Merge m5.eecs.umich.edu:/bk/newmem
[gem5.git] / src / base / statistics.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 * Erik Hallnor
30 */
31
32 /** @file
33 * Declaration of Statistics objects.
34 */
35
36 /**
37 * @todo
38 *
39 * Generalized N-dimensinal vector
40 * documentation
41 * key stats
42 * interval stats
43 * -- these both can use the same function that prints out a
44 * specific set of stats
45 * VectorStandardDeviation totals
46 * Document Namespaces
47 */
48 #ifndef __BASE_STATISTICS_HH__
49 #define __BASE_STATISTICS_HH__
50
51 #include <algorithm>
52 #include <cassert>
53 #include <cmath>
54 #include <functional>
55 #include <iosfwd>
56 #include <string>
57 #include <vector>
58
59 #include "base/cprintf.hh"
60 #include "base/intmath.hh"
61 #include "base/refcnt.hh"
62 #include "base/str.hh"
63 #include "base/stats/flags.hh"
64 #include "base/stats/visit.hh"
65 #include "base/stats/types.hh"
66 #include "sim/host.hh"
67
68 class Callback;
69
70 /** The current simulated cycle. */
71 extern Tick curTick;
72
73 /* A namespace for all of the Statistics */
74 namespace Stats {
75
76 /* Contains the statistic implementation details */
77 //////////////////////////////////////////////////////////////////////
78 //
79 // Statistics Framework Base classes
80 //
81 //////////////////////////////////////////////////////////////////////
82 struct StatData
83 {
84 /** The name of the stat. */
85 std::string name;
86 /** The description of the stat. */
87 std::string desc;
88 /** The formatting flags. */
89 StatFlags flags;
90 /** The display precision. */
91 int precision;
92 /** A pointer to a prerequisite Stat. */
93 const StatData *prereq;
94 /**
95 * A unique stat ID for each stat in the simulator.
96 * Can be used externally for lookups as well as for debugging.
97 */
98 int id;
99
100 StatData();
101 virtual ~StatData();
102
103 /**
104 * Reset the corresponding stat to the default state.
105 */
106 virtual void reset() = 0;
107
108 /**
109 * @return true if this stat has a value and satisfies its
110 * requirement as a prereq
111 */
112 virtual bool zero() const = 0;
113
114 /**
115 * Check that this stat has been set up properly and is ready for
116 * use
117 * @return true for success
118 */
119 virtual bool check() const = 0;
120 bool baseCheck() const;
121
122 /**
123 * Visitor entry for outputing statistics data
124 */
125 virtual void visit(Visit &visitor) = 0;
126
127 /**
128 * Checks if the first stat's name is alphabetically less than the second.
129 * This function breaks names up at periods and considers each subname
130 * separately.
131 * @param stat1 The first stat.
132 * @param stat2 The second stat.
133 * @return stat1's name is alphabetically before stat2's
134 */
135 static bool less(StatData *stat1, StatData *stat2);
136 };
137
138 class ScalarData : public StatData
139 {
140 public:
141 virtual Counter value() const = 0;
142 virtual Result result() const = 0;
143 virtual Result total() const = 0;
144 virtual void visit(Visit &visitor) { visitor.visit(*this); }
145 };
146
147 template <class Stat>
148 class ScalarStatData : public ScalarData
149 {
150 protected:
151 Stat &s;
152
153 public:
154 ScalarStatData(Stat &stat) : s(stat) {}
155
156 virtual bool check() const { return s.check(); }
157 virtual Counter value() const { return s.value(); }
158 virtual Result result() const { return s.result(); }
159 virtual Result total() const { return s.total(); }
160 virtual void reset() { s.reset(); }
161 virtual bool zero() const { return s.zero(); }
162 };
163
164 struct VectorData : public StatData
165 {
166 /** Names and descriptions of subfields. */
167 mutable std::vector<std::string> subnames;
168 mutable std::vector<std::string> subdescs;
169
170 virtual size_t size() const = 0;
171 virtual const VCounter &value() const = 0;
172 virtual const VResult &result() const = 0;
173 virtual Result total() const = 0;
174 void update()
175 {
176 if (!subnames.empty()) {
177 int s = size();
178 if (subnames.size() < s)
179 subnames.resize(s);
180
181 if (subdescs.size() < s)
182 subdescs.resize(s);
183 }
184 }
185 };
186
187 template <class Stat>
188 class VectorStatData : public VectorData
189 {
190 protected:
191 Stat &s;
192 mutable VCounter cvec;
193 mutable VResult rvec;
194
195 public:
196 VectorStatData(Stat &stat) : s(stat) {}
197
198 virtual bool check() const { return s.check(); }
199 virtual bool zero() const { return s.zero(); }
200 virtual void reset() { s.reset(); }
201
202 virtual size_t size() const { return s.size(); }
203 virtual VCounter &value() const
204 {
205 s.value(cvec);
206 return cvec;
207 }
208 virtual const VResult &result() const
209 {
210 s.result(rvec);
211 return rvec;
212 }
213 virtual Result total() const { return s.total(); }
214 virtual void visit(Visit &visitor)
215 {
216 update();
217 s.update(this);
218 visitor.visit(*this);
219 }
220 };
221
222 struct DistDataData
223 {
224 Counter min_val;
225 Counter max_val;
226 Counter underflow;
227 Counter overflow;
228 VCounter cvec;
229 Counter sum;
230 Counter squares;
231 Counter samples;
232
233 Counter min;
234 Counter max;
235 Counter bucket_size;
236 int size;
237 bool fancy;
238 };
239
240 struct DistData : public StatData
241 {
242 /** Local storage for the entry values, used for printing. */
243 DistDataData data;
244 };
245
246 template <class Stat>
247 class DistStatData : public DistData
248 {
249 protected:
250 Stat &s;
251
252 public:
253 DistStatData(Stat &stat) : s(stat) {}
254
255 virtual bool check() const { return s.check(); }
256 virtual void reset() { s.reset(); }
257 virtual bool zero() const { return s.zero(); }
258 virtual void visit(Visit &visitor)
259 {
260 s.update(this);
261 visitor.visit(*this);
262 }
263 };
264
265 struct VectorDistData : public StatData
266 {
267 std::vector<DistDataData> data;
268
269 /** Names and descriptions of subfields. */
270 mutable std::vector<std::string> subnames;
271 mutable std::vector<std::string> subdescs;
272
273 /** Local storage for the entry values, used for printing. */
274 mutable VResult rvec;
275
276 virtual size_t size() const = 0;
277 void update()
278 {
279 int s = size();
280 if (subnames.size() < s)
281 subnames.resize(s);
282
283 if (subdescs.size() < s)
284 subdescs.resize(s);
285 }
286 };
287
288 template <class Stat>
289 class VectorDistStatData : public VectorDistData
290 {
291 protected:
292 Stat &s;
293
294 public:
295 VectorDistStatData(Stat &stat) : s(stat) {}
296
297 virtual bool check() const { return s.check(); }
298 virtual void reset() { s.reset(); }
299 virtual size_t size() const { return s.size(); }
300 virtual bool zero() const { return s.zero(); }
301 virtual void visit(Visit &visitor)
302 {
303 update();
304 s.update(this);
305 visitor.visit(*this);
306 }
307 };
308
309 struct Vector2dData : public StatData
310 {
311 /** Names and descriptions of subfields. */
312 std::vector<std::string> subnames;
313 std::vector<std::string> subdescs;
314 std::vector<std::string> y_subnames;
315
316 /** Local storage for the entry values, used for printing. */
317 mutable VCounter cvec;
318 mutable int x;
319 mutable int y;
320
321 void update()
322 {
323 if (subnames.size() < x)
324 subnames.resize(x);
325 }
326 };
327
328 template <class Stat>
329 class Vector2dStatData : public Vector2dData
330 {
331 protected:
332 Stat &s;
333
334 public:
335 Vector2dStatData(Stat &stat) : s(stat) {}
336
337 virtual bool check() const { return s.check(); }
338 virtual void reset() { s.reset(); }
339 virtual bool zero() const { return s.zero(); }
340 virtual void visit(Visit &visitor)
341 {
342 update();
343 s.update(this);
344 visitor.visit(*this);
345 }
346 };
347
348 class DataAccess
349 {
350 protected:
351 StatData *find() const;
352 void map(StatData *data);
353
354 StatData *statData();
355 const StatData *statData() const;
356
357 void setInit();
358 void setPrint();
359 };
360
361 template <class Parent, class Child, template <class> class Data>
362 class Wrap : public Child
363 {
364 protected:
365 Parent &self() { return *reinterpret_cast<Parent *>(this); }
366
367 protected:
368 Data<Child> *statData()
369 {
370 StatData *__data = DataAccess::statData();
371 Data<Child> *ptr = dynamic_cast<Data<Child> *>(__data);
372 assert(ptr);
373 return ptr;
374 }
375
376 public:
377 const Data<Child> *statData() const
378 {
379 const StatData *__data = DataAccess::statData();
380 const Data<Child> *ptr = dynamic_cast<const Data<Child> *>(__data);
381 assert(ptr);
382 return ptr;
383 }
384
385 protected:
386 /**
387 * Copy constructor, copies are not allowed.
388 */
389 Wrap(const Wrap &stat);
390 /**
391 * Can't copy stats.
