glsl: Fix copying function's out to temp if dereferenced by array
[mesa.git] / src / compiler / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/mtypes.h"
29 #include "main/shaderobj.h"
30 #include "builtin_functions.h"
31
32 static ir_rvalue *
33 convert_component(ir_rvalue *src, const glsl_type *desired_type);
34
35 static unsigned
36 process_parameters(exec_list *instructions, exec_list *actual_parameters,
37 exec_list *parameters,
38 struct _mesa_glsl_parse_state *state)
39 {
40 void *mem_ctx = state;
41 unsigned count = 0;
42
43 foreach_list_typed(ast_node, ast, link, parameters) {
44 /* We need to process the parameters first in order to know if we can
45 * raise or not a unitialized warning. Calling set_is_lhs silence the
46 * warning for now. Raising the warning or not will be checked at
47 * verify_parameter_modes.
48 */
49 ast->set_is_lhs(true);
50 ir_rvalue *result = ast->hir(instructions, state);
51
52 ir_constant *const constant =
53 result->constant_expression_value(mem_ctx);
54
55 if (constant != NULL)
56 result = constant;
57
58 actual_parameters->push_tail(result);
59 count++;
60 }
61
62 return count;
63 }
64
65
66 /**
67 * Generate a source prototype for a function signature
68 *
69 * \param return_type Return type of the function. May be \c NULL.
70 * \param name Name of the function.
71 * \param parameters List of \c ir_instruction nodes representing the
72 * parameter list for the function. This may be either a
73 * formal (\c ir_variable) or actual (\c ir_rvalue)
74 * parameter list. Only the type is used.
75 *
76 * \return
77 * A ralloced string representing the prototype of the function.
78 */
79 char *
80 prototype_string(const glsl_type *return_type, const char *name,
81 exec_list *parameters)
82 {
83 char *str = NULL;
84
85 if (return_type != NULL)
86 str = ralloc_asprintf(NULL, "%s ", return_type->name);
87
88 ralloc_asprintf_append(&str, "%s(", name);
89
90 const char *comma = "";
91 foreach_in_list(const ir_variable, param, parameters) {
92 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
93 comma = ", ";
94 }
95
96 ralloc_strcat(&str, ")");
97 return str;
98 }
99
100 static bool
101 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
102 const ir_variable *formal, const ir_variable *actual)
103 {
104 /**
105 * From the ARB_shader_image_load_store specification:
106 *
107 * "The values of image variables qualified with coherent,
108 * volatile, restrict, readonly, or writeonly may not be passed
109 * to functions whose formal parameters lack such
110 * qualifiers. [...] It is legal to have additional qualifiers
111 * on a formal parameter, but not to have fewer."
112 */
113 if (actual->data.memory_coherent && !formal->data.memory_coherent) {
114 _mesa_glsl_error(loc, state,
115 "function call parameter `%s' drops "
116 "`coherent' qualifier", formal->name);
117 return false;
118 }
119
120 if (actual->data.memory_volatile && !formal->data.memory_volatile) {
121 _mesa_glsl_error(loc, state,
122 "function call parameter `%s' drops "
123 "`volatile' qualifier", formal->name);
124 return false;
125 }
126
127 if (actual->data.memory_restrict && !formal->data.memory_restrict) {
128 _mesa_glsl_error(loc, state,
129 "function call parameter `%s' drops "
130 "`restrict' qualifier", formal->name);
131 return false;
132 }
133
134 if (actual->data.memory_read_only && !formal->data.memory_read_only) {
135 _mesa_glsl_error(loc, state,
136 "function call parameter `%s' drops "
137 "`readonly' qualifier", formal->name);
138 return false;
139 }
140
141 if (actual->data.memory_write_only && !formal->data.memory_write_only) {
142 _mesa_glsl_error(loc, state,
143 "function call parameter `%s' drops "
144 "`writeonly' qualifier", formal->name);
145 return false;
146 }
147
148 return true;
149 }
150
151 static bool
152 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
153 ir_variable *var)
154 {
155 if (!var ||
156 (!var->is_in_shader_storage_block() &&
157 var->data.mode != ir_var_shader_shared)) {
158 _mesa_glsl_error(loc, state, "First argument to atomic function "
159 "must be a buffer or shared variable");
160 return false;
161 }
162 return true;
163 }
164
165 static bool
166 is_atomic_function(const char *func_name)
167 {
168 return !strcmp(func_name, "atomicAdd") ||
169 !strcmp(func_name, "atomicMin") ||
170 !strcmp(func_name, "atomicMax") ||
171 !strcmp(func_name, "atomicAnd") ||
172 !strcmp(func_name, "atomicOr") ||
173 !strcmp(func_name, "atomicXor") ||
174 !strcmp(func_name, "atomicExchange") ||
175 !strcmp(func_name, "atomicCompSwap");
176 }
177
178 /**
179 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
180 * that 'const_in' formal parameters (an extension in our IR) correspond to
181 * ir_constant actual parameters.
182 */
183 static bool
184 verify_parameter_modes(_mesa_glsl_parse_state *state,
185 ir_function_signature *sig,
186 exec_list &actual_ir_parameters,
187 exec_list &actual_ast_parameters)
188 {
189 exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
190 exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
191
192 foreach_in_list(const ir_variable, formal, &sig->parameters) {
193 /* The lists must be the same length. */
194 assert(!actual_ir_node->is_tail_sentinel());
195 assert(!actual_ast_node->is_tail_sentinel());
196
197 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
198 const ast_expression *const actual_ast =
199 exec_node_data(ast_expression, actual_ast_node, link);
200
201 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
202 * FIXME: 0:0(0).
203 */
204 YYLTYPE loc = actual_ast->get_location();
205
206 /* Verify that 'const_in' parameters are ir_constants. */
207 if (formal->data.mode == ir_var_const_in &&
208 actual->ir_type != ir_type_constant) {
209 _mesa_glsl_error(&loc, state,
210 "parameter `in %s' must be a constant expression",
211 formal->name);
212 return false;
213 }
214
215 /* Verify that shader_in parameters are shader inputs */
216 if (formal->data.must_be_shader_input) {
217 const ir_rvalue *val = actual;
218
219 /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
220 if (val->ir_type == ir_type_swizzle) {
221 if (!state->is_version(440, 0)) {
222 _mesa_glsl_error(&loc, state,
223 "parameter `%s` must not be swizzled",
224 formal->name);
225 return false;
226 }
227 val = ((ir_swizzle *)val)->val;
228 }
229
230 for (;;) {
231 if (val->ir_type == ir_type_dereference_array) {
232 val = ((ir_dereference_array *)val)->array;
233 } else if (val->ir_type == ir_type_dereference_record &&
234 !state->es_shader) {
235 val = ((ir_dereference_record *)val)->record;
236 } else
237 break;
238 }
239
240 ir_variable *var = NULL;
241 if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
242 var = deref_var->variable_referenced();
243
244 if (!var || var->data.mode != ir_var_shader_in) {
245 _mesa_glsl_error(&loc, state,
246 "parameter `%s` must be a shader input",
247 formal->name);
248 return false;
249 }
250
251 var->data.must_be_shader_input = 1;
252 }
253
254 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
255 if (formal->data.mode == ir_var_function_out
256 || formal->data.mode == ir_var_function_inout) {
257 const char *mode = NULL;
258 switch (formal->data.mode) {
259 case ir_var_function_out: mode = "out"; break;
260 case ir_var_function_inout: mode = "inout"; break;
261 default: assert(false); break;
262 }
263
264 /* This AST-based check catches errors like f(i++). The IR-based
265 * is_lvalue() is insufficient because the actual parameter at the
266 * IR-level is just a temporary value, which is an l-value.
267 */
268 if (actual_ast->non_lvalue_description != NULL) {
269 _mesa_glsl_error(&loc, state,
270 "function parameter '%s %s' references a %s",
271 mode, formal->name,
272 actual_ast->non_lvalue_description);
273 return false;
274 }
275
276 ir_variable *var = actual->variable_referenced();
277
278 if (var && formal->data.mode == ir_var_function_inout) {
279 if ((var->data.mode == ir_var_auto ||
280 var->data.mode == ir_var_shader_out) &&
281 !var->data.assigned &&
282 !is_gl_identifier(var->name)) {
283 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
284 var->name);
285 }
286 }
287
288 if (var)
289 var->data.assigned = true;
290
291 if (var && var->data.read_only) {
292 _mesa_glsl_error(&loc, state,
293 "function parameter '%s %s' references the "
294 "read-only variable '%s'",
295 mode, formal->name,
296 actual->variable_referenced()->name);
297 return false;
298 } else if (!actual->is_lvalue(state)) {
299 _mesa_glsl_error(&loc, state,
300 "function parameter '%s %s' is not an lvalue",
301 mode, formal->name);
302 return false;
303 }
304 } else {
305 assert(formal->data.mode == ir_var_function_in ||
306 formal->data.mode == ir_var_const_in);
307 ir_variable *var = actual->variable_referenced();
308 if (var) {
309 if ((var->data.mode == ir_var_auto ||
310 var->data.mode == ir_var_shader_out) &&
311 !var->data.assigned &&
312 !is_gl_identifier(var->name)) {
313 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
314 var->name);
315 }
316 }
317 }
318
319 if (formal->type->is_image() &&
320 actual->variable_referenced()) {
321 if (!verify_image_parameter(&loc, state, formal,
322 actual->variable_referenced()))
323 return false;
324 }
325
326 actual_ir_node = actual_ir_node->next;
327 actual_ast_node = actual_ast_node->next;
328 }
329
330 /* The first parameter of atomic functions must be a buffer variable */
331 const char *func_name = sig->function_name();
332 bool is_atomic = is_atomic_function(func_name);
333 if (is_atomic) {
334 const ir_rvalue *const actual =
335 (ir_rvalue *) actual_ir_parameters.get_head_raw();
336
337 const ast_expression *const actual_ast =
338 exec_node_data(ast_expression,
339 actual_ast_parameters.get_head_raw(), link);
340 YYLTYPE loc = actual_ast->get_location();
341
342 if (!verify_first_atomic_parameter(&loc, state,
343 actual->variable_referenced())) {
344 return false;
345 }
346 }
347
348 return true;
349 }
350
351 struct copy_index_deref_data {
352 void *mem_ctx;
353 exec_list *before_instructions;
354 };
355
356 static void
357 copy_index_derefs_to_temps(ir_instruction *ir, void *data)
358 {
359 struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;
360
361 if (ir->ir_type == ir_type_dereference_array) {
362 ir_dereference_array *a = (ir_dereference_array *) ir;
363 ir = a->array->as_dereference();
364
365 ir_rvalue *idx = a->array_index;
366 ir_variable *var = idx->variable_referenced();
367
368 /* If the index is read only it cannot change so there is no need
369 * to copy it.
