New directory structure:
[gem5.git] / src / base / statistics.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /** @file
30 * Declaration of Statistics objects.
31 */
32
33 /**
34 * @todo
35 *
36 * Generalized N-dimensinal vector
37 * documentation
38 * key stats
39 * interval stats
40 * -- these both can use the same function that prints out a
41 * specific set of stats
42 * VectorStandardDeviation totals
43 * Document Namespaces
44 */
45 #ifndef __BASE_STATISTICS_HH__
46 #define __BASE_STATISTICS_HH__
47
48 #include <algorithm>
49 #include <cassert>
50 #include <cmath>
51 #include <functional>
52 #include <iosfwd>
53 #include <string>
54 #include <vector>
55
56 #include "base/cprintf.hh"
57 #include "base/intmath.hh"
58 #include "base/refcnt.hh"
59 #include "base/str.hh"
60 #include "base/stats/bin.hh"
61 #include "base/stats/flags.hh"
62 #include "base/stats/visit.hh"
63 #include "base/stats/types.hh"
64 #include "config/stats_binning.hh"
65 #include "sim/host.hh"
66
67 class Callback;
68
69 /** The current simulated cycle. */
70 extern Tick curTick;
71
72 /* A namespace for all of the Statistics */
73 namespace Stats {
74
75 /* Contains the statistic implementation details */
76 //////////////////////////////////////////////////////////////////////
77 //
78 // Statistics Framework Base classes
79 //
80 //////////////////////////////////////////////////////////////////////
81 struct StatData
82 {
83 /** The name of the stat. */
84 std::string name;
85 /** The description of the stat. */
86 std::string desc;
87 /** The formatting flags. */
88 StatFlags flags;
89 /** The display precision. */
90 int precision;
91 /** A pointer to a prerequisite Stat. */
92 const StatData *prereq;
93 /**
94 * A unique stat ID for each stat in the simulator.
95 * Can be used externally for lookups as well as for debugging.
96 */
97 int id;
98
99 StatData();
100 virtual ~StatData();
101
102 /**
103 * @return true if the stat is binned.
104 */
105 virtual bool binned() const = 0;
106
107 /**
108 * Reset the corresponding stat to the default state.
109 */
110 virtual void reset() = 0;
111
112 /**
113 * @return true if this stat has a value and satisfies its
114 * requirement as a prereq
115 */
116 virtual bool zero() const = 0;
117
118 /**
119 * Check that this stat has been set up properly and is ready for
120 * use
121 * @return true for success
122 */
123 virtual bool check() const = 0;
124 bool baseCheck() const;
125
126 /**
127 * Visitor entry for outputing statistics data
128 */
129 virtual void visit(Visit &visitor) = 0;
130
131 /**
132 * Checks if the first stat's name is alphabetically less than the second.
133 * This function breaks names up at periods and considers each subname
134 * separately.
135 * @param stat1 The first stat.
136 * @param stat2 The second stat.
137 * @return stat1's name is alphabetically before stat2's
138 */
139 static bool less(StatData *stat1, StatData *stat2);
140 };
141
142 class ScalarData : public StatData
143 {
144 public:
145 virtual Counter value() const = 0;
146 virtual Result result() const = 0;
147 virtual Result total() const = 0;
148 virtual void visit(Visit &visitor) { visitor.visit(*this); }
149 };
150
151 template <class Stat>
152 class ScalarStatData : public ScalarData
153 {
154 protected:
155 Stat &s;
156
157 public:
158 ScalarStatData(Stat &stat) : s(stat) {}
159
160 virtual bool binned() const { return s.binned(); }
161 virtual bool check() const { return s.check(); }
162 virtual Counter value() const { return s.value(); }
163 virtual Result result() const { return s.result(); }
164 virtual Result total() const { return s.total(); }
165 virtual void reset() { s.reset(); }
166 virtual bool zero() const { return s.zero(); }
167 };
168
169 struct VectorData : public StatData
170 {
171 /** Names and descriptions of subfields. */
172 mutable std::vector<std::string> subnames;
173 mutable std::vector<std::string> subdescs;
174
175 virtual size_t size() const = 0;
176 virtual const VCounter &value() const = 0;
177 virtual const VResult &result() const = 0;
178 virtual Result total() const = 0;
179 void update()
180 {
181 if (!subnames.empty()) {
182 int s = size();
183 if (subnames.size() < s)
184 subnames.resize(s);
185
186 if (subdescs.size() < s)
187 subdescs.resize(s);
188 }
189 }
190 };
191
192 template <class Stat>
193 class VectorStatData : public VectorData
194 {
195 protected:
196 Stat &s;
197 mutable VCounter cvec;
198 mutable VResult rvec;
199
200 public:
201 VectorStatData(Stat &stat) : s(stat) {}
202
203 virtual bool binned() const { return s.binned(); }
204 virtual bool check() const { return s.check(); }
205 virtual bool zero() const { return s.zero(); }
206 virtual void reset() { s.reset(); }
207
208 virtual size_t size() const { return s.size(); }
209 virtual VCounter &value() const
210 {
211 s.value(cvec);
212 return cvec;
213 }
214 virtual const VResult &result() const
215 {
216 s.result(rvec);
217 return rvec;
218 }
219 virtual Result total() const { return s.total(); }
220 virtual void visit(Visit &visitor)
221 {
222 update();
223 s.update(this);
224 visitor.visit(*this);
225 }
226 };
227
228 struct DistDataData
229 {
230 Counter min_val;
231 Counter max_val;
232 Counter underflow;
233 Counter overflow;
234 VCounter cvec;
235 Counter sum;
236 Counter squares;
237 Counter samples;
238
239 Counter min;
240 Counter max;
241 Counter bucket_size;
242 int size;
243 bool fancy;
244 };
245
246 struct DistData : public StatData
247 {
248 /** Local storage for the entry values, used for printing. */
249 DistDataData data;
250 };
251
252 template <class Stat>
253 class DistStatData : public DistData
254 {
255 protected:
256 Stat &s;
257
258 public:
259 DistStatData(Stat &stat) : s(stat) {}
260
261 virtual bool binned() const { return s.binned(); }
262 virtual bool check() const { return s.check(); }
263 virtual void reset() { s.reset(); }
264 virtual bool zero() const { return s.zero(); }
265 virtual void visit(Visit &visitor)
266 {
267 s.update(this);
268 visitor.visit(*this);
269 }
270 };
271
272 struct VectorDistData : public StatData
273 {
274 std::vector<DistDataData> data;
275
276 /** Names and descriptions of subfields. */
277 mutable std::vector<std::string> subnames;
278 mutable std::vector<std::string> subdescs;
279
280 /** Local storage for the entry values, used for printing. */
281 mutable VResult rvec;
282
283 virtual size_t size() const = 0;
284 void update()
285 {
286 int s = size();
287 if (subnames.size() < s)
288 subnames.resize(s);
289
290 if (subdescs.size() < s)
291 subdescs.resize(s);
292 }
293 };
294
295 template <class Stat>
296 class VectorDistStatData : public VectorDistData
297 {
298 protected:
299 Stat &s;
300 typedef typename Stat::bin_t bin_t;
301
302 public:
303 VectorDistStatData(Stat &stat) : s(stat) {}
304
305 virtual bool binned() const { return bin_t::binned; }
306 virtual bool check() const { return s.check(); }
307 virtual void reset() { s.reset(); }
308 virtual size_t size() const { return s.size(); }
309 virtual bool zero() const { return s.zero(); }
310 virtual void visit(Visit &visitor)
311 {
312 update();
313 s.update(this);
314 visitor.visit(*this);
315 }
316 };
317
318 struct Vector2dData : public StatData
319 {
320 /** Names and descriptions of subfields. */
321 std::vector<std::string> subnames;
322 std::vector<std::string> subdescs;
323 std::vector<std::string> y_subnames;
324
325 /** Local storage for the entry values, used for printing. */
326 mutable VCounter cvec;
327 mutable int x;
328 mutable int y;
329
330 void update()
331 {
332 if (subnames.size() < x)
333 subnames.resize(x);
334 }
335 };
336
337 template <class Stat>
338 class Vector2dStatData : public Vector2dData
339 {
340 protected:
341 Stat &s;
342 typedef typename Stat::bin_t bin_t;
343
344 public:
345 Vector2dStatData(Stat &stat) : s(stat) {}
346
347 virtual bool binned() const { return bin_t::binned; }
348 virtual bool check() const { return s.check(); }
349 virtual void reset() { s.reset(); }
350 virtual bool zero() const { return s.zero(); }
351 virtual void visit(Visit &visitor)
352 {
353 update();
354 s.update(this);
355 visitor.visit(*this);
356 }
357 };
358
359
360 class DataAccess
361 {
362 protected:
363 StatData *find() const;
364 void map(StatData *data);
365
366 StatData *statData();
367 const StatData *statData() const;
368
369 void setInit();
370 void setPrint();
371 };
372
373 template <class Parent, class Child, template <class> class Data>
374 class Wrap : public Child
375 {
376 protected:
377 Parent &self() { return *reinterpret_cast<Parent *>(this); }
378
379 protected:
380 Data<Child> *statData()
381 {
382 StatData *__data = DataAccess::statData();
383 Data<Child> *ptr = dynamic_cast<Data<Child> *>(__data);
384 assert(ptr);
385 return ptr;
386 }
387
388 public:
389 const Data<Child> *statData() const
390 {
391 const StatData *__data = DataAccess::statData();
392 const Data<Child> *ptr = dynamic_cast<const Data<Child> *>(__data);
393 assert(ptr);
394 return ptr;
395 }
396
397 protected:
398 /**
399 * Copy constructor, copies are not allowed.
400 */
401 Wrap(const Wrap &stat);
402 /**
403 * Can't copy stats.
404 */
405 void operator=(const Wrap &);
406
407 public:
408 Wrap()
409 {
410 map(new Data<Child>(*this));
411 }
412
413 /**
414 * Set the name and marks this stat to print at the end of simulation.
