mesa: add support for GL_INTEL_conservative_rasterization
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 static bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_rvalue *rvalue;
1005 if (!error_emitted) {
1006 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1007 ir_var_temporary);
1008 instructions->push_tail(var);
1009 instructions->push_tail(assign(var, rhs));
1010
1011 ir_dereference_variable *deref_var =
1012 new(ctx) ir_dereference_variable(var);
1013 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1014 rvalue = new(ctx) ir_dereference_variable(var);
1015 } else {
1016 rvalue = ir_rvalue::error_value(ctx);
1017 }
1018 *out_rvalue = rvalue;
1019 } else {
1020 if (!error_emitted)
1021 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1022 *out_rvalue = NULL;
1023 }
1024
1025 return error_emitted;
1026 }
1027
1028 static ir_rvalue *
1029 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1030 {
1031 void *ctx = ralloc_parent(lvalue);
1032 ir_variable *var;
1033
1034 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1035 ir_var_temporary);
1036 instructions->push_tail(var);
1037
1038 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1039 lvalue));
1040
1041 return new(ctx) ir_dereference_variable(var);
1042 }
1043
1044
1045 ir_rvalue *
1046 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1047 {
1048 (void) instructions;
1049 (void) state;
1050
1051 return NULL;
1052 }
1053
1054 bool
1055 ast_node::has_sequence_subexpression() const
1056 {
1057 return false;
1058 }
1059
1060 void
1061 ast_node::set_is_lhs(bool /* new_value */)
1062 {
1063 }
1064
1065 void
1066 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1067 struct _mesa_glsl_parse_state *state)
1068 {
1069 (void)hir(instructions, state);
1070 }
1071
1072 void
1073 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1074 struct _mesa_glsl_parse_state *state)
1075 {
1076 (void)hir(instructions, state);
1077 }
1078
1079 static ir_rvalue *
1080 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1081 {
1082 int join_op;
1083 ir_rvalue *cmp = NULL;
1084
1085 if (operation == ir_binop_all_equal)
1086 join_op = ir_binop_logic_and;
1087 else
1088 join_op = ir_binop_logic_or;
1089
1090 switch (op0->type->base_type) {
1091 case GLSL_TYPE_FLOAT:
1092 case GLSL_TYPE_UINT:
1093 case GLSL_TYPE_INT:
1094 case GLSL_TYPE_BOOL:
1095 case GLSL_TYPE_DOUBLE:
1096 return new(mem_ctx) ir_expression(operation, op0, op1);
1097
1098 case GLSL_TYPE_ARRAY: {
1099 for (unsigned int i = 0; i < op0->type->length; i++) {
1100 ir_rvalue *e0, *e1, *result;
1101
1102 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1103 new(mem_ctx) ir_constant(i));
1104 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1105 new(mem_ctx) ir_constant(i));
1106 result = do_comparison(mem_ctx, operation, e0, e1);
1107
1108 if (cmp) {
1109 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1110 } else {
1111 cmp = result;
1112 }
1113 }
1114
1115 mark_whole_array_access(op0);
1116 mark_whole_array_access(op1);
1117 break;
1118 }
1119
1120 case GLSL_TYPE_STRUCT: {
1121 for (unsigned int i = 0; i < op0->type->length; i++) {
1122 ir_rvalue *e0, *e1, *result;
1123 const char *field_name = op0->type->fields.structure[i].name;
1124
1125 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1126 field_name);
1127 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1128 field_name);
1129 result = do_comparison(mem_ctx, operation, e0, e1);
1130
1131 if (cmp) {
1132 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133 } else {
1134 cmp = result;
1135 }
1136 }
1137 break;
1138 }
1139
1140 case GLSL_TYPE_ERROR:
1141 case GLSL_TYPE_VOID:
1142 case GLSL_TYPE_SAMPLER:
1143 case GLSL_TYPE_IMAGE:
1144 case GLSL_TYPE_INTERFACE:
1145 case GLSL_TYPE_ATOMIC_UINT:
1146 case GLSL_TYPE_SUBROUTINE:
1147 case GLSL_TYPE_FUNCTION:
1148 /* I assume a comparison of a struct containing a sampler just
1149 * ignores the sampler present in the type.
1150 */
1151 break;
1152 }
1153
1154 if (cmp == NULL)
1155 cmp = new(mem_ctx) ir_constant(true);
1156
1157 return cmp;
1158 }
1159
1160 /* For logical operations, we want to ensure that the operands are
1161 * scalar booleans. If it isn't, emit an error and return a constant
1162 * boolean to avoid triggering cascading error messages.
1163 */
1164 ir_rvalue *
1165 get_scalar_boolean_operand(exec_list *instructions,
1166 struct _mesa_glsl_parse_state *state,
1167 ast_expression *parent_expr,
1168 int operand,
1169 const char *operand_name,
1170 bool *error_emitted)
1171 {
1172 ast_expression *expr = parent_expr->subexpressions[operand];
1173 void *ctx = state;
1174 ir_rvalue *val = expr->hir(instructions, state);
1175
1176 if (val->type->is_boolean() && val->type->is_scalar())
1177 return val;
1178
1179 if (!*error_emitted) {
1180 YYLTYPE loc = expr->get_location();
1181 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1182 operand_name,
1183 parent_expr->operator_string(parent_expr->oper));
1184 *error_emitted = true;
1185 }
1186
1187 return new(ctx) ir_constant(true);
1188 }
1189
1190 /**
1191 * If name refers to a builtin array whose maximum allowed size is less than
1192 * size, report an error and return true. Otherwise return false.
1193 */
1194 void
1195 check_builtin_array_max_size(const char *name, unsigned size,
1196 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1197 {
1198 if ((strcmp("gl_TexCoord", name) == 0)
1199 && (size > state->Const.MaxTextureCoords)) {
1200 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1201 *
1202 * "The size [of gl_TexCoord] can be at most
1203 * gl_MaxTextureCoords."
1204 */
1205 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1206 "be larger than gl_MaxTextureCoords (%u)",
1207 state->Const.MaxTextureCoords);
1208 } else if (strcmp("gl_ClipDistance", name) == 0) {
1209 state->clip_dist_size = size;
1210 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1211 /* From section 7.1 (Vertex Shader Special Variables) of the
1212 * GLSL 1.30 spec:
1213 *
1214 * "The gl_ClipDistance array is predeclared as unsized and
1215 * must be sized by the shader either redeclaring it with a
1216 * size or indexing it only with integral constant
1217 * expressions. ... The size can be at most
1218 * gl_MaxClipDistances."
1219 */
1220 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1221 "be larger than gl_MaxClipDistances (%u)",
1222 state->Const.MaxClipPlanes);
1223 }
1224 } else if (strcmp("gl_CullDistance", name) == 0) {
1225 state->cull_dist_size = size;
1226 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1227 /* From the ARB_cull_distance spec:
1228 *
1229 * "The gl_CullDistance array is predeclared as unsized and
1230 * must be sized by the shader either redeclaring it with
1231 * a size or indexing it only with integral constant
1232 * expressions. The size determines the number and set of
1233 * enabled cull distances and can be at most
1234 * gl_MaxCullDistances."
1235 */
1236 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1237 "be larger than gl_MaxCullDistances (%u)",
1238 state->Const.MaxClipPlanes);
1239 }
1240 }
1241 }
1242
1243 /**
1244 * Create the constant 1, of a which is appropriate for incrementing and
1245 * decrementing values of the given GLSL type. For example, if type is vec4,
1246 * this creates a constant value of 1.0 having type float.
1247 *
1248 * If the given type is invalid for increment and decrement operators, return
1249 * a floating point 1--the error will be detected later.
1250 */
1251 static ir_rvalue *
1252 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1253 {
1254 switch (type->base_type) {
1255 case GLSL_TYPE_UINT:
1256 return new(ctx) ir_constant((unsigned) 1);
1257 case GLSL_TYPE_INT:
1258 return new(ctx) ir_constant(1);
1259 default:
1260 case GLSL_TYPE_FLOAT:
1261 return new(ctx) ir_constant(1.0f);
1262 }
1263 }
1264
1265 ir_rvalue *
1266 ast_expression::hir(exec_list *instructions,
1267 struct _mesa_glsl_parse_state *state)
1268 {
1269 return do_hir(instructions, state, true);
1270 }
1271
1272 void
1273 ast_expression::hir_no_rvalue(exec_list *instructions,
1274 struct _mesa_glsl_parse_state *state)
1275 {
1276 do_hir(instructions, state, false);
1277 }
1278
1279 void
1280 ast_expression::set_is_lhs(bool new_value)
1281 {
1282 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1283 * if we lack an identifier we can just skip it.
1284 */
1285 if (this->primary_expression.identifier == NULL)
1286 return;
1287
1288 this->is_lhs = new_value;
1289
1290 /* We need to go through the subexpressions tree to cover cases like
1291 * ast_field_selection
1292 */
1293 if (this->subexpressions[0] != NULL)
1294 this->subexpressions[0]->set_is_lhs(new_value);
1295 }
1296
1297 ir_rvalue *
1298 ast_expression::do_hir(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state,
1300 bool needs_rvalue)
1301 {
1302 void *ctx = state;
1303 static const int operations[AST_NUM_OPERATORS] = {
1304 -1, /* ast_assign doesn't convert to ir_expression. */
1305 -1, /* ast_plus doesn't convert to ir_expression. */
1306 ir_unop_neg,
1307 ir_binop_add,
1308 ir_binop_sub,
1309 ir_binop_mul,
1310 ir_binop_div,
1311 ir_binop_mod,
1312 ir_binop_lshift,
1313 ir_binop_rshift,
1314 ir_binop_less,
1315 ir_binop_greater,
1316 ir_binop_lequal,
1317 ir_binop_gequal,
1318 ir_binop_all_equal,
1319 ir_binop_any_nequal,
1320 ir_binop_bit_and,
1321 ir_binop_bit_xor,
1322 ir_binop_bit_or,
1323 ir_unop_bit_not,
1324 ir_binop_logic_and,
1325 ir_binop_logic_xor,
1326 ir_binop_logic_or,
1327 ir_unop_logic_not,
1328
1329 /* Note: The following block of expression types actually convert
1330 * to multiple IR instructions.
1331 */
1332 ir_binop_mul, /* ast_mul_assign */
1333 ir_binop_div, /* ast_div_assign */
1334 ir_binop_mod, /* ast_mod_assign */
1335 ir_binop_add, /* ast_add_assign */
1336 ir_binop_sub, /* ast_sub_assign */
1337 ir_binop_lshift, /* ast_ls_assign */
1338 ir_binop_rshift, /* ast_rs_assign */
1339 ir_binop_bit_and, /* ast_and_assign */
1340 ir_binop_bit_xor, /* ast_xor_assign */
1341 ir_binop_bit_or, /* ast_or_assign */
1342
1343 -1, /* ast_conditional doesn't convert to ir_expression. */
1344 ir_binop_add, /* ast_pre_inc. */
1345 ir_binop_sub, /* ast_pre_dec. */
1346 ir_binop_add, /* ast_post_inc. */
1347 ir_binop_sub, /* ast_post_dec. */
1348 -1, /* ast_field_selection doesn't conv to ir_expression. */
1349 -1, /* ast_array_index doesn't convert to ir_expression. */
1350 -1, /* ast_function_call doesn't conv to ir_expression. */
1351 -1, /* ast_identifier doesn't convert to ir_expression. */
1352 -1, /* ast_int_constant doesn't convert to ir_expression. */
1353 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1354 -1, /* ast_float_constant doesn't conv to ir_expression. */
1355 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1356 -1, /* ast_sequence doesn't convert to ir_expression. */
1357 -1, /* ast_aggregate shouldn't ever even get here. */
1358 };
1359 ir_rvalue *result = NULL;
1360 ir_rvalue *op[3];
1361 const struct glsl_type *type, *orig_type;
1362 bool error_emitted = false;
1363 YYLTYPE loc;
1364
1365 loc = this->get_location();
1366
1367 switch (this->oper) {
1368 case ast_aggregate:
1369 assert(!"ast_aggregate: Should never get here.");
1370 break;
1371
1372 case ast_assign: {
1373 this->subexpressions[0]->set_is_lhs(true);
1374 op[0] = this->subexpressions[0]->hir(instructions, state);
1375 op[1] = this->subexpressions[1]->hir(instructions, state);
1376
1377 error_emitted =
1378 do_assignment(instructions, state,
1379 this->subexpressions[0]->non_lvalue_description,
1380 op[0], op[1], &result, needs_rvalue, false,
1381 this->subexpressions[0]->get_location());
1382 break;
1383 }
1384
1385 case ast_plus:
1386 op[0] = this->subexpressions[0]->hir(instructions, state);
1387
1388 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389
1390 error_emitted = type->is_error();
1391
1392 result = op[0];
1393 break;
1394
1395 case ast_neg:
1396 op[0] = this->subexpressions[0]->hir(instructions, state);
1397
1398 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1399
1400 error_emitted = type->is_error();
1401
1402 result = new(ctx) ir_expression(operations[this->oper], type,
1403 op[0], NULL);
1404 break;
1405
1406 case ast_add:
1407 case ast_sub:
1408 case ast_mul:
1409 case ast_div:
1410 op[0] = this->subexpressions[0]->hir(instructions, state);
1411 op[1] = this->subexpressions[1]->hir(instructions, state);
1412
1413 type = arithmetic_result_type(op[0], op[1],
1414 (this->oper == ast_mul),
1415 state, & loc);
1416 error_emitted = type->is_error();
1417
1418 result = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420 break;
1421
1422 case ast_mod:
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424 op[1] = this->subexpressions[1]->hir(instructions, state);
1425
1426 type = modulus_result_type(op[0], op[1], state, &loc);
1427
1428 assert(operations[this->oper] == ir_binop_mod);
1429
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = type->is_error();
1433 break;
1434
1435 case ast_lshift:
1436 case ast_rshift:
1437 if (!state->check_bitwise_operations_allowed(&loc)) {
1438 error_emitted = true;
1439 }
1440
1441 op[0] = this->subexpressions[0]->hir(instructions, state);
1442 op[1] = this->subexpressions[1]->hir(instructions, state);
1443 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1444 &loc);
1445 result = new(ctx) ir_expression(operations[this->oper], type,
1446 op[0], op[1]);
1447 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1448 break;
1449
1450 case ast_less:
1451 case ast_greater:
1452 case ast_lequal:
1453 case ast_gequal:
1454 op[0] = this->subexpressions[0]->hir(instructions, state);
1455 op[1] = this->subexpressions[1]->hir(instructions, state);
1456
1457 type = relational_result_type(op[0], op[1], state, & loc);
1458
1459 /* The relational operators must either generate an error or result
1460 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1461 */
1462 assert(type->is_error()
1463 || ((type->base_type == GLSL_TYPE_BOOL)
1464 && type->is_scalar()));
1465
1466 result = new(ctx) ir_expression(operations[this->oper], type,
1467 op[0], op[1]);
1468 error_emitted = type->is_error();
1469 break;
1470
1471 case ast_nequal:
1472 case ast_equal:
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475
1476 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1477 *
1478 * "The equality operators equal (==), and not equal (!=)
1479 * operate on all types. They result in a scalar Boolean. If
1480 * the operand types do not match, then there must be a
1481 * conversion from Section 4.1.10 "Implicit Conversions"
1482 * applied to one operand that can make them match, in which
1483 * case this conversion is done."
1484 */
1485
1486 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1487 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1488 "no operation `%1$s' exists that takes a left-hand "
1489 "operand of type 'void' or a right operand of type "
1490 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1491 error_emitted = true;
1492 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1493 && !apply_implicit_conversion(op[1]->type, op[0], state))
1494 || (op[0]->type != op[1]->type)) {
1495 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1496 "type", (this->oper == ast_equal) ? "==" : "!=");
1497 error_emitted = true;
1498 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1499 !state->check_version(120, 300, &loc,
1500 "array comparisons forbidden")) {
1501 error_emitted = true;
1502 } else if ((op[0]->type->contains_subroutine() ||
1503 op[1]->type->contains_subroutine())) {
1504 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1505 error_emitted = true;
1506 } else if ((op[0]->type->contains_opaque() ||
1507 op[1]->type->contains_opaque())) {
1508 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1509 error_emitted = true;
1510 }
1511
1512 if (error_emitted) {
1513 result = new(ctx) ir_constant(false);
1514 } else {
1515 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1516 assert(result->type == glsl_type::bool_type);
1517 }
1518 break;
1519
1520 case ast_bit_and:
1521 case ast_bit_xor:
1522 case ast_bit_or:
1523 op[0] = this->subexpressions[0]->hir(instructions, state);
1524 op[1] = this->subexpressions[1]->hir(instructions, state);
1525 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1526 result = new(ctx) ir_expression(operations[this->oper], type,
1527 op[0], op[1]);
1528 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1529 break;
1530
1531 case ast_bit_not:
1532 op[0] = this->subexpressions[0]->hir(instructions, state);
1533
1534 if (!state->check_bitwise_operations_allowed(&loc)) {
1535 error_emitted = true;
1536 }
1537
1538 if (!op[0]->type->is_integer()) {
1539 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1540 error_emitted = true;
1541 }
1542
1543 type = error_emitted ? glsl_type::error_type : op[0]->type;
1544 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1545 break;
1546
1547 case ast_logic_and: {
1548 exec_list rhs_instructions;
1549 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1550 "LHS", &error_emitted);
1551 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1552 "RHS", &error_emitted);
1553
1554 if (rhs_instructions.is_empty()) {
1555 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1556 type = result->type;
1557 } else {
1558 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1559 "and_tmp",
1560 ir_var_temporary);
1561 instructions->push_tail(tmp);
1562
1563 ir_if *const stmt = new(ctx) ir_if(op[0]);
1564 instructions->push_tail(stmt);
1565
1566 stmt->then_instructions.append_list(&rhs_instructions);
1567 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1568 ir_assignment *const then_assign =
1569 new(ctx) ir_assignment(then_deref, op[1]);
1570 stmt->then_instructions.push_tail(then_assign);
1571
1572 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1573 ir_assignment *const else_assign =
1574 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1575 stmt->else_instructions.push_tail(else_assign);
1576
1577 result = new(ctx) ir_dereference_variable(tmp);
1578 type = tmp->type;
1579 }
1580 break;
1581 }
1582
1583 case ast_logic_or: {
1584 exec_list rhs_instructions;
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "LHS", &error_emitted);
1587 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588 "RHS", &error_emitted);
1589
1590 if (rhs_instructions.is_empty()) {
1591 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1592 type = result->type;
1593 } else {
1594 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1595 "or_tmp",
1596 ir_var_temporary);
1597 instructions->push_tail(tmp);
1598
1599 ir_if *const stmt = new(ctx) ir_if(op[0]);
1600 instructions->push_tail(stmt);
1601
1602 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const then_assign =
1604 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1605 stmt->then_instructions.push_tail(then_assign);
1606
1607 stmt->else_instructions.append_list(&rhs_instructions);
1608 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1609 ir_assignment *const else_assign =
1610 new(ctx) ir_assignment(else_deref, op[1]);
1611 stmt->else_instructions.push_tail(else_assign);
1612
1613 result = new(ctx) ir_dereference_variable(tmp);
1614 type = tmp->type;
1615 }
1616 break;
1617 }
1618
1619 case ast_logic_xor:
1620 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1621 *
1622 * "The logical binary operators and (&&), or ( | | ), and
1623 * exclusive or (^^). They operate only on two Boolean
1624 * expressions and result in a Boolean expression."
1625 */
1626 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1627 &error_emitted);
1628 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1629 &error_emitted);
1630
1631 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1632 op[0], op[1]);
1633 break;
1634
1635 case ast_logic_not:
1636 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637 "operand", &error_emitted);
1638
1639 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1640 op[0], NULL);
1641 break;
1642
1643 case ast_mul_assign:
1644 case ast_div_assign:
1645 case ast_add_assign:
1646 case ast_sub_assign: {
1647 this->subexpressions[0]->set_is_lhs(true);
1648 op[0] = this->subexpressions[0]->hir(instructions, state);
1649 op[1] = this->subexpressions[1]->hir(instructions, state);
1650
1651 orig_type = op[0]->type;
1652 type = arithmetic_result_type(op[0], op[1],
1653 (this->oper == ast_mul_assign),
1654 state, & loc);
1655
1656 if (type != orig_type) {
1657 _mesa_glsl_error(& loc, state,
1658 "could not implicitly convert "
1659 "%s to %s", type->name, orig_type->name);
1660 type = glsl_type::error_type;
1661 }
1662
1663 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1664 op[0], op[1]);
1665
1666 error_emitted =
1667 do_assignment(instructions, state,
1668 this->subexpressions[0]->non_lvalue_description,
1669 op[0]->clone(ctx, NULL), temp_rhs,
1670 &result, needs_rvalue, false,
1671 this->subexpressions[0]->get_location());
1672
1673 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1674 * explicitly test for this because none of the binary expression
1675 * operators allow array operands either.
1676 */
1677
1678 break;
1679 }
1680
1681 case ast_mod_assign: {
1682 this->subexpressions[0]->set_is_lhs(true);
1683 op[0] = this->subexpressions[0]->hir(instructions, state);
1684 op[1] = this->subexpressions[1]->hir(instructions, state);
1685
1686 orig_type = op[0]->type;
1687 type = modulus_result_type(op[0], op[1], state, &loc);
1688
1689 if (type != orig_type) {
1690 _mesa_glsl_error(& loc, state,
1691 "could not implicitly convert "
1692 "%s to %s", type->name, orig_type->name);
1693 type = glsl_type::error_type;
1694 }
1695
1696 assert(operations[this->oper] == ir_binop_mod);
1697
1698 ir_rvalue *temp_rhs;
1699 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1700 op[0], op[1]);
1701
1702 error_emitted =
1703 do_assignment(instructions, state,
1704 this->subexpressions[0]->non_lvalue_description,
1705 op[0]->clone(ctx, NULL), temp_rhs,
1706 &result, needs_rvalue, false,
1707 this->subexpressions[0]->get_location());
1708 break;
1709 }
1710
1711 case ast_ls_assign:
1712 case ast_rs_assign: {
1713 this->subexpressions[0]->set_is_lhs(true);
1714 op[0] = this->subexpressions[0]->hir(instructions, state);
1715 op[1] = this->subexpressions[1]->hir(instructions, state);
1716 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1717 &loc);
1718 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1719 type, op[0], op[1]);
1720 error_emitted =
1721 do_assignment(instructions, state,
1722 this->subexpressions[0]->non_lvalue_description,
1723 op[0]->clone(ctx, NULL), temp_rhs,
1724 &result, needs_rvalue, false,
1725 this->subexpressions[0]->get_location());
1726 break;
1727 }
1728
1729 case ast_and_assign:
1730 case ast_xor_assign:
1731 case ast_or_assign: {
1732 this->subexpressions[0]->set_is_lhs(true);
1733 op[0] = this->subexpressions[0]->hir(instructions, state);
1734 op[1] = this->subexpressions[1]->hir(instructions, state);
1735
1736 orig_type = op[0]->type;
1737 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1738
1739 if (type != orig_type) {
1740 _mesa_glsl_error(& loc, state,
1741 "could not implicitly convert "
1742 "%s to %s", type->name, orig_type->name);
1743 type = glsl_type::error_type;
1744 }
1745
1746 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1747 type, op[0], op[1]);
1748 error_emitted =
1749 do_assignment(instructions, state,
1750 this->subexpressions[0]->non_lvalue_description,
1751 op[0]->clone(ctx, NULL), temp_rhs,
1752 &result, needs_rvalue, false,
1753 this->subexpressions[0]->get_location());
1754 break;
1755 }
1756
1757 case ast_conditional: {
1758 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1759 *
1760 * "The ternary selection operator (?:). It operates on three
1761 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1762 * first expression, which must result in a scalar Boolean."