392 */
393 void operator=(const Wrap &);
394
395 public:
396 Wrap()
397 {
398 map(new Data<Child>(*this));
399 }
400
401 /**
402 * Set the name and marks this stat to print at the end of simulation.
403 * @param name The new name.
404 * @return A reference to this stat.
405 */
406 Parent &name(const std::string &_name)
407 {
408 Data<Child> *data = this->statData();
409 data->name = _name;
410 this->setPrint();
411 return this->self();
412 }
413
414 /**
415 * Set the description and marks this stat to print at the end of
416 * simulation.
417 * @param desc The new description.
418 * @return A reference to this stat.
419 */
420 Parent &desc(const std::string &_desc)
421 {
422 this->statData()->desc = _desc;
423 return this->self();
424 }
425
426 /**
427 * Set the precision and marks this stat to print at the end of simulation.
428 * @param p The new precision
429 * @return A reference to this stat.
430 */
431 Parent &precision(int _precision)
432 {
433 this->statData()->precision = _precision;
434 return this->self();
435 }
436
437 /**
438 * Set the flags and marks this stat to print at the end of simulation.
439 * @param f The new flags.
440 * @return A reference to this stat.
441 */
442 Parent &flags(StatFlags _flags)
443 {
444 this->statData()->flags |= _flags;
445 return this->self();
446 }
447
448 /**
449 * Set the prerequisite stat and marks this stat to print at the end of
450 * simulation.
451 * @param prereq The prerequisite stat.
452 * @return A reference to this stat.
453 */
454 template <class Stat>
455 Parent &prereq(const Stat &prereq)
456 {
457 this->statData()->prereq = prereq.statData();
458 return this->self();
459 }
460 };
461
462 template <class Parent, class Child, template <class Child> class Data>
463 class WrapVec : public Wrap<Parent, Child, Data>
464 {
465 public:
466 // The following functions are specific to vectors. If you use them
467 // in a non vector context, you will get a nice compiler error!
468
469 /**
470 * Set the subfield name for the given index, and marks this stat to print
471 * at the end of simulation.
472 * @param index The subfield index.
473 * @param name The new name of the subfield.
474 * @return A reference to this stat.
475 */
476 Parent &subname(int index, const std::string &name)
477 {
478 std::vector<std::string> &subn = this->statData()->subnames;
479 if (subn.size() <= index)
480 subn.resize(index + 1);
481 subn[index] = name;
482 return this->self();
483 }
484
485 /**
486 * Set the subfield description for the given index and marks this stat to
487 * print at the end of simulation.
488 * @param index The subfield index.
489 * @param desc The new description of the subfield
490 * @return A reference to this stat.
491 */
492 Parent &subdesc(int index, const std::string &desc)
493 {
494 std::vector<std::string> &subd = this->statData()->subdescs;
495 if (subd.size() <= index)
496 subd.resize(index + 1);
497 subd[index] = desc;
498
499 return this->self();
500 }
501
502 };
503
504 template <class Parent, class Child, template <class Child> class Data>
505 class WrapVec2d : public WrapVec<Parent, Child, Data>
506 {
507 public:
508 /**
509 * @warning This makes the assumption that if you're gonna subnames a 2d
510 * vector, you're subnaming across all y
511 */
512 Parent &ysubnames(const char **names)
513 {
514 Data<Child> *data = this->statData();
515 data->y_subnames.resize(this->y);
516 for (int i = 0; i < this->y; ++i)
517 data->y_subnames[i] = names[i];
518 return this->self();
519 }
520 Parent &ysubname(int index, const std::string subname)
521 {
522 Data<Child> *data = this->statData();
523 assert(index < this->y);
524 data->y_subnames.resize(this->y);
525 data->y_subnames[index] = subname.c_str();
526 return this->self();
527 }
528 };
529
530 //////////////////////////////////////////////////////////////////////
531 //
532 // Simple Statistics
533 //
534 //////////////////////////////////////////////////////////////////////
535
536 /**
537 * Templatized storage and interface for a simple scalar stat.
538 */
539 struct StatStor
540 {
541 public:
542 /** The paramaters for this storage type, none for a scalar. */
543 struct Params { };
544
545 private:
546 /** The statistic value. */
547 Counter data;
548
549 public:
550 /**
551 * Builds this storage element and calls the base constructor of the
552 * datatype.
553 */
554 StatStor(const Params &) : data(Counter()) {}
555
556 /**
557 * The the stat to the given value.
558 * @param val The new value.
559 * @param p The paramters of this storage type.
560 */
561 void set(Counter val, const Params &p) { data = val; }
562 /**
563 * Increment the stat by the given value.
564 * @param val The new value.
565 * @param p The paramters of this storage type.
566 */
567 void inc(Counter val, const Params &p) { data += val; }
568 /**
569 * Decrement the stat by the given value.
570 * @param val The new value.
571 * @param p The paramters of this storage type.
572 */
573 void dec(Counter val, const Params &p) { data -= val; }
574 /**
575 * Return the value of this stat as its base type.
576 * @param p The params of this storage type.
577 * @return The value of this stat.
578 */
579 Counter value(const Params &p) const { return data; }
580 /**
581 * Return the value of this stat as a result type.
582 * @param p The parameters of this storage type.
583 * @return The value of this stat.
584 */
585 Result result(const Params &p) const { return (Result)data; }
586 /**
587 * Reset stat value to default
588 */
589 void reset() { data = Counter(); }
590
591 /**
592 * @return true if zero value
593 */
594 bool zero() const { return data == Counter(); }
595 };
596
597 /**
598 * Templatized storage and interface to a per-cycle average stat. This keeps
599 * a current count and updates a total (count * cycles) when this count
600 * changes. This allows the quick calculation of a per cycle count of the item
601 * being watched. This is good for keeping track of residencies in structures
602 * among other things.
603 */
604 struct AvgStor
605 {
606 public:
607 /** The paramaters for this storage type */
608 struct Params { };
609
610 private:
611 /** The current count. */
612 Counter current;
613 /** The total count for all cycles. */
614 mutable Result total;
615 /** The cycle that current last changed. */
616 mutable Tick last;
617
618 public:
619 /**
620 * Build and initializes this stat storage.
621 */
622 AvgStor(Params &p) : current(0), total(0), last(0) { }
623
624 /**
625 * Set the current count to the one provided, update the total and last
626 * set values.
627 * @param val The new count.
628 * @param p The parameters for this storage.
629 */
630 void set(Counter val, Params &p) {
631 total += current * (curTick - last);
632 last = curTick;
633 current = val;
634 }
635
636 /**
637 * Increment the current count by the provided value, calls set.
638 * @param val The amount to increment.
639 * @param p The parameters for this storage.
640 */
641 void inc(Counter val, Params &p) { set(current + val, p); }
642
643 /**
644 * Deccrement the current count by the provided value, calls set.
645 * @param val The amount to decrement.
646 * @param p The parameters for this storage.
647 */
648 void dec(Counter val, Params &p) { set(current - val, p); }
649
650 /**
651 * Return the current count.
652 * @param p The parameters for this storage.
653 * @return The current count.
654 */
655 Counter value(const Params &p) const { return current; }
656
657 /**
658 * Return the current average.
659 * @param p The parameters for this storage.
660 * @return The current average.
661 */
662 Result result(const Params &p) const
663 {
664 total += current * (curTick - last);
665 last = curTick;
666 return (Result)(total + current) / (Result)(curTick + 1);
667 }
668
669 /**
670 * Reset stat value to default
671 */
672 void reset()
673 {
674 total = 0;
675 last = curTick;
676 }
677
678 /**
679 * @return true if zero value
680 */
681 bool zero() const { return total == 0.0; }
682 };
683
684 /**
685 * Implementation of a scalar stat. The type of stat is determined by the
686 * Storage template.
687 */
688 template <class Stor>
689 class ScalarBase : public DataAccess
690 {
691 public:
692 typedef Stor Storage;
693
694 /** Define the params of the storage class. */
695 typedef typename Storage::Params Params;
696
697 protected:
698 /** The storage of this stat. */
699 char storage[sizeof(Storage)];
700
701 /** The parameters for this stat. */
702 Params params;
703
704 protected:
705 /**
706 * Retrieve the storage.
707 * @param index The vector index to access.
708 * @return The storage object at the given index.
709 */
710 Storage *
711 data()
712 {
713 return reinterpret_cast<Storage *>(storage);
714 }
715
716 /**
717 * Retrieve a const pointer to the storage.
718 * for the given index.
719 * @param index The vector index to access.
720 * @return A const pointer to the storage object at the given index.
721 */
722 const Storage *
723 data() const
724 {
725 return reinterpret_cast<const Storage *>(storage);
726 }
727
728 void
729 doInit()
730 {
731 new (storage) Storage(params);
732 setInit();
733 }
734
735 public:
736 /**
737 * Return the current value of this stat as its base type.
738 * @return The current value.
739 */
740 Counter value() const { return data()->value(params); }
741
742 public:
743 /**
744 * Create and initialize this stat, register it with the database.
745 */
746 ScalarBase()
747 { }
748
749 public:
750 // Common operators for stats
751 /**
752 * Increment the stat by 1. This calls the associated storage object inc
753 * function.
754 */
755 void operator++() { data()->inc(1, params); }
756 /**
757 * Decrement the stat by 1. This calls the associated storage object dec
758 * function.
