ARM: Decode to specialized conditional/unconditional versions of instructions.
[gem5.git] / src / base / statistics.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31 /** @file
32 * Declaration of Statistics objects.
33 */
34
35 /**
36 * @todo
37 *
38 * Generalized N-dimensinal vector
39 * documentation
40 * key stats
41 * interval stats
42 * -- these both can use the same function that prints out a
43 * specific set of stats
44 * VectorStandardDeviation totals
45 * Document Namespaces
46 */
47 #ifndef __BASE_STATISTICS_HH__
48 #define __BASE_STATISTICS_HH__
49
50 #include <algorithm>
51 #include <cassert>
52 #ifdef __SUNPRO_CC
53 #include <math.h>
54 #endif
55 #include <cmath>
56 #include <functional>
57 #include <iosfwd>
58 #include <list>
59 #include <string>
60 #include <vector>
61
62 #include "base/cast.hh"
63 #include "base/cprintf.hh"
64 #include "base/intmath.hh"
65 #include "base/refcnt.hh"
66 #include "base/stats/info.hh"
67 #include "base/stats/types.hh"
68 #include "base/stats/visit.hh"
69 #include "base/str.hh"
70 #include "base/types.hh"
71
72 class Callback;
73
74 /** The current simulated tick. */
75 extern Tick curTick;
76
77 /* A namespace for all of the Statistics */
78 namespace Stats {
79
80 template <class Stat, class Base>
81 class InfoProxy : public Base
82 {
83 protected:
84 Stat &s;
85
86 public:
87 InfoProxy(Stat &stat) : s(stat) {}
88
89 bool check() const { return s.check(); }
90 void prepare() { s.prepare(); }
91 void reset() { s.reset(); }
92 void
93 visit(Visit &visitor)
94 {
95 visitor.visit(*static_cast<Base *>(this));
96 }
97 bool zero() const { return s.zero(); }
98 };
99
100 template <class Stat>
101 class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
102 {
103 public:
104 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
105
106 Counter value() const { return this->s.value(); }
107 Result result() const { return this->s.result(); }
108 Result total() const { return this->s.total(); }
109 };
110
111 template <class Stat>
112 class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
113 {
114 protected:
115 mutable VCounter cvec;
116 mutable VResult rvec;
117
118 public:
119 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
120
121 size_type size() const { return this->s.size(); }
122
123 VCounter &
124 value() const
125 {
126 this->s.value(cvec);
127 return cvec;
128 }
129
130 const VResult &
131 result() const
132 {
133 this->s.result(rvec);
134 return rvec;
135 }
136
137 Result total() const { return this->s.total(); }
138 };
139
140 template <class Stat>
141 class DistInfoProxy : public InfoProxy<Stat, DistInfo>
142 {
143 public:
144 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
145 };
146
147 template <class Stat>
148 class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
149 {
150 public:
151 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
152
153 size_type size() const { return this->s.size(); }
154 };
155
156 template <class Stat>
157 class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
158 {
159 public:
160 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
161 };
162
163 class InfoAccess
164 {
165 protected:
166 /** Set up an info class for this statistic */
167 void setInfo(Info *info);
168 /** Save Storage class parameters if any */
169 void setParams(const StorageParams *params);
170 /** Save Storage class parameters if any */
171 void setInit();
172
173 /** Grab the information class for this statistic */
174 Info *info();
175 /** Grab the information class for this statistic */
176 const Info *info() const;
177
178 public:
179 /**
180 * Reset the stat to the default state.
181 */
182 void reset() { }
183
184 /**
185 * @return true if this stat has a value and satisfies its
186 * requirement as a prereq
187 */
188 bool zero() const { return true; }
189
190 /**
191 * Check that this stat has been set up properly and is ready for
192 * use
193 * @return true for success
194 */
195 bool check() const { return true; }
196 };
197
198 template <class Derived, template <class> class InfoProxyType>
199 class DataWrap : public InfoAccess
200 {
201 public:
202 typedef InfoProxyType<Derived> Info;
203
204 protected:
205 Derived &self() { return *static_cast<Derived *>(this); }
206
207 protected:
208 Info *
209 info()
210 {
211 return safe_cast<Info *>(InfoAccess::info());
212 }
213
214 public:
215 const Info *
216 info() const
217 {
218 return safe_cast<const Info *>(InfoAccess::info());
219 }
220
221 protected:
222 /**
223 * Copy constructor, copies are not allowed.
224 */
225 DataWrap(const DataWrap &stat);
226
227 /**
228 * Can't copy stats.
229 */
230 void operator=(const DataWrap &);
231
232 public:
233 DataWrap()
234 {
235 this->setInfo(new Info(self()));
236 }
237
238 /**
239 * Set the name and marks this stat to print at the end of simulation.
240 * @param name The new name.
241 * @return A reference to this stat.
242 */
243 Derived &
244 name(const std::string &name)
245 {
246 Info *info = this->info();
247 info->setName(name);
248 info->flags.set(print);
249 return this->self();
250 }
251 const std::string &name() const { return this->info()->name; }
252
253 /**
254 * Set the description and marks this stat to print at the end of
255 * simulation.
256 * @param desc The new description.
257 * @return A reference to this stat.
258 */
259 Derived &
260 desc(const std::string &_desc)
261 {
262 this->info()->desc = _desc;
263 return this->self();
264 }
265
266 /**
267 * Set the precision and marks this stat to print at the end of simulation.
268 * @param _precision The new precision
269 * @return A reference to this stat.
270 */
271 Derived &
272 precision(int _precision)
273 {
274 this->info()->precision = _precision;
275 return this->self();
276 }
277
278 /**
279 * Set the flags and marks this stat to print at the end of simulation.
280 * @param f The new flags.
281 * @return A reference to this stat.
282 */
283 Derived &
284 flags(Flags _flags)
285 {
286 this->info()->flags.set(_flags);
287 return this->self();
288 }
289
290 /**
291 * Set the prerequisite stat and marks this stat to print at the end of
292 * simulation.
293 * @param prereq The prerequisite stat.
294 * @return A reference to this stat.
295 */
296 template <class Stat>
297 Derived &
298 prereq(const Stat &prereq)
299 {
300 this->info()->prereq = prereq.info();
301 return this->self();
302 }
303 };
304
305 template <class Derived, template <class> class InfoProxyType>
306 class DataWrapVec : public DataWrap<Derived, InfoProxyType>
307 {
308 public:
309 typedef InfoProxyType<Derived> Info;
310
311 // The following functions are specific to vectors. If you use them
312 // in a non vector context, you will get a nice compiler error!
313
314 /**
315 * Set the subfield name for the given index, and marks this stat to print
316 * at the end of simulation.
317 * @param index The subfield index.
318 * @param name The new name of the subfield.
319 * @return A reference to this stat.
320 */
321 Derived &
322 subname(off_type index, const std::string &name)
323 {
324 Derived &self = this->self();
325 Info *info = self.info();
326
327 std::vector<std::string> &subn = info->subnames;
328 if (subn.size() <= index)
329 subn.resize(index + 1);
330 subn[index] = name;
331 return self;
332 }
333
334 // The following functions are specific to 2d vectors. If you use
335 // them in a non vector context, you will get a nice compiler
336 // error because info doesn't have the right variables.
337
338 /**
339 * Set the subfield description for the given index and marks this stat to
340 * print at the end of simulation.
341 * @param index The subfield index.
342 * @param desc The new description of the subfield
343 * @return A reference to this stat.
344 */
345 Derived &
346 subdesc(off_type index, const std::string &desc)
347 {
348 Info *info = this->info();
349
350 std::vector<std::string> &subd = info->subdescs;
351 if (subd.size() <= index)
352 subd.resize(index + 1);
353 subd[index] = desc;
354
355 return this->self();
356 }
357
358 void
359 prepare()
360 {
361 Derived &self = this->self();
362 Info *info = this->info();
363
364 size_t size = self.size();
365 for (off_type i = 0; i < size; ++i)
366 self.data(i)->prepare(info);
367 }
368
369 void
370 reset()
371 {
372 Derived &self = this->self();
373 Info *info = this->info();
374
375 size_t size = self.size();
376 for (off_type i = 0; i < size; ++i)
377 self.data(i)->reset(info);
378 }
379 };
380
381 template <class Derived, template <class> class InfoProxyType>
382 class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
383 {
384 public:
385 typedef InfoProxyType<Derived> Info;
386
387 /**
388 * @warning This makes the assumption that if you're gonna subnames a 2d
389 * vector, you're subnaming across all y
390 */
391 Derived &
392 ysubnames(const char **names)
393 {
394 Derived &self = this->self();
395 Info *info = this->info();
396
397 info->y_subnames.resize(self.y);
398 for (off_type i = 0; i < self.y; ++i)
399 info->y_subnames[i] = names[i];
400 return self;
401 }
402
403 Derived &
404 ysubname(off_type index, const std::string subname)
405 {
406 Derived &self = this->self();
407 Info *info = this->info();
408
409 assert(index < self.y);
410 info->y_subnames.resize(self.y);
411 info->y_subnames[index] = subname.c_str();
412 return self;
413 }
414 };
415
416 //////////////////////////////////////////////////////////////////////
417 //
418 // Simple Statistics
419 //
420 //////////////////////////////////////////////////////////////////////
421
422 /**
423 * Templatized storage and interface for a simple scalar stat.
