arch,cpu,sim: Push syscall number determination up to processes.
[gem5.git] / src / arch / x86 / process.cc
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45 #include "arch/x86/process.hh"
46
47 #include <string>
48 #include <vector>
49
50 #include "arch/x86/isa_traits.hh"
51 #include "arch/x86/regs/misc.hh"
52 #include "arch/x86/regs/segment.hh"
53 #include "arch/x86/system.hh"
54 #include "arch/x86/types.hh"
55 #include "base/loader/elf_object.hh"
56 #include "base/loader/object_file.hh"
57 #include "base/logging.hh"
58 #include "base/trace.hh"
59 #include "cpu/thread_context.hh"
60 #include "debug/Stack.hh"
61 #include "mem/multi_level_page_table.hh"
62 #include "mem/page_table.hh"
63 #include "params/Process.hh"
64 #include "sim/aux_vector.hh"
65 #include "sim/process_impl.hh"
66 #include "sim/syscall_desc.hh"
67 #include "sim/syscall_return.hh"
68 #include "sim/system.hh"
69
70 using namespace std;
71 using namespace X86ISA;
72
73 static const int ArgumentReg[] = {
74 INTREG_RDI,
75 INTREG_RSI,
76 INTREG_RDX,
77 // This argument register is r10 for syscalls and rcx for C.
78 INTREG_R10W,
79 // INTREG_RCX,
80 INTREG_R8W,
81 INTREG_R9W
82 };
83
84 static const int NumArgumentRegs M5_VAR_USED =
85 sizeof(ArgumentReg) / sizeof(const int);
86
87 static const int ArgumentReg32[] = {
88 INTREG_EBX,
89 INTREG_ECX,
90 INTREG_EDX,
91 INTREG_ESI,
92 INTREG_EDI,
93 INTREG_EBP
94 };
95
96 static const int NumArgumentRegs32 M5_VAR_USED =
97 sizeof(ArgumentReg) / sizeof(const int);
98
99 template class MultiLevelPageTable<LongModePTE<47, 39>,
100 LongModePTE<38, 30>,
101 LongModePTE<29, 21>,
102 LongModePTE<20, 12> >;
103 typedef MultiLevelPageTable<LongModePTE<47, 39>,
104 LongModePTE<38, 30>,
105 LongModePTE<29, 21>,
106 LongModePTE<20, 12> > ArchPageTable;
107
108 X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
109 SyscallDesc *_syscallDescs, int _numSyscallDescs)
110 : Process(params, params->useArchPT ?
111 static_cast<EmulationPageTable *>(
112 new ArchPageTable(params->name, params->pid,
113 params->system, PageBytes)) :
114 new EmulationPageTable(params->name, params->pid,
115 PageBytes),
116 objFile),
117 syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
118 {
119 }
120
121 void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
122 Process *p, RegVal flags)
123 {
124 Process::clone(old_tc, new_tc, p, flags);
125 X86Process *process = (X86Process*)p;
126 *process = *this;
127 }
128
129 X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
130 SyscallDesc *_syscallDescs, int _numSyscallDescs)
131 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
132 {
133
134 vsyscallPage.base = 0xffffffffff600000ULL;
135 vsyscallPage.size = PageBytes;
136 vsyscallPage.vtimeOffset = 0x400;
137 vsyscallPage.vgettimeofdayOffset = 0x0;
138
139 Addr brk_point = roundUp(image.maxAddr(), PageBytes);
140 Addr stack_base = 0x7FFFFFFFF000ULL;
141 Addr max_stack_size = 8 * 1024 * 1024;
142 Addr next_thread_stack_base = stack_base - max_stack_size;
143 Addr mmap_end = 0x7FFFF7FFF000ULL;
144
145 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
146 next_thread_stack_base, mmap_end);
147 }
148
149
150 I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
151 SyscallDesc *_syscallDescs, int _numSyscallDescs)
152 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
153 {
154 if (kvmInSE)
155 panic("KVM CPU model does not support 32 bit processes");
156
157 _gdtStart = ULL(0xffffd000);
158 _gdtSize = PageBytes;
159
160 vsyscallPage.base = 0xffffe000ULL;
161 vsyscallPage.size = PageBytes;
162 vsyscallPage.vsyscallOffset = 0x400;
163 vsyscallPage.vsysexitOffset = 0x410;
164
165 Addr brk_point = roundUp(image.maxAddr(), PageBytes);
166 Addr stack_base = _gdtStart;
167 Addr max_stack_size = 8 * 1024 * 1024;
168 Addr next_thread_stack_base = stack_base - max_stack_size;
169 Addr mmap_end = 0xB7FFF000ULL;
170
171 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
172 next_thread_stack_base, mmap_end);
173 }
174
175 SyscallDesc*
176 X86Process::getDesc(int callnum)
177 {
178 if (callnum < 0 || callnum >= numSyscallDescs)
179 return NULL;
180 return &syscallDescs[callnum];
181 }
182
183 void
184 X86_64Process::initState()
185 {
186 X86Process::initState();
187
188 if (useForClone)
189 return;
190
191 argsInit(PageBytes);
192
193 // Set up the vsyscall page for this process.
