nir/drawpixels: handle load_color0, load_input, load_interpolated_input
[mesa.git] / src / compiler / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/mtypes.h"
29 #include "main/shaderobj.h"
30 #include "builtin_functions.h"
31
32 static ir_rvalue *
33 convert_component(ir_rvalue *src, const glsl_type *desired_type);
34
35 static unsigned
36 process_parameters(exec_list *instructions, exec_list *actual_parameters,
37 exec_list *parameters,
38 struct _mesa_glsl_parse_state *state)
39 {
40 void *mem_ctx = state;
41 unsigned count = 0;
42
43 foreach_list_typed(ast_node, ast, link, parameters) {
44 /* We need to process the parameters first in order to know if we can
45 * raise or not a unitialized warning. Calling set_is_lhs silence the
46 * warning for now. Raising the warning or not will be checked at
47 * verify_parameter_modes.
48 */
49 ast->set_is_lhs(true);
50 ir_rvalue *result = ast->hir(instructions, state);
51
52 ir_constant *const constant =
53 result->constant_expression_value(mem_ctx);
54
55 if (constant != NULL)
56 result = constant;
57
58 actual_parameters->push_tail(result);
59 count++;
60 }
61
62 return count;
63 }
64
65
66 /**
67 * Generate a source prototype for a function signature
68 *
69 * \param return_type Return type of the function. May be \c NULL.
70 * \param name Name of the function.
71 * \param parameters List of \c ir_instruction nodes representing the
72 * parameter list for the function. This may be either a
73 * formal (\c ir_variable) or actual (\c ir_rvalue)
74 * parameter list. Only the type is used.
75 *
76 * \return
77 * A ralloced string representing the prototype of the function.
78 */
79 char *
80 prototype_string(const glsl_type *return_type, const char *name,
81 exec_list *parameters)
82 {
83 char *str = NULL;
84
85 if (return_type != NULL)
86 str = ralloc_asprintf(NULL, "%s ", return_type->name);
87
88 ralloc_asprintf_append(&str, "%s(", name);
89
90 const char *comma = "";
91 foreach_in_list(const ir_variable, param, parameters) {
92 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
93 comma = ", ";
94 }
95
96 ralloc_strcat(&str, ")");
97 return str;
98 }
99
100 static bool
101 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
102 const ir_variable *formal, const ir_variable *actual)
103 {
104 /**
105 * From the ARB_shader_image_load_store specification:
106 *
107 * "The values of image variables qualified with coherent,
108 * volatile, restrict, readonly, or writeonly may not be passed
109 * to functions whose formal parameters lack such
110 * qualifiers. [...] It is legal to have additional qualifiers
111 * on a formal parameter, but not to have fewer."
112 */
113 if (actual->data.memory_coherent && !formal->data.memory_coherent) {
114 _mesa_glsl_error(loc, state,
115 "function call parameter `%s' drops "
116 "`coherent' qualifier", formal->name);
117 return false;
118 }
119
120 if (actual->data.memory_volatile && !formal->data.memory_volatile) {
121 _mesa_glsl_error(loc, state,
122 "function call parameter `%s' drops "
123 "`volatile' qualifier", formal->name);
124 return false;
125 }
126
127 if (actual->data.memory_restrict && !formal->data.memory_restrict) {
128 _mesa_glsl_error(loc, state,
129 "function call parameter `%s' drops "
130 "`restrict' qualifier", formal->name);
131 return false;
132 }
133
134 if (actual->data.memory_read_only && !formal->data.memory_read_only) {
135 _mesa_glsl_error(loc, state,
136 "function call parameter `%s' drops "
137 "`readonly' qualifier", formal->name);
138 return false;
139 }
140
141 if (actual->data.memory_write_only && !formal->data.memory_write_only) {
142 _mesa_glsl_error(loc, state,
143 "function call parameter `%s' drops "
144 "`writeonly' qualifier", formal->name);
145 return false;
146 }
147
148 return true;
149 }
150
151 static bool
152 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
153 ir_variable *var)
154 {
155 if (!var ||
156 (!var->is_in_shader_storage_block() &&
157 var->data.mode != ir_var_shader_shared)) {
158 _mesa_glsl_error(loc, state, "First argument to atomic function "
159 "must be a buffer or shared variable");
160 return false;
161 }
162 return true;
163 }
164
165 static bool
166 is_atomic_function(const char *func_name)
167 {
168 return !strcmp(func_name, "atomicAdd") ||
169 !strcmp(func_name, "atomicMin") ||
170 !strcmp(func_name, "atomicMax") ||
171 !strcmp(func_name, "atomicAnd") ||
172 !strcmp(func_name, "atomicOr") ||
173 !strcmp(func_name, "atomicXor") ||
174 !strcmp(func_name, "atomicExchange") ||
175 !strcmp(func_name, "atomicCompSwap");
176 }
177
178 /**
179 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
180 * that 'const_in' formal parameters (an extension in our IR) correspond to
181 * ir_constant actual parameters.
182 */
183 static bool
184 verify_parameter_modes(_mesa_glsl_parse_state *state,
185 ir_function_signature *sig,
186 exec_list &actual_ir_parameters,
187 exec_list &actual_ast_parameters)
188 {
189 exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
190 exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
191
192 foreach_in_list(const ir_variable, formal, &sig->parameters) {
193 /* The lists must be the same length. */
194 assert(!actual_ir_node->is_tail_sentinel());
195 assert(!actual_ast_node->is_tail_sentinel());
196
197 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
198 const ast_expression *const actual_ast =
199 exec_node_data(ast_expression, actual_ast_node, link);
200
201 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
202 * FIXME: 0:0(0).
203 */
204 YYLTYPE loc = actual_ast->get_location();
205
206 /* Verify that 'const_in' parameters are ir_constants. */
207 if (formal->data.mode == ir_var_const_in &&
208 actual->ir_type != ir_type_constant) {
209 _mesa_glsl_error(&loc, state,
210 "parameter `in %s' must be a constant expression",
211 formal->name);
212 return false;
213 }
214
215 /* Verify that shader_in parameters are shader inputs */
216 if (formal->data.must_be_shader_input) {
217 const ir_rvalue *val = actual;
218
219 /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
220 if (val->ir_type == ir_type_swizzle) {
221 if (!state->is_version(440, 0)) {
222 _mesa_glsl_error(&loc, state,
223 "parameter `%s` must not be swizzled",
224 formal->name);
225 return false;
226 }
227 val = ((ir_swizzle *)val)->val;
228 }
229
230 for (;;) {
231 if (val->ir_type == ir_type_dereference_array) {
232 val = ((ir_dereference_array *)val)->array;
233 } else if (val->ir_type == ir_type_dereference_record &&
234 !state->es_shader) {
235 val = ((ir_dereference_record *)val)->record;
236 } else
237 break;
238 }
239
240 ir_variable *var = NULL;
241 if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
242 var = deref_var->variable_referenced();
243
244 if (!var || var->data.mode != ir_var_shader_in) {
245 _mesa_glsl_error(&loc, state,
246 "parameter `%s` must be a shader input",
247 formal->name);
248 return false;
249 }
250
251 var->data.must_be_shader_input = 1;
252 }
253
254 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
255 if (formal->data.mode == ir_var_function_out
256 || formal->data.mode == ir_var_function_inout) {
257 const char *mode = NULL;
258 switch (formal->data.mode) {
259 case ir_var_function_out: mode = "out"; break;
260 case ir_var_function_inout: mode = "inout"; break;
261 default: assert(false); break;
262 }
263
264 /* This AST-based check catches errors like f(i++). The IR-based
265 * is_lvalue() is insufficient because the actual parameter at the
266 * IR-level is just a temporary value, which is an l-value.
267 */
268 if (actual_ast->non_lvalue_description != NULL) {
269 _mesa_glsl_error(&loc, state,
270 "function parameter '%s %s' references a %s",
271 mode, formal->name,
272 actual_ast->non_lvalue_description);
273 return false;
274 }
275
276 ir_variable *var = actual->variable_referenced();
277
278 if (var && formal->data.mode == ir_var_function_inout) {
279 if ((var->data.mode == ir_var_auto ||
280 var->data.mode == ir_var_shader_out) &&
281 !var->data.assigned &&
282 !is_gl_identifier(var->name)) {
283 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
284 var->name);
285 }
286 }
287
288 if (var)
289 var->data.assigned = true;
290
291 if (var && var->data.read_only) {
292 _mesa_glsl_error(&loc, state,
293 "function parameter '%s %s' references the "
294 "read-only variable '%s'",
295 mode, formal->name,
296 actual->variable_referenced()->name);
297 return false;
298 } else if (!actual->is_lvalue(state)) {
299 _mesa_glsl_error(&loc, state,
300 "function parameter '%s %s' is not an lvalue",
301 mode, formal->name);
302 return false;
303 }
304 } else {
305 assert(formal->data.mode == ir_var_function_in ||
306 formal->data.mode == ir_var_const_in);
307 ir_variable *var = actual->variable_referenced();
308 if (var) {
309 if ((var->data.mode == ir_var_auto ||
310 var->data.mode == ir_var_shader_out) &&
311 !var->data.assigned &&
312 !is_gl_identifier(var->name)) {
313 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
314 var->name);
315 }
316 }
317 }
318
319 if (formal->type->is_image() &&
320 actual->variable_referenced()) {
321 if (!verify_image_parameter(&loc, state, formal,
322 actual->variable_referenced()))
323 return false;
324 }
325
326 actual_ir_node = actual_ir_node->next;
327 actual_ast_node = actual_ast_node->next;
328 }
329
330 /* The first parameter of atomic functions must be a buffer variable */
331 const char *func_name = sig->function_name();
332 bool is_atomic = is_atomic_function(func_name);
333 if (is_atomic) {
334 const ir_rvalue *const actual =
335 (ir_rvalue *) actual_ir_parameters.get_head_raw();
336
337 const ast_expression *const actual_ast =
338 exec_node_data(ast_expression,
339 actual_ast_parameters.get_head_raw(), link);
340 YYLTYPE loc = actual_ast->get_location();
341
342 if (!verify_first_atomic_parameter(&loc, state,
343 actual->variable_referenced())) {
344 return false;
345 }
346 }
347
348 return true;
349 }
350
351 struct copy_index_deref_data {
352 void *mem_ctx;
353 exec_list *before_instructions;
354 };
355
356 static void
357 copy_index_derefs_to_temps(ir_instruction *ir, void *data)
358 {
359 struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;
360
361 if (ir->ir_type == ir_type_dereference_array) {
362 ir_dereference_array *a = (ir_dereference_array *) ir;
363 ir = a->array->as_dereference();
364
365 ir_rvalue *idx = a->array_index;
366 ir_variable *var = idx->variable_referenced();
367
368 /* If the index is read only it cannot change so there is no need
369 * to copy it.