370 */
371 if (!var || var->data.read_only || var->data.memory_read_only)
372 return;
373
374 ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
375 ir_var_temporary);
376 d->before_instructions->push_tail(tmp);
377
378 ir_dereference_variable *const deref_tmp_1 =
379 new(d->mem_ctx) ir_dereference_variable(tmp);
380 ir_assignment *const assignment =
381 new(d->mem_ctx) ir_assignment(deref_tmp_1,
382 idx->clone(d->mem_ctx, NULL));
383 d->before_instructions->push_tail(assignment);
384
385 /* Replace the array index with a dereference of the new temporary */
386 ir_dereference_variable *const deref_tmp_2 =
387 new(d->mem_ctx) ir_dereference_variable(tmp);
388 a->array_index = deref_tmp_2;
389 }
390 }
391
392 static void
393 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
394 exec_list *before_instructions, exec_list *after_instructions,
395 bool parameter_is_inout)
396 {
397 ir_expression *const expr = actual->as_expression();
398
399 /* If the types match exactly and the parameter is not a vector-extract,
400 * nothing needs to be done to fix the parameter.
401 */
402 if (formal_type == actual->type
403 && (expr == NULL || expr->operation != ir_binop_vector_extract)
404 && actual->as_dereference_variable())
405 return;
406
407 /* An array index could also be an out variable so we need to make a copy
408 * of them before the function is called.
409 */
410 if (!actual->as_dereference_variable()) {
411 struct copy_index_deref_data data;
412 data.mem_ctx = mem_ctx;
413 data.before_instructions = before_instructions;
414
415 visit_tree(actual, copy_index_derefs_to_temps, &data);
416 }
417
418 /* To convert an out parameter, we need to create a temporary variable to
419 * hold the value before conversion, and then perform the conversion after
420 * the function call returns.
421 *
422 * This has the effect of transforming code like this:
423 *
424 * void f(out int x);
425 * float value;
426 * f(value);
427 *
428 * Into IR that's equivalent to this:
429 *
430 * void f(out int x);
431 * float value;
432 * int out_parameter_conversion;
433 * f(out_parameter_conversion);
434 * value = float(out_parameter_conversion);
435 *
436 * If the parameter is an ir_expression of ir_binop_vector_extract,
437 * additional conversion is needed in the post-call re-write.
438 */
439 ir_variable *tmp =
440 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
441
442 before_instructions->push_tail(tmp);
443
444 /* If the parameter is an inout parameter, copy the value of the actual
445 * parameter to the new temporary. Note that no type conversion is allowed
446 * here because inout parameters must match types exactly.
447 */
448 if (parameter_is_inout) {
449 /* Inout parameters should never require conversion, since that would
450 * require an implicit conversion to exist both to and from the formal
451 * parameter type, and there are no bidirectional implicit conversions.
452 */
453 assert (actual->type == formal_type);
454
455 ir_dereference_variable *const deref_tmp_1 =
456 new(mem_ctx) ir_dereference_variable(tmp);
457 ir_assignment *const assignment =
458 new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
459 before_instructions->push_tail(assignment);
460 }
461
462 /* Replace the parameter in the call with a dereference of the new
463 * temporary.
464 */
465 ir_dereference_variable *const deref_tmp_2 =
466 new(mem_ctx) ir_dereference_variable(tmp);
467 actual->replace_with(deref_tmp_2);
468
469
470 /* Copy the temporary variable to the actual parameter with optional
471 * type conversion applied.
472 */
473 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
474 if (actual->type != formal_type)
475 rhs = convert_component(rhs, actual->type);
476
477 ir_rvalue *lhs = actual;
478 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
479 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
480 NULL),
481 expr->operands[1]->clone(mem_ctx,
482 NULL));
483 }
484
485 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
486 after_instructions->push_tail(assignment_2);
487 }
488
489 /**
490 * Generate a function call.
491 *
492 * For non-void functions, this returns a dereference of the temporary
493 * variable which stores the return value for the call. For void functions,
494 * this returns NULL.
495 */
496 static ir_rvalue *
497 generate_call(exec_list *instructions, ir_function_signature *sig,
498 exec_list *actual_parameters,
499 ir_variable *sub_var,
500 ir_rvalue *array_idx,
501 struct _mesa_glsl_parse_state *state)
502 {
503 void *ctx = state;
504 exec_list post_call_conversions;
505
506 /* Perform implicit conversion of arguments. For out parameters, we need
507 * to place them in a temporary variable and do the conversion after the
508 * call takes place. Since we haven't emitted the call yet, we'll place
509 * the post-call conversions in a temporary exec_list, and emit them later.
510 */
511 foreach_two_lists(formal_node, &sig->parameters,
512 actual_node, actual_parameters) {
513 ir_rvalue *actual = (ir_rvalue *) actual_node;
514 ir_variable *formal = (ir_variable *) formal_node;
515
516 if (formal->type->is_numeric() || formal->type->is_boolean()) {
517 switch (formal->data.mode) {
518 case ir_var_const_in:
519 case ir_var_function_in: {
520 ir_rvalue *converted
521 = convert_component(actual, formal->type);
522 actual->replace_with(converted);
523 break;
524 }
525 case ir_var_function_out:
526 case ir_var_function_inout:
527 fix_parameter(ctx, actual, formal->type,
528 instructions, &post_call_conversions,
529 formal->data.mode == ir_var_function_inout);
530 break;
531 default:
532 assert (!"Illegal formal parameter mode");
533 break;
534 }
535 }
536 }
537
538 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
539 *
540 * "Initializers for const declarations must be formed from literal
541 * values, other const variables (not including function call
542 * paramaters), or expressions of these.
543 *
544 * Constructors may be used in such expressions, but function calls may
545 * not."
546 *
547 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
548 *
549 * "A constant expression is one of
550 *
551 * ...
552 *
553 * - a built-in function call whose arguments are all constant
554 * expressions, with the exception of the texture lookup
555 * functions, the noise functions, and ftransform. The built-in
556 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
557 * inside an initializer with an argument that is a constant
558 * expression."
559 *
560 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
561 *
562 * "A constant expression is one of
563 *
564 * ...
565 *
566 * - a built-in function call whose arguments are all constant
567 * expressions, with the exception of the texture lookup
568 * functions."
569 *
570 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
571 *
572 * "A constant expression is one of
573 *
574 * ...
575 *
576 * - a built-in function call whose arguments are all constant
577 * expressions, with the exception of the texture lookup
578 * functions. The built-in functions dFdx, dFdy, and fwidth must
579 * return 0 when evaluated inside an initializer with an argument
580 * that is a constant expression."
581 *
582 * If the function call is a constant expression, don't generate any
583 * instructions; just generate an ir_constant.
584 */
585 if (state->is_version(120, 100) ||
586 state->ctx->Const.AllowGLSLBuiltinConstantExpression) {
587 ir_constant *value = sig->constant_expression_value(ctx,
588 actual_parameters,
589 NULL);
590 if (value != NULL) {
591 return value;
592 }
593 }
594
595 ir_dereference_variable *deref = NULL;
596 if (!sig->return_type->is_void()) {
597 /* Create a new temporary to hold the return value. */
598 char *const name = ir_variable::temporaries_allocate_names
599 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
600 : NULL;
601
602 ir_variable *var;
603
604 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
605 instructions->push_tail(var);
606
607 ralloc_free(name);
608
609 deref = new(ctx) ir_dereference_variable(var);
610 }
611
612 ir_call *call = new(ctx) ir_call(sig, deref,
613 actual_parameters, sub_var, array_idx);
614 instructions->push_tail(call);
615 if (sig->is_builtin()) {
616 /* inline immediately */
617 call->generate_inline(call);
618 call->remove();
619 }
620
621 /* Also emit any necessary out-parameter conversions. */
622 instructions->append_list(&post_call_conversions);
623
624 return deref ? deref->clone(ctx, NULL) : NULL;
625 }
626
627 /**
628 * Given a function name and parameter list, find the matching signature.
629 */
630 static ir_function_signature *
631 match_function_by_name(const char *name,
632 exec_list *actual_parameters,
633 struct _mesa_glsl_parse_state *state)
634 {
635 ir_function *f = state->symbols->get_function(name);
636 ir_function_signature *local_sig = NULL;
637 ir_function_signature *sig = NULL;
638
639 /* Is the function hidden by a record type constructor? */
640 if (state->symbols->get_type(name))
641 return sig; /* no match */
642
643 /* Is the function hidden by a variable (impossible in 1.10)? */
644 if (!state->symbols->separate_function_namespace
645 && state->symbols->get_variable(name))
646 return sig; /* no match */
647
648 if (f != NULL) {
649 /* In desktop GL, the presence of a user-defined signature hides any
650 * built-in signatures, so we must ignore them. In contrast, in ES2
651 * user-defined signatures add new overloads, so we must consider them.