424 */
425 class StatStor
426 {
427 private:
428 /** The statistic value. */
429 Counter data;
430
431 public:
432 struct Params : public StorageParams {};
433
434 public:
435 /**
436 * Builds this storage element and calls the base constructor of the
437 * datatype.
438 */
439 StatStor(Info *info)
440 : data(Counter())
441 { }
442
443 /**
444 * The the stat to the given value.
445 * @param val The new value.
446 */
447 void set(Counter val) { data = val; }
448 /**
449 * Increment the stat by the given value.
450 * @param val The new value.
451 */
452 void inc(Counter val) { data += val; }
453 /**
454 * Decrement the stat by the given value.
455 * @param val The new value.
456 */
457 void dec(Counter val) { data -= val; }
458 /**
459 * Return the value of this stat as its base type.
460 * @return The value of this stat.
461 */
462 Counter value() const { return data; }
463 /**
464 * Return the value of this stat as a result type.
465 * @return The value of this stat.
466 */
467 Result result() const { return (Result)data; }
468 /**
469 * Prepare stat data for dumping or serialization
470 */
471 void prepare(Info *info) { }
472 /**
473 * Reset stat value to default
474 */
475 void reset(Info *info) { data = Counter(); }
476
477 /**
478 * @return true if zero value
479 */
480 bool zero() const { return data == Counter(); }
481 };
482
483 /**
484 * Templatized storage and interface to a per-tick average stat. This keeps
485 * a current count and updates a total (count * ticks) when this count
486 * changes. This allows the quick calculation of a per tick count of the item
487 * being watched. This is good for keeping track of residencies in structures
488 * among other things.
489 */
490 class AvgStor
491 {
492 private:
493 /** The current count. */
494 Counter current;
495 /** The tick of the last reset */
496 Tick lastReset;
497 /** The total count for all tick. */
498 mutable Result total;
499 /** The tick that current last changed. */
500 mutable Tick last;
501
502 public:
503 struct Params : public StorageParams {};
504
505 public:
506 /**
507 * Build and initializes this stat storage.
508 */
509 AvgStor(Info *info)
510 : current(0), lastReset(0), total(0), last(0)
511 { }
512
513 /**
514 * Set the current count to the one provided, update the total and last
515 * set values.
516 * @param val The new count.
517 */
518 void
519 set(Counter val)
520 {
521 total += current * (curTick - last);
522 last = curTick;
523 current = val;
524 }
525
526 /**
527 * Increment the current count by the provided value, calls set.
528 * @param val The amount to increment.
529 */
530 void inc(Counter val) { set(current + val); }
531
532 /**
533 * Deccrement the current count by the provided value, calls set.
534 * @param val The amount to decrement.
535 */
536 void dec(Counter val) { set(current - val); }
537
538 /**
539 * Return the current count.
540 * @return The current count.
541 */
542 Counter value() const { return current; }
543
544 /**
545 * Return the current average.
546 * @return The current average.
547 */
548 Result
549 result() const
550 {
551 assert(last == curTick);
552 return (Result)(total + current) / (Result)(curTick - lastReset + 1);
553 }
554
555 /**
556 * @return true if zero value
557 */
558 bool zero() const { return total == 0.0; }
559
560 /**
561 * Prepare stat data for dumping or serialization
562 */
563 void
564 prepare(Info *info)
565 {
566 total += current * (curTick - last);
567 last = curTick;
568 }
569
570 /**
571 * Reset stat value to default
572 */
573 void
574 reset(Info *info)
575 {
576 total = 0.0;
577 last = curTick;
578 lastReset = curTick;
579 }
580
581 };
582
583 /**
584 * Implementation of a scalar stat. The type of stat is determined by the
585 * Storage template.
586 */
587 template <class Derived, class Stor>
588 class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
589 {
590 public:
591 typedef Stor Storage;
592 typedef typename Stor::Params Params;
593
594 protected:
595 /** The storage of this stat. */
596 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
597
598 protected:
599 /**
600 * Retrieve the storage.
601 * @param index The vector index to access.
602 * @return The storage object at the given index.
603 */
604 Storage *
605 data()
606 {
607 return reinterpret_cast<Storage *>(storage);
608 }
609
610 /**
611 * Retrieve a const pointer to the storage.
612 * for the given index.
613 * @param index The vector index to access.
614 * @return A const pointer to the storage object at the given index.
615 */
616 const Storage *
617 data() const
618 {
619 return reinterpret_cast<const Storage *>(storage);
620 }
621
622 void
623 doInit()
624 {
625 new (storage) Storage(this->info());
626 this->setInit();
627 }
628
629 public:
630 /**
631 * Return the current value of this stat as its base type.
632 * @return The current value.
633 */
634 Counter value() const { return data()->value(); }
635
636 public:
637 ScalarBase()
638 {
639 this->doInit();
640 }
641
642 public:
643 // Common operators for stats
644 /**
645 * Increment the stat by 1. This calls the associated storage object inc
646 * function.
647 */
648 void operator++() { data()->inc(1); }
649 /**
650 * Decrement the stat by 1. This calls the associated storage object dec
651 * function.
652 */
653 void operator--() { data()->dec(1); }
654
655 /** Increment the stat by 1. */
656 void operator++(int) { ++*this; }
657 /** Decrement the stat by 1. */
658 void operator--(int) { --*this; }
659
660 /**
661 * Set the data value to the given value. This calls the associated storage
662 * object set function.
663 * @param v The new value.
664 */
665 template <typename U>
666 void operator=(const U &v) { data()->set(v); }
667
668 /**
669 * Increment the stat by the given value. This calls the associated
670 * storage object inc function.
671 * @param v The value to add.
672 */
673 template <typename U>
674 void operator+=(const U &v) { data()->inc(v); }
675
676 /**
677 * Decrement the stat by the given value. This calls the associated
678 * storage object dec function.
679 * @param v The value to substract.
680 */
681 template <typename U>
682 void operator-=(const U &v) { data()->dec(v); }
683
684 /**
685 * Return the number of elements, always 1 for a scalar.
686 * @return 1.
687 */
688 size_type size() const { return 1; }
689
690 Counter value() { return data()->value(); }
691
692 Result result() { return data()->result(); }
693
694 Result total() { return result(); }
695
696 bool zero() { return result() == 0.0; }
697
698 void reset() { data()->reset(this->info()); }
699 void prepare() { data()->prepare(this->info()); }
700 };
701
702 class ProxyInfo : public ScalarInfo
703 {
704 public:
705 std::string str() const { return to_string(value()); }
706 size_type size() const { return 1; }
707 bool check() const { return true; }
708 void prepare() { }
709 void reset() { }
710 bool zero() const { return value() == 0; }
711
712 void visit(Visit &visitor) { visitor.visit(*this); }
713 };
714
715 template <class T>
716 class ValueProxy : public ProxyInfo
717 {
718 private:
719 T *scalar;
720
721 public:
722 ValueProxy(T &val) : scalar(&val) {}
723 Counter value() const { return *scalar; }
724 Result result() const { return *scalar; }
725 Result total() const { return *scalar; }
726 };
727
728 template <class T>
729 class FunctorProxy : public ProxyInfo
730 {
731 private:
732 T *functor;
733
734 public:
735 FunctorProxy(T &func) : functor(&func) {}
736 Counter value() const { return (*functor)(); }
737 Result result() const { return (*functor)(); }
738 Result total() const { return (*functor)(); }
739 };
740
741 template <class Derived>
742 class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
743 {
744 private:
745 ProxyInfo *proxy;
746
747 public:
748 ValueBase() : proxy(NULL) { }
749 ~ValueBase() { if (proxy) delete proxy; }
750
751 template <class T>
752 Derived &
753 scalar(T &value)
754 {
755 proxy = new ValueProxy<T>(value);
756 this->setInit();
757 return this->self();
758 }
759
760 template <class T>
761 Derived &
762 functor(T &func)
763 {
764 proxy = new FunctorProxy<T>(func);
765 this->setInit();
766 return this->self();
767 }
768
769 Counter value() { return proxy->value(); }
770 Result result() const { return proxy->result(); }
771 Result total() const { return proxy->total(); };
772 size_type size() const { return proxy->size(); }
773
774 std::string str() const { return proxy->str(); }
775 bool zero() const { return proxy->zero(); }
776 bool check() const { return proxy != NULL; }
777 void prepare() { }
778 void reset() { }
779 };
780
781 //////////////////////////////////////////////////////////////////////
782 //
783 // Vector Statistics
784 //
785 //////////////////////////////////////////////////////////////////////
786
787 /**
788 * A proxy class to access the stat at a given index in a VectorBase stat.