1763 */
1764 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1765 "condition", &error_emitted);
1766
1767 /* The :? operator is implemented by generating an anonymous temporary
1768 * followed by an if-statement. The last instruction in each branch of
1769 * the if-statement assigns a value to the anonymous temporary. This
1770 * temporary is the r-value of the expression.
1771 */
1772 exec_list then_instructions;
1773 exec_list else_instructions;
1774
1775 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1776 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1777
1778 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1779 *
1780 * "The second and third expressions can be any type, as
1781 * long their types match, or there is a conversion in
1782 * Section 4.1.10 "Implicit Conversions" that can be applied
1783 * to one of the expressions to make their types match. This
1784 * resulting matching type is the type of the entire
1785 * expression."
1786 */
1787 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1788 && !apply_implicit_conversion(op[2]->type, op[1], state))
1789 || (op[1]->type != op[2]->type)) {
1790 YYLTYPE loc = this->subexpressions[1]->get_location();
1791
1792 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1793 "operator must have matching types");
1794 error_emitted = true;
1795 type = glsl_type::error_type;
1796 } else {
1797 type = op[1]->type;
1798 }
1799
1800 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1801 *
1802 * "The second and third expressions must be the same type, but can
1803 * be of any type other than an array."
1804 */
1805 if (type->is_array() &&
1806 !state->check_version(120, 300, &loc,
1807 "second and third operands of ?: operator "
1808 "cannot be arrays")) {
1809 error_emitted = true;
1810 }
1811
1812 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1813 *
1814 * "Except for array indexing, structure member selection, and
1815 * parentheses, opaque variables are not allowed to be operands in
1816 * expressions; such use results in a compile-time error."
1817 */
1818 if (type->contains_opaque()) {
1819 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1820 "of the ?: operator");
1821 error_emitted = true;
1822 }
1823
1824 ir_constant *cond_val = op[0]->constant_expression_value();
1825
1826 if (then_instructions.is_empty()
1827 && else_instructions.is_empty()
1828 && cond_val != NULL) {
1829 result = cond_val->value.b[0] ? op[1] : op[2];
1830 } else {
1831 /* The copy to conditional_tmp reads the whole array. */
1832 if (type->is_array()) {
1833 mark_whole_array_access(op[1]);
1834 mark_whole_array_access(op[2]);
1835 }
1836
1837 ir_variable *const tmp =
1838 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1839 instructions->push_tail(tmp);
1840
1841 ir_if *const stmt = new(ctx) ir_if(op[0]);
1842 instructions->push_tail(stmt);
1843
1844 then_instructions.move_nodes_to(& stmt->then_instructions);
1845 ir_dereference *const then_deref =
1846 new(ctx) ir_dereference_variable(tmp);
1847 ir_assignment *const then_assign =
1848 new(ctx) ir_assignment(then_deref, op[1]);
1849 stmt->then_instructions.push_tail(then_assign);
1850
1851 else_instructions.move_nodes_to(& stmt->else_instructions);
1852 ir_dereference *const else_deref =
1853 new(ctx) ir_dereference_variable(tmp);
1854 ir_assignment *const else_assign =
1855 new(ctx) ir_assignment(else_deref, op[2]);
1856 stmt->else_instructions.push_tail(else_assign);
1857
1858 result = new(ctx) ir_dereference_variable(tmp);
1859 }
1860 break;
1861 }
1862
1863 case ast_pre_inc:
1864 case ast_pre_dec: {
1865 this->non_lvalue_description = (this->oper == ast_pre_inc)
1866 ? "pre-increment operation" : "pre-decrement operation";
1867
1868 op[0] = this->subexpressions[0]->hir(instructions, state);
1869 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1870
1871 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1872
1873 ir_rvalue *temp_rhs;
1874 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1875 op[0], op[1]);
1876
1877 error_emitted =
1878 do_assignment(instructions, state,
1879 this->subexpressions[0]->non_lvalue_description,
1880 op[0]->clone(ctx, NULL), temp_rhs,
1881 &result, needs_rvalue, false,
1882 this->subexpressions[0]->get_location());
1883 break;
1884 }
1885
1886 case ast_post_inc:
1887 case ast_post_dec: {
1888 this->non_lvalue_description = (this->oper == ast_post_inc)
1889 ? "post-increment operation" : "post-decrement operation";
1890 op[0] = this->subexpressions[0]->hir(instructions, state);
1891 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1892
1893 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 /* Get a temporary of a copy of the lvalue before it's modified.
1902 * This may get thrown away later.
1903 */
1904 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1905
1906 ir_rvalue *junk_rvalue;
1907 error_emitted =
1908 do_assignment(instructions, state,
1909 this->subexpressions[0]->non_lvalue_description,
1910 op[0]->clone(ctx, NULL), temp_rhs,
1911 &junk_rvalue, false, false,
1912 this->subexpressions[0]->get_location());
1913
1914 break;
1915 }
1916
1917 case ast_field_selection:
1918 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1919 break;
1920
1921 case ast_array_index: {
1922 YYLTYPE index_loc = subexpressions[1]->get_location();
1923
1924 /* Getting if an array is being used uninitialized is beyond what we get
1925 * from ir_value.data.assigned. Setting is_lhs as true would force to
1926 * not raise a uninitialized warning when using an array
1927 */
1928 subexpressions[0]->set_is_lhs(true);
1929 op[0] = subexpressions[0]->hir(instructions, state);
1930 op[1] = subexpressions[1]->hir(instructions, state);
1931
1932 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1933 loc, index_loc);
1934
1935 if (result->type->is_error())
1936 error_emitted = true;
1937
1938 break;
1939 }
1940
1941 case ast_unsized_array_dim:
1942 assert(!"ast_unsized_array_dim: Should never get here.");
1943 break;
1944
1945 case ast_function_call:
1946 /* Should *NEVER* get here. ast_function_call should always be handled
1947 * by ast_function_expression::hir.
1948 */
1949 assert(0);
1950 break;
1951
1952 case ast_identifier: {
1953 /* ast_identifier can appear several places in a full abstract syntax
1954 * tree. This particular use must be at location specified in the grammar
1955 * as 'variable_identifier'.
1956 */
1957 ir_variable *var =
1958 state->symbols->get_variable(this->primary_expression.identifier);
1959
1960 if (var == NULL) {
1961 /* the identifier might be a subroutine name */
1962 char *sub_name;
1963 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1964 var = state->symbols->get_variable(sub_name);
1965 ralloc_free(sub_name);
1966 }
1967
1968 if (var != NULL) {
1969 var->data.used = true;
1970 result = new(ctx) ir_dereference_variable(var);
1971
1972 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1973 && !this->is_lhs
1974 && result->variable_referenced()->data.assigned != true
1975 && !is_gl_identifier(var->name)) {
1976 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1977 this->primary_expression.identifier);
1978 }
1979 } else {
1980 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1981 this->primary_expression.identifier);
1982
1983 result = ir_rvalue::error_value(ctx);
1984 error_emitted = true;
1985 }
1986 break;
1987 }
1988
1989 case ast_int_constant:
1990 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1991 break;
1992
1993 case ast_uint_constant:
1994 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1995 break;
1996
1997 case ast_float_constant:
1998 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1999 break;
2000
2001 case ast_bool_constant:
2002 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2003 break;
2004
2005 case ast_double_constant:
2006 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2007 break;
2008
2009 case ast_sequence: {
2010 /* It should not be possible to generate a sequence in the AST without
2011 * any expressions in it.
2012 */
2013 assert(!this->expressions.is_empty());
2014
2015 /* The r-value of a sequence is the last expression in the sequence. If
2016 * the other expressions in the sequence do not have side-effects (and
2017 * therefore add instructions to the instruction list), they get dropped
2018 * on the floor.
2019 */
2020 exec_node *previous_tail = NULL;
2021 YYLTYPE previous_operand_loc = loc;
2022
2023 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2024 /* If one of the operands of comma operator does not generate any
2025 * code, we want to emit a warning. At each pass through the loop
2026 * previous_tail will point to the last instruction in the stream
2027 * *before* processing the previous operand. Naturally,
2028 * instructions->get_tail_raw() will point to the last instruction in
2029 * the stream *after* processing the previous operand. If the two
2030 * pointers match, then the previous operand had no effect.
2031 *
2032 * The warning behavior here differs slightly from GCC. GCC will
2033 * only emit a warning if none of the left-hand operands have an
2034 * effect. However, it will emit a warning for each. I believe that
2035 * there are some cases in C (especially with GCC extensions) where
2036 * it is useful to have an intermediate step in a sequence have no
2037 * effect, but I don't think these cases exist in GLSL. Either way,
2038 * it would be a giant hassle to replicate that behavior.
2039 */
2040 if (previous_tail == instructions->get_tail_raw()) {
2041 _mesa_glsl_warning(&previous_operand_loc, state,
2042 "left-hand operand of comma expression has "
2043 "no effect");
2044 }
2045
2046 /* The tail is directly accessed instead of using the get_tail()
2047 * method for performance reasons. get_tail() has extra code to
2048 * return NULL when the list is empty. We don't care about that
2049 * here, so using get_tail_raw() is fine.
2050 */
2051 previous_tail = instructions->get_tail_raw();
2052 previous_operand_loc = ast->get_location();
2053
2054 result = ast->hir(instructions, state);
2055 }
2056
2057 /* Any errors should have already been emitted in the loop above.
2058 */
2059 error_emitted = true;
2060 break;
2061 }
2062 }
2063 type = NULL; /* use result->type, not type. */
2064 assert(result != NULL || !needs_rvalue);
2065
2066 if (result && result->type->is_error() && !error_emitted)
2067 _mesa_glsl_error(& loc, state, "type mismatch");
2068
2069 return result;
2070 }
2071
2072 bool
2073 ast_expression::has_sequence_subexpression() const
2074 {
2075 switch (this->oper) {
2076 case ast_plus:
2077 case ast_neg:
2078 case ast_bit_not:
2079 case ast_logic_not:
2080 case ast_pre_inc:
2081 case ast_pre_dec:
2082 case ast_post_inc:
2083 case ast_post_dec:
2084 return this->subexpressions[0]->has_sequence_subexpression();
2085
2086 case ast_assign:
2087 case ast_add:
2088 case ast_sub:
2089 case ast_mul:
2090 case ast_div:
2091 case ast_mod:
2092 case ast_lshift:
2093 case ast_rshift:
2094 case ast_less:
2095 case ast_greater:
2096 case ast_lequal:
2097 case ast_gequal:
2098 case ast_nequal:
2099 case ast_equal:
2100 case ast_bit_and:
2101 case ast_bit_xor:
2102 case ast_bit_or:
2103 case ast_logic_and:
2104 case ast_logic_or:
2105 case ast_logic_xor:
2106 case ast_array_index:
2107 case ast_mul_assign:
2108 case ast_div_assign:
2109 case ast_add_assign:
2110 case ast_sub_assign:
2111 case ast_mod_assign:
2112 case ast_ls_assign:
2113 case ast_rs_assign:
2114 case ast_and_assign:
2115 case ast_xor_assign:
2116 case ast_or_assign:
2117 return this->subexpressions[0]->has_sequence_subexpression() ||
2118 this->subexpressions[1]->has_sequence_subexpression();
2119
2120 case ast_conditional:
2121 return this->subexpressions[0]->has_sequence_subexpression() ||
2122 this->subexpressions[1]->has_sequence_subexpression() ||
2123 this->subexpressions[2]->has_sequence_subexpression();
2124
2125 case ast_sequence:
2126 return true;
2127
2128 case ast_field_selection:
2129 case ast_identifier:
2130 case ast_int_constant:
2131 case ast_uint_constant:
2132 case ast_float_constant:
2133 case ast_bool_constant:
2134 case ast_double_constant:
2135 return false;
2136
2137 case ast_aggregate:
2138 return false;
2139
2140 case ast_function_call:
2141 unreachable("should be handled by ast_function_expression::hir");
2142
2143 case ast_unsized_array_dim:
2144 unreachable("ast_unsized_array_dim: Should never get here.");
2145 }
2146
2147 return false;
2148 }
2149
2150 ir_rvalue *
2151 ast_expression_statement::hir(exec_list *instructions,
2152 struct _mesa_glsl_parse_state *state)
2153 {
2154 /* It is possible to have expression statements that don't have an
2155 * expression. This is the solitary semicolon:
2156 *
2157 * for (i = 0; i < 5; i++)
2158 * ;
2159 *
2160 * In this case the expression will be NULL. Test for NULL and don't do
2161 * anything in that case.
2162 */
2163 if (expression != NULL)
2164 expression->hir_no_rvalue(instructions, state);
2165
2166 /* Statements do not have r-values.
2167 */
2168 return NULL;
2169 }
2170
2171
2172 ir_rvalue *
2173 ast_compound_statement::hir(exec_list *instructions,
2174 struct _mesa_glsl_parse_state *state)
2175 {
2176 if (new_scope)
2177 state->symbols->push_scope();
2178
2179 foreach_list_typed (ast_node, ast, link, &this->statements)
2180 ast->hir(instructions, state);
2181
2182 if (new_scope)
2183 state->symbols->pop_scope();
2184
2185 /* Compound statements do not have r-values.
2186 */
2187 return NULL;
2188 }
2189
2190 /**
2191 * Evaluate the given exec_node (which should be an ast_node representing
2192 * a single array dimension) and return its integer value.
2193 */
2194 static unsigned
2195 process_array_size(exec_node *node,
2196 struct _mesa_glsl_parse_state *state)
2197 {
2198 exec_list dummy_instructions;
2199
2200 ast_node *array_size = exec_node_data(ast_node, node, link);
2201
2202 /**
2203 * Dimensions other than the outermost dimension can by unsized if they
2204 * are immediately sized by a constructor or initializer.
2205 */
2206 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2207 return 0;
2208
2209 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2210 YYLTYPE loc = array_size->get_location();
2211
2212 if (ir == NULL) {
2213 _mesa_glsl_error(& loc, state,
2214 "array size could not be resolved");
2215 return 0;
2216 }
2217
2218 if (!ir->type->is_integer()) {
2219 _mesa_glsl_error(& loc, state,
2220 "array size must be integer type");
2221 return 0;
2222 }
2223
2224 if (!ir->type->is_scalar()) {
2225 _mesa_glsl_error(& loc, state,
2226 "array size must be scalar type");
2227 return 0;
2228 }
2229
2230 ir_constant *const size = ir->constant_expression_value();
2231 if (size == NULL ||
2232 (state->is_version(120, 300) &&
2233 array_size->has_sequence_subexpression())) {
2234 _mesa_glsl_error(& loc, state, "array size must be a "
2235 "constant valued expression");
2236 return 0;
2237 }
2238
2239 if (size->value.i[0] <= 0) {
2240 _mesa_glsl_error(& loc, state, "array size must be > 0");
2241 return 0;
2242 }
2243
2244 assert(size->type == ir->type);
2245
2246 /* If the array size is const (and we've verified that
2247 * it is) then no instructions should have been emitted
2248 * when we converted it to HIR. If they were emitted,
2249 * then either the array size isn't const after all, or
2250 * we are emitting unnecessary instructions.
2251 */
2252 assert(dummy_instructions.is_empty());
2253
2254 return size->value.u[0];
2255 }
2256
2257 static const glsl_type *
2258 process_array_type(YYLTYPE *loc, const glsl_type *base,
2259 ast_array_specifier *array_specifier,
2260 struct _mesa_glsl_parse_state *state)
2261 {
2262 const glsl_type *array_type = base;
2263
2264 if (array_specifier != NULL) {
2265 if (base->is_array()) {
2266
2267 /* From page 19 (page 25) of the GLSL 1.20 spec:
2268 *
2269 * "Only one-dimensional arrays may be declared."
2270 */
2271 if (!state->check_arrays_of_arrays_allowed(loc)) {
2272 return glsl_type::error_type;
2273 }
2274 }
2275
2276 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2277 !node->is_head_sentinel(); node = node->prev) {
2278 unsigned array_size = process_array_size(node, state);
2279 array_type = glsl_type::get_array_instance(array_type, array_size);
2280 }
2281 }
2282
2283 return array_type;
2284 }
2285
2286 static bool
2287 precision_qualifier_allowed(const glsl_type *type)
2288 {
2289 /* Precision qualifiers apply to floating point, integer and opaque
2290 * types.
2291 *
2292 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2293 * "Any floating point or any integer declaration can have the type
2294 * preceded by one of these precision qualifiers [...] Literal
2295 * constants do not have precision qualifiers. Neither do Boolean
2296 * variables.
2297 *
2298 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2299 * spec also says:
2300 *
2301 * "Precision qualifiers are added for code portability with OpenGL
2302 * ES, not for functionality. They have the same syntax as in OpenGL
2303 * ES."
2304 *
2305 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2306 *
2307 * "uniform lowp sampler2D sampler;
2308 * highp vec2 coord;
2309 * ...
2310 * lowp vec4 col = texture2D (sampler, coord);
2311 * // texture2D returns lowp"
2312 *
2313 * From this, we infer that GLSL 1.30 (and later) should allow precision
2314 * qualifiers on sampler types just like float and integer types.
2315 */
2316 const glsl_type *const t = type->without_array();
2317
2318 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2319 !t->is_record();
2320 }
2321
2322 const glsl_type *
2323 ast_type_specifier::glsl_type(const char **name,
2324 struct _mesa_glsl_parse_state *state) const
2325 {
2326 const struct glsl_type *type;
2327
2328 type = state->symbols->get_type(this->type_name);
2329 *name = this->type_name;
2330
2331 YYLTYPE loc = this->get_location();
2332 type = process_array_type(&loc, type, this->array_specifier, state);
2333
2334 return type;
2335 }
2336
2337 /**
2338 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2339 *
2340 * "The precision statement
2341 *
2342 * precision precision-qualifier type;
2343 *
2344 * can be used to establish a default precision qualifier. The type field can
2345 * be either int or float or any of the sampler types, (...) If type is float,
2346 * the directive applies to non-precision-qualified floating point type
2347 * (scalar, vector, and matrix) declarations. If type is int, the directive
2348 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2349 * and unsigned) declarations."
2350 *
2351 * We use the symbol table to keep the values of the default precisions for
2352 * each 'type' in each scope and we use the 'type' string from the precision
2353 * statement as key in the symbol table. When we want to retrieve the default
2354 * precision associated with a given glsl_type we need to know the type string
2355 * associated with it. This is what this function returns.