370 */
371 if (!var || var->data.read_only || var->data.memory_read_only)
372 return;
373
374 ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
375 ir_var_temporary);
376 d->before_instructions->push_tail(tmp);
377
378 ir_dereference_variable *const deref_tmp_1 =
379 new(d->mem_ctx) ir_dereference_variable(tmp);
380 ir_assignment *const assignment =
381 new(d->mem_ctx) ir_assignment(deref_tmp_1,
382 idx->clone(d->mem_ctx, NULL));
383 d->before_instructions->push_tail(assignment);
384
385 /* Replace the array index with a dereference of the new temporary */
386 ir_dereference_variable *const deref_tmp_2 =
387 new(d->mem_ctx) ir_dereference_variable(tmp);
388 a->array_index = deref_tmp_2;
389 }
390 }
391
392 static void
393 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
394 exec_list *before_instructions, exec_list *after_instructions,
395 bool parameter_is_inout)
396 {
397 ir_expression *const expr = actual->as_expression();
398
399 /* If the types match exactly and the parameter is not a vector-extract,
400 * nothing needs to be done to fix the parameter.
401 */
402 if (formal_type == actual->type
403 && (expr == NULL || expr->operation != ir_binop_vector_extract)
404 && actual->as_dereference_variable())
405 return;
406
407 /* An array index could also be an out variable so we need to make a copy
408 * of them before the function is called.
409 */
410 if (!actual->as_dereference_variable()) {
411 struct copy_index_deref_data data;
412 data.mem_ctx = mem_ctx;
413 data.before_instructions = before_instructions;
414
415 visit_tree(actual, copy_index_derefs_to_temps, &data);
416 }
417
418 /* To convert an out parameter, we need to create a temporary variable to
419 * hold the value before conversion, and then perform the conversion after
420 * the function call returns.
421 *
422 * This has the effect of transforming code like this:
423 *
424 * void f(out int x);
425 * float value;
426 * f(value);
427 *
428 * Into IR that's equivalent to this:
429 *
430 * void f(out int x);
431 * float value;
432 * int out_parameter_conversion;
433 * f(out_parameter_conversion);
434 * value = float(out_parameter_conversion);
435 *
436 * If the parameter is an ir_expression of ir_binop_vector_extract,
437 * additional conversion is needed in the post-call re-write.
438 */
439 ir_variable *tmp =
440 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
441
442 before_instructions->push_tail(tmp);
443
444 /* If the parameter is an inout parameter, copy the value of the actual
445 * parameter to the new temporary. Note that no type conversion is allowed
446 * here because inout parameters must match types exactly.
447 */
448 if (parameter_is_inout) {
449 /* Inout parameters should never require conversion, since that would
450 * require an implicit conversion to exist both to and from the formal
451 * parameter type, and there are no bidirectional implicit conversions.
452 */
453 assert (actual->type == formal_type);
454
455 ir_dereference_variable *const deref_tmp_1 =
456 new(mem_ctx) ir_dereference_variable(tmp);
457 ir_assignment *const assignment =
458 new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
459 before_instructions->push_tail(assignment);
460 }
461
462 /* Replace the parameter in the call with a dereference of the new
463 * temporary.
464 */
465 ir_dereference_variable *const deref_tmp_2 =
466 new(mem_ctx) ir_dereference_variable(tmp);
467 actual->replace_with(deref_tmp_2);
468
469
470 /* Copy the temporary variable to the actual parameter with optional
471 * type conversion applied.
472 */
473 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
474 if (actual->type != formal_type)
475 rhs = convert_component(rhs, actual->type);
476
477 ir_rvalue *lhs = actual;
478 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
479 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
480 NULL),
481 expr->operands[1]->clone(mem_ctx,
482 NULL));
483 }
484
485 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
486 after_instructions->push_tail(assignment_2);
487 }
488
489 /**
490 * Generate a function call.
491 *
492 * For non-void functions, this returns a dereference of the temporary
493 * variable which stores the return value for the call. For void functions,
494 * this returns NULL.
495 */
496 static ir_rvalue *
497 generate_call(exec_list *instructions, ir_function_signature *sig,
498 exec_list *actual_parameters,
499 ir_variable *sub_var,
500 ir_rvalue *array_idx,
501 struct _mesa_glsl_parse_state *state)
502 {
503 void *ctx = state;
504 exec_list post_call_conversions;
505
506 /* Perform implicit conversion of arguments. For out parameters, we need
507 * to place them in a temporary variable and do the conversion after the
508 * call takes place. Since we haven't emitted the call yet, we'll place
509 * the post-call conversions in a temporary exec_list, and emit them later.
510 */
511 foreach_two_lists(formal_node, &sig->parameters,
512 actual_node, actual_parameters) {
513 ir_rvalue *actual = (ir_rvalue *) actual_node;
514 ir_variable *formal = (ir_variable *) formal_node;
515
516 if (formal->type->is_numeric() || formal->type->is_boolean()) {
517 switch (formal->data.mode) {
518 case ir_var_const_in:
519 case ir_var_function_in: {
520 ir_rvalue *converted
521 = convert_component(actual, formal->type);
522 actual->replace_with(converted);
523 break;
524 }
525 case ir_var_function_out:
526 case ir_var_function_inout:
527 fix_parameter(ctx, actual, formal->type,
528 instructions, &post_call_conversions,
529 formal->data.mode == ir_var_function_inout);
530 break;
531 default:
532 assert (!"Illegal formal parameter mode");
533 break;
534 }
535 }
536 }
537
538 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
539 *
540 * "Initializers for const declarations must be formed from literal
541 * values, other const variables (not including function call
542 * paramaters), or expressions of these.
543 *
544 * Constructors may be used in such expressions, but function calls may
545 * not."
546 *
547 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
548 *
549 * "A constant expression is one of
550 *
551 * ...
552 *
553 * - a built-in function call whose arguments are all constant
554 * expressions, with the exception of the texture lookup
555 * functions, the noise functions, and ftransform. The built-in
556 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
557 * inside an initializer with an argument that is a constant
558 * expression."
559 *
560 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
561 *
562 * "A constant expression is one of
563 *
564 * ...
565 *
566 * - a built-in function call whose arguments are all constant
567 * expressions, with the exception of the texture lookup
568 * functions."
569 *
570 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
571 *
572 * "A constant expression is one of
573 *
574 * ...
575 *
576 * - a built-in function call whose arguments are all constant
577 * expressions, with the exception of the texture lookup
578 * functions. The built-in functions dFdx, dFdy, and fwidth must
579 * return 0 when evaluated inside an initializer with an argument
580 * that is a constant expression."
581 *
582 * If the function call is a constant expression, don't generate any
583 * instructions; just generate an ir_constant.
584 */
585 if (state->is_version(120, 100) ||
586 state->ctx->Const.AllowGLSLBuiltinConstantExpression) {
587 ir_constant *value = sig->constant_expression_value(ctx,
588 actual_parameters,
589 NULL);
590 if (value != NULL) {
591 return value;
592 }
593 }
594
595 ir_dereference_variable *deref = NULL;
596 if (!sig->return_type->is_void()) {
597 /* Create a new temporary to hold the return value. */
598 char *const name = ir_variable::temporaries_allocate_names
599 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
600 : NULL;
601
602 ir_variable *var;
603
604 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
605 instructions->push_tail(var);
606
607 ralloc_free(name);
608
609 deref = new(ctx) ir_dereference_variable(var);
610 }
611
612 ir_call *call = new(ctx) ir_call(sig, deref,
613 actual_parameters, sub_var, array_idx);
614 instructions->push_tail(call);
615 if (sig->is_builtin()) {
616 /* inline immediately */
617 call->generate_inline(call);
618 call->remove();
619 }
620
621 /* Also emit any necessary out-parameter conversions. */
622 instructions->append_list(&post_call_conversions);
623
624 return deref ? deref->clone(ctx, NULL) : NULL;
625 }
626
627 /**
628 * Given a function name and parameter list, find the matching signature.
629 */
630 static ir_function_signature *
631 match_function_by_name(const char *name,
632 exec_list *actual_parameters,
633 struct _mesa_glsl_parse_state *state)
634 {
635 ir_function *f = state->symbols->get_function(name);
636 ir_function_signature *local_sig = NULL;
637 ir_function_signature *sig = NULL;
638
639 /* Is the function hidden by a record type constructor? */
640 if (state->symbols->get_type(name))
641 return sig; /* no match */
642
643 /* Is the function hidden by a variable (impossible in 1.10)? */
644 if (!state->symbols->separate_function_namespace
645 && state->symbols->get_variable(name))
646 return sig; /* no match */
647
648 if (f != NULL) {
649 /* In desktop GL, the presence of a user-defined signature hides any
650 * built-in signatures, so we must ignore them. In contrast, in ES2
651 * user-defined signatures add new overloads, so we must consider them.
652 */
653 bool allow_builtins = state->es_shader || !f->has_user_signature();
654
655 /* Look for a match in the local shader. If exact, we're done. */
656 bool is_exact = false;
657 sig = local_sig = f->matching_signature(state, actual_parameters,
658 allow_builtins, &is_exact);
659 if (is_exact)
660 return sig;
661
662 if (!allow_builtins)
663 return sig;
664 }
665
666 /* Local shader has no exact candidates; check the built-ins. */
667 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
668
669 /* if _mesa_glsl_find_builtin_function failed, fall back to the result
670 * of choose_best_inexact_overload() instead. This should only affect
671 * GLES.
