33b53ca925c6ad6d0fc1e42d751409dba9e08e59
[gem5.git] / src / arch / x86 / utility.cc
1 /*
2 * Copyright (c) 2007 The Hewlett-Packard Development Company
3 * Copyright (c) 2011 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are
17 * met: redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer;
19 * redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution;
22 * neither the name of the copyright holders nor the names of its
23 * contributors may be used to endorse or promote products derived from
24 * this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Authors: Gabe Black
39 */
40
41 #include "arch/x86/utility.hh"
42
43 #include "arch/x86/interrupts.hh"
44 #include "arch/x86/registers.hh"
45 #include "arch/x86/x86_traits.hh"
46 #include "cpu/base.hh"
47 #include "fputils/fp80.h"
48 #include "sim/full_system.hh"
49
50 namespace X86ISA {
51
52 uint64_t
53 getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
54 {
55 if (fp) {
56 panic("getArgument(): Floating point arguments not implemented\n");
57 } else if (size != 8) {
58 panic("getArgument(): Can only handle 64-bit arguments.\n");
59 }
60
61 // The first 6 integer arguments are passed in registers, the rest
62 // are passed on the stack.
63 const int int_reg_map[] = {
64 INTREG_RDI, INTREG_RSI, INTREG_RDX,
65 INTREG_RCX, INTREG_R8, INTREG_R9
66 };
67 if (number < sizeof(int_reg_map) / sizeof(*int_reg_map)) {
68 return tc->readIntReg(int_reg_map[number]);
69 } else {
70 panic("getArgument(): Don't know how to handle stack arguments.\n");
71 }
72 }
73
74 void initCPU(ThreadContext *tc, int cpuId)
75 {
76 // This function is essentially performing a reset. The actual INIT
77 // interrupt does a subset of this, so we'll piggyback on some of its
78 // functionality.
79 InitInterrupt init(0);
80 init.invoke(tc);
81
82 PCState pc = tc->pcState();
83 pc.upc(0);
84 pc.nupc(1);
85 tc->pcState(pc);
86
87 // These next two loops zero internal microcode and implicit registers.
88 // They aren't specified by the ISA but are used internally by M5's
89 // implementation.
90 for (int index = 0; index < NumMicroIntRegs; index++) {
91 tc->setIntReg(INTREG_MICRO(index), 0);
92 }
93
94 for (int index = 0; index < NumImplicitIntRegs; index++) {
95 tc->setIntReg(INTREG_IMPLICIT(index), 0);
96 }
97
98 // Set integer register EAX to 0 to indicate that the optional BIST
99 // passed. No BIST actually runs, but software may still check this
100 // register for errors.
101 tc->setIntReg(INTREG_RAX, 0);
102
103 tc->setMiscReg(MISCREG_CR0, 0x0000000060000010ULL);
104 tc->setMiscReg(MISCREG_CR8, 0);
105
106 // TODO initialize x87, 64 bit, and 128 bit media state
107
108 tc->setMiscReg(MISCREG_MTRRCAP, 0x0508);
109 for (int i = 0; i < 8; i++) {
110 tc->setMiscReg(MISCREG_MTRR_PHYS_BASE(i), 0);
111 tc->setMiscReg(MISCREG_MTRR_PHYS_MASK(i), 0);
112 }
113 tc->setMiscReg(MISCREG_MTRR_FIX_64K_00000, 0);
114 tc->setMiscReg(MISCREG_MTRR_FIX_16K_80000, 0);
115 tc->setMiscReg(MISCREG_MTRR_FIX_16K_A0000, 0);
116 tc->setMiscReg(MISCREG_MTRR_FIX_4K_C0000, 0);
117 tc->setMiscReg(MISCREG_MTRR_FIX_4K_C8000, 0);
118 tc->setMiscReg(MISCREG_MTRR_FIX_4K_D0000, 0);
119 tc->setMiscReg(MISCREG_MTRR_FIX_4K_D8000, 0);
120 tc->setMiscReg(MISCREG_MTRR_FIX_4K_E0000, 0);
121 tc->setMiscReg(MISCREG_MTRR_FIX_4K_E8000, 0);