789 * Behaves like a ScalarBase.
790 */
791 template <class Stat>
792 class ScalarProxy
793 {
794 private:
795 /** Pointer to the parent Vector. */
796 Stat &stat;
797
798 /** The index to access in the parent VectorBase. */
799 off_type index;
800
801 public:
802 /**
803 * Return the current value of this stat as its base type.
804 * @return The current value.
805 */
806 Counter value() const { return stat.data(index)->value(); }
807
808 /**
809 * Return the current value of this statas a result type.
810 * @return The current value.
811 */
812 Result result() const { return stat.data(index)->result(); }
813
814 public:
815 /**
816 * Create and initialize this proxy, do not register it with the database.
817 * @param i The index to access.
818 */
819 ScalarProxy(Stat &s, off_type i)
820 : stat(s), index(i)
821 {
822 }
823
824 /**
825 * Create a copy of the provided ScalarProxy.
826 * @param sp The proxy to copy.
827 */
828 ScalarProxy(const ScalarProxy &sp)
829 : stat(sp.stat), index(sp.index)
830 {}
831
832 /**
833 * Set this proxy equal to the provided one.
834 * @param sp The proxy to copy.
835 * @return A reference to this proxy.
836 */
837 const ScalarProxy &
838 operator=(const ScalarProxy &sp)
839 {
840 stat = sp.stat;
841 index = sp.index;
842 return *this;
843 }
844
845 public:
846 // Common operators for stats
847 /**
848 * Increment the stat by 1. This calls the associated storage object inc
849 * function.
850 */
851 void operator++() { stat.data(index)->inc(1); }
852 /**
853 * Decrement the stat by 1. This calls the associated storage object dec
854 * function.
855 */
856 void operator--() { stat.data(index)->dec(1); }
857
858 /** Increment the stat by 1. */
859 void operator++(int) { ++*this; }
860 /** Decrement the stat by 1. */
861 void operator--(int) { --*this; }
862
863 /**
864 * Set the data value to the given value. This calls the associated storage
865 * object set function.
866 * @param v The new value.
867 */
868 template <typename U>
869 void
870 operator=(const U &v)
871 {
872 stat.data(index)->set(v);
873 }
874
875 /**
876 * Increment the stat by the given value. This calls the associated
877 * storage object inc function.
878 * @param v The value to add.
879 */
880 template <typename U>
881 void
882 operator+=(const U &v)
883 {
884 stat.data(index)->inc(v);
885 }
886
887 /**
888 * Decrement the stat by the given value. This calls the associated
889 * storage object dec function.
890 * @param v The value to substract.
891 */
892 template <typename U>
893 void
894 operator-=(const U &v)
895 {
896 stat.data(index)->dec(v);
897 }
898
899 /**
900 * Return the number of elements, always 1 for a scalar.
901 * @return 1.
902 */
903 size_type size() const { return 1; }
904
905 public:
906 std::string
907 str() const
908 {
909 return csprintf("%s[%d]", stat.info()->name, index);
910 }
911 };
912
913 /**
914 * Implementation of a vector of stats. The type of stat is determined by the
915 * Storage class. @sa ScalarBase
916 */
917 template <class Derived, class Stor>
918 class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
919 {
920 public:
921 typedef Stor Storage;
922 typedef typename Stor::Params Params;
923
924 /** Proxy type */
925 typedef ScalarProxy<Derived> Proxy;
926 friend class ScalarProxy<Derived>;
927 friend class DataWrapVec<Derived, VectorInfoProxy>;
928
929 protected:
930 /** The storage of this stat. */
931 Storage *storage;
932 size_type _size;
933
934 protected:
935 /**
936 * Retrieve the storage.
937 * @param index The vector index to access.
938 * @return The storage object at the given index.
939 */
940 Storage *data(off_type index) { return &storage[index]; }
941
942 /**
943 * Retrieve a const pointer to the storage.
944 * @param index The vector index to access.
945 * @return A const pointer to the storage object at the given index.
946 */
947 const Storage *data(off_type index) const { return &storage[index]; }
948
949 void
950 doInit(size_type s)
951 {
952 assert(s > 0 && "size must be positive!");
953 assert(!storage && "already initialized");
954 _size = s;
955
956 char *ptr = new char[_size * sizeof(Storage)];
957 storage = reinterpret_cast<Storage *>(ptr);
958
959 for (off_type i = 0; i < _size; ++i)
960 new (&storage[i]) Storage(this->info());
961
962 this->setInit();
963 }
964
965 public:
966 void
967 value(VCounter &vec) const
968 {
969 vec.resize(size());
970 for (off_type i = 0; i < size(); ++i)
971 vec[i] = data(i)->value();
972 }
973
974 /**
975 * Copy the values to a local vector and return a reference to it.
976 * @return A reference to a vector of the stat values.
977 */
978 void
979 result(VResult &vec) const
980 {
981 vec.resize(size());
982 for (off_type i = 0; i < size(); ++i)
983 vec[i] = data(i)->result();
984 }
985
986 /**
987 * Return a total of all entries in this vector.
988 * @return The total of all vector entries.
989 */
990 Result
991 total() const
992 {
993 Result total = 0.0;
994 for (off_type i = 0; i < size(); ++i)
995 total += data(i)->result();
996 return total;
997 }
998
999 /**
1000 * @return the number of elements in this vector.
1001 */
1002 size_type size() const { return _size; }
1003
1004 bool
1005 zero() const
1006 {
1007 for (off_type i = 0; i < size(); ++i)
1008 if (data(i)->zero())
1009 return false;
1010 return true;
1011 }
1012
1013 bool
1014 check() const
1015 {
1016 return storage != NULL;
1017 }
1018
1019 public:
1020 VectorBase()
1021 : storage(NULL)
1022 {}
1023
1024 ~VectorBase()
1025 {
1026 if (!storage)
1027 return;
1028
1029 for (off_type i = 0; i < _size; ++i)
1030 data(i)->~Storage();
1031 delete [] reinterpret_cast<char *>(storage);
1032 }
1033
1034 /**
1035 * Set this vector to have the given size.
1036 * @param size The new size.
1037 * @return A reference to this stat.
1038 */
1039 Derived &
1040 init(size_type size)
1041 {
1042 Derived &self = this->self();
1043 self.doInit(size);
1044 return self;
1045 }
1046
1047 /**
1048 * Return a reference (ScalarProxy) to the stat at the given index.
1049 * @param index The vector index to access.
1050 * @return A reference of the stat.