759 */
760 void operator--() { data()->dec(1, params); }
761
762 /** Increment the stat by 1. */
763 void operator++(int) { ++*this; }
764 /** Decrement the stat by 1. */
765 void operator--(int) { --*this; }
766
767 /**
768 * Set the data value to the given value. This calls the associated storage
769 * object set function.
770 * @param v The new value.
771 */
772 template <typename U>
773 void operator=(const U &v) { data()->set(v, params); }
774
775 /**
776 * Increment the stat by the given value. This calls the associated
777 * storage object inc function.
778 * @param v The value to add.
779 */
780 template <typename U>
781 void operator+=(const U &v) { data()->inc(v, params); }
782
783 /**
784 * Decrement the stat by the given value. This calls the associated
785 * storage object dec function.
786 * @param v The value to substract.
787 */
788 template <typename U>
789 void operator-=(const U &v) { data()->dec(v, params); }
790
791 /**
792 * Return the number of elements, always 1 for a scalar.
793 * @return 1.
794 */
795 size_t size() const { return 1; }
796
797 bool check() const { return true; }
798
799 /**
800 * Reset stat value to default
801 */
802 void reset() { data()->reset(); }
803
804 Counter value() { return data()->value(params); }
805
806 Result result() { return data()->result(params); }
807
808 Result total() { return result(); }
809
810 bool zero() { return result() == 0.0; }
811
812 };
813
814 class ProxyData : public ScalarData
815 {
816 public:
817 virtual void visit(Visit &visitor) { visitor.visit(*this); }
818 virtual std::string str() const { return to_string(value()); }
819 virtual size_t size() const { return 1; }
820 virtual bool zero() const { return value() == 0; }
821 virtual bool check() const { return true; }
822 virtual void reset() { }
823 };
824
825 template <class T>
826 class ValueProxy : public ProxyData
827 {
828 private:
829 T *scalar;
830
831 public:
832 ValueProxy(T &val) : scalar(&val) {}
833 virtual Counter value() const { return *scalar; }
834 virtual Result result() const { return *scalar; }
835 virtual Result total() const { return *scalar; }
836 };
837
838 template <class T>
839 class FunctorProxy : public ProxyData
840 {
841 private:
842 T *functor;
843
844 public:
845 FunctorProxy(T &func) : functor(&func) {}
846 virtual Counter value() const { return (*functor)(); }
847 virtual Result result() const { return (*functor)(); }
848 virtual Result total() const { return (*functor)(); }
849 };
850
851 class ValueBase : public DataAccess
852 {
853 private:
854 ProxyData *proxy;
855
856 public:
857 ValueBase() : proxy(NULL) { }
858 ~ValueBase() { if (proxy) delete proxy; }
859
860 template <class T>
861 void scalar(T &value)
862 {
863 proxy = new ValueProxy<T>(value);
864 setInit();
865 }
866
867 template <class T>
868 void functor(T &func)
869 {
870 proxy = new FunctorProxy<T>(func);
871 setInit();
872 }
873
874 Counter value() { return proxy->value(); }
875 Result result() const { return proxy->result(); }
876 Result total() const { return proxy->total(); };
877 size_t size() const { return proxy->size(); }
878
879 std::string str() const { return proxy->str(); }
880 bool zero() const { return proxy->zero(); }
881 bool check() const { return proxy != NULL; }
882 void reset() { }
883 };
884
885 //////////////////////////////////////////////////////////////////////
886 //
887 // Vector Statistics
888 //
889 //////////////////////////////////////////////////////////////////////
890
891 /**
892 * A proxy class to access the stat at a given index in a VectorBase stat.
893 * Behaves like a ScalarBase.
894 */
895 template <class Stat>
896 class ScalarProxy
897 {
898 private:
899 /** Pointer to the parent Vector. */
900 Stat *stat;
901
902 /** The index to access in the parent VectorBase. */
903 int index;
904
905 public:
906 /**
907 * Return the current value of this stat as its base type.
908 * @return The current value.
909 */
910 Counter value() const { return stat->data(index)->value(stat->params); }
911
912 /**
913 * Return the current value of this statas a result type.
914 * @return The current value.
915 */
916 Result result() const { return stat->data(index)->result(stat->params); }
917
918 public:
919 /**
920 * Create and initialize this proxy, do not register it with the database.
921 * @param p The params to use.
922 * @param i The index to access.
923 */
924 ScalarProxy(Stat *s, int i)
925 : stat(s), index(i)
926 {
927 assert(stat);
928 }
929
930 /**
931 * Create a copy of the provided ScalarProxy.
932 * @param sp The proxy to copy.
933 */
934 ScalarProxy(const ScalarProxy &sp)
935 : stat(sp.stat), index(sp.index)
936 {}
937
938 /**
939 * Set this proxy equal to the provided one.
940 * @param sp The proxy to copy.
941 * @return A reference to this proxy.
942 */
943 const ScalarProxy &operator=(const ScalarProxy &sp) {
944 stat = sp.stat;
945 index = sp.index;
946 return *this;
947 }
948
949 public:
950 // Common operators for stats
951 /**
952 * Increment the stat by 1. This calls the associated storage object inc
953 * function.
954 */
955 void operator++() { stat->data(index)->inc(1, stat->params); }
956 /**
957 * Decrement the stat by 1. This calls the associated storage object dec
958 * function.
959 */
960 void operator--() { stat->data(index)->dec(1, stat->params); }
961
962 /** Increment the stat by 1. */
963 void operator++(int) { ++*this; }
964 /** Decrement the stat by 1. */
965 void operator--(int) { --*this; }
966
967 /**
968 * Set the data value to the given value. This calls the associated storage
969 * object set function.
970 * @param v The new value.
971 */
972 template <typename U>
973 void operator=(const U &v) { stat->data(index)->set(v, stat->params); }
974
975 /**
976 * Increment the stat by the given value. This calls the associated
977 * storage object inc function.
978 * @param v The value to add.
979 */
980 template <typename U>
981 void operator+=(const U &v) { stat->data(index)->inc(v, stat->params); }
982
983 /**
984 * Decrement the stat by the given value. This calls the associated
985 * storage object dec function.
986 * @param v The value to substract.
987 */
988 template <typename U>
989 void operator-=(const U &v) { stat->data(index)->dec(v, stat->params); }
990
991 /**
992 * Return the number of elements, always 1 for a scalar.
993 * @return 1.
994 */
995 size_t size() const { return 1; }
996
997 /**
998 * This stat has no state. Nothing to reset
999 */
1000 void reset() { }
1001
1002 public:
1003 std::string
1004 str() const
1005 {
1006 return csprintf("%s[%d]", stat->str(), index);
1007
1008 }
1009 };
1010
1011 /**
1012 * Implementation of a vector of stats. The type of stat is determined by the
1013 * Storage class. @sa ScalarBase
1014 */
1015 template <class Stor>
1016 class VectorBase : public DataAccess
1017 {
1018 public:
1019 typedef Stor Storage;
1020
1021 /** Define the params of the storage class. */
1022 typedef typename Storage::Params Params;
1023
1024 /** Proxy type */
1025 typedef ScalarProxy<VectorBase<Storage> > Proxy;
1026
1027 friend class ScalarProxy<VectorBase<Storage> >;
1028
1029 protected:
1030 /** The storage of this stat. */
1031 Storage *storage;
1032 size_t _size;
1033
1034 /** The parameters for this stat. */
1035 Params params;
1036
1037 protected:
1038 /**
1039 * Retrieve the storage.
1040 * @param index The vector index to access.
1041 * @return The storage object at the given index.
1042 */
1043 Storage *data(int index) { return &storage[index]; }
1044
1045 /**
1046 * Retrieve a const pointer to the storage.
1047 * @param index The vector index to access.
1048 * @return A const pointer to the storage object at the given index.
1049 */
1050 const Storage *data(int index) const { return &storage[index]; }
1051
1052 void
1053 doInit(int s)
1054 {
1055 assert(s > 0 && "size must be positive!");
1056 assert(!storage && "already initialized");
1057 _size = s;
1058
1059 char *ptr = new char[_size * sizeof(Storage)];
1060 storage = reinterpret_cast<Storage *>(ptr);
1061
1062 for (int i = 0; i < _size; ++i)
1063 new (&storage[i]) Storage(params);
1064
1065 setInit();
1066 }
1067
1068 public:
1069 void value(VCounter &vec) const
1070 {
1071 vec.resize(size());
1072 for (int i = 0; i < size(); ++i)
1073 vec[i] = data(i)->value(params);
1074 }
1075
1076 /**
1077 * Copy the values to a local vector and return a reference to it.
1078 * @return A reference to a vector of the stat values.
1079 */
1080 void result(VResult &vec) const
1081 {
1082 vec.resize(size());
1083 for (int i = 0; i < size(); ++i)
1084 vec[i] = data(i)->result(params);
1085 }
1086
1087 /**
1088 * Return a total of all entries in this vector.
1089 * @return The total of all vector entries.
1090 */
1091 Result total() const {
1092 Result total = 0.0;
1093 for (int i = 0; i < size(); ++i)
1094 total += data(i)->result(params);
1095 return total;
1096 }
1097
1098 /**
1099 * @return the number of elements in this vector.