194 allocateMem(vsyscallPage.base, vsyscallPage.size);
195 uint8_t vtimeBlob[] = {
196 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
197 0x0f,0x05, // syscall
198 0xc3 // retq
199 };
200 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
201 vtimeBlob, sizeof(vtimeBlob));
202
203 uint8_t vgettimeofdayBlob[] = {
204 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
205 0x0f,0x05, // syscall
206 0xc3 // retq
207 };
208 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
209 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
210
211 if (kvmInSE) {
212 PortProxy physProxy = system->physProxy;
213
214 Addr syscallCodePhysAddr = system->allocPhysPages(1);
215 Addr gdtPhysAddr = system->allocPhysPages(1);
216 Addr idtPhysAddr = system->allocPhysPages(1);
217 Addr istPhysAddr = system->allocPhysPages(1);
218 Addr tssPhysAddr = system->allocPhysPages(1);
219 Addr pfHandlerPhysAddr = system->allocPhysPages(1);
220
221 /*
222 * Set up the gdt.
223 */
224 uint8_t numGDTEntries = 0;
225 uint64_t nullDescriptor = 0;
226 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
227 &nullDescriptor, 8);
228 numGDTEntries++;
229
230 SegDescriptor initDesc = 0;
231 initDesc.type.codeOrData = 0; // code or data type
232 initDesc.type.c = 0; // conforming
233 initDesc.type.r = 1; // readable
234 initDesc.dpl = 0; // privilege
235 initDesc.p = 1; // present
236 initDesc.l = 1; // longmode - 64 bit
237 initDesc.d = 0; // operand size
238 initDesc.s = 1; // system segment
239 initDesc.limit = 0xFFFFFFFF;
240 initDesc.base = 0;
241
242 //64 bit code segment
243 SegDescriptor csLowPLDesc = initDesc;
244 csLowPLDesc.type.codeOrData = 1;
245 csLowPLDesc.dpl = 0;
246 uint64_t csLowPLDescVal = csLowPLDesc;
247 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
248 &csLowPLDescVal, 8);
249
250 numGDTEntries++;
251
252 SegSelector csLowPL = 0;
253 csLowPL.si = numGDTEntries - 1;
254 csLowPL.rpl = 0;
255
256 //64 bit data segment
257 SegDescriptor dsLowPLDesc = initDesc;
258 dsLowPLDesc.type.codeOrData = 0;
259 dsLowPLDesc.dpl = 0;
260 uint64_t dsLowPLDescVal = dsLowPLDesc;
261 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
262 &dsLowPLDescVal, 8);
263
264 numGDTEntries++;
265
266 SegSelector dsLowPL = 0;
267 dsLowPL.si = numGDTEntries - 1;
268 dsLowPL.rpl = 0;
269
270 //64 bit data segment
271 SegDescriptor dsDesc = initDesc;
272 dsDesc.type.codeOrData = 0;
273 dsDesc.dpl = 3;
274 uint64_t dsDescVal = dsDesc;
275 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
276 &dsDescVal, 8);
277
278 numGDTEntries++;
279
280 SegSelector ds = 0;
281 ds.si = numGDTEntries - 1;
282 ds.rpl = 3;
283
284 //64 bit code segment
285 SegDescriptor csDesc = initDesc;
286 csDesc.type.codeOrData = 1;
287 csDesc.dpl = 3;
288 uint64_t csDescVal = csDesc;
289 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
290 &csDescVal, 8);
291
292 numGDTEntries++;
293
294 SegSelector cs = 0;
295 cs.si = numGDTEntries - 1;
296 cs.rpl = 3;
297
298 SegSelector scall = 0;
299 scall.si = csLowPL.si;
300 scall.rpl = 0;
301
302 SegSelector sret = 0;
303 sret.si = dsLowPL.si;
304 sret.rpl = 3;
305
306 /* In long mode the TSS has been extended to 16 Bytes */
307 TSSlow TSSDescLow = 0;
308 TSSDescLow.type = 0xB;
309 TSSDescLow.dpl = 0; // Privelege level 0
310 TSSDescLow.p = 1; // Present
311 TSSDescLow.limit = 0xFFFFFFFF;
312 TSSDescLow.base = bits(TSSVirtAddr, 31, 0);
313
314 TSShigh TSSDescHigh = 0;
315 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
316
317 struct TSSDesc {
318 uint64_t low;
319 uint64_t high;
320 } tssDescVal = {TSSDescLow, TSSDescHigh};
321
322 physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
323 &tssDescVal, sizeof(tssDescVal));
324
325 numGDTEntries++;
326
327 SegSelector tssSel = 0;
328 tssSel.si = numGDTEntries - 1;
329
330 uint64_t tss_base_addr = (TSSDescHigh.base << 32) | TSSDescLow.base;
331 uint64_t tss_limit = TSSDescLow.limit;
332
333 SegAttr tss_attr = 0;
334
335 tss_attr.type = TSSDescLow.type;