2356 */
2357 static const char *
2358 get_type_name_for_precision_qualifier(const glsl_type *type)
2359 {
2360 switch (type->base_type) {
2361 case GLSL_TYPE_FLOAT:
2362 return "float";
2363 case GLSL_TYPE_UINT:
2364 case GLSL_TYPE_INT:
2365 return "int";
2366 case GLSL_TYPE_ATOMIC_UINT:
2367 return "atomic_uint";
2368 case GLSL_TYPE_IMAGE:
2369 /* fallthrough */
2370 case GLSL_TYPE_SAMPLER: {
2371 const unsigned type_idx =
2372 type->sampler_array + 2 * type->sampler_shadow;
2373 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2374 assert(type_idx < 4);
2375 switch (type->sampled_type) {
2376 case GLSL_TYPE_FLOAT:
2377 switch (type->sampler_dimensionality) {
2378 case GLSL_SAMPLER_DIM_1D: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "sampler1D", "sampler1DArray",
2382 "sampler1DShadow", "sampler1DArrayShadow"
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_2D: {
2387 static const char *const names[8] = {
2388 "sampler2D", "sampler2DArray",
2389 "sampler2DShadow", "sampler2DArrayShadow",
2390 "image2D", "image2DArray", NULL, NULL
2391 };
2392 return names[offset + type_idx];
2393 }
2394 case GLSL_SAMPLER_DIM_3D: {
2395 static const char *const names[8] = {
2396 "sampler3D", NULL, NULL, NULL,
2397 "image3D", NULL, NULL, NULL
2398 };
2399 return names[offset + type_idx];
2400 }
2401 case GLSL_SAMPLER_DIM_CUBE: {
2402 static const char *const names[8] = {
2403 "samplerCube", "samplerCubeArray",
2404 "samplerCubeShadow", "samplerCubeArrayShadow",
2405 "imageCube", NULL, NULL, NULL
2406 };
2407 return names[offset + type_idx];
2408 }
2409 case GLSL_SAMPLER_DIM_MS: {
2410 assert(type->base_type == GLSL_TYPE_SAMPLER);
2411 static const char *const names[4] = {
2412 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2413 };
2414 return names[type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_RECT: {
2417 assert(type->base_type == GLSL_TYPE_SAMPLER);
2418 static const char *const names[4] = {
2419 "samplerRect", NULL, "samplerRectShadow", NULL
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_BUF: {
2424 static const char *const names[8] = {
2425 "samplerBuffer", NULL, NULL, NULL,
2426 "imageBuffer", NULL, NULL, NULL
2427 };
2428 return names[offset + type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_EXTERNAL: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "samplerExternalOES", NULL, NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 default:
2438 unreachable("Unsupported sampler/image dimensionality");
2439 } /* sampler/image float dimensionality */
2440 break;
2441 case GLSL_TYPE_INT:
2442 switch (type->sampler_dimensionality) {
2443 case GLSL_SAMPLER_DIM_1D: {
2444 assert(type->base_type == GLSL_TYPE_SAMPLER);
2445 static const char *const names[4] = {
2446 "isampler1D", "isampler1DArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_2D: {
2451 static const char *const names[8] = {
2452 "isampler2D", "isampler2DArray", NULL, NULL,
2453 "iimage2D", "iimage2DArray", NULL, NULL
2454 };
2455 return names[offset + type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_3D: {
2458 static const char *const names[8] = {
2459 "isampler3D", NULL, NULL, NULL,
2460 "iimage3D", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_CUBE: {
2465 static const char *const names[8] = {
2466 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2467 "iimageCube", NULL, NULL, NULL
2468 };
2469 return names[offset + type_idx];
2470 }
2471 case GLSL_SAMPLER_DIM_MS: {
2472 assert(type->base_type == GLSL_TYPE_SAMPLER);
2473 static const char *const names[4] = {
2474 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2475 };
2476 return names[type_idx];
2477 }
2478 case GLSL_SAMPLER_DIM_RECT: {
2479 assert(type->base_type == GLSL_TYPE_SAMPLER);
2480 static const char *const names[4] = {
2481 "isamplerRect", NULL, "isamplerRectShadow", NULL
2482 };
2483 return names[type_idx];
2484 }
2485 case GLSL_SAMPLER_DIM_BUF: {
2486 static const char *const names[8] = {
2487 "isamplerBuffer", NULL, NULL, NULL,
2488 "iimageBuffer", NULL, NULL, NULL
2489 };
2490 return names[offset + type_idx];
2491 }
2492 default:
2493 unreachable("Unsupported isampler/iimage dimensionality");
2494 } /* sampler/image int dimensionality */
2495 break;
2496 case GLSL_TYPE_UINT:
2497 switch (type->sampler_dimensionality) {
2498 case GLSL_SAMPLER_DIM_1D: {
2499 assert(type->base_type == GLSL_TYPE_SAMPLER);
2500 static const char *const names[4] = {
2501 "usampler1D", "usampler1DArray", NULL, NULL
2502 };
2503 return names[type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_2D: {
2506 static const char *const names[8] = {
2507 "usampler2D", "usampler2DArray", NULL, NULL,
2508 "uimage2D", "uimage2DArray", NULL, NULL
2509 };
2510 return names[offset + type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_3D: {
2513 static const char *const names[8] = {
2514 "usampler3D", NULL, NULL, NULL,
2515 "uimage3D", NULL, NULL, NULL
2516 };
2517 return names[offset + type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_CUBE: {
2520 static const char *const names[8] = {
2521 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2522 "uimageCube", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 case GLSL_SAMPLER_DIM_MS: {
2527 assert(type->base_type == GLSL_TYPE_SAMPLER);
2528 static const char *const names[4] = {
2529 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2530 };
2531 return names[type_idx];
2532 }
2533 case GLSL_SAMPLER_DIM_RECT: {
2534 assert(type->base_type == GLSL_TYPE_SAMPLER);
2535 static const char *const names[4] = {
2536 "usamplerRect", NULL, "usamplerRectShadow", NULL
2537 };
2538 return names[type_idx];
2539 }
2540 case GLSL_SAMPLER_DIM_BUF: {
2541 static const char *const names[8] = {
2542 "usamplerBuffer", NULL, NULL, NULL,
2543 "uimageBuffer", NULL, NULL, NULL
2544 };
2545 return names[offset + type_idx];
2546 }
2547 default:
2548 unreachable("Unsupported usampler/uimage dimensionality");
2549 } /* sampler/image uint dimensionality */
2550 break;
2551 default:
2552 unreachable("Unsupported sampler/image type");
2553 } /* sampler/image type */
2554 break;
2555 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2556 break;
2557 default:
2558 unreachable("Unsupported type");
2559 } /* base type */
2560 }
2561
2562 static unsigned
2563 select_gles_precision(unsigned qual_precision,
2564 const glsl_type *type,
2565 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2566 {
2567 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2568 * In GLES we take the precision from the type qualifier if present,
2569 * otherwise, if the type of the variable allows precision qualifiers at
2570 * all, we look for the default precision qualifier for that type in the
2571 * current scope.
2572 */
2573 assert(state->es_shader);
2574
2575 unsigned precision = GLSL_PRECISION_NONE;
2576 if (qual_precision) {
2577 precision = qual_precision;
2578 } else if (precision_qualifier_allowed(type)) {
2579 const char *type_name =
2580 get_type_name_for_precision_qualifier(type->without_array());
2581 assert(type_name != NULL);
2582
2583 precision =
2584 state->symbols->get_default_precision_qualifier(type_name);
2585 if (precision == ast_precision_none) {
2586 _mesa_glsl_error(loc, state,
2587 "No precision specified in this scope for type `%s'",
2588 type->name);
2589 }
2590 }
2591
2592
2593 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2594 *
2595 * "The default precision of all atomic types is highp. It is an error to
2596 * declare an atomic type with a different precision or to specify the
2597 * default precision for an atomic type to be lowp or mediump."
2598 */
2599 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2600 precision != ast_precision_high) {
2601 _mesa_glsl_error(loc, state,
2602 "atomic_uint can only have highp precision qualifier");
2603 }
2604
2605 return precision;
2606 }
2607
2608 const glsl_type *
2609 ast_fully_specified_type::glsl_type(const char **name,
2610 struct _mesa_glsl_parse_state *state) const
2611 {
2612 return this->specifier->glsl_type(name, state);
2613 }
2614
2615 /**
2616 * Determine whether a toplevel variable declaration declares a varying. This
2617 * function operates by examining the variable's mode and the shader target,
2618 * so it correctly identifies linkage variables regardless of whether they are
2619 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2620 *
2621 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2622 * this function will produce undefined results.
2623 */
2624 static bool
2625 is_varying_var(ir_variable *var, gl_shader_stage target)
2626 {
2627 switch (target) {
2628 case MESA_SHADER_VERTEX:
2629 return var->data.mode == ir_var_shader_out;
2630 case MESA_SHADER_FRAGMENT:
2631 return var->data.mode == ir_var_shader_in;
2632 default:
2633 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2634 }
2635 }
2636
2637
2638 /**
2639 * Matrix layout qualifiers are only allowed on certain types
2640 */
2641 static void
2642 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2643 YYLTYPE *loc,
2644 const glsl_type *type,
2645 ir_variable *var)
2646 {
2647 if (var && !var->is_in_buffer_block()) {
2648 /* Layout qualifiers may only apply to interface blocks and fields in
2649 * them.
2650 */
2651 _mesa_glsl_error(loc, state,
2652 "uniform block layout qualifiers row_major and "
2653 "column_major may not be applied to variables "
2654 "outside of uniform blocks");
2655 } else if (!type->without_array()->is_matrix()) {
2656 /* The OpenGL ES 3.0 conformance tests did not originally allow
2657 * matrix layout qualifiers on non-matrices. However, the OpenGL
2658 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2659 * amended to specifically allow these layouts on all types. Emit
2660 * a warning so that people know their code may not be portable.
2661 */
2662 _mesa_glsl_warning(loc, state,
2663 "uniform block layout qualifiers row_major and "
2664 "column_major applied to non-matrix types may "
2665 "be rejected by older compilers");
2666 }
2667 }
2668
2669 static bool
2670 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2671 struct _mesa_glsl_parse_state *state,
2672 unsigned xfb_buffer) {
2673 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2674 _mesa_glsl_error(loc, state,
2675 "invalid xfb_buffer specified %d is larger than "
2676 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2677 xfb_buffer,
2678 state->Const.MaxTransformFeedbackBuffers - 1);
2679 return false;
2680 }
2681
2682 return true;
2683 }
2684
2685 /* From the ARB_enhanced_layouts spec:
2686 *
2687 * "Variables and block members qualified with *xfb_offset* can be
2688 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2689 * The offset must be a multiple of the size of the first component of
2690 * the first qualified variable or block member, or a compile-time error
2691 * results. Further, if applied to an aggregate containing a double,
2692 * the offset must also be a multiple of 8, and the space taken in the
2693 * buffer will be a multiple of 8.
2694 */
2695 static bool
2696 validate_xfb_offset_qualifier(YYLTYPE *loc,
2697 struct _mesa_glsl_parse_state *state,
2698 int xfb_offset, const glsl_type *type,
2699 unsigned component_size) {
2700 const glsl_type *t_without_array = type->without_array();
2701
2702 if (xfb_offset != -1 && type->is_unsized_array()) {
2703 _mesa_glsl_error(loc, state,
2704 "xfb_offset can't be used with unsized arrays.");
2705 return false;
2706 }
2707
2708 /* Make sure nested structs don't contain unsized arrays, and validate
2709 * any xfb_offsets on interface members.
2710 */
2711 if (t_without_array->is_record() || t_without_array->is_interface())
2712 for (unsigned int i = 0; i < t_without_array->length; i++) {
2713 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2714
2715 /* When the interface block doesn't have an xfb_offset qualifier then
2716 * we apply the component size rules at the member level.
2717 */
2718 if (xfb_offset == -1)
2719 component_size = member_t->contains_double() ? 8 : 4;
2720
2721 int xfb_offset = t_without_array->fields.structure[i].offset;
2722 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2723 component_size);
2724 }
2725
2726 /* Nested structs or interface block without offset may not have had an
2727 * offset applied yet so return.
2728 */
2729 if (xfb_offset == -1) {
2730 return true;
2731 }
2732
2733 if (xfb_offset % component_size) {
2734 _mesa_glsl_error(loc, state,
2735 "invalid qualifier xfb_offset=%d must be a multiple "
2736 "of the first component size of the first qualified "
2737 "variable or block member. Or double if an aggregate "
2738 "that contains a double (%d).",
2739 xfb_offset, component_size);
2740 return false;
2741 }
2742
2743 return true;
2744 }
2745
2746 static bool
2747 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2748 unsigned stream)
2749 {
2750 if (stream >= state->ctx->Const.MaxVertexStreams) {
2751 _mesa_glsl_error(loc, state,
2752 "invalid stream specified %d is larger than "
2753 "MAX_VERTEX_STREAMS - 1 (%d).",
2754 stream, state->ctx->Const.MaxVertexStreams - 1);
2755 return false;
2756 }
2757
2758 return true;
2759 }
2760
2761 static void
2762 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2763 YYLTYPE *loc,
2764 ir_variable *var,
2765 const glsl_type *type,
2766 const ast_type_qualifier *qual)
2767 {
2768 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2769 _mesa_glsl_error(loc, state,
2770 "the \"binding\" qualifier only applies to uniforms and "
2771 "shader storage buffer objects");
2772 return;
2773 }
2774
2775 unsigned qual_binding;
2776 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2777 &qual_binding)) {
2778 return;
2779 }
2780
2781 const struct gl_context *const ctx = state->ctx;
2782 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2783 unsigned max_index = qual_binding + elements - 1;
2784 const glsl_type *base_type = type->without_array();
2785
2786 if (base_type->is_interface()) {
2787 /* UBOs. From page 60 of the GLSL 4.20 specification:
2788 * "If the binding point for any uniform block instance is less than zero,
2789 * or greater than or equal to the implementation-dependent maximum
2790 * number of uniform buffer bindings, a compilation error will occur.
2791 * When the binding identifier is used with a uniform block instanced as
2792 * an array of size N, all elements of the array from binding through
2793 * binding + N – 1 must be within this range."
2794 *
2795 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2796 */
2797 if (qual->flags.q.uniform &&
2798 max_index >= ctx->Const.MaxUniformBufferBindings) {
2799 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2800 "the maximum number of UBO binding points (%d)",
2801 qual_binding, elements,
2802 ctx->Const.MaxUniformBufferBindings);
2803 return;
2804 }
2805
2806 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2807 * "If the binding point for any uniform or shader storage block instance
2808 * is less than zero, or greater than or equal to the
2809 * implementation-dependent maximum number of uniform buffer bindings, a
2810 * compile-time error will occur. When the binding identifier is used
2811 * with a uniform or shader storage block instanced as an array of size
2812 * N, all elements of the array from binding through binding + N – 1 must
2813 * be within this range."
2814 */
2815 if (qual->flags.q.buffer &&
2816 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2817 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2818 "the maximum number of SSBO binding points (%d)",
2819 qual_binding, elements,
2820 ctx->Const.MaxShaderStorageBufferBindings);
2821 return;
2822 }
2823 } else if (base_type->is_sampler()) {
2824 /* Samplers. From page 63 of the GLSL 4.20 specification:
2825 * "If the binding is less than zero, or greater than or equal to the
2826 * implementation-dependent maximum supported number of units, a
2827 * compilation error will occur. When the binding identifier is used
2828 * with an array of size N, all elements of the array from binding
2829 * through binding + N - 1 must be within this range."
2830 */
2831 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2832
2833 if (max_index >= limit) {
2834 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2835 "exceeds the maximum number of texture image units "
2836 "(%u)", qual_binding, elements, limit);
2837
2838 return;
2839 }
2840 } else if (base_type->contains_atomic()) {
2841 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2842 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2843 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2844 " maximum number of atomic counter buffer bindings"
2845 "(%u)", qual_binding,
2846 ctx->Const.MaxAtomicBufferBindings);
2847
2848 return;
2849 }
2850 } else if ((state->is_version(420, 310) ||
2851 state->ARB_shading_language_420pack_enable) &&
2852 base_type->is_image()) {
2853 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2854 if (max_index >= ctx->Const.MaxImageUnits) {
2855 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2856 " maximum number of image units (%d)", max_index,
2857 ctx->Const.MaxImageUnits);
2858 return;
2859 }
2860
2861 } else {
2862 _mesa_glsl_error(loc, state,
2863 "the \"binding\" qualifier only applies to uniform "
2864 "blocks, opaque variables, or arrays thereof");
2865 return;
2866 }
2867
2868 var->data.explicit_binding = true;
2869 var->data.binding = qual_binding;
2870
2871 return;
2872 }
2873
2874
2875 static void
2876 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2877 YYLTYPE *loc,
2878 const glsl_interp_mode interpolation,
2879 const struct ast_type_qualifier *qual,
2880 const struct glsl_type *var_type,
2881 ir_variable_mode mode)
2882 {
2883 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2884 * not to vertex shader inputs nor fragment shader outputs.
2885 *
2886 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2887 * "Outputs from a vertex shader (out) and inputs to a fragment
2888 * shader (in) can be further qualified with one or more of these
2889 * interpolation qualifiers"
2890 * ...
2891 * "These interpolation qualifiers may only precede the qualifiers in,
2892 * centroid in, out, or centroid out in a declaration. They do not apply
2893 * to the deprecated storage qualifiers varying or centroid
2894 * varying. They also do not apply to inputs into a vertex shader or
2895 * outputs from a fragment shader."
2896 *
2897 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2898 * "Outputs from a shader (out) and inputs to a shader (in) can be
2899 * further qualified with one of these interpolation qualifiers."
2900 * ...
2901 * "These interpolation qualifiers may only precede the qualifiers
2902 * in, centroid in, out, or centroid out in a declaration. They do
2903 * not apply to inputs into a vertex shader or outputs from a
2904 * fragment shader."
2905 */
2906 if (state->is_version(130, 300)
2907 && interpolation != INTERP_MODE_NONE) {
2908 const char *i = interpolation_string(interpolation);
2909 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2910 _mesa_glsl_error(loc, state,
2911 "interpolation qualifier `%s' can only be applied to "
2912 "shader inputs or outputs.", i);
2913
2914 switch (state->stage) {
2915 case MESA_SHADER_VERTEX:
2916 if (mode == ir_var_shader_in) {
2917 _mesa_glsl_error(loc, state,
2918 "interpolation qualifier '%s' cannot be applied to "
2919 "vertex shader inputs", i);
2920 }
2921 break;
2922 case MESA_SHADER_FRAGMENT:
2923 if (mode == ir_var_shader_out) {
2924 _mesa_glsl_error(loc, state,
2925 "interpolation qualifier '%s' cannot be applied to "
2926 "fragment shader outputs", i);
2927 }
2928 break;
2929 default:
2930 break;
2931 }
2932 }
2933
2934 /* Interpolation qualifiers cannot be applied to 'centroid' and
2935 * 'centroid varying'.
2936 *
2937 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2938 * "interpolation qualifiers may only precede the qualifiers in,
2939 * centroid in, out, or centroid out in a declaration. They do not apply
2940 * to the deprecated storage qualifiers varying or centroid varying."
2941 *
2942 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2943 */
2944 if (state->is_version(130, 0)
2945 && interpolation != INTERP_MODE_NONE
2946 && qual->flags.q.varying) {
2947
2948 const char *i = interpolation_string(interpolation);
2949 const char *s;
2950 if (qual->flags.q.centroid)
2951 s = "centroid varying";
2952 else
2953 s = "varying";
2954
2955 _mesa_glsl_error(loc, state,
2956 "qualifier '%s' cannot be applied to the "
2957 "deprecated storage qualifier '%s'", i, s);
2958 }
2959
2960 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2961 * so must integer vertex outputs.
2962 *
2963 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2964 * "Fragment shader inputs that are signed or unsigned integers or
2965 * integer vectors must be qualified with the interpolation qualifier
2966 * flat."
2967 *
2968 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2969 * "Fragment shader inputs that are, or contain, signed or unsigned
2970 * integers or integer vectors must be qualified with the
2971 * interpolation qualifier flat."
2972 *
2973 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2974 * "Vertex shader outputs that are, or contain, signed or unsigned
2975 * integers or integer vectors must be qualified with the
2976 * interpolation qualifier flat."
2977 *
2978 * Note that prior to GLSL 1.50, this requirement applied to vertex
2979 * outputs rather than fragment inputs. That creates problems in the
2980 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2981 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2982 * apply the restriction to both vertex outputs and fragment inputs.
2983 *
2984 * Note also that the desktop GLSL specs are missing the text "or
2985 * contain"; this is presumably an oversight, since there is no
2986 * reasonable way to interpolate a fragment shader input that contains
2987 * an integer. See Khronos bug #15671.
2988 */
2989 if (state->is_version(130, 300)
2990 && var_type->contains_integer()
2991 && interpolation != INTERP_MODE_FLAT
2992 && state->stage == MESA_SHADER_FRAGMENT
2993 && mode == ir_var_shader_in) {
2994 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2995 "an integer, then it must be qualified with 'flat'");
2996 }
2997
2998 /* Double fragment inputs must be qualified with 'flat'.
2999 *
3000 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3001 * "This extension does not support interpolation of double-precision
3002 * values; doubles used as fragment shader inputs must be qualified as
3003 * "flat"."
3004 *
3005 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3006 * "Fragment shader inputs that are signed or unsigned integers, integer
3007 * vectors, or any double-precision floating-point type must be
3008 * qualified with the interpolation qualifier flat."
3009 *
3010 * Note that the GLSL specs are missing the text "or contain"; this is
3011 * presumably an oversight. See Khronos bug #15671.
3012 *
3013 * The 'double' type does not exist in GLSL ES so far.
3014 */
3015 if (state->has_double()
3016 && var_type->contains_double()
3017 && interpolation != INTERP_MODE_FLAT
3018 && state->stage == MESA_SHADER_FRAGMENT
3019 && mode == ir_var_shader_in) {
3020 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3021 "a double, then it must be qualified with 'flat'");
3022 }
3023 }
3024
3025 static glsl_interp_mode
3026 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3027 const struct glsl_type *var_type,
3028 ir_variable_mode mode,
3029 struct _mesa_glsl_parse_state *state,
3030 YYLTYPE *loc)
3031 {
3032 glsl_interp_mode interpolation;
3033 if (qual->flags.q.flat)
3034 interpolation = INTERP_MODE_FLAT;
3035 else if (qual->flags.q.noperspective)
3036 interpolation = INTERP_MODE_NOPERSPECTIVE;
3037 else if (qual->flags.q.smooth)
3038 interpolation = INTERP_MODE_SMOOTH;
3039 else if (state->es_shader &&
3040 ((mode == ir_var_shader_in &&
3041 state->stage != MESA_SHADER_VERTEX) ||
3042 (mode == ir_var_shader_out &&
3043 state->stage != MESA_SHADER_FRAGMENT)))
3044 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3045 *
3046 * "When no interpolation qualifier is present, smooth interpolation
3047 * is used."