1100 */
1101 size_t size() const { return _size; }
1102
1103 bool
1104 zero() const
1105 {
1106 for (int i = 0; i < size(); ++i)
1107 if (data(i)->zero())
1108 return false;
1109 return true;
1110 }
1111
1112 bool
1113 check() const
1114 {
1115 return storage != NULL;
1116 }
1117
1118 void
1119 reset()
1120 {
1121 for (int i = 0; i < size(); ++i)
1122 data(i)->reset();
1123 }
1124
1125 public:
1126 VectorBase()
1127 : storage(NULL)
1128 {}
1129
1130 ~VectorBase()
1131 {
1132 if (!storage)
1133 return;
1134
1135 for (int i = 0; i < _size; ++i)
1136 data(i)->~Storage();
1137 delete [] reinterpret_cast<char *>(storage);
1138 }
1139
1140 /**
1141 * Return a reference (ScalarProxy) to the stat at the given index.
1142 * @param index The vector index to access.
1143 * @return A reference of the stat.
1144 */
1145 Proxy
1146 operator[](int index)
1147 {
1148 assert (index >= 0 && index < size());
1149 return Proxy(this, index);
1150 }
1151
1152 void update(StatData *data) {}
1153 };
1154
1155 template <class Stat>
1156 class VectorProxy
1157 {
1158 private:
1159 Stat *stat;
1160 int offset;
1161 int len;
1162
1163 private:
1164 mutable VResult vec;
1165
1166 typename Stat::Storage *
1167 data(int index)
1168 {
1169 assert(index < len);
1170 return stat->data(offset + index);
1171 }
1172
1173 const typename Stat::Storage *
1174 data(int index) const
1175 {
1176 assert(index < len);
1177 return const_cast<Stat *>(stat)->data(offset + index);
1178 }
1179
1180 public:
1181 const VResult &
1182 result() const
1183 {
1184 vec.resize(size());
1185
1186 for (int i = 0; i < size(); ++i)
1187 vec[i] = data(i)->result(stat->params);
1188
1189 return vec;
1190 }
1191
1192 Result
1193 total() const
1194 {
1195 Result total = 0;
1196 for (int i = 0; i < size(); ++i)
1197 total += data(i)->result(stat->params);
1198 return total;
1199 }
1200
1201 public:
1202 VectorProxy(Stat *s, int o, int l)
1203 : stat(s), offset(o), len(l)
1204 {
1205 }
1206
1207 VectorProxy(const VectorProxy &sp)
1208 : stat(sp.stat), offset(sp.offset), len(sp.len)
1209 {
1210 }
1211
1212 const VectorProxy &
1213 operator=(const VectorProxy &sp)
1214 {
1215 stat = sp.stat;
1216 offset = sp.offset;
1217 len = sp.len;
1218 return *this;
1219 }
1220
1221 ScalarProxy<Stat> operator[](int index)
1222 {
1223 assert (index >= 0 && index < size());
1224 return ScalarProxy<Stat>(stat, offset + index);
1225 }
1226
1227 size_t size() const { return len; }
1228
1229 /**
1230 * This stat has no state. Nothing to reset.
1231 */
1232 void reset() { }
1233 };
1234
1235 template <class Stor>
1236 class Vector2dBase : public DataAccess
1237 {
1238 public:
1239 typedef Stor Storage;
1240 typedef typename Storage::Params Params;
1241 typedef VectorProxy<Vector2dBase<Storage> > Proxy;
1242 friend class ScalarProxy<Vector2dBase<Storage> >;
1243 friend class VectorProxy<Vector2dBase<Storage> >;
1244
1245 protected:
1246 size_t x;
1247 size_t y;
1248 size_t _size;
1249 Storage *storage;
1250 Params params;
1251
1252 protected:
1253 Storage *data(int index) { return &storage[index]; }
1254 const Storage *data(int index) const { return &storage[index]; }
1255
1256 void
1257 doInit(int _x, int _y)
1258 {
1259 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1260 assert(!storage && "already initialized");
1261
1262 Vector2dData *statdata = dynamic_cast<Vector2dData *>(find());
1263
1264 x = _x;
1265 y = _y;
1266 statdata->x = _x;
1267 statdata->y = _y;
1268 _size = x * y;
1269
1270 char *ptr = new char[_size * sizeof(Storage)];
1271 storage = reinterpret_cast<Storage *>(ptr);
1272
1273 for (int i = 0; i < _size; ++i)
1274 new (&storage[i]) Storage(params);
1275
1276 setInit();
1277 }
1278
1279 public:
1280 Vector2dBase()
1281 : storage(NULL)
1282 {}
1283
1284 ~Vector2dBase()
1285 {
1286 if (!storage)
1287 return;
1288
1289 for (int i = 0; i < _size; ++i)
1290 data(i)->~Storage();
1291 delete [] reinterpret_cast<char *>(storage);
1292 }
1293
1294 void
1295 update(Vector2dData *newdata)
1296 {
1297 int size = this->size();
1298 newdata->cvec.resize(size);
1299 for (int i = 0; i < size; ++i)
1300 newdata->cvec[i] = data(i)->value(params);
1301 }
1302
1303 std::string ysubname(int i) const { return (*this->y_subnames)[i]; }
1304
1305 Proxy
1306 operator[](int index)
1307 {
1308 int offset = index * y;
1309 assert (index >= 0 && offset + index < size());
1310 return Proxy(this, offset, y);
1311 }
1312
1313
1314 size_t
1315 size() const
1316 {
1317 return _size;
1318 }
1319
1320 bool
1321 zero() const
1322 {
1323 return data(0)->zero();
1324 #if 0
1325 for (int i = 0; i < size(); ++i)
1326 if (!data(i)->zero())
1327 return false;
1328 return true;
1329 #endif
1330 }
1331
1332 /**
1333 * Reset stat value to default
1334 */
1335 void
1336 reset()
1337 {
1338 for (int i = 0; i < size(); ++i)
1339 data(i)->reset();
1340 }
1341
1342 bool
1343 check()
1344 {
1345 return storage != NULL;
1346 }
1347 };
1348
1349 //////////////////////////////////////////////////////////////////////
1350 //
1351 // Non formula statistics
1352 //
1353 //////////////////////////////////////////////////////////////////////
1354
1355 /**
1356 * Templatized storage and interface for a distrbution stat.
1357 */
1358 struct DistStor
1359 {
1360 public:
1361 /** The parameters for a distribution stat. */
1362 struct Params
1363 {
1364 /** The minimum value to track. */
1365 Counter min;
1366 /** The maximum value to track. */
1367 Counter max;
1368 /** The number of entries in each bucket. */
1369 Counter bucket_size;
1370 /** The number of buckets. Equal to (max-min)/bucket_size. */
1371 int size;
1372 };
1373 enum { fancy = false };
1374
1375 private:
1376 /** The smallest value sampled. */
1377 Counter min_val;
1378 /** The largest value sampled. */
1379 Counter max_val;
1380 /** The number of values sampled less than min. */
1381 Counter underflow;
1382 /** The number of values sampled more than max. */
1383 Counter overflow;
1384 /** The current sum. */
1385 Counter sum;
1386 /** The sum of squares. */
1387 Counter squares;
1388 /** The number of samples. */
1389 Counter samples;
1390 /** Counter for each bucket. */
1391 VCounter cvec;
1392
1393 public:
1394 DistStor(const Params &params)
1395 : cvec(params.size)
1396 {
1397 reset();
1398 }
1399
1400 /**
1401 * Add a value to the distribution for the given number of times.
1402 * @param val The value to add.
1403 * @param number The number of times to add the value.
1404 * @param params The paramters of the distribution.
1405 */
1406 void sample(Counter val, int number, const Params &params)
1407 {
1408 if (val < params.min)
1409 underflow += number;
1410 else if (val > params.max)
1411 overflow += number;
1412 else {
1413 int index = (int)floor((val - params.min) / params.bucket_size);
1414 assert(index < size(params));
1415 cvec[index] += number;
1416 }
1417
1418 if (val < min_val)
1419 min_val = val;
1420
1421 if (val > max_val)
1422 max_val = val;
1423
1424 Counter sample = val * number;
1425 sum += sample;
1426 squares += sample * sample;
1427 samples += number;
1428 }
1429
1430 /**
1431 * Return the number of buckets in this distribution.
1432 * @return the number of buckets.
1433 * @todo Is it faster to return the size from the parameters?
1434 */
1435 size_t size(const Params &) const { return cvec.size(); }
1436
1437 /**
1438 * Returns true if any calls to sample have been made.
1439 * @param params The paramters of the distribution.
1440 * @return True if any values have been sampled.
1441 */
1442 bool zero(const Params &params) const
1443 {
1444 return samples == Counter();
1445 }
1446
1447 void update(DistDataData *data, const Params &params)
1448 {
1449 data->min = params.min;
1450 data->max = params.max;
1451 data->bucket_size = params.bucket_size;
1452 data->size = params.size;
1453
1454 data->min_val = (min_val == INT_MAX) ? 0 : min_val;
1455 data->max_val = (max_val == INT_MIN) ? 0 : max_val;
1456 data->underflow = underflow;
1457 data->overflow = overflow;
1458 data->cvec.resize(params.size);
1459 for (int i = 0; i < params.size; ++i)
1460 data->cvec[i] = cvec[i];
1461
1462 data->sum = sum;
1463 data->squares = squares;
1464 data->samples = samples;
1465 }
1466
1467 /**
1468 * Reset stat value to default
1469 */
1470 void reset()
1471 {
1472 min_val = INT_MAX;
1473 max_val = INT_MIN;
1474 underflow = 0;
1475 overflow = 0;
1476
1477 int size = cvec.size();
1478 for (int i = 0; i < size; ++i)
1479 cvec[i] = Counter();
1480
1481 sum = Counter();
1482 squares = Counter();
1483 samples = Counter();
1484 }
1485 };
1486
1487 /**
1488 * Templatized storage and interface for a distribution that calculates mean
1489 * and variance.