336 tss_attr.dpl = TSSDescLow.dpl;
337 tss_attr.present = TSSDescLow.p;
338 tss_attr.granularity = TSSDescLow.g;
339 tss_attr.unusable = 0;
340
341 for (int i = 0; i < contextIds.size(); i++) {
342 ThreadContext * tc = system->getThreadContext(contextIds[i]);
343
344 tc->setMiscReg(MISCREG_CS, cs);
345 tc->setMiscReg(MISCREG_DS, ds);
346 tc->setMiscReg(MISCREG_ES, ds);
347 tc->setMiscReg(MISCREG_FS, ds);
348 tc->setMiscReg(MISCREG_GS, ds);
349 tc->setMiscReg(MISCREG_SS, ds);
350
351 // LDT
352 tc->setMiscReg(MISCREG_TSL, 0);
353 SegAttr tslAttr = 0;
354 tslAttr.present = 1;
355 tslAttr.type = 2;
356 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
357
358 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
359 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
360
361 tc->setMiscReg(MISCREG_TR, tssSel);
362 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
363 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
364 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
365 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
366
367 //Start using longmode segments.
368 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
369 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
370 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
371 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
372 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
373 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
374
375 Efer efer = 0;
376 efer.sce = 1; // Enable system call extensions.
377 efer.lme = 1; // Enable long mode.
378 efer.lma = 1; // Activate long mode.
379 efer.nxe = 0; // Enable nx support.
380 efer.svme = 1; // Enable svm support for now.
381 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
382 tc->setMiscReg(MISCREG_EFER, efer);
383
384 //Set up the registers that describe the operating mode.
385 CR0 cr0 = 0;
386 cr0.pg = 1; // Turn on paging.
387 cr0.cd = 0; // Don't disable caching.
388 cr0.nw = 0; // This is bit is defined to be ignored.
389 cr0.am = 1; // No alignment checking
390 cr0.wp = 1; // Supervisor mode can write read only pages
391 cr0.ne = 1;
392 cr0.et = 1; // This should always be 1
393 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
394 // would be pointless.
395 cr0.em = 0; // Allow x87 instructions to execute natively.
396 cr0.mp = 1; // This doesn't really matter, but the manual suggests
397 // setting it to one.
398 cr0.pe = 1; // We're definitely in protected mode.
399 tc->setMiscReg(MISCREG_CR0, cr0);
400
401 CR0 cr2 = 0;
402 tc->setMiscReg(MISCREG_CR2, cr2);
403
404 CR3 cr3 = dynamic_cast<ArchPageTable *>(pTable)->basePtr();
405 tc->setMiscReg(MISCREG_CR3, cr3);
406
407 CR4 cr4 = 0;
408 //Turn on pae.
409 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
410 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
411 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
412 cr4.pce = 0; // Performance-Monitoring Counter Enable
413 cr4.pge = 0; // Page-Global Enable
414 cr4.mce = 0; // Machine Check Enable
415 cr4.pae = 1; // Physical-Address Extension
416 cr4.pse = 0; // Page Size Extensions
417 cr4.de = 0; // Debugging Extensions
418 cr4.tsd = 0; // Time Stamp Disable
419 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
420 cr4.vme = 0; // Virtual-8086 Mode Extensions
421
422 tc->setMiscReg(MISCREG_CR4, cr4);
423
424 CR4 cr8 = 0;
425 tc->setMiscReg(MISCREG_CR8, cr8);
426
427 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
428
429 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
430
431 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
432 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
433
434 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
435 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
436
437 /* enabling syscall and sysret */
438 RegVal star = ((RegVal)sret << 48) | ((RegVal)scall << 32);
439 tc->setMiscReg(MISCREG_STAR, star);
440 RegVal lstar = (RegVal)syscallCodeVirtAddr;