3048 */
3049 interpolation = INTERP_MODE_SMOOTH;
3050 else
3051 interpolation = INTERP_MODE_NONE;
3052
3053 validate_interpolation_qualifier(state, loc,
3054 interpolation,
3055 qual, var_type, mode);
3056
3057 return interpolation;
3058 }
3059
3060
3061 static void
3062 apply_explicit_location(const struct ast_type_qualifier *qual,
3063 ir_variable *var,
3064 struct _mesa_glsl_parse_state *state,
3065 YYLTYPE *loc)
3066 {
3067 bool fail = false;
3068
3069 unsigned qual_location;
3070 if (!process_qualifier_constant(state, loc, "location", qual->location,
3071 &qual_location)) {
3072 return;
3073 }
3074
3075 /* Checks for GL_ARB_explicit_uniform_location. */
3076 if (qual->flags.q.uniform) {
3077 if (!state->check_explicit_uniform_location_allowed(loc, var))
3078 return;
3079
3080 const struct gl_context *const ctx = state->ctx;
3081 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3082
3083 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3084 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3085 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3086 ctx->Const.MaxUserAssignableUniformLocations);
3087 return;
3088 }
3089
3090 var->data.explicit_location = true;
3091 var->data.location = qual_location;
3092 return;
3093 }
3094
3095 /* Between GL_ARB_explicit_attrib_location an
3096 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3097 * stage can be assigned explicit locations. The checking here associates
3098 * the correct extension with the correct stage's input / output:
3099 *
3100 * input output
3101 * ----- ------
3102 * vertex explicit_loc sso
3103 * tess control sso sso
3104 * tess eval sso sso
3105 * geometry sso sso
3106 * fragment sso explicit_loc
3107 */
3108 switch (state->stage) {
3109 case MESA_SHADER_VERTEX:
3110 if (var->data.mode == ir_var_shader_in) {
3111 if (!state->check_explicit_attrib_location_allowed(loc, var))
3112 return;
3113
3114 break;
3115 }
3116
3117 if (var->data.mode == ir_var_shader_out) {
3118 if (!state->check_separate_shader_objects_allowed(loc, var))
3119 return;
3120
3121 break;
3122 }
3123
3124 fail = true;
3125 break;
3126
3127 case MESA_SHADER_TESS_CTRL:
3128 case MESA_SHADER_TESS_EVAL:
3129 case MESA_SHADER_GEOMETRY:
3130 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3131 if (!state->check_separate_shader_objects_allowed(loc, var))
3132 return;
3133
3134 break;
3135 }
3136
3137 fail = true;
3138 break;
3139
3140 case MESA_SHADER_FRAGMENT:
3141 if (var->data.mode == ir_var_shader_in) {
3142 if (!state->check_separate_shader_objects_allowed(loc, var))
3143 return;
3144
3145 break;
3146 }
3147
3148 if (var->data.mode == ir_var_shader_out) {
3149 if (!state->check_explicit_attrib_location_allowed(loc, var))
3150 return;
3151
3152 break;
3153 }
3154
3155 fail = true;
3156 break;
3157
3158 case MESA_SHADER_COMPUTE:
3159 _mesa_glsl_error(loc, state,
3160 "compute shader variables cannot be given "
3161 "explicit locations");
3162 return;
3163 };
3164
3165 if (fail) {
3166 _mesa_glsl_error(loc, state,
3167 "%s cannot be given an explicit location in %s shader",
3168 mode_string(var),
3169 _mesa_shader_stage_to_string(state->stage));
3170 } else {
3171 var->data.explicit_location = true;
3172
3173 switch (state->stage) {
3174 case MESA_SHADER_VERTEX:
3175 var->data.location = (var->data.mode == ir_var_shader_in)
3176 ? (qual_location + VERT_ATTRIB_GENERIC0)
3177 : (qual_location + VARYING_SLOT_VAR0);
3178 break;
3179
3180 case MESA_SHADER_TESS_CTRL:
3181 case MESA_SHADER_TESS_EVAL:
3182 case MESA_SHADER_GEOMETRY:
3183 if (var->data.patch)
3184 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3185 else
3186 var->data.location = qual_location + VARYING_SLOT_VAR0;
3187 break;
3188
3189 case MESA_SHADER_FRAGMENT:
3190 var->data.location = (var->data.mode == ir_var_shader_out)
3191 ? (qual_location + FRAG_RESULT_DATA0)
3192 : (qual_location + VARYING_SLOT_VAR0);
3193 break;
3194 case MESA_SHADER_COMPUTE:
3195 assert(!"Unexpected shader type");
3196 break;
3197 }
3198
3199 /* Check if index was set for the uniform instead of the function */
3200 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3201 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3202 "used with subroutine functions");
3203 return;
3204 }
3205
3206 unsigned qual_index;
3207 if (qual->flags.q.explicit_index &&
3208 process_qualifier_constant(state, loc, "index", qual->index,
3209 &qual_index)) {
3210 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3211 * Layout Qualifiers):
3212 *
3213 * "It is also a compile-time error if a fragment shader
3214 * sets a layout index to less than 0 or greater than 1."
3215 *
3216 * Older specifications don't mandate a behavior; we take
3217 * this as a clarification and always generate the error.
3218 */
3219 if (qual_index > 1) {
3220 _mesa_glsl_error(loc, state,
3221 "explicit index may only be 0 or 1");
3222 } else {
3223 var->data.explicit_index = true;
3224 var->data.index = qual_index;
3225 }
3226 }
3227 }
3228 }
3229
3230 static void
3231 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3232 ir_variable *var,
3233 struct _mesa_glsl_parse_state *state,
3234 YYLTYPE *loc)
3235 {
3236 const glsl_type *base_type = var->type->without_array();
3237
3238 if (base_type->is_image()) {
3239 if (var->data.mode != ir_var_uniform &&
3240 var->data.mode != ir_var_function_in) {
3241 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3242 "function parameters or uniform-qualified "
3243 "global variables");
3244 }
3245
3246 var->data.image_read_only |= qual->flags.q.read_only;
3247 var->data.image_write_only |= qual->flags.q.write_only;
3248 var->data.image_coherent |= qual->flags.q.coherent;
3249 var->data.image_volatile |= qual->flags.q._volatile;
3250 var->data.image_restrict |= qual->flags.q.restrict_flag;
3251 var->data.read_only = true;
3252
3253 if (qual->flags.q.explicit_image_format) {
3254 if (var->data.mode == ir_var_function_in) {
3255 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3256 "used on image function parameters");
3257 }
3258
3259 if (qual->image_base_type != base_type->sampled_type) {
3260 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3261 "base data type of the image");
3262 }
3263
3264 var->data.image_format = qual->image_format;
3265 } else {
3266 if (var->data.mode == ir_var_uniform) {
3267 if (state->es_shader) {
3268 _mesa_glsl_error(loc, state, "all image uniforms "
3269 "must have a format layout qualifier");
3270
3271 } else if (!qual->flags.q.write_only) {
3272 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3273 "`writeonly' must have a format layout "
3274 "qualifier");
3275 }
3276 }
3277
3278 var->data.image_format = GL_NONE;
3279 }
3280
3281 /* From page 70 of the GLSL ES 3.1 specification:
3282 *
3283 * "Except for image variables qualified with the format qualifiers
3284 * r32f, r32i, and r32ui, image variables must specify either memory
3285 * qualifier readonly or the memory qualifier writeonly."
3286 */
3287 if (state->es_shader &&
3288 var->data.image_format != GL_R32F &&
3289 var->data.image_format != GL_R32I &&
3290 var->data.image_format != GL_R32UI &&
3291 !var->data.image_read_only &&
3292 !var->data.image_write_only) {
3293 _mesa_glsl_error(loc, state, "image variables of format other than "
3294 "r32f, r32i or r32ui must be qualified `readonly' or "
3295 "`writeonly'");
3296 }
3297
3298 } else if (qual->flags.q.read_only ||
3299 qual->flags.q.write_only ||
3300 qual->flags.q.coherent ||
3301 qual->flags.q._volatile ||
3302 qual->flags.q.restrict_flag ||
3303 qual->flags.q.explicit_image_format) {
3304 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3305 "images");
3306 }
3307 }
3308
3309 static inline const char*
3310 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3311 {
3312 if (origin_upper_left && pixel_center_integer)
3313 return "origin_upper_left, pixel_center_integer";
3314 else if (origin_upper_left)
3315 return "origin_upper_left";
3316 else if (pixel_center_integer)
3317 return "pixel_center_integer";
3318 else
3319 return " ";
3320 }
3321
3322 static inline bool
3323 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3324 const struct ast_type_qualifier *qual)
3325 {
3326 /* If gl_FragCoord was previously declared, and the qualifiers were
3327 * different in any way, return true.
3328 */
3329 if (state->fs_redeclares_gl_fragcoord) {
3330 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3331 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3332 }
3333
3334 return false;
3335 }
3336
3337 static inline void
3338 validate_array_dimensions(const glsl_type *t,
3339 struct _mesa_glsl_parse_state *state,
3340 YYLTYPE *loc) {
3341 if (t->is_array()) {
3342 t = t->fields.array;
3343 while (t->is_array()) {
3344 if (t->is_unsized_array()) {
3345 _mesa_glsl_error(loc, state,
3346 "only the outermost array dimension can "
3347 "be unsized",
3348 t->name);
3349 break;
3350 }
3351 t = t->fields.array;
3352 }
3353 }
3354 }
3355
3356 static void
3357 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3358 ir_variable *var,
3359 struct _mesa_glsl_parse_state *state,
3360 YYLTYPE *loc)
3361 {
3362 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3363
3364 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3365 *
3366 * "Within any shader, the first redeclarations of gl_FragCoord
3367 * must appear before any use of gl_FragCoord."
3368 *
3369 * Generate a compiler error if above condition is not met by the
3370 * fragment shader.
3371 */
3372 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3373 if (earlier != NULL &&
3374 earlier->data.used &&
3375 !state->fs_redeclares_gl_fragcoord) {
3376 _mesa_glsl_error(loc, state,
3377 "gl_FragCoord used before its first redeclaration "
3378 "in fragment shader");
3379 }
3380
3381 /* Make sure all gl_FragCoord redeclarations specify the same layout
3382 * qualifiers.
3383 */
3384 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3385 const char *const qual_string =
3386 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3387 qual->flags.q.pixel_center_integer);
3388
3389 const char *const state_string =
3390 get_layout_qualifier_string(state->fs_origin_upper_left,
3391 state->fs_pixel_center_integer);
3392
3393 _mesa_glsl_error(loc, state,
3394 "gl_FragCoord redeclared with different layout "
3395 "qualifiers (%s) and (%s) ",
3396 state_string,
3397 qual_string);
3398 }
3399 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3400 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3401 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3402 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3403 state->fs_redeclares_gl_fragcoord =
3404 state->fs_origin_upper_left ||
3405 state->fs_pixel_center_integer ||
3406 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3407 }
3408
3409 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3410 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3411 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3412 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3413 const char *const qual_string = (qual->flags.q.origin_upper_left)
3414 ? "origin_upper_left" : "pixel_center_integer";
3415
3416 _mesa_glsl_error(loc, state,
3417 "layout qualifier `%s' can only be applied to "
3418 "fragment shader input `gl_FragCoord'",
3419 qual_string);
3420 }
3421
3422 if (qual->flags.q.explicit_location) {
3423 apply_explicit_location(qual, var, state, loc);
3424
3425 if (qual->flags.q.explicit_component) {
3426 unsigned qual_component;
3427 if (process_qualifier_constant(state, loc, "component",
3428 qual->component, &qual_component)) {
3429 const glsl_type *type = var->type->without_array();
3430 unsigned components = type->component_slots();
3431
3432 if (type->is_matrix() || type->is_record()) {
3433 _mesa_glsl_error(loc, state, "component layout qualifier "
3434 "cannot be applied to a matrix, a structure, "
3435 "a block, or an array containing any of "
3436 "these.");
3437 } else if (qual_component != 0 &&
3438 (qual_component + components - 1) > 3) {
3439 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3440 (qual_component + components - 1));
3441 } else if (qual_component == 1 && type->is_64bit()) {
3442 /* We don't bother checking for 3 as it should be caught by the
3443 * overflow check above.
3444 */
3445 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3446 "component 1 or 3");
3447 } else {
3448 var->data.explicit_component = true;
3449 var->data.location_frac = qual_component;
3450 }
3451 }
3452 }
3453 } else if (qual->flags.q.explicit_index) {
3454 if (!qual->flags.q.subroutine_def)
3455 _mesa_glsl_error(loc, state,
3456 "explicit index requires explicit location");
3457 } else if (qual->flags.q.explicit_component) {
3458 _mesa_glsl_error(loc, state,
3459 "explicit component requires explicit location");
3460 }
3461
3462 if (qual->flags.q.explicit_binding) {
3463 apply_explicit_binding(state, loc, var, var->type, qual);
3464 }
3465
3466 if (state->stage == MESA_SHADER_GEOMETRY &&
3467 qual->flags.q.out && qual->flags.q.stream) {
3468 unsigned qual_stream;
3469 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3470 &qual_stream) &&
3471 validate_stream_qualifier(loc, state, qual_stream)) {
3472 var->data.stream = qual_stream;
3473 }
3474 }
3475
3476 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3477 unsigned qual_xfb_buffer;
3478 if (process_qualifier_constant(state, loc, "xfb_buffer",
3479 qual->xfb_buffer, &qual_xfb_buffer) &&
3480 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3481 var->data.xfb_buffer = qual_xfb_buffer;
3482 if (qual->flags.q.explicit_xfb_buffer)
3483 var->data.explicit_xfb_buffer = true;
3484 }
3485 }
3486
3487 if (qual->flags.q.explicit_xfb_offset) {
3488 unsigned qual_xfb_offset;
3489 unsigned component_size = var->type->contains_double() ? 8 : 4;
3490
3491 if (process_qualifier_constant(state, loc, "xfb_offset",
3492 qual->offset, &qual_xfb_offset) &&
3493 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3494 var->type, component_size)) {
3495 var->data.offset = qual_xfb_offset;
3496 var->data.explicit_xfb_offset = true;
3497 }
3498 }
3499
3500 if (qual->flags.q.explicit_xfb_stride) {
3501 unsigned qual_xfb_stride;
3502 if (process_qualifier_constant(state, loc, "xfb_stride",
3503 qual->xfb_stride, &qual_xfb_stride)) {
3504 var->data.xfb_stride = qual_xfb_stride;
3505 var->data.explicit_xfb_stride = true;
3506 }
3507 }
3508
3509 if (var->type->contains_atomic()) {
3510 if (var->data.mode == ir_var_uniform) {
3511 if (var->data.explicit_binding) {
3512 unsigned *offset =
3513 &state->atomic_counter_offsets[var->data.binding];
3514
3515 if (*offset % ATOMIC_COUNTER_SIZE)
3516 _mesa_glsl_error(loc, state,
3517 "misaligned atomic counter offset");
3518
3519 var->data.offset = *offset;
3520 *offset += var->type->atomic_size();
3521
3522 } else {
3523 _mesa_glsl_error(loc, state,
3524 "atomic counters require explicit binding point");
3525 }
3526 } else if (var->data.mode != ir_var_function_in) {
3527 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3528 "function parameters or uniform-qualified "
3529 "global variables");
3530 }
3531 }
3532
3533 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3534 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3535 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3536 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3537 * These extensions and all following extensions that add the 'layout'
3538 * keyword have been modified to require the use of 'in' or 'out'.
3539 *
3540 * The following extension do not allow the deprecated keywords:
3541 *
3542 * GL_AMD_conservative_depth
3543 * GL_ARB_conservative_depth
3544 * GL_ARB_gpu_shader5
3545 * GL_ARB_separate_shader_objects
3546 * GL_ARB_tessellation_shader
3547 * GL_ARB_transform_feedback3
3548 * GL_ARB_uniform_buffer_object
3549 *
3550 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3551 * allow layout with the deprecated keywords.
3552 */
3553 const bool relaxed_layout_qualifier_checking =
3554 state->ARB_fragment_coord_conventions_enable;
3555
3556 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3557 || qual->flags.q.varying;
3558 if (qual->has_layout() && uses_deprecated_qualifier) {
3559 if (relaxed_layout_qualifier_checking) {
3560 _mesa_glsl_warning(loc, state,
3561 "`layout' qualifier may not be used with "
3562 "`attribute' or `varying'");
3563 } else {
3564 _mesa_glsl_error(loc, state,
3565 "`layout' qualifier may not be used with "
3566 "`attribute' or `varying'");
3567 }
3568 }
3569
3570 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3571 * AMD_conservative_depth.
3572 */
3573 int depth_layout_count = qual->flags.q.depth_any
3574 + qual->flags.q.depth_greater
3575 + qual->flags.q.depth_less
3576 + qual->flags.q.depth_unchanged;
3577 if (depth_layout_count > 0
3578 && !state->is_version(420, 0)
3579 && !state->AMD_conservative_depth_enable
3580 && !state->ARB_conservative_depth_enable) {
3581 _mesa_glsl_error(loc, state,
3582 "extension GL_AMD_conservative_depth or "
3583 "GL_ARB_conservative_depth must be enabled "
3584 "to use depth layout qualifiers");
3585 } else if (depth_layout_count > 0
3586 && strcmp(var->name, "gl_FragDepth") != 0) {
3587 _mesa_glsl_error(loc, state,
3588 "depth layout qualifiers can be applied only to "
3589 "gl_FragDepth");
3590 } else if (depth_layout_count > 1
3591 && strcmp(var->name, "gl_FragDepth") == 0) {
3592 _mesa_glsl_error(loc, state,
3593 "at most one depth layout qualifier can be applied to "
3594 "gl_FragDepth");
3595 }
3596 if (qual->flags.q.depth_any)
3597 var->data.depth_layout = ir_depth_layout_any;
3598 else if (qual->flags.q.depth_greater)
3599 var->data.depth_layout = ir_depth_layout_greater;
3600 else if (qual->flags.q.depth_less)
3601 var->data.depth_layout = ir_depth_layout_less;
3602 else if (qual->flags.q.depth_unchanged)
3603 var->data.depth_layout = ir_depth_layout_unchanged;
3604 else
3605 var->data.depth_layout = ir_depth_layout_none;
3606
3607 if (qual->flags.q.std140 ||
3608 qual->flags.q.std430 ||
3609 qual->flags.q.packed ||
3610 qual->flags.q.shared) {
3611 _mesa_glsl_error(loc, state,
3612 "uniform and shader storage block layout qualifiers "
3613 "std140, std430, packed, and shared can only be "
3614 "applied to uniform or shader storage blocks, not "
3615 "members");
3616 }
3617
3618 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3619 validate_matrix_layout_for_type(state, loc, var->type, var);
3620 }
3621
3622 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3623 * Inputs):
3624 *
3625 * "Fragment shaders also allow the following layout qualifier on in only
3626 * (not with variable declarations)
3627 * layout-qualifier-id
3628 * early_fragment_tests
3629 * [...]"
3630 */
3631 if (qual->flags.q.early_fragment_tests) {
3632 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3633 "valid in fragment shader input layout declaration.");
3634 }
3635
3636 if (qual->flags.q.inner_coverage) {
3637 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3638 "valid in fragment shader input layout declaration.");
3639 }
3640
3641 if (qual->flags.q.post_depth_coverage) {
3642 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3643 "valid in fragment shader input layout declaration.");
3644 }
3645 }
3646
3647 static void
3648 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3649 ir_variable *var,
3650 struct _mesa_glsl_parse_state *state,
3651 YYLTYPE *loc,
3652 bool is_parameter)
3653 {
3654 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3655
3656 if (qual->flags.q.invariant) {
3657 if (var->data.used) {
3658 _mesa_glsl_error(loc, state,
3659 "variable `%s' may not be redeclared "
3660 "`invariant' after being used",
3661 var->name);
3662 } else {
3663 var->data.invariant = 1;
3664 }
3665 }
3666
3667 if (qual->flags.q.precise) {
3668 if (var->data.used) {
3669 _mesa_glsl_error(loc, state,
3670 "variable `%s' may not be redeclared "
3671 "`precise' after being used",
3672 var->name);
3673 } else {
3674 var->data.precise = 1;
3675 }
3676 }
3677
3678 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3679 _mesa_glsl_error(loc, state,
3680 "`subroutine' may only be applied to uniforms, "
3681 "subroutine type declarations, or function definitions");
3682 }
3683
3684 if (qual->flags.q.constant || qual->flags.q.attribute
3685 || qual->flags.q.uniform
3686 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3687 var->data.read_only = 1;
3688
3689 if (qual->flags.q.centroid)
3690 var->data.centroid = 1;
3691
3692 if (qual->flags.q.sample)
3693 var->data.sample = 1;
3694
3695 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3696 if (state->es_shader) {
3697 var->data.precision =
3698 select_gles_precision(qual->precision, var->type, state, loc);
3699 }
3700
3701 if (qual->flags.q.patch)
3702 var->data.patch = 1;
3703
3704 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3705 var->type = glsl_type::error_type;
3706 _mesa_glsl_error(loc, state,
3707 "`attribute' variables may not be declared in the "
3708 "%s shader",
3709 _mesa_shader_stage_to_string(state->stage));
3710 }
3711
3712 /* Disallow layout qualifiers which may only appear on layout declarations. */
3713 if (qual->flags.q.prim_type) {
3714 _mesa_glsl_error(loc, state,
3715 "Primitive type may only be specified on GS input or output "
3716 "layout declaration, not on variables.");
3717 }
3718
3719 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3720 *
3721 * "However, the const qualifier cannot be used with out or inout."
3722 *
3723 * The same section of the GLSL 4.40 spec further clarifies this saying:
3724 *
3725 * "The const qualifier cannot be used with out or inout, or a
3726 * compile-time error results."
3727 */
3728 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3729 _mesa_glsl_error(loc, state,
3730 "`const' may not be applied to `out' or `inout' "
3731 "function parameters");
3732 }
3733
3734 /* If there is no qualifier that changes the mode of the variable, leave
3735 * the setting alone.
3736 */
3737 assert(var->data.mode != ir_var_temporary);
3738 if (qual->flags.q.in && qual->flags.q.out)
3739 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3740 else if (qual->flags.q.in)
3741 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3742 else if (qual->flags.q.attribute
3743 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3744 var->data.mode = ir_var_shader_in;
3745 else if (qual->flags.q.out)
3746 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3747 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3748 var->data.mode = ir_var_shader_out;
3749 else if (qual->flags.q.uniform)
3750 var->data.mode = ir_var_uniform;
3751 else if (qual->flags.q.buffer)
3752 var->data.mode = ir_var_shader_storage;
3753 else if (qual->flags.q.shared_storage)
3754 var->data.mode = ir_var_shader_shared;
3755
3756 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3757 qual->flags.q.in && qual->flags.q.out;
3758
3759 if (!is_parameter && is_varying_var(var, state->stage)) {
3760 /* User-defined ins/outs are not permitted in compute shaders. */
3761 if (state->stage == MESA_SHADER_COMPUTE) {
3762 _mesa_glsl_error(loc, state,
3763 "user-defined input and output variables are not "
3764 "permitted in compute shaders");
3765 }
3766
3767 /* This variable is being used to link data between shader stages (in
3768 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3769 * that is allowed for such purposes.
3770 *
3771 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3772 *
3773 * "The varying qualifier can be used only with the data types
3774 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3775 * these."
3776 *
3777 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3778 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3779 *
3780 * "Fragment inputs can only be signed and unsigned integers and
3781 * integer vectors, float, floating-point vectors, matrices, or
3782 * arrays of these. Structures cannot be input.
3783 *
3784 * Similar text exists in the section on vertex shader outputs.
3785 *
3786 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3787 * 3.00 spec allows structs as well. Varying structs are also allowed
3788 * in GLSL 1.50.
3789 */
3790 switch (var->type->get_scalar_type()->base_type) {
3791 case GLSL_TYPE_FLOAT:
3792 /* Ok in all GLSL versions */
3793 break;
3794 case GLSL_TYPE_UINT:
3795 case GLSL_TYPE_INT:
3796 if (state->is_version(130, 300))
3797 break;
3798 _mesa_glsl_error(loc, state,
3799 "varying variables must be of base type float in %s",
3800 state->get_version_string());
3801 break;
3802 case GLSL_TYPE_STRUCT:
3803 if (state->is_version(150, 300))
3804 break;
3805 _mesa_glsl_error(loc, state,
3806 "varying variables may not be of type struct");
3807 break;
3808 case GLSL_TYPE_DOUBLE:
3809 break;
3810 default:
3811 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3812 break;
3813 }
3814 }
3815
3816 if (state->all_invariant && (state->current_function == NULL)) {
3817 switch (state->stage) {
3818 case MESA_SHADER_VERTEX:
3819 if (var->data.mode == ir_var_shader_out)
3820 var->data.invariant = true;
3821 break;
3822 case MESA_SHADER_TESS_CTRL:
3823 case MESA_SHADER_TESS_EVAL:
3824 case MESA_SHADER_GEOMETRY:
3825 if ((var->data.mode == ir_var_shader_in)
3826 || (var->data.mode == ir_var_shader_out))
3827 var->data.invariant = true;
3828 break;
3829 case MESA_SHADER_FRAGMENT:
3830 if (var->data.mode == ir_var_shader_in)
3831 var->data.invariant = true;
3832 break;
3833 case MESA_SHADER_COMPUTE:
3834 /* Invariance isn't meaningful in compute shaders. */
3835 break;
3836 }
3837 }
3838
3839 var->data.interpolation =
3840 interpret_interpolation_qualifier(qual, var->type,
3841 (ir_variable_mode) var->data.mode,
3842 state, loc);
3843
3844 /* Does the declaration use the deprecated 'attribute' or 'varying'
3845 * keywords?