652 */
653 bool allow_builtins = state->es_shader || !f->has_user_signature();
654
655 /* Look for a match in the local shader. If exact, we're done. */
656 bool is_exact = false;
657 sig = local_sig = f->matching_signature(state, actual_parameters,
658 allow_builtins, &is_exact);
659 if (is_exact)
660 return sig;
661
662 if (!allow_builtins)
663 return sig;
664 }
665
666 /* Local shader has no exact candidates; check the built-ins. */
667 _mesa_glsl_initialize_builtin_functions();
668 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
669
670 /* if _mesa_glsl_find_builtin_function failed, fall back to the result
671 * of choose_best_inexact_overload() instead. This should only affect
672 * GLES.
673 */
674 return sig ? sig : local_sig;
675 }
676
677 static ir_function_signature *
678 match_subroutine_by_name(const char *name,
679 exec_list *actual_parameters,
680 struct _mesa_glsl_parse_state *state,
681 ir_variable **var_r)
682 {
683 void *ctx = state;
684 ir_function_signature *sig = NULL;
685 ir_function *f, *found = NULL;
686 const char *new_name;
687 ir_variable *var;
688 bool is_exact = false;
689
690 new_name =
691 ralloc_asprintf(ctx, "%s_%s",
692 _mesa_shader_stage_to_subroutine_prefix(state->stage),
693 name);
694 var = state->symbols->get_variable(new_name);
695 if (!var)
696 return NULL;
697
698 for (int i = 0; i < state->num_subroutine_types; i++) {
699 f = state->subroutine_types[i];
700 if (strcmp(f->name, var->type->without_array()->name))
701 continue;
702 found = f;
703 break;
704 }
705
706 if (!found)
707 return NULL;
708 *var_r = var;
709 sig = found->matching_signature(state, actual_parameters,
710 false, &is_exact);
711 return sig;
712 }
713
714 static ir_rvalue *
715 generate_array_index(void *mem_ctx, exec_list *instructions,
716 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
717 const ast_expression *array, ast_expression *idx,
718 const char **function_name, exec_list *actual_parameters)
719 {
720 if (array->oper == ast_array_index) {
721 /* This handles arrays of arrays */
722 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
723 state, loc,
724 array->subexpressions[0],
725 array->subexpressions[1],
726 function_name,
727 actual_parameters);
728 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
729
730 YYLTYPE index_loc = idx->get_location();
731 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
732 outer_array_idx, loc,
733 index_loc);
734 } else {
735 ir_variable *sub_var = NULL;
736 *function_name = array->primary_expression.identifier;
737
738 if (!match_subroutine_by_name(*function_name, actual_parameters,
739 state, &sub_var)) {
740 _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
741 *function_name);
742 *function_name = NULL; /* indicate error condition to caller */
743 return NULL;
744 }
745
746 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
747 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
748 }
749 }
750
751 static void
752 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
753 ir_function *f)
754 {
755 if (f == NULL)
756 return;
757
758 foreach_in_list(ir_function_signature, sig, &f->signatures) {
759 if (sig->is_builtin() && !sig->is_builtin_available(state))
760 continue;
761
762 char *str = prototype_string(sig->return_type, f->name,
763 &sig->parameters);
764 _mesa_glsl_error(loc, state, " %s", str);
765 ralloc_free(str);
766 }
767 }
768
769 /**
770 * Raise a "no matching function" error, listing all possible overloads the
771 * compiler considered so developers can figure out what went wrong.
772 */
773 static void
774 no_matching_function_error(const char *name,
775 YYLTYPE *loc,
776 exec_list *actual_parameters,
777 _mesa_glsl_parse_state *state)
778 {
779 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
780
781 if (state->symbols->get_function(name) == NULL
782 && (!state->uses_builtin_functions
783 || sh->symbols->get_function(name) == NULL)) {
784 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
785 } else {
786 char *str = prototype_string(NULL, name, actual_parameters);
787 _mesa_glsl_error(loc, state,
788 "no matching function for call to `%s';"
789 " candidates are:",
790 str);
791 ralloc_free(str);
792
793 print_function_prototypes(state, loc,
794 state->symbols->get_function(name));
795
796 if (state->uses_builtin_functions) {
797 print_function_prototypes(state, loc,
798 sh->symbols->get_function(name));
799 }
800 }
801 }
802
803 /**
804 * Perform automatic type conversion of constructor parameters
805 *
806 * This implements the rules in the "Conversion and Scalar Constructors"
807 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
808 */
809 static ir_rvalue *
810 convert_component(ir_rvalue *src, const glsl_type *desired_type)
811 {
812 void *ctx = ralloc_parent(src);
813 const unsigned a = desired_type->base_type;
814 const unsigned b = src->type->base_type;
815 ir_expression *result = NULL;
816
817 if (src->type->is_error())
818 return src;
819
820 assert(a <= GLSL_TYPE_IMAGE);
821 assert(b <= GLSL_TYPE_IMAGE);
822
823 if (a == b)
824 return src;
825
826 switch (a) {
827 case GLSL_TYPE_UINT:
828 switch (b) {
829 case GLSL_TYPE_INT:
830 result = new(ctx) ir_expression(ir_unop_i2u, src);
831 break;
832 case GLSL_TYPE_FLOAT:
833 result = new(ctx) ir_expression(ir_unop_f2u, src);
834 break;
835 case GLSL_TYPE_BOOL:
836 result = new(ctx) ir_expression(ir_unop_i2u,
837 new(ctx) ir_expression(ir_unop_b2i,
838 src));
839 break;
840 case GLSL_TYPE_DOUBLE:
841 result = new(ctx) ir_expression(ir_unop_d2u, src);
842 break;
843 case GLSL_TYPE_UINT64:
844 result = new(ctx) ir_expression(ir_unop_u642u, src);
845 break;
846 case GLSL_TYPE_INT64:
847 result = new(ctx) ir_expression(ir_unop_i642u, src);
848 break;
849 case GLSL_TYPE_SAMPLER:
850 result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
851 break;
852 case GLSL_TYPE_IMAGE:
853 result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
854 break;
855 }
856 break;
857 case GLSL_TYPE_INT:
858 switch (b) {
859 case GLSL_TYPE_UINT:
860 result = new(ctx) ir_expression(ir_unop_u2i, src);
861 break;
862 case GLSL_TYPE_FLOAT:
863 result = new(ctx) ir_expression(ir_unop_f2i, src);
864 break;
865 case GLSL_TYPE_BOOL:
866 result = new(ctx) ir_expression(ir_unop_b2i, src);
867 break;
868 case GLSL_TYPE_DOUBLE:
869 result = new(ctx) ir_expression(ir_unop_d2i, src);
870 break;
871 case GLSL_TYPE_UINT64:
872 result = new(ctx) ir_expression(ir_unop_u642i, src);
873 break;
874 case GLSL_TYPE_INT64:
875 result = new(ctx) ir_expression(ir_unop_i642i, src);
876 break;
877 }
878 break;
879 case GLSL_TYPE_FLOAT:
880 switch (b) {
881 case GLSL_TYPE_UINT:
882 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
883 break;
884 case GLSL_TYPE_INT:
885 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
886 break;
887 case GLSL_TYPE_BOOL:
888 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
889 break;
890 case GLSL_TYPE_DOUBLE:
891 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
892 break;
893 case GLSL_TYPE_UINT64:
894 result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
895 break;
896 case GLSL_TYPE_INT64:
897 result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
898 break;
899 }
900 break;
901 case GLSL_TYPE_BOOL:
902 switch (b) {
903 case GLSL_TYPE_UINT:
904 result = new(ctx) ir_expression(ir_unop_i2b,
905 new(ctx) ir_expression(ir_unop_u2i,
906 src));
907 break;
908 case GLSL_TYPE_INT:
909 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
910 break;
911 case GLSL_TYPE_FLOAT:
912 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
913 break;
914 case GLSL_TYPE_DOUBLE:
915 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
916 break;
917 case GLSL_TYPE_UINT64:
918 result = new(ctx) ir_expression(ir_unop_i642b,
919 new(ctx) ir_expression(ir_unop_u642i64,
920 src));
921 break;
922 case GLSL_TYPE_INT64:
923 result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
924 break;
925 }
926 break;
927 case GLSL_TYPE_DOUBLE:
928 switch (b) {
929 case GLSL_TYPE_INT:
930 result = new(ctx) ir_expression(ir_unop_i2d, src);
931 break;
932 case GLSL_TYPE_UINT:
933 result = new(ctx) ir_expression(ir_unop_u2d, src);
934 break;
935 case GLSL_TYPE_BOOL:
936 result = new(ctx) ir_expression(ir_unop_f2d,
937 new(ctx) ir_expression(ir_unop_b2f,
938 src));
939 break;
940 case GLSL_TYPE_FLOAT:
941 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
942 break;
943 case GLSL_TYPE_UINT64:
944 result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
945 break;
946 case GLSL_TYPE_INT64:
947 result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
948 break;
949 }
950 break;
951 case GLSL_TYPE_UINT64:
952 switch (b) {
953 case GLSL_TYPE_INT:
954 result = new(ctx) ir_expression(ir_unop_i2u64, src);
955 break;
956 case GLSL_TYPE_UINT:
957 result = new(ctx) ir_expression(ir_unop_u2u64, src);
958 break;
959 case GLSL_TYPE_BOOL:
960 result = new(ctx) ir_expression(ir_unop_i642u64,
961 new(ctx) ir_expression(ir_unop_b2i64,
962 src));
963 break;
964 case GLSL_TYPE_FLOAT:
965 result = new(ctx) ir_expression(ir_unop_f2u64, src);
966 break;
967 case GLSL_TYPE_DOUBLE:
968 result = new(ctx) ir_expression(ir_unop_d2u64, src);
969 break;
970 case GLSL_TYPE_INT64:
971 result = new(ctx) ir_expression(ir_unop_i642u64, src);
972 break;
973 }
974 break;
975 case GLSL_TYPE_INT64:
976 switch (b) {
977 case GLSL_TYPE_INT:
978 result = new(ctx) ir_expression(ir_unop_i2i64, src);
979 break;
980 case GLSL_TYPE_UINT:
981 result = new(ctx) ir_expression(ir_unop_u2i64, src);
982 break;
983 case GLSL_TYPE_BOOL:
984 result = new(ctx) ir_expression(ir_unop_b2i64, src);
985 break;
986 case GLSL_TYPE_FLOAT:
987 result = new(ctx) ir_expression(ir_unop_f2i64, src);
988 break;
989 case GLSL_TYPE_DOUBLE:
990 result = new(ctx) ir_expression(ir_unop_d2i64, src);
991 break;
992 case GLSL_TYPE_UINT64:
993 result = new(ctx) ir_expression(ir_unop_u642i64, src);
994 break;
995 }
996 break;
997 case GLSL_TYPE_SAMPLER:
998 switch (b) {
999 case GLSL_TYPE_UINT:
1000 result = new(ctx)
1001 ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
1002 break;
1003 }
1004 break;
1005 case GLSL_TYPE_IMAGE:
1006 switch (b) {
1007 case GLSL_TYPE_UINT:
1008 result = new(ctx)
1009 ir_expression(ir_unop_pack_image_2x32, desired_type, src);
1010 break;
1011 }
1012 break;
1013 }
1014
1015 assert(result != NULL);
1016 assert(result->type == desired_type);
1017
1018 /* Try constant folding; it may fold in the conversion we just added. */
1019 ir_constant *const constant = result->constant_expression_value(ctx);
1020 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
1021 }
1022
1023
1024 /**
1025 * Perform automatic type and constant conversion of constructor parameters
1026 *
1027 * This implements the rules in the "Implicit Conversions" rules, not the
1028 * "Conversion and Scalar Constructors".