1051 */
1052 Proxy
1053 operator[](off_type index)
1054 {
1055 assert (index >= 0 && index < size());
1056 return Proxy(this->self(), index);
1057 }
1058 };
1059
1060 template <class Stat>
1061 class VectorProxy
1062 {
1063 private:
1064 Stat &stat;
1065 off_type offset;
1066 size_type len;
1067
1068 private:
1069 mutable VResult vec;
1070
1071 typename Stat::Storage *
1072 data(off_type index)
1073 {
1074 assert(index < len);
1075 return stat.data(offset + index);
1076 }
1077
1078 const typename Stat::Storage *
1079 data(off_type index) const
1080 {
1081 assert(index < len);
1082 return stat.data(offset + index);
1083 }
1084
1085 public:
1086 const VResult &
1087 result() const
1088 {
1089 vec.resize(size());
1090
1091 for (off_type i = 0; i < size(); ++i)
1092 vec[i] = data(i)->result();
1093
1094 return vec;
1095 }
1096
1097 Result
1098 total() const
1099 {
1100 Result total = 0.0;
1101 for (off_type i = 0; i < size(); ++i)
1102 total += data(i)->result();
1103 return total;
1104 }
1105
1106 public:
1107 VectorProxy(Stat &s, off_type o, size_type l)
1108 : stat(s), offset(o), len(l)
1109 {
1110 }
1111
1112 VectorProxy(const VectorProxy &sp)
1113 : stat(sp.stat), offset(sp.offset), len(sp.len)
1114 {
1115 }
1116
1117 const VectorProxy &
1118 operator=(const VectorProxy &sp)
1119 {
1120 stat = sp.stat;
1121 offset = sp.offset;
1122 len = sp.len;
1123 return *this;
1124 }
1125
1126 ScalarProxy<Stat>
1127 operator[](off_type index)
1128 {
1129 assert (index >= 0 && index < size());
1130 return ScalarProxy<Stat>(stat, offset + index);
1131 }
1132
1133 size_type size() const { return len; }
1134 };
1135
1136 template <class Derived, class Stor>
1137 class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1138 {
1139 public:
1140 typedef Vector2dInfoProxy<Derived> Info;
1141 typedef Stor Storage;
1142 typedef typename Stor::Params Params;
1143 typedef VectorProxy<Derived> Proxy;
1144 friend class ScalarProxy<Derived>;
1145 friend class VectorProxy<Derived>;
1146 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1147 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1148
1149 protected:
1150 size_type x;
1151 size_type y;
1152 size_type _size;
1153 Storage *storage;
1154
1155 protected:
1156 Storage *data(off_type index) { return &storage[index]; }
1157 const Storage *data(off_type index) const { return &storage[index]; }
1158
1159 public:
1160 Vector2dBase()
1161 : storage(NULL)
1162 {}
1163
1164 ~Vector2dBase()
1165 {
1166 if (!storage)
1167 return;
1168
1169 for (off_type i = 0; i < _size; ++i)
1170 data(i)->~Storage();
1171 delete [] reinterpret_cast<char *>(storage);
1172 }
1173
1174 Derived &
1175 init(size_type _x, size_type _y)
1176 {
1177 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1178 assert(!storage && "already initialized");
1179
1180 Derived &self = this->self();
1181 Info *info = this->info();
1182
1183 x = _x;
1184 y = _y;
1185 info->x = _x;
1186 info->y = _y;
1187 _size = x * y;
1188
1189 char *ptr = new char[_size * sizeof(Storage)];
1190 storage = reinterpret_cast<Storage *>(ptr);
1191
1192 for (off_type i = 0; i < _size; ++i)
1193 new (&storage[i]) Storage(info);
1194
1195 this->setInit();
1196
1197 return self;
1198 }
1199
1200 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1201
1202 Proxy
1203 operator[](off_type index)
1204 {
1205 off_type offset = index * y;
1206 assert (index >= 0 && offset + index < size());
1207 return Proxy(this->self(), offset, y);
1208 }
1209
1210
1211 size_type
1212 size() const
1213 {
1214 return _size;
1215 }
1216
1217 bool
1218 zero() const
1219 {
1220 return data(0)->zero();
1221 #if 0
1222 for (off_type i = 0; i < size(); ++i)
1223 if (!data(i)->zero())
1224 return false;
1225 return true;
1226 #endif
1227 }
1228
1229 void
1230 prepare()
1231 {
1232 Info *info = this->info();
1233 size_type size = this->size();
1234
1235 for (off_type i = 0; i < size; ++i)
1236 data(i)->prepare(info);
1237
1238 info->cvec.resize(size);
1239 for (off_type i = 0; i < size; ++i)
1240 info->cvec[i] = data(i)->value();
1241 }
1242
1243 /**
1244 * Reset stat value to default
1245 */
1246 void
1247 reset()
1248 {
1249 Info *info = this->info();
1250 size_type size = this->size();
1251 for (off_type i = 0; i < size; ++i)
1252 data(i)->reset(info);
1253 }
1254
1255 bool
1256 check() const
1257 {
1258 return storage != NULL;
1259 }
1260 };
1261
1262 //////////////////////////////////////////////////////////////////////
1263 //
1264 // Non formula statistics
1265 //
1266 //////////////////////////////////////////////////////////////////////
1267
1268 /**
1269 * Templatized storage and interface for a distrbution stat.
1270 */
1271 class DistStor
1272 {
1273 public:
1274 /** The parameters for a distribution stat. */
1275 struct Params : public DistParams
1276 {
1277 Params() : DistParams(Dist) {}
1278 };
1279
1280 private:
1281 /** The minimum value to track. */
1282 Counter min_track;
1283 /** The maximum value to track. */
1284 Counter max_track;
1285 /** The number of entries in each bucket. */
1286 Counter bucket_size;
1287 /** The number of buckets. Equal to (max-min)/bucket_size. */
1288 size_type buckets;
1289
1290 /** The smallest value sampled. */
1291 Counter min_val;
1292 /** The largest value sampled. */
1293 Counter max_val;
1294 /** The number of values sampled less than min. */
1295 Counter underflow;
1296 /** The number of values sampled more than max. */
1297 Counter overflow;
1298 /** The current sum. */
1299 Counter sum;
1300 /** The sum of squares. */
1301 Counter squares;
1302 /** The number of samples. */
1303 Counter samples;
1304 /** Counter for each bucket. */
1305 VCounter cvec;
1306
1307 public:
1308 DistStor(Info *info)
1309 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1310 {
1311 reset(info);
1312 }
1313
1314 /**
1315 * Add a value to the distribution for the given number of times.
1316 * @param val The value to add.
1317 * @param number The number of times to add the value.
1318 */
1319 void
1320 sample(Counter val, int number)
1321 {
1322 if (val < min_track)
1323 underflow += number;
1324 else if (val > max_track)
1325 overflow += number;
1326 else {
1327 size_type index =
1328 (size_type)std::floor((val - min_track) / bucket_size);
1329 assert(index < size());
1330 cvec[index] += number;
1331 }
1332
1333 if (val < min_val)
1334 min_val = val;
1335
1336 if (val > max_val)
1337 max_val = val;
1338
1339 Counter sample = val * number;
1340 sum += sample;
1341 squares += sample * sample;
1342 samples += number;
1343 }
1344
1345 /**
1346 * Return the number of buckets in this distribution.
1347 * @return the number of buckets.
1348 */
1349 size_type size() const { return cvec.size(); }
1350
1351 /**
1352 * Returns true if any calls to sample have been made.
1353 * @return True if any values have been sampled.
1354 */
1355 bool
1356 zero() const
1357 {
1358 return samples == Counter();
1359 }
1360
1361 void
1362 prepare(Info *info, DistData &data)
1363 {
1364 const Params *params = safe_cast<const Params *>(info->storageParams);
1365
1366 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1367 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1368 data.underflow = underflow;
1369 data.overflow = overflow;
1370
1371 size_type buckets = params->buckets;
1372 data.cvec.resize(buckets);
1373 for (off_type i = 0; i < buckets; ++i)
1374 data.cvec[i] = cvec[i];
1375
1376 data.sum = sum;
1377 data.squares = squares;
1378 data.samples = samples;
1379 }
1380
1381 /**
1382 * Reset stat value to default
1383 */
1384 void
1385 reset(Info *info)
1386 {
1387 const Params *params = safe_cast<const Params *>(info->storageParams);
1388 min_track = params->min;
1389 max_track = params->max;
1390 bucket_size = params->bucket_size;
1391
1392 min_val = CounterLimits::max();
1393 max_val = CounterLimits::min();
1394 underflow = Counter();
1395 overflow = Counter();
1396
1397 size_type size = cvec.size();
1398 for (off_type i = 0; i < size; ++i)
1399 cvec[i] = Counter();
1400
1401 sum = Counter();
1402 squares = Counter();
1403 samples = Counter();
1404 }
1405 };
1406
1407 /**
1408 * Templatized storage and interface for a distribution that calculates mean
1409 * and variance.
1410 */
1411 class SampleStor
1412 {
1413 public:
1414 struct Params : public DistParams
1415 {
1416 Params() : DistParams(Deviation) {}
1417 };
1418
1419 private:
1420 /** The current sum. */
1421 Counter sum;
1422 /** The sum of squares. */
1423 Counter squares;
1424 /** The number of samples. */
1425 Counter samples;
1426
1427 public:
1428 /**
1429 * Create and initialize this storage.