1490 */
1491 struct FancyStor
1492 {
1493 public:
1494 /**
1495 * No paramters for this storage.
1496 */
1497 struct Params {};
1498 enum { fancy = true };
1499
1500 private:
1501 /** The current sum. */
1502 Counter sum;
1503 /** The sum of squares. */
1504 Counter squares;
1505 /** The number of samples. */
1506 Counter samples;
1507
1508 public:
1509 /**
1510 * Create and initialize this storage.
1511 */
1512 FancyStor(const Params &)
1513 : sum(Counter()), squares(Counter()), samples(Counter())
1514 { }
1515
1516 /**
1517 * Add a value the given number of times to this running average.
1518 * Update the running sum and sum of squares, increment the number of
1519 * values seen by the given number.
1520 * @param val The value to add.
1521 * @param number The number of times to add the value.
1522 * @param p The parameters of this stat.
1523 */
1524 void sample(Counter val, int number, const Params &p)
1525 {
1526 Counter value = val * number;
1527 sum += value;
1528 squares += value * value;
1529 samples += number;
1530 }
1531
1532 void update(DistDataData *data, const Params &params)
1533 {
1534 data->sum = sum;
1535 data->squares = squares;
1536 data->samples = samples;
1537 }
1538
1539 /**
1540 * Return the number of entries in this stat, 1
1541 * @return 1.
1542 */
1543 size_t size(const Params &) const { return 1; }
1544
1545 /**
1546 * Return true if no samples have been added.
1547 * @return True if no samples have been added.
1548 */
1549 bool zero(const Params &) const { return samples == Counter(); }
1550
1551 /**
1552 * Reset stat value to default
1553 */
1554 void reset()
1555 {
1556 sum = Counter();
1557 squares = Counter();
1558 samples = Counter();
1559 }
1560 };
1561
1562 /**
1563 * Templatized storage for distribution that calculates per cycle mean and
1564 * variance.
1565 */
1566 struct AvgFancy
1567 {
1568 public:
1569 /** No parameters for this storage. */
1570 struct Params {};
1571 enum { fancy = true };
1572
1573 private:
1574 /** Current total. */
1575 Counter sum;
1576 /** Current sum of squares. */
1577 Counter squares;
1578
1579 public:
1580 /**
1581 * Create and initialize this storage.
1582 */
1583 AvgFancy(const Params &) : sum(Counter()), squares(Counter()) {}
1584
1585 /**
1586 * Add a value to the distribution for the given number of times.
1587 * Update the running sum and sum of squares.
1588 * @param val The value to add.
1589 * @param number The number of times to add the value.
1590 * @param p The paramters of the distribution.
1591 */
1592 void sample(Counter val, int number, const Params &p)
1593 {
1594 Counter value = val * number;
1595 sum += value;
1596 squares += value * value;
1597 }
1598
1599 void update(DistDataData *data, const Params &params)
1600 {
1601 data->sum = sum;
1602 data->squares = squares;
1603 data->samples = curTick;
1604 }
1605
1606 /**
1607 * Return the number of entries, in this case 1.
1608 * @return 1.
1609 */
1610 size_t size(const Params &params) const { return 1; }
1611 /**
1612 * Return true if no samples have been added.
1613 * @return True if the sum is zero.
1614 */
1615 bool zero(const Params &params) const { return sum == Counter(); }
1616 /**
1617 * Reset stat value to default
1618 */
1619 void reset()
1620 {
1621 sum = Counter();
1622 squares = Counter();
1623 }
1624 };
1625
1626 /**
1627 * Implementation of a distribution stat. The type of distribution is
1628 * determined by the Storage template. @sa ScalarBase
1629 */
1630 template <class Stor>
1631 class DistBase : public DataAccess
1632 {
1633 public:
1634 typedef Stor Storage;
1635 /** Define the params of the storage class. */
1636 typedef typename Storage::Params Params;
1637
1638 protected:
1639 /** The storage for this stat. */
1640 char storage[sizeof(Storage)];
1641
1642 /** The parameters for this stat. */
1643 Params params;
1644
1645 protected:
1646 /**
1647 * Retrieve the storage.
1648 * @return The storage object for this stat.
1649 */
1650 Storage *data()
1651 {
1652 return reinterpret_cast<Storage *>(storage);
1653 }
1654
1655 /**
1656 * Retrieve a const pointer to the storage.
1657 * @return A const pointer to the storage object for this stat.
1658 */
1659 const Storage *
1660 data() const
1661 {
1662 return reinterpret_cast<const Storage *>(storage);
1663 }
1664
1665 void
1666 doInit()
1667 {
1668 new (storage) Storage(params);
1669 setInit();
1670 }
1671
1672 public:
1673 DistBase() { }
1674
1675 /**
1676 * Add a value to the distribtion n times. Calls sample on the storage
1677 * class.
1678 * @param v The value to add.
1679 * @param n The number of times to add it, defaults to 1.
1680 */
1681 template <typename U>
1682 void sample(const U &v, int n = 1) { data()->sample(v, n, params); }
1683
1684 /**
1685 * Return the number of entries in this stat.
1686 * @return The number of entries.
1687 */
1688 size_t size() const { return data()->size(params); }
1689 /**
1690 * Return true if no samples have been added.
1691 * @return True if there haven't been any samples.
1692 */
1693 bool zero() const { return data()->zero(params); }
1694
1695 void update(DistData *base)
1696 {
1697 base->data.fancy = Storage::fancy;
1698 data()->update(&(base->data), params);
1699 }
1700
1701 /**
1702 * Reset stat value to default
1703 */
1704 void
1705 reset()
1706 {
1707 data()->reset();
1708 }
1709
1710 bool
1711 check()
1712 {
1713 return true;
1714 }
1715 };
1716
1717 template <class Stat>
1718 class DistProxy;
1719
1720 template <class Stor>
1721 class VectorDistBase : public DataAccess
1722 {
1723 public:
1724 typedef Stor Storage;
1725 typedef typename Storage::Params Params;
1726 typedef DistProxy<VectorDistBase<Storage> > Proxy;
1727 friend class DistProxy<VectorDistBase<Storage> >;
1728
1729 protected:
1730 Storage *storage;
1731 size_t _size;
1732 Params params;
1733
1734 protected:
1735 Storage *
1736 data(int index)
1737 {
1738 return &storage[index];
1739 }
1740
1741 const Storage *
1742 data(int index) const
1743 {
1744 return &storage[index];
1745 }
1746
1747 void
1748 doInit(int s)
1749 {
1750 assert(s > 0 && "size must be positive!");
1751 assert(!storage && "already initialized");
1752 _size = s;
1753
1754 char *ptr = new char[_size * sizeof(Storage)];
1755 storage = reinterpret_cast<Storage *>(ptr);
1756
1757 for (int i = 0; i < _size; ++i)
1758 new (&storage[i]) Storage(params);
1759
1760 setInit();
1761 }
1762
1763 public:
1764 VectorDistBase()
1765 : storage(NULL)
1766 {}
1767
1768 ~VectorDistBase()
1769 {
1770 if (!storage)
1771 return ;
1772
1773 for (int i = 0; i < _size; ++i)
1774 data(i)->~Storage();
1775 delete [] reinterpret_cast<char *>(storage);
1776 }
1777
1778 Proxy operator[](int index);
1779
1780 size_t
1781 size() const
1782 {
1783 return _size;
1784 }
1785
1786 bool
1787 zero() const
1788 {
1789 return false;
1790 #if 0
1791 for (int i = 0; i < size(); ++i)
1792 if (!data(i)->zero(params))
1793 return false;
1794 return true;
1795 #endif
1796 }
1797
1798 /**
1799 * Reset stat value to default
1800 */
1801 void
1802 reset()
1803 {
1804 for (int i = 0; i < size(); ++i)
1805 data(i)->reset();
1806 }
1807
1808 bool
1809 check()
1810 {
1811 return storage != NULL;
1812 }
1813
1814 void
1815 update(VectorDistData *base)
1816 {
1817 int size = this->size();
1818 base->data.resize(size);
1819 for (int i = 0; i < size; ++i) {
1820 base->data[i].fancy = Storage::fancy;
1821 data(i)->update(&(base->data[i]), params);
1822 }
1823 }
1824 };
1825
1826 template <class Stat>
1827 class DistProxy
1828 {
1829 private:
1830 Stat *stat;
1831 int index;
1832
1833 protected:
1834 typename Stat::Storage *data() { return stat->data(index); }
1835 const typename Stat::Storage *data() const { return stat->data(index); }
1836
1837 public:
1838 DistProxy(Stat *s, int i)
1839 : stat(s), index(i)
1840 {}
1841
1842 DistProxy(const DistProxy &sp)
1843 : stat(sp.stat), index(sp.index)
1844 {}
1845
1846 const DistProxy &operator=(const DistProxy &sp)
1847 {
1848 stat = sp.stat;
1849 index = sp.index;
1850 return *this;
1851 }
1852
1853 public:
1854 template <typename U>
1855 void
1856 sample(const U &v, int n = 1)
1857 {
1858 data()->sample(v, n, stat->params);
1859 }
1860
1861 size_t
1862 size() const
1863 {
1864 return 1;
1865 }
1866
1867 bool
1868 zero() const
1869 {
1870 return data()->zero(stat->params);
1871 }
1872
1873 /**
1874 * Proxy has no state. Nothing to reset.
