stats: Add support for hierarchical stats
[gem5.git] / src / base / addr_range.hh
1 /*
2 * Copyright (c) 2012, 2014, 2017-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Nathan Binkert
41 * Steve Reinhardt
42 * Andreas Hansson
43 */
44
45 #ifndef __BASE_ADDR_RANGE_HH__
46 #define __BASE_ADDR_RANGE_HH__
47
48 #include <algorithm>
49 #include <list>
50 #include <vector>
51
52 #include "base/bitfield.hh"
53 #include "base/cprintf.hh"
54 #include "base/logging.hh"
55 #include "base/types.hh"
56
57 /**
58 * The AddrRange class encapsulates an address range, and supports a
59 * number of tests to check if two ranges intersect, if a range
60 * contains a specific address etc. Besides a basic range, the
61 * AddrRange also support interleaved ranges, to stripe across cache
62 * banks, or memory controllers. The interleaving is implemented by
63 * allowing a number of bits of the address, at an arbitrary bit
64 * position, to be used as interleaving bits with an associated
65 * matching value. In addition, to prevent uniformly strided address
66 * patterns from a very biased interleaving, we also allow XOR-based
67 * hashing by specifying a set of bits to XOR with before matching.
68 *
69 * The AddrRange is also able to coalesce a number of interleaved
70 * ranges to a contiguous range.
71 */
72 class AddrRange
73 {
74
75 private:
76
77 /// Private fields for the start and end of the range
78 /// Both _start and _end are part of the range.
79 Addr _start;
80 Addr _end;
81
82 /**
83 * Each mask determines the bits we need to xor to get one bit of
84 * sel. The first (0) mask is used to get the LSB and the last for
85 * the MSB of sel.
86 */
87 std::vector<Addr> masks;
88
89 /** The value to compare sel with. */
90 uint8_t intlvMatch;
91
92 public:
93
94 AddrRange()
95 : _start(1), _end(0), intlvMatch(0)
96 {}
97
98 /**
99 * Construct an address range
100 *
101 * If the user provides a non empty vector of masks then the
102 * address range is interleaved. Each mask determines a set of
103 * bits that are xored to determine one bit of the sel value,
104 * starting from the least significant bit (i.e., masks[0]
105 * determines the least significant bit of sel, ...). If sel
106 * matches the provided _intlv_match then the address a is in the
107 * range.
108 *
109 * For example if the input mask is
110 * _masks = { 1 << 8 | 1 << 11 | 1 << 13,
111 * 1 << 15 | 1 << 17 | 1 << 19}
112 *
113 * Then a belongs to the address range if
114 * _start <= a < _end
115 * and
116 * sel == _intlv_match
117 * where
118 * sel[0] = a[8] ^ a[11] ^ a[13]
119 * sel[1] = a[15] ^ a[17] ^ a[19]
120 *
121 * @param _start The start address of this range
122 * @param _end The end address of this range (not included in the range)
123 * @param _masks The input vector of masks
124 * @param intlv_math The matching value of the xor operations
125 */
126 AddrRange(Addr _start, Addr _end, const std::vector<Addr> &_masks,
127 uint8_t _intlv_match)
128 : _start(_start), _end(_end), masks(_masks),
129 intlvMatch(_intlv_match)
130 {
131 // sanity checks
132 fatal_if(!masks.empty() && _intlv_match >= ULL(1) << masks.size(),
133 "Match value %d does not fit in %d interleaving bits\n",
134 _intlv_match, masks.size());
135 }
136
137 /**
138 * Legacy constructor of AddrRange
139 *
140 * If the user provides a non-zero value in _intlv_high_bit the
141 * address range is interleaved.