1029 *
1030 * After attempting the implicit conversion, an attempt to convert into a
1031 * constant valued expression is also done.
1032 *
1033 * The \c from \c ir_rvalue is converted "in place".
1034 *
1035 * \param from Operand that is being converted
1036 * \param to Base type the operand will be converted to
1037 * \param state GLSL compiler state
1038 *
1039 * \return
1040 * If the attempt to convert into a constant expression succeeds, \c true is
1041 * returned. Otherwise \c false is returned.
1042 */
1043 static bool
1044 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
1045 struct _mesa_glsl_parse_state *state)
1046 {
1047 void *mem_ctx = state;
1048 ir_rvalue *result = from;
1049
1050 if (to != from->type->base_type) {
1051 const glsl_type *desired_type =
1052 glsl_type::get_instance(to,
1053 from->type->vector_elements,
1054 from->type->matrix_columns);
1055
1056 if (from->type->can_implicitly_convert_to(desired_type, state)) {
1057 /* Even though convert_component() implements the constructor
1058 * conversion rules (not the implicit conversion rules), its safe
1059 * to use it here because we already checked that the implicit
1060 * conversion is legal.
1061 */
1062 result = convert_component(from, desired_type);
1063 }
1064 }
1065
1066 ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1067
1068 if (constant != NULL)
1069 result = constant;
1070
1071 if (from != result) {
1072 from->replace_with(result);
1073 from = result;
1074 }
1075
1076 return constant != NULL;
1077 }
1078
1079
1080 /**
1081 * Dereference a specific component from a scalar, vector, or matrix
1082 */
1083 static ir_rvalue *
1084 dereference_component(ir_rvalue *src, unsigned component)
1085 {
1086 void *ctx = ralloc_parent(src);
1087 assert(component < src->type->components());
1088
1089 /* If the source is a constant, just create a new constant instead of a
1090 * dereference of the existing constant.
1091 */
1092 ir_constant *constant = src->as_constant();
1093 if (constant)
1094 return new(ctx) ir_constant(constant, component);
1095
1096 if (src->type->is_scalar()) {
1097 return src;
1098 } else if (src->type->is_vector()) {
1099 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1100 } else {
1101 assert(src->type->is_matrix());
1102
1103 /* Dereference a row of the matrix, then call this function again to get
1104 * a specific element from that row.
1105 */
1106 const int c = component / src->type->column_type()->vector_elements;
1107 const int r = component % src->type->column_type()->vector_elements;
1108 ir_constant *const col_index = new(ctx) ir_constant(c);
1109 ir_dereference *const col = new(ctx) ir_dereference_array(src,
1110 col_index);
1111
1112 col->type = src->type->column_type();
1113
1114 return dereference_component(col, r);
1115 }
1116
1117 assert(!"Should not get here.");
1118 return NULL;
1119 }
1120
1121
1122 static ir_rvalue *
1123 process_vec_mat_constructor(exec_list *instructions,
1124 const glsl_type *constructor_type,
1125 YYLTYPE *loc, exec_list *parameters,
1126 struct _mesa_glsl_parse_state *state)
1127 {
1128 void *ctx = state;
1129
1130 /* The ARB_shading_language_420pack spec says:
1131 *
1132 * "If an initializer is a list of initializers enclosed in curly braces,
1133 * the variable being declared must be a vector, a matrix, an array, or a
1134 * structure.
1135 *
1136 * int i = { 1 }; // illegal, i is not an aggregate"
1137 */
1138 if (constructor_type->vector_elements <= 1) {
1139 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1140 "matrices, arrays, and structs");
1141 return ir_rvalue::error_value(ctx);
1142 }
1143
1144 exec_list actual_parameters;
1145 const unsigned parameter_count =
1146 process_parameters(instructions, &actual_parameters, parameters, state);
1147
1148 if (parameter_count == 0
1149 || (constructor_type->is_vector() &&
1150 constructor_type->vector_elements != parameter_count)
1151 || (constructor_type->is_matrix() &&
1152 constructor_type->matrix_columns != parameter_count)) {
1153 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1154 constructor_type->is_vector() ? "vector" : "matrix",
1155 constructor_type->vector_elements);
1156 return ir_rvalue::error_value(ctx);
1157 }
1158
1159 bool all_parameters_are_constant = true;
1160
1161 /* Type cast each parameter and, if possible, fold constants. */
1162 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1163 /* Apply implicit conversions (not the scalar constructor rules, see the
1164 * spec quote above!) and attempt to convert the parameter to a constant
1165 * valued expression. After doing so, track whether or not all the
1166 * parameters to the constructor are trivially constant valued
1167 * expressions.
1168 */
1169 all_parameters_are_constant &=
1170 implicitly_convert_component(ir, constructor_type->base_type, state);
1171
1172 if (constructor_type->is_matrix()) {
1173 if (ir->type != constructor_type->column_type()) {
1174 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1175 "expected: %s, found %s",
1176 constructor_type->column_type()->name,
1177 ir->type->name);
1178 return ir_rvalue::error_value(ctx);
1179 }
1180 } else if (ir->type != constructor_type->get_scalar_type()) {
1181 _mesa_glsl_error(loc, state, "type error in vector constructor: "
1182 "expected: %s, found %s",
1183 constructor_type->get_scalar_type()->name,
1184 ir->type->name);
1185 return ir_rvalue::error_value(ctx);
1186 }
1187 }
1188
1189 if (all_parameters_are_constant)
1190 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1191
1192 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1193 ir_var_temporary);
1194 instructions->push_tail(var);
1195
1196 int i = 0;
1197
1198 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1199 ir_instruction *assignment = NULL;
1200
1201 if (var->type->is_matrix()) {
1202 ir_rvalue *lhs =
1203 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1204 assignment = new(ctx) ir_assignment(lhs, rhs);
1205 } else {
1206 /* use writemask rather than index for vector */
1207 assert(var->type->is_vector());
1208 assert(i < 4);
1209 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1210 assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1211 (unsigned)(1 << i));
1212 }
1213
1214 instructions->push_tail(assignment);
1215
1216 i++;
1217 }
1218
1219 return new(ctx) ir_dereference_variable(var);
1220 }
1221
1222
1223 static ir_rvalue *
1224 process_array_constructor(exec_list *instructions,
1225 const glsl_type *constructor_type,
1226 YYLTYPE *loc, exec_list *parameters,
1227 struct _mesa_glsl_parse_state *state)
1228 {
1229 void *ctx = state;
1230 /* Array constructors come in two forms: sized and unsized. Sized array
1231 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1232 * variables. In this case the number of parameters must exactly match the
1233 * specified size of the array.
1234 *
1235 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1236 * are vec4 variables. In this case the size of the array being constructed
1237 * is determined by the number of parameters.
1238 *
1239 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1240 *
1241 * "There must be exactly the same number of arguments as the size of
1242 * the array being constructed. If no size is present in the
1243 * constructor, then the array is explicitly sized to the number of
1244 * arguments provided. The arguments are assigned in order, starting at
1245 * element 0, to the elements of the constructed array. Each argument
1246 * must be the same type as the element type of the array, or be a type
1247 * that can be converted to the element type of the array according to
1248 * Section 4.1.10 "Implicit Conversions.""
1249 */
1250 exec_list actual_parameters;
1251 const unsigned parameter_count =
1252 process_parameters(instructions, &actual_parameters, parameters, state);
1253 bool is_unsized_array = constructor_type->is_unsized_array();
1254
1255 if ((parameter_count == 0) ||
1256 (!is_unsized_array && (constructor_type->length != parameter_count))) {
1257 const unsigned min_param = is_unsized_array
1258 ? 1 : constructor_type->length;
1259
1260 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1261 "parameter%s",
1262 is_unsized_array ? "at least" : "exactly",
1263 min_param, (min_param <= 1) ? "" : "s");
1264 return ir_rvalue::error_value(ctx);
1265 }
1266
1267 if (is_unsized_array) {
1268 constructor_type =
1269 glsl_type::get_array_instance(constructor_type->fields.array,
1270 parameter_count);
1271 assert(constructor_type != NULL);
1272 assert(constructor_type->length == parameter_count);
1273 }
1274
1275 bool all_parameters_are_constant = true;
1276 const glsl_type *element_type = constructor_type->fields.array;
1277
1278 /* Type cast each parameter and, if possible, fold constants. */
1279 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1280 /* Apply implicit conversions (not the scalar constructor rules, see the
1281 * spec quote above!) and attempt to convert the parameter to a constant
1282 * valued expression. After doing so, track whether or not all the
1283 * parameters to the constructor are trivially constant valued
1284 * expressions.
