ca0c06770f014d2c9fa29b89463fa9f0e362a362
[gem5.git] / src / base / bitfield.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __BASE_BITFIELD_HH__
33 #define __BASE_BITFIELD_HH__
34
35 #include <inttypes.h>
36
37 /**
38 * Generate a 64-bit mask of 'nbits' 1s, right justified.
39 */
40 inline uint64_t
41 mask(int nbits)
42 {
43 return (nbits == 64) ? (uint64_t)-1LL : (1ULL << nbits) - 1;
44 }
45
46
47
48 /**
49 * Extract the bitfield from position 'first' to 'last' (inclusive)
50 * from 'val' and right justify it. MSB is numbered 63, LSB is 0.
51 */
52 template <class T>
53 inline
54 T
55 bits(T val, int first, int last)
56 {
57 int nbits = first - last + 1;
58 return (val >> last) & mask(nbits);
59 }
60
61 /**
62 * Mask off the given bits in place like bits() but without shifting.
63 * msb = 63, lsb = 0
64 */
65 template <class T>
66 inline
67 T
68 mbits(T val, int first, int last)
69 {
70 return val & (mask(first+1) & ~mask(last));
71 }
72
73 inline uint64_t
74 mask(int first, int last)
75 {
76 return mbits((uint64_t)-1LL, first, last);
77 }
78
79 /**
80 * Sign-extend an N-bit value to 64 bits.
81 */
82 template <int N>
83 inline
84 int64_t
85 sext(uint64_t val)
86 {
87 int sign_bit = bits(val, N-1, N-1);
88 return sign_bit ? (val | ~mask(N)) : val;
89 }
90
91 /**
92 * Return val with bits first to last set to bit_val
93 */
94 template <class T, class B>
95 inline
96 T
97 insertBits(T val, int first, int last, B bit_val)
98 {
99 T bmask = mask(first - last + 1) << last;
100 return ((bit_val << last) & bmask) | (val & ~bmask);
101 }
102
103 /**
104 * A convenience function to replace bits first to last of val with bit_val
105 * in place.
106 */
107 template <class T, class B>
108 inline
109 void
110 replaceBits(T& val, int first, int last, B bit_val)
111 {
112 val = insertBits(val, first, last, bit_val);
113 }
114
115 /**
116 * Returns the bit position of the MSB that is set in the input
117 */
118 inline
119 int
120 findMsbSet(uint64_t val) {
121 int msb = 0;
122 if (!val)
123 return 0;
124 if (bits(val, 63,32)) { msb += 32; val >>= 32; }
125 if (bits(val, 31,16)) { msb += 16; val >>= 16; }
126 if (bits(val, 15,8)) { msb += 8; val >>= 8; }
127 if (bits(val, 7,4)) { msb += 4; val >>= 4; }
128 if (bits(val, 3,2)) { msb += 2; val >>= 2; }
129 if (bits(val, 1,1)) { msb += 1; }
130 return msb;
131 }
132
133 // The following implements the BitUnion system of defining bitfields
134 //on top of an underlying class. This is done through the pervasive use of
135 //both named and unnamed unions which all contain the same actual storage.
136 //Since they're unioned with each other, all of these storage locations
137 //overlap. This allows all of the bitfields to manipulate the same data
138 //without having to have access to each other. More details are provided with the
139 //individual components.
140
141 //This namespace is for classes which implement the backend of the BitUnion
142 //stuff. Don't use any of these directly, except for the Bitfield classes in
143 //the *BitfieldTypes class(es).
144 namespace BitfieldBackend
145 {
146 //A base class for all bitfields. It instantiates the actual storage,
147 //and provides getBits and setBits functions for manipulating it. The
148 //Data template parameter is type of the underlying storage.
149 template<class Data>
150 class BitfieldBase
151 {
152 protected:
153 Data __data;
154
155 //This function returns a range of bits from the underlying storage.
156 //It relies on the "bits" function above. It's the user's
157 //responsibility to make sure that there is a properly overloaded
158 //version of this function for whatever type they want to overlay.