1430 */
1431 SampleStor(Info *info)
1432 : sum(Counter()), squares(Counter()), samples(Counter())
1433 { }
1434
1435 /**
1436 * Add a value the given number of times to this running average.
1437 * Update the running sum and sum of squares, increment the number of
1438 * values seen by the given number.
1439 * @param val The value to add.
1440 * @param number The number of times to add the value.
1441 */
1442 void
1443 sample(Counter val, int number)
1444 {
1445 Counter value = val * number;
1446 sum += value;
1447 squares += value * value;
1448 samples += number;
1449 }
1450
1451 /**
1452 * Return the number of entries in this stat, 1
1453 * @return 1.
1454 */
1455 size_type size() const { return 1; }
1456
1457 /**
1458 * Return true if no samples have been added.
1459 * @return True if no samples have been added.
1460 */
1461 bool zero() const { return samples == Counter(); }
1462
1463 void
1464 prepare(Info *info, DistData &data)
1465 {
1466 data.sum = sum;
1467 data.squares = squares;
1468 data.samples = samples;
1469 }
1470
1471 /**
1472 * Reset stat value to default
1473 */
1474 void
1475 reset(Info *info)
1476 {
1477 sum = Counter();
1478 squares = Counter();
1479 samples = Counter();
1480 }
1481 };
1482
1483 /**
1484 * Templatized storage for distribution that calculates per tick mean and
1485 * variance.
1486 */
1487 class AvgSampleStor
1488 {
1489 public:
1490 struct Params : public DistParams
1491 {
1492 Params() : DistParams(Deviation) {}
1493 };
1494
1495 private:
1496 /** Current total. */
1497 Counter sum;
1498 /** Current sum of squares. */
1499 Counter squares;
1500
1501 public:
1502 /**
1503 * Create and initialize this storage.
1504 */
1505 AvgSampleStor(Info *info)
1506 : sum(Counter()), squares(Counter())
1507 {}
1508
1509 /**
1510 * Add a value to the distribution for the given number of times.
1511 * Update the running sum and sum of squares.
1512 * @param val The value to add.
1513 * @param number The number of times to add the value.
1514 */
1515 void
1516 sample(Counter val, int number)
1517 {
1518 Counter value = val * number;
1519 sum += value;
1520 squares += value * value;
1521 }
1522
1523 /**
1524 * Return the number of entries, in this case 1.
1525 * @return 1.
1526 */
1527 size_type size() const { return 1; }
1528
1529 /**
1530 * Return true if no samples have been added.
1531 * @return True if the sum is zero.
1532 */
1533 bool zero() const { return sum == Counter(); }
1534
1535 void
1536 prepare(Info *info, DistData &data)
1537 {
1538 data.sum = sum;
1539 data.squares = squares;
1540 data.samples = curTick;
1541 }
1542
1543 /**
1544 * Reset stat value to default
1545 */
1546 void
1547 reset(Info *info)
1548 {
1549 sum = Counter();
1550 squares = Counter();
1551 }
1552 };
1553
1554 /**
1555 * Implementation of a distribution stat. The type of distribution is
1556 * determined by the Storage template. @sa ScalarBase
1557 */
1558 template <class Derived, class Stor>
1559 class DistBase : public DataWrap<Derived, DistInfoProxy>
1560 {
1561 public:
1562 typedef DistInfoProxy<Derived> Info;
1563 typedef Stor Storage;
1564 typedef typename Stor::Params Params;
1565
1566 protected:
1567 /** The storage for this stat. */
1568 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1569
1570 protected:
1571 /**
1572 * Retrieve the storage.
1573 * @return The storage object for this stat.
1574 */
1575 Storage *
1576 data()
1577 {
1578 return reinterpret_cast<Storage *>(storage);
1579 }
1580
1581 /**
1582 * Retrieve a const pointer to the storage.
1583 * @return A const pointer to the storage object for this stat.
1584 */
1585 const Storage *
1586 data() const
1587 {
1588 return reinterpret_cast<const Storage *>(storage);
1589 }
1590
1591 void
1592 doInit()
1593 {
1594 new (storage) Storage(this->info());
1595 this->setInit();
1596 }
1597
1598 public:
1599 DistBase() { }
1600
1601 /**
1602 * Add a value to the distribtion n times. Calls sample on the storage
1603 * class.
1604 * @param v The value to add.
1605 * @param n The number of times to add it, defaults to 1.
1606 */
1607 template <typename U>
1608 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1609
1610 /**
1611 * Return the number of entries in this stat.
1612 * @return The number of entries.
1613 */
1614 size_type size() const { return data()->size(); }
1615 /**
1616 * Return true if no samples have been added.
1617 * @return True if there haven't been any samples.
1618 */
1619 bool zero() const { return data()->zero(); }
1620
1621 void
1622 prepare()
1623 {
1624 Info *info = this->info();
1625 data()->prepare(info, info->data);
1626 }
1627
1628 /**
1629 * Reset stat value to default
1630 */
1631 void
1632 reset()
1633 {
1634 data()->reset(this->info());
1635 }
1636 };
1637
1638 template <class Stat>
1639 class DistProxy;
1640
1641 template <class Derived, class Stor>
1642 class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1643 {
1644 public:
1645 typedef VectorDistInfoProxy<Derived> Info;
1646 typedef Stor Storage;
1647 typedef typename Stor::Params Params;
1648 typedef DistProxy<Derived> Proxy;
1649 friend class DistProxy<Derived>;
1650 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1651
1652 protected:
1653 Storage *storage;
1654 size_type _size;
1655
1656 protected:
1657 Storage *
1658 data(off_type index)
1659 {
1660 return &storage[index];
1661 }
1662
1663 const Storage *
1664 data(off_type index) const
1665 {
1666 return &storage[index];
1667 }
1668
1669 void
1670 doInit(size_type s)
1671 {
1672 assert(s > 0 && "size must be positive!");
1673 assert(!storage && "already initialized");
1674 _size = s;
1675
1676 char *ptr = new char[_size * sizeof(Storage)];
1677 storage = reinterpret_cast<Storage *>(ptr);
1678
1679 Info *info = this->info();
1680 for (off_type i = 0; i < _size; ++i)
1681 new (&storage[i]) Storage(info);
1682
1683 this->setInit();
1684 }
1685
1686 public:
1687 VectorDistBase()
1688 : storage(NULL)
1689 {}
1690
1691 ~VectorDistBase()
1692 {
1693 if (!storage)
1694 return ;
1695
1696 for (off_type i = 0; i < _size; ++i)
1697 data(i)->~Storage();
1698 delete [] reinterpret_cast<char *>(storage);
1699 }
1700
1701 Proxy operator[](off_type index);
1702
1703 size_type
1704 size() const
1705 {
1706 return _size;
1707 }
1708
1709 bool
1710 zero() const
1711 {
1712 return false;
1713 #if 0
1714 for (off_type i = 0; i < size(); ++i)
1715 if (!data(i)->zero())
1716 return false;
1717 return true;
1718 #endif
1719 }
1720
1721 void
1722 prepare()
1723 {
1724 Info *info = this->info();
1725 size_type size = this->size();
1726 info->data.resize(size);
1727 for (off_type i = 0; i < size; ++i)
1728 data(i)->prepare(info, info->data[i]);
1729 }
1730
1731 bool
1732 check() const
1733 {
1734 return storage != NULL;
1735 }
1736 };
1737
1738 template <class Stat>
1739 class DistProxy
1740 {
1741 private:
1742 Stat *stat;
1743 off_type index;
1744
1745 protected:
1746 typename Stat::Storage *data() { return stat->data(index); }
1747 const typename Stat::Storage *data() const { return stat->data(index); }
1748
1749 public:
1750 DistProxy(Stat *s, off_type i)
1751 : stat(s), index(i)
1752 {}
1753
1754 DistProxy(const DistProxy &sp)
1755 : stat(sp.stat), index(sp.index)
1756 {}
1757
1758 const DistProxy &
1759 operator=(const DistProxy &sp)
1760 {
1761 stat = sp.stat;
1762 index = sp.index;
1763 return *this;
1764 }
1765
1766 public:
1767 template <typename U>
1768 void
1769 sample(const U &v, int n = 1)
1770 {
1771 data()->sample(v, n);
1772 }
1773
1774 size_type
1775 size() const
1776 {
1777 return 1;
1778 }
1779
1780 bool
1781 zero() const
1782 {
1783 return data()->zero();
1784 }
1785
1786 /**
1787 * Proxy has no state. Nothing to reset.