122 tc->setMiscReg(MISCREG_MTRR_FIX_4K_F0000, 0);
123 tc->setMiscReg(MISCREG_MTRR_FIX_4K_F8000, 0);
124
125 tc->setMiscReg(MISCREG_DEF_TYPE, 0);
126
127 tc->setMiscReg(MISCREG_MCG_CAP, 0x104);
128 tc->setMiscReg(MISCREG_MCG_STATUS, 0);
129 tc->setMiscReg(MISCREG_MCG_CTL, 0);
130
131 for (int i = 0; i < 5; i++) {
132 tc->setMiscReg(MISCREG_MC_CTL(i), 0);
133 tc->setMiscReg(MISCREG_MC_STATUS(i), 0);
134 tc->setMiscReg(MISCREG_MC_ADDR(i), 0);
135 tc->setMiscReg(MISCREG_MC_MISC(i), 0);
136 }
137
138 tc->setMiscReg(MISCREG_TSC, 0);
139 tc->setMiscReg(MISCREG_TSC_AUX, 0);
140
141 for (int i = 0; i < 4; i++) {
142 tc->setMiscReg(MISCREG_PERF_EVT_SEL(i), 0);
143 tc->setMiscReg(MISCREG_PERF_EVT_CTR(i), 0);
144 }
145
146 tc->setMiscReg(MISCREG_STAR, 0);
147 tc->setMiscReg(MISCREG_LSTAR, 0);
148 tc->setMiscReg(MISCREG_CSTAR, 0);
149
150 tc->setMiscReg(MISCREG_SF_MASK, 0);
151
152 tc->setMiscReg(MISCREG_KERNEL_GS_BASE, 0);
153
154 tc->setMiscReg(MISCREG_SYSENTER_CS, 0);
155 tc->setMiscReg(MISCREG_SYSENTER_ESP, 0);
156 tc->setMiscReg(MISCREG_SYSENTER_EIP, 0);
157
158 tc->setMiscReg(MISCREG_PAT, 0x0007040600070406ULL);
159
160 tc->setMiscReg(MISCREG_SYSCFG, 0x20601);
161
162 tc->setMiscReg(MISCREG_IORR_BASE0, 0);
163 tc->setMiscReg(MISCREG_IORR_BASE1, 0);
164
165 tc->setMiscReg(MISCREG_IORR_MASK0, 0);
166 tc->setMiscReg(MISCREG_IORR_MASK1, 0);
167
168 tc->setMiscReg(MISCREG_TOP_MEM, 0x4000000);
169 tc->setMiscReg(MISCREG_TOP_MEM2, 0x0);
170
171 tc->setMiscReg(MISCREG_DEBUG_CTL_MSR, 0);
172 tc->setMiscReg(MISCREG_LAST_BRANCH_FROM_IP, 0);
173 tc->setMiscReg(MISCREG_LAST_BRANCH_TO_IP, 0);
174 tc->setMiscReg(MISCREG_LAST_EXCEPTION_FROM_IP, 0);
175 tc->setMiscReg(MISCREG_LAST_EXCEPTION_TO_IP, 0);
176
177 // Invalidate the caches (this should already be done for us)
178
179 LocalApicBase lApicBase = 0;
180 lApicBase.base = 0xFEE00000 >> 12;
181 lApicBase.enable = 1;
182 lApicBase.bsp = (cpuId == 0);
183 tc->setMiscReg(MISCREG_APIC_BASE, lApicBase);
184
185 Interrupts * interrupts = dynamic_cast<Interrupts *>(
186 tc->getCpuPtr()->getInterruptController(0));
187 assert(interrupts);
188
189 interrupts->setRegNoEffect(APIC_ID, cpuId << 24);
190
191 interrupts->setRegNoEffect(APIC_VERSION, (5 << 16) | 0x14);
192
193 // TODO Set the SMRAM base address (SMBASE) to 0x00030000
194
195 tc->setMiscReg(MISCREG_VM_CR, 0);
196 tc->setMiscReg(MISCREG_IGNNE, 0);
197 tc->setMiscReg(MISCREG_SMM_CTL, 0);
198 tc->setMiscReg(MISCREG_VM_HSAVE_PA, 0);
199 }
200
201 void startupCPU(ThreadContext *tc, int cpuId)
202 {
203 if (cpuId == 0 || !FullSystem) {
204 tc->activate();
205 } else {
206 // This is an application processor (AP). It should be initialized to
207 // look like only the BIOS POST has run on it and put then put it into
208 // a halted state.
209 tc->suspend();
210 }
211 }
212
213 void
214 copyMiscRegs(ThreadContext *src, ThreadContext *dest)
215 {
216 // This function assumes no side effects other than TLB invalidation
217 // need to be considered while copying state. That will likely not be
218 // true in the future.
219 for (int i = 0; i < NUM_MISCREGS; ++i) {
220 if (!isValidMiscReg(i))
221 continue;
222
223 dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
224 }
225
226 // The TSC has to be updated with side-effects if the CPUs in a
227 // CPU switch have different frequencies.