3846 */
3847 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3848 || qual->flags.q.varying;
3849
3850
3851 /* Validate auxiliary storage qualifiers */
3852
3853 /* From section 4.3.4 of the GLSL 1.30 spec:
3854 * "It is an error to use centroid in in a vertex shader."
3855 *
3856 * From section 4.3.4 of the GLSL ES 3.00 spec:
3857 * "It is an error to use centroid in or interpolation qualifiers in
3858 * a vertex shader input."
3859 */
3860
3861 /* Section 4.3.6 of the GLSL 1.30 specification states:
3862 * "It is an error to use centroid out in a fragment shader."
3863 *
3864 * The GL_ARB_shading_language_420pack extension specification states:
3865 * "It is an error to use auxiliary storage qualifiers or interpolation
3866 * qualifiers on an output in a fragment shader."
3867 */
3868 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3869 _mesa_glsl_error(loc, state,
3870 "sample qualifier may only be used on `in` or `out` "
3871 "variables between shader stages");
3872 }
3873 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3874 _mesa_glsl_error(loc, state,
3875 "centroid qualifier may only be used with `in', "
3876 "`out' or `varying' variables between shader stages");
3877 }
3878
3879 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3880 _mesa_glsl_error(loc, state,
3881 "the shared storage qualifiers can only be used with "
3882 "compute shaders");
3883 }
3884
3885 apply_image_qualifier_to_variable(qual, var, state, loc);
3886 }
3887
3888 /**
3889 * Get the variable that is being redeclared by this declaration
3890 *
3891 * Semantic checks to verify the validity of the redeclaration are also
3892 * performed. If semantic checks fail, compilation error will be emitted via
3893 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3894 *
3895 * \returns
3896 * A pointer to an existing variable in the current scope if the declaration
3897 * is a redeclaration, \c NULL otherwise.
3898 */
3899 static ir_variable *
3900 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3901 struct _mesa_glsl_parse_state *state,
3902 bool allow_all_redeclarations)
3903 {
3904 /* Check if this declaration is actually a re-declaration, either to
3905 * resize an array or add qualifiers to an existing variable.
3906 *
3907 * This is allowed for variables in the current scope, or when at
3908 * global scope (for built-ins in the implicit outer scope).
3909 */
3910 ir_variable *earlier = state->symbols->get_variable(var->name);
3911 if (earlier == NULL ||
3912 (state->current_function != NULL &&
3913 !state->symbols->name_declared_this_scope(var->name))) {
3914 return NULL;
3915 }
3916
3917
3918 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3919 *
3920 * "It is legal to declare an array without a size and then
3921 * later re-declare the same name as an array of the same
3922 * type and specify a size."
3923 */
3924 if (earlier->type->is_unsized_array() && var->type->is_array()
3925 && (var->type->fields.array == earlier->type->fields.array)) {
3926 /* FINISHME: This doesn't match the qualifiers on the two
3927 * FINISHME: declarations. It's not 100% clear whether this is
3928 * FINISHME: required or not.
3929 */
3930
3931 const int size = var->type->array_size();
3932 check_builtin_array_max_size(var->name, size, loc, state);
3933 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3934 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3935 "previous access",
3936 earlier->data.max_array_access);
3937 }
3938
3939 earlier->type = var->type;
3940 delete var;
3941 var = NULL;
3942 } else if ((state->ARB_fragment_coord_conventions_enable ||
3943 state->is_version(150, 0))
3944 && strcmp(var->name, "gl_FragCoord") == 0
3945 && earlier->type == var->type
3946 && var->data.mode == ir_var_shader_in) {
3947 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3948 * qualifiers.
3949 */
3950 earlier->data.origin_upper_left = var->data.origin_upper_left;
3951 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3952
3953 /* According to section 4.3.7 of the GLSL 1.30 spec,
3954 * the following built-in varaibles can be redeclared with an
3955 * interpolation qualifier:
3956 * * gl_FrontColor
3957 * * gl_BackColor
3958 * * gl_FrontSecondaryColor
3959 * * gl_BackSecondaryColor
3960 * * gl_Color
3961 * * gl_SecondaryColor
3962 */
3963 } else if (state->is_version(130, 0)
3964 && (strcmp(var->name, "gl_FrontColor") == 0
3965 || strcmp(var->name, "gl_BackColor") == 0
3966 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3967 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3968 || strcmp(var->name, "gl_Color") == 0
3969 || strcmp(var->name, "gl_SecondaryColor") == 0)
3970 && earlier->type == var->type
3971 && earlier->data.mode == var->data.mode) {
3972 earlier->data.interpolation = var->data.interpolation;
3973
3974 /* Layout qualifiers for gl_FragDepth. */
3975 } else if ((state->is_version(420, 0) ||
3976 state->AMD_conservative_depth_enable ||
3977 state->ARB_conservative_depth_enable)
3978 && strcmp(var->name, "gl_FragDepth") == 0
3979 && earlier->type == var->type
3980 && earlier->data.mode == var->data.mode) {
3981
3982 /** From the AMD_conservative_depth spec:
3983 * Within any shader, the first redeclarations of gl_FragDepth
3984 * must appear before any use of gl_FragDepth.
3985 */
3986 if (earlier->data.used) {
3987 _mesa_glsl_error(&loc, state,
3988 "the first redeclaration of gl_FragDepth "
3989 "must appear before any use of gl_FragDepth");
3990 }
3991
3992 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3993 if (earlier->data.depth_layout != ir_depth_layout_none
3994 && earlier->data.depth_layout != var->data.depth_layout) {
3995 _mesa_glsl_error(&loc, state,
3996 "gl_FragDepth: depth layout is declared here "
3997 "as '%s, but it was previously declared as "
3998 "'%s'",
3999 depth_layout_string(var->data.depth_layout),
4000 depth_layout_string(earlier->data.depth_layout));
4001 }
4002
4003 earlier->data.depth_layout = var->data.depth_layout;
4004
4005 } else if (state->has_framebuffer_fetch() &&
4006 strcmp(var->name, "gl_LastFragData") == 0 &&
4007 var->type == earlier->type &&
4008 var->data.mode == ir_var_auto) {
4009 /* According to the EXT_shader_framebuffer_fetch spec:
4010 *
4011 * "By default, gl_LastFragData is declared with the mediump precision
4012 * qualifier. This can be changed by redeclaring the corresponding
4013 * variables with the desired precision qualifier."
4014 */
4015 earlier->data.precision = var->data.precision;
4016
4017 } else if (allow_all_redeclarations) {
4018 if (earlier->data.mode != var->data.mode) {
4019 _mesa_glsl_error(&loc, state,
4020 "redeclaration of `%s' with incorrect qualifiers",
4021 var->name);
4022 } else if (earlier->type != var->type) {
4023 _mesa_glsl_error(&loc, state,
4024 "redeclaration of `%s' has incorrect type",
4025 var->name);
4026 }
4027 } else {
4028 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4029 }
4030
4031 return earlier;
4032 }
4033
4034 /**
4035 * Generate the IR for an initializer in a variable declaration
4036 */
4037 ir_rvalue *
4038 process_initializer(ir_variable *var, ast_declaration *decl,
4039 ast_fully_specified_type *type,
4040 exec_list *initializer_instructions,
4041 struct _mesa_glsl_parse_state *state)
4042 {
4043 ir_rvalue *result = NULL;
4044
4045 YYLTYPE initializer_loc = decl->initializer->get_location();
4046
4047 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4048 *
4049 * "All uniform variables are read-only and are initialized either
4050 * directly by an application via API commands, or indirectly by
4051 * OpenGL."
4052 */
4053 if (var->data.mode == ir_var_uniform) {
4054 state->check_version(120, 0, &initializer_loc,
4055 "cannot initialize uniform %s",
4056 var->name);
4057 }
4058
4059 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4060 *
4061 * "Buffer variables cannot have initializers."
4062 */
4063 if (var->data.mode == ir_var_shader_storage) {
4064 _mesa_glsl_error(&initializer_loc, state,
4065 "cannot initialize buffer variable %s",
4066 var->name);
4067 }
4068
4069 /* From section 4.1.7 of the GLSL 4.40 spec:
4070 *
4071 * "Opaque variables [...] are initialized only through the
4072 * OpenGL API; they cannot be declared with an initializer in a
4073 * shader."
4074 */
4075 if (var->type->contains_opaque()) {
4076 _mesa_glsl_error(&initializer_loc, state,
4077 "cannot initialize opaque variable %s",
4078 var->name);
4079 }
4080
4081 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4082 _mesa_glsl_error(&initializer_loc, state,
4083 "cannot initialize %s shader input / %s %s",
4084 _mesa_shader_stage_to_string(state->stage),
4085 (state->stage == MESA_SHADER_VERTEX)
4086 ? "attribute" : "varying",
4087 var->name);
4088 }
4089
4090 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4091 _mesa_glsl_error(&initializer_loc, state,
4092 "cannot initialize %s shader output %s",
4093 _mesa_shader_stage_to_string(state->stage),
4094 var->name);
4095 }
4096
4097 /* If the initializer is an ast_aggregate_initializer, recursively store
4098 * type information from the LHS into it, so that its hir() function can do
4099 * type checking.
4100 */
4101 if (decl->initializer->oper == ast_aggregate)
4102 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4103
4104 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4105 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4106
4107 /* Calculate the constant value if this is a const or uniform
4108 * declaration.
4109 *
4110 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4111 *
4112 * "Declarations of globals without a storage qualifier, or with
4113 * just the const qualifier, may include initializers, in which case
4114 * they will be initialized before the first line of main() is
4115 * executed. Such initializers must be a constant expression."
4116 *
4117 * The same section of the GLSL ES 3.00.4 spec has similar language.
4118 */
4119 if (type->qualifier.flags.q.constant
4120 || type->qualifier.flags.q.uniform
4121 || (state->es_shader && state->current_function == NULL)) {
4122 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4123 lhs, rhs, true);
4124 if (new_rhs != NULL) {
4125 rhs = new_rhs;
4126
4127 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4128 * says:
4129 *
4130 * "A constant expression is one of
4131 *
4132 * ...
4133 *
4134 * - an expression formed by an operator on operands that are
4135 * all constant expressions, including getting an element of
4136 * a constant array, or a field of a constant structure, or
4137 * components of a constant vector. However, the sequence
4138 * operator ( , ) and the assignment operators ( =, +=, ...)
4139 * are not included in the operators that can create a
4140 * constant expression."
4141 *
4142 * Section 12.43 (Sequence operator and constant expressions) says:
4143 *
4144 * "Should the following construct be allowed?
4145 *
4146 * float a[2,3];
4147 *
4148 * The expression within the brackets uses the sequence operator
4149 * (',') and returns the integer 3 so the construct is declaring
4150 * a single-dimensional array of size 3. In some languages, the
4151 * construct declares a two-dimensional array. It would be
4152 * preferable to make this construct illegal to avoid confusion.
4153 *
4154 * One possibility is to change the definition of the sequence
4155 * operator so that it does not return a constant-expression and
4156 * hence cannot be used to declare an array size.
4157 *
4158 * RESOLUTION: The result of a sequence operator is not a
4159 * constant-expression."
4160 *
4161 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4162 * contains language almost identical to the section 4.3.3 in the
4163 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4164 * versions.
4165 */
4166 ir_constant *constant_value = rhs->constant_expression_value();
4167 if (!constant_value ||
4168 (state->is_version(430, 300) &&
4169 decl->initializer->has_sequence_subexpression())) {
4170 const char *const variable_mode =
4171 (type->qualifier.flags.q.constant)
4172 ? "const"
4173 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4174
4175 /* If ARB_shading_language_420pack is enabled, initializers of
4176 * const-qualified local variables do not have to be constant
4177 * expressions. Const-qualified global variables must still be
4178 * initialized with constant expressions.
4179 */
4180 if (!state->has_420pack()
4181 || state->current_function == NULL) {
4182 _mesa_glsl_error(& initializer_loc, state,
4183 "initializer of %s variable `%s' must be a "
4184 "constant expression",
4185 variable_mode,
4186 decl->identifier);
4187 if (var->type->is_numeric()) {
4188 /* Reduce cascading errors. */
4189 var->constant_value = type->qualifier.flags.q.constant
4190 ? ir_constant::zero(state, var->type) : NULL;
4191 }
4192 }
4193 } else {
4194 rhs = constant_value;
4195 var->constant_value = type->qualifier.flags.q.constant
4196 ? constant_value : NULL;
4197 }
4198 } else {
4199 if (var->type->is_numeric()) {
4200 /* Reduce cascading errors. */
4201 var->constant_value = type->qualifier.flags.q.constant
4202 ? ir_constant::zero(state, var->type) : NULL;
4203 }
4204 }
4205 }
4206
4207 if (rhs && !rhs->type->is_error()) {
4208 bool temp = var->data.read_only;
4209 if (type->qualifier.flags.q.constant)
4210 var->data.read_only = false;
4211
4212 /* Never emit code to initialize a uniform.
4213 */
4214 const glsl_type *initializer_type;
4215 if (!type->qualifier.flags.q.uniform) {
4216 do_assignment(initializer_instructions, state,
4217 NULL,
4218 lhs, rhs,
4219 &result, true,
4220 true,
4221 type->get_location());
4222 initializer_type = result->type;
4223 } else
4224 initializer_type = rhs->type;
4225
4226 var->constant_initializer = rhs->constant_expression_value();
4227 var->data.has_initializer = true;
4228
4229 /* If the declared variable is an unsized array, it must inherrit
4230 * its full type from the initializer. A declaration such as
4231 *
4232 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4233 *
4234 * becomes
4235 *
4236 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4237 *
4238 * The assignment generated in the if-statement (below) will also
4239 * automatically handle this case for non-uniforms.
4240 *
4241 * If the declared variable is not an array, the types must
4242 * already match exactly. As a result, the type assignment
4243 * here can be done unconditionally. For non-uniforms the call
4244 * to do_assignment can change the type of the initializer (via
4245 * the implicit conversion rules). For uniforms the initializer
4246 * must be a constant expression, and the type of that expression
4247 * was validated above.
4248 */
4249 var->type = initializer_type;
4250
4251 var->data.read_only = temp;
4252 }
4253
4254 return result;
4255 }
4256
4257 static void
4258 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4259 YYLTYPE loc, ir_variable *var,
4260 unsigned num_vertices,
4261 unsigned *size,
4262 const char *var_category)
4263 {
4264 if (var->type->is_unsized_array()) {
4265 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4266 *
4267 * All geometry shader input unsized array declarations will be
4268 * sized by an earlier input layout qualifier, when present, as per
4269 * the following table.
4270 *
4271 * Followed by a table mapping each allowed input layout qualifier to
4272 * the corresponding input length.
4273 *
4274 * Similarly for tessellation control shader outputs.
4275 */
4276 if (num_vertices != 0)
4277 var->type = glsl_type::get_array_instance(var->type->fields.array,
4278 num_vertices);
4279 } else {
4280 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4281 * includes the following examples of compile-time errors:
4282 *
4283 * // code sequence within one shader...
4284 * in vec4 Color1[]; // size unknown
4285 * ...Color1.length()...// illegal, length() unknown
4286 * in vec4 Color2[2]; // size is 2
4287 * ...Color1.length()...// illegal, Color1 still has no size
4288 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4289 * layout(lines) in; // legal, input size is 2, matching
4290 * in vec4 Color4[3]; // illegal, contradicts layout
4291 * ...
4292 *
4293 * To detect the case illustrated by Color3, we verify that the size of
4294 * an explicitly-sized array matches the size of any previously declared
4295 * explicitly-sized array. To detect the case illustrated by Color4, we
4296 * verify that the size of an explicitly-sized array is consistent with
4297 * any previously declared input layout.
4298 */
4299 if (num_vertices != 0 && var->type->length != num_vertices) {
4300 _mesa_glsl_error(&loc, state,
4301 "%s size contradicts previously declared layout "
4302 "(size is %u, but layout requires a size of %u)",
4303 var_category, var->type->length, num_vertices);
4304 } else if (*size != 0 && var->type->length != *size) {
4305 _mesa_glsl_error(&loc, state,
4306 "%s sizes are inconsistent (size is %u, but a "
4307 "previous declaration has size %u)",
4308 var_category, var->type->length, *size);
4309 } else {
4310 *size = var->type->length;
4311 }
4312 }
4313 }
4314
4315 static void
4316 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4317 YYLTYPE loc, ir_variable *var)
4318 {
4319 unsigned num_vertices = 0;
4320
4321 if (state->tcs_output_vertices_specified) {
4322 if (!state->out_qualifier->vertices->
4323 process_qualifier_constant(state, "vertices",
4324 &num_vertices, false)) {
4325 return;
4326 }
4327
4328 if (num_vertices > state->Const.MaxPatchVertices) {
4329 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4330 "GL_MAX_PATCH_VERTICES", num_vertices);
4331 return;
4332 }
4333 }
4334
4335 if (!var->type->is_array() && !var->data.patch) {
4336 _mesa_glsl_error(&loc, state,
4337 "tessellation control shader outputs must be arrays");
4338
4339 /* To avoid cascading failures, short circuit the checks below. */
4340 return;
4341 }
4342
4343 if (var->data.patch)
4344 return;
4345
4346 var->data.tess_varying_implicit_sized_array = var->type->is_unsized_array();
4347
4348 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4349 &state->tcs_output_size,
4350 "tessellation control shader output");
4351 }
4352
4353 /**
4354 * Do additional processing necessary for tessellation control/evaluation shader
4355 * input declarations. This covers both interface block arrays and bare input
4356 * variables.
4357 */
4358 static void
4359 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4360 YYLTYPE loc, ir_variable *var)
4361 {
4362 if (!var->type->is_array() && !var->data.patch) {
4363 _mesa_glsl_error(&loc, state,
4364 "per-vertex tessellation shader inputs must be arrays");
4365 /* Avoid cascading failures. */
4366 return;
4367 }
4368
4369 if (var->data.patch)
4370 return;
4371
4372 /* The ARB_tessellation_shader spec says:
4373 *
4374 * "Declaring an array size is optional. If no size is specified, it
4375 * will be taken from the implementation-dependent maximum patch size
4376 * (gl_MaxPatchVertices). If a size is specified, it must match the
4377 * maximum patch size; otherwise, a compile or link error will occur."
4378 *
4379 * This text appears twice, once for TCS inputs, and again for TES inputs.
4380 */
4381 if (var->type->is_unsized_array()) {
4382 var->type = glsl_type::get_array_instance(var->type->fields.array,
4383 state->Const.MaxPatchVertices);
4384 var->data.tess_varying_implicit_sized_array = true;
4385 } else if (var->type->length != state->Const.MaxPatchVertices) {
4386 _mesa_glsl_error(&loc, state,
4387 "per-vertex tessellation shader input arrays must be "
4388 "sized to gl_MaxPatchVertices (%d).",
4389 state->Const.MaxPatchVertices);
4390 }
4391 }
4392
4393
4394 /**
4395 * Do additional processing necessary for geometry shader input declarations
4396 * (this covers both interface blocks arrays and bare input variables).
4397 */
4398 static void
4399 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4400 YYLTYPE loc, ir_variable *var)
4401 {
4402 unsigned num_vertices = 0;
4403
4404 if (state->gs_input_prim_type_specified) {
4405 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4406 }
4407
4408 /* Geometry shader input variables must be arrays. Caller should have
4409 * reported an error for this.
4410 */
4411 if (!var->type->is_array()) {
4412 assert(state->error);
4413
4414 /* To avoid cascading failures, short circuit the checks below. */
4415 return;
4416 }
4417
4418 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4419 &state->gs_input_size,
4420 "geometry shader input");
4421 }
4422
4423 void
4424 validate_identifier(const char *identifier, YYLTYPE loc,
4425 struct _mesa_glsl_parse_state *state)
4426 {
4427 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4428 *
4429 * "Identifiers starting with "gl_" are reserved for use by
4430 * OpenGL, and may not be declared in a shader as either a
4431 * variable or a function."
4432 */
4433 if (is_gl_identifier(identifier)) {
4434 _mesa_glsl_error(&loc, state,
4435 "identifier `%s' uses reserved `gl_' prefix",
4436 identifier);
4437 } else if (strstr(identifier, "__")) {
4438 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4439 * spec:
4440 *
4441 * "In addition, all identifiers containing two
4442 * consecutive underscores (__) are reserved as
4443 * possible future keywords."
4444 *
4445 * The intention is that names containing __ are reserved for internal
4446 * use by the implementation, and names prefixed with GL_ are reserved
4447 * for use by Khronos. Names simply containing __ are dangerous to use,
4448 * but should be allowed.
4449 *
4450 * A future version of the GLSL specification will clarify this.
4451 */
4452 _mesa_glsl_warning(&loc, state,
4453 "identifier `%s' uses reserved `__' string",
4454 identifier);
4455 }
4456 }
4457
4458 ir_rvalue *
4459 ast_declarator_list::hir(exec_list *instructions,
4460 struct _mesa_glsl_parse_state *state)
4461 {
4462 void *ctx = state;
4463 const struct glsl_type *decl_type;
4464 const char *type_name = NULL;
4465 ir_rvalue *result = NULL;
4466 YYLTYPE loc = this->get_location();
4467
4468 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4469 *
4470 * "To ensure that a particular output variable is invariant, it is
4471 * necessary to use the invariant qualifier. It can either be used to
4472 * qualify a previously declared variable as being invariant
4473 *
4474 * invariant gl_Position; // make existing gl_Position be invariant"
4475 *
4476 * In these cases the parser will set the 'invariant' flag in the declarator
4477 * list, and the type will be NULL.