415 * @param name The new name.
416 * @return A reference to this stat.
417 */
418 Parent &name(const std::string &_name)
419 {
420 Data<Child> *data = this->statData();
421 data->name = _name;
422 this->setPrint();
423 return this->self();
424 }
425
426 /**
427 * Set the description and marks this stat to print at the end of
428 * simulation.
429 * @param desc The new description.
430 * @return A reference to this stat.
431 */
432 Parent &desc(const std::string &_desc)
433 {
434 this->statData()->desc = _desc;
435 return this->self();
436 }
437
438 /**
439 * Set the precision and marks this stat to print at the end of simulation.
440 * @param p The new precision
441 * @return A reference to this stat.
442 */
443 Parent &precision(int _precision)
444 {
445 this->statData()->precision = _precision;
446 return this->self();
447 }
448
449 /**
450 * Set the flags and marks this stat to print at the end of simulation.
451 * @param f The new flags.
452 * @return A reference to this stat.
453 */
454 Parent &flags(StatFlags _flags)
455 {
456 this->statData()->flags |= _flags;
457 return this->self();
458 }
459
460 /**
461 * Set the prerequisite stat and marks this stat to print at the end of
462 * simulation.
463 * @param prereq The prerequisite stat.
464 * @return A reference to this stat.
465 */
466 template <class Stat>
467 Parent &prereq(const Stat &prereq)
468 {
469 this->statData()->prereq = prereq.statData();
470 return this->self();
471 }
472 };
473
474 template <class Parent, class Child, template <class Child> class Data>
475 class WrapVec : public Wrap<Parent, Child, Data>
476 {
477 public:
478 // The following functions are specific to vectors. If you use them
479 // in a non vector context, you will get a nice compiler error!
480
481 /**
482 * Set the subfield name for the given index, and marks this stat to print
483 * at the end of simulation.
484 * @param index The subfield index.
485 * @param name The new name of the subfield.
486 * @return A reference to this stat.
487 */
488 Parent &subname(int index, const std::string &name)
489 {
490 std::vector<std::string> &subn = this->statData()->subnames;
491 if (subn.size() <= index)
492 subn.resize(index + 1);
493 subn[index] = name;
494 return this->self();
495 }
496
497 /**
498 * Set the subfield description for the given index and marks this stat to
499 * print at the end of simulation.
500 * @param index The subfield index.
501 * @param desc The new description of the subfield
502 * @return A reference to this stat.
503 */
504 Parent &subdesc(int index, const std::string &desc)
505 {
506 std::vector<std::string> &subd = this->statData()->subdescs;
507 if (subd.size() <= index)
508 subd.resize(index + 1);
509 subd[index] = desc;
510
511 return this->self();
512 }
513
514 };
515
516 template <class Parent, class Child, template <class Child> class Data>
517 class WrapVec2d : public WrapVec<Parent, Child, Data>
518 {
519 public:
520 /**
521 * @warning This makes the assumption that if you're gonna subnames a 2d
522 * vector, you're subnaming across all y
523 */
524 Parent &ysubnames(const char **names)
525 {
526 Data<Child> *data = this->statData();
527 data->y_subnames.resize(this->y);
528 for (int i = 0; i < this->y; ++i)
529 data->y_subnames[i] = names[i];
530 return this->self();
531 }
532 Parent &ysubname(int index, const std::string subname)
533 {
534 Data<Child> *data = this->statData();
535 assert(index < this->y);
536 data->y_subnames.resize(this->y);
537 data->y_subnames[index] = subname.c_str();
538 return this->self();
539 }
540 };
541
542 //////////////////////////////////////////////////////////////////////
543 //
544 // Simple Statistics
545 //
546 //////////////////////////////////////////////////////////////////////
547
548 /**
549 * Templatized storage and interface for a simple scalar stat.
550 */
551 struct StatStor
552 {
553 public:
554 /** The paramaters for this storage type, none for a scalar. */
555 struct Params { };
556
557 private:
558 /** The statistic value. */
559 Counter data;
560
561 public:
562 /**
563 * Builds this storage element and calls the base constructor of the
564 * datatype.
565 */
566 StatStor(const Params &) : data(Counter()) {}
567
568 /**
569 * The the stat to the given value.
570 * @param val The new value.
571 * @param p The paramters of this storage type.
572 */
573 void set(Counter val, const Params &p) { data = val; }
574 /**
575 * Increment the stat by the given value.
576 * @param val The new value.
577 * @param p The paramters of this storage type.
578 */
579 void inc(Counter val, const Params &p) { data += val; }
580 /**
581 * Decrement the stat by the given value.
582 * @param val The new value.
583 * @param p The paramters of this storage type.
584 */
585 void dec(Counter val, const Params &p) { data -= val; }
586 /**
587 * Return the value of this stat as its base type.
588 * @param p The params of this storage type.
589 * @return The value of this stat.
590 */
591 Counter value(const Params &p) const { return data; }
592 /**
593 * Return the value of this stat as a result type.
594 * @param p The parameters of this storage type.
595 * @return The value of this stat.
596 */
597 Result result(const Params &p) const { return (Result)data; }
598 /**
599 * Reset stat value to default
600 */
601 void reset() { data = Counter(); }
602
603 /**
604 * @return true if zero value
605 */
606 bool zero() const { return data == Counter(); }
607 };
608
609 /**
610 * Templatized storage and interface to a per-cycle average stat. This keeps
611 * a current count and updates a total (count * cycles) when this count
612 * changes. This allows the quick calculation of a per cycle count of the item
613 * being watched. This is good for keeping track of residencies in structures
614 * among other things.
615 * @todo add lateny to the stat and fix binning.
616 */
617 struct AvgStor
618 {
619 public:
620 /** The paramaters for this storage type */
621 struct Params
622 {
623 /**
624 * The current count. We stash this here because the current
625 * value is not a binned value.
626 */
627 Counter current;
628 };
629
630 private:
631 /** The total count for all cycles. */
632 mutable Result total;
633 /** The cycle that current last changed. */
634 mutable Tick last;
635
636 public:
637 /**
638 * Build and initializes this stat storage.
639 */
640 AvgStor(Params &p) : total(0), last(0) { p.current = Counter(); }
641
642 /**
643 * Set the current count to the one provided, update the total and last
644 * set values.
645 * @param val The new count.
646 * @param p The parameters for this storage.
647 */
648 void set(Counter val, Params &p) {
649 total += p.current * (curTick - last);
650 last = curTick;
651 p.current = val;
652 }
653
654 /**
655 * Increment the current count by the provided value, calls set.
656 * @param val The amount to increment.
657 * @param p The parameters for this storage.
658 */
659 void inc(Counter val, Params &p) { set(p.current + val, p); }
660
661 /**
662 * Deccrement the current count by the provided value, calls set.
663 * @param val The amount to decrement.
664 * @param p The parameters for this storage.
665 */
666 void dec(Counter val, Params &p) { set(p.current - val, p); }
667
668 /**
669 * Return the current count.
670 * @param p The parameters for this storage.
671 * @return The current count.
672 */
673 Counter value(const Params &p) const { return p.current; }
674
675 /**
676 * Return the current average.
677 * @param p The parameters for this storage.
678 * @return The current average.
679 */
680 Result result(const Params &p) const
681 {
682 total += p.current * (curTick - last);
683 last = curTick;
684 return (Result)(total + p.current) / (Result)(curTick + 1);
685 }
686
687 /**
688 * Reset stat value to default
689 */
690 void reset()
691 {
692 total = 0;
693 last = curTick;
694 }
695
696 /**
697 * @return true if zero value
698 */
699 bool zero() const { return total == 0.0; }
700 };
701
702 /**
703 * Implementation of a scalar stat. The type of stat is determined by the
704 * Storage template. The storage for this stat is held within the Bin class.
705 * This allows for breaking down statistics across multiple bins easily.
706 */
707 template <class Storage, class Bin>
708 class ScalarBase : public DataAccess
709 {
710 public:
711 /** Define the params of the storage class. */
712 typedef typename Storage::Params params_t;
713 /** Define the bin type. */
714 typedef typename Bin::template Bin<Storage> bin_t;
715
716 protected:
717 /** The bin of this stat. */
718 bin_t bin;
719 /** The parameters for this stat. */
720 params_t params;
721
722 protected:
723 /**
724 * Retrieve the storage from the bin.
725 * @return The storage object for this stat.
726 */
727 Storage *data() { return bin.data(params); }
728 /**
729 * Retrieve a const pointer to the storage from the bin.
730 * @return A const pointer to the storage object for this stat.
731 */
732 const Storage *data() const
733 {
734 bin_t *_bin = const_cast<bin_t *>(&bin);
735 params_t *_params = const_cast<params_t *>(&params);
736 return _bin->data(*_params);
737 }
738
739 public:
740 /**
741 * Return the current value of this stat as its base type.
742 * @return The current value.
743 */
744 Counter value() const { return data()->value(params); }
745
746 public:
747 /**
748 * Create and initialize this stat, register it with the database.
749 */
750 ScalarBase()
751 {
752 bin.init(params);
753 }
754
755 public:
756 // Common operators for stats
757 /**
758 * Increment the stat by 1. This calls the associated storage object inc
759 * function.
760 */
761 void operator++() { data()->inc(1, params); }
762 /**
763 * Decrement the stat by 1. This calls the associated storage object dec
764 * function.
765 */
766 void operator--() { data()->dec(1, params); }
767
768 /** Increment the stat by 1. */
769 void operator++(int) { ++*this; }
770 /** Decrement the stat by 1. */
771 void operator--(int) { --*this; }
772
773 /**
774 * Set the data value to the given value. This calls the associated storage
775 * object set function.
776 * @param v The new value.
777 */
778 template <typename U>
779 void operator=(const U &v) { data()->set(v, params); }
780
781 /**
782 * Increment the stat by the given value. This calls the associated
783 * storage object inc function.
784 * @param v The value to add.