228 dest->setMiscReg(MISCREG_TSC, src->readMiscReg(MISCREG_TSC));
229
230 dest->getITBPtr()->flushAll();
231 dest->getDTBPtr()->flushAll();
232 }
233
234 void
235 copyRegs(ThreadContext *src, ThreadContext *dest)
236 {
237 //copy int regs
238 for (int i = 0; i < NumIntRegs; ++i)
239 dest->setIntRegFlat(i, src->readIntRegFlat(i));
240 //copy float regs
241 for (int i = 0; i < NumFloatRegs; ++i)
242 dest->setFloatRegBitsFlat(i, src->readFloatRegBitsFlat(i));
243 //copy condition-code regs
244 for (int i = 0; i < NumCCRegs; ++i)
245 dest->setCCRegFlat(i, src->readCCRegFlat(i));
246 copyMiscRegs(src, dest);
247 dest->pcState(src->pcState());
248 }
249
250 void
251 skipFunction(ThreadContext *tc)
252 {
253 panic("Not implemented for x86\n");
254 }
255
256 uint64_t
257 getRFlags(ThreadContext *tc)
258 {
259 const uint64_t ncc_flags(tc->readMiscRegNoEffect(MISCREG_RFLAGS));
260 const uint64_t cc_flags(tc->readCCReg(X86ISA::CCREG_ZAPS));
261 const uint64_t cfof_bits(tc->readCCReg(X86ISA::CCREG_CFOF));
262 const uint64_t df_bit(tc->readCCReg(X86ISA::CCREG_DF));
263 // ecf (PSEUDO(3)) & ezf (PSEUDO(4)) are only visible to
264 // microcode, so we can safely ignore them.
265
266 // Reconstruct the real rflags state, mask out internal flags, and
267 // make sure reserved bits have the expected values.
268 return ((ncc_flags | cc_flags | cfof_bits | df_bit) & 0x3F7FD5)
269 | 0x2;
270 }
271
272 void
273 setRFlags(ThreadContext *tc, uint64_t val)
274 {
275 tc->setCCReg(X86ISA::CCREG_ZAPS, val & ccFlagMask);
276 tc->setCCReg(X86ISA::CCREG_CFOF, val & cfofMask);
277 tc->setCCReg(X86ISA::CCREG_DF, val & DFBit);
278
279 // Internal microcode registers (ECF & EZF)
280 tc->setCCReg(X86ISA::CCREG_ECF, 0);
281 tc->setCCReg(X86ISA::CCREG_EZF, 0);
282
283 // Update the RFLAGS misc reg with whatever didn't go into the
284 // magic registers.
285 tc->setMiscReg(MISCREG_RFLAGS, val & ~(ccFlagMask | cfofMask | DFBit));
286 }
287
288 uint8_t
289 convX87TagsToXTags(uint16_t ftw)
290 {
291 uint8_t ftwx(0);
292 for (int i = 0; i < 8; ++i) {
293 // Extract the tag for the current element on the FP stack
294 const unsigned tag((ftw >> (2 * i)) & 0x3);
295
296 /*
297 * Check the type of the current FP element. Valid values are:
298 * 0 == Valid
299 * 1 == Zero
300 * 2 == Special (Nan, unsupported, infinity, denormal)
301 * 3 == Empty
302 */
303 // The xsave version of the tag word only keeps track of
304 // whether the element is empty or not. Set the corresponding
305 // bit in the ftwx if it's not empty,
306 if (tag != 0x3)
307 ftwx |= 1 << i;
308 }
309
310 return ftwx;
311 }
312
313 uint16_t
314 convX87XTagsToTags(uint8_t ftwx)
315 {
316 uint16_t ftw(0);
317 for (int i = 0; i < 8; ++i) {
318 const unsigned xtag(((ftwx >> i) & 0x1));
319
320 // The xtag for an x87 stack position is 0 for empty stack positions.
321 if (!xtag) {
322 // Set the tag word to 3 (empty) for the current element.
323 ftw |= 0x3 << (2 * i);
324 } else {
325 // TODO: We currently assume that non-empty elements are
326 // valid (0x0), but we should ideally reconstruct the full
327 // state (valid/zero/special).
328 }
329 }
330
331 return ftw;
332 }
333
334 uint16_t
335 genX87Tags(uint16_t ftw, uint8_t top, int8_t spm)
336 {
337 const uint8_t new_top((top + spm + 8) % 8);
338
339 if (spm > 0) {
340 // Removing elements from the stack. Flag the elements as empty.
341 for (int i = top; i != new_top; i = (i + 1 + 8) % 8)
342 ftw |= 0x3 << (2 * i);
343 } else if (spm < 0) {
344 // Adding elements to the stack. Flag the new elements as
345 // valid. We should ideally decode them and "do the right
346 // thing".
347 for (int i = new_top; i != top; i = (i + 1 + 8) % 8)
348 ftw &= ~(0x3 << (2 * i));
349 }
350
351 return ftw;
352 }
353
354 double
355 loadFloat80(const void *_mem)
356 {
357 fp80_t fp80;
358 memcpy(fp80.bits, _mem, 10);
359
360 return fp80_cvtd(fp80);
361 }
362
363 void
364 storeFloat80(void *_mem, double value)
365 {
366 fp80_t fp80 = fp80_cvfd(value);
367 memcpy(_mem, fp80.bits, 10);
368 }
369
370 } // namespace X86_ISA