441 tc->setMiscReg(MISCREG_LSTAR, lstar);
442 RegVal sfmask = (1 << 8) | (1 << 10); // TF | DF
443 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
444 }
445
446 /* Set up the content of the TSS and write it to physical memory. */
447
448 struct {
449 uint32_t reserved0; // +00h
450 uint32_t RSP0_low; // +04h
451 uint32_t RSP0_high; // +08h
452 uint32_t RSP1_low; // +0Ch
453 uint32_t RSP1_high; // +10h
454 uint32_t RSP2_low; // +14h
455 uint32_t RSP2_high; // +18h
456 uint32_t reserved1; // +1Ch
457 uint32_t reserved2; // +20h
458 uint32_t IST1_low; // +24h
459 uint32_t IST1_high; // +28h
460 uint32_t IST2_low; // +2Ch
461 uint32_t IST2_high; // +30h
462 uint32_t IST3_low; // +34h
463 uint32_t IST3_high; // +38h
464 uint32_t IST4_low; // +3Ch
465 uint32_t IST4_high; // +40h
466 uint32_t IST5_low; // +44h
467 uint32_t IST5_high; // +48h
468 uint32_t IST6_low; // +4Ch
469 uint32_t IST6_high; // +50h
470 uint32_t IST7_low; // +54h
471 uint32_t IST7_high; // +58h
472 uint32_t reserved3; // +5Ch
473 uint32_t reserved4; // +60h
474 uint16_t reserved5; // +64h
475 uint16_t IO_MapBase; // +66h
476 } tss;
477
478 /** setting Interrupt Stack Table */
479 uint64_t IST_start = ISTVirtAddr + PageBytes;
480 tss.IST1_low = IST_start;
481 tss.IST1_high = IST_start >> 32;
482 tss.RSP0_low = tss.IST1_low;
483 tss.RSP0_high = tss.IST1_high;
484 tss.RSP1_low = tss.IST1_low;
485 tss.RSP1_high = tss.IST1_high;
486 tss.RSP2_low = tss.IST1_low;
487 tss.RSP2_high = tss.IST1_high;
488 physProxy.writeBlob(tssPhysAddr, &tss, sizeof(tss));
489
490 /* Setting IDT gates */
491 GateDescriptorLow PFGateLow = 0;
492 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
493 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
494 PFGateLow.selector = csLowPL;
495 PFGateLow.p = 1;
496 PFGateLow.dpl = 0;
497 PFGateLow.type = 0xe; // gate interrupt type
498 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
499
500 GateDescriptorHigh PFGateHigh = 0;
501 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
502
503 struct {
504 uint64_t low;
505 uint64_t high;
506 } PFGate = {PFGateLow, PFGateHigh};
507
508 physProxy.writeBlob(idtPhysAddr + 0xE0, &PFGate, sizeof(PFGate));
509
510 /* System call handler */
511 uint8_t syscallBlob[] = {
512 // mov %rax, (0xffffc90000005600)
513 0x48, 0xa3, 0x00, 0x60, 0x00,
514 0x00, 0x00, 0xc9, 0xff, 0xff,
515 // sysret
516 0x48, 0x0f, 0x07
517 };
518
519 physProxy.writeBlob(syscallCodePhysAddr,
520 syscallBlob, sizeof(syscallBlob));
521
522 /** Page fault handler */
523 uint8_t faultBlob[] = {
524 // mov %rax, (0xffffc90000005700)
525 0x48, 0xa3, 0x00, 0x61, 0x00,
526 0x00, 0x00, 0xc9, 0xff, 0xff,
527 // add $0x8, %rsp # skip error
528 0x48, 0x83, 0xc4, 0x08,
529 // iretq
530 0x48, 0xcf
531 };
532
533 physProxy.writeBlob(pfHandlerPhysAddr, faultBlob, sizeof(faultBlob));
534
535 /* Syscall handler */
536 pTable->map(syscallCodeVirtAddr, syscallCodePhysAddr,
537 PageBytes, false);
538 /* GDT */
539 pTable->map(GDTVirtAddr, gdtPhysAddr, PageBytes, false);
540 /* IDT */
541 pTable->map(IDTVirtAddr, idtPhysAddr, PageBytes, false);
542 /* TSS */
543 pTable->map(TSSVirtAddr, tssPhysAddr, PageBytes, false);
544 /* IST */
545 pTable->map(ISTVirtAddr, istPhysAddr, PageBytes, false);
546 /* PF handler */
547 pTable->map(PFHandlerVirtAddr, pfHandlerPhysAddr, PageBytes, false);
548 /* MMIO region for m5ops */
549 pTable->map(MMIORegionVirtAddr, MMIORegionPhysAddr,
550 16 * PageBytes, false);
551 } else {
552 for (int i = 0; i < contextIds.size(); i++) {
553 ThreadContext * tc = system->getThreadContext(contextIds[i]);
554
555 SegAttr dataAttr = 0;
556 dataAttr.dpl = 3;
557 dataAttr.unusable = 0;
558 dataAttr.defaultSize = 1;
559 dataAttr.longMode = 1;
560 dataAttr.avl = 0;
561 dataAttr.granularity = 1;
562 dataAttr.present = 1;
563 dataAttr.type = 3;
564 dataAttr.writable = 1;
565 dataAttr.readable = 1;
566 dataAttr.expandDown = 0;
567 dataAttr.system = 1;
568
569 // Initialize the segment registers.