1788 */
1789 void reset() { }
1790 };
1791
1792 template <class Derived, class Stor>
1793 inline typename VectorDistBase<Derived, Stor>::Proxy
1794 VectorDistBase<Derived, Stor>::operator[](off_type index)
1795 {
1796 assert (index >= 0 && index < size());
1797 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1798 return Proxy(this, index);
1799 }
1800
1801 #if 0
1802 template <class Storage>
1803 Result
1804 VectorDistBase<Storage>::total(off_type index) const
1805 {
1806 Result total = 0.0;
1807 for (off_type i = 0; i < x_size(); ++i)
1808 total += data(i)->result();
1809 }
1810 #endif
1811
1812 //////////////////////////////////////////////////////////////////////
1813 //
1814 // Formula Details
1815 //
1816 //////////////////////////////////////////////////////////////////////
1817
1818 /**
1819 * Base class for formula statistic node. These nodes are used to build a tree
1820 * that represents the formula.
1821 */
1822 class Node : public RefCounted
1823 {
1824 public:
1825 /**
1826 * Return the number of nodes in the subtree starting at this node.
1827 * @return the number of nodes in this subtree.
1828 */
1829 virtual size_type size() const = 0;
1830 /**
1831 * Return the result vector of this subtree.
1832 * @return The result vector of this subtree.
1833 */
1834 virtual const VResult &result() const = 0;
1835 /**
1836 * Return the total of the result vector.
1837 * @return The total of the result vector.
1838 */
1839 virtual Result total() const = 0;
1840
1841 /**
1842 *
1843 */
1844 virtual std::string str() const = 0;
1845 };
1846
1847 /** Reference counting pointer to a function Node. */
1848 typedef RefCountingPtr<Node> NodePtr;
1849
1850 class ScalarStatNode : public Node
1851 {
1852 private:
1853 const ScalarInfo *data;
1854 mutable VResult vresult;
1855
1856 public:
1857 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1858
1859 const VResult &
1860 result() const
1861 {
1862 vresult[0] = data->result();
1863 return vresult;
1864 }
1865
1866 Result total() const { return data->result(); };
1867
1868 size_type size() const { return 1; }
1869
1870 /**
1871 *
1872 */
1873 std::string str() const { return data->name; }
1874 };
1875
1876 template <class Stat>
1877 class ScalarProxyNode : public Node
1878 {
1879 private:
1880 const ScalarProxy<Stat> proxy;
1881 mutable VResult vresult;
1882
1883 public:
1884 ScalarProxyNode(const ScalarProxy<Stat> &p)
1885 : proxy(p), vresult(1)
1886 { }
1887
1888 const VResult &
1889 result() const
1890 {
1891 vresult[0] = proxy.result();
1892 return vresult;
1893 }
1894
1895 Result
1896 total() const
1897 {
1898 return proxy.result();
1899 }
1900
1901 size_type
1902 size() const
1903 {
1904 return 1;
1905 }
1906
1907 /**
1908 *
1909 */
1910 std::string
1911 str() const
1912 {
1913 return proxy.str();
1914 }
1915 };
1916
1917 class VectorStatNode : public Node
1918 {
1919 private:
1920 const VectorInfo *data;
1921
1922 public:
1923 VectorStatNode(const VectorInfo *d) : data(d) { }
1924 const VResult &result() const { return data->result(); }
1925 Result total() const { return data->total(); };
1926
1927 size_type size() const { return data->size(); }
1928
1929 std::string str() const { return data->name; }
1930 };
1931
1932 template <class T>
1933 class ConstNode : public Node
1934 {
1935 private:
1936 VResult vresult;
1937
1938 public:
1939 ConstNode(T s) : vresult(1, (Result)s) {}
1940 const VResult &result() const { return vresult; }
1941 Result total() const { return vresult[0]; };
1942 size_type size() const { return 1; }
1943 std::string str() const { return to_string(vresult[0]); }
1944 };
1945
1946 template <class T>
1947 class ConstVectorNode : public Node
1948 {
1949 private:
1950 VResult vresult;
1951
1952 public:
1953 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1954 const VResult &result() const { return vresult; }
1955
1956 Result
1957 total() const
1958 {
1959 size_type size = this->size();
1960 Result tmp = 0;
1961 for (off_type i = 0; i < size; i++)
1962 tmp += vresult[i];
1963 return tmp;
1964 }
1965
1966 size_type size() const { return vresult.size(); }
1967 std::string
1968 str() const
1969 {
1970 size_type size = this->size();
1971 std::string tmp = "(";
1972 for (off_type i = 0; i < size; i++)
1973 tmp += csprintf("%s ",to_string(vresult[i]));
1974 tmp += ")";
1975 return tmp;
1976 }
1977 };
1978
1979 template <class Op>
1980 struct OpString;
1981
1982 template<>
1983 struct OpString<std::plus<Result> >
1984 {
1985 static std::string str() { return "+"; }
1986 };
1987
1988 template<>
1989 struct OpString<std::minus<Result> >
1990 {
1991 static std::string str() { return "-"; }
1992 };
1993
1994 template<>
1995 struct OpString<std::multiplies<Result> >
1996 {
1997 static std::string str() { return "*"; }
1998 };
1999
2000 template<>
2001 struct OpString<std::divides<Result> >
2002 {
2003 static std::string str() { return "/"; }
2004 };
2005
2006 template<>
2007 struct OpString<std::modulus<Result> >
2008 {
2009 static std::string str() { return "%"; }
2010 };
2011
2012 template<>
2013 struct OpString<std::negate<Result> >
2014 {
2015 static std::string str() { return "-"; }
2016 };
2017
2018 template <class Op>
2019 class UnaryNode : public Node
2020 {
2021 public:
2022 NodePtr l;
2023 mutable VResult vresult;
2024
2025 public:
2026 UnaryNode(NodePtr &p) : l(p) {}
2027
2028 const VResult &
2029 result() const
2030 {
2031 const VResult &lvec = l->result();
2032 size_type size = lvec.size();
2033
2034 assert(size > 0);
2035
2036 vresult.resize(size);
2037 Op op;
2038 for (off_type i = 0; i < size; ++i)
2039 vresult[i] = op(lvec[i]);
2040
2041 return vresult;
2042 }
2043
2044 Result
2045 total() const
2046 {
2047 const VResult &vec = this->result();
2048 Result total = 0.0;
2049 for (off_type i = 0; i < size(); i++)
2050 total += vec[i];
2051 return total;
2052 }
2053
2054 size_type size() const { return l->size(); }
2055
2056 std::string
2057 str() const
2058 {
2059 return OpString<Op>::str() + l->str();
2060 }
2061 };
2062
2063 template <class Op>
2064 class BinaryNode : public Node
2065 {
2066 public:
2067 NodePtr l;
2068 NodePtr r;
2069 mutable VResult vresult;
2070
2071 public:
2072 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2073
2074 const VResult &
2075 result() const
2076 {
2077 Op op;
2078 const VResult &lvec = l->result();
2079 const VResult &rvec = r->result();
2080
2081 assert(lvec.size() > 0 && rvec.size() > 0);
2082
2083 if (lvec.size() == 1 && rvec.size() == 1) {
2084 vresult.resize(1);
2085 vresult[0] = op(lvec[0], rvec[0]);
2086 } else if (lvec.size() == 1) {
2087 size_type size = rvec.size();
2088 vresult.resize(size);
2089 for (off_type i = 0; i < size; ++i)
2090 vresult[i] = op(lvec[0], rvec[i]);
2091 } else if (rvec.size() == 1) {
2092 size_type size = lvec.size();
2093 vresult.resize(size);
2094 for (off_type i = 0; i < size; ++i)
2095 vresult[i] = op(lvec[i], rvec[0]);
2096 } else if (rvec.size() == lvec.size()) {
2097 size_type size = rvec.size();
2098 vresult.resize(size);
2099 for (off_type i = 0; i < size; ++i)
2100 vresult[i] = op(lvec[i], rvec[i]);
2101 }
2102
2103 return vresult;
2104 }
2105
2106 Result
2107 total() const
2108 {
2109 const VResult &vec = this->result();
2110 Result total = 0.0;
2111 for (off_type i = 0; i < size(); i++)
2112 total += vec[i];
2113 return total;
2114 }
2115
2116 size_type
2117 size() const
2118 {
2119 size_type ls = l->size();
2120 size_type rs = r->size();
2121 if (ls == 1) {
2122 return rs;
2123 } else if (rs == 1) {
2124 return ls;
2125 } else {
2126 assert(ls == rs && "Node vector sizes are not equal");
2127 return ls;
2128 }
2129 }
2130
2131 std::string
2132 str() const
2133 {
2134 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2135 }
2136 };
2137
2138 template <class Op>
2139 class SumNode : public Node
2140 {
2141 public:
2142 NodePtr l;
2143 mutable VResult vresult;
2144
2145 public:
2146 SumNode(NodePtr &p) : l(p), vresult(1) {}
2147
2148 const VResult &
2149 result() const
2150 {
2151 const VResult &lvec = l->result();
2152 size_type size = lvec.size();
2153 assert(size > 0);
2154
2155 vresult[0] = 0.0;
2156
2157 Op op;
2158 for (off_type i = 0; i < size; ++i)
2159 vresult[0] = op(vresult[0], lvec[i]);
2160
2161 return vresult;
2162 }
2163
2164 Result
2165 total() const
2166 {
2167 const VResult &lvec = l->result();
2168 size_type size = lvec.size();
2169 assert(size > 0);
2170
2171 Result vresult = 0.0;
2172
2173 Op op;
2174 for (off_type i = 0; i < size; ++i)
2175 vresult = op(vresult, lvec[i]);
2176
2177 return vresult;
2178 }
2179
2180 size_type size() const { return 1; }
2181
2182 std::string
2183 str() const
2184 {
2185 return csprintf("total(%s)", l->str());
2186 }
2187 };
2188
2189
2190 //////////////////////////////////////////////////////////////////////
2191 //
2192 // Visible Statistics Types
2193 //
2194 //////////////////////////////////////////////////////////////////////
2195 /**
2196 * @defgroup VisibleStats "Statistic Types"
2197 * These are the statistics that are used in the simulator.