159 inline uint64_t
160 getBits(int first, int last)
161 {
162 return bits(__data, first, last);
163 }
164
165 //Similar to the above, but for settings bits with replaceBits.
166 inline void
167 setBits(int first, int last, uint64_t val)
168 {
169 replaceBits(__data, first, last, val);
170 }
171 };
172
173 //This class contains all the "regular" bitfield classes. It is inherited
174 //by all BitUnions which give them access to those types.
175 template<class Type>
176 class RegularBitfieldTypes
177 {
178 protected:
179 //This class implements ordinary bitfields, that is a span of bits
180 //who's msb is "first", and who's lsb is "last".
181 template<int first, int last=first>
182 class Bitfield : public BitfieldBase<Type>
183 {
184 public:
185 operator uint64_t () const
186 {
187 return this->getBits(first, last);
188 }
189
190 uint64_t
191 operator=(const uint64_t _data)
192 {
193 this->setBits(first, last, _data);
194 return _data;
195 }
196 };
197
198 //A class which specializes the above so that it can only be read
199 //from. This is accomplished explicitly making sure the assignment
200 //operator is blocked. The conversion operator is carried through
201 //inheritance. This will unfortunately need to be copied into each
202 //bitfield type due to limitations with how templates work
203 template<int first, int last=first>
204 class BitfieldRO : public Bitfield<first, last>
205 {
206 private:
207 uint64_t
208 operator=(const uint64_t _data);
209 };
210
211 //Similar to the above, but only allows writing.
212 template<int first, int last=first>
213 class BitfieldWO : public Bitfield<first, last>
214 {
215 private:
216 operator uint64_t () const;
217
218 public:
219 using Bitfield<first, last>::operator=;
220 };
221 };
222
223 //This class contains all the "regular" bitfield classes. It is inherited
224 //by all BitUnions which give them access to those types.
225 template<class Type>
226 class SignedBitfieldTypes
227 {
228 protected:
229 //This class implements ordinary bitfields, that is a span of bits
230 //who's msb is "first", and who's lsb is "last".
231 template<int first, int last=first>
232 class SignedBitfield : public BitfieldBase<Type>
233 {
234 public:
235 operator int64_t () const
236 {
237 return sext<first - last + 1>(this->getBits(first, last));
238 }
239
240 int64_t
241 operator=(const int64_t _data)
242 {
243 this->setBits(first, last, _data);
244 return _data;
245 }
246 };
247
248 //A class which specializes the above so that it can only be read
249 //from. This is accomplished explicitly making sure the assignment
250 //operator is blocked. The conversion operator is carried through
251 //inheritance. This will unfortunately need to be copied into each
252 //bitfield type due to limitations with how templates work
253 template<int first, int last=first>
254 class SignedBitfieldRO : public SignedBitfield<first, last>
255 {
256 private:
257 int64_t
258 operator=(const int64_t _data);
259 };
260
261 //Similar to the above, but only allows writing.
262 template<int first, int last=first>
263 class SignedBitfieldWO : public SignedBitfield<first, last>
264 {
265 private:
266 operator int64_t () const;
267
268 public:
269 int64_t operator=(const int64_t _data)
270 {
271 *((SignedBitfield<first, last> *)this) = _data;
272 return _data;
273 }
274 };
275 };
276
277 template<class Type>
278 class BitfieldTypes : public RegularBitfieldTypes<Type>,
279 public SignedBitfieldTypes<Type>
280 {};
281
282 //When a BitUnion is set up, an underlying class is created which holds
283 //the actual union. This class then inherits from it, and provids the
284 //implementations for various operators. Setting things up this way
285 //prevents having to redefine these functions in every different BitUnion
286 //type. More operators could be implemented in the future, as the need
287 //arises.