1875 */
1876 void reset() { }
1877 };
1878
1879 template <class Storage>
1880 inline typename VectorDistBase<Storage>::Proxy
1881 VectorDistBase<Storage>::operator[](int index)
1882 {
1883 assert (index >= 0 && index < size());
1884 return typename VectorDistBase<Storage>::Proxy(this, index);
1885 }
1886
1887 #if 0
1888 template <class Storage>
1889 Result
1890 VectorDistBase<Storage>::total(int index) const
1891 {
1892 int total = 0;
1893 for (int i = 0; i < x_size(); ++i) {
1894 total += data(i)->result(stat->params);
1895 }
1896 }
1897 #endif
1898
1899 //////////////////////////////////////////////////////////////////////
1900 //
1901 // Formula Details
1902 //
1903 //////////////////////////////////////////////////////////////////////
1904
1905 /**
1906 * Base class for formula statistic node. These nodes are used to build a tree
1907 * that represents the formula.
1908 */
1909 class Node : public RefCounted
1910 {
1911 public:
1912 /**
1913 * Return the number of nodes in the subtree starting at this node.
1914 * @return the number of nodes in this subtree.
1915 */
1916 virtual size_t size() const = 0;
1917 /**
1918 * Return the result vector of this subtree.
1919 * @return The result vector of this subtree.
1920 */
1921 virtual const VResult &result() const = 0;
1922 /**
1923 * Return the total of the result vector.
1924 * @return The total of the result vector.
1925 */
1926 virtual Result total() const = 0;
1927
1928 /**
1929 *
1930 */
1931 virtual std::string str() const = 0;
1932 };
1933
1934 /** Reference counting pointer to a function Node. */
1935 typedef RefCountingPtr<Node> NodePtr;
1936
1937 class ScalarStatNode : public Node
1938 {
1939 private:
1940 const ScalarData *data;
1941 mutable VResult vresult;
1942
1943 public:
1944 ScalarStatNode(const ScalarData *d) : data(d), vresult(1) {}
1945 virtual const VResult &result() const
1946 {
1947 vresult[0] = data->result();
1948 return vresult;
1949 }
1950 virtual Result total() const { return data->result(); };
1951
1952 virtual size_t size() const { return 1; }
1953
1954 /**
1955 *
1956 */
1957 virtual std::string str() const { return data->name; }
1958 };
1959
1960 template <class Stat>
1961 class ScalarProxyNode : public Node
1962 {
1963 private:
1964 const ScalarProxy<Stat> proxy;
1965 mutable VResult vresult;
1966
1967 public:
1968 ScalarProxyNode(const ScalarProxy<Stat> &p)
1969 : proxy(p), vresult(1)
1970 { }
1971
1972 virtual const VResult &
1973 result() const
1974 {
1975 vresult[0] = proxy.result();
1976 return vresult;
1977 }
1978
1979 virtual Result
1980 total() const
1981 {
1982 return proxy.result();
1983 }
1984
1985 virtual size_t
1986 size() const
1987 {
1988 return 1;
1989 }
1990
1991 /**
1992 *
1993 */
1994 virtual std::string
1995 str() const
1996 {
1997 return proxy.str();
1998 }
1999 };
2000
2001 class VectorStatNode : public Node
2002 {
2003 private:
2004 const VectorData *data;
2005
2006 public:
2007 VectorStatNode(const VectorData *d) : data(d) { }
2008 virtual const VResult &result() const { return data->result(); }
2009 virtual Result total() const { return data->total(); };
2010
2011 virtual size_t size() const { return data->size(); }
2012
2013 virtual std::string str() const { return data->name; }
2014 };
2015
2016 template <class T>
2017 class ConstNode : public Node
2018 {
2019 private:
2020 VResult vresult;
2021
2022 public:
2023 ConstNode(T s) : vresult(1, (Result)s) {}
2024 const VResult &result() const { return vresult; }
2025 virtual Result total() const { return vresult[0]; };
2026 virtual size_t size() const { return 1; }
2027 virtual std::string str() const { return to_string(vresult[0]); }
2028 };
2029
2030 template <class Op>
2031 struct OpString;
2032
2033 template<>
2034 struct OpString<std::plus<Result> >
2035 {
2036 static std::string str() { return "+"; }
2037 };
2038
2039 template<>
2040 struct OpString<std::minus<Result> >
2041 {
2042 static std::string str() { return "-"; }
2043 };
2044
2045 template<>
2046 struct OpString<std::multiplies<Result> >
2047 {
2048 static std::string str() { return "*"; }
2049 };
2050
2051 template<>
2052 struct OpString<std::divides<Result> >
2053 {
2054 static std::string str() { return "/"; }
2055 };
2056
2057 template<>
2058 struct OpString<std::modulus<Result> >
2059 {
2060 static std::string str() { return "%"; }
2061 };
2062
2063 template<>
2064 struct OpString<std::negate<Result> >
2065 {
2066 static std::string str() { return "-"; }
2067 };
2068
2069 template <class Op>
2070 class UnaryNode : public Node
2071 {
2072 public:
2073 NodePtr l;
2074 mutable VResult vresult;
2075
2076 public:
2077 UnaryNode(NodePtr &p) : l(p) {}
2078
2079 const VResult &result() const
2080 {
2081 const VResult &lvec = l->result();
2082 int size = lvec.size();
2083
2084 assert(size > 0);
2085
2086 vresult.resize(size);
2087 Op op;
2088 for (int i = 0; i < size; ++i)
2089 vresult[i] = op(lvec[i]);
2090
2091 return vresult;
2092 }
2093
2094 Result total() const {
2095 Op op;
2096 return op(l->total());
2097 }
2098
2099 virtual size_t size() const { return l->size(); }
2100
2101 virtual std::string str() const
2102 {
2103 return OpString<Op>::str() + l->str();
2104 }
2105 };
2106
2107 template <class Op>
2108 class BinaryNode : public Node
2109 {
2110 public:
2111 NodePtr l;
2112 NodePtr r;
2113 mutable VResult vresult;
2114
2115 public:
2116 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2117
2118 const VResult &result() const
2119 {
2120 Op op;
2121 const VResult &lvec = l->result();
2122 const VResult &rvec = r->result();
2123
2124 assert(lvec.size() > 0 && rvec.size() > 0);
2125
2126 if (lvec.size() == 1 && rvec.size() == 1) {
2127 vresult.resize(1);
2128 vresult[0] = op(lvec[0], rvec[0]);
2129 } else if (lvec.size() == 1) {
2130 int size = rvec.size();
2131 vresult.resize(size);
2132 for (int i = 0; i < size; ++i)
2133 vresult[i] = op(lvec[0], rvec[i]);
2134 } else if (rvec.size() == 1) {
2135 int size = lvec.size();
2136 vresult.resize(size);
2137 for (int i = 0; i < size; ++i)
2138 vresult[i] = op(lvec[i], rvec[0]);
2139 } else if (rvec.size() == lvec.size()) {
2140 int size = rvec.size();
2141 vresult.resize(size);
2142 for (int i = 0; i < size; ++i)
2143 vresult[i] = op(lvec[i], rvec[i]);
2144 }
2145
2146 return vresult;
2147 }
2148
2149 Result total() const {
2150 Op op;
2151 return op(l->total(), r->total());
2152 }
2153
2154 virtual size_t size() const {
2155 int ls = l->size();
2156 int rs = r->size();
2157 if (ls == 1)
2158 return rs;
2159 else if (rs == 1)
2160 return ls;
2161 else {
2162 assert(ls == rs && "Node vector sizes are not equal");
2163 return ls;
2164 }
2165 }
2166
2167 virtual std::string str() const
2168 {
2169 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2170 }
2171 };
2172
2173 template <class Op>
2174 class SumNode : public Node
2175 {
2176 public:
2177 NodePtr l;
2178 mutable VResult vresult;
2179
2180 public:
2181 SumNode(NodePtr &p) : l(p), vresult(1) {}
2182
2183 const VResult &result() const
2184 {
2185 const VResult &lvec = l->result();
2186 int size = lvec.size();
2187 assert(size > 0);
2188
2189 vresult[0] = 0.0;
2190
2191 Op op;
2192 for (int i = 0; i < size; ++i)
2193 vresult[0] = op(vresult[0], lvec[i]);
2194
2195 return vresult;
2196 }
2197
2198 Result total() const
2199 {
2200 const VResult &lvec = l->result();
2201 int size = lvec.size();
2202 assert(size > 0);
2203
2204 Result vresult = 0.0;
2205
2206 Op op;
2207 for (int i = 0; i < size; ++i)
2208 vresult = op(vresult, lvec[i]);
2209
2210 return vresult;
2211 }
2212
2213 virtual size_t size() const { return 1; }
2214
2215 virtual std::string str() const
2216 {
2217 return csprintf("total(%s)", l->str());
2218 }
2219 };
2220
2221
2222 //////////////////////////////////////////////////////////////////////
2223 //
2224 // Visible Statistics Types
2225 //
2226 //////////////////////////////////////////////////////////////////////
2227 /**
2228 * @defgroup VisibleStats "Statistic Types"
2229 * These are the statistics that are used in the simulator.