1285 */
1286 all_parameters_are_constant &=
1287 implicitly_convert_component(ir, element_type->base_type, state);
1288
1289 if (constructor_type->fields.array->is_unsized_array()) {
1290 /* As the inner parameters of the constructor are created without
1291 * knowledge of each other we need to check to make sure unsized
1292 * parameters of unsized constructors all end up with the same size.
1293 *
1294 * e.g we make sure to fail for a constructor like this:
1295 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1296 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1297 * vec4[](vec4(0.0), vec4(1.0)));
1298 */
1299 if (element_type->is_unsized_array()) {
1300 /* This is the first parameter so just get the type */
1301 element_type = ir->type;
1302 } else if (element_type != ir->type) {
1303 _mesa_glsl_error(loc, state, "type error in array constructor: "
1304 "expected: %s, found %s",
1305 element_type->name,
1306 ir->type->name);
1307 return ir_rvalue::error_value(ctx);
1308 }
1309 } else if (ir->type != constructor_type->fields.array) {
1310 _mesa_glsl_error(loc, state, "type error in array constructor: "
1311 "expected: %s, found %s",
1312 constructor_type->fields.array->name,
1313 ir->type->name);
1314 return ir_rvalue::error_value(ctx);
1315 } else {
1316 element_type = ir->type;
1317 }
1318 }
1319
1320 if (constructor_type->fields.array->is_unsized_array()) {
1321 constructor_type =
1322 glsl_type::get_array_instance(element_type,
1323 parameter_count);
1324 assert(constructor_type != NULL);
1325 assert(constructor_type->length == parameter_count);
1326 }
1327
1328 if (all_parameters_are_constant)
1329 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1330
1331 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1332 ir_var_temporary);
1333 instructions->push_tail(var);
1334
1335 int i = 0;
1336 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1337 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1338 new(ctx) ir_constant(i));
1339
1340 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1341 instructions->push_tail(assignment);
1342
1343 i++;
1344 }
1345
1346 return new(ctx) ir_dereference_variable(var);
1347 }
1348
1349
1350 /**
1351 * Determine if a list consists of a single scalar r-value
1352 */
1353 static bool
1354 single_scalar_parameter(exec_list *parameters)
1355 {
1356 const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1357 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1358
1359 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1360 }
1361
1362
1363 /**
1364 * Generate inline code for a vector constructor
1365 *
1366 * The generated constructor code will consist of a temporary variable
1367 * declaration of the same type as the constructor. A sequence of assignments
1368 * from constructor parameters to the temporary will follow.
1369 *
1370 * \return
1371 * An \c ir_dereference_variable of the temprorary generated in the constructor
1372 * body.
1373 */
1374 static ir_rvalue *
1375 emit_inline_vector_constructor(const glsl_type *type,
1376 exec_list *instructions,
1377 exec_list *parameters,
1378 void *ctx)
1379 {
1380 assert(!parameters->is_empty());
1381
1382 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1383 instructions->push_tail(var);
1384
1385 /* There are three kinds of vector constructors.
1386 *
1387 * - Construct a vector from a single scalar by replicating that scalar to
1388 * all components of the vector.
1389 *
1390 * - Construct a vector from at least a matrix. This case should already
1391 * have been taken care of in ast_function_expression::hir by breaking
1392 * down the matrix into a series of column vectors.
1393 *
1394 * - Construct a vector from an arbirary combination of vectors and
1395 * scalars. The components of the constructor parameters are assigned
1396 * to the vector in order until the vector is full.
1397 */
1398 const unsigned lhs_components = type->components();
1399 if (single_scalar_parameter(parameters)) {
1400 ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1401 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1402 lhs_components);
1403 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1404 const unsigned mask = (1U << lhs_components) - 1;
1405
1406 assert(rhs->type == lhs->type);
1407
1408 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1409 instructions->push_tail(inst);
1410 } else {
1411 unsigned base_component = 0;
1412 unsigned base_lhs_component = 0;
1413 ir_constant_data data;
1414 unsigned constant_mask = 0, constant_components = 0;
1415
1416 memset(&data, 0, sizeof(data));
1417
1418 foreach_in_list(ir_rvalue, param, parameters) {
1419 unsigned rhs_components = param->type->components();
1420
1421 /* Do not try to assign more components to the vector than it has! */
1422 if ((rhs_components + base_lhs_component) > lhs_components) {
1423 rhs_components = lhs_components - base_lhs_component;
1424 }
1425
1426 const ir_constant *const c = param->as_constant();
1427 if (c != NULL) {
1428 for (unsigned i = 0; i < rhs_components; i++) {
1429 switch (c->type->base_type) {
1430 case GLSL_TYPE_UINT:
1431 data.u[i + base_component] = c->get_uint_component(i);
1432 break;
1433 case GLSL_TYPE_INT:
1434 data.i[i + base_component] = c->get_int_component(i);
1435 break;
1436 case GLSL_TYPE_FLOAT:
1437 data.f[i + base_component] = c->get_float_component(i);
1438 break;
1439 case GLSL_TYPE_DOUBLE:
1440 data.d[i + base_component] = c->get_double_component(i);
1441 break;
1442 case GLSL_TYPE_BOOL:
1443 data.b[i + base_component] = c->get_bool_component(i);
1444 break;
1445 case GLSL_TYPE_UINT64:
1446 data.u64[i + base_component] = c->get_uint64_component(i);
1447 break;
1448 case GLSL_TYPE_INT64:
1449 data.i64[i + base_component] = c->get_int64_component(i);
1450 break;
1451 default:
1452 assert(!"Should not get here.");
1453 break;
1454 }
1455 }
1456
1457 /* Mask of fields to be written in the assignment. */
1458 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1459 constant_components += rhs_components;
1460
1461 base_component += rhs_components;
1462 }
1463 /* Advance the component index by the number of components
1464 * that were just assigned.
1465 */
1466 base_lhs_component += rhs_components;
1467 }
1468
1469 if (constant_mask != 0) {
1470 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1471 const glsl_type *rhs_type =
1472 glsl_type::get_instance(var->type->base_type,
1473 constant_components,
1474 1);
1475 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1476
1477 ir_instruction *inst =
1478 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1479 instructions->push_tail(inst);
1480 }
1481
1482 base_component = 0;
1483 foreach_in_list(ir_rvalue, param, parameters) {
1484 unsigned rhs_components = param->type->components();
1485
1486 /* Do not try to assign more components to the vector than it has! */
1487 if ((rhs_components + base_component) > lhs_components) {
1488 rhs_components = lhs_components - base_component;
1489 }
1490
1491 /* If we do not have any components left to copy, break out of the
1492 * loop. This can happen when initializing a vec4 with a mat3 as the
1493 * mat3 would have been broken into a series of column vectors.
1494 */
1495 if (rhs_components == 0) {
1496 break;
1497 }
1498
1499 const ir_constant *const c = param->as_constant();
1500 if (c == NULL) {
1501 /* Mask of fields to be written in the assignment. */
1502 const unsigned write_mask = ((1U << rhs_components) - 1)
1503 << base_component;
1504
1505 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1506
1507 /* Generate a swizzle so that LHS and RHS sizes match. */
1508 ir_rvalue *rhs =
1509 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1510
1511 ir_instruction *inst =
1512 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1513 instructions->push_tail(inst);
1514 }
1515
1516 /* Advance the component index by the number of components that were
1517 * just assigned.
1518 */
1519 base_component += rhs_components;
1520 }
1521 }
1522 return new(ctx) ir_dereference_variable(var);
1523 }
1524
1525
1526 /**
1527 * Generate assignment of a portion of a vector to a portion of a matrix column
1528 *
1529 * \param src_base First component of the source to be used in assignment
1530 * \param column Column of destination to be assiged
1531 * \param row_base First component of the destination column to be assigned
1532 * \param count Number of components to be assigned
1533 *
1534 * \note
1535 * \c src_base + \c count must be less than or equal to the number of
1536 * components in the source vector.
1537 */
1538 static ir_instruction *
1539 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1540 ir_rvalue *src, unsigned src_base, unsigned count,
1541 void *mem_ctx)
1542 {
1543 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1544 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1545 col_idx);
1546
1547 assert(column_ref->type->components() >= (row_base + count));
1548 assert(src->type->components() >= (src_base + count));
1549
1550 /* Generate a swizzle that extracts the number of components from the source
1551 * that are to be assigned to the column of the matrix.
1552 */
1553 if (count < src->type->vector_elements) {
1554 src = new(mem_ctx) ir_swizzle(src,
1555 src_base + 0, src_base + 1,
1556 src_base + 2, src_base + 3,
1557 count);
1558 }
1559
1560 /* Mask of fields to be written in the assignment. */
1561 const unsigned write_mask = ((1U << count) - 1) << row_base;
1562
1563 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1564 }
1565
1566
1567 /**
1568 * Generate inline code for a matrix constructor
1569 *
1570 * The generated constructor code will consist of a temporary variable
1571 * declaration of the same type as the constructor. A sequence of assignments
1572 * from constructor parameters to the temporary will follow.
1573 *
1574 * \return
1575 * An \c ir_dereference_variable of the temprorary generated in the constructor
1576 * body.