785 */
786 template <typename U>
787 void operator+=(const U &v) { data()->inc(v, params); }
788
789 /**
790 * Decrement the stat by the given value. This calls the associated
791 * storage object dec function.
792 * @param v The value to substract.
793 */
794 template <typename U>
795 void operator-=(const U &v) { data()->dec(v, params); }
796
797 /**
798 * Return the number of elements, always 1 for a scalar.
799 * @return 1.
800 */
801 size_t size() const { return 1; }
802 /**
803 * Return true if stat is binned.
804 *@return True is stat is binned.
805 */
806 bool binned() const { return bin_t::binned; }
807
808 bool check() const { return bin.initialized(); }
809
810 /**
811 * Reset stat value to default
812 */
813 void reset() { bin.reset(); }
814
815 Counter value() { return data()->value(params); }
816
817 Result result() { return data()->result(params); }
818
819 Result total() { return result(); }
820
821 bool zero() { return result() == 0.0; }
822
823 };
824
825 class ProxyData : public ScalarData
826 {
827 public:
828 virtual void visit(Visit &visitor) { visitor.visit(*this); }
829 virtual bool binned() const { return false; }
830 virtual std::string str() const { return to_string(value()); }
831 virtual size_t size() const { return 1; }
832 virtual bool zero() const { return value() == 0; }
833 virtual bool check() const { return true; }
834 virtual void reset() { }
835 };
836
837 template <class T>
838 class ValueProxy : public ProxyData
839 {
840 private:
841 T *scalar;
842
843 public:
844 ValueProxy(T &val) : scalar(&val) {}
845 virtual Counter value() const { return *scalar; }
846 virtual Result result() const { return *scalar; }
847 virtual Result total() const { return *scalar; }
848 };
849
850 template <class T>
851 class FunctorProxy : public ProxyData
852 {
853 private:
854 T *functor;
855
856 public:
857 FunctorProxy(T &func) : functor(&func) {}
858 virtual Counter value() const { return (*functor)(); }
859 virtual Result result() const { return (*functor)(); }
860 virtual Result total() const { return (*functor)(); }
861 };
862
863 class ValueBase : public DataAccess
864 {
865 private:
866 ProxyData *proxy;
867
868 public:
869 ValueBase() : proxy(NULL) { }
870 ~ValueBase() { if (proxy) delete proxy; }
871
872 template <class T>
873 void scalar(T &value)
874 {
875 proxy = new ValueProxy<T>(value);
876 setInit();
877 }
878
879 template <class T>
880 void functor(T &func)
881 {
882 proxy = new FunctorProxy<T>(func);
883 setInit();
884 }
885
886 Counter value() { return proxy->value(); }
887 Result result() const { return proxy->result(); }
888 Result total() const { return proxy->total(); };
889 size_t size() const { return proxy->size(); }
890
891 bool binned() const { return proxy->binned(); }
892 std::string str() const { return proxy->str(); }
893 bool zero() const { return proxy->zero(); }
894 bool check() const { return proxy != NULL; }
895 void reset() { }
896 };
897
898 //////////////////////////////////////////////////////////////////////
899 //
900 // Vector Statistics
901 //
902 //////////////////////////////////////////////////////////////////////
903 template <class Storage, class Bin>
904 class ScalarProxy;
905
906 /**
907 * Implementation of a vector of stats. The type of stat is determined by the
908 * Storage class. @sa ScalarBase
909 */
910 template <class Storage, class Bin>
911 class VectorBase : public DataAccess
912 {
913 public:
914 /** Define the params of the storage class. */
915 typedef typename Storage::Params params_t;
916 /** Define the bin type. */
917 typedef typename Bin::template VectorBin<Storage> bin_t;
918
919 protected:
920 /** The bin of this stat. */
921 bin_t bin;
922 /** The parameters for this stat. */
923 params_t params;
924
925 protected:
926 /**
927 * Retrieve the storage from the bin for the given index.
928 * @param index The vector index to access.
929 * @return The storage object at the given index.
930 */
931 Storage *data(int index) { return bin.data(index, params); }
932 /**
933 * Retrieve a const pointer to the storage from the bin
934 * for the given index.
935 * @param index The vector index to access.
936 * @return A const pointer to the storage object at the given index.
937 */
938 const Storage *data(int index) const
939 {
940 bin_t *_bin = const_cast<bin_t *>(&bin);
941 params_t *_params = const_cast<params_t *>(&params);
942 return _bin->data(index, *_params);
943 }
944
945 public:
946 void value(VCounter &vec) const
947 {
948 vec.resize(size());
949 for (int i = 0; i < size(); ++i)
950 vec[i] = data(i)->value(params);
951 }
952
953 /**
954 * Copy the values to a local vector and return a reference to it.
955 * @return A reference to a vector of the stat values.
956 */
957 void result(VResult &vec) const
958 {
959 vec.resize(size());
960 for (int i = 0; i < size(); ++i)
961 vec[i] = data(i)->result(params);
962 }
963
964 /**
965 * @return True is stat is binned.
966 */
967 bool binned() const { return bin_t::binned; }
968
969 /**
970 * Return a total of all entries in this vector.
971 * @return The total of all vector entries.
972 */
973 Result total() const {
974 Result total = 0.0;
975 for (int i = 0; i < size(); ++i)
976 total += data(i)->result(params);
977 return total;
978 }
979
980 /**
981 * @return the number of elements in this vector.
982 */
983 size_t size() const { return bin.size(); }
984
985 bool zero() const
986 {
987 for (int i = 0; i < size(); ++i)
988 if (data(i)->zero())
989 return true;
990 return false;
991 }
992
993 bool check() const { return bin.initialized(); }
994 void reset() { bin.reset(); }
995
996 public:
997 VectorBase() {}
998
999 /** Friend this class with the associated scalar proxy. */
1000 friend class ScalarProxy<Storage, Bin>;
1001
1002 /**
1003 * Return a reference (ScalarProxy) to the stat at the given index.
1004 * @param index The vector index to access.
1005 * @return A reference of the stat.
1006 */
1007 ScalarProxy<Storage, Bin> operator[](int index);
1008
1009 void update(StatData *data) {}
1010 };
1011
1012 const StatData * getStatData(const void *stat);
1013
1014 /**
1015 * A proxy class to access the stat at a given index in a VectorBase stat.
1016 * Behaves like a ScalarBase.
1017 */
1018 template <class Storage, class Bin>
1019 class ScalarProxy
1020 {
1021 public:
1022 /** Define the params of the storage class. */
1023 typedef typename Storage::Params params_t;
1024 /** Define the bin type. */
1025 typedef typename Bin::template VectorBin<Storage> bin_t;
1026
1027 private:
1028 /** Pointer to the bin in the parent VectorBase. */
1029 bin_t *bin;
1030 /** Pointer to the params in the parent VectorBase. */
1031 params_t *params;
1032 /** The index to access in the parent VectorBase. */
1033 int index;
1034 /** Keep a pointer to the original stat so was can get data */
1035 void *stat;
1036
1037 protected:
1038 /**
1039 * Retrieve the storage from the bin.
1040 * @return The storage from the bin for this stat.
1041 */
1042 Storage *data() { return bin->data(index, *params); }
1043 /**
1044 * Retrieve a const pointer to the storage from the bin.
1045 * @return A const pointer to the storage for this stat.
1046 */
1047 const Storage *data() const
1048 {
1049 bin_t *_bin = const_cast<bin_t *>(bin);
1050 params_t *_params = const_cast<params_t *>(params);
1051 return _bin->data(index, *_params);
1052 }
1053
1054 public:
1055 /**
1056 * Return the current value of this stat as its base type.
1057 * @return The current value.
1058 */
1059 Counter value() const { return data()->value(*params); }
1060
1061 /**
1062 * Return the current value of this statas a result type.
1063 * @return The current value.
1064 */
1065 Result result() const { return data()->result(*params); }
1066
1067 public:
1068 /**
1069 * Create and initialize this proxy, do not register it with the database.
1070 * @param b The bin to use.
1071 * @param p The params to use.
1072 * @param i The index to access.
1073 */
1074 ScalarProxy(bin_t &b, params_t &p, int i, void *s)
1075 : bin(&b), params(&p), index(i), stat(s) {}
1076 /**
1077 * Create a copy of the provided ScalarProxy.
1078 * @param sp The proxy to copy.
1079 */
1080 ScalarProxy(const ScalarProxy &sp)
1081 : bin(sp.bin), params(sp.params), index(sp.index), stat(sp.stat) {}
1082 /**
1083 * Set this proxy equal to the provided one.
1084 * @param sp The proxy to copy.
1085 * @return A reference to this proxy.
1086 */
1087 const ScalarProxy &operator=(const ScalarProxy &sp) {
1088 bin = sp.bin;
1089 params = sp.params;
1090 index = sp.index;
1091 stat = sp.stat;
1092 return *this;
1093 }
1094
1095 public:
1096 // Common operators for stats
1097 /**
1098 * Increment the stat by 1. This calls the associated storage object inc
1099 * function.
1100 */
1101 void operator++() { data()->inc(1, *params); }
1102 /**
1103 * Decrement the stat by 1. This calls the associated storage object dec
1104 * function.
1105 */
1106 void operator--() { data()->dec(1, *params); }
1107
1108 /** Increment the stat by 1. */
1109 void operator++(int) { ++*this; }
1110 /** Decrement the stat by 1. */
1111 void operator--(int) { --*this; }
1112
1113 /**
1114 * Set the data value to the given value. This calls the associated storage
1115 * object set function.
1116 * @param v The new value.
1117 */
1118 template <typename U>
1119 void operator=(const U &v) { data()->set(v, *params); }
1120
1121 /**
1122 * Increment the stat by the given value. This calls the associated
1123 * storage object inc function.
1124 * @param v The value to add.
1125 */
1126 template <typename U>
1127 void operator+=(const U &v) { data()->inc(v, *params); }
1128
1129 /**
1130 * Decrement the stat by the given value. This calls the associated
1131 * storage object dec function.