672 */
673 return sig ? sig : local_sig;
674 }
675
676 static ir_function_signature *
677 match_subroutine_by_name(const char *name,
678 exec_list *actual_parameters,
679 struct _mesa_glsl_parse_state *state,
680 ir_variable **var_r)
681 {
682 void *ctx = state;
683 ir_function_signature *sig = NULL;
684 ir_function *f, *found = NULL;
685 const char *new_name;
686 ir_variable *var;
687 bool is_exact = false;
688
689 new_name =
690 ralloc_asprintf(ctx, "%s_%s",
691 _mesa_shader_stage_to_subroutine_prefix(state->stage),
692 name);
693 var = state->symbols->get_variable(new_name);
694 if (!var)
695 return NULL;
696
697 for (int i = 0; i < state->num_subroutine_types; i++) {
698 f = state->subroutine_types[i];
699 if (strcmp(f->name, var->type->without_array()->name))
700 continue;
701 found = f;
702 break;
703 }
704
705 if (!found)
706 return NULL;
707 *var_r = var;
708 sig = found->matching_signature(state, actual_parameters,
709 false, &is_exact);
710 return sig;
711 }
712
713 static ir_rvalue *
714 generate_array_index(void *mem_ctx, exec_list *instructions,
715 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
716 const ast_expression *array, ast_expression *idx,
717 const char **function_name, exec_list *actual_parameters)
718 {
719 if (array->oper == ast_array_index) {
720 /* This handles arrays of arrays */
721 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
722 state, loc,
723 array->subexpressions[0],
724 array->subexpressions[1],
725 function_name,
726 actual_parameters);
727 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
728
729 YYLTYPE index_loc = idx->get_location();
730 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
731 outer_array_idx, loc,
732 index_loc);
733 } else {
734 ir_variable *sub_var = NULL;
735 *function_name = array->primary_expression.identifier;
736
737 if (!match_subroutine_by_name(*function_name, actual_parameters,
738 state, &sub_var)) {
739 _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
740 *function_name);
741 *function_name = NULL; /* indicate error condition to caller */
742 return NULL;
743 }
744
745 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
746 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
747 }
748 }
749
750 static bool
751 function_exists(_mesa_glsl_parse_state *state,
752 struct glsl_symbol_table *symbols, const char *name)
753 {
754 ir_function *f = symbols->get_function(name);
755 if (f != NULL) {
756 foreach_in_list(ir_function_signature, sig, &f->signatures) {
757 if (sig->is_builtin() && !sig->is_builtin_available(state))
758 continue;
759 return true;
760 }
761 }
762 return false;
763 }
764
765 static void
766 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
767 ir_function *f)
768 {
769 if (f == NULL)
770 return;
771
772 foreach_in_list(ir_function_signature, sig, &f->signatures) {
773 if (sig->is_builtin() && !sig->is_builtin_available(state))
774 continue;
775
776 char *str = prototype_string(sig->return_type, f->name,
777 &sig->parameters);
778 _mesa_glsl_error(loc, state, " %s", str);
779 ralloc_free(str);
780 }
781 }
782
783 /**
784 * Raise a "no matching function" error, listing all possible overloads the
785 * compiler considered so developers can figure out what went wrong.
786 */
787 static void
788 no_matching_function_error(const char *name,
789 YYLTYPE *loc,
790 exec_list *actual_parameters,
791 _mesa_glsl_parse_state *state)
792 {
793 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
794
795 if (!function_exists(state, state->symbols, name)
796 && (!state->uses_builtin_functions
797 || !function_exists(state, sh->symbols, name))) {
798 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
799 } else {
800 char *str = prototype_string(NULL, name, actual_parameters);
801 _mesa_glsl_error(loc, state,
802 "no matching function for call to `%s';"
803 " candidates are:",
804 str);
805 ralloc_free(str);
806
807 print_function_prototypes(state, loc,
808 state->symbols->get_function(name));
809
810 if (state->uses_builtin_functions) {
811 print_function_prototypes(state, loc,
812 sh->symbols->get_function(name));
813 }
814 }
815 }
816
817 /**
818 * Perform automatic type conversion of constructor parameters
819 *
820 * This implements the rules in the "Conversion and Scalar Constructors"
821 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
822 */
823 static ir_rvalue *
824 convert_component(ir_rvalue *src, const glsl_type *desired_type)
825 {
826 void *ctx = ralloc_parent(src);
827 const unsigned a = desired_type->base_type;
828 const unsigned b = src->type->base_type;
829 ir_expression *result = NULL;
830
831 if (src->type->is_error())
832 return src;
833
834 assert(a <= GLSL_TYPE_IMAGE);
835 assert(b <= GLSL_TYPE_IMAGE);
836
837 if (a == b)
838 return src;
839
840 switch (a) {
841 case GLSL_TYPE_UINT:
842 switch (b) {
843 case GLSL_TYPE_INT:
844 result = new(ctx) ir_expression(ir_unop_i2u, src);
845 break;
846 case GLSL_TYPE_FLOAT:
847 result = new(ctx) ir_expression(ir_unop_f2u, src);
848 break;
849 case GLSL_TYPE_BOOL:
850 result = new(ctx) ir_expression(ir_unop_i2u,
851 new(ctx) ir_expression(ir_unop_b2i,
852 src));
853 break;
854 case GLSL_TYPE_DOUBLE:
855 result = new(ctx) ir_expression(ir_unop_d2u, src);
856 break;
857 case GLSL_TYPE_UINT64:
858 result = new(ctx) ir_expression(ir_unop_u642u, src);
859 break;
860 case GLSL_TYPE_INT64:
861 result = new(ctx) ir_expression(ir_unop_i642u, src);
862 break;
863 case GLSL_TYPE_SAMPLER:
864 result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
865 break;
866 case GLSL_TYPE_IMAGE:
867 result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
868 break;
869 }
870 break;
871 case GLSL_TYPE_INT:
872 switch (b) {
873 case GLSL_TYPE_UINT:
874 result = new(ctx) ir_expression(ir_unop_u2i, src);
875 break;
876 case GLSL_TYPE_FLOAT:
877 result = new(ctx) ir_expression(ir_unop_f2i, src);
878 break;
879 case GLSL_TYPE_BOOL:
880 result = new(ctx) ir_expression(ir_unop_b2i, src);
881 break;
882 case GLSL_TYPE_DOUBLE:
883 result = new(ctx) ir_expression(ir_unop_d2i, src);
884 break;
885 case GLSL_TYPE_UINT64:
886 result = new(ctx) ir_expression(ir_unop_u642i, src);
887 break;
888 case GLSL_TYPE_INT64:
889 result = new(ctx) ir_expression(ir_unop_i642i, src);
890 break;
891 }
892 break;
893 case GLSL_TYPE_FLOAT:
894 switch (b) {
895 case GLSL_TYPE_UINT:
896 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
897 break;
898 case GLSL_TYPE_INT:
899 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
900 break;
901 case GLSL_TYPE_BOOL:
902 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
903 break;
904 case GLSL_TYPE_DOUBLE:
905 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
906 break;
907 case GLSL_TYPE_UINT64:
908 result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
909 break;
910 case GLSL_TYPE_INT64:
911 result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
912 break;
913 }
914 break;
915 case GLSL_TYPE_BOOL:
916 switch (b) {
917 case GLSL_TYPE_UINT:
918 result = new(ctx) ir_expression(ir_unop_i2b,
919 new(ctx) ir_expression(ir_unop_u2i,
920 src));
921 break;
922 case GLSL_TYPE_INT:
923 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
924 break;
925 case GLSL_TYPE_FLOAT:
926 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
927 break;
928 case GLSL_TYPE_DOUBLE:
929 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
930 break;
931 case GLSL_TYPE_UINT64:
932 result = new(ctx) ir_expression(ir_unop_i642b,
933 new(ctx) ir_expression(ir_unop_u642i64,
934 src));
935 break;
936 case GLSL_TYPE_INT64:
937 result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
938 break;
939 }
940 break;
941 case GLSL_TYPE_DOUBLE:
942 switch (b) {
943 case GLSL_TYPE_INT:
944 result = new(ctx) ir_expression(ir_unop_i2d, src);
945 break;
946 case GLSL_TYPE_UINT:
947 result = new(ctx) ir_expression(ir_unop_u2d, src);
948 break;
949 case GLSL_TYPE_BOOL:
950 result = new(ctx) ir_expression(ir_unop_f2d,
951 new(ctx) ir_expression(ir_unop_b2f,
952 src));
953 break;
954 case GLSL_TYPE_FLOAT:
955 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
956 break;
957 case GLSL_TYPE_UINT64:
958 result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
959 break;
960 case GLSL_TYPE_INT64:
961 result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
962 break;
963 }
964 break;
965 case GLSL_TYPE_UINT64:
966 switch (b) {
967 case GLSL_TYPE_INT:
968 result = new(ctx) ir_expression(ir_unop_i2u64, src);
969 break;
970 case GLSL_TYPE_UINT:
971 result = new(ctx) ir_expression(ir_unop_u2u64, src);
972 break;
973 case GLSL_TYPE_BOOL:
974 result = new(ctx) ir_expression(ir_unop_i642u64,
975 new(ctx) ir_expression(ir_unop_b2i64,
976 src));
977 break;
978 case GLSL_TYPE_FLOAT:
979 result = new(ctx) ir_expression(ir_unop_f2u64, src);
980 break;
981 case GLSL_TYPE_DOUBLE:
982 result = new(ctx) ir_expression(ir_unop_d2u64, src);
983 break;
984 case GLSL_TYPE_INT64:
985 result = new(ctx) ir_expression(ir_unop_i642u64, src);
986 break;
987 }
988 break;
989 case GLSL_TYPE_INT64:
990 switch (b) {
991 case GLSL_TYPE_INT:
992 result = new(ctx) ir_expression(ir_unop_i2i64, src);
993 break;
994 case GLSL_TYPE_UINT:
995 result = new(ctx) ir_expression(ir_unop_u2i64, src);
996 break;
997 case GLSL_TYPE_BOOL:
998 result = new(ctx) ir_expression(ir_unop_b2i64, src);
999 break;
1000 case GLSL_TYPE_FLOAT:
1001 result = new(ctx) ir_expression(ir_unop_f2i64, src);
1002 break;
1003 case GLSL_TYPE_DOUBLE:
1004 result = new(ctx) ir_expression(ir_unop_d2i64, src);
1005 break;
1006 case GLSL_TYPE_UINT64:
1007 result = new(ctx) ir_expression(ir_unop_u642i64, src);
1008 break;
1009 }
1010 break;
1011 case GLSL_TYPE_SAMPLER:
1012 switch (b) {
1013 case GLSL_TYPE_UINT:
1014 result = new(ctx)
1015 ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
1016 break;
1017 }
1018 break;
1019 case GLSL_TYPE_IMAGE:
1020 switch (b) {
1021 case GLSL_TYPE_UINT:
1022 result = new(ctx)
1023 ir_expression(ir_unop_pack_image_2x32, desired_type, src);
1024 break;
1025 }
1026 break;
1027 }
1028
1029 assert(result != NULL);
1030 assert(result->type == desired_type);
1031
1032 /* Try constant folding; it may fold in the conversion we just added. */
1033 ir_constant *const constant = result->constant_expression_value(ctx);
1034 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
1035 }
1036
1037
1038 /**
1039 * Perform automatic type and constant conversion of constructor parameters
1040 *
1041 * This implements the rules in the "Implicit Conversions" rules, not the
1042 * "Conversion and Scalar Constructors".