1577 */
1578 static ir_rvalue *
1579 emit_inline_matrix_constructor(const glsl_type *type,
1580 exec_list *instructions,
1581 exec_list *parameters,
1582 void *ctx)
1583 {
1584 assert(!parameters->is_empty());
1585
1586 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1587 instructions->push_tail(var);
1588
1589 /* There are three kinds of matrix constructors.
1590 *
1591 * - Construct a matrix from a single scalar by replicating that scalar to
1592 * along the diagonal of the matrix and setting all other components to
1593 * zero.
1594 *
1595 * - Construct a matrix from an arbirary combination of vectors and
1596 * scalars. The components of the constructor parameters are assigned
1597 * to the matrix in column-major order until the matrix is full.
1598 *
1599 * - Construct a matrix from a single matrix. The source matrix is copied
1600 * to the upper left portion of the constructed matrix, and the remaining
1601 * elements take values from the identity matrix.
1602 */
1603 ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1604 if (single_scalar_parameter(parameters)) {
1605 /* Assign the scalar to the X component of a vec4, and fill the remaining
1606 * components with zero.
1607 */
1608 glsl_base_type param_base_type = first_param->type->base_type;
1609 assert(first_param->type->is_float() || first_param->type->is_double());
1610 ir_variable *rhs_var =
1611 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1612 "mat_ctor_vec",
1613 ir_var_temporary);
1614 instructions->push_tail(rhs_var);
1615
1616 ir_constant_data zero;
1617 for (unsigned i = 0; i < 4; i++)
1618 if (first_param->type->is_float())
1619 zero.f[i] = 0.0;
1620 else
1621 zero.d[i] = 0.0;
1622
1623 ir_instruction *inst =
1624 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1625 new(ctx) ir_constant(rhs_var->type, &zero));
1626 instructions->push_tail(inst);
1627
1628 ir_dereference *const rhs_ref =
1629 new(ctx) ir_dereference_variable(rhs_var);
1630
1631 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1632 instructions->push_tail(inst);
1633
1634 /* Assign the temporary vector to each column of the destination matrix
1635 * with a swizzle that puts the X component on the diagonal of the
1636 * matrix. In some cases this may mean that the X component does not
1637 * get assigned into the column at all (i.e., when the matrix has more
1638 * columns than rows).
1639 */
1640 static const unsigned rhs_swiz[4][4] = {
1641 { 0, 1, 1, 1 },
1642 { 1, 0, 1, 1 },
1643 { 1, 1, 0, 1 },
1644 { 1, 1, 1, 0 }
1645 };
1646
1647 const unsigned cols_to_init = MIN2(type->matrix_columns,
1648 type->vector_elements);
1649 for (unsigned i = 0; i < cols_to_init; i++) {
1650 ir_constant *const col_idx = new(ctx) ir_constant(i);
1651 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1652 col_idx);
1653
1654 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1655 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1656 type->vector_elements);
1657
1658 inst = new(ctx) ir_assignment(col_ref, rhs);
1659 instructions->push_tail(inst);
1660 }
1661
1662 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1663 ir_constant *const col_idx = new(ctx) ir_constant(i);
1664 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1665 col_idx);
1666
1667 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1668 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1669 type->vector_elements);
1670
1671 inst = new(ctx) ir_assignment(col_ref, rhs);
1672 instructions->push_tail(inst);
1673 }
1674 } else if (first_param->type->is_matrix()) {
1675 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1676 *
1677 * "If a matrix is constructed from a matrix, then each component
1678 * (column i, row j) in the result that has a corresponding
1679 * component (column i, row j) in the argument will be initialized
1680 * from there. All other components will be initialized to the
1681 * identity matrix. If a matrix argument is given to a matrix
1682 * constructor, it is an error to have any other arguments."
1683 */
1684 assert(first_param->next->is_tail_sentinel());
1685 ir_rvalue *const src_matrix = first_param;
1686
1687 /* If the source matrix is smaller, pre-initialize the relavent parts of
1688 * the destination matrix to the identity matrix.
1689 */
1690 if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1691 (src_matrix->type->vector_elements < var->type->vector_elements)) {
1692
1693 /* If the source matrix has fewer rows, every column of the
1694 * destination must be initialized. Otherwise only the columns in
1695 * the destination that do not exist in the source must be
1696 * initialized.
1697 */
1698 unsigned col =
1699 (src_matrix->type->vector_elements < var->type->vector_elements)
1700 ? 0 : src_matrix->type->matrix_columns;
1701
1702 const glsl_type *const col_type = var->type->column_type();
1703 for (/* empty */; col < var->type->matrix_columns; col++) {
1704 ir_constant_data ident;
1705
1706 if (!col_type->is_double()) {
1707 ident.f[0] = 0.0f;
1708 ident.f[1] = 0.0f;
1709 ident.f[2] = 0.0f;
1710 ident.f[3] = 0.0f;
1711 ident.f[col] = 1.0f;
1712 } else {
1713 ident.d[0] = 0.0;
1714 ident.d[1] = 0.0;
1715 ident.d[2] = 0.0;
1716 ident.d[3] = 0.0;
1717 ident.d[col] = 1.0;
1718 }
1719
1720 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1721
1722 ir_rvalue *const lhs =
1723 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1724
1725 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1726 instructions->push_tail(inst);
1727 }
1728 }
1729
1730 /* Assign columns from the source matrix to the destination matrix.
1731 *
1732 * Since the parameter will be used in the RHS of multiple assignments,
1733 * generate a temporary and copy the paramter there.
1734 */
1735 ir_variable *const rhs_var =
1736 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1737 ir_var_temporary);
1738 instructions->push_tail(rhs_var);
1739
1740 ir_dereference *const rhs_var_ref =
1741 new(ctx) ir_dereference_variable(rhs_var);
1742 ir_instruction *const inst =
1743 new(ctx) ir_assignment(rhs_var_ref, first_param);
1744 instructions->push_tail(inst);
1745
1746 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1747 var->type->vector_elements);
1748 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1749 var->type->matrix_columns);
1750
1751 unsigned swiz[4] = { 0, 0, 0, 0 };
1752 for (unsigned i = 1; i < last_row; i++)
1753 swiz[i] = i;
1754
1755 const unsigned write_mask = (1U << last_row) - 1;
1756
1757 for (unsigned i = 0; i < last_col; i++) {
1758 ir_dereference *const lhs =
1759 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1760 ir_rvalue *const rhs_col =
1761 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1762
1763 /* If one matrix has columns that are smaller than the columns of the
1764 * other matrix, wrap the column access of the larger with a swizzle
1765 * so that the LHS and RHS of the assignment have the same size (and
1766 * therefore have the same type).
1767 *
1768 * It would be perfectly valid to unconditionally generate the
1769 * swizzles, this this will typically result in a more compact IR
1770 * tree.
1771 */
1772 ir_rvalue *rhs;
1773 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1774 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1775 } else {
1776 rhs = rhs_col;
1777 }
1778
1779 ir_instruction *inst =
1780 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1781 instructions->push_tail(inst);
1782 }
1783 } else {
1784 const unsigned cols = type->matrix_columns;
1785 const unsigned rows = type->vector_elements;
1786 unsigned remaining_slots = rows * cols;
1787 unsigned col_idx = 0;
1788 unsigned row_idx = 0;
1789
1790 foreach_in_list(ir_rvalue, rhs, parameters) {
1791 unsigned rhs_components = rhs->type->components();
1792 unsigned rhs_base = 0;
1793
1794 if (remaining_slots == 0)
1795 break;
1796
1797 /* Since the parameter might be used in the RHS of two assignments,
1798 * generate a temporary and copy the paramter there.
1799 */
1800 ir_variable *rhs_var =
1801 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1802 instructions->push_tail(rhs_var);
1803
1804 ir_dereference *rhs_var_ref =
1805 new(ctx) ir_dereference_variable(rhs_var);
1806 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1807 instructions->push_tail(inst);
1808
1809 do {
1810 /* Assign the current parameter to as many components of the matrix
1811 * as it will fill.
1812 *
1813 * NOTE: A single vector parameter can span two matrix columns. A
1814 * single vec4, for example, can completely fill a mat2.
1815 */
1816 unsigned count = MIN2(rows - row_idx,
1817 rhs_components - rhs_base);
1818
1819 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1820 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1821 row_idx,
1822 rhs_var_ref,
1823 rhs_base,
1824 count, ctx);
1825 instructions->push_tail(inst);
1826 rhs_base += count;
1827 row_idx += count;
1828 remaining_slots -= count;
1829
1830 /* Sometimes, there is still data left in the parameters and
1831 * components left to be set in the destination but in other
1832 * column.
1833 */
1834 if (row_idx >= rows) {
1835 row_idx = 0;
1836 col_idx++;
1837 }
1838 } while(remaining_slots > 0 && rhs_base < rhs_components);
1839 }
1840 }
1841
1842 return new(ctx) ir_dereference_variable(var);
1843 }
1844
1845
1846 static ir_rvalue *
1847 emit_inline_record_constructor(const glsl_type *type,
1848 exec_list *instructions,
1849 exec_list *parameters,
1850 void *mem_ctx)
1851 {
1852 ir_variable *const var =
1853 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1854 ir_dereference_variable *const d =
1855 new(mem_ctx) ir_dereference_variable(var);
1856
1857 instructions->push_tail(var);
1858
1859 exec_node *node = parameters->get_head_raw();
1860 for (unsigned i = 0; i < type->length; i++) {
1861 assert(!node->is_tail_sentinel());
1862
1863 ir_dereference *const lhs =
1864 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1865 type->fields.structure[i].name);
1866
1867 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1868 assert(rhs != NULL);
1869
1870 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1871
1872 instructions->push_tail(assign);
1873 node = node->next;
1874 }
1875
1876 return d;
1877 }
1878
1879
1880 static ir_rvalue *
1881 process_record_constructor(exec_list *instructions,
1882 const glsl_type *constructor_type,
1883 YYLTYPE *loc, exec_list *parameters,
1884 struct _mesa_glsl_parse_state *state)
1885 {
1886 void *ctx = state;
1887 /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1888 *
1889 * "The arguments to the constructor will be used to set the structure's
1890 * fields, in order, using one argument per field. Each argument must
1891 * be the same type as the field it sets, or be a type that can be
1892 * converted to the field's type according to Section 4.1.10 “Implicit
1893 * Conversions.”"