1132 * @param v The value to substract.
1133 */
1134 template <typename U>
1135 void operator-=(const U &v) { data()->dec(v, *params); }
1136
1137 /**
1138 * Return the number of elements, always 1 for a scalar.
1139 * @return 1.
1140 */
1141 size_t size() const { return 1; }
1142
1143 /**
1144 * Return true if stat is binned.
1145 *@return false since Proxies aren't printed/binned
1146 */
1147 bool binned() const { return false; }
1148
1149 /**
1150 * This stat has no state. Nothing to reset
1151 */
1152 void reset() { }
1153
1154 public:
1155 const StatData *statData() const { return getStatData(stat); }
1156 std::string str() const
1157 {
1158 return csprintf("%s[%d]", this->statData()->name, index);
1159
1160 }
1161 };
1162
1163 template <class Storage, class Bin>
1164 inline ScalarProxy<Storage, Bin>
1165 VectorBase<Storage, Bin>::operator[](int index)
1166 {
1167 assert (index >= 0 && index < size());
1168 return ScalarProxy<Storage, Bin>(bin, params, index, this);
1169 }
1170
1171 template <class Storage, class Bin>
1172 class VectorProxy;
1173
1174 template <class Storage, class Bin>
1175 class Vector2dBase : public DataAccess
1176 {
1177 public:
1178 typedef typename Storage::Params params_t;
1179 typedef typename Bin::template VectorBin<Storage> bin_t;
1180
1181 protected:
1182 size_t x;
1183 size_t y;
1184 bin_t bin;
1185 params_t params;
1186
1187 protected:
1188 Storage *data(int index) { return bin.data(index, params); }
1189 const Storage *data(int index) const
1190 {
1191 bin_t *_bin = const_cast<bin_t *>(&bin);
1192 params_t *_params = const_cast<params_t *>(&params);
1193 return _bin->data(index, *_params);
1194 }
1195
1196 public:
1197 Vector2dBase() {}
1198
1199 void update(Vector2dData *data)
1200 {
1201 int size = this->size();
1202 data->cvec.resize(size);
1203 for (int i = 0; i < size; ++i)
1204 data->cvec[i] = this->data(i)->value(params);
1205 }
1206
1207 std::string ysubname(int i) const { return (*this->y_subnames)[i]; }
1208
1209 friend class VectorProxy<Storage, Bin>;
1210 VectorProxy<Storage, Bin> operator[](int index);
1211
1212 size_t size() const { return bin.size(); }
1213 bool zero() const { return data(0)->value(params) == 0.0; }
1214
1215 /**
1216 * Reset stat value to default
1217 */
1218 void reset() { bin.reset(); }
1219
1220 bool check() { return bin.initialized(); }
1221 };
1222
1223 template <class Storage, class Bin>
1224 class VectorProxy
1225 {
1226 public:
1227 typedef typename Storage::Params params_t;
1228 typedef typename Bin::template VectorBin<Storage> bin_t;
1229
1230 private:
1231 bin_t *bin;
1232 params_t *params;
1233 int offset;
1234 int len;
1235 void *stat;
1236
1237 private:
1238 mutable VResult *vec;
1239
1240 Storage *data(int index) {
1241 assert(index < len);
1242 return bin->data(offset + index, *params);
1243 }
1244
1245 const Storage *data(int index) const {
1246 bin_t *_bin = const_cast<bin_t *>(bin);
1247 params_t *_params = const_cast<params_t *>(params);
1248 return _bin->data(offset + index, *_params);
1249 }
1250
1251 public:
1252 const VResult &result() const {
1253 if (vec)
1254 vec->resize(size());
1255 else
1256 vec = new VResult(size());
1257
1258 for (int i = 0; i < size(); ++i)
1259 (*vec)[i] = data(i)->result(*params);
1260
1261 return *vec;
1262 }
1263
1264 Result total() const {
1265 Result total = 0.0;
1266 for (int i = 0; i < size(); ++i)
1267 total += data(i)->result(*params);
1268 return total;
1269 }
1270
1271 public:
1272 VectorProxy(bin_t &b, params_t &p, int o, int l, void *s)
1273 : bin(&b), params(&p), offset(o), len(l), stat(s), vec(NULL)
1274 {
1275 }
1276
1277 VectorProxy(const VectorProxy &sp)
1278 : bin(sp.bin), params(sp.params), offset(sp.offset), len(sp.len),
1279 stat(sp.stat), vec(NULL)
1280 {
1281 }
1282
1283 ~VectorProxy()
1284 {
1285 if (vec)
1286 delete vec;
1287 }
1288
1289 const VectorProxy &operator=(const VectorProxy &sp)
1290 {
1291 bin = sp.bin;
1292 params = sp.params;
1293 offset = sp.offset;
1294 len = sp.len;
1295 stat = sp.stat;
1296 if (vec)
1297 delete vec;
1298 vec = NULL;
1299 return *this;
1300 }
1301
1302 ScalarProxy<Storage, Bin> operator[](int index)
1303 {
1304 assert (index >= 0 && index < size());
1305 return ScalarProxy<Storage, Bin>(*bin, *params, offset + index, stat);
1306 }
1307
1308 size_t size() const { return len; }
1309
1310 /**
1311 * Return true if stat is binned.
1312 *@return false since Proxies aren't printed/binned
1313 */
1314 bool binned() const { return false; }
1315
1316 /**
1317 * This stat has no state. Nothing to reset.
1318 */
1319 void reset() { }
1320 };
1321
1322 template <class Storage, class Bin>
1323 inline VectorProxy<Storage, Bin>
1324 Vector2dBase<Storage, Bin>::operator[](int index)
1325 {
1326 int offset = index * y;
1327 assert (index >= 0 && offset < size());
1328 return VectorProxy<Storage, Bin>(bin, params, offset, y, this);
1329 }
1330
1331 //////////////////////////////////////////////////////////////////////
1332 //
1333 // Non formula statistics
1334 //
1335 //////////////////////////////////////////////////////////////////////
1336
1337 /**
1338 * Templatized storage and interface for a distrbution stat.
1339 */
1340 struct DistStor
1341 {
1342 public:
1343 /** The parameters for a distribution stat. */
1344 struct Params
1345 {
1346 /** The minimum value to track. */
1347 Counter min;
1348 /** The maximum value to track. */
1349 Counter max;
1350 /** The number of entries in each bucket. */
1351 Counter bucket_size;
1352 /** The number of buckets. Equal to (max-min)/bucket_size. */
1353 int size;
1354 };
1355 enum { fancy = false };
1356
1357 private:
1358 /** The smallest value sampled. */
1359 Counter min_val;
1360 /** The largest value sampled. */
1361 Counter max_val;
1362 /** The number of values sampled less than min. */
1363 Counter underflow;
1364 /** The number of values sampled more than max. */
1365 Counter overflow;
1366 /** The current sum. */
1367 Counter sum;
1368 /** The sum of squares. */
1369 Counter squares;
1370 /** The number of samples. */
1371 Counter samples;
1372 /** Counter for each bucket. */
1373 VCounter cvec;
1374
1375 public:
1376 /**
1377 * Construct this storage with the supplied params.
1378 * @param params The parameters.
1379 */
1380 DistStor(const Params &params)
1381 : min_val(INT_MAX), max_val(INT_MIN), underflow(Counter()),
1382 overflow(Counter()), sum(Counter()), squares(Counter()),
1383 samples(Counter()), cvec(params.size)
1384 {
1385 reset();
1386 }
1387
1388 /**
1389 * Add a value to the distribution for the given number of times.
1390 * @param val The value to add.
1391 * @param number The number of times to add the value.
1392 * @param params The paramters of the distribution.
1393 */
1394 void sample(Counter val, int number, const Params &params)
1395 {
1396 if (val < params.min)
1397 underflow += number;
1398 else if (val > params.max)
1399 overflow += number;
1400 else {
1401 int index = (int)floor((val - params.min) / params.bucket_size);
1402 assert(index < size(params));
1403 cvec[index] += number;
1404 }
1405
1406 if (val < min_val)
1407 min_val = val;
1408
1409 if (val > max_val)
1410 max_val = val;
1411
1412 Counter sample = val * number;
1413 sum += sample;
1414 squares += sample * sample;
1415 samples += number;
1416 }
1417
1418 /**
1419 * Return the number of buckets in this distribution.
1420 * @return the number of buckets.
1421 * @todo Is it faster to return the size from the parameters?
1422 */
1423 size_t size(const Params &) const { return cvec.size(); }
1424
1425 /**
1426 * Returns true if any calls to sample have been made.
1427 * @param params The paramters of the distribution.
1428 * @return True if any values have been sampled.
1429 */
1430 bool zero(const Params &params) const
1431 {
1432 return samples == Counter();
1433 }
1434
1435 void update(DistDataData *data, const Params &params)
1436 {
1437 data->min = params.min;
1438 data->max = params.max;
1439 data->bucket_size = params.bucket_size;
1440 data->size = params.size;
1441
1442 data->min_val = (min_val == INT_MAX) ? 0 : min_val;
1443 data->max_val = (max_val == INT_MIN) ? 0 : max_val;
1444 data->underflow = underflow;
1445 data->overflow = overflow;
1446 data->cvec.resize(params.size);
1447 for (int i = 0; i < params.size; ++i)
1448 data->cvec[i] = cvec[i];
1449
1450 data->sum = sum;
1451 data->squares = squares;
1452 data->samples = samples;
1453 }
1454
1455 /**
1456 * Reset stat value to default
1457 */
1458 void reset()
1459 {
1460 min_val = INT_MAX;
1461 max_val = INT_MIN;
1462 underflow = 0;
1463 overflow = 0;
1464
1465 int size = cvec.size();
1466 for (int i = 0; i < size; ++i)
1467 cvec[i] = Counter();
1468
1469 sum = Counter();
1470 squares = Counter();
1471 samples = Counter();
1472 }
1473 };
1474
1475 /**
1476 * Templatized storage and interface for a distribution that calculates mean
1477 * and variance.