570 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
571 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
572 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
573 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
574 }
575
576 SegAttr csAttr = 0;
577 csAttr.dpl = 3;
578 csAttr.unusable = 0;
579 csAttr.defaultSize = 0;
580 csAttr.longMode = 1;
581 csAttr.avl = 0;
582 csAttr.granularity = 1;
583 csAttr.present = 1;
584 csAttr.type = 10;
585 csAttr.writable = 0;
586 csAttr.readable = 1;
587 csAttr.expandDown = 0;
588 csAttr.system = 1;
589
590 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
591
592 Efer efer = 0;
593 efer.sce = 1; // Enable system call extensions.
594 efer.lme = 1; // Enable long mode.
595 efer.lma = 1; // Activate long mode.
596 efer.nxe = 1; // Enable nx support.
597 efer.svme = 0; // Disable svm support for now. It isn't implemented.
598 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
599 tc->setMiscReg(MISCREG_EFER, efer);
600
601 // Set up the registers that describe the operating mode.
602 CR0 cr0 = 0;
603 cr0.pg = 1; // Turn on paging.
604 cr0.cd = 0; // Don't disable caching.
605 cr0.nw = 0; // This is bit is defined to be ignored.
606 cr0.am = 0; // No alignment checking
607 cr0.wp = 0; // Supervisor mode can write read only pages
608 cr0.ne = 1;
609 cr0.et = 1; // This should always be 1
610 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
611 // would be pointless.
612 cr0.em = 0; // Allow x87 instructions to execute natively.
613 cr0.mp = 1; // This doesn't really matter, but the manual suggests
614 // setting it to one.
615 cr0.pe = 1; // We're definitely in protected mode.
616 tc->setMiscReg(MISCREG_CR0, cr0);
617
618 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
619 }
620 }
621 }
622
623 void
624 I386Process::initState()
625 {
626 X86Process::initState();
627
628 argsInit(PageBytes);
629
630 /*
631 * Set up a GDT for this process. The whole GDT wouldn't really be for
632 * this process, but the only parts we care about are.
633 */
634 allocateMem(_gdtStart, _gdtSize);
635 uint64_t zero = 0;
636 assert(_gdtSize % sizeof(zero) == 0);
637 for (Addr gdtCurrent = _gdtStart;
638 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
639 initVirtMem.write(gdtCurrent, zero);
640 }
641
642 // Set up the vsyscall page for this process.
643 allocateMem(vsyscallPage.base, vsyscallPage.size);
644 uint8_t vsyscallBlob[] = {
645 0x51, // push %ecx
646 0x52, // push %edp
647 0x55, // push %ebp
648 0x89, 0xe5, // mov %esp, %ebp
649 0x0f, 0x34 // sysenter
650 };
651 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
652 vsyscallBlob, sizeof(vsyscallBlob));
653
654 uint8_t vsysexitBlob[] = {
655 0x5d, // pop %ebp
656 0x5a, // pop %edx
657 0x59, // pop %ecx
658 0xc3 // ret
659 };
660 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
661 vsysexitBlob, sizeof(vsysexitBlob));
662
663 for (int i = 0; i < contextIds.size(); i++) {
664 ThreadContext * tc = system->getThreadContext(contextIds[i]);
665
666 SegAttr dataAttr = 0;
667 dataAttr.dpl = 3;
668 dataAttr.unusable = 0;
669 dataAttr.defaultSize = 1;
670 dataAttr.longMode = 0;
671 dataAttr.avl = 0;
672 dataAttr.granularity = 1;
673 dataAttr.present = 1;
674 dataAttr.type = 3;
675 dataAttr.writable = 1;
676 dataAttr.readable = 1;
677 dataAttr.expandDown = 0;
678 dataAttr.system = 1;
679
680 // Initialize the segment registers.
681 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
682 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
683 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
684 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
685 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
686 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
687 }
688
689 SegAttr csAttr = 0;
690 csAttr.dpl = 3;
691 csAttr.unusable = 0;
692 csAttr.defaultSize = 1;
693 csAttr.longMode = 0;
694 csAttr.avl = 0;
695 csAttr.granularity = 1;
696 csAttr.present = 1;
697 csAttr.type = 0xa;
698 csAttr.writable = 0;
699 csAttr.readable = 1;
700 csAttr.expandDown = 0;
701 csAttr.system = 1;
702
703 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
704
705 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
706 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
707 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
708
709 // Set the LDT selector to 0 to deactivate it.