4478 */
4479 if (this->invariant) {
4480 assert(this->type == NULL);
4481
4482 if (state->current_function != NULL) {
4483 _mesa_glsl_error(& loc, state,
4484 "all uses of `invariant' keyword must be at global "
4485 "scope");
4486 }
4487
4488 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4489 assert(decl->array_specifier == NULL);
4490 assert(decl->initializer == NULL);
4491
4492 ir_variable *const earlier =
4493 state->symbols->get_variable(decl->identifier);
4494 if (earlier == NULL) {
4495 _mesa_glsl_error(& loc, state,
4496 "undeclared variable `%s' cannot be marked "
4497 "invariant", decl->identifier);
4498 } else if (!is_varying_var(earlier, state->stage)) {
4499 _mesa_glsl_error(&loc, state,
4500 "`%s' cannot be marked invariant; interfaces between "
4501 "shader stages only.", decl->identifier);
4502 } else if (earlier->data.used) {
4503 _mesa_glsl_error(& loc, state,
4504 "variable `%s' may not be redeclared "
4505 "`invariant' after being used",
4506 earlier->name);
4507 } else {
4508 earlier->data.invariant = true;
4509 }
4510 }
4511
4512 /* Invariant redeclarations do not have r-values.
4513 */
4514 return NULL;
4515 }
4516
4517 if (this->precise) {
4518 assert(this->type == NULL);
4519
4520 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4521 assert(decl->array_specifier == NULL);
4522 assert(decl->initializer == NULL);
4523
4524 ir_variable *const earlier =
4525 state->symbols->get_variable(decl->identifier);
4526 if (earlier == NULL) {
4527 _mesa_glsl_error(& loc, state,
4528 "undeclared variable `%s' cannot be marked "
4529 "precise", decl->identifier);
4530 } else if (state->current_function != NULL &&
4531 !state->symbols->name_declared_this_scope(decl->identifier)) {
4532 /* Note: we have to check if we're in a function, since
4533 * builtins are treated as having come from another scope.
4534 */
4535 _mesa_glsl_error(& loc, state,
4536 "variable `%s' from an outer scope may not be "
4537 "redeclared `precise' in this scope",
4538 earlier->name);
4539 } else if (earlier->data.used) {
4540 _mesa_glsl_error(& loc, state,
4541 "variable `%s' may not be redeclared "
4542 "`precise' after being used",
4543 earlier->name);
4544 } else {
4545 earlier->data.precise = true;
4546 }
4547 }
4548
4549 /* Precise redeclarations do not have r-values either. */
4550 return NULL;
4551 }
4552
4553 assert(this->type != NULL);
4554 assert(!this->invariant);
4555 assert(!this->precise);
4556
4557 /* The type specifier may contain a structure definition. Process that
4558 * before any of the variable declarations.
4559 */
4560 (void) this->type->specifier->hir(instructions, state);
4561
4562 decl_type = this->type->glsl_type(& type_name, state);
4563
4564 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4565 * "Buffer variables may only be declared inside interface blocks
4566 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4567 * shader storage blocks. It is a compile-time error to declare buffer
4568 * variables at global scope (outside a block)."
4569 */
4570 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4571 _mesa_glsl_error(&loc, state,
4572 "buffer variables cannot be declared outside "
4573 "interface blocks");
4574 }
4575
4576 /* An offset-qualified atomic counter declaration sets the default
4577 * offset for the next declaration within the same atomic counter
4578 * buffer.
4579 */
4580 if (decl_type && decl_type->contains_atomic()) {
4581 if (type->qualifier.flags.q.explicit_binding &&
4582 type->qualifier.flags.q.explicit_offset) {
4583 unsigned qual_binding;
4584 unsigned qual_offset;
4585 if (process_qualifier_constant(state, &loc, "binding",
4586 type->qualifier.binding,
4587 &qual_binding)
4588 && process_qualifier_constant(state, &loc, "offset",
4589 type->qualifier.offset,
4590 &qual_offset)) {
4591 state->atomic_counter_offsets[qual_binding] = qual_offset;
4592 }
4593 }
4594
4595 ast_type_qualifier allowed_atomic_qual_mask;
4596 allowed_atomic_qual_mask.flags.i = 0;
4597 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4598 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4599 allowed_atomic_qual_mask.flags.q.uniform = 1;
4600
4601 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4602 "invalid layout qualifier for",
4603 "atomic_uint");
4604 }
4605
4606 if (this->declarations.is_empty()) {
4607 /* If there is no structure involved in the program text, there are two
4608 * possible scenarios:
4609 *
4610 * - The program text contained something like 'vec4;'. This is an
4611 * empty declaration. It is valid but weird. Emit a warning.
4612 *
4613 * - The program text contained something like 'S;' and 'S' is not the
4614 * name of a known structure type. This is both invalid and weird.
4615 * Emit an error.
4616 *
4617 * - The program text contained something like 'mediump float;'
4618 * when the programmer probably meant 'precision mediump
4619 * float;' Emit a warning with a description of what they
4620 * probably meant to do.
4621 *
4622 * Note that if decl_type is NULL and there is a structure involved,
4623 * there must have been some sort of error with the structure. In this
4624 * case we assume that an error was already generated on this line of
4625 * code for the structure. There is no need to generate an additional,
4626 * confusing error.
4627 */
4628 assert(this->type->specifier->structure == NULL || decl_type != NULL
4629 || state->error);
4630
4631 if (decl_type == NULL) {
4632 _mesa_glsl_error(&loc, state,
4633 "invalid type `%s' in empty declaration",
4634 type_name);
4635 } else {
4636 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4637 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4638 * spec:
4639 *
4640 * "... any declaration that leaves the size undefined is
4641 * disallowed as this would add complexity and there are no
4642 * use-cases."
4643 */
4644 if (state->es_shader && decl_type->is_unsized_array()) {
4645 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4646 "or implicitly defined");
4647 }
4648
4649 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4650 *
4651 * "The combinations of types and qualifiers that cause
4652 * compile-time or link-time errors are the same whether or not
4653 * the declaration is empty."
4654 */
4655 validate_array_dimensions(decl_type, state, &loc);
4656 }
4657
4658 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4659 /* Empty atomic counter declarations are allowed and useful
4660 * to set the default offset qualifier.
4661 */
4662 return NULL;
4663 } else if (this->type->qualifier.precision != ast_precision_none) {
4664 if (this->type->specifier->structure != NULL) {
4665 _mesa_glsl_error(&loc, state,
4666 "precision qualifiers can't be applied "
4667 "to structures");
4668 } else {
4669 static const char *const precision_names[] = {
4670 "highp",
4671 "highp",
4672 "mediump",
4673 "lowp"
4674 };
4675
4676 _mesa_glsl_warning(&loc, state,
4677 "empty declaration with precision "
4678 "qualifier, to set the default precision, "
4679 "use `precision %s %s;'",
4680 precision_names[this->type->
4681 qualifier.precision],
4682 type_name);
4683 }
4684 } else if (this->type->specifier->structure == NULL) {
4685 _mesa_glsl_warning(&loc, state, "empty declaration");
4686 }
4687 }
4688 }
4689
4690 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4691 const struct glsl_type *var_type;
4692 ir_variable *var;
4693 const char *identifier = decl->identifier;
4694 /* FINISHME: Emit a warning if a variable declaration shadows a
4695 * FINISHME: declaration at a higher scope.
4696 */
4697
4698 if ((decl_type == NULL) || decl_type->is_void()) {
4699 if (type_name != NULL) {
4700 _mesa_glsl_error(& loc, state,
4701 "invalid type `%s' in declaration of `%s'",
4702 type_name, decl->identifier);
4703 } else {
4704 _mesa_glsl_error(& loc, state,
4705 "invalid type in declaration of `%s'",
4706 decl->identifier);
4707 }
4708 continue;
4709 }
4710
4711 if (this->type->qualifier.flags.q.subroutine) {
4712 const glsl_type *t;
4713 const char *name;
4714
4715 t = state->symbols->get_type(this->type->specifier->type_name);
4716 if (!t)
4717 _mesa_glsl_error(& loc, state,
4718 "invalid type in declaration of `%s'",
4719 decl->identifier);
4720 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4721
4722 identifier = name;
4723
4724 }
4725 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4726 state);
4727
4728 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4729
4730 /* The 'varying in' and 'varying out' qualifiers can only be used with
4731 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4732 * yet.
4733 */
4734 if (this->type->qualifier.flags.q.varying) {
4735 if (this->type->qualifier.flags.q.in) {
4736 _mesa_glsl_error(& loc, state,
4737 "`varying in' qualifier in declaration of "
4738 "`%s' only valid for geometry shaders using "
4739 "ARB_geometry_shader4 or EXT_geometry_shader4",
4740 decl->identifier);
4741 } else if (this->type->qualifier.flags.q.out) {
4742 _mesa_glsl_error(& loc, state,
4743 "`varying out' qualifier in declaration of "
4744 "`%s' only valid for geometry shaders using "
4745 "ARB_geometry_shader4 or EXT_geometry_shader4",
4746 decl->identifier);
4747 }
4748 }
4749
4750 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4751 *
4752 * "Global variables can only use the qualifiers const,
4753 * attribute, uniform, or varying. Only one may be
4754 * specified.
4755 *
4756 * Local variables can only use the qualifier const."
4757 *
4758 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4759 * any extension that adds the 'layout' keyword.
4760 */
4761 if (!state->is_version(130, 300)
4762 && !state->has_explicit_attrib_location()
4763 && !state->has_separate_shader_objects()
4764 && !state->ARB_fragment_coord_conventions_enable) {
4765 if (this->type->qualifier.flags.q.out) {
4766 _mesa_glsl_error(& loc, state,
4767 "`out' qualifier in declaration of `%s' "
4768 "only valid for function parameters in %s",
4769 decl->identifier, state->get_version_string());
4770 }
4771 if (this->type->qualifier.flags.q.in) {
4772 _mesa_glsl_error(& loc, state,
4773 "`in' qualifier in declaration of `%s' "
4774 "only valid for function parameters in %s",
4775 decl->identifier, state->get_version_string());
4776 }
4777 /* FINISHME: Test for other invalid qualifiers. */
4778 }
4779
4780 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4781 & loc, false);
4782 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4783 &loc);
4784
4785 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4786 && (var->type->is_numeric() || var->type->is_boolean())
4787 && state->zero_init) {
4788 const ir_constant_data data = {0};
4789 var->data.has_initializer = true;
4790 var->constant_initializer = new(var) ir_constant(var->type, &data);
4791 }
4792
4793 if (this->type->qualifier.flags.q.invariant) {
4794 if (!is_varying_var(var, state->stage)) {
4795 _mesa_glsl_error(&loc, state,
4796 "`%s' cannot be marked invariant; interfaces between "
4797 "shader stages only", var->name);
4798 }
4799 }
4800
4801 if (state->current_function != NULL) {
4802 const char *mode = NULL;
4803 const char *extra = "";
4804
4805 /* There is no need to check for 'inout' here because the parser will
4806 * only allow that in function parameter lists.
4807 */
4808 if (this->type->qualifier.flags.q.attribute) {
4809 mode = "attribute";
4810 } else if (this->type->qualifier.flags.q.subroutine) {
4811 mode = "subroutine uniform";
4812 } else if (this->type->qualifier.flags.q.uniform) {
4813 mode = "uniform";
4814 } else if (this->type->qualifier.flags.q.varying) {
4815 mode = "varying";
4816 } else if (this->type->qualifier.flags.q.in) {
4817 mode = "in";
4818 extra = " or in function parameter list";
4819 } else if (this->type->qualifier.flags.q.out) {
4820 mode = "out";
4821 extra = " or in function parameter list";
4822 }
4823
4824 if (mode) {
4825 _mesa_glsl_error(& loc, state,
4826 "%s variable `%s' must be declared at "
4827 "global scope%s",
4828 mode, var->name, extra);
4829 }
4830 } else if (var->data.mode == ir_var_shader_in) {
4831 var->data.read_only = true;
4832
4833 if (state->stage == MESA_SHADER_VERTEX) {
4834 bool error_emitted = false;
4835
4836 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4837 *
4838 * "Vertex shader inputs can only be float, floating-point
4839 * vectors, matrices, signed and unsigned integers and integer
4840 * vectors. Vertex shader inputs can also form arrays of these
4841 * types, but not structures."
4842 *
4843 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4844 *
4845 * "Vertex shader inputs can only be float, floating-point
4846 * vectors, matrices, signed and unsigned integers and integer
4847 * vectors. They cannot be arrays or structures."
4848 *
4849 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4850 *
4851 * "The attribute qualifier can be used only with float,
4852 * floating-point vectors, and matrices. Attribute variables
4853 * cannot be declared as arrays or structures."
4854 *
4855 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4856 *
4857 * "Vertex shader inputs can only be float, floating-point
4858 * vectors, matrices, signed and unsigned integers and integer
4859 * vectors. Vertex shader inputs cannot be arrays or
4860 * structures."
4861 */
4862 const glsl_type *check_type = var->type->without_array();
4863
4864 switch (check_type->base_type) {
4865 case GLSL_TYPE_FLOAT:
4866 break;
4867 case GLSL_TYPE_UINT:
4868 case GLSL_TYPE_INT:
4869 if (state->is_version(120, 300))
4870 break;
4871 case GLSL_TYPE_DOUBLE:
4872 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4873 break;
4874 /* FALLTHROUGH */
4875 default:
4876 _mesa_glsl_error(& loc, state,
4877 "vertex shader input / attribute cannot have "
4878 "type %s`%s'",
4879 var->type->is_array() ? "array of " : "",
4880 check_type->name);
4881 error_emitted = true;
4882 }
4883
4884 if (!error_emitted && var->type->is_array() &&
4885 !state->check_version(150, 0, &loc,
4886 "vertex shader input / attribute "
4887 "cannot have array type")) {
4888 error_emitted = true;
4889 }
4890 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4891 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4892 *
4893 * Geometry shader input variables get the per-vertex values
4894 * written out by vertex shader output variables of the same
4895 * names. Since a geometry shader operates on a set of
4896 * vertices, each input varying variable (or input block, see
4897 * interface blocks below) needs to be declared as an array.
4898 */
4899 if (!var->type->is_array()) {
4900 _mesa_glsl_error(&loc, state,
4901 "geometry shader inputs must be arrays");
4902 }
4903
4904 handle_geometry_shader_input_decl(state, loc, var);
4905 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4906 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4907 *
4908 * It is a compile-time error to declare a fragment shader
4909 * input with, or that contains, any of the following types:
4910 *
4911 * * A boolean type
4912 * * An opaque type
4913 * * An array of arrays
4914 * * An array of structures
4915 * * A structure containing an array
4916 * * A structure containing a structure
4917 */
4918 if (state->es_shader) {
4919 const glsl_type *check_type = var->type->without_array();
4920 if (check_type->is_boolean() ||
4921 check_type->contains_opaque()) {
4922 _mesa_glsl_error(&loc, state,
4923 "fragment shader input cannot have type %s",
4924 check_type->name);
4925 }
4926 if (var->type->is_array() &&
4927 var->type->fields.array->is_array()) {
4928 _mesa_glsl_error(&loc, state,
4929 "%s shader output "
4930 "cannot have an array of arrays",
4931 _mesa_shader_stage_to_string(state->stage));
4932 }
4933 if (var->type->is_array() &&
4934 var->type->fields.array->is_record()) {
4935 _mesa_glsl_error(&loc, state,
4936 "fragment shader input "
4937 "cannot have an array of structs");
4938 }
4939 if (var->type->is_record()) {
4940 for (unsigned i = 0; i < var->type->length; i++) {
4941 if (var->type->fields.structure[i].type->is_array() ||
4942 var->type->fields.structure[i].type->is_record())
4943 _mesa_glsl_error(&loc, state,
4944 "fragement shader input cannot have "
4945 "a struct that contains an "
4946 "array or struct");
4947 }
4948 }
4949 }
4950 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4951 state->stage == MESA_SHADER_TESS_EVAL) {
4952 handle_tess_shader_input_decl(state, loc, var);
4953 }
4954 } else if (var->data.mode == ir_var_shader_out) {
4955 const glsl_type *check_type = var->type->without_array();
4956
4957 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4958 *
4959 * It is a compile-time error to declare a vertex, tessellation
4960 * evaluation, tessellation control, or geometry shader output
4961 * that contains any of the following:
4962 *
4963 * * A Boolean type (bool, bvec2 ...)
4964 * * An opaque type
4965 */
4966 if (check_type->is_boolean() || check_type->contains_opaque())
4967 _mesa_glsl_error(&loc, state,
4968 "%s shader output cannot have type %s",
4969 _mesa_shader_stage_to_string(state->stage),
4970 check_type->name);
4971
4972 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4973 *
4974 * It is a compile-time error to declare a fragment shader output
4975 * that contains any of the following:
4976 *
4977 * * A Boolean type (bool, bvec2 ...)
4978 * * A double-precision scalar or vector (double, dvec2 ...)
4979 * * An opaque type
4980 * * Any matrix type
4981 * * A structure
4982 */
4983 if (state->stage == MESA_SHADER_FRAGMENT) {
4984 if (check_type->is_record() || check_type->is_matrix())
4985 _mesa_glsl_error(&loc, state,
4986 "fragment shader output "
4987 "cannot have struct or matrix type");
4988 switch (check_type->base_type) {
4989 case GLSL_TYPE_UINT:
4990 case GLSL_TYPE_INT:
4991 case GLSL_TYPE_FLOAT:
4992 break;
4993 default:
4994 _mesa_glsl_error(&loc, state,
4995 "fragment shader output cannot have "
4996 "type %s", check_type->name);
4997 }
4998 }
4999
5000 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5001 *
5002 * It is a compile-time error to declare a vertex shader output
5003 * with, or that contains, any of the following types:
5004 *
5005 * * A boolean type
5006 * * An opaque type
5007 * * An array of arrays
5008 * * An array of structures
5009 * * A structure containing an array
5010 * * A structure containing a structure
5011 *
5012 * It is a compile-time error to declare a fragment shader output
5013 * with, or that contains, any of the following types:
5014 *
5015 * * A boolean type
5016 * * An opaque type
5017 * * A matrix
5018 * * A structure
5019 * * An array of array
5020 */
5021 if (state->es_shader) {
5022 if (var->type->is_array() &&
5023 var->type->fields.array->is_array()) {
5024 _mesa_glsl_error(&loc, state,
5025 "%s shader output "
5026 "cannot have an array of arrays",
5027 _mesa_shader_stage_to_string(state->stage));
5028 }
5029 if (state->stage == MESA_SHADER_VERTEX) {
5030 if (var->type->is_array() &&
5031 var->type->fields.array->is_record()) {
5032 _mesa_glsl_error(&loc, state,
5033 "vertex shader output "
5034 "cannot have an array of structs");
5035 }
5036 if (var->type->is_record()) {
5037 for (unsigned i = 0; i < var->type->length; i++) {
5038 if (var->type->fields.structure[i].type->is_array() ||
5039 var->type->fields.structure[i].type->is_record())
5040 _mesa_glsl_error(&loc, state,
5041 "vertex shader output cannot have a "
5042 "struct that contains an "
5043 "array or struct");
5044 }
5045 }
5046 }
5047 }
5048
5049 if (state->stage == MESA_SHADER_TESS_CTRL) {
5050 handle_tess_ctrl_shader_output_decl(state, loc, var);
5051 }
5052 } else if (var->type->contains_subroutine()) {
5053 /* declare subroutine uniforms as hidden */
5054 var->data.how_declared = ir_var_hidden;
5055 }
5056
5057 /* From section 4.3.4 of the GLSL 4.00 spec:
5058 * "Input variables may not be declared using the patch in qualifier
5059 * in tessellation control or geometry shaders."
5060 *
5061 * From section 4.3.6 of the GLSL 4.00 spec:
5062 * "It is an error to use patch out in a vertex, tessellation
5063 * evaluation, or geometry shader."
5064 *
5065 * This doesn't explicitly forbid using them in a fragment shader, but
5066 * that's probably just an oversight.
5067 */
5068 if (state->stage != MESA_SHADER_TESS_EVAL
5069 && this->type->qualifier.flags.q.patch
5070 && this->type->qualifier.flags.q.in) {
5071
5072 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5073 "tessellation evaluation shader");
5074 }
5075
5076 if (state->stage != MESA_SHADER_TESS_CTRL
5077 && this->type->qualifier.flags.q.patch
5078 && this->type->qualifier.flags.q.out) {
5079
5080 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5081 "tessellation control shader");
5082 }
5083
5084 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5085 */
5086 if (this->type->qualifier.precision != ast_precision_none) {
5087 state->check_precision_qualifiers_allowed(&loc);
5088 }
5089
5090 if (this->type->qualifier.precision != ast_precision_none &&
5091 !precision_qualifier_allowed(var->type)) {
5092 _mesa_glsl_error(&loc, state,
5093 "precision qualifiers apply only to floating point"
5094 ", integer and opaque types");
5095 }
5096
5097 /* From section 4.1.7 of the GLSL 4.40 spec:
5098 *
5099 * "[Opaque types] can only be declared as function
5100 * parameters or uniform-qualified variables."
5101 */
5102 if (var_type->contains_opaque() &&
5103 !this->type->qualifier.flags.q.uniform) {
5104 _mesa_glsl_error(&loc, state,
5105 "opaque variables must be declared uniform");
5106 }
5107
5108 /* Process the initializer and add its instructions to a temporary
5109 * list. This list will be added to the instruction stream (below) after
5110 * the declaration is added. This is done because in some cases (such as
5111 * redeclarations) the declaration may not actually be added to the
5112 * instruction stream.
5113 */
5114 exec_list initializer_instructions;
5115
5116 /* Examine var name here since var may get deleted in the next call */
5117 bool var_is_gl_id = is_gl_identifier(var->name);
5118
5119 ir_variable *earlier =
5120 get_variable_being_redeclared(var, decl->get_location(), state,
5121 false /* allow_all_redeclarations */);
5122 if (earlier != NULL) {
5123 if (var_is_gl_id &&
5124 earlier->data.how_declared == ir_var_declared_in_block) {
5125 _mesa_glsl_error(&loc, state,
5126 "`%s' has already been redeclared using "
5127 "gl_PerVertex", earlier->name);
5128 }
5129 earlier->data.how_declared = ir_var_declared_normally;
5130 }
5131
5132 if (decl->initializer != NULL) {
5133 result = process_initializer((earlier == NULL) ? var : earlier,
5134 decl, this->type,
5135 &initializer_instructions, state);
5136 } else {
5137 validate_array_dimensions(var_type, state, &loc);
5138 }
5139
5140 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5141 *
5142 * "It is an error to write to a const variable outside of
5143 * its declaration, so they must be initialized when
5144 * declared."