1478 */
1479 struct FancyStor
1480 {
1481 public:
1482 /**
1483 * No paramters for this storage.
1484 */
1485 struct Params {};
1486 enum { fancy = true };
1487
1488 private:
1489 /** The current sum. */
1490 Counter sum;
1491 /** The sum of squares. */
1492 Counter squares;
1493 /** The number of samples. */
1494 Counter samples;
1495
1496 public:
1497 /**
1498 * Create and initialize this storage.
1499 */
1500 FancyStor(const Params &)
1501 : sum(Counter()), squares(Counter()), samples(Counter())
1502 { }
1503
1504 /**
1505 * Add a value the given number of times to this running average.
1506 * Update the running sum and sum of squares, increment the number of
1507 * values seen by the given number.
1508 * @param val The value to add.
1509 * @param number The number of times to add the value.
1510 * @param p The parameters of this stat.
1511 */
1512 void sample(Counter val, int number, const Params &p)
1513 {
1514 Counter value = val * number;
1515 sum += value;
1516 squares += value * value;
1517 samples += number;
1518 }
1519
1520 void update(DistDataData *data, const Params &params)
1521 {
1522 data->sum = sum;
1523 data->squares = squares;
1524 data->samples = samples;
1525 }
1526
1527 /**
1528 * Return the number of entries in this stat, 1
1529 * @return 1.
1530 */
1531 size_t size(const Params &) const { return 1; }
1532
1533 /**
1534 * Return true if no samples have been added.
1535 * @return True if no samples have been added.
1536 */
1537 bool zero(const Params &) const { return samples == Counter(); }
1538
1539 /**
1540 * Reset stat value to default
1541 */
1542 void reset()
1543 {
1544 sum = Counter();
1545 squares = Counter();
1546 samples = Counter();
1547 }
1548 };
1549
1550 /**
1551 * Templatized storage for distribution that calculates per cycle mean and
1552 * variance.
1553 */
1554 struct AvgFancy
1555 {
1556 public:
1557 /** No parameters for this storage. */
1558 struct Params {};
1559 enum { fancy = true };
1560
1561 private:
1562 /** Current total. */
1563 Counter sum;
1564 /** Current sum of squares. */
1565 Counter squares;
1566
1567 public:
1568 /**
1569 * Create and initialize this storage.
1570 */
1571 AvgFancy(const Params &) : sum(Counter()), squares(Counter()) {}
1572
1573 /**
1574 * Add a value to the distribution for the given number of times.
1575 * Update the running sum and sum of squares.
1576 * @param val The value to add.
1577 * @param number The number of times to add the value.
1578 * @param p The paramters of the distribution.
1579 */
1580 void sample(Counter val, int number, const Params &p)
1581 {
1582 Counter value = val * number;
1583 sum += value;
1584 squares += value * value;
1585 }
1586
1587 void update(DistDataData *data, const Params &params)
1588 {
1589 data->sum = sum;
1590 data->squares = squares;
1591 data->samples = curTick;
1592 }
1593
1594 /**
1595 * Return the number of entries, in this case 1.
1596 * @return 1.
1597 */
1598 size_t size(const Params &params) const { return 1; }
1599 /**
1600 * Return true if no samples have been added.
1601 * @return True if the sum is zero.
1602 */
1603 bool zero(const Params &params) const { return sum == Counter(); }
1604 /**
1605 * Reset stat value to default
1606 */
1607 void reset()
1608 {
1609 sum = Counter();
1610 squares = Counter();
1611 }
1612 };
1613
1614 /**
1615 * Implementation of a distribution stat. The type of distribution is
1616 * determined by the Storage template. @sa ScalarBase
1617 */
1618 template <class Storage, class Bin>
1619 class DistBase : public DataAccess
1620 {
1621 public:
1622 /** Define the params of the storage class. */
1623 typedef typename Storage::Params params_t;
1624 /** Define the bin type. */
1625 typedef typename Bin::template Bin<Storage> bin_t;
1626
1627 protected:
1628 /** The bin of this stat. */
1629 bin_t bin;
1630 /** The parameters for this stat. */
1631 params_t params;
1632
1633 protected:
1634 /**
1635 * Retrieve the storage from the bin.
1636 * @return The storage object for this stat.
1637 */
1638 Storage *data() { return bin.data(params); }
1639 /**
1640 * Retrieve a const pointer to the storage from the bin.
1641 * @return A const pointer to the storage object for this stat.
1642 */
1643 const Storage *data() const
1644 {
1645 bin_t *_bin = const_cast<bin_t *>(&bin);
1646 params_t *_params = const_cast<params_t *>(&params);
1647 return _bin->data(*_params);
1648 }
1649
1650 public:
1651 DistBase() { }
1652
1653 /**
1654 * Add a value to the distribtion n times. Calls sample on the storage
1655 * class.
1656 * @param v The value to add.
1657 * @param n The number of times to add it, defaults to 1.
1658 */
1659 template <typename U>
1660 void sample(const U &v, int n = 1) { data()->sample(v, n, params); }
1661
1662 /**
1663 * Return the number of entries in this stat.
1664 * @return The number of entries.
1665 */
1666 size_t size() const { return data()->size(params); }
1667 /**
1668 * Return true if no samples have been added.
1669 * @return True if there haven't been any samples.
1670 */
1671 bool zero() const { return data()->zero(params); }
1672
1673 void update(DistData *base)
1674 {
1675 base->data.fancy = Storage::fancy;
1676 data()->update(&(base->data), params);
1677 }
1678 /**
1679 * @return True is stat is binned.
1680 */
1681 bool binned() const { return bin_t::binned; }
1682 /**
1683 * Reset stat value to default
1684 */
1685 void reset()
1686 {
1687 bin.reset();
1688 }
1689
1690 bool check() { return bin.initialized(); }
1691 };
1692
1693 template <class Storage, class Bin>
1694 class DistProxy;
1695
1696 template <class Storage, class Bin>
1697 class VectorDistBase : public DataAccess
1698 {
1699 public:
1700 typedef typename Storage::Params params_t;
1701 typedef typename Bin::template VectorBin<Storage> bin_t;
1702
1703 protected:
1704 bin_t bin;
1705 params_t params;
1706
1707 protected:
1708 Storage *data(int index) { return bin.data(index, params); }
1709 const Storage *data(int index) const
1710 {
1711 bin_t *_bin = const_cast<bin_t *>(&bin);
1712 params_t *_params = const_cast<params_t *>(&params);
1713 return _bin->data(index, *_params);
1714 }
1715
1716 public:
1717 VectorDistBase() {}
1718
1719 friend class DistProxy<Storage, Bin>;
1720 DistProxy<Storage, Bin> operator[](int index);
1721 const DistProxy<Storage, Bin> operator[](int index) const;
1722
1723 size_t size() const { return bin.size(); }
1724 bool zero() const { return false; }
1725 /**
1726 * Return true if stat is binned.
1727 *@return True is stat is binned.
1728 */
1729 bool binned() const { return bin_t::binned; }
1730 /**
1731 * Reset stat value to default
1732 */
1733 void reset() { bin.reset(); }
1734
1735 bool check() { return bin.initialized(); }
1736 void update(VectorDistData *base)
1737 {
1738 int size = this->size();
1739 base->data.resize(size);
1740 for (int i = 0; i < size; ++i) {
1741 base->data[i].fancy = Storage::fancy;
1742 data(i)->update(&(base->data[i]), params);
1743 }
1744 }
1745 };
1746
1747 template <class Storage, class Bin>
1748 class DistProxy
1749 {
1750 public:
1751 typedef typename Storage::Params params_t;
1752 typedef typename Bin::template Bin<Storage> bin_t;
1753 typedef VectorDistBase<Storage, Bin> base_t;
1754
1755 private:
1756 union {
1757 base_t *stat;
1758 const base_t *cstat;
1759 };
1760 int index;
1761
1762 protected:
1763 Storage *data() { return stat->data(index); }
1764 const Storage *data() const { return cstat->data(index); }
1765
1766 public:
1767 DistProxy(const VectorDistBase<Storage, Bin> &s, int i)
1768 : cstat(&s), index(i) {}
1769 DistProxy(const DistProxy &sp)
1770 : cstat(sp.cstat), index(sp.index) {}
1771 const DistProxy &operator=(const DistProxy &sp) {
1772 cstat = sp.cstat; index = sp.index; return *this;
1773 }
1774
1775 public:
1776 template <typename U>
1777 void sample(const U &v, int n = 1) { data()->sample(v, n, cstat->params); }
1778
1779 size_t size() const { return 1; }
1780 bool zero() const { return data()->zero(cstat->params); }
1781 /**
1782 * Return true if stat is binned.
1783 *@return false since Proxies are not binned/printed.
1784 */
1785 bool binned() const { return false; }
1786 /**
1787 * Proxy has no state. Nothing to reset.
1788 */
1789 void reset() { }
1790 };
1791
1792 template <class Storage, class Bin>
1793 inline DistProxy<Storage, Bin>
1794 VectorDistBase<Storage, Bin>::operator[](int index)
1795 {
1796 assert (index >= 0 && index < size());
1797 return DistProxy<Storage, Bin>(*this, index);
1798 }
1799
1800 template <class Storage, class Bin>
1801 inline const DistProxy<Storage, Bin>
1802 VectorDistBase<Storage, Bin>::operator[](int index) const
1803 {
1804 assert (index >= 0 && index < size());
1805 return DistProxy<Storage, Bin>(*this, index);
1806 }
1807
1808 #if 0
1809 template <class Storage, class Bin>
1810 Result
1811 VectorDistBase<Storage, Bin>::total(int index) const
1812 {
1813 int total = 0;
1814 for (int i=0; i < x_size(); ++i) {
1815 total += data(i)->result(*params);
1816 }
1817 }
1818 #endif
1819
1820 //////////////////////////////////////////////////////////////////////
1821 //
1822 // Formula Details
1823 //
1824 //////////////////////////////////////////////////////////////////////
1825
1826 /**
1827 * Base class for formula statistic node. These nodes are used to build a tree
1828 * that represents the formula.