710 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
711
712 Efer efer = 0;
713 efer.sce = 1; // Enable system call extensions.
714 efer.lme = 1; // Enable long mode.
715 efer.lma = 0; // Deactivate long mode.
716 efer.nxe = 1; // Enable nx support.
717 efer.svme = 0; // Disable svm support for now. It isn't implemented.
718 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
719 tc->setMiscReg(MISCREG_EFER, efer);
720
721 // Set up the registers that describe the operating mode.
722 CR0 cr0 = 0;
723 cr0.pg = 1; // Turn on paging.
724 cr0.cd = 0; // Don't disable caching.
725 cr0.nw = 0; // This is bit is defined to be ignored.
726 cr0.am = 0; // No alignment checking
727 cr0.wp = 0; // Supervisor mode can write read only pages
728 cr0.ne = 1;
729 cr0.et = 1; // This should always be 1
730 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
731 // would be pointless.
732 cr0.em = 0; // Allow x87 instructions to execute natively.
733 cr0.mp = 1; // This doesn't really matter, but the manual suggests
734 // setting it to one.
735 cr0.pe = 1; // We're definitely in protected mode.
736 tc->setMiscReg(MISCREG_CR0, cr0);
737
738 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
739 }
740 }
741
742 template<class IntType>
743 void
744 X86Process::argsInit(int pageSize,
745 std::vector<AuxVector<IntType> > extraAuxvs)
746 {
747 int intSize = sizeof(IntType);
748
749 std::vector<AuxVector<IntType>> auxv = extraAuxvs;
750
751 string filename;
752 if (argv.size() < 1)
753 filename = "";
754 else
755 filename = argv[0];
756
757 // We want 16 byte alignment
758 uint64_t align = 16;
759
760 enum X86CpuFeature {
761 X86_OnboardFPU = 1 << 0,
762 X86_VirtualModeExtensions = 1 << 1,
763 X86_DebuggingExtensions = 1 << 2,
764 X86_PageSizeExtensions = 1 << 3,
765
766 X86_TimeStampCounter = 1 << 4,
767 X86_ModelSpecificRegisters = 1 << 5,
768 X86_PhysicalAddressExtensions = 1 << 6,
769 X86_MachineCheckExtensions = 1 << 7,
770
771 X86_CMPXCHG8Instruction = 1 << 8,
772 X86_OnboardAPIC = 1 << 9,
773 X86_SYSENTER_SYSEXIT = 1 << 11,
774
775 X86_MemoryTypeRangeRegisters = 1 << 12,
776 X86_PageGlobalEnable = 1 << 13,
777 X86_MachineCheckArchitecture = 1 << 14,
778 X86_CMOVInstruction = 1 << 15,
779
780 X86_PageAttributeTable = 1 << 16,
781 X86_36BitPSEs = 1 << 17,
782 X86_ProcessorSerialNumber = 1 << 18,
783 X86_CLFLUSHInstruction = 1 << 19,
784
785 X86_DebugTraceStore = 1 << 21,
786 X86_ACPIViaMSR = 1 << 22,
787 X86_MultimediaExtensions = 1 << 23,
788
789 X86_FXSAVE_FXRSTOR = 1 << 24,
790 X86_StreamingSIMDExtensions = 1 << 25,
791 X86_StreamingSIMDExtensions2 = 1 << 26,
792 X86_CPUSelfSnoop = 1 << 27,
793
794 X86_HyperThreading = 1 << 28,
795 X86_AutomaticClockControl = 1 << 29,
796 X86_IA64Processor = 1 << 30
797 };
798
799 // Setup the auxiliary vectors. These will already have endian
800 // conversion. Auxiliary vectors are loaded only for elf formatted
801 // executables; the auxv is responsible for passing information from
802 // the OS to the interpreter.
803 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
804 if (elfObject) {
805 uint64_t features =
806 X86_OnboardFPU |
807 X86_VirtualModeExtensions |
808 X86_DebuggingExtensions |
809 X86_PageSizeExtensions |
810 X86_TimeStampCounter |
811 X86_ModelSpecificRegisters |
812 X86_PhysicalAddressExtensions |
813 X86_MachineCheckExtensions |
814 X86_CMPXCHG8Instruction |
815 X86_OnboardAPIC |
816 X86_SYSENTER_SYSEXIT |
817 X86_MemoryTypeRangeRegisters |
818 X86_PageGlobalEnable |
819 X86_MachineCheckArchitecture |
820 X86_CMOVInstruction |
821 X86_PageAttributeTable |
822 X86_36BitPSEs |
823 // X86_ProcessorSerialNumber |
824 X86_CLFLUSHInstruction |
825 // X86_DebugTraceStore |
826 // X86_ACPIViaMSR |
827 X86_MultimediaExtensions |
828 X86_FXSAVE_FXRSTOR |
829 X86_StreamingSIMDExtensions |
830 X86_StreamingSIMDExtensions2 |
831 // X86_CPUSelfSnoop |
832 // X86_HyperThreading |
833 // X86_AutomaticClockControl |
834 // X86_IA64Processor |
835 0;
836
837 // Bits which describe the system hardware capabilities
838 // XXX Figure out what these should be
839 auxv.emplace_back(M5_AT_HWCAP, features);
840 // The system page size
841 auxv.emplace_back(M5_AT_PAGESZ, X86ISA::PageBytes);
842 // Frequency at which times() increments
843 // Defined to be 100 in the kernel source.