1894 *
1895 * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1896 *
1897 * "In all cases, the innermost initializer (i.e., not a list of
1898 * initializers enclosed in curly braces) applied to an object must
1899 * have the same type as the object being initialized or be a type that
1900 * can be converted to the object's type according to section 4.1.10
1901 * "Implicit Conversions". In the latter case, an implicit conversion
1902 * will be done on the initializer before the assignment is done."
1903 */
1904 exec_list actual_parameters;
1905
1906 const unsigned parameter_count =
1907 process_parameters(instructions, &actual_parameters, parameters,
1908 state);
1909
1910 if (parameter_count != constructor_type->length) {
1911 _mesa_glsl_error(loc, state,
1912 "%s parameters in constructor for `%s'",
1913 parameter_count > constructor_type->length
1914 ? "too many": "insufficient",
1915 constructor_type->name);
1916 return ir_rvalue::error_value(ctx);
1917 }
1918
1919 bool all_parameters_are_constant = true;
1920
1921 int i = 0;
1922 /* Type cast each parameter and, if possible, fold constants. */
1923 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1924
1925 const glsl_struct_field *struct_field =
1926 &constructor_type->fields.structure[i];
1927
1928 /* Apply implicit conversions (not the scalar constructor rules, see the
1929 * spec quote above!) and attempt to convert the parameter to a constant
1930 * valued expression. After doing so, track whether or not all the
1931 * parameters to the constructor are trivially constant valued
1932 * expressions.
1933 */
1934 all_parameters_are_constant &=
1935 implicitly_convert_component(ir, struct_field->type->base_type,
1936 state);
1937
1938 if (ir->type != struct_field->type) {
1939 _mesa_glsl_error(loc, state,
1940 "parameter type mismatch in constructor for `%s.%s' "
1941 "(%s vs %s)",
1942 constructor_type->name,
1943 struct_field->name,
1944 ir->type->name,
1945 struct_field->type->name);
1946 return ir_rvalue::error_value(ctx);
1947 }
1948
1949 i++;
1950 }
1951
1952 if (all_parameters_are_constant) {
1953 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1954 } else {
1955 return emit_inline_record_constructor(constructor_type, instructions,
1956 &actual_parameters, state);
1957 }
1958 }
1959
1960 ir_rvalue *
1961 ast_function_expression::handle_method(exec_list *instructions,
1962 struct _mesa_glsl_parse_state *state)
1963 {
1964 const ast_expression *field = subexpressions[0];
1965 ir_rvalue *op;
1966 ir_rvalue *result;
1967 void *ctx = state;
1968 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1969 YYLTYPE loc = get_location();
1970 state->check_version(120, 300, &loc, "methods not supported");
1971
1972 const char *method;
1973 method = field->primary_expression.identifier;
1974
1975 /* This would prevent to raise "uninitialized variable" warnings when
1976 * calling array.length.
1977 */
1978 field->subexpressions[0]->set_is_lhs(true);
1979 op = field->subexpressions[0]->hir(instructions, state);
1980 if (strcmp(method, "length") == 0) {
1981 if (!this->expressions.is_empty()) {
1982 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1983 goto fail;
1984 }
1985
1986 if (op->type->is_array()) {
1987 if (op->type->is_unsized_array()) {
1988 if (!state->has_shader_storage_buffer_objects()) {
1989 _mesa_glsl_error(&loc, state,
1990 "length called on unsized array"
1991 " only available with"
1992 " ARB_shader_storage_buffer_object");
1993 }
1994 /* Calculate length of an unsized array in run-time */
1995 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
1996 op);
1997 } else {
1998 result = new(ctx) ir_constant(op->type->array_size());
1999 }
2000 } else if (op->type->is_vector()) {
2001 if (state->has_420pack()) {
2002 /* .length() returns int. */
2003 result = new(ctx) ir_constant((int) op->type->vector_elements);
2004 } else {
2005 _mesa_glsl_error(&loc, state, "length method on matrix only"
2006 " available with ARB_shading_language_420pack");
2007 goto fail;
2008 }
2009 } else if (op->type->is_matrix()) {
2010 if (state->has_420pack()) {
2011 /* .length() returns int. */
2012 result = new(ctx) ir_constant((int) op->type->matrix_columns);
2013 } else {
2014 _mesa_glsl_error(&loc, state, "length method on matrix only"
2015 " available with ARB_shading_language_420pack");
2016 goto fail;
2017 }
2018 } else {
2019 _mesa_glsl_error(&loc, state, "length called on scalar.");
2020 goto fail;
2021 }
2022 } else {
2023 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
2024 goto fail;
2025 }
2026 return result;
2027 fail:
2028 return ir_rvalue::error_value(ctx);
2029 }
2030
2031 static inline bool is_valid_constructor(const glsl_type *type,
2032 struct _mesa_glsl_parse_state *state)
2033 {
2034 return type->is_numeric() || type->is_boolean() ||
2035 (state->has_bindless() && (type->is_sampler() || type->is_image()));
2036 }
2037
2038 ir_rvalue *
2039 ast_function_expression::hir(exec_list *instructions,
2040 struct _mesa_glsl_parse_state *state)
2041 {
2042 void *ctx = state;
2043 /* There are three sorts of function calls.
2044 *
2045 * 1. constructors - The first subexpression is an ast_type_specifier.
2046 * 2. methods - Only the .length() method of array types.
2047 * 3. functions - Calls to regular old functions.
2048 *
2049 */
2050 if (is_constructor()) {
2051 const ast_type_specifier *type =
2052 (ast_type_specifier *) subexpressions[0];
2053 YYLTYPE loc = type->get_location();
2054 const char *name;
2055
2056 const glsl_type *const constructor_type = type->glsl_type(& name, state);
2057
2058 /* constructor_type can be NULL if a variable with the same name as the
2059 * structure has come into scope.
2060 */
2061 if (constructor_type == NULL) {
2062 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2063 "may be shadowed by a variable with the same name)",
2064 type->type_name);
2065 return ir_rvalue::error_value(ctx);
2066 }
2067
2068
2069 /* Constructors for opaque types are illegal.
2070 *
2071 * From section 4.1.7 of the ARB_bindless_texture spec:
2072 *
2073 * "Samplers are represented using 64-bit integer handles, and may be "
2074 * converted to and from 64-bit integers using constructors."
2075 *
2076 * From section 4.1.X of the ARB_bindless_texture spec:
2077 *
2078 * "Images are represented using 64-bit integer handles, and may be
2079 * converted to and from 64-bit integers using constructors."
2080 */
2081 if (constructor_type->contains_atomic() ||
2082 (!state->has_bindless() && constructor_type->contains_opaque())) {
2083 _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2084 state->has_bindless() ? "atomic" : "opaque",
2085 constructor_type->name);
2086 return ir_rvalue::error_value(ctx);
2087 }
2088
2089 if (constructor_type->is_subroutine()) {
2090 _mesa_glsl_error(& loc, state,
2091 "subroutine name cannot be a constructor `%s'",
2092 constructor_type->name);
2093 return ir_rvalue::error_value(ctx);
2094 }
2095
2096 if (constructor_type->is_array()) {
2097 if (!state->check_version(120, 300, &loc,
2098 "array constructors forbidden")) {
2099 return ir_rvalue::error_value(ctx);
2100 }
2101
2102 return process_array_constructor(instructions, constructor_type,
2103 & loc, &this->expressions, state);
2104 }
2105
2106
2107 /* There are two kinds of constructor calls. Constructors for arrays and
2108 * structures must have the exact number of arguments with matching types
2109 * in the correct order. These constructors follow essentially the same
2110 * type matching rules as functions.
2111 *
2112 * Constructors for built-in language types, such as mat4 and vec2, are
2113 * free form. The only requirements are that the parameters must provide
2114 * enough values of the correct scalar type and that no arguments are
2115 * given past the last used argument.
2116 *
2117 * When using the C-style initializer syntax from GLSL 4.20, constructors
2118 * must have the exact number of arguments with matching types in the
2119 * correct order.
2120 */
2121 if (constructor_type->is_record()) {
2122 return process_record_constructor(instructions, constructor_type,
2123 &loc, &this->expressions,
2124 state);
2125 }
2126
2127 if (!is_valid_constructor(constructor_type, state))
2128 return ir_rvalue::error_value(ctx);
2129
2130 /* Total number of components of the type being constructed. */
2131 const unsigned type_components = constructor_type->components();
2132
2133 /* Number of components from parameters that have actually been
2134 * consumed. This is used to perform several kinds of error checking.
2135 */
2136 unsigned components_used = 0;
2137
2138 unsigned matrix_parameters = 0;
2139 unsigned nonmatrix_parameters = 0;
2140 exec_list actual_parameters;
2141
2142 foreach_list_typed(ast_node, ast, link, &this->expressions) {
2143 ir_rvalue *result = ast->hir(instructions, state);
2144
2145 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2146 *
2147 * "It is an error to provide extra arguments beyond this
2148 * last used argument."
2149 */
2150 if (components_used >= type_components) {
2151 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2152 "constructor",
2153 constructor_type->name);
2154 return ir_rvalue::error_value(ctx);
2155 }
2156
2157 if (!is_valid_constructor(result->type, state)) {
2158 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2159 "non-numeric data type",
2160 constructor_type->name);
2161 return ir_rvalue::error_value(ctx);
2162 }
2163
2164 /* Count the number of matrix and nonmatrix parameters. This
2165 * is used below to enforce some of the constructor rules.