1829 */
1830 class Node : public RefCounted
1831 {
1832 public:
1833 /**
1834 * Return the number of nodes in the subtree starting at this node.
1835 * @return the number of nodes in this subtree.
1836 */
1837 virtual size_t size() const = 0;
1838 /**
1839 * Return the result vector of this subtree.
1840 * @return The result vector of this subtree.
1841 */
1842 virtual const VResult &result() const = 0;
1843 /**
1844 * Return the total of the result vector.
1845 * @return The total of the result vector.
1846 */
1847 virtual Result total() const = 0;
1848 /**
1849 * Return true if stat is binned.
1850 *@return True is stat is binned.
1851 */
1852 virtual bool binned() const = 0;
1853
1854 /**
1855 *
1856 */
1857 virtual std::string str() const = 0;
1858 };
1859
1860 /** Reference counting pointer to a function Node. */
1861 typedef RefCountingPtr<Node> NodePtr;
1862
1863 class ScalarStatNode : public Node
1864 {
1865 private:
1866 const ScalarData *data;
1867 mutable VResult vresult;
1868
1869 public:
1870 ScalarStatNode(const ScalarData *d) : data(d), vresult(1) {}
1871 virtual const VResult &result() const
1872 {
1873 vresult[0] = data->result();
1874 return vresult;
1875 }
1876 virtual Result total() const { return data->result(); };
1877
1878 virtual size_t size() const { return 1; }
1879 /**
1880 * Return true if stat is binned.
1881 *@return True is stat is binned.
1882 */
1883 virtual bool binned() const { return data->binned(); }
1884
1885 /**
1886 *
1887 */
1888 virtual std::string str() const { return data->name; }
1889 };
1890
1891 template <class Storage, class Bin>
1892 class ScalarProxyNode : public Node
1893 {
1894 private:
1895 const ScalarProxy<Storage, Bin> proxy;
1896 mutable VResult vresult;
1897
1898 public:
1899 ScalarProxyNode(const ScalarProxy<Storage, Bin> &p)
1900 : proxy(p), vresult(1) { }
1901 virtual const VResult &result() const
1902 {
1903 vresult[0] = proxy.result();
1904 return vresult;
1905 }
1906 virtual Result total() const { return proxy.result(); };
1907
1908 virtual size_t size() const { return 1; }
1909 /**
1910 * Return true if stat is binned.
1911 *@return True is stat is binned.
1912 */
1913 virtual bool binned() const { return proxy.binned(); }
1914
1915 /**
1916 *
1917 */
1918 virtual std::string str() const { return proxy.str(); }
1919 };
1920
1921 class VectorStatNode : public Node
1922 {
1923 private:
1924 const VectorData *data;
1925
1926 public:
1927 VectorStatNode(const VectorData *d) : data(d) { }
1928 virtual const VResult &result() const { return data->result(); }
1929 virtual Result total() const { return data->total(); };
1930
1931 virtual size_t size() const { return data->size(); }
1932 /**
1933 * Return true if stat is binned.
1934 *@return True is stat is binned.
1935 */
1936 virtual bool binned() const { return data->binned(); }
1937
1938 virtual std::string str() const { return data->name; }
1939 };
1940
1941 template <class T>
1942 class ConstNode : public Node
1943 {
1944 private:
1945 VResult vresult;
1946
1947 public:
1948 ConstNode(T s) : vresult(1, (Result)s) {}
1949 const VResult &result() const { return vresult; }
1950 virtual Result total() const { return vresult[0]; };
1951 virtual size_t size() const { return 1; }
1952
1953 /**
1954 * Return true if stat is binned.
1955 *@return False since constants aren't binned.
1956 */
1957 virtual bool binned() const { return false; }
1958
1959 virtual std::string str() const { return to_string(vresult[0]); }
1960 };
1961
1962 template <class Op>
1963 struct OpString;
1964
1965 template<>
1966 struct OpString<std::plus<Result> >
1967 {
1968 static std::string str() { return "+"; }
1969 };
1970
1971 template<>
1972 struct OpString<std::minus<Result> >
1973 {
1974 static std::string str() { return "-"; }
1975 };
1976
1977 template<>
1978 struct OpString<std::multiplies<Result> >
1979 {
1980 static std::string str() { return "*"; }
1981 };
1982
1983 template<>
1984 struct OpString<std::divides<Result> >
1985 {
1986 static std::string str() { return "/"; }
1987 };
1988
1989 template<>
1990 struct OpString<std::modulus<Result> >
1991 {
1992 static std::string str() { return "%"; }
1993 };
1994
1995 template<>
1996 struct OpString<std::negate<Result> >
1997 {
1998 static std::string str() { return "-"; }
1999 };
2000
2001 template <class Op>
2002 class UnaryNode : public Node
2003 {
2004 public:
2005 NodePtr l;
2006 mutable VResult vresult;
2007
2008 public:
2009 UnaryNode(NodePtr &p) : l(p) {}
2010
2011 const VResult &result() const
2012 {
2013 const VResult &lvec = l->result();
2014 int size = lvec.size();
2015
2016 assert(size > 0);
2017
2018 vresult.resize(size);
2019 Op op;
2020 for (int i = 0; i < size; ++i)
2021 vresult[i] = op(lvec[i]);
2022
2023 return vresult;
2024 }
2025
2026 Result total() const {
2027 Op op;
2028 return op(l->total());
2029 }
2030
2031 virtual size_t size() const { return l->size(); }
2032 /**
2033 * Return true if child of node is binned.
2034 *@return True if child of node is binned.
2035 */
2036 virtual bool binned() const { return l->binned(); }
2037
2038 virtual std::string str() const
2039 {
2040 return OpString<Op>::str() + l->str();
2041 }
2042 };
2043
2044 template <class Op>
2045 class BinaryNode : public Node
2046 {
2047 public:
2048 NodePtr l;
2049 NodePtr r;
2050 mutable VResult vresult;
2051
2052 public:
2053 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2054
2055 const VResult &result() const
2056 {
2057 Op op;
2058 const VResult &lvec = l->result();
2059 const VResult &rvec = r->result();
2060
2061 assert(lvec.size() > 0 && rvec.size() > 0);
2062
2063 if (lvec.size() == 1 && rvec.size() == 1) {
2064 vresult.resize(1);
2065 vresult[0] = op(lvec[0], rvec[0]);
2066 } else if (lvec.size() == 1) {
2067 int size = rvec.size();
2068 vresult.resize(size);
2069 for (int i = 0; i < size; ++i)
2070 vresult[i] = op(lvec[0], rvec[i]);
2071 } else if (rvec.size() == 1) {
2072 int size = lvec.size();
2073 vresult.resize(size);
2074 for (int i = 0; i < size; ++i)
2075 vresult[i] = op(lvec[i], rvec[0]);
2076 } else if (rvec.size() == lvec.size()) {
2077 int size = rvec.size();
2078 vresult.resize(size);
2079 for (int i = 0; i < size; ++i)
2080 vresult[i] = op(lvec[i], rvec[i]);
2081 }
2082
2083 return vresult;
2084 }
2085
2086 Result total() const {
2087 Op op;
2088 return op(l->total(), r->total());
2089 }
2090
2091 virtual size_t size() const {
2092 int ls = l->size();
2093 int rs = r->size();
2094 if (ls == 1)
2095 return rs;
2096 else if (rs == 1)
2097 return ls;
2098 else {
2099 assert(ls == rs && "Node vector sizes are not equal");
2100 return ls;
2101 }
2102 }
2103 /**
2104 * Return true if any children of node are binned
2105 *@return True if either child of node is binned.
2106 */
2107 virtual bool binned() const { return (l->binned() || r->binned()); }
2108
2109 virtual std::string str() const
2110 {
2111 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2112 }
2113 };
2114
2115 template <class Op>
2116 class SumNode : public Node
2117 {
2118 public:
2119 NodePtr l;
2120 mutable VResult vresult;
2121
2122 public:
2123 SumNode(NodePtr &p) : l(p), vresult(1) {}
2124
2125 const VResult &result() const
2126 {
2127 const VResult &lvec = l->result();
2128 int size = lvec.size();
2129 assert(size > 0);
2130
2131 vresult[0] = 0.0;
2132
2133 Op op;
2134 for (int i = 0; i < size; ++i)
2135 vresult[0] = op(vresult[0], lvec[i]);
2136
2137 return vresult;
2138 }
2139
2140 Result total() const
2141 {
2142 const VResult &lvec = l->result();
2143 int size = lvec.size();
2144 assert(size > 0);
2145
2146 Result vresult = 0.0;
2147
2148 Op op;
2149 for (int i = 0; i < size; ++i)
2150 vresult = op(vresult, lvec[i]);
2151
2152 return vresult;
2153 }
2154
2155 virtual size_t size() const { return 1; }
2156 /**
2157 * Return true if child of node is binned.
2158 *@return True if child of node is binned.
2159 */
2160 virtual bool binned() const { return l->binned(); }
2161
2162 virtual std::string str() const
2163 {
2164 return csprintf("total(%s)", l->str());
2165 }
2166 };
2167
2168
2169 //////////////////////////////////////////////////////////////////////
2170 //
2171 // Visible Statistics Types
2172 //
2173 //////////////////////////////////////////////////////////////////////
2174 /**
2175 * @defgroup VisibleStats "Statistic Types"
2176 * These are the statistics that are used in the simulator. By default these
2177 * store counters and don't use binning, but are templatized to accept any type
2178 * and any Bin class.
2179 * @{
2180 */
2181
2182 /**
2183 * This is an easy way to assign all your stats to be binned or not
2184 * binned. If the typedef is NoBin, nothing is binned. If it is
2185 * MainBin, then all stats are binned under that Bin.