844 auxv.emplace_back(M5_AT_CLKTCK, 100);
845 // This is the virtual address of the program header tables if they
846 // appear in the executable image.
847 auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable());
848 // This is the size of a program header entry from the elf file.
849 auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize());
850 // This is the number of program headers from the original elf file.
851 auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount());
852 // This is the base address of the ELF interpreter; it should be
853 // zero for static executables or contain the base address for
854 // dynamic executables.
855 auxv.emplace_back(M5_AT_BASE, getBias());
856 // XXX Figure out what this should be.
857 auxv.emplace_back(M5_AT_FLAGS, 0);
858 // The entry point to the program
859 auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint());
860 // Different user and group IDs
861 auxv.emplace_back(M5_AT_UID, uid());
862 auxv.emplace_back(M5_AT_EUID, euid());
863 auxv.emplace_back(M5_AT_GID, gid());
864 auxv.emplace_back(M5_AT_EGID, egid());
865 // Whether to enable "secure mode" in the executable
866 auxv.emplace_back(M5_AT_SECURE, 0);
867 // The address of 16 "random" bytes.
868 auxv.emplace_back(M5_AT_RANDOM, 0);
869 // The name of the program
870 auxv.emplace_back(M5_AT_EXECFN, 0);
871 // The platform string
872 auxv.emplace_back(M5_AT_PLATFORM, 0);
873 }
874
875 // Figure out how big the initial stack needs to be
876
877 // A sentry NULL void pointer at the top of the stack.
878 int sentry_size = intSize;
879
880 // This is the name of the file which is present on the initial stack
881 // It's purpose is to let the user space linker examine the original file.
882 int file_name_size = filename.size() + 1;
883
884 const int numRandomBytes = 16;
885 int aux_data_size = numRandomBytes;
886
887 string platform = "x86_64";
888 aux_data_size += platform.size() + 1;
889
890 int env_data_size = 0;
891 for (int i = 0; i < envp.size(); ++i)
892 env_data_size += envp[i].size() + 1;
893 int arg_data_size = 0;
894 for (int i = 0; i < argv.size(); ++i)
895 arg_data_size += argv[i].size() + 1;
896
897 // The info_block needs to be padded so its size is a multiple of the
898 // alignment mask. Also, it appears that there needs to be at least some
899 // padding, so if the size is already a multiple, we need to increase it
900 // anyway.
901 int base_info_block_size =
902 sentry_size + file_name_size + env_data_size + arg_data_size;
903
904 int info_block_size = roundUp(base_info_block_size, align);
905
906 int info_block_padding = info_block_size - base_info_block_size;
907
908 // Each auxiliary vector is two 8 byte words
909 int aux_array_size = intSize * 2 * (auxv.size() + 1);
910
911 int envp_array_size = intSize * (envp.size() + 1);
912 int argv_array_size = intSize * (argv.size() + 1);
913
914 int argc_size = intSize;
915
916 // Figure out the size of the contents of the actual initial frame
917 int frame_size =
918 aux_array_size +
919 envp_array_size +
920 argv_array_size +
921 argc_size;
922
923 // There needs to be padding after the auxiliary vector data so that the
924 // very bottom of the stack is aligned properly.