5145 */
5146 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5147 _mesa_glsl_error(& loc, state,
5148 "const declaration of `%s' must be initialized",
5149 decl->identifier);
5150 }
5151
5152 if (state->es_shader) {
5153 const glsl_type *const t = (earlier == NULL)
5154 ? var->type : earlier->type;
5155
5156 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5157 *
5158 * The GL_OES_tessellation_shader spec says about inputs:
5159 *
5160 * "Declaring an array size is optional. If no size is specified,
5161 * it will be taken from the implementation-dependent maximum
5162 * patch size (gl_MaxPatchVertices)."
5163 *
5164 * and about TCS outputs:
5165 *
5166 * "If no size is specified, it will be taken from output patch
5167 * size declared in the shader."
5168 *
5169 * The GL_OES_geometry_shader spec says:
5170 *
5171 * "All geometry shader input unsized array declarations will be
5172 * sized by an earlier input primitive layout qualifier, when
5173 * present, as per the following table."
5174 */
5175 const bool implicitly_sized =
5176 (var->data.mode == ir_var_shader_in &&
5177 state->stage >= MESA_SHADER_TESS_CTRL &&
5178 state->stage <= MESA_SHADER_GEOMETRY) ||
5179 (var->data.mode == ir_var_shader_out &&
5180 state->stage == MESA_SHADER_TESS_CTRL);
5181
5182 if (t->is_unsized_array() && !implicitly_sized)
5183 /* Section 10.17 of the GLSL ES 1.00 specification states that
5184 * unsized array declarations have been removed from the language.
5185 * Arrays that are sized using an initializer are still explicitly
5186 * sized. However, GLSL ES 1.00 does not allow array
5187 * initializers. That is only allowed in GLSL ES 3.00.
5188 *
5189 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5190 *
5191 * "An array type can also be formed without specifying a size
5192 * if the definition includes an initializer:
5193 *
5194 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5195 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5196 *
5197 * float a[5];
5198 * float b[] = a;"
5199 */
5200 _mesa_glsl_error(& loc, state,
5201 "unsized array declarations are not allowed in "
5202 "GLSL ES");
5203 }
5204
5205 /* If the declaration is not a redeclaration, there are a few additional
5206 * semantic checks that must be applied. In addition, variable that was
5207 * created for the declaration should be added to the IR stream.
5208 */
5209 if (earlier == NULL) {
5210 validate_identifier(decl->identifier, loc, state);
5211
5212 /* Add the variable to the symbol table. Note that the initializer's
5213 * IR was already processed earlier (though it hasn't been emitted
5214 * yet), without the variable in scope.
5215 *
5216 * This differs from most C-like languages, but it follows the GLSL
5217 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5218 * spec:
5219 *
5220 * "Within a declaration, the scope of a name starts immediately
5221 * after the initializer if present or immediately after the name
5222 * being declared if not."
5223 */
5224 if (!state->symbols->add_variable(var)) {
5225 YYLTYPE loc = this->get_location();
5226 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5227 "current scope", decl->identifier);
5228 continue;
5229 }
5230
5231 /* Push the variable declaration to the top. It means that all the
5232 * variable declarations will appear in a funny last-to-first order,
5233 * but otherwise we run into trouble if a function is prototyped, a
5234 * global var is decled, then the function is defined with usage of
5235 * the global var. See glslparsertest's CorrectModule.frag.
5236 */
5237 instructions->push_head(var);
5238 }
5239
5240 instructions->append_list(&initializer_instructions);
5241 }
5242
5243
5244 /* Generally, variable declarations do not have r-values. However,
5245 * one is used for the declaration in
5246 *
5247 * while (bool b = some_condition()) {
5248 * ...
5249 * }
5250 *
5251 * so we return the rvalue from the last seen declaration here.
5252 */
5253 return result;
5254 }
5255
5256
5257 ir_rvalue *
5258 ast_parameter_declarator::hir(exec_list *instructions,
5259 struct _mesa_glsl_parse_state *state)
5260 {
5261 void *ctx = state;
5262 const struct glsl_type *type;
5263 const char *name = NULL;
5264 YYLTYPE loc = this->get_location();
5265
5266 type = this->type->glsl_type(& name, state);
5267
5268 if (type == NULL) {
5269 if (name != NULL) {
5270 _mesa_glsl_error(& loc, state,
5271 "invalid type `%s' in declaration of `%s'",
5272 name, this->identifier);
5273 } else {
5274 _mesa_glsl_error(& loc, state,
5275 "invalid type in declaration of `%s'",
5276 this->identifier);
5277 }
5278
5279 type = glsl_type::error_type;
5280 }
5281
5282 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5283 *
5284 * "Functions that accept no input arguments need not use void in the
5285 * argument list because prototypes (or definitions) are required and
5286 * therefore there is no ambiguity when an empty argument list "( )" is
5287 * declared. The idiom "(void)" as a parameter list is provided for
5288 * convenience."
5289 *
5290 * Placing this check here prevents a void parameter being set up
5291 * for a function, which avoids tripping up checks for main taking
5292 * parameters and lookups of an unnamed symbol.
5293 */
5294 if (type->is_void()) {
5295 if (this->identifier != NULL)
5296 _mesa_glsl_error(& loc, state,
5297 "named parameter cannot have type `void'");
5298
5299 is_void = true;
5300 return NULL;
5301 }
5302
5303 if (formal_parameter && (this->identifier == NULL)) {
5304 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5305 return NULL;
5306 }
5307
5308 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5309 * call already handled the "vec4[..] foo" case.
5310 */
5311 type = process_array_type(&loc, type, this->array_specifier, state);
5312
5313 if (!type->is_error() && type->is_unsized_array()) {
5314 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5315 "a declared size");
5316 type = glsl_type::error_type;
5317 }
5318
5319 is_void = false;
5320 ir_variable *var = new(ctx)
5321 ir_variable(type, this->identifier, ir_var_function_in);
5322
5323 /* Apply any specified qualifiers to the parameter declaration. Note that
5324 * for function parameters the default mode is 'in'.
5325 */
5326 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5327 true);
5328
5329 /* From section 4.1.7 of the GLSL 4.40 spec:
5330 *
5331 * "Opaque variables cannot be treated as l-values; hence cannot
5332 * be used as out or inout function parameters, nor can they be
5333 * assigned into."
5334 */
5335 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5336 && type->contains_opaque()) {
5337 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5338 "contain opaque variables");
5339 type = glsl_type::error_type;
5340 }
5341
5342 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5343 *
5344 * "When calling a function, expressions that do not evaluate to
5345 * l-values cannot be passed to parameters declared as out or inout."
5346 *
5347 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5348 *
5349 * "Other binary or unary expressions, non-dereferenced arrays,
5350 * function names, swizzles with repeated fields, and constants
5351 * cannot be l-values."
5352 *
5353 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5354 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5355 */
5356 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5357 && type->is_array()
5358 && !state->check_version(120, 100, &loc,
5359 "arrays cannot be out or inout parameters")) {
5360 type = glsl_type::error_type;
5361 }
5362
5363 instructions->push_tail(var);
5364
5365 /* Parameter declarations do not have r-values.
5366 */
5367 return NULL;
5368 }
5369
5370
5371 void
5372 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5373 bool formal,
5374 exec_list *ir_parameters,
5375 _mesa_glsl_parse_state *state)
5376 {
5377 ast_parameter_declarator *void_param = NULL;
5378 unsigned count = 0;
5379
5380 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5381 param->formal_parameter = formal;
5382 param->hir(ir_parameters, state);
5383
5384 if (param->is_void)
5385 void_param = param;
5386
5387 count++;
5388 }
5389
5390 if ((void_param != NULL) && (count > 1)) {
5391 YYLTYPE loc = void_param->get_location();
5392
5393 _mesa_glsl_error(& loc, state,
5394 "`void' parameter must be only parameter");
5395 }
5396 }
5397
5398
5399 void
5400 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5401 {
5402 /* IR invariants disallow function declarations or definitions
5403 * nested within other function definitions. But there is no
5404 * requirement about the relative order of function declarations
5405 * and definitions with respect to one another. So simply insert
5406 * the new ir_function block at the end of the toplevel instruction
5407 * list.
5408 */
5409 state->toplevel_ir->push_tail(f);
5410 }
5411
5412
5413 ir_rvalue *
5414 ast_function::hir(exec_list *instructions,
5415 struct _mesa_glsl_parse_state *state)
5416 {
5417 void *ctx = state;
5418 ir_function *f = NULL;
5419 ir_function_signature *sig = NULL;
5420 exec_list hir_parameters;
5421 YYLTYPE loc = this->get_location();
5422
5423 const char *const name = identifier;
5424
5425 /* New functions are always added to the top-level IR instruction stream,
5426 * so this instruction list pointer is ignored. See also emit_function
5427 * (called below).
5428 */
5429 (void) instructions;
5430
5431 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5432 *
5433 * "Function declarations (prototypes) cannot occur inside of functions;
5434 * they must be at global scope, or for the built-in functions, outside
5435 * the global scope."
5436 *
5437 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5438 *
5439 * "User defined functions may only be defined within the global scope."
5440 *
5441 * Note that this language does not appear in GLSL 1.10.
5442 */
5443 if ((state->current_function != NULL) &&
5444 state->is_version(120, 100)) {
5445 YYLTYPE loc = this->get_location();
5446 _mesa_glsl_error(&loc, state,
5447 "declaration of function `%s' not allowed within "
5448 "function body", name);
5449 }
5450
5451 validate_identifier(name, this->get_location(), state);
5452
5453 /* Convert the list of function parameters to HIR now so that they can be
5454 * used below to compare this function's signature with previously seen
5455 * signatures for functions with the same name.
5456 */
5457 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5458 is_definition,
5459 & hir_parameters, state);
5460
5461 const char *return_type_name;
5462 const glsl_type *return_type =
5463 this->return_type->glsl_type(& return_type_name, state);
5464
5465 if (!return_type) {
5466 YYLTYPE loc = this->get_location();
5467 _mesa_glsl_error(&loc, state,
5468 "function `%s' has undeclared return type `%s'",
5469 name, return_type_name);
5470 return_type = glsl_type::error_type;
5471 }
5472
5473 /* ARB_shader_subroutine states:
5474 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5475 * subroutine(...) to a function declaration."
5476 */
5477 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5478 YYLTYPE loc = this->get_location();
5479 _mesa_glsl_error(&loc, state,
5480 "function declaration `%s' cannot have subroutine prepended",
5481 name);
5482 }
5483
5484 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5485 * "No qualifier is allowed on the return type of a function."
5486 */
5487 if (this->return_type->has_qualifiers(state)) {
5488 YYLTYPE loc = this->get_location();
5489 _mesa_glsl_error(& loc, state,
5490 "function `%s' return type has qualifiers", name);
5491 }
5492
5493 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5494 *
5495 * "Arrays are allowed as arguments and as the return type. In both
5496 * cases, the array must be explicitly sized."
5497 */
5498 if (return_type->is_unsized_array()) {
5499 YYLTYPE loc = this->get_location();
5500 _mesa_glsl_error(& loc, state,
5501 "function `%s' return type array must be explicitly "
5502 "sized", name);
5503 }
5504
5505 /* From section 4.1.7 of the GLSL 4.40 spec:
5506 *
5507 * "[Opaque types] can only be declared as function parameters
5508 * or uniform-qualified variables."
5509 */
5510 if (return_type->contains_opaque()) {
5511 YYLTYPE loc = this->get_location();
5512 _mesa_glsl_error(&loc, state,
5513 "function `%s' return type can't contain an opaque type",
5514 name);
5515 }
5516
5517 /**/
5518 if (return_type->is_subroutine()) {
5519 YYLTYPE loc = this->get_location();
5520 _mesa_glsl_error(&loc, state,
5521 "function `%s' return type can't be a subroutine type",
5522 name);
5523 }
5524
5525
5526 /* Create an ir_function if one doesn't already exist. */
5527 f = state->symbols->get_function(name);
5528 if (f == NULL) {
5529 f = new(ctx) ir_function(name);
5530 if (!this->return_type->qualifier.flags.q.subroutine) {
5531 if (!state->symbols->add_function(f)) {
5532 /* This function name shadows a non-function use of the same name. */
5533 YYLTYPE loc = this->get_location();
5534 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5535 "non-function", name);
5536 return NULL;
5537 }
5538 }
5539 emit_function(state, f);
5540 }
5541
5542 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5543 *
5544 * "A shader cannot redefine or overload built-in functions."
5545 *
5546 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5547 *
5548 * "User code can overload the built-in functions but cannot redefine
5549 * them."
5550 */
5551 if (state->es_shader && state->language_version >= 300) {
5552 /* Local shader has no exact candidates; check the built-ins. */
5553 _mesa_glsl_initialize_builtin_functions();
5554 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5555 YYLTYPE loc = this->get_location();
5556 _mesa_glsl_error(& loc, state,
5557 "A shader cannot redefine or overload built-in "
5558 "function `%s' in GLSL ES 3.00", name);
5559 return NULL;
5560 }
5561 }
5562
5563 /* Verify that this function's signature either doesn't match a previously
5564 * seen signature for a function with the same name, or, if a match is found,
5565 * that the previously seen signature does not have an associated definition.
5566 */
5567 if (state->es_shader || f->has_user_signature()) {
5568 sig = f->exact_matching_signature(state, &hir_parameters);
5569 if (sig != NULL) {
5570 const char *badvar = sig->qualifiers_match(&hir_parameters);
5571 if (badvar != NULL) {
5572 YYLTYPE loc = this->get_location();
5573
5574 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5575 "qualifiers don't match prototype", name, badvar);
5576 }
5577
5578 if (sig->return_type != return_type) {
5579 YYLTYPE loc = this->get_location();
5580
5581 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5582 "match prototype", name);
5583 }
5584
5585 if (sig->is_defined) {
5586 if (is_definition) {
5587 YYLTYPE loc = this->get_location();
5588 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5589 } else {
5590 /* We just encountered a prototype that exactly matches a
5591 * function that's already been defined. This is redundant,
5592 * and we should ignore it.
5593 */
5594 return NULL;
5595 }
5596 }
5597 }
5598 }
5599
5600 /* Verify the return type of main() */
5601 if (strcmp(name, "main") == 0) {
5602 if (! return_type->is_void()) {
5603 YYLTYPE loc = this->get_location();
5604
5605 _mesa_glsl_error(& loc, state, "main() must return void");
5606 }
5607
5608 if (!hir_parameters.is_empty()) {
5609 YYLTYPE loc = this->get_location();
5610
5611 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5612 }
5613 }
5614
5615 /* Finish storing the information about this new function in its signature.
5616 */
5617 if (sig == NULL) {
5618 sig = new(ctx) ir_function_signature(return_type);
5619 f->add_signature(sig);
5620 }
5621
5622 sig->replace_parameters(&hir_parameters);
5623 signature = sig;
5624
5625 if (this->return_type->qualifier.flags.q.subroutine_def) {
5626 int idx;
5627
5628 if (this->return_type->qualifier.flags.q.explicit_index) {
5629 unsigned qual_index;
5630 if (process_qualifier_constant(state, &loc, "index",
5631 this->return_type->qualifier.index,
5632 &qual_index)) {
5633 if (!state->has_explicit_uniform_location()) {
5634 _mesa_glsl_error(&loc, state, "subroutine index requires "
5635 "GL_ARB_explicit_uniform_location or "
5636 "GLSL 4.30");
5637 } else if (qual_index >= MAX_SUBROUTINES) {
5638 _mesa_glsl_error(&loc, state,
5639 "invalid subroutine index (%d) index must "
5640 "be a number between 0 and "
5641 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5642 MAX_SUBROUTINES - 1);
5643 } else {
5644 f->subroutine_index = qual_index;
5645 }
5646 }
5647 }
5648
5649 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5650 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5651 f->num_subroutine_types);
5652 idx = 0;
5653 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5654 const struct glsl_type *type;
5655 /* the subroutine type must be already declared */
5656 type = state->symbols->get_type(decl->identifier);
5657 if (!type) {
5658 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5659 }
5660
5661 for (int i = 0; i < state->num_subroutine_types; i++) {
5662 ir_function *fn = state->subroutine_types[i];
5663 ir_function_signature *tsig = NULL;
5664
5665 if (strcmp(fn->name, decl->identifier))
5666 continue;
5667
5668 tsig = fn->matching_signature(state, &sig->parameters,
5669 false);
5670 if (!tsig) {
5671 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5672 } else {
5673 if (tsig->return_type != sig->return_type) {
5674 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5675 }
5676 }
5677 }
5678 f->subroutine_types[idx++] = type;
5679 }
5680 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5681 ir_function *,
5682 state->num_subroutines + 1);
5683 state->subroutines[state->num_subroutines] = f;
5684 state->num_subroutines++;
5685
5686 }
5687
5688 if (this->return_type->qualifier.flags.q.subroutine) {
5689 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5690 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5691 return NULL;
5692 }
5693 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5694 ir_function *,
5695 state->num_subroutine_types + 1);
5696 state->subroutine_types[state->num_subroutine_types] = f;
5697 state->num_subroutine_types++;
5698
5699 f->is_subroutine = true;
5700 }
5701
5702 /* Function declarations (prototypes) do not have r-values.
5703 */
5704 return NULL;
5705 }
5706
5707
5708 ir_rvalue *
5709 ast_function_definition::hir(exec_list *instructions,
5710 struct _mesa_glsl_parse_state *state)
5711 {
5712 prototype->is_definition = true;
5713 prototype->hir(instructions, state);
5714
5715 ir_function_signature *signature = prototype->signature;
5716 if (signature == NULL)
5717 return NULL;
5718
5719 assert(state->current_function == NULL);
5720 state->current_function = signature;
5721 state->found_return = false;
5722
5723 /* Duplicate parameters declared in the prototype as concrete variables.
5724 * Add these to the symbol table.
5725 */
5726 state->symbols->push_scope();
5727 foreach_in_list(ir_variable, var, &signature->parameters) {
5728 assert(var->as_variable() != NULL);
5729
5730 /* The only way a parameter would "exist" is if two parameters have
5731 * the same name.
5732 */
5733 if (state->symbols->name_declared_this_scope(var->name)) {
5734 YYLTYPE loc = this->get_location();
5735
5736 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5737 } else {
5738 state->symbols->add_variable(var);
5739 }
5740 }
5741
5742 /* Convert the body of the function to HIR. */
5743 this->body->hir(&signature->body, state);
5744 signature->is_defined = true;
5745
5746 state->symbols->pop_scope();
5747
5748 assert(state->current_function == signature);
5749 state->current_function = NULL;
5750
5751 if (!signature->return_type->is_void() && !state->found_return) {
5752 YYLTYPE loc = this->get_location();
5753 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5754 "%s, but no return statement",
5755 signature->function_name(),
5756 signature->return_type->name);
5757 }
5758
5759 /* Function definitions do not have r-values.
5760 */
5761 return NULL;
5762 }
5763
5764
5765 ir_rvalue *
5766 ast_jump_statement::hir(exec_list *instructions,
5767 struct _mesa_glsl_parse_state *state)
5768 {
5769 void *ctx = state;
5770
5771 switch (mode) {
5772 case ast_return: {
5773 ir_return *inst;
5774 assert(state->current_function);
5775
5776 if (opt_return_value) {
5777 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5778
5779 /* The value of the return type can be NULL if the shader says
5780 * 'return foo();' and foo() is a function that returns void.
5781 *
5782 * NOTE: The GLSL spec doesn't say that this is an error. The type
5783 * of the return value is void. If the return type of the function is
5784 * also void, then this should compile without error. Seriously.
5785 */
5786 const glsl_type *const ret_type =
5787 (ret == NULL) ? glsl_type::void_type : ret->type;
5788
5789 /* Implicit conversions are not allowed for return values prior to
5790 * ARB_shading_language_420pack.
5791 */
5792 if (state->current_function->return_type != ret_type) {
5793 YYLTYPE loc = this->get_location();
5794
5795 if (state->has_420pack()) {
5796 if (!apply_implicit_conversion(state->current_function->return_type,
5797 ret, state)) {
5798 _mesa_glsl_error(& loc, state,
5799 "could not implicitly convert return value "
5800 "to %s, in function `%s'",
5801 state->current_function->return_type->name,
5802 state->current_function->function_name());
5803 }
5804 } else {
5805 _mesa_glsl_error(& loc, state,
5806 "`return' with wrong type %s, in function `%s' "
5807 "returning %s",
5808 ret_type->name,
5809 state->current_function->function_name(),
5810 state->current_function->return_type->name);
5811 }
5812 } else if (state->current_function->return_type->base_type ==
5813 GLSL_TYPE_VOID) {
5814 YYLTYPE loc = this->get_location();
5815
5816 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5817 * specs add a clarification:
5818 *
5819 * "A void function can only use return without a return argument, even if
5820 * the return argument has void type. Return statements only accept values:
5821 *
5822 * void func1() { }
5823 * void func2() { return func1(); } // illegal return statement"
5824 */
5825 _mesa_glsl_error(& loc, state,
5826 "void functions can only use `return' without a "
5827 "return argument");
5828 }
5829
5830 inst = new(ctx) ir_return(ret);
5831 } else {
5832 if (state->current_function->return_type->base_type !=
5833 GLSL_TYPE_VOID) {
5834 YYLTYPE loc = this->get_location();
5835
5836 _mesa_glsl_error(& loc, state,
5837 "`return' with no value, in function %s returning "
5838 "non-void",
5839 state->current_function->function_name());
5840 }
5841 inst = new(ctx) ir_return;
5842 }
5843
5844 state->found_return = true;
5845 instructions->push_tail(inst);
5846 break;
5847 }
5848
5849 case ast_discard:
5850 if (state->stage != MESA_SHADER_FRAGMENT) {
5851 YYLTYPE loc = this->get_location();
5852
5853 _mesa_glsl_error(& loc, state,
5854 "`discard' may only appear in a fragment shader");
5855 }
5856 instructions->push_tail(new(ctx) ir_discard);
5857 break;
5858
5859 case ast_break:
5860 case ast_continue:
5861 if (mode == ast_continue &&
5862 state->loop_nesting_ast == NULL) {
5863 YYLTYPE loc = this->get_location();
5864
5865 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5866 } else if (mode == ast_break &&
5867 state->loop_nesting_ast == NULL &&
5868 state->switch_state.switch_nesting_ast == NULL) {
5869 YYLTYPE loc = this->get_location();
5870
5871 _mesa_glsl_error(& loc, state,
5872 "break may only appear in a loop or a switch");
5873 } else {
5874 /* For a loop, inline the for loop expression again, since we don't
5875 * know where near the end of the loop body the normal copy of it is
5876 * going to be placed. Same goes for the condition for a do-while
5877 * loop.