2166 */
2167 if (result->type->is_matrix())
2168 matrix_parameters++;
2169 else
2170 nonmatrix_parameters++;
2171
2172 actual_parameters.push_tail(result);
2173 components_used += result->type->components();
2174 }
2175
2176 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2177 *
2178 * "It is an error to construct matrices from other matrices. This
2179 * is reserved for future use."
2180 */
2181 if (matrix_parameters > 0
2182 && constructor_type->is_matrix()
2183 && !state->check_version(120, 100, &loc,
2184 "cannot construct `%s' from a matrix",
2185 constructor_type->name)) {
2186 return ir_rvalue::error_value(ctx);
2187 }
2188
2189 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2190 *
2191 * "If a matrix argument is given to a matrix constructor, it is
2192 * an error to have any other arguments."
2193 */
2194 if ((matrix_parameters > 0)
2195 && ((matrix_parameters + nonmatrix_parameters) > 1)
2196 && constructor_type->is_matrix()) {
2197 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2198 "matrix must be only parameter",
2199 constructor_type->name);
2200 return ir_rvalue::error_value(ctx);
2201 }
2202
2203 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2204 *
2205 * "In these cases, there must be enough components provided in the
2206 * arguments to provide an initializer for every component in the
2207 * constructed value."
2208 */
2209 if (components_used < type_components && components_used != 1
2210 && matrix_parameters == 0) {
2211 _mesa_glsl_error(& loc, state, "too few components to construct "
2212 "`%s'",
2213 constructor_type->name);
2214 return ir_rvalue::error_value(ctx);
2215 }
2216
2217 /* Matrices can never be consumed as is by any constructor but matrix
2218 * constructors. If the constructor type is not matrix, always break the
2219 * matrix up into a series of column vectors.
2220 */
2221 if (!constructor_type->is_matrix()) {
2222 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2223 if (!matrix->type->is_matrix())
2224 continue;
2225
2226 /* Create a temporary containing the matrix. */
2227 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2228 ir_var_temporary);
2229 instructions->push_tail(var);
2230 instructions->push_tail(
2231 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2232 matrix));
2233 var->constant_value = matrix->constant_expression_value(ctx);
2234
2235 /* Replace the matrix with dereferences of its columns. */
2236 for (int i = 0; i < matrix->type->matrix_columns; i++) {
2237 matrix->insert_before(
2238 new (ctx) ir_dereference_array(var,
2239 new(ctx) ir_constant(i)));
2240 }
2241 matrix->remove();
2242 }
2243 }
2244
2245 bool all_parameters_are_constant = true;
2246
2247 /* Type cast each parameter and, if possible, fold constants.*/
2248 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2249 const glsl_type *desired_type;
2250
2251 /* From section 5.4.1 of the ARB_bindless_texture spec:
2252 *
2253 * "In the following four constructors, the low 32 bits of the sampler
2254 * type correspond to the .x component of the uvec2 and the high 32
2255 * bits correspond to the .y component."
2256 *
2257 * uvec2(any sampler type) // Converts a sampler type to a
2258 * // pair of 32-bit unsigned integers
2259 * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to
2260 * // a sampler type
2261 * uvec2(any image type) // Converts an image type to a
2262 * // pair of 32-bit unsigned integers
2263 * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to
2264 * // an image type
2265 */
2266 if (ir->type->is_sampler() || ir->type->is_image()) {
2267 /* Convert a sampler/image type to a pair of 32-bit unsigned
2268 * integers as defined by ARB_bindless_texture.
2269 */
2270 if (constructor_type != glsl_type::uvec2_type) {
2271 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2272 "be converted to a pair of 32-bit unsigned "
2273 "integers");
2274 }
2275 desired_type = glsl_type::uvec2_type;
2276 } else if (constructor_type->is_sampler() ||
2277 constructor_type->is_image()) {
2278 /* Convert a pair of 32-bit unsigned integers to a sampler or image
2279 * type as defined by ARB_bindless_texture.
2280 */
2281 if (ir->type != glsl_type::uvec2_type) {
2282 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2283 "be converted from a pair of 32-bit unsigned "
2284 "integers");
2285 }
2286 desired_type = constructor_type;
2287 } else {
2288 desired_type =
2289 glsl_type::get_instance(constructor_type->base_type,
2290 ir->type->vector_elements,
2291 ir->type->matrix_columns);
2292 }
2293
2294 ir_rvalue *result = convert_component(ir, desired_type);
2295
2296 /* Attempt to convert the parameter to a constant valued expression.
2297 * After doing so, track whether or not all the parameters to the
2298 * constructor are trivially constant valued expressions.
2299 */
2300 ir_rvalue *const constant = result->constant_expression_value(ctx);
2301
2302 if (constant != NULL)
2303 result = constant;
2304 else
2305 all_parameters_are_constant = false;
2306
2307 if (result != ir) {
2308 ir->replace_with(result);
2309 }
2310 }
2311
2312 /* If all of the parameters are trivially constant, create a
2313 * constant representing the complete collection of parameters.
2314 */
2315 if (all_parameters_are_constant) {
2316 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2317 } else if (constructor_type->is_scalar()) {
2318 return dereference_component((ir_rvalue *)
2319 actual_parameters.get_head_raw(),
2320 0);
2321 } else if (constructor_type->is_vector()) {
2322 return emit_inline_vector_constructor(constructor_type,
2323 instructions,
2324 &actual_parameters,
2325 ctx);
2326 } else {
2327 assert(constructor_type->is_matrix());
2328 return emit_inline_matrix_constructor(constructor_type,
2329 instructions,
2330 &actual_parameters,
2331 ctx);
2332 }
2333 } else if (subexpressions[0]->oper == ast_field_selection) {
2334 return handle_method(instructions, state);
2335 } else {
2336 const ast_expression *id = subexpressions[0];
2337 const char *func_name = NULL;
2338 YYLTYPE loc = get_location();
2339 exec_list actual_parameters;
2340 ir_variable *sub_var = NULL;
2341 ir_rvalue *array_idx = NULL;
2342
2343 process_parameters(instructions, &actual_parameters, &this->expressions,
2344 state);
2345
2346 if (id->oper == ast_array_index) {
2347 array_idx = generate_array_index(ctx, instructions, state, loc,
2348 id->subexpressions[0],
2349 id->subexpressions[1], &func_name,
2350 &actual_parameters);
2351 } else if (id->oper == ast_identifier) {
2352 func_name = id->primary_expression.identifier;
2353 } else {
2354 _mesa_glsl_error(&loc, state, "function name is not an identifier");
2355 }
2356
2357 /* an error was emitted earlier */
2358 if (!func_name)
2359 return ir_rvalue::error_value(ctx);
2360
2361 ir_function_signature *sig =
2362 match_function_by_name(func_name, &actual_parameters, state);
2363
2364 ir_rvalue *value = NULL;
2365 if (sig == NULL) {
2366 sig = match_subroutine_by_name(func_name, &actual_parameters,
2367 state, &sub_var);
2368 }
2369
2370 if (sig == NULL) {
2371 no_matching_function_error(func_name, &loc,
2372 &actual_parameters, state);
2373 value = ir_rvalue::error_value(ctx);
2374 } else if (!verify_parameter_modes(state, sig,
2375 actual_parameters,
2376 this->expressions)) {
2377 /* an error has already been emitted */
2378 value = ir_rvalue::error_value(ctx);
2379 } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2380 /* ftransform refers to global variables, and we don't have any code
2381 * for remapping the variable references in the built-in shader.
2382 */
2383 ir_variable *mvp =
2384 state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2385 ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2386 value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2387 new(ctx) ir_dereference_variable(mvp),
2388 new(ctx) ir_dereference_variable(vtx));
2389 } else {
2390 if (state->stage == MESA_SHADER_TESS_CTRL &&
2391 sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
2392 if (state->current_function == NULL ||
2393 strcmp(state->current_function->function_name(), "main") != 0) {
2394 _mesa_glsl_error(&loc, state,
2395 "barrier() may only be used in main()");
2396 }
2397
2398 if (state->found_return) {
2399 _mesa_glsl_error(&loc, state,
2400 "barrier() may not be used after return");
2401 }
2402
2403 if (instructions != &state->current_function->body) {
2404 _mesa_glsl_error(&loc, state,
2405 "barrier() may not be used in control flow");
2406 }
2407 }
2408
2409 value = generate_call(instructions, sig, &actual_parameters, sub_var,
2410 array_idx, state);
2411 if (!value) {
2412 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2413 "void_var",
2414 ir_var_temporary);
2415 instructions->push_tail(tmp);
2416 value = new(ctx) ir_dereference_variable(tmp);
2417 }
2418 }
2419
2420 return value;
2421 }
2422
2423 unreachable("not reached");
2424 }
2425
2426 bool
2427 ast_function_expression::has_sequence_subexpression() const
2428 {
2429 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2430 if (ast->has_sequence_subexpression())
2431 return true;
2432 }
2433
2434 return false;
2435 }
2436
2437 ir_rvalue *
2438 ast_aggregate_initializer::hir(exec_list *instructions,
2439 struct _mesa_glsl_parse_state *state)
2440 {
2441 void *ctx = state;
2442 YYLTYPE loc = this->get_location();
2443
2444 if (!this->constructor_type) {
2445 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2446 return ir_rvalue::error_value(ctx);
2447 }
2448 const glsl_type *const constructor_type = this->constructor_type;
2449
2450 if (!state->has_420pack()) {
2451 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2452 "GL_ARB_shading_language_420pack extension");
2453 return ir_rvalue::error_value(ctx);
2454 }
2455
2456 if (constructor_type->is_array()) {
2457 return process_array_constructor(instructions, constructor_type, &loc,
2458 &this->expressions, state);
2459 }
2460
2461 if (constructor_type->is_record()) {
2462 return process_record_constructor(instructions, constructor_type, &loc,
2463 &this->expressions, state);
2464 }
2465
2466 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2467 &this->expressions, state);
2468 }