1043 *
1044 * After attempting the implicit conversion, an attempt to convert into a
1045 * constant valued expression is also done.
1046 *
1047 * The \c from \c ir_rvalue is converted "in place".
1048 *
1049 * \param from Operand that is being converted
1050 * \param to Base type the operand will be converted to
1051 * \param state GLSL compiler state
1052 *
1053 * \return
1054 * If the attempt to convert into a constant expression succeeds, \c true is
1055 * returned. Otherwise \c false is returned.
1056 */
1057 static bool
1058 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
1059 struct _mesa_glsl_parse_state *state)
1060 {
1061 void *mem_ctx = state;
1062 ir_rvalue *result = from;
1063
1064 if (to != from->type->base_type) {
1065 const glsl_type *desired_type =
1066 glsl_type::get_instance(to,
1067 from->type->vector_elements,
1068 from->type->matrix_columns);
1069
1070 if (from->type->can_implicitly_convert_to(desired_type, state)) {
1071 /* Even though convert_component() implements the constructor
1072 * conversion rules (not the implicit conversion rules), its safe
1073 * to use it here because we already checked that the implicit
1074 * conversion is legal.
1075 */
1076 result = convert_component(from, desired_type);
1077 }
1078 }
1079
1080 ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1081
1082 if (constant != NULL)
1083 result = constant;
1084
1085 if (from != result) {
1086 from->replace_with(result);
1087 from = result;
1088 }
1089
1090 return constant != NULL;
1091 }
1092
1093
1094 /**
1095 * Dereference a specific component from a scalar, vector, or matrix
1096 */
1097 static ir_rvalue *
1098 dereference_component(ir_rvalue *src, unsigned component)
1099 {
1100 void *ctx = ralloc_parent(src);
1101 assert(component < src->type->components());
1102
1103 /* If the source is a constant, just create a new constant instead of a
1104 * dereference of the existing constant.
1105 */
1106 ir_constant *constant = src->as_constant();
1107 if (constant)
1108 return new(ctx) ir_constant(constant, component);
1109
1110 if (src->type->is_scalar()) {
1111 return src;
1112 } else if (src->type->is_vector()) {
1113 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1114 } else {
1115 assert(src->type->is_matrix());
1116
1117 /* Dereference a row of the matrix, then call this function again to get
1118 * a specific element from that row.
1119 */
1120 const int c = component / src->type->column_type()->vector_elements;
1121 const int r = component % src->type->column_type()->vector_elements;
1122 ir_constant *const col_index = new(ctx) ir_constant(c);
1123 ir_dereference *const col = new(ctx) ir_dereference_array(src,
1124 col_index);
1125
1126 col->type = src->type->column_type();
1127
1128 return dereference_component(col, r);
1129 }
1130
1131 assert(!"Should not get here.");
1132 return NULL;
1133 }
1134
1135
1136 static ir_rvalue *
1137 process_vec_mat_constructor(exec_list *instructions,
1138 const glsl_type *constructor_type,
1139 YYLTYPE *loc, exec_list *parameters,
1140 struct _mesa_glsl_parse_state *state)
1141 {
1142 void *ctx = state;
1143
1144 /* The ARB_shading_language_420pack spec says:
1145 *
1146 * "If an initializer is a list of initializers enclosed in curly braces,
1147 * the variable being declared must be a vector, a matrix, an array, or a
1148 * structure.
1149 *
1150 * int i = { 1 }; // illegal, i is not an aggregate"
1151 */
1152 if (constructor_type->vector_elements <= 1) {
1153 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1154 "matrices, arrays, and structs");
1155 return ir_rvalue::error_value(ctx);
1156 }
1157
1158 exec_list actual_parameters;
1159 const unsigned parameter_count =
1160 process_parameters(instructions, &actual_parameters, parameters, state);
1161
1162 if (parameter_count == 0
1163 || (constructor_type->is_vector() &&
1164 constructor_type->vector_elements != parameter_count)
1165 || (constructor_type->is_matrix() &&
1166 constructor_type->matrix_columns != parameter_count)) {
1167 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1168 constructor_type->is_vector() ? "vector" : "matrix",
1169 constructor_type->vector_elements);
1170 return ir_rvalue::error_value(ctx);
1171 }
1172
1173 bool all_parameters_are_constant = true;
1174
1175 /* Type cast each parameter and, if possible, fold constants. */
1176 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1177 /* Apply implicit conversions (not the scalar constructor rules, see the
1178 * spec quote above!) and attempt to convert the parameter to a constant
1179 * valued expression. After doing so, track whether or not all the
1180 * parameters to the constructor are trivially constant valued
1181 * expressions.
1182 */
1183 all_parameters_are_constant &=
1184 implicitly_convert_component(ir, constructor_type->base_type, state);
1185
1186 if (constructor_type->is_matrix()) {
1187 if (ir->type != constructor_type->column_type()) {
1188 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1189 "expected: %s, found %s",
1190 constructor_type->column_type()->name,
1191 ir->type->name);
1192 return ir_rvalue::error_value(ctx);
1193 }
1194 } else if (ir->type != constructor_type->get_scalar_type()) {
1195 _mesa_glsl_error(loc, state, "type error in vector constructor: "
1196 "expected: %s, found %s",
1197 constructor_type->get_scalar_type()->name,
1198 ir->type->name);
1199 return ir_rvalue::error_value(ctx);
1200 }
1201 }
1202
1203 if (all_parameters_are_constant)
1204 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1205
1206 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1207 ir_var_temporary);
1208 instructions->push_tail(var);
1209
1210 int i = 0;
1211
1212 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1213 ir_instruction *assignment = NULL;
1214
1215 if (var->type->is_matrix()) {
1216 ir_rvalue *lhs =
1217 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1218 assignment = new(ctx) ir_assignment(lhs, rhs);
1219 } else {
1220 /* use writemask rather than index for vector */
1221 assert(var->type->is_vector());
1222 assert(i < 4);
1223 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1224 assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1225 (unsigned)(1 << i));
1226 }
1227
1228 instructions->push_tail(assignment);
1229
1230 i++;
1231 }
1232
1233 return new(ctx) ir_dereference_variable(var);
1234 }
1235
1236
1237 static ir_rvalue *
1238 process_array_constructor(exec_list *instructions,
1239 const glsl_type *constructor_type,
1240 YYLTYPE *loc, exec_list *parameters,
1241 struct _mesa_glsl_parse_state *state)
1242 {
1243 void *ctx = state;
1244 /* Array constructors come in two forms: sized and unsized. Sized array
1245 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1246 * variables. In this case the number of parameters must exactly match the
1247 * specified size of the array.
1248 *
1249 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1250 * are vec4 variables. In this case the size of the array being constructed
1251 * is determined by the number of parameters.
1252 *
1253 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1254 *
1255 * "There must be exactly the same number of arguments as the size of
1256 * the array being constructed. If no size is present in the
1257 * constructor, then the array is explicitly sized to the number of
1258 * arguments provided. The arguments are assigned in order, starting at
1259 * element 0, to the elements of the constructed array. Each argument
1260 * must be the same type as the element type of the array, or be a type
1261 * that can be converted to the element type of the array according to
1262 * Section 4.1.10 "Implicit Conversions.""
1263 */
1264 exec_list actual_parameters;
1265 const unsigned parameter_count =
1266 process_parameters(instructions, &actual_parameters, parameters, state);
1267 bool is_unsized_array = constructor_type->is_unsized_array();
1268
1269 if ((parameter_count == 0) ||
1270 (!is_unsized_array && (constructor_type->length != parameter_count))) {
1271 const unsigned min_param = is_unsized_array
1272 ? 1 : constructor_type->length;
1273
1274 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1275 "parameter%s",
1276 is_unsized_array ? "at least" : "exactly",
1277 min_param, (min_param <= 1) ? "" : "s");
1278 return ir_rvalue::error_value(ctx);
1279 }
1280
1281 if (is_unsized_array) {
1282 constructor_type =
1283 glsl_type::get_array_instance(constructor_type->fields.array,
1284 parameter_count);
1285 assert(constructor_type != NULL);
1286 assert(constructor_type->length == parameter_count);
1287 }
1288
1289 bool all_parameters_are_constant = true;
1290 const glsl_type *element_type = constructor_type->fields.array;
1291
1292 /* Type cast each parameter and, if possible, fold constants. */
1293 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1294 /* Apply implicit conversions (not the scalar constructor rules, see the
1295 * spec quote above!) and attempt to convert the parameter to a constant
1296 * valued expression. After doing so, track whether or not all the
1297 * parameters to the constructor are trivially constant valued
1298 * expressions.