2230 * @{
2231 */
2232
2233 /**
2234 * This is a simple scalar statistic, like a counter.
2235 * @sa Stat, ScalarBase, StatStor
2236 */
2237 template<int N = 0>
2238 class Scalar : public Wrap<Scalar<N>, ScalarBase<StatStor>, ScalarStatData>
2239 {
2240 public:
2241 /** The base implementation. */
2242 typedef ScalarBase<StatStor> Base;
2243
2244 Scalar()
2245 {
2246 this->doInit();
2247 }
2248
2249 /**
2250 * Sets the stat equal to the given value. Calls the base implementation
2251 * of operator=
2252 * @param v The new value.
2253 */
2254 template <typename U>
2255 void operator=(const U &v) { Base::operator=(v); }
2256 };
2257
2258 class Value : public Wrap<Value, ValueBase, ScalarStatData>
2259 {
2260 public:
2261 /** The base implementation. */
2262 typedef ValueBase Base;
2263
2264 template <class T>
2265 Value &scalar(T &value)
2266 {
2267 Base::scalar(value);
2268 return *this;
2269 }
2270
2271 template <class T>
2272 Value &functor(T &func)
2273 {
2274 Base::functor(func);
2275 return *this;
2276 }
2277 };
2278
2279 /**
2280 * A stat that calculates the per cycle average of a value.
2281 * @sa Stat, ScalarBase, AvgStor
2282 */
2283 template<int N = 0>
2284 class Average : public Wrap<Average<N>, ScalarBase<AvgStor>, ScalarStatData>
2285 {
2286 public:
2287 /** The base implementation. */
2288 typedef ScalarBase<AvgStor> Base;
2289
2290 Average()
2291 {
2292 this->doInit();
2293 }
2294
2295 /**
2296 * Sets the stat equal to the given value. Calls the base implementation
2297 * of operator=
2298 * @param v The new value.
2299 */
2300 template <typename U>
2301 void operator=(const U &v) { Base::operator=(v); }
2302 };
2303
2304 /**
2305 * A vector of scalar stats.
2306 * @sa Stat, VectorBase, StatStor
2307 */
2308 template<int N = 0>
2309 class Vector : public WrapVec<Vector<N>, VectorBase<StatStor>, VectorStatData>
2310 {
2311 public:
2312 /** The base implementation. */
2313 typedef ScalarBase<StatStor> Base;
2314
2315 /**
2316 * Set this vector to have the given size.
2317 * @param size The new size.
2318 * @return A reference to this stat.
2319 */
2320 Vector &init(size_t size) {
2321 this->doInit(size);
2322 return *this;
2323 }
2324 };
2325
2326 /**
2327 * A vector of Average stats.
2328 * @sa Stat, VectorBase, AvgStor
2329 */
2330 template<int N = 0>
2331 class AverageVector
2332 : public WrapVec<AverageVector<N>, VectorBase<AvgStor>, VectorStatData>
2333 {
2334 public:
2335 /**
2336 * Set this vector to have the given size.
2337 * @param size The new size.
2338 * @return A reference to this stat.
2339 */
2340 AverageVector &init(size_t size) {
2341 this->doInit(size);
2342 return *this;
2343 }
2344 };
2345
2346 /**
2347 * A 2-Dimensional vecto of scalar stats.
2348 * @sa Stat, Vector2dBase, StatStor
2349 */
2350 template<int N = 0>
2351 class Vector2d
2352 : public WrapVec2d<Vector2d<N>, Vector2dBase<StatStor>, Vector2dStatData>
2353 {
2354 public:
2355 Vector2d &init(size_t x, size_t y) {
2356 this->doInit(x, y);
2357 return *this;
2358 }
2359 };
2360
2361 /**
2362 * A simple distribution stat.
2363 * @sa Stat, DistBase, DistStor
2364 */
2365 template<int N = 0>
2366 class Distribution
2367 : public Wrap<Distribution<N>, DistBase<DistStor>, DistStatData>
2368 {
2369 public:
2370 /** Base implementation. */
2371 typedef DistBase<DistStor> Base;
2372 /** The Parameter type. */
2373 typedef DistStor::Params Params;
2374
2375 public:
2376 /**
2377 * Set the parameters of this distribution. @sa DistStor::Params
2378 * @param min The minimum value of the distribution.
2379 * @param max The maximum value of the distribution.
2380 * @param bkt The number of values in each bucket.
2381 * @return A reference to this distribution.
2382 */
2383 Distribution &init(Counter min, Counter max, Counter bkt) {
2384 this->params.min = min;
2385 this->params.max = max;
2386 this->params.bucket_size = bkt;
2387 this->params.size = (int)rint((max - min) / bkt + 1.0);
2388 this->doInit();
2389 return *this;
2390 }
2391 };
2392
2393 /**
2394 * Calculates the mean and variance of all the samples.
2395 * @sa Stat, DistBase, FancyStor
2396 */
2397 template<int N = 0>
2398 class StandardDeviation
2399 : public Wrap<StandardDeviation<N>, DistBase<FancyStor>, DistStatData>
2400 {
2401 public:
2402 /** The base implementation */
2403 typedef DistBase<DistStor> Base;
2404 /** The parameter type. */
2405 typedef DistStor::Params Params;
2406
2407 public:
2408 /**
2409 * Construct and initialize this distribution.
2410 */
2411 StandardDeviation() {
2412 this->doInit();
2413 }
2414 };
2415
2416 /**
2417 * Calculates the per cycle mean and variance of the samples.
2418 * @sa Stat, DistBase, AvgFancy
2419 */
2420 template<int N = 0>
2421 class AverageDeviation
2422 : public Wrap<AverageDeviation<N>, DistBase<AvgFancy>, DistStatData>
2423 {
2424 public:
2425 /** The base implementation */
2426 typedef DistBase<DistStor> Base;
2427 /** The parameter type. */
2428 typedef DistStor::Params Params;
2429
2430 public:
2431 /**
2432 * Construct and initialize this distribution.
2433 */
2434 AverageDeviation()
2435 {
2436 this->doInit();
2437 }
2438 };
2439
2440 /**
2441 * A vector of distributions.
2442 * @sa Stat, VectorDistBase, DistStor
2443 */
2444 template<int N = 0>
2445 class VectorDistribution
2446 : public WrapVec<VectorDistribution<N>,
2447 VectorDistBase<DistStor>,
2448 VectorDistStatData>
2449 {
2450 public:
2451 /** The base implementation */
2452 typedef VectorDistBase<DistStor> Base;
2453 /** The parameter type. */
2454 typedef DistStor::Params Params;
2455
2456 public:
2457 /**
2458 * Initialize storage and parameters for this distribution.
2459 * @param size The size of the vector (the number of distributions).
2460 * @param min The minimum value of the distribution.
2461 * @param max The maximum value of the distribution.
2462 * @param bkt The number of values in each bucket.
2463 * @return A reference to this distribution.
2464 */
2465 VectorDistribution &init(int size, Counter min, Counter max, Counter bkt) {
2466 this->params.min = min;
2467 this->params.max = max;
2468 this->params.bucket_size = bkt;
2469 this->params.size = (int)rint((max - min) / bkt + 1.0);
2470 this->doInit(size);
2471 return *this;
2472 }
2473 };
2474
2475 /**
2476 * This is a vector of StandardDeviation stats.
2477 * @sa Stat, VectorDistBase, FancyStor
2478 */
2479 template<int N = 0>
2480 class VectorStandardDeviation
2481 : public WrapVec<VectorStandardDeviation<N>,
2482 VectorDistBase<FancyStor>,
2483 VectorDistStatData>
2484 {
2485 public:
2486 /** The base implementation */
2487 typedef VectorDistBase<FancyStor> Base;
2488 /** The parameter type. */
2489 typedef DistStor::Params Params;
2490
2491 public:
2492 /**
2493 * Initialize storage for this distribution.
2494 * @param size The size of the vector.
2495 * @return A reference to this distribution.
2496 */
2497 VectorStandardDeviation &init(int size) {
2498 this->doInit(size);
2499 return *this;
2500 }
2501 };
2502
2503 /**
2504 * This is a vector of AverageDeviation stats.
2505 * @sa Stat, VectorDistBase, AvgFancy
2506 */
2507 template<int N = 0>
2508 class VectorAverageDeviation
2509 : public WrapVec<VectorAverageDeviation<N>,
2510 VectorDistBase<AvgFancy>,
2511 VectorDistStatData>
2512 {
2513 public:
2514 /** The base implementation */
2515 typedef VectorDistBase<AvgFancy> Base;
2516 /** The parameter type. */
2517 typedef DistStor::Params Params;
2518
2519 public:
2520 /**
2521 * Initialize storage for this distribution.
2522 * @param size The size of the vector.
2523 * @return A reference to this distribution.
2524 */
2525 VectorAverageDeviation &init(int size) {
2526 this->doInit(size);
2527 return *this;
2528 }
2529 };
2530
2531 /**
2532 * A formula for statistics that is calculated when printed. A formula is
2533 * stored as a tree of Nodes that represent the equation to calculate.