2198 * @{
2199 */
2200
2201 /**
2202 * This is a simple scalar statistic, like a counter.
2203 * @sa Stat, ScalarBase, StatStor
2204 */
2205 class Scalar : public ScalarBase<Scalar, StatStor>
2206 {
2207 public:
2208 using ScalarBase<Scalar, StatStor>::operator=;
2209 };
2210
2211 /**
2212 * A stat that calculates the per tick average of a value.
2213 * @sa Stat, ScalarBase, AvgStor
2214 */
2215 class Average : public ScalarBase<Average, AvgStor>
2216 {
2217 public:
2218 using ScalarBase<Average, AvgStor>::operator=;
2219 };
2220
2221 class Value : public ValueBase<Value>
2222 {
2223 };
2224
2225 /**
2226 * A vector of scalar stats.
2227 * @sa Stat, VectorBase, StatStor
2228 */
2229 class Vector : public VectorBase<Vector, StatStor>
2230 {
2231 };
2232
2233 /**
2234 * A vector of Average stats.
2235 * @sa Stat, VectorBase, AvgStor
2236 */
2237 class AverageVector : public VectorBase<AverageVector, AvgStor>
2238 {
2239 };
2240
2241 /**
2242 * A 2-Dimensional vecto of scalar stats.
2243 * @sa Stat, Vector2dBase, StatStor
2244 */
2245 class Vector2d : public Vector2dBase<Vector2d, StatStor>
2246 {
2247 };
2248
2249 /**
2250 * A simple distribution stat.
2251 * @sa Stat, DistBase, DistStor
2252 */
2253 class Distribution : public DistBase<Distribution, DistStor>
2254 {
2255 public:
2256 /**
2257 * Set the parameters of this distribution. @sa DistStor::Params
2258 * @param min The minimum value of the distribution.
2259 * @param max The maximum value of the distribution.
2260 * @param bkt The number of values in each bucket.
2261 * @return A reference to this distribution.
2262 */
2263 Distribution &
2264 init(Counter min, Counter max, Counter bkt)
2265 {
2266 DistStor::Params *params = new DistStor::Params;
2267 params->min = min;
2268 params->max = max;
2269 params->bucket_size = bkt;
2270 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2271 this->setParams(params);
2272 this->doInit();
2273 return this->self();
2274 }
2275 };
2276
2277 /**
2278 * Calculates the mean and variance of all the samples.
2279 * @sa DistBase, SampleStor
2280 */
2281 class StandardDeviation : public DistBase<StandardDeviation, SampleStor>
2282 {
2283 public:
2284 /**
2285 * Construct and initialize this distribution.
2286 */
2287 StandardDeviation()
2288 {
2289 this->doInit();
2290 }
2291 };
2292
2293 /**
2294 * Calculates the per tick mean and variance of the samples.
2295 * @sa DistBase, AvgSampleStor
2296 */
2297 class AverageDeviation : public DistBase<AverageDeviation, AvgSampleStor>
2298 {
2299 public:
2300 /**
2301 * Construct and initialize this distribution.
2302 */
2303 AverageDeviation()
2304 {
2305 this->doInit();
2306 }
2307 };
2308
2309 /**
2310 * A vector of distributions.
2311 * @sa VectorDistBase, DistStor
2312 */
2313 class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2314 {
2315 public:
2316 /**
2317 * Initialize storage and parameters for this distribution.
2318 * @param size The size of the vector (the number of distributions).
2319 * @param min The minimum value of the distribution.
2320 * @param max The maximum value of the distribution.
2321 * @param bkt The number of values in each bucket.
2322 * @return A reference to this distribution.
2323 */
2324 VectorDistribution &
2325 init(size_type size, Counter min, Counter max, Counter bkt)
2326 {
2327 DistStor::Params *params = new DistStor::Params;
2328 params->min = min;
2329 params->max = max;
2330 params->bucket_size = bkt;
2331 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2332 this->setParams(params);
2333 this->doInit(size);
2334 return this->self();
2335 }
2336 };
2337
2338 /**
2339 * This is a vector of StandardDeviation stats.
2340 * @sa VectorDistBase, SampleStor
2341 */
2342 class VectorStandardDeviation
2343 : public VectorDistBase<VectorStandardDeviation, SampleStor>
2344 {
2345 public:
2346 /**
2347 * Initialize storage for this distribution.
2348 * @param size The size of the vector.
2349 * @return A reference to this distribution.
2350 */
2351 VectorStandardDeviation &
2352 init(size_type size)
2353 {
2354 this->doInit(size);
2355 return this->self();
2356 }
2357 };
2358
2359 /**
2360 * This is a vector of AverageDeviation stats.
2361 * @sa VectorDistBase, AvgSampleStor
2362 */
2363 class VectorAverageDeviation
2364 : public VectorDistBase<VectorAverageDeviation, AvgSampleStor>
2365 {
2366 public:
2367 /**
2368 * Initialize storage for this distribution.
2369 * @param size The size of the vector.
2370 * @return A reference to this distribution.
2371 */
2372 VectorAverageDeviation &
2373 init(size_type size)
2374 {
2375 this->doInit(size);
2376 return this->self();
2377 }
2378 };
2379
2380 template <class Stat>
2381 class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2382 {
2383 protected:
2384 mutable VResult vec;
2385 mutable VCounter cvec;
2386
2387 public:
2388 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2389
2390 size_type size() const { return this->s.size(); }
2391
2392 const VResult &
2393 result() const
2394 {
2395 this->s.result(vec);
2396 return vec;
2397 }
2398 Result total() const { return this->s.total(); }
2399 VCounter &value() const { return cvec; }
2400
2401 std::string str() const { return this->s.str(); }
2402 };
2403
2404 class Temp;
2405 /**
2406 * A formula for statistics that is calculated when printed. A formula is
2407 * stored as a tree of Nodes that represent the equation to calculate.
2408 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2409 */
2410 class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2411 {
2412 protected:
2413 /** The root of the tree which represents the Formula */
2414 NodePtr root;
2415 friend class Temp;
2416
2417 public:
2418 /**
2419 * Create and initialize thie formula, and register it with the database.
2420 */
2421 Formula();
2422
2423 /**
2424 * Create a formula with the given root node, register it with the
2425 * database.
2426 * @param r The root of the expression tree.
2427 */
2428 Formula(Temp r);
2429
2430 /**
2431 * Set an unitialized Formula to the given root.