1299 */
1300 all_parameters_are_constant &=
1301 implicitly_convert_component(ir, element_type->base_type, state);
1302
1303 if (constructor_type->fields.array->is_unsized_array()) {
1304 /* As the inner parameters of the constructor are created without
1305 * knowledge of each other we need to check to make sure unsized
1306 * parameters of unsized constructors all end up with the same size.
1307 *
1308 * e.g we make sure to fail for a constructor like this:
1309 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1310 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1311 * vec4[](vec4(0.0), vec4(1.0)));
1312 */
1313 if (element_type->is_unsized_array()) {
1314 /* This is the first parameter so just get the type */
1315 element_type = ir->type;
1316 } else if (element_type != ir->type) {
1317 _mesa_glsl_error(loc, state, "type error in array constructor: "
1318 "expected: %s, found %s",
1319 element_type->name,
1320 ir->type->name);
1321 return ir_rvalue::error_value(ctx);
1322 }
1323 } else if (ir->type != constructor_type->fields.array) {
1324 _mesa_glsl_error(loc, state, "type error in array constructor: "
1325 "expected: %s, found %s",
1326 constructor_type->fields.array->name,
1327 ir->type->name);
1328 return ir_rvalue::error_value(ctx);
1329 } else {
1330 element_type = ir->type;
1331 }
1332 }
1333
1334 if (constructor_type->fields.array->is_unsized_array()) {
1335 constructor_type =
1336 glsl_type::get_array_instance(element_type,
1337 parameter_count);
1338 assert(constructor_type != NULL);
1339 assert(constructor_type->length == parameter_count);
1340 }
1341
1342 if (all_parameters_are_constant)
1343 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1344
1345 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1346 ir_var_temporary);
1347 instructions->push_tail(var);
1348
1349 int i = 0;
1350 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1351 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1352 new(ctx) ir_constant(i));
1353
1354 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1355 instructions->push_tail(assignment);
1356
1357 i++;
1358 }
1359
1360 return new(ctx) ir_dereference_variable(var);
1361 }
1362
1363
1364 /**
1365 * Determine if a list consists of a single scalar r-value
1366 */
1367 static bool
1368 single_scalar_parameter(exec_list *parameters)
1369 {
1370 const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1371 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1372
1373 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1374 }
1375
1376
1377 /**
1378 * Generate inline code for a vector constructor
1379 *
1380 * The generated constructor code will consist of a temporary variable
1381 * declaration of the same type as the constructor. A sequence of assignments
1382 * from constructor parameters to the temporary will follow.
1383 *
1384 * \return
1385 * An \c ir_dereference_variable of the temprorary generated in the constructor
1386 * body.
1387 */
1388 static ir_rvalue *
1389 emit_inline_vector_constructor(const glsl_type *type,
1390 exec_list *instructions,
1391 exec_list *parameters,
1392 void *ctx)
1393 {
1394 assert(!parameters->is_empty());
1395
1396 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1397 instructions->push_tail(var);
1398
1399 /* There are three kinds of vector constructors.
1400 *
1401 * - Construct a vector from a single scalar by replicating that scalar to
1402 * all components of the vector.
1403 *
1404 * - Construct a vector from at least a matrix. This case should already
1405 * have been taken care of in ast_function_expression::hir by breaking
1406 * down the matrix into a series of column vectors.
1407 *
1408 * - Construct a vector from an arbirary combination of vectors and
1409 * scalars. The components of the constructor parameters are assigned
1410 * to the vector in order until the vector is full.
1411 */
1412 const unsigned lhs_components = type->components();
1413 if (single_scalar_parameter(parameters)) {
1414 ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1415 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1416 lhs_components);
1417 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1418 const unsigned mask = (1U << lhs_components) - 1;
1419
1420 assert(rhs->type == lhs->type);
1421
1422 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1423 instructions->push_tail(inst);
1424 } else {
1425 unsigned base_component = 0;
1426 unsigned base_lhs_component = 0;
1427 ir_constant_data data;
1428 unsigned constant_mask = 0, constant_components = 0;
1429
1430 memset(&data, 0, sizeof(data));
1431
1432 foreach_in_list(ir_rvalue, param, parameters) {
1433 unsigned rhs_components = param->type->components();
1434
1435 /* Do not try to assign more components to the vector than it has! */
1436 if ((rhs_components + base_lhs_component) > lhs_components) {
1437 rhs_components = lhs_components - base_lhs_component;
1438 }
1439
1440 const ir_constant *const c = param->as_constant();
1441 if (c != NULL) {
1442 for (unsigned i = 0; i < rhs_components; i++) {
1443 switch (c->type->base_type) {
1444 case GLSL_TYPE_UINT:
1445 data.u[i + base_component] = c->get_uint_component(i);
1446 break;
1447 case GLSL_TYPE_INT:
1448 data.i[i + base_component] = c->get_int_component(i);
1449 break;
1450 case GLSL_TYPE_FLOAT:
1451 data.f[i + base_component] = c->get_float_component(i);
1452 break;
1453 case GLSL_TYPE_DOUBLE:
1454 data.d[i + base_component] = c->get_double_component(i);
1455 break;
1456 case GLSL_TYPE_BOOL:
1457 data.b[i + base_component] = c->get_bool_component(i);
1458 break;
1459 case GLSL_TYPE_UINT64:
1460 data.u64[i + base_component] = c->get_uint64_component(i);
1461 break;
1462 case GLSL_TYPE_INT64:
1463 data.i64[i + base_component] = c->get_int64_component(i);
1464 break;
1465 default:
1466 assert(!"Should not get here.");
1467 break;
1468 }
1469 }
1470
1471 /* Mask of fields to be written in the assignment. */
1472 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1473 constant_components += rhs_components;
1474
1475 base_component += rhs_components;
1476 }
1477 /* Advance the component index by the number of components
1478 * that were just assigned.
1479 */
1480 base_lhs_component += rhs_components;
1481 }
1482
1483 if (constant_mask != 0) {
1484 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1485 const glsl_type *rhs_type =
1486 glsl_type::get_instance(var->type->base_type,
1487 constant_components,
1488 1);
1489 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1490
1491 ir_instruction *inst =
1492 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1493 instructions->push_tail(inst);
1494 }
1495
1496 base_component = 0;
1497 foreach_in_list(ir_rvalue, param, parameters) {
1498 unsigned rhs_components = param->type->components();
1499
1500 /* Do not try to assign more components to the vector than it has! */
1501 if ((rhs_components + base_component) > lhs_components) {
1502 rhs_components = lhs_components - base_component;
1503 }
1504
1505 /* If we do not have any components left to copy, break out of the
1506 * loop. This can happen when initializing a vec4 with a mat3 as the
1507 * mat3 would have been broken into a series of column vectors.
1508 */
1509 if (rhs_components == 0) {
1510 break;
1511 }
1512
1513 const ir_constant *const c = param->as_constant();
1514 if (c == NULL) {
1515 /* Mask of fields to be written in the assignment. */
1516 const unsigned write_mask = ((1U << rhs_components) - 1)
1517 << base_component;
1518
1519 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1520
1521 /* Generate a swizzle so that LHS and RHS sizes match. */
1522 ir_rvalue *rhs =
1523 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1524
1525 ir_instruction *inst =
1526 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1527 instructions->push_tail(inst);
1528 }
1529
1530 /* Advance the component index by the number of components that were
1531 * just assigned.
1532 */
1533 base_component += rhs_components;
1534 }
1535 }
1536 return new(ctx) ir_dereference_variable(var);
1537 }
1538
1539
1540 /**
1541 * Generate assignment of a portion of a vector to a portion of a matrix column
1542 *
1543 * \param src_base First component of the source to be used in assignment
1544 * \param column Column of destination to be assiged
1545 * \param row_base First component of the destination column to be assigned
1546 * \param count Number of components to be assigned
1547 *
1548 * \note
1549 * \c src_base + \c count must be less than or equal to the number of
1550 * components in the source vector.
1551 */
1552 static ir_instruction *
1553 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1554 ir_rvalue *src, unsigned src_base, unsigned count,
1555 void *mem_ctx)
1556 {
1557 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1558 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1559 col_idx);
1560
1561 assert(column_ref->type->components() >= (row_base + count));
1562 assert(src->type->components() >= (src_base + count));
1563
1564 /* Generate a swizzle that extracts the number of components from the source
1565 * that are to be assigned to the column of the matrix.
1566 */
1567 if (count < src->type->vector_elements) {
1568 src = new(mem_ctx) ir_swizzle(src,
1569 src_base + 0, src_base + 1,
1570 src_base + 2, src_base + 3,
1571 count);
1572 }
1573
1574 /* Mask of fields to be written in the assignment. */
1575 const unsigned write_mask = ((1U << count) - 1) << row_base;
1576
1577 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1578 }
1579
1580
1581 /**
1582 * Generate inline code for a matrix constructor
1583 *
1584 * The generated constructor code will consist of a temporary variable
1585 * declaration of the same type as the constructor. A sequence of assignments
1586 * from constructor parameters to the temporary will follow.
1587 *
1588 * \return
1589 * An \c ir_dereference_variable of the temprorary generated in the constructor
1590 * body.
1591 */
1592 static ir_rvalue *
1593 emit_inline_matrix_constructor(const glsl_type *type,
1594 exec_list *instructions,
1595 exec_list *parameters,
1596 void *ctx)
1597 {
1598 assert(!parameters->is_empty());
1599
1600 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1601 instructions->push_tail(var);
1602
1603 /* There are three kinds of matrix constructors.
1604 *
1605 * - Construct a matrix from a single scalar by replicating that scalar to
1606 * along the diagonal of the matrix and setting all other components to
1607 * zero.
1608 *
1609 * - Construct a matrix from an arbirary combination of vectors and
1610 * scalars. The components of the constructor parameters are assigned
1611 * to the matrix in column-major order until the matrix is full.