5878 */
5879 if (state->loop_nesting_ast != NULL &&
5880 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5881 if (state->loop_nesting_ast->rest_expression) {
5882 state->loop_nesting_ast->rest_expression->hir(instructions,
5883 state);
5884 }
5885 if (state->loop_nesting_ast->mode ==
5886 ast_iteration_statement::ast_do_while) {
5887 state->loop_nesting_ast->condition_to_hir(instructions, state);
5888 }
5889 }
5890
5891 if (state->switch_state.is_switch_innermost &&
5892 mode == ast_continue) {
5893 /* Set 'continue_inside' to true. */
5894 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5895 ir_dereference_variable *deref_continue_inside_var =
5896 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5897 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5898 true_val));
5899
5900 /* Break out from the switch, continue for the loop will
5901 * be called right after switch. */
5902 ir_loop_jump *const jump =
5903 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5904 instructions->push_tail(jump);
5905
5906 } else if (state->switch_state.is_switch_innermost &&
5907 mode == ast_break) {
5908 /* Force break out of switch by inserting a break. */
5909 ir_loop_jump *const jump =
5910 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5911 instructions->push_tail(jump);
5912 } else {
5913 ir_loop_jump *const jump =
5914 new(ctx) ir_loop_jump((mode == ast_break)
5915 ? ir_loop_jump::jump_break
5916 : ir_loop_jump::jump_continue);
5917 instructions->push_tail(jump);
5918 }
5919 }
5920
5921 break;
5922 }
5923
5924 /* Jump instructions do not have r-values.
5925 */
5926 return NULL;
5927 }
5928
5929
5930 ir_rvalue *
5931 ast_selection_statement::hir(exec_list *instructions,
5932 struct _mesa_glsl_parse_state *state)
5933 {
5934 void *ctx = state;
5935
5936 ir_rvalue *const condition = this->condition->hir(instructions, state);
5937
5938 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5939 *
5940 * "Any expression whose type evaluates to a Boolean can be used as the
5941 * conditional expression bool-expression. Vector types are not accepted
5942 * as the expression to if."
5943 *
5944 * The checks are separated so that higher quality diagnostics can be
5945 * generated for cases where both rules are violated.
5946 */
5947 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5948 YYLTYPE loc = this->condition->get_location();
5949
5950 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5951 "boolean");
5952 }
5953
5954 ir_if *const stmt = new(ctx) ir_if(condition);
5955
5956 if (then_statement != NULL) {
5957 state->symbols->push_scope();
5958 then_statement->hir(& stmt->then_instructions, state);
5959 state->symbols->pop_scope();
5960 }
5961
5962 if (else_statement != NULL) {
5963 state->symbols->push_scope();
5964 else_statement->hir(& stmt->else_instructions, state);
5965 state->symbols->pop_scope();
5966 }
5967
5968 instructions->push_tail(stmt);
5969
5970 /* if-statements do not have r-values.
5971 */
5972 return NULL;
5973 }
5974
5975
5976 /* Used for detection of duplicate case values, compare
5977 * given contents directly.
5978 */
5979 static bool
5980 compare_case_value(const void *a, const void *b)
5981 {
5982 return *(unsigned *) a == *(unsigned *) b;
5983 }
5984
5985
5986 /* Used for detection of duplicate case values, just
5987 * returns key contents as is.
5988 */
5989 static unsigned
5990 key_contents(const void *key)
5991 {
5992 return *(unsigned *) key;
5993 }
5994
5995
5996 ir_rvalue *
5997 ast_switch_statement::hir(exec_list *instructions,
5998 struct _mesa_glsl_parse_state *state)
5999 {
6000 void *ctx = state;
6001
6002 ir_rvalue *const test_expression =
6003 this->test_expression->hir(instructions, state);
6004
6005 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6006 *
6007 * "The type of init-expression in a switch statement must be a
6008 * scalar integer."
6009 */
6010 if (!test_expression->type->is_scalar() ||
6011 !test_expression->type->is_integer()) {
6012 YYLTYPE loc = this->test_expression->get_location();
6013
6014 _mesa_glsl_error(& loc,
6015 state,
6016 "switch-statement expression must be scalar "
6017 "integer");
6018 }
6019
6020 /* Track the switch-statement nesting in a stack-like manner.
6021 */
6022 struct glsl_switch_state saved = state->switch_state;
6023
6024 state->switch_state.is_switch_innermost = true;
6025 state->switch_state.switch_nesting_ast = this;
6026 state->switch_state.labels_ht =
6027 _mesa_hash_table_create(NULL, key_contents,
6028 compare_case_value);
6029 state->switch_state.previous_default = NULL;
6030
6031 /* Initalize is_fallthru state to false.
6032 */
6033 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6034 state->switch_state.is_fallthru_var =
6035 new(ctx) ir_variable(glsl_type::bool_type,
6036 "switch_is_fallthru_tmp",
6037 ir_var_temporary);
6038 instructions->push_tail(state->switch_state.is_fallthru_var);
6039
6040 ir_dereference_variable *deref_is_fallthru_var =
6041 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6042 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6043 is_fallthru_val));
6044
6045 /* Initialize continue_inside state to false.
6046 */
6047 state->switch_state.continue_inside =
6048 new(ctx) ir_variable(glsl_type::bool_type,
6049 "continue_inside_tmp",
6050 ir_var_temporary);
6051 instructions->push_tail(state->switch_state.continue_inside);
6052
6053 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6054 ir_dereference_variable *deref_continue_inside_var =
6055 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6056 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6057 false_val));
6058
6059 state->switch_state.run_default =
6060 new(ctx) ir_variable(glsl_type::bool_type,
6061 "run_default_tmp",
6062 ir_var_temporary);
6063 instructions->push_tail(state->switch_state.run_default);
6064
6065 /* Loop around the switch is used for flow control. */
6066 ir_loop * loop = new(ctx) ir_loop();
6067 instructions->push_tail(loop);
6068
6069 /* Cache test expression.
6070 */
6071 test_to_hir(&loop->body_instructions, state);
6072
6073 /* Emit code for body of switch stmt.
6074 */
6075 body->hir(&loop->body_instructions, state);
6076
6077 /* Insert a break at the end to exit loop. */
6078 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6079 loop->body_instructions.push_tail(jump);
6080
6081 /* If we are inside loop, check if continue got called inside switch. */
6082 if (state->loop_nesting_ast != NULL) {
6083 ir_dereference_variable *deref_continue_inside =
6084 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6085 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6086 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6087
6088 if (state->loop_nesting_ast != NULL) {
6089 if (state->loop_nesting_ast->rest_expression) {
6090 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6091 state);
6092 }
6093 if (state->loop_nesting_ast->mode ==
6094 ast_iteration_statement::ast_do_while) {
6095 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6096 }
6097 }
6098 irif->then_instructions.push_tail(jump);
6099 instructions->push_tail(irif);
6100 }
6101
6102 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6103
6104 state->switch_state = saved;
6105
6106 /* Switch statements do not have r-values. */
6107 return NULL;
6108 }
6109
6110
6111 void
6112 ast_switch_statement::test_to_hir(exec_list *instructions,
6113 struct _mesa_glsl_parse_state *state)
6114 {
6115 void *ctx = state;
6116
6117 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6118 * on the switch test case. The first one would be already raised when
6119 * getting the test_expression at ast_switch_statement::hir
6120 */
6121 test_expression->set_is_lhs(true);
6122 /* Cache value of test expression. */
6123 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6124
6125 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6126 "switch_test_tmp",
6127 ir_var_temporary);
6128 ir_dereference_variable *deref_test_var =
6129 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6130
6131 instructions->push_tail(state->switch_state.test_var);
6132 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6133 }
6134
6135
6136 ir_rvalue *
6137 ast_switch_body::hir(exec_list *instructions,
6138 struct _mesa_glsl_parse_state *state)
6139 {
6140 if (stmts != NULL)
6141 stmts->hir(instructions, state);
6142
6143 /* Switch bodies do not have r-values. */
6144 return NULL;
6145 }
6146
6147 ir_rvalue *
6148 ast_case_statement_list::hir(exec_list *instructions,
6149 struct _mesa_glsl_parse_state *state)
6150 {
6151 exec_list default_case, after_default, tmp;
6152
6153 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6154 case_stmt->hir(&tmp, state);
6155
6156 /* Default case. */
6157 if (state->switch_state.previous_default && default_case.is_empty()) {
6158 default_case.append_list(&tmp);
6159 continue;
6160 }
6161
6162 /* If default case found, append 'after_default' list. */
6163 if (!default_case.is_empty())
6164 after_default.append_list(&tmp);
6165 else
6166 instructions->append_list(&tmp);
6167 }
6168
6169 /* Handle the default case. This is done here because default might not be
6170 * the last case. We need to add checks against following cases first to see
6171 * if default should be chosen or not.
6172 */
6173 if (!default_case.is_empty()) {
6174
6175 ir_rvalue *const true_val = new (state) ir_constant(true);
6176 ir_dereference_variable *deref_run_default_var =
6177 new(state) ir_dereference_variable(state->switch_state.run_default);
6178
6179 /* Choose to run default case initially, following conditional
6180 * assignments might change this.
6181 */
6182 ir_assignment *const init_var =
6183 new(state) ir_assignment(deref_run_default_var, true_val);
6184 instructions->push_tail(init_var);
6185
6186 /* Default case was the last one, no checks required. */
6187 if (after_default.is_empty()) {
6188 instructions->append_list(&default_case);
6189 return NULL;
6190 }
6191
6192 foreach_in_list(ir_instruction, ir, &after_default) {
6193 ir_assignment *assign = ir->as_assignment();
6194
6195 if (!assign)
6196 continue;
6197
6198 /* Clone the check between case label and init expression. */
6199 ir_expression *exp = (ir_expression*) assign->condition;
6200 ir_expression *clone = exp->clone(state, NULL);
6201
6202 ir_dereference_variable *deref_var =
6203 new(state) ir_dereference_variable(state->switch_state.run_default);
6204 ir_rvalue *const false_val = new (state) ir_constant(false);
6205
6206 ir_assignment *const set_false =
6207 new(state) ir_assignment(deref_var, false_val, clone);
6208
6209 instructions->push_tail(set_false);
6210 }
6211
6212 /* Append default case and all cases after it. */
6213 instructions->append_list(&default_case);
6214 instructions->append_list(&after_default);
6215 }
6216
6217 /* Case statements do not have r-values. */
6218 return NULL;
6219 }
6220
6221 ir_rvalue *
6222 ast_case_statement::hir(exec_list *instructions,
6223 struct _mesa_glsl_parse_state *state)
6224 {
6225 labels->hir(instructions, state);
6226
6227 /* Guard case statements depending on fallthru state. */
6228 ir_dereference_variable *const deref_fallthru_guard =
6229 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6230 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6231
6232 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6233 stmt->hir(& test_fallthru->then_instructions, state);
6234
6235 instructions->push_tail(test_fallthru);
6236
6237 /* Case statements do not have r-values. */
6238 return NULL;
6239 }
6240
6241
6242 ir_rvalue *
6243 ast_case_label_list::hir(exec_list *instructions,
6244 struct _mesa_glsl_parse_state *state)
6245 {
6246 foreach_list_typed (ast_case_label, label, link, & this->labels)
6247 label->hir(instructions, state);
6248
6249 /* Case labels do not have r-values. */
6250 return NULL;
6251 }
6252
6253 ir_rvalue *
6254 ast_case_label::hir(exec_list *instructions,
6255 struct _mesa_glsl_parse_state *state)
6256 {
6257 void *ctx = state;
6258
6259 ir_dereference_variable *deref_fallthru_var =
6260 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6261
6262 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6263
6264 /* If not default case, ... */
6265 if (this->test_value != NULL) {
6266 /* Conditionally set fallthru state based on
6267 * comparison of cached test expression value to case label.
6268 */
6269 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6270 ir_constant *label_const = label_rval->constant_expression_value();
6271
6272 if (!label_const) {
6273 YYLTYPE loc = this->test_value->get_location();
6274
6275 _mesa_glsl_error(& loc, state,
6276 "switch statement case label must be a "
6277 "constant expression");
6278
6279 /* Stuff a dummy value in to allow processing to continue. */
6280 label_const = new(ctx) ir_constant(0);
6281 } else {
6282 hash_entry *entry =
6283 _mesa_hash_table_search(state->switch_state.labels_ht,
6284 (void *)(uintptr_t)&label_const->value.u[0]);
6285
6286 if (entry) {
6287 ast_expression *previous_label = (ast_expression *) entry->data;
6288 YYLTYPE loc = this->test_value->get_location();
6289 _mesa_glsl_error(& loc, state, "duplicate case value");
6290
6291 loc = previous_label->get_location();
6292 _mesa_glsl_error(& loc, state, "this is the previous case label");
6293 } else {
6294 _mesa_hash_table_insert(state->switch_state.labels_ht,
6295 (void *)(uintptr_t)&label_const->value.u[0],
6296 this->test_value);
6297 }
6298 }
6299
6300 ir_dereference_variable *deref_test_var =
6301 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6302
6303 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6304 label_const,
6305 deref_test_var);
6306
6307 /*
6308 * From GLSL 4.40 specification section 6.2 ("Selection"):
6309 *
6310 * "The type of the init-expression value in a switch statement must
6311 * be a scalar int or uint. The type of the constant-expression value
6312 * in a case label also must be a scalar int or uint. When any pair
6313 * of these values is tested for "equal value" and the types do not
6314 * match, an implicit conversion will be done to convert the int to a
6315 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6316 * is done."
6317 */
6318 if (label_const->type != state->switch_state.test_var->type) {
6319 YYLTYPE loc = this->test_value->get_location();
6320
6321 const glsl_type *type_a = label_const->type;
6322 const glsl_type *type_b = state->switch_state.test_var->type;
6323
6324 /* Check if int->uint implicit conversion is supported. */
6325 bool integer_conversion_supported =
6326 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6327 state);
6328
6329 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6330 !integer_conversion_supported) {
6331 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6332 "init-expression and case label (%s != %s)",
6333 type_a->name, type_b->name);
6334 } else {
6335 /* Conversion of the case label. */
6336 if (type_a->base_type == GLSL_TYPE_INT) {
6337 if (!apply_implicit_conversion(glsl_type::uint_type,
6338 test_cond->operands[0], state))
6339 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6340 } else {
6341 /* Conversion of the init-expression value. */
6342 if (!apply_implicit_conversion(glsl_type::uint_type,
6343 test_cond->operands[1], state))
6344 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6345 }
6346 }
6347 }
6348
6349 ir_assignment *set_fallthru_on_test =
6350 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6351
6352 instructions->push_tail(set_fallthru_on_test);
6353 } else { /* default case */
6354 if (state->switch_state.previous_default) {
6355 YYLTYPE loc = this->get_location();
6356 _mesa_glsl_error(& loc, state,
6357 "multiple default labels in one switch");
6358
6359 loc = state->switch_state.previous_default->get_location();
6360 _mesa_glsl_error(& loc, state, "this is the first default label");
6361 }
6362 state->switch_state.previous_default = this;
6363
6364 /* Set fallthru condition on 'run_default' bool. */
6365 ir_dereference_variable *deref_run_default =
6366 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6367 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6368 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6369 cond_true,
6370 deref_run_default);
6371
6372 /* Set falltrhu state. */
6373 ir_assignment *set_fallthru =
6374 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6375
6376 instructions->push_tail(set_fallthru);
6377 }
6378
6379 /* Case statements do not have r-values. */
6380 return NULL;
6381 }
6382
6383 void
6384 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6385 struct _mesa_glsl_parse_state *state)
6386 {
6387 void *ctx = state;
6388
6389 if (condition != NULL) {
6390 ir_rvalue *const cond =
6391 condition->hir(instructions, state);
6392
6393 if ((cond == NULL)
6394 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6395 YYLTYPE loc = condition->get_location();
6396
6397 _mesa_glsl_error(& loc, state,
6398 "loop condition must be scalar boolean");
6399 } else {
6400 /* As the first code in the loop body, generate a block that looks
6401 * like 'if (!condition) break;' as the loop termination condition.
6402 */
6403 ir_rvalue *const not_cond =
6404 new(ctx) ir_expression(ir_unop_logic_not, cond);
6405
6406 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6407
6408 ir_jump *const break_stmt =
6409 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6410
6411 if_stmt->then_instructions.push_tail(break_stmt);
6412 instructions->push_tail(if_stmt);
6413 }
6414 }
6415 }
6416
6417
6418 ir_rvalue *
6419 ast_iteration_statement::hir(exec_list *instructions,
6420 struct _mesa_glsl_parse_state *state)
6421 {
6422 void *ctx = state;
6423
6424 /* For-loops and while-loops start a new scope, but do-while loops do not.
6425 */
6426 if (mode != ast_do_while)
6427 state->symbols->push_scope();
6428
6429 if (init_statement != NULL)
6430 init_statement->hir(instructions, state);
6431
6432 ir_loop *const stmt = new(ctx) ir_loop();
6433 instructions->push_tail(stmt);
6434
6435 /* Track the current loop nesting. */
6436 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6437
6438 state->loop_nesting_ast = this;
6439
6440 /* Likewise, indicate that following code is closest to a loop,
6441 * NOT closest to a switch.
6442 */
6443 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6444 state->switch_state.is_switch_innermost = false;
6445
6446 if (mode != ast_do_while)
6447 condition_to_hir(&stmt->body_instructions, state);
6448
6449 if (body != NULL)
6450 body->hir(& stmt->body_instructions, state);
6451
6452 if (rest_expression != NULL)
6453 rest_expression->hir(& stmt->body_instructions, state);
6454
6455 if (mode == ast_do_while)
6456 condition_to_hir(&stmt->body_instructions, state);
6457
6458 if (mode != ast_do_while)
6459 state->symbols->pop_scope();
6460
6461 /* Restore previous nesting before returning. */
6462 state->loop_nesting_ast = nesting_ast;
6463 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6464
6465 /* Loops do not have r-values.
6466 */
6467 return NULL;
6468 }
6469
6470
6471 /**
6472 * Determine if the given type is valid for establishing a default precision
6473 * qualifier.
6474 *
6475 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6476 *
6477 * "The precision statement
6478 *
6479 * precision precision-qualifier type;
6480 *
6481 * can be used to establish a default precision qualifier. The type field
6482 * can be either int or float or any of the sampler types, and the
6483 * precision-qualifier can be lowp, mediump, or highp."
6484 *
6485 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6486 * qualifiers on sampler types, but this seems like an oversight (since the
6487 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6488 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6489 * version.
6490 */
6491 static bool
6492 is_valid_default_precision_type(const struct glsl_type *const type)
6493 {
6494 if (type == NULL)
6495 return false;
6496
6497 switch (type->base_type) {
6498 case GLSL_TYPE_INT:
6499 case GLSL_TYPE_FLOAT:
6500 /* "int" and "float" are valid, but vectors and matrices are not. */
6501 return type->vector_elements == 1 && type->matrix_columns == 1;
6502 case GLSL_TYPE_SAMPLER:
6503 case GLSL_TYPE_IMAGE:
6504 case GLSL_TYPE_ATOMIC_UINT:
6505 return true;
6506 default:
6507 return false;
6508 }
6509 }
6510
6511
6512 ir_rvalue *
6513 ast_type_specifier::hir(exec_list *instructions,
6514 struct _mesa_glsl_parse_state *state)
6515 {
6516 if (this->default_precision == ast_precision_none && this->structure == NULL)
6517 return NULL;
6518
6519 YYLTYPE loc = this->get_location();
6520
6521 /* If this is a precision statement, check that the type to which it is
6522 * applied is either float or int.
6523 *
6524 * From section 4.5.3 of the GLSL 1.30 spec:
6525 * "The precision statement
6526 * precision precision-qualifier type;
6527 * can be used to establish a default precision qualifier. The type
6528 * field can be either int or float [...]. Any other types or
6529 * qualifiers will result in an error.
6530 */
6531 if (this->default_precision != ast_precision_none) {
6532 if (!state->check_precision_qualifiers_allowed(&loc))
6533 return NULL;
6534
6535 if (this->structure != NULL) {
6536 _mesa_glsl_error(&loc, state,
6537 "precision qualifiers do not apply to structures");
6538 return NULL;
6539 }
6540
6541 if (this->array_specifier != NULL) {
6542 _mesa_glsl_error(&loc, state,
6543 "default precision statements do not apply to "
6544 "arrays");
6545 return NULL;
6546 }
6547
6548 const struct glsl_type *const type =
6549 state->symbols->get_type(this->type_name);
6550 if (!is_valid_default_precision_type(type)) {
6551 _mesa_glsl_error(&loc, state,
6552 "default precision statements apply only to "
6553 "float, int, and opaque types");
6554 return NULL;
6555 }
6556
6557 if (state->es_shader) {
6558 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6559 * spec says:
6560 *
6561 * "Non-precision qualified declarations will use the precision
6562 * qualifier specified in the most recent precision statement
6563 * that is still in scope. The precision statement has the same
6564 * scoping rules as variable declarations. If it is declared
6565 * inside a compound statement, its effect stops at the end of
6566 * the innermost statement it was declared in. Precision
6567 * statements in nested scopes override precision statements in
6568 * outer scopes. Multiple precision statements for the same basic
6569 * type can appear inside the same scope, with later statements
6570 * overriding earlier statements within that scope."
6571 *
6572 * Default precision specifications follow the same scope rules as
6573 * variables. So, we can track the state of the default precision
6574 * qualifiers in the symbol table, and the rules will just work. This
6575 * is a slight abuse of the symbol table, but it has the semantics
6576 * that we want.
6577 */
6578 state->symbols->add_default_precision_qualifier(this->type_name,
6579 this->default_precision);
6580 }
6581
6582 /* FINISHME: Translate precision statements into IR. */
6583 return NULL;
6584 }
6585
6586 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6587 * process_record_constructor() can do type-checking on C-style initializer
6588 * expressions of structs, but ast_struct_specifier should only be translated
6589 * to HIR if it is declaring the type of a structure.
6590 *
6591 * The ->is_declaration field is false for initializers of variables
6592 * declared separately from the struct's type definition.
6593 *
6594 * struct S { ... }; (is_declaration = true)
6595 * struct T { ... } t = { ... }; (is_declaration = true)
6596 * S s = { ... }; (is_declaration = false)
6597 */
6598 if (this->structure != NULL && this->structure->is_declaration