2432 * @param r The root of the expression tree.
2433 * @return a reference to this formula.
2434 */
2435 const Formula &operator=(Temp r);
2436
2437 /**
2438 * Add the given tree to the existing one.
2439 * @param r The root of the expression tree.
2440 * @return a reference to this formula.
2441 */
2442 const Formula &operator+=(Temp r);
2443 /**
2444 * Return the result of the Fomula in a vector. If there were no Vector
2445 * components to the Formula, then the vector is size 1. If there were,
2446 * like x/y with x being a vector of size 3, then the result returned will
2447 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2448 * @return The result vector.
2449 */
2450 void result(VResult &vec) const;
2451
2452 /**
2453 * Return the total Formula result. If there is a Vector
2454 * component to this Formula, then this is the result of the
2455 * Formula if the formula is applied after summing all the
2456 * components of the Vector. For example, if Formula is x/y where
2457 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2458 * there is no Vector component, total() returns the same value as
2459 * the first entry in the VResult val() returns.
2460 * @return The total of the result vector.
2461 */
2462 Result total() const;
2463
2464 /**
2465 * Return the number of elements in the tree.
2466 */
2467 size_type size() const;
2468
2469 void prepare() { }
2470
2471 /**
2472 * Formulas don't need to be reset
2473 */
2474 void reset();
2475
2476 /**
2477 *
2478 */
2479 bool zero() const;
2480
2481 std::string str() const;
2482 };
2483
2484 class FormulaNode : public Node
2485 {
2486 private:
2487 const Formula &formula;
2488 mutable VResult vec;
2489
2490 public:
2491 FormulaNode(const Formula &f) : formula(f) {}
2492
2493 size_type size() const { return formula.size(); }
2494 const VResult &result() const { formula.result(vec); return vec; }
2495 Result total() const { return formula.total(); }
2496
2497 std::string str() const { return formula.str(); }
2498 };
2499
2500 /**
2501 * Helper class to construct formula node trees.
2502 */
2503 class Temp
2504 {
2505 protected:
2506 /**
2507 * Pointer to a Node object.
2508 */
2509 NodePtr node;
2510
2511 public:
2512 /**
2513 * Copy the given pointer to this class.
2514 * @param n A pointer to a Node object to copy.
2515 */
2516 Temp(NodePtr n) : node(n) { }
2517
2518 /**
2519 * Return the node pointer.
2520 * @return the node pointer.
2521 */
2522 operator NodePtr&() { return node; }
2523
2524 public:
2525 /**
2526 * Create a new ScalarStatNode.
2527 * @param s The ScalarStat to place in a node.
2528 */
2529 Temp(const Scalar &s)
2530 : node(new ScalarStatNode(s.info()))
2531 { }
2532
2533 /**
2534 * Create a new ScalarStatNode.
2535 * @param s The ScalarStat to place in a node.
2536 */
2537 Temp(const Value &s)
2538 : node(new ScalarStatNode(s.info()))
2539 { }
2540
2541 /**
2542 * Create a new ScalarStatNode.
2543 * @param s The ScalarStat to place in a node.
2544 */
2545 Temp(const Average &s)
2546 : node(new ScalarStatNode(s.info()))
2547 { }
2548
2549 /**
2550 * Create a new VectorStatNode.
2551 * @param s The VectorStat to place in a node.
2552 */
2553 Temp(const Vector &s)
2554 : node(new VectorStatNode(s.info()))
2555 { }
2556
2557 Temp(const AverageVector &s)
2558 : node(new VectorStatNode(s.info()))
2559 { }
2560
2561 /**
2562 *
2563 */
2564 Temp(const Formula &f)
2565 : node(new FormulaNode(f))
2566 { }
2567
2568 /**
2569 * Create a new ScalarProxyNode.
2570 * @param p The ScalarProxy to place in a node.
2571 */
2572 template <class Stat>
2573 Temp(const ScalarProxy<Stat> &p)
2574 : node(new ScalarProxyNode<Stat>(p))
2575 { }
2576
2577 /**
2578 * Create a ConstNode
2579 * @param value The value of the const node.
2580 */
2581 Temp(signed char value)
2582 : node(new ConstNode<signed char>(value))
2583 { }
2584
2585 /**
2586 * Create a ConstNode
2587 * @param value The value of the const node.
2588 */
2589 Temp(unsigned char value)
2590 : node(new ConstNode<unsigned char>(value))
2591 { }
2592
2593 /**
2594 * Create a ConstNode
2595 * @param value The value of the const node.
2596 */
2597 Temp(signed short value)
2598 : node(new ConstNode<signed short>(value))
2599 { }
2600
2601 /**
2602 * Create a ConstNode
2603 * @param value The value of the const node.
2604 */
2605 Temp(unsigned short value)
2606 : node(new ConstNode<unsigned short>(value))
2607 { }
2608
2609 /**
2610 * Create a ConstNode
2611 * @param value The value of the const node.
2612 */
2613 Temp(signed int value)
2614 : node(new ConstNode<signed int>(value))
2615 { }
2616
2617 /**
2618 * Create a ConstNode
2619 * @param value The value of the const node.
2620 */
2621 Temp(unsigned int value)
2622 : node(new ConstNode<unsigned int>(value))
2623 { }
2624
2625 /**
2626 * Create a ConstNode
2627 * @param value The value of the const node.
2628 */
2629 Temp(signed long value)
2630 : node(new ConstNode<signed long>(value))
2631 { }
2632
2633 /**
2634 * Create a ConstNode
2635 * @param value The value of the const node.
2636 */
2637 Temp(unsigned long value)
2638 : node(new ConstNode<unsigned long>(value))
2639 { }
2640
2641 /**
2642 * Create a ConstNode
2643 * @param value The value of the const node.
2644 */
2645 Temp(signed long long value)
2646 : node(new ConstNode<signed long long>(value))
2647 { }
2648
2649 /**
2650 * Create a ConstNode
2651 * @param value The value of the const node.
2652 */
2653 Temp(unsigned long long value)
2654 : node(new ConstNode<unsigned long long>(value))
2655 { }
2656
2657 /**
2658 * Create a ConstNode
2659 * @param value The value of the const node.
2660 */
2661 Temp(float value)
2662 : node(new ConstNode<float>(value))
2663 { }
2664
2665 /**
2666 * Create a ConstNode
2667 * @param value The value of the const node.
2668 */
2669 Temp(double value)
2670 : node(new ConstNode<double>(value))
2671 { }
2672 };
2673
2674
2675 /**
2676 * @}
2677 */
2678
2679 inline Temp
2680 operator+(Temp l, Temp r)
2681 {
2682 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2683 }
2684
2685 inline Temp
2686 operator-(Temp l, Temp r)
2687 {
2688 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2689 }
2690
2691 inline Temp
2692 operator*(Temp l, Temp r)
2693 {
2694 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2695 }
2696
2697 inline Temp
2698 operator/(Temp l, Temp r)
2699 {
2700 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2701 }
2702
2703 inline Temp
2704 operator-(Temp l)
2705 {
2706 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2707 }
2708
2709 template <typename T>
2710 inline Temp
2711 constant(T val)
2712 {
2713 return NodePtr(new ConstNode<T>(val));
2714 }
2715
2716 template <typename T>
2717 inline Temp
2718 constantVector(T val)
2719 {
2720 return NodePtr(new ConstVectorNode<T>(val));
2721 }
2722
2723 inline Temp
2724 sum(Temp val)
2725 {
2726 return NodePtr(new SumNode<std::plus<Result> >(val));
2727 }
2728
2729 /**
2730 * Enable the statistics package. Before the statistics package is
2731 * enabled, all statistics must be created and initialized and once
2732 * the package is enabled, no more statistics can be created.
2733 */
2734 void enable();
2735
2736 /**
2737 * Prepare all stats for data access. This must be done before
2738 * dumping and serialization.
2739 */
2740 void prepare();
2741
2742 /**
2743 * Dump all statistics data to the registered outputs
2744 */
2745 void dump();
2746
2747 /**
2748 * Reset all statistics to the base state
2749 */
2750 void reset();
2751 /**
2752 * Register a callback that should be called whenever statistics are
2753 * reset
2754 */
2755 void registerResetCallback(Callback *cb);
2756
2757 std::list<Info *> &statsList();
2758
2759 /* namespace Stats */ }
2760
2761 #endif // __BASE_STATISTICS_HH__