1612 *
1613 * - Construct a matrix from a single matrix. The source matrix is copied
1614 * to the upper left portion of the constructed matrix, and the remaining
1615 * elements take values from the identity matrix.
1616 */
1617 ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1618 if (single_scalar_parameter(parameters)) {
1619 /* Assign the scalar to the X component of a vec4, and fill the remaining
1620 * components with zero.
1621 */
1622 glsl_base_type param_base_type = first_param->type->base_type;
1623 assert(first_param->type->is_float() || first_param->type->is_double());
1624 ir_variable *rhs_var =
1625 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1626 "mat_ctor_vec",
1627 ir_var_temporary);
1628 instructions->push_tail(rhs_var);
1629
1630 ir_constant_data zero;
1631 for (unsigned i = 0; i < 4; i++)
1632 if (first_param->type->is_float())
1633 zero.f[i] = 0.0;
1634 else
1635 zero.d[i] = 0.0;
1636
1637 ir_instruction *inst =
1638 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1639 new(ctx) ir_constant(rhs_var->type, &zero));
1640 instructions->push_tail(inst);
1641
1642 ir_dereference *const rhs_ref =
1643 new(ctx) ir_dereference_variable(rhs_var);
1644
1645 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1646 instructions->push_tail(inst);
1647
1648 /* Assign the temporary vector to each column of the destination matrix
1649 * with a swizzle that puts the X component on the diagonal of the
1650 * matrix. In some cases this may mean that the X component does not
1651 * get assigned into the column at all (i.e., when the matrix has more
1652 * columns than rows).
1653 */
1654 static const unsigned rhs_swiz[4][4] = {
1655 { 0, 1, 1, 1 },
1656 { 1, 0, 1, 1 },
1657 { 1, 1, 0, 1 },
1658 { 1, 1, 1, 0 }
1659 };
1660
1661 const unsigned cols_to_init = MIN2(type->matrix_columns,
1662 type->vector_elements);
1663 for (unsigned i = 0; i < cols_to_init; i++) {
1664 ir_constant *const col_idx = new(ctx) ir_constant(i);
1665 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1666 col_idx);
1667
1668 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1669 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1670 type->vector_elements);
1671
1672 inst = new(ctx) ir_assignment(col_ref, rhs);
1673 instructions->push_tail(inst);
1674 }
1675
1676 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1677 ir_constant *const col_idx = new(ctx) ir_constant(i);
1678 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1679 col_idx);
1680
1681 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1682 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1683 type->vector_elements);
1684
1685 inst = new(ctx) ir_assignment(col_ref, rhs);
1686 instructions->push_tail(inst);
1687 }
1688 } else if (first_param->type->is_matrix()) {
1689 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1690 *
1691 * "If a matrix is constructed from a matrix, then each component
1692 * (column i, row j) in the result that has a corresponding
1693 * component (column i, row j) in the argument will be initialized
1694 * from there. All other components will be initialized to the
1695 * identity matrix. If a matrix argument is given to a matrix
1696 * constructor, it is an error to have any other arguments."
1697 */
1698 assert(first_param->next->is_tail_sentinel());
1699 ir_rvalue *const src_matrix = first_param;
1700
1701 /* If the source matrix is smaller, pre-initialize the relavent parts of
1702 * the destination matrix to the identity matrix.
1703 */
1704 if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1705 (src_matrix->type->vector_elements < var->type->vector_elements)) {
1706
1707 /* If the source matrix has fewer rows, every column of the
1708 * destination must be initialized. Otherwise only the columns in
1709 * the destination that do not exist in the source must be
1710 * initialized.
1711 */
1712 unsigned col =
1713 (src_matrix->type->vector_elements < var->type->vector_elements)
1714 ? 0 : src_matrix->type->matrix_columns;
1715
1716 const glsl_type *const col_type = var->type->column_type();
1717 for (/* empty */; col < var->type->matrix_columns; col++) {
1718 ir_constant_data ident;
1719
1720 if (!col_type->is_double()) {
1721 ident.f[0] = 0.0f;
1722 ident.f[1] = 0.0f;
1723 ident.f[2] = 0.0f;
1724 ident.f[3] = 0.0f;
1725 ident.f[col] = 1.0f;
1726 } else {
1727 ident.d[0] = 0.0;
1728 ident.d[1] = 0.0;
1729 ident.d[2] = 0.0;
1730 ident.d[3] = 0.0;
1731 ident.d[col] = 1.0;
1732 }
1733
1734 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1735
1736 ir_rvalue *const lhs =
1737 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1738
1739 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1740 instructions->push_tail(inst);
1741 }
1742 }
1743
1744 /* Assign columns from the source matrix to the destination matrix.
1745 *
1746 * Since the parameter will be used in the RHS of multiple assignments,
1747 * generate a temporary and copy the paramter there.
1748 */
1749 ir_variable *const rhs_var =
1750 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1751 ir_var_temporary);
1752 instructions->push_tail(rhs_var);
1753
1754 ir_dereference *const rhs_var_ref =
1755 new(ctx) ir_dereference_variable(rhs_var);
1756 ir_instruction *const inst =
1757 new(ctx) ir_assignment(rhs_var_ref, first_param);
1758 instructions->push_tail(inst);
1759
1760 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1761 var->type->vector_elements);
1762 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1763 var->type->matrix_columns);
1764
1765 unsigned swiz[4] = { 0, 0, 0, 0 };
1766 for (unsigned i = 1; i < last_row; i++)
1767 swiz[i] = i;
1768
1769 const unsigned write_mask = (1U << last_row) - 1;
1770
1771 for (unsigned i = 0; i < last_col; i++) {
1772 ir_dereference *const lhs =
1773 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1774 ir_rvalue *const rhs_col =
1775 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1776
1777 /* If one matrix has columns that are smaller than the columns of the
1778 * other matrix, wrap the column access of the larger with a swizzle
1779 * so that the LHS and RHS of the assignment have the same size (and
1780 * therefore have the same type).
1781 *
1782 * It would be perfectly valid to unconditionally generate the
1783 * swizzles, this this will typically result in a more compact IR
1784 * tree.
1785 */
1786 ir_rvalue *rhs;
1787 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1788 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1789 } else {
1790 rhs = rhs_col;
1791 }
1792
1793 ir_instruction *inst =
1794 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1795 instructions->push_tail(inst);
1796 }
1797 } else {
1798 const unsigned cols = type->matrix_columns;
1799 const unsigned rows = type->vector_elements;
1800 unsigned remaining_slots = rows * cols;
1801 unsigned col_idx = 0;
1802 unsigned row_idx = 0;
1803
1804 foreach_in_list(ir_rvalue, rhs, parameters) {
1805 unsigned rhs_components = rhs->type->components();
1806 unsigned rhs_base = 0;
1807
1808 if (remaining_slots == 0)
1809 break;
1810
1811 /* Since the parameter might be used in the RHS of two assignments,
1812 * generate a temporary and copy the paramter there.
1813 */
1814 ir_variable *rhs_var =
1815 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1816 instructions->push_tail(rhs_var);
1817
1818 ir_dereference *rhs_var_ref =
1819 new(ctx) ir_dereference_variable(rhs_var);
1820 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1821 instructions->push_tail(inst);
1822
1823 do {
1824 /* Assign the current parameter to as many components of the matrix
1825 * as it will fill.
1826 *
1827 * NOTE: A single vector parameter can span two matrix columns. A
1828 * single vec4, for example, can completely fill a mat2.
1829 */
1830 unsigned count = MIN2(rows - row_idx,
1831 rhs_components - rhs_base);
1832
1833 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1834 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1835 row_idx,
1836 rhs_var_ref,
1837 rhs_base,
1838 count, ctx);
1839 instructions->push_tail(inst);
1840 rhs_base += count;
1841 row_idx += count;
1842 remaining_slots -= count;
1843
1844 /* Sometimes, there is still data left in the parameters and
1845 * components left to be set in the destination but in other
1846 * column.
1847 */
1848 if (row_idx >= rows) {
1849 row_idx = 0;
1850 col_idx++;
1851 }
1852 } while(remaining_slots > 0 && rhs_base < rhs_components);
1853 }
1854 }
1855
1856 return new(ctx) ir_dereference_variable(var);
1857 }
1858
1859
1860 static ir_rvalue *
1861 emit_inline_record_constructor(const glsl_type *type,
1862 exec_list *instructions,
1863 exec_list *parameters,
1864 void *mem_ctx)
1865 {
1866 ir_variable *const var =
1867 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1868 ir_dereference_variable *const d =
1869 new(mem_ctx) ir_dereference_variable(var);
1870
1871 instructions->push_tail(var);
1872
1873 exec_node *node = parameters->get_head_raw();
1874 for (unsigned i = 0; i < type->length; i++) {
1875 assert(!node->is_tail_sentinel());
1876
1877 ir_dereference *const lhs =
1878 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1879 type->fields.structure[i].name);
1880
1881 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1882 assert(rhs != NULL);
1883
1884 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1885
1886 instructions->push_tail(assign);
1887 node = node->next;
1888 }
1889
1890 return d;
1891 }
1892
1893
1894 static ir_rvalue *
1895 process_record_constructor(exec_list *instructions,
1896 const glsl_type *constructor_type,
1897 YYLTYPE *loc, exec_list *parameters,
1898 struct _mesa_glsl_parse_state *state)
1899 {
1900 void *ctx = state;
1901 /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1902 *
1903 * "The arguments to the constructor will be used to set the structure's
1904 * fields, in order, using one argument per field. Each argument must
1905 * be the same type as the field it sets, or be a type that can be
1906 * converted to the field's type according to Section 4.1.10 “Implicit
1907 * Conversions.”"
1908 *
1909 * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1910 *
1911 * "In all cases, the innermost initializer (i.e., not a list of
1912 * initializers enclosed in curly braces) applied to an object must
1913 * have the same type as the object being initialized or be a type that
1914 * can be converted to the object's type according to section 4.1.10
1915 * "Implicit Conversions". In the latter case, an implicit conversion
1916 * will be done on the initializer before the assignment is done."