2534 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2535 */
2536 class FormulaBase : public DataAccess
2537 {
2538 protected:
2539 /** The root of the tree which represents the Formula */
2540 NodePtr root;
2541 friend class Temp;
2542
2543 public:
2544 /**
2545 * Return the result of the Fomula in a vector. If there were no Vector
2546 * components to the Formula, then the vector is size 1. If there were,
2547 * like x/y with x being a vector of size 3, then the result returned will
2548 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2549 * @return The result vector.
2550 */
2551 void result(VResult &vec) const;
2552
2553 /**
2554 * Return the total Formula result. If there is a Vector
2555 * component to this Formula, then this is the result of the
2556 * Formula if the formula is applied after summing all the
2557 * components of the Vector. For example, if Formula is x/y where
2558 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2559 * there is no Vector component, total() returns the same value as
2560 * the first entry in the VResult val() returns.
2561 * @return The total of the result vector.
2562 */
2563 Result total() const;
2564
2565 /**
2566 * Return the number of elements in the tree.
2567 */
2568 size_t size() const;
2569
2570 bool check() const { return true; }
2571
2572 /**
2573 * Formulas don't need to be reset
2574 */
2575 void reset();
2576
2577 /**
2578 *
2579 */
2580 bool zero() const;
2581
2582 /**
2583 *
2584 */
2585 void update(StatData *);
2586
2587 std::string str() const;
2588 };
2589
2590 class FormulaData : public VectorData
2591 {
2592 public:
2593 virtual std::string str() const = 0;
2594 virtual bool check() const { return true; }
2595 };
2596
2597 template <class Stat>
2598 class FormulaStatData : public FormulaData
2599 {
2600 protected:
2601 Stat &s;
2602 mutable VResult vec;
2603 mutable VCounter cvec;
2604
2605 public:
2606 FormulaStatData(Stat &stat) : s(stat) {}
2607
2608 virtual bool zero() const { return s.zero(); }
2609 virtual void reset() { s.reset(); }
2610
2611 virtual size_t size() const { return s.size(); }
2612 virtual const VResult &result() const
2613 {
2614 s.result(vec);
2615 return vec;
2616 }
2617 virtual Result total() const { return s.total(); }
2618 virtual VCounter &value() const { return cvec; }
2619 virtual void visit(Visit &visitor)
2620 {
2621 update();
2622 s.update(this);
2623 visitor.visit(*this);
2624 }
2625 virtual std::string str() const { return s.str(); }
2626 };
2627
2628 class Temp;
2629 class Formula
2630 : public WrapVec<Formula,
2631 FormulaBase,
2632 FormulaStatData>
2633 {
2634 public:
2635 /**
2636 * Create and initialize thie formula, and register it with the database.
2637 */
2638 Formula();
2639
2640 /**
2641 * Create a formula with the given root node, register it with the
2642 * database.
2643 * @param r The root of the expression tree.
2644 */
2645 Formula(Temp r);
2646
2647 /**
2648 * Set an unitialized Formula to the given root.
2649 * @param r The root of the expression tree.
2650 * @return a reference to this formula.
2651 */
2652 const Formula &operator=(Temp r);
2653
2654 /**
2655 * Add the given tree to the existing one.
2656 * @param r The root of the expression tree.
2657 * @return a reference to this formula.
2658 */
2659 const Formula &operator+=(Temp r);
2660 };
2661
2662 class FormulaNode : public Node
2663 {
2664 private:
2665 const Formula &formula;
2666 mutable VResult vec;
2667
2668 public:
2669 FormulaNode(const Formula &f) : formula(f) {}
2670
2671 virtual size_t size() const { return formula.size(); }
2672 virtual const VResult &result() const { formula.result(vec); return vec; }
2673 virtual Result total() const { return formula.total(); }
2674
2675 virtual std::string str() const { return formula.str(); }
2676 };
2677
2678 /**
2679 * Helper class to construct formula node trees.
2680 */
2681 class Temp
2682 {
2683 protected:
2684 /**
2685 * Pointer to a Node object.
2686 */
2687 NodePtr node;
2688
2689 public:
2690 /**
2691 * Copy the given pointer to this class.
2692 * @param n A pointer to a Node object to copy.
2693 */
2694 Temp(NodePtr n) : node(n) { }
2695
2696 /**
2697 * Return the node pointer.
2698 * @return the node pointer.
2699 */
2700 operator NodePtr&() { return node;}
2701
2702 public:
2703 /**
2704 * Create a new ScalarStatNode.
2705 * @param s The ScalarStat to place in a node.
2706 */
2707 template <int N>
2708 Temp(const Scalar<N> &s)
2709 : node(new ScalarStatNode(s.statData())) { }
2710
2711 /**
2712 * Create a new ScalarStatNode.
2713 * @param s The ScalarStat to place in a node.
2714 */
2715 Temp(const Value &s)
2716 : node(new ScalarStatNode(s.statData())) { }
2717
2718 /**
2719 * Create a new ScalarStatNode.
2720 * @param s The ScalarStat to place in a node.
2721 */
2722 template <int N>
2723 Temp(const Average<N> &s)
2724 : node(new ScalarStatNode(s.statData())) { }
2725
2726 /**
2727 * Create a new VectorStatNode.
2728 * @param s The VectorStat to place in a node.
2729 */
2730 template <int N>
2731 Temp(const Vector<N> &s)
2732 : node(new VectorStatNode(s.statData())) { }
2733
2734 /**
2735 *
2736 */
2737 Temp(const Formula &f)
2738 : node(new FormulaNode(f)) { }
2739
2740 /**
2741 * Create a new ScalarProxyNode.
2742 * @param p The ScalarProxy to place in a node.
2743 */
2744 template <class Stat>
2745 Temp(const ScalarProxy<Stat> &p)
2746 : node(new ScalarProxyNode<Stat>(p)) { }
2747
2748 /**
2749 * Create a ConstNode
2750 * @param value The value of the const node.
2751 */
2752 Temp(signed char value)
2753 : node(new ConstNode<signed char>(value)) {}
2754
2755 /**
2756 * Create a ConstNode
2757 * @param value The value of the const node.
2758 */
2759 Temp(unsigned char value)
2760 : node(new ConstNode<unsigned char>(value)) {}
2761
2762 /**
2763 * Create a ConstNode
2764 * @param value The value of the const node.
2765 */
2766 Temp(signed short value)
2767 : node(new ConstNode<signed short>(value)) {}
2768
2769 /**
2770 * Create a ConstNode
2771 * @param value The value of the const node.
2772 */
2773 Temp(unsigned short value)
2774 : node(new ConstNode<unsigned short>(value)) {}
2775
2776 /**
2777 * Create a ConstNode
2778 * @param value The value of the const node.
2779 */
2780 Temp(signed int value)
2781 : node(new ConstNode<signed int>(value)) {}
2782
2783 /**
2784 * Create a ConstNode
2785 * @param value The value of the const node.
2786 */
2787 Temp(unsigned int value)
2788 : node(new ConstNode<unsigned int>(value)) {}
2789
2790 /**
2791 * Create a ConstNode
2792 * @param value The value of the const node.
2793 */
2794 Temp(signed long value)
2795 : node(new ConstNode<signed long>(value)) {}
2796
2797 /**
2798 * Create a ConstNode
2799 * @param value The value of the const node.
2800 */
2801 Temp(unsigned long value)
2802 : node(new ConstNode<unsigned long>(value)) {}
2803
2804 /**
2805 * Create a ConstNode
2806 * @param value The value of the const node.
2807 */
2808 Temp(signed long long value)
2809 : node(new ConstNode<signed long long>(value)) {}
2810
2811 /**
2812 * Create a ConstNode
2813 * @param value The value of the const node.
2814 */
2815 Temp(unsigned long long value)
2816 : node(new ConstNode<unsigned long long>(value)) {}
2817
2818 /**
2819 * Create a ConstNode
2820 * @param value The value of the const node.
2821 */
2822 Temp(float value)
2823 : node(new ConstNode<float>(value)) {}
2824
2825 /**
2826 * Create a ConstNode
2827 * @param value The value of the const node.
2828 */
2829 Temp(double value)
2830 : node(new ConstNode<double>(value)) {}
2831 };
2832
2833
2834 /**
2835 * @}
2836 */
2837
2838 void check();
2839 void reset();
2840 void registerResetCallback(Callback *cb);
2841
2842 inline Temp
2843 operator+(Temp l, Temp r)
2844 {
2845 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2846 }
2847
2848 inline Temp
2849 operator-(Temp l, Temp r)
2850 {
2851 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2852 }
2853
2854 inline Temp
2855 operator*(Temp l, Temp r)
2856 {
2857 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2858 }
2859
2860 inline Temp
2861 operator/(Temp l, Temp r)
2862 {
2863 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2864 }
2865
2866 inline Temp
2867 operator-(Temp l)
2868 {
2869 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2870 }
2871
2872 template <typename T>
2873 inline Temp
2874 constant(T val)
2875 {
2876 return NodePtr(new ConstNode<T>(val));
2877 }
2878
2879 inline Temp
2880 sum(Temp val)
2881 {
2882 return NodePtr(new SumNode<std::plus<Result> >(val));
2883 }
2884
2885 /* namespace Stats */ }
2886
2887 #endif // __BASE_STATISTICS_HH__