2186 */
2187 #if STATS_BINNING
2188 typedef MainBin DefaultBin;
2189 #else
2190 typedef NoBin DefaultBin;
2191 #endif
2192
2193 /**
2194 * This is a simple scalar statistic, like a counter.
2195 * @sa Stat, ScalarBase, StatStor
2196 */
2197 template <class Bin = DefaultBin>
2198 class Scalar
2199 : public Wrap<Scalar<Bin>,
2200 ScalarBase<StatStor, Bin>,
2201 ScalarStatData>
2202 {
2203 public:
2204 /** The base implementation. */
2205 typedef ScalarBase<StatStor, Bin> Base;
2206
2207 Scalar()
2208 {
2209 this->setInit();
2210 }
2211
2212 /**
2213 * Sets the stat equal to the given value. Calls the base implementation
2214 * of operator=
2215 * @param v The new value.
2216 */
2217 template <typename U>
2218 void operator=(const U &v) { Base::operator=(v); }
2219 };
2220
2221 class Value
2222 : public Wrap<Value,
2223 ValueBase,
2224 ScalarStatData>
2225 {
2226 public:
2227 /** The base implementation. */
2228 typedef ValueBase Base;
2229
2230 template <class T>
2231 Value &scalar(T &value)
2232 {
2233 Base::scalar(value);
2234 return *this;
2235 }
2236
2237 template <class T>
2238 Value &functor(T &func)
2239 {
2240 Base::functor(func);
2241 return *this;
2242 }
2243 };
2244
2245 /**
2246 * A stat that calculates the per cycle average of a value.
2247 * @sa Stat, ScalarBase, AvgStor
2248 */
2249 template <class Bin = DefaultBin>
2250 class Average
2251 : public Wrap<Average<Bin>,
2252 ScalarBase<AvgStor, Bin>,
2253 ScalarStatData>
2254 {
2255 public:
2256 /** The base implementation. */
2257 typedef ScalarBase<AvgStor, Bin> Base;
2258
2259 Average()
2260 {
2261 this->setInit();
2262 }
2263
2264 /**
2265 * Sets the stat equal to the given value. Calls the base implementation
2266 * of operator=
2267 * @param v The new value.
2268 */
2269 template <typename U>
2270 void operator=(const U &v) { Base::operator=(v); }
2271 };
2272
2273 /**
2274 * A vector of scalar stats.
2275 * @sa Stat, VectorBase, StatStor
2276 */
2277 template <class Bin = DefaultBin>
2278 class Vector
2279 : public WrapVec<Vector<Bin>,
2280 VectorBase<StatStor, Bin>,
2281 VectorStatData>
2282 {
2283 public:
2284 /** The base implementation. */
2285 typedef ScalarBase<StatStor, Bin> Base;
2286
2287 /**
2288 * Set this vector to have the given size.
2289 * @param size The new size.
2290 * @return A reference to this stat.
2291 */
2292 Vector &init(size_t size) {
2293 this->bin.init(size, this->params);
2294 this->setInit();
2295
2296 return *this;
2297 }
2298 };
2299
2300 /**
2301 * A vector of Average stats.
2302 * @sa Stat, VectorBase, AvgStor
2303 */
2304 template <class Bin = DefaultBin>
2305 class AverageVector
2306 : public WrapVec<AverageVector<Bin>,
2307 VectorBase<AvgStor, Bin>,
2308 VectorStatData>
2309 {
2310 public:
2311 /**
2312 * Set this vector to have the given size.
2313 * @param size The new size.
2314 * @return A reference to this stat.
2315 */
2316 AverageVector &init(size_t size) {
2317 this->bin.init(size, this->params);
2318 this->setInit();
2319
2320 return *this;
2321 }
2322 };
2323
2324 /**
2325 * A 2-Dimensional vecto of scalar stats.
2326 * @sa Stat, Vector2dBase, StatStor
2327 */
2328 template <class Bin = DefaultBin>
2329 class Vector2d
2330 : public WrapVec2d<Vector2d<Bin>,
2331 Vector2dBase<StatStor, Bin>,
2332 Vector2dStatData>
2333 {
2334 public:
2335 Vector2d &init(size_t _x, size_t _y) {
2336 this->statData()->x = this->x = _x;
2337 this->statData()->y = this->y = _y;
2338 this->bin.init(this->x * this->y, this->params);
2339 this->setInit();
2340
2341 return *this;
2342 }
2343 };
2344
2345 /**
2346 * A simple distribution stat.
2347 * @sa Stat, DistBase, DistStor
2348 */
2349 template <class Bin = DefaultBin>
2350 class Distribution
2351 : public Wrap<Distribution<Bin>,
2352 DistBase<DistStor, Bin>,
2353 DistStatData>
2354 {
2355 public:
2356 /** Base implementation. */
2357 typedef DistBase<DistStor, Bin> Base;
2358 /** The Parameter type. */
2359 typedef typename DistStor::Params Params;
2360
2361 public:
2362 /**
2363 * Set the parameters of this distribution. @sa DistStor::Params
2364 * @param min The minimum value of the distribution.
2365 * @param max The maximum value of the distribution.
2366 * @param bkt The number of values in each bucket.
2367 * @return A reference to this distribution.
2368 */
2369 Distribution &init(Counter min, Counter max, Counter bkt) {
2370 this->params.min = min;
2371 this->params.max = max;
2372 this->params.bucket_size = bkt;
2373 this->params.size = (int)rint((max - min) / bkt + 1.0);
2374 this->bin.init(this->params);
2375 this->setInit();
2376
2377 return *this;
2378 }
2379 };
2380
2381 /**
2382 * Calculates the mean and variance of all the samples.
2383 * @sa Stat, DistBase, FancyStor
2384 */
2385 template <class Bin = DefaultBin>
2386 class StandardDeviation
2387 : public Wrap<StandardDeviation<Bin>,
2388 DistBase<FancyStor, Bin>,
2389 DistStatData>
2390 {
2391 public:
2392 /** The base implementation */
2393 typedef DistBase<DistStor, Bin> Base;
2394 /** The parameter type. */
2395 typedef typename DistStor::Params Params;
2396
2397 public:
2398 /**
2399 * Construct and initialize this distribution.
2400 */
2401 StandardDeviation() {
2402 this->bin.init(this->params);
2403 this->setInit();
2404 }
2405 };
2406
2407 /**
2408 * Calculates the per cycle mean and variance of the samples.
2409 * @sa Stat, DistBase, AvgFancy
2410 */
2411 template <class Bin = DefaultBin>
2412 class AverageDeviation
2413 : public Wrap<AverageDeviation<Bin>,
2414 DistBase<AvgFancy, Bin>,
2415 DistStatData>
2416 {
2417 public:
2418 /** The base implementation */
2419 typedef DistBase<DistStor, Bin> Base;
2420 /** The parameter type. */
2421 typedef typename DistStor::Params Params;
2422
2423 public:
2424 /**
2425 * Construct and initialize this distribution.
2426 */
2427 AverageDeviation()
2428 {
2429 this->bin.init(this->params);
2430 this->setInit();
2431 }
2432 };
2433
2434 /**
2435 * A vector of distributions.
2436 * @sa Stat, VectorDistBase, DistStor
2437 */
2438 template <class Bin = DefaultBin>
2439 class VectorDistribution
2440 : public WrapVec<VectorDistribution<Bin>,
2441 VectorDistBase<DistStor, Bin>,
2442 VectorDistStatData>
2443 {
2444 public:
2445 /** The base implementation */
2446 typedef VectorDistBase<DistStor, Bin> Base;
2447 /** The parameter type. */
2448 typedef typename DistStor::Params Params;
2449
2450 public:
2451 /**
2452 * Initialize storage and parameters for this distribution.
2453 * @param size The size of the vector (the number of distributions).
2454 * @param min The minimum value of the distribution.
2455 * @param max The maximum value of the distribution.
2456 * @param bkt The number of values in each bucket.
2457 * @return A reference to this distribution.
2458 */
2459 VectorDistribution &init(int size, Counter min, Counter max, Counter bkt) {
2460 this->params.min = min;
2461 this->params.max = max;
2462 this->params.bucket_size = bkt;
2463 this->params.size = (int)rint((max - min) / bkt + 1.0);
2464 this->bin.init(size, this->params);
2465 this->setInit();
2466
2467 return *this;
2468 }
2469 };
2470
2471 /**
2472 * This is a vector of StandardDeviation stats.
2473 * @sa Stat, VectorDistBase, FancyStor
2474 */
2475 template <class Bin = DefaultBin>
2476 class VectorStandardDeviation
2477 : public WrapVec<VectorStandardDeviation<Bin>,
2478 VectorDistBase<FancyStor, Bin>,
2479 VectorDistStatData>
2480 {
2481 public:
2482 /** The base implementation */
2483 typedef VectorDistBase<FancyStor, Bin> Base;
2484 /** The parameter type. */
2485 typedef typename DistStor::Params Params;
2486
2487 public:
2488 /**
2489 * Initialize storage for this distribution.
2490 * @param size The size of the vector.
2491 * @return A reference to this distribution.
2492 */
2493 VectorStandardDeviation &init(int size) {
2494 this->bin.init(size, this->params);
2495 this->setInit();
2496
2497 return *this;
2498 }
2499 };
2500
2501 /**
2502 * This is a vector of AverageDeviation stats.
2503 * @sa Stat, VectorDistBase, AvgFancy
2504 */
2505 template <class Bin = DefaultBin>
2506 class VectorAverageDeviation
2507 : public WrapVec<VectorAverageDeviation<Bin>,
2508 VectorDistBase<AvgFancy, Bin>,
2509 VectorDistStatData>
2510 {
2511 public:
2512 /** The base implementation */
2513 typedef VectorDistBase<AvgFancy, Bin> Base;
2514 /** The parameter type. */
2515 typedef typename DistStor::Params Params;
2516
2517 public:
2518 /**
2519 * Initialize storage for this distribution.
2520 * @param size The size of the vector.
2521 * @return A reference to this distribution.