925 int partial_size = frame_size + aux_data_size;
926 int aligned_partial_size = roundUp(partial_size, align);
927 int aux_padding = aligned_partial_size - partial_size;
928
929 int space_needed =
930 info_block_size +
931 aux_data_size +
932 aux_padding +
933 frame_size;
934
935 Addr stack_base = memState->getStackBase();
936
937 Addr stack_min = stack_base - space_needed;
938 stack_min = roundDown(stack_min, align);
939
940 unsigned stack_size = stack_base - stack_min;
941 stack_size = roundUp(stack_size, pageSize);
942 memState->setStackSize(stack_size);
943
944 // map memory
945 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
946
947 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
948 allocateMem(stack_end, stack_size);
949
950 // map out initial stack contents
951 IntType sentry_base = stack_base - sentry_size;
952 IntType file_name_base = sentry_base - file_name_size;
953 IntType env_data_base = file_name_base - env_data_size;
954 IntType arg_data_base = env_data_base - arg_data_size;
955 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
956 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
957 IntType envp_array_base = auxv_array_base - envp_array_size;
958 IntType argv_array_base = envp_array_base - argv_array_size;
959 IntType argc_base = argv_array_base - argc_size;
960
961 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
962 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
963 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
964 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
965 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
966 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
967 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
968 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
969 DPRINTF(Stack, "0x%x - argc \n", argc_base);
970 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
971
972 // write contents to stack
973
974 // figure out argc
975 IntType argc = argv.size();
976 IntType guestArgc = htole(argc);
977
978 // Write out the sentry void *
979 IntType sentry_NULL = 0;
980 initVirtMem.writeBlob(sentry_base, &sentry_NULL, sentry_size);
981
982 // Write the file name
983 initVirtMem.writeString(file_name_base, filename.c_str());
984
985 // Fix up the aux vectors which point to data
986 assert(auxv[auxv.size() - 3].type == M5_AT_RANDOM);
987 auxv[auxv.size() - 3].val = aux_data_base;
988 assert(auxv[auxv.size() - 2].type == M5_AT_EXECFN);
989 auxv[auxv.size() - 2].val = argv_array_base;
990 assert(auxv[auxv.size() - 1].type == M5_AT_PLATFORM);
991 auxv[auxv.size() - 1].val = aux_data_base + numRandomBytes;
992
993
994 // Copy the aux stuff
995 Addr auxv_array_end = auxv_array_base;
996 for (const auto &aux: auxv) {
997 initVirtMem.write(auxv_array_end, aux, GuestByteOrder);
998 auxv_array_end += sizeof(aux);
999 }
1000 // Write out the terminating zeroed auxiliary vector
1001 const AuxVector<uint64_t> zero(0, 0);
1002 initVirtMem.write(auxv_array_end, zero);
1003 auxv_array_end += sizeof(zero);
1004
1005 initVirtMem.writeString(aux_data_base, platform.c_str());
1006
1007 copyStringArray(envp, envp_array_base, env_data_base,
1008 LittleEndianByteOrder, initVirtMem);
1009 copyStringArray(argv, argv_array_base, arg_data_base,
1010 LittleEndianByteOrder, initVirtMem);
1011
1012 initVirtMem.writeBlob(argc_base, &guestArgc, intSize);
1013
1014 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1015 // Set the stack pointer register
1016 tc->setIntReg(StackPointerReg, stack_min);
1017
1018 // There doesn't need to be any segment base added in since we're dealing
1019 // with the flat segmentation model.
1020 tc->pcState(getStartPC());
1021
1022 // Align the "stack_min" to a page boundary.
1023 memState->setStackMin(roundDown(stack_min, pageSize));
1024 }
1025
1026 void
1027 X86_64Process::argsInit(int pageSize)
1028 {
1029 std::vector<AuxVector<uint64_t> > extraAuxvs;
1030 extraAuxvs.emplace_back(M5_AT_SYSINFO_EHDR, vsyscallPage.base);
1031 X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1032 }
1033
1034 void
1035 I386Process::argsInit(int pageSize)
1036 {
1037 std::vector<AuxVector<uint32_t> > extraAuxvs;
1038 //Tell the binary where the vsyscall part of the vsyscall page is.
1039 extraAuxvs.emplace_back(M5_AT_SYSINFO,
1040 vsyscallPage.base + vsyscallPage.vsyscallOffset);
1041 extraAuxvs.emplace_back(M5_AT_SYSINFO_EHDR, vsyscallPage.base);
1042 X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1043 }
1044
1045 void
1046 X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1047 {
1048 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1049 }
1050
1051 RegVal
1052 X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1053 {
1054 assert(i < NumArgumentRegs);
1055 return tc->readIntReg(ArgumentReg[i++]);
1056 }
1057
1058 void
1059 X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1060 Process *p, RegVal flags)
1061 {
1062 X86Process::clone(old_tc, new_tc, p, flags);
1063 ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1064 }
1065
1066 RegVal
1067 I386Process::getSyscallArg(ThreadContext *tc, int &i)
1068 {
1069 assert(i < NumArgumentRegs32);
1070 return tc->readIntReg(ArgumentReg32[i++]);
1071 }
1072
1073 RegVal
1074 I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1075 {
1076 assert(width == 32 || width == 64);
1077 assert(i < NumArgumentRegs);
1078 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1079 if (width == 64)
1080 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1081 return retVal;
1082 }
1083
1084 void
1085 I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1086 Process *p, RegVal flags)
1087 {
1088 X86Process::clone(old_tc, new_tc, p, flags);
1089 ((I386Process*)p)->vsyscallPage = vsyscallPage;
1090 }