1917 */
1918 exec_list actual_parameters;
1919
1920 const unsigned parameter_count =
1921 process_parameters(instructions, &actual_parameters, parameters,
1922 state);
1923
1924 if (parameter_count != constructor_type->length) {
1925 _mesa_glsl_error(loc, state,
1926 "%s parameters in constructor for `%s'",
1927 parameter_count > constructor_type->length
1928 ? "too many": "insufficient",
1929 constructor_type->name);
1930 return ir_rvalue::error_value(ctx);
1931 }
1932
1933 bool all_parameters_are_constant = true;
1934
1935 int i = 0;
1936 /* Type cast each parameter and, if possible, fold constants. */
1937 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1938
1939 const glsl_struct_field *struct_field =
1940 &constructor_type->fields.structure[i];
1941
1942 /* Apply implicit conversions (not the scalar constructor rules, see the
1943 * spec quote above!) and attempt to convert the parameter to a constant
1944 * valued expression. After doing so, track whether or not all the
1945 * parameters to the constructor are trivially constant valued
1946 * expressions.
1947 */
1948 all_parameters_are_constant &=
1949 implicitly_convert_component(ir, struct_field->type->base_type,
1950 state);
1951
1952 if (ir->type != struct_field->type) {
1953 _mesa_glsl_error(loc, state,
1954 "parameter type mismatch in constructor for `%s.%s' "
1955 "(%s vs %s)",
1956 constructor_type->name,
1957 struct_field->name,
1958 ir->type->name,
1959 struct_field->type->name);
1960 return ir_rvalue::error_value(ctx);
1961 }
1962
1963 i++;
1964 }
1965
1966 if (all_parameters_are_constant) {
1967 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1968 } else {
1969 return emit_inline_record_constructor(constructor_type, instructions,
1970 &actual_parameters, state);
1971 }
1972 }
1973
1974 ir_rvalue *
1975 ast_function_expression::handle_method(exec_list *instructions,
1976 struct _mesa_glsl_parse_state *state)
1977 {
1978 const ast_expression *field = subexpressions[0];
1979 ir_rvalue *op;
1980 ir_rvalue *result;
1981 void *ctx = state;
1982 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1983 YYLTYPE loc = get_location();
1984 state->check_version(120, 300, &loc, "methods not supported");
1985
1986 const char *method;
1987 method = field->primary_expression.identifier;
1988
1989 /* This would prevent to raise "uninitialized variable" warnings when
1990 * calling array.length.
1991 */
1992 field->subexpressions[0]->set_is_lhs(true);
1993 op = field->subexpressions[0]->hir(instructions, state);
1994 if (strcmp(method, "length") == 0) {
1995 if (!this->expressions.is_empty()) {
1996 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1997 goto fail;
1998 }
1999
2000 if (op->type->is_array()) {
2001 if (op->type->is_unsized_array()) {
2002 if (!state->has_shader_storage_buffer_objects()) {
2003 _mesa_glsl_error(&loc, state,
2004 "length called on unsized array"
2005 " only available with"
2006 " ARB_shader_storage_buffer_object");
2007 }
2008 /* Calculate length of an unsized array in run-time */
2009 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
2010 op);
2011 } else {
2012 result = new(ctx) ir_constant(op->type->array_size());
2013 }
2014 } else if (op->type->is_vector()) {
2015 if (state->has_420pack()) {
2016 /* .length() returns int. */
2017 result = new(ctx) ir_constant((int) op->type->vector_elements);
2018 } else {
2019 _mesa_glsl_error(&loc, state, "length method on matrix only"
2020 " available with ARB_shading_language_420pack");
2021 goto fail;
2022 }
2023 } else if (op->type->is_matrix()) {
2024 if (state->has_420pack()) {
2025 /* .length() returns int. */
2026 result = new(ctx) ir_constant((int) op->type->matrix_columns);
2027 } else {
2028 _mesa_glsl_error(&loc, state, "length method on matrix only"
2029 " available with ARB_shading_language_420pack");
2030 goto fail;
2031 }
2032 } else {
2033 _mesa_glsl_error(&loc, state, "length called on scalar.");
2034 goto fail;
2035 }
2036 } else {
2037 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
2038 goto fail;
2039 }
2040 return result;
2041 fail:
2042 return ir_rvalue::error_value(ctx);
2043 }
2044
2045 static inline bool is_valid_constructor(const glsl_type *type,
2046 struct _mesa_glsl_parse_state *state)
2047 {
2048 return type->is_numeric() || type->is_boolean() ||
2049 (state->has_bindless() && (type->is_sampler() || type->is_image()));
2050 }
2051
2052 ir_rvalue *
2053 ast_function_expression::hir(exec_list *instructions,
2054 struct _mesa_glsl_parse_state *state)
2055 {
2056 void *ctx = state;
2057 /* There are three sorts of function calls.
2058 *
2059 * 1. constructors - The first subexpression is an ast_type_specifier.
2060 * 2. methods - Only the .length() method of array types.
2061 * 3. functions - Calls to regular old functions.
2062 *
2063 */
2064 if (is_constructor()) {
2065 const ast_type_specifier *type =
2066 (ast_type_specifier *) subexpressions[0];
2067 YYLTYPE loc = type->get_location();
2068 const char *name;
2069
2070 const glsl_type *const constructor_type = type->glsl_type(& name, state);
2071
2072 /* constructor_type can be NULL if a variable with the same name as the
2073 * structure has come into scope.
2074 */
2075 if (constructor_type == NULL) {
2076 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2077 "may be shadowed by a variable with the same name)",
2078 type->type_name);
2079 return ir_rvalue::error_value(ctx);
2080 }
2081
2082
2083 /* Constructors for opaque types are illegal.
2084 *
2085 * From section 4.1.7 of the ARB_bindless_texture spec:
2086 *
2087 * "Samplers are represented using 64-bit integer handles, and may be "
2088 * converted to and from 64-bit integers using constructors."
2089 *
2090 * From section 4.1.X of the ARB_bindless_texture spec:
2091 *
2092 * "Images are represented using 64-bit integer handles, and may be
2093 * converted to and from 64-bit integers using constructors."
2094 */
2095 if (constructor_type->contains_atomic() ||
2096 (!state->has_bindless() && constructor_type->contains_opaque())) {
2097 _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2098 state->has_bindless() ? "atomic" : "opaque",
2099 constructor_type->name);
2100 return ir_rvalue::error_value(ctx);
2101 }
2102
2103 if (constructor_type->is_subroutine()) {
2104 _mesa_glsl_error(& loc, state,
2105 "subroutine name cannot be a constructor `%s'",
2106 constructor_type->name);
2107 return ir_rvalue::error_value(ctx);
2108 }
2109
2110 if (constructor_type->is_array()) {
2111 if (!state->check_version(120, 300, &loc,
2112 "array constructors forbidden")) {
2113 return ir_rvalue::error_value(ctx);
2114 }
2115
2116 return process_array_constructor(instructions, constructor_type,
2117 & loc, &this->expressions, state);
2118 }
2119
2120
2121 /* There are two kinds of constructor calls. Constructors for arrays and
2122 * structures must have the exact number of arguments with matching types
2123 * in the correct order. These constructors follow essentially the same
2124 * type matching rules as functions.
2125 *
2126 * Constructors for built-in language types, such as mat4 and vec2, are
2127 * free form. The only requirements are that the parameters must provide
2128 * enough values of the correct scalar type and that no arguments are
2129 * given past the last used argument.
2130 *
2131 * When using the C-style initializer syntax from GLSL 4.20, constructors
2132 * must have the exact number of arguments with matching types in the
2133 * correct order.
2134 */
2135 if (constructor_type->is_struct()) {
2136 return process_record_constructor(instructions, constructor_type,
2137 &loc, &this->expressions,
2138 state);
2139 }
2140
2141 if (!is_valid_constructor(constructor_type, state))
2142 return ir_rvalue::error_value(ctx);
2143
2144 /* Total number of components of the type being constructed. */
2145 const unsigned type_components = constructor_type->components();
2146
2147 /* Number of components from parameters that have actually been
2148 * consumed. This is used to perform several kinds of error checking.
2149 */
2150 unsigned components_used = 0;
2151
2152 unsigned matrix_parameters = 0;
2153 unsigned nonmatrix_parameters = 0;
2154 exec_list actual_parameters;
2155
2156 foreach_list_typed(ast_node, ast, link, &this->expressions) {
2157 ir_rvalue *result = ast->hir(instructions, state);
2158
2159 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2160 *
2161 * "It is an error to provide extra arguments beyond this
2162 * last used argument."
2163 */
2164 if (components_used >= type_components) {
2165 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2166 "constructor",
2167 constructor_type->name);
2168 return ir_rvalue::error_value(ctx);
2169 }
2170
2171 if (!is_valid_constructor(result->type, state)) {
2172 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2173 "non-numeric data type",
2174 constructor_type->name);
2175 return ir_rvalue::error_value(ctx);
2176 }
2177
2178 /* Count the number of matrix and nonmatrix parameters. This
2179 * is used below to enforce some of the constructor rules.
2180 */
2181 if (result->type->is_matrix())
2182 matrix_parameters++;
2183 else
2184 nonmatrix_parameters++;
2185
2186 actual_parameters.push_tail(result);
2187 components_used += result->type->components();
2188 }
2189
2190 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2191 *
2192 * "It is an error to construct matrices from other matrices. This
2193 * is reserved for future use."
2194 */
2195 if (matrix_parameters > 0
2196 && constructor_type->is_matrix()
2197 && !state->check_version(120, 100, &loc,
2198 "cannot construct `%s' from a matrix",
2199 constructor_type->name)) {
2200 return ir_rvalue::error_value(ctx);
2201 }
2202
2203 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2204 *
2205 * "If a matrix argument is given to a matrix constructor, it is
2206 * an error to have any other arguments."
2207 */
2208 if ((matrix_parameters > 0)
2209 && ((matrix_parameters + nonmatrix_parameters) > 1)
2210 && constructor_type->is_matrix()) {
2211 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2212 "matrix must be only parameter",
2213 constructor_type->name);
2214 return ir_rvalue::error_value(ctx);
2215 }
2216
2217 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2218 *
2219 * "In these cases, there must be enough components provided in the
2220 * arguments to provide an initializer for every component in the
2221 * constructed value."