288 template <class Type, class Base>
289 class BitUnionOperators : public Base
290 {
291 public:
292 operator Type () const
293 {
294 return Base::__data;
295 }
296
297 Type
298 operator=(const Type & _data)
299 {
300 Base::__data = _data;
301 return _data;
302 }
303
304 bool
305 operator<(const Base & base) const
306 {
307 return Base::__data < base.__data;
308 }
309
310 bool
311 operator==(const Base & base) const
312 {
313 return Base::__data == base.__data;
314 }
315 };
316 }
317
318 //This macro is a backend for other macros that specialize it slightly.
319 //First, it creates/extends a namespace "BitfieldUnderlyingClasses" and
320 //sticks the class which has the actual union in it, which
321 //BitfieldOperators above inherits from. Putting these classes in a special
322 //namespace ensures that there will be no collisions with other names as long
323 //as the BitUnion names themselves are all distinct and nothing else uses
324 //the BitfieldUnderlyingClasses namespace, which is unlikely. The class itself
325 //creates a typedef of the "type" parameter called __DataType. This allows
326 //the type to propagate outside of the macro itself in a controlled way.
327 //Finally, the base storage is defined which BitfieldOperators will refer to
328 //in the operators it defines. This macro is intended to be followed by
329 //bitfield definitions which will end up inside it's union. As explained
330 //above, these is overlayed the __data member in its entirety by each of the
331 //bitfields which are defined in the union, creating shared storage with no
332 //overhead.
333 #define __BitUnion(type, name) \
334 namespace BitfieldUnderlyingClasses \
335 { \
336 class name; \
337 } \
338 class BitfieldUnderlyingClasses::name : \
339 public BitfieldBackend::BitfieldTypes<type> \
340 { \
341 public: \
342 typedef type __DataType; \
343 union { \
344 type __data;\
345
346 //This closes off the class and union started by the above macro. It is
347 //followed by a typedef which makes "name" refer to a BitfieldOperator
348 //class inheriting from the class and union just defined, which completes
349 //building up the type for the user.
350 #define EndBitUnion(name) \
351 }; \
352 }; \
353 typedef BitfieldBackend::BitUnionOperators< \
354 BitfieldUnderlyingClasses::name::__DataType, \
355 BitfieldUnderlyingClasses::name> name;
356
357 //This sets up a bitfield which has other bitfields nested inside of it. The
358 //__data member functions like the "underlying storage" of the top level
359 //BitUnion. Like everything else, it overlays with the top level storage, so
360 //making it a regular bitfield type makes the entire thing function as a
361 //regular bitfield when referred to by itself.
362 #define __SubBitUnion(fieldType, first, last, name) \
363 class : public BitfieldBackend::BitfieldTypes<__DataType> \
364 { \
365 public: \
366 union { \
367 fieldType<first, last> __data;
368
369 //This closes off the union created above and gives it a name. Unlike the top
370 //level BitUnion, we're interested in creating an object instead of a type.
371 //The operators are defined in the macro itself instead of a class for
372 //technical reasons. If someone determines a way to move them to one, please
373 //do so.
374 #define EndSubBitUnion(name) \
375 }; \
376 inline operator const __DataType () \
377 { return __data; } \
378 \
379 inline const __DataType operator = (const __DataType & _data) \
380 { __data = _data; } \
381 } name;
382
383 //Regular bitfields
384 //These define macros for read/write regular bitfield based subbitfields.
385 #define SubBitUnion(name, first, last) \
386 __SubBitUnion(Bitfield, first, last, name)
387
388 //Regular bitfields
389 //These define macros for read/write regular bitfield based subbitfields.
390 #define SignedSubBitUnion(name, first, last) \
391 __SubBitUnion(SignedBitfield, first, last, name)
392
393 //Use this to define an arbitrary type overlayed with bitfields.
394 #define BitUnion(type, name) __BitUnion(type, name)
395
396 //Use this to define conveniently sized values overlayed with bitfields.
397 #define BitUnion64(name) __BitUnion(uint64_t, name)
398 #define BitUnion32(name) __BitUnion(uint32_t, name)
399 #define BitUnion16(name) __BitUnion(uint16_t, name)
400 #define BitUnion8(name) __BitUnion(uint8_t, name)
401
402 #endif // __BASE_BITFIELD_HH__