array_size;
974 IntType argc_base = argv_array_base - argc_size;
975
976 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
977 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
978 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
979 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
980 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
981 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
982 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
983 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
984 DPRINTF(Stack, "0x%x - argc \n", argc_base);
985 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
986
987 // write contents to stack
988
989 // figure out argc
990 IntType argc = argv.size();
991 IntType guestArgc = X86ISA::htog(argc);
992
993 // Write out the sentry void *
994 IntType sentry_NULL = 0;
995 initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
996
997 // Write the file name
998 initVirtMem.writeString(file_name_base, filename.c_str());
999
1000 // Fix up the aux vectors which point to data
1001 assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
1002 auxv[auxv.size() - 3].a_val = aux_data_base;
1003 assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
1004 auxv[auxv.size() - 2].a_val = argv_array_base;
1005 assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
1006 auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1007
1008
1009 // Copy the aux stuff
1010 for (int x = 0; x < auxv.size(); x++) {
1011 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1012 (uint8_t*)&(auxv[x].a_type), intSize);
1013 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1014 (uint8_t*)&(auxv[x].a_val), intSize);
1015 }
1016 // Write out the terminating zeroed auxiliary vector
1017 const uint64_t zero = 0;
1018 initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1019 (uint8_t*)&zero, intSize);
1020 initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1021 (uint8_t*)&zero, intSize);
1022
1023 initVirtMem.writeString(aux_data_base, platform.c_str());
1024
1025 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1026 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1027
1028 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1029
1030 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1031 // Set the stack pointer register
1032 tc->setIntReg(StackPointerReg, stack_min);
1033
1034 // There doesn't need to be any segment base added in since we're dealing
1035 // with the flat segmentation model.
1036 tc->pcState(getStartPC());
1037
1038 // Align the "stack_min" to a page boundary.
1039 memState->setStackMin(roundDown(stack_min, pageSize));
1040 }
1041
1042 void
1043 X86_64Process::argsInit(int pageSize)
1044 {
1045 std::vector<AuxVector<uint64_t> > extraAuxvs;
1046 extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1047 vsyscallPage.base));
1048 X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1049 }
1050
1051 void
1052 I386Process::argsInit(int pageSize)
1053 {
1054 std::vector<AuxVector<uint32_t> > extraAuxvs;
1055 //Tell the binary where the vsyscall part of the vsyscall page is.
1056 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1057 vsyscallPage.base + vsyscallPage.vsyscallOffset));
1058 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1059 vsyscallPage.base));
1060 X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1061 }
1062
1063 void
1064 X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1065 {
1066 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1067 }
1068
1069 X86ISA::IntReg
1070 X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1071 {
1072 assert(i < NumArgumentRegs);
1073 return tc->readIntReg(ArgumentReg[i++]);
1074 }
1075
1076 void
1077 X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1078 {
1079 assert(i < NumArgumentRegs);
1080 return tc->setIntReg(ArgumentReg[i], val);
1081 }
1082
1083 void
1084 X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1085 Process *p, TheISA::IntReg flags)
1086 {
1087 X86Process::clone(old_tc, new_tc, p, flags);
1088 ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1089 }
1090
1091 X86ISA::IntReg
1092 I386Process::getSyscallArg(ThreadContext *tc, int &i)
1093 {
1094 assert(i < NumArgumentRegs32);
1095 return tc->readIntReg(ArgumentReg32[i++]);
1096 }
1097
1098 X86ISA::IntReg
1099 I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1100 {
1101 assert(width == 32 || width == 64);
1102 assert(i < NumArgumentRegs);
1103 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1104 if (width == 64)
1105 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1106 return retVal;
1107 }
1108
1109 void
1110 I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1111 {
1112 assert(i < NumArgumentRegs);
1113 return tc->setIntReg(ArgumentReg[i], val);
1114 }
1115
1116 void
1117 I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1118 Process *p, TheISA::IntReg flags)
1119 {
1120 X86Process::clone(old_tc, new_tc, p, flags);
1121 ((I386Process*)p)->vsyscallPage = vsyscallPage;
1122 }