2522 */
2523 VectorAverageDeviation &init(int size) {
2524 this->bin.init(size, this->params);
2525 this->setInit();
2526
2527 return *this;
2528 }
2529 };
2530
2531 /**
2532 * A formula for statistics that is calculated when printed. A formula is
2533 * stored as a tree of Nodes that represent the equation to calculate.
2534 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2535 */
2536 class FormulaBase : public DataAccess
2537 {
2538 protected:
2539 /** The root of the tree which represents the Formula */
2540 NodePtr root;
2541 friend class Temp;
2542
2543 public:
2544 /**
2545 * Return the result of the Fomula in a vector. If there were no Vector
2546 * components to the Formula, then the vector is size 1. If there were,
2547 * like x/y with x being a vector of size 3, then the result returned will
2548 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2549 * @return The result vector.
2550 */
2551 void result(VResult &vec) const;
2552
2553 /**
2554 * Return the total Formula result. If there is a Vector
2555 * component to this Formula, then this is the result of the
2556 * Formula if the formula is applied after summing all the
2557 * components of the Vector. For example, if Formula is x/y where
2558 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2559 * there is no Vector component, total() returns the same value as
2560 * the first entry in the VResult val() returns.
2561 * @return The total of the result vector.
2562 */
2563 Result total() const;
2564
2565 /**
2566 * Return the number of elements in the tree.
2567 */
2568 size_t size() const;
2569
2570 /**
2571 * Return true if Formula is binned. i.e. any of its children
2572 * nodes are binned
2573 * @return True if Formula is binned.
2574 */
2575 bool binned() const;
2576
2577 bool check() const { return true; }
2578
2579 /**
2580 * Formulas don't need to be reset
2581 */
2582 void reset();
2583
2584 /**
2585 *
2586 */
2587 bool zero() const;
2588
2589 /**
2590 *
2591 */
2592 void update(StatData *);
2593
2594 std::string str() const;
2595 };
2596
2597 class FormulaData : public VectorData
2598 {
2599 public:
2600 virtual std::string str() const = 0;
2601 virtual bool check() const { return true; }
2602 };
2603
2604 template <class Stat>
2605 class FormulaStatData : public FormulaData
2606 {
2607 protected:
2608 Stat &s;
2609 mutable VResult vec;
2610 mutable VCounter cvec;
2611
2612 public:
2613 FormulaStatData(Stat &stat) : s(stat) {}
2614
2615 virtual bool binned() const { return s.binned(); }
2616 virtual bool zero() const { return s.zero(); }
2617 virtual void reset() { s.reset(); }
2618
2619 virtual size_t size() const { return s.size(); }
2620 virtual const VResult &result() const
2621 {
2622 s.result(vec);
2623 return vec;
2624 }
2625 virtual Result total() const { return s.total(); }
2626 virtual VCounter &value() const { return cvec; }
2627 virtual void visit(Visit &visitor)
2628 {
2629 update();
2630 s.update(this);
2631 visitor.visit(*this);
2632 }
2633 virtual std::string str() const { return s.str(); }
2634 };
2635
2636 class Temp;
2637 class Formula
2638 : public WrapVec<Formula,
2639 FormulaBase,
2640 FormulaStatData>
2641 {
2642 public:
2643 /**
2644 * Create and initialize thie formula, and register it with the database.
2645 */
2646 Formula();
2647
2648 /**
2649 * Create a formula with the given root node, register it with the
2650 * database.
2651 * @param r The root of the expression tree.
2652 */
2653 Formula(Temp r);
2654
2655 /**
2656 * Set an unitialized Formula to the given root.
2657 * @param r The root of the expression tree.
2658 * @return a reference to this formula.
2659 */
2660 const Formula &operator=(Temp r);
2661
2662 /**
2663 * Add the given tree to the existing one.
2664 * @param r The root of the expression tree.
2665 * @return a reference to this formula.
2666 */
2667 const Formula &operator+=(Temp r);
2668 };
2669
2670 class FormulaNode : public Node
2671 {
2672 private:
2673 const Formula &formula;
2674 mutable VResult vec;
2675
2676 public:
2677 FormulaNode(const Formula &f) : formula(f) {}
2678
2679 virtual size_t size() const { return formula.size(); }
2680 virtual const VResult &result() const { formula.result(vec); return vec; }
2681 virtual Result total() const { return formula.total(); }
2682 virtual bool binned() const { return formula.binned(); }
2683
2684 virtual std::string str() const { return formula.str(); }
2685 };
2686
2687 /**
2688 * Helper class to construct formula node trees.
2689 */
2690 class Temp
2691 {
2692 protected:
2693 /**
2694 * Pointer to a Node object.
2695 */
2696 NodePtr node;
2697
2698 public:
2699 /**
2700 * Copy the given pointer to this class.
2701 * @param n A pointer to a Node object to copy.
2702 */
2703 Temp(NodePtr n) : node(n) { }
2704
2705 /**
2706 * Return the node pointer.
2707 * @return the node pointer.
2708 */
2709 operator NodePtr&() { return node;}
2710
2711 public:
2712 /**
2713 * Create a new ScalarStatNode.
2714 * @param s The ScalarStat to place in a node.
2715 */
2716 template <class Bin>
2717 Temp(const Scalar<Bin> &s)
2718 : node(new ScalarStatNode(s.statData())) { }
2719
2720 /**
2721 * Create a new ScalarStatNode.
2722 * @param s The ScalarStat to place in a node.
2723 */
2724 Temp(const Value &s)
2725 : node(new ScalarStatNode(s.statData())) { }
2726
2727 /**
2728 * Create a new ScalarStatNode.
2729 * @param s The ScalarStat to place in a node.
2730 */
2731 template <class Bin>
2732 Temp(const Average<Bin> &s)
2733 : node(new ScalarStatNode(s.statData())) { }
2734
2735 /**
2736 * Create a new VectorStatNode.
2737 * @param s The VectorStat to place in a node.
2738 */
2739 template <class Bin>
2740 Temp(const Vector<Bin> &s)
2741 : node(new VectorStatNode(s.statData())) { }
2742
2743 /**
2744 *
2745 */
2746 Temp(const Formula &f)
2747 : node(new FormulaNode(f)) { }
2748
2749 /**
2750 * Create a new ScalarProxyNode.
2751 * @param p The ScalarProxy to place in a node.
2752 */
2753 template <class Storage, class Bin>
2754 Temp(const ScalarProxy<Storage, Bin> &p)
2755 : node(new ScalarProxyNode<Storage, Bin>(p)) { }
2756
2757 /**
2758 * Create a ConstNode
2759 * @param value The value of the const node.
2760 */
2761 Temp(signed char value)
2762 : node(new ConstNode<signed char>(value)) {}
2763
2764 /**
2765 * Create a ConstNode
2766 * @param value The value of the const node.
2767 */
2768 Temp(unsigned char value)
2769 : node(new ConstNode<unsigned char>(value)) {}
2770
2771 /**
2772 * Create a ConstNode
2773 * @param value The value of the const node.
2774 */
2775 Temp(signed short value)
2776 : node(new ConstNode<signed short>(value)) {}
2777
2778 /**
2779 * Create a ConstNode
2780 * @param value The value of the const node.
2781 */
2782 Temp(unsigned short value)
2783 : node(new ConstNode<unsigned short>(value)) {}
2784
2785 /**
2786 * Create a ConstNode
2787 * @param value The value of the const node.
2788 */
2789 Temp(signed int value)
2790 : node(new ConstNode<signed int>(value)) {}
2791
2792 /**
2793 * Create a ConstNode
2794 * @param value The value of the const node.
2795 */
2796 Temp(unsigned int value)
2797 : node(new ConstNode<unsigned int>(value)) {}
2798
2799 /**
2800 * Create a ConstNode
2801 * @param value The value of the const node.
2802 */
2803 Temp(signed long value)
2804 : node(new ConstNode<signed long>(value)) {}
2805
2806 /**
2807 * Create a ConstNode
2808 * @param value The value of the const node.
2809 */
2810 Temp(unsigned long value)
2811 : node(new ConstNode<unsigned long>(value)) {}
2812
2813 /**
2814 * Create a ConstNode
2815 * @param value The value of the const node.
2816 */
2817 Temp(signed long long value)
2818 : node(new ConstNode<signed long long>(value)) {}
2819
2820 /**
2821 * Create a ConstNode
2822 * @param value The value of the const node.
2823 */
2824 Temp(unsigned long long value)
2825 : node(new ConstNode<unsigned long long>(value)) {}
2826
2827 /**
2828 * Create a ConstNode
2829 * @param value The value of the const node.
2830 */
2831 Temp(float value)
2832 : node(new ConstNode<float>(value)) {}
2833
2834 /**
2835 * Create a ConstNode
2836 * @param value The value of the const node.
2837 */
2838 Temp(double value)
2839 : node(new ConstNode<double>(value)) {}
2840 };
2841
2842
2843 /**
2844 * @}
2845 */
2846
2847 void check();
2848 void reset();
2849 void registerResetCallback(Callback *cb);
2850
2851 inline Temp
2852 operator+(Temp l, Temp r)
2853 {
2854 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2855 }
2856
2857 inline Temp
2858 operator-(Temp l, Temp r)
2859 {
2860 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2861 }
2862
2863 inline Temp
2864 operator*(Temp l, Temp r)
2865 {
2866 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2867 }
2868
2869 inline Temp
2870 operator/(Temp l, Temp r)
2871 {
2872 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2873 }
2874
2875 inline Temp
2876 operator-(Temp l)
2877 {
2878 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2879 }
2880
2881 template <typename T>
2882 inline Temp
2883 constant(T val)
2884 {
2885 return NodePtr(new ConstNode<T>(val));
2886 }
2887
2888 inline Temp
2889 sum(Temp val)
2890 {
2891 return NodePtr(new SumNode<std::plus<Result> >(val));
2892 }
2893
2894 /* namespace Stats */ }
2895
2896 #endif // __BASE_STATISTICS_HH__