2222 */
2223 if (components_used < type_components && components_used != 1
2224 && matrix_parameters == 0) {
2225 _mesa_glsl_error(& loc, state, "too few components to construct "
2226 "`%s'",
2227 constructor_type->name);
2228 return ir_rvalue::error_value(ctx);
2229 }
2230
2231 /* Matrices can never be consumed as is by any constructor but matrix
2232 * constructors. If the constructor type is not matrix, always break the
2233 * matrix up into a series of column vectors.
2234 */
2235 if (!constructor_type->is_matrix()) {
2236 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2237 if (!matrix->type->is_matrix())
2238 continue;
2239
2240 /* Create a temporary containing the matrix. */
2241 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2242 ir_var_temporary);
2243 instructions->push_tail(var);
2244 instructions->push_tail(
2245 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2246 matrix));
2247 var->constant_value = matrix->constant_expression_value(ctx);
2248
2249 /* Replace the matrix with dereferences of its columns. */
2250 for (int i = 0; i < matrix->type->matrix_columns; i++) {
2251 matrix->insert_before(
2252 new (ctx) ir_dereference_array(var,
2253 new(ctx) ir_constant(i)));
2254 }
2255 matrix->remove();
2256 }
2257 }
2258
2259 bool all_parameters_are_constant = true;
2260
2261 /* Type cast each parameter and, if possible, fold constants.*/
2262 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2263 const glsl_type *desired_type;
2264
2265 /* From section 5.4.1 of the ARB_bindless_texture spec:
2266 *
2267 * "In the following four constructors, the low 32 bits of the sampler
2268 * type correspond to the .x component of the uvec2 and the high 32
2269 * bits correspond to the .y component."
2270 *
2271 * uvec2(any sampler type) // Converts a sampler type to a
2272 * // pair of 32-bit unsigned integers
2273 * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to
2274 * // a sampler type
2275 * uvec2(any image type) // Converts an image type to a
2276 * // pair of 32-bit unsigned integers
2277 * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to
2278 * // an image type
2279 */
2280 if (ir->type->is_sampler() || ir->type->is_image()) {
2281 /* Convert a sampler/image type to a pair of 32-bit unsigned
2282 * integers as defined by ARB_bindless_texture.
2283 */
2284 if (constructor_type != glsl_type::uvec2_type) {
2285 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2286 "be converted to a pair of 32-bit unsigned "
2287 "integers");
2288 }
2289 desired_type = glsl_type::uvec2_type;
2290 } else if (constructor_type->is_sampler() ||
2291 constructor_type->is_image()) {
2292 /* Convert a pair of 32-bit unsigned integers to a sampler or image
2293 * type as defined by ARB_bindless_texture.
2294 */
2295 if (ir->type != glsl_type::uvec2_type) {
2296 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2297 "be converted from a pair of 32-bit unsigned "
2298 "integers");
2299 }
2300 desired_type = constructor_type;
2301 } else {
2302 desired_type =
2303 glsl_type::get_instance(constructor_type->base_type,
2304 ir->type->vector_elements,
2305 ir->type->matrix_columns);
2306 }
2307
2308 ir_rvalue *result = convert_component(ir, desired_type);
2309
2310 /* Attempt to convert the parameter to a constant valued expression.
2311 * After doing so, track whether or not all the parameters to the
2312 * constructor are trivially constant valued expressions.
2313 */
2314 ir_rvalue *const constant = result->constant_expression_value(ctx);
2315
2316 if (constant != NULL)
2317 result = constant;
2318 else
2319 all_parameters_are_constant = false;
2320
2321 if (result != ir) {
2322 ir->replace_with(result);
2323 }
2324 }
2325
2326 /* If all of the parameters are trivially constant, create a
2327 * constant representing the complete collection of parameters.
2328 */
2329 if (all_parameters_are_constant) {
2330 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2331 } else if (constructor_type->is_scalar()) {
2332 return dereference_component((ir_rvalue *)
2333 actual_parameters.get_head_raw(),
2334 0);
2335 } else if (constructor_type->is_vector()) {
2336 return emit_inline_vector_constructor(constructor_type,
2337 instructions,
2338 &actual_parameters,
2339 ctx);
2340 } else {
2341 assert(constructor_type->is_matrix());
2342 return emit_inline_matrix_constructor(constructor_type,
2343 instructions,
2344 &actual_parameters,
2345 ctx);
2346 }
2347 } else if (subexpressions[0]->oper == ast_field_selection) {
2348 return handle_method(instructions, state);
2349 } else {
2350 const ast_expression *id = subexpressions[0];
2351 const char *func_name = NULL;
2352 YYLTYPE loc = get_location();
2353 exec_list actual_parameters;
2354 ir_variable *sub_var = NULL;
2355 ir_rvalue *array_idx = NULL;
2356
2357 process_parameters(instructions, &actual_parameters, &this->expressions,
2358 state);
2359
2360 if (id->oper == ast_array_index) {
2361 array_idx = generate_array_index(ctx, instructions, state, loc,
2362 id->subexpressions[0],
2363 id->subexpressions[1], &func_name,
2364 &actual_parameters);
2365 } else if (id->oper == ast_identifier) {
2366 func_name = id->primary_expression.identifier;
2367 } else {
2368 _mesa_glsl_error(&loc, state, "function name is not an identifier");
2369 }
2370
2371 /* an error was emitted earlier */
2372 if (!func_name)
2373 return ir_rvalue::error_value(ctx);
2374
2375 ir_function_signature *sig =
2376 match_function_by_name(func_name, &actual_parameters, state);
2377
2378 ir_rvalue *value = NULL;
2379 if (sig == NULL) {
2380 sig = match_subroutine_by_name(func_name, &actual_parameters,
2381 state, &sub_var);
2382 }
2383
2384 if (sig == NULL) {
2385 no_matching_function_error(func_name, &loc,
2386 &actual_parameters, state);
2387 value = ir_rvalue::error_value(ctx);
2388 } else if (!verify_parameter_modes(state, sig,
2389 actual_parameters,
2390 this->expressions)) {
2391 /* an error has already been emitted */
2392 value = ir_rvalue::error_value(ctx);
2393 } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2394 /* ftransform refers to global variables, and we don't have any code
2395 * for remapping the variable references in the built-in shader.
2396 */
2397 ir_variable *mvp =
2398 state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2399 ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2400 value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2401 new(ctx) ir_dereference_variable(mvp),
2402 new(ctx) ir_dereference_variable(vtx));
2403 } else {
2404 bool is_begin_interlock = false;
2405 bool is_end_interlock = false;
2406 if (sig->is_builtin() &&
2407 state->stage == MESA_SHADER_FRAGMENT &&
2408 state->ARB_fragment_shader_interlock_enable) {
2409 is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0;
2410 is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0;
2411 }
2412
2413 if (sig->is_builtin() &&
2414 ((state->stage == MESA_SHADER_TESS_CTRL &&
2415 strcmp(func_name, "barrier") == 0) ||
2416 is_begin_interlock || is_end_interlock)) {
2417 if (state->current_function == NULL ||
2418 strcmp(state->current_function->function_name(), "main") != 0) {
2419 _mesa_glsl_error(&loc, state,
2420 "%s() may only be used in main()", func_name);
2421 }
2422
2423 if (state->found_return) {
2424 _mesa_glsl_error(&loc, state,
2425 "%s() may not be used after return", func_name);
2426 }
2427
2428 if (instructions != &state->current_function->body) {
2429 _mesa_glsl_error(&loc, state,
2430 "%s() may not be used in control flow", func_name);
2431 }
2432 }
2433
2434 /* There can be only one begin/end interlock pair in the function. */
2435 if (is_begin_interlock) {
2436 if (state->found_begin_interlock)
2437 _mesa_glsl_error(&loc, state,
2438 "beginInvocationInterlockARB may not be used twice");
2439 state->found_begin_interlock = true;
2440 } else if (is_end_interlock) {
2441 if (!state->found_begin_interlock)
2442 _mesa_glsl_error(&loc, state,
2443 "endInvocationInterlockARB may not be used "
2444 "before beginInvocationInterlockARB");
2445 if (state->found_end_interlock)
2446 _mesa_glsl_error(&loc, state,
2447 "endInvocationInterlockARB may not be used twice");
2448 state->found_end_interlock = true;
2449 }
2450
2451 value = generate_call(instructions, sig, &actual_parameters, sub_var,
2452 array_idx, state);
2453 if (!value) {
2454 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2455 "void_var",
2456 ir_var_temporary);
2457 instructions->push_tail(tmp);
2458 value = new(ctx) ir_dereference_variable(tmp);
2459 }
2460 }
2461
2462 return value;
2463 }
2464
2465 unreachable("not reached");
2466 }
2467
2468 bool
2469 ast_function_expression::has_sequence_subexpression() const
2470 {
2471 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2472 if (ast->has_sequence_subexpression())
2473 return true;
2474 }
2475
2476 return false;
2477 }
2478
2479 ir_rvalue *
2480 ast_aggregate_initializer::hir(exec_list *instructions,
2481 struct _mesa_glsl_parse_state *state)
2482 {
2483 void *ctx = state;
2484 YYLTYPE loc = this->get_location();
2485
2486 if (!this->constructor_type) {
2487 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2488 return ir_rvalue::error_value(ctx);
2489 }
2490 const glsl_type *const constructor_type = this->constructor_type;
2491
2492 if (!state->has_420pack()) {
2493 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2494 "GL_ARB_shading_language_420pack extension");
2495 return ir_rvalue::error_value(ctx);
2496 }
2497
2498 if (constructor_type->is_array()) {
2499 return process_array_constructor(instructions, constructor_type, &loc,
2500 &this->expressions, state);
2501 }
2502
2503 if (constructor_type->is_struct()) {
2504 return process_record_constructor(instructions, constructor_type, &loc,
2505 &this->expressions, state);
2506 }
2507
2508 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2509 &this->expressions, state);
2510 }