142 *
143 * An address a belongs to the address range if
144 * _start <= a < _end
145 * and
146 * sel == _intlv_match
147 * where
148 * sel = sel1 ^ sel2
149 * sel1 = a[_intlv_low_bit:_intlv_high_bit]
150 * sel2 = a[_xor_low_bit:_xor_high_bit]
151 * _intlv_low_bit = _intlv_high_bit - intv_bits
152 * _xor_low_bit = _xor_high_bit - intv_bits
153 *
154 * @param _start The start address of this range
155 * @param _end The end address of this range (not included in the range)
156 * @param _intlv_high_bit The MSB of the intlv bits (disabled if 0)
157 * @param _xor_high_bit The MSB of the xor bit (disabled if 0)
158 * @param intlv_math The matching value of the xor operations
159 */
160 AddrRange(Addr _start, Addr _end, uint8_t _intlv_high_bit,
161 uint8_t _xor_high_bit, uint8_t _intlv_bits,
162 uint8_t _intlv_match)
163 : _start(_start), _end(_end), masks(_intlv_bits),
164 intlvMatch(_intlv_match)
165 {
166 // sanity checks
167 fatal_if(_intlv_bits && _intlv_match >= ULL(1) << _intlv_bits,
168 "Match value %d does not fit in %d interleaving bits\n",
169 _intlv_match, _intlv_bits);
170
171 // ignore the XOR bits if not interleaving
172 if (_intlv_bits && _xor_high_bit) {
173 if (_xor_high_bit == _intlv_high_bit) {
174 fatal("XOR and interleave high bit must be different\n");
175 } else if (_xor_high_bit > _intlv_high_bit) {
176 if ((_xor_high_bit - _intlv_high_bit) < _intlv_bits)
177 fatal("XOR and interleave high bit must be at least "
178 "%d bits apart\n", _intlv_bits);
179 } else {
180 if ((_intlv_high_bit - _xor_high_bit) < _intlv_bits) {
181 fatal("Interleave and XOR high bit must be at least "
182 "%d bits apart\n", _intlv_bits);
183 }
184 }
185 }
186
187 for (auto i = 0; i < _intlv_bits; i++) {
188 uint8_t bit1 = _intlv_high_bit - i;
189 Addr mask = (1ULL << bit1);
190 if (_xor_high_bit) {
191 uint8_t bit2 = _xor_high_bit - i;
192 mask |= (1ULL << bit2);
193 }
194 masks[_intlv_bits - i - 1] = mask;
195 }
196 }
197
198 AddrRange(Addr _start, Addr _end)
199 : _start(_start), _end(_end), intlvMatch(0)
200 {}
201
202 /**
203 * Create an address range by merging a collection of interleaved
204 * ranges.
205 *
206 * @param ranges Interleaved ranges to be merged
207 */
208 AddrRange(const std::vector<AddrRange>& ranges)
209 : _start(1), _end(0), intlvMatch(0)
210 {
211 if (!ranges.empty()) {
212 // get the values from the first one and check the others
213 _start = ranges.front()._start;
214 _end = ranges.front()._end;
215 masks = ranges.front().masks;
216 intlvMatch = ranges.front().intlvMatch;
217 }
218 // either merge if got all ranges or keep this equal to the single
219 // interleaved range
220 if (ranges.size() > 1) {
221
222 if (ranges.size() != (ULL(1) << masks.size()))
223 fatal("Got %d ranges spanning %d interleaving bits\n",
224 ranges.size(), masks.size());
225
226 uint8_t match = 0;
227 for (const auto& r : ranges) {
228 if (!mergesWith(r))
229 fatal("Can only merge ranges with the same start, end "
230 "and interleaving bits, %s %s\n", to_string(),
231 r.to_string());
232
233 if (r.intlvMatch != match)
234 fatal("Expected interleave match %d but got %d when "
235 "merging\n", match, r.intlvMatch);
236 ++match;
237 }
238 masks.clear();
239 intlvMatch = 0;
240 }
241 }
242
243 /**
244 * Determine if the range is interleaved or not.
245 *
246 * @return true if interleaved
247 */
248 bool interleaved() const { return masks.size() > 0; }
249
250 /**
251 * Determing the interleaving granularity of the range.
252 *
253 * @return The size of the regions created by the interleaving bits
254 */
255 uint64_t granularity() const
256 {
257 if (interleaved()) {
258 auto combined_mask = 0;
259 for (auto mask: masks) {
260 combined_mask |= mask;
261 }
262 const uint8_t lowest_bit = ctz64(combined_mask);
263 return ULL(1) << lowest_bit;
264 } else {
265 return size();
266 }
267 }
268
269 /**
270 * Determine the number of interleaved address stripes this range
271 * is part of.
272 *
273 * @return The number of stripes spanned by the interleaving bits
274 */
275 uint32_t stripes() const { return ULL(1) << masks.size(); }
276
277 /**
278 * Get the size of the address range. For a case where
279 * interleaving is used we make the simplifying assumption that
280 * the size is a divisible by the size of the interleaving slice.
281 */
282 Addr size() const
283 {
284 return (_end - _start + 1) >> masks.size();
285 }
286
287 /**
288 * Determine if the range is valid.
289 */
290 bool valid() const { return _start <= _end; }
291
292 /**
293 * Get the start address of the range.
294 */
295 Addr start() const { return _start; }
296
297 /**
298 * Get the end address of the range.
299 */
300 Addr end() const { return _end; }
301
302 /**
303 * Get a string representation of the range. This could
304 * alternatively be implemented as a operator<<, but at the moment
305 * that seems like overkill.
306 */
307 std::string to_string() const
308 {
309 if (interleaved()) {
310 std::string str;
311 for (int i = 0; i < masks.size(); i++) {
312 str += " ";
313 Addr mask = masks[i];
314 while (mask) {
315 auto bit = ctz64(mask);
316 mask &= ~(1ULL << bit);
317 str += csprintf("a[%d]^", bit);
318 }
319 str += csprintf("\b=%d", bits(intlvMatch, i));
320 }
321 return csprintf("[%#llx:%#llx]%s", _start, _end, str);
322 } else {
323 return csprintf("[%#llx:%#llx]", _start, _end);
324 }
325 }
326
327 /**
328 * Determine if another range merges with the current one, i.e. if
329 * they are part of the same contigous range and have the same
330 * interleaving bits.
331 *
332 * @param r Range to evaluate merging with
333 * @return true if the two ranges would merge
334 */
335 bool mergesWith(const AddrRange& r) const
336 {
337 return r._start == _start && r._end == _end &&
338 r.masks == masks;
339 }
340
341 /**
342 * Determine if another range intersects this one, i.e. if there
343 * is an address that is both in this range and the other
344 * range. No check is made to ensure either range is valid.
345 *
346 * @param r Range to intersect with
347 * @return true if the intersection of the two ranges is not empty
348 */
349 bool intersects(const AddrRange& r) const
350 {
351 if (_start > r._end || _end < r._start)
352 // start with the simple case of no overlap at all,
353 // applicable even if we have interleaved ranges
354 return false;
355 else if (!interleaved() && !r.interleaved())
356 // if neither range is interleaved, we are done
357 return true;
358
359 // now it gets complicated, focus on the cases we care about
360 if (r.size() == 1)
361 // keep it simple and check if the address is within
362 // this range
363 return contains(r.start());
364 else if (mergesWith(r))
365 // restrict the check to ranges that belong to the
366 // same chunk
367 return intlvMatch == r.intlvMatch;
368 else
369 panic("Cannot test intersection of %s and %s\n",
370 to_string(), r.to_string());
371 }
372
373 /**
374 * Determine if this range is a subset of another range, i.e. if
375 * every address in this range is also in the other range. No
376 * check is made to ensure either range is valid.
377 *
378 * @param r Range to compare with
379 * @return true if the this range is a subset of the other one
380 */
381 bool isSubset(const AddrRange& r) const
382 {
383 if (interleaved())
384 panic("Cannot test subset of interleaved range %s\n", to_string());
385
386 // This address range is not interleaved and therefore it
387 // suffices to check the upper bound, the lower bound and
388 // whether it would fit in a continuous segment of the input
389 // addr range.
390 if (r.interleaved()) {
391 return r.contains(_start) && r.contains(_end) &&
392 size() <= r.granularity();
393 } else {
394 return _start >= r._start && _end <= r._end;
395 }
396 }
397
398 /**
399 * Determine if the range contains an address.
400 *
401 * @param a Address to compare with
402 * @return true if the address is in the range
403 */
404 bool contains(const Addr& a) const
405 {
406 // check if the address is in the range and if there is either
407 // no interleaving, or with interleaving also if the selected
408 // bits from the address match the interleaving value
409 bool in_range = a >= _start && a <= _end;
410 if (in_range) {
411 auto sel = 0;
412 for (int i = 0; i < masks.size(); i++) {
413 Addr masked = a & masks[i];
414 // The result of an xor operation is 1 if the number
415 // of bits set is odd or 0 othersize, thefore it
416 // suffices to count the number of bits set to
417 // determine the i-th bit of sel.
418 sel |= (popCount(masked) % 2) << i;
419 }
420 return sel == intlvMatch;
421 }
422 return false;
423 }
424
425 /**
426 * Remove the interleaving bits from an input address.
427 *
428 * This function returns a new address in a continous range [
429 * start, start + size / intlv_bits). We can achieve this by
430 * discarding the LSB in each mask.
431 *
432 * e.g., if the input address is of the form:
433 * ------------------------------------
434 * | a_high | x1 | a_mid | x0 | a_low |
435 * ------------------------------------
436 * where x0 is the LSB set in masks[0]
437 * and x1 is the LSB set in masks[1]
438 *
439 * this function will return:
440 * ---------------------------------
441 * | 0 | a_high | a_mid | a_low |
442 * ---------------------------------
443 *
444 * @param the input address
445 * @return the new address
446 */
447 inline Addr removeIntlvBits(Addr a) const
448 {
449 // Get the LSB set from each mask
450 int masks_lsb[masks.size()];
451 for (int i = 0; i < masks.size(); i++) {
452 masks_lsb[i] = ctz64(masks[i]);
453 }
454
455 // we need to sort the list of bits we will discard as we
456 // discard them one by one starting.
457 std::sort(masks_lsb, masks_lsb + masks.size());
458
459 for (int i = 0; i < masks.size(); i++) {
460 const int intlv_bit = masks_lsb[i];
461 if (intlv_bit > 0) {
462 // on every iteration we remove one bit from the input
463 // address, and therefore the lowest invtl_bit has
464 // also shifted to the right by i positions.
465 a = insertBits(a >> 1, intlv_bit - i - 1, 0, a);
466 } else {
467 a >>= 1;
468 }
469 }
470 return a;
471 }
472
473 /**
474 * Determine the offset of an address within the range.
475 *
476 * This function returns the offset of the given address from the
477 * starting address discarding any bits that are used for
478 * interleaving. This way we can convert the input address to a
479 * new unique address in a continuous range that starts from 0.
480 *
481 * @param the input address
482 * @return the flat offset in the address range
483 */
484 Addr getOffset(const Addr& a) const
485 {
486 bool in_range = a >= _start && a <= _end;
487 if (!in_range) {
488 return MaxAddr;
489 }
490 if (interleaved()) {
491 return removeIntlvBits(a) - removeIntlvBits(_start);
492 } else {
493 return a - _start;
494 }
495 }
496
497 /**
498 * Less-than operator used to turn an STL map into a binary search
499 * tree of non-overlapping address ranges.
500 *
501 * @param r Range to compare with
502 * @return true if the start address is less than that of the other range
503 */
504 bool operator<(const AddrRange& r) const
505 {
506 if (_start != r._start)
507 return _start < r._start;
508 else
509 // for now assume that the end is also the same, and that
510 // we are looking at the same interleaving bits
511 return intlvMatch < r.intlvMatch;
512 }
513
514 bool operator==(const AddrRange& r) const
515 {
516 if (_start != r._start) return false;
517 if (_end != r._end) return false;
518 if (masks != r.masks) return false;
519 if (intlvMatch != r.intlvMatch) return false;
520
521 return true;
522 }
523
524 bool operator!=(const AddrRange& r) const
525 {
526 return !(*this == r);
527 }
528 };
529
530 /**
531 * Convenience typedef for a collection of address ranges
532 */
533 typedef std::list<AddrRange> AddrRangeList;
534
535 inline AddrRange
536 RangeEx(Addr start, Addr end)
537 { return AddrRange(start, end - 1); }
538
539 inline AddrRange
540 RangeIn(Addr start, Addr end)
541 { return AddrRange(start, end); }
542
543 inline AddrRange
544 RangeSize(Addr start, Addr size)
545 { return AddrRange(start, start + size - 1); }
546
547 #endif // __BASE_ADDR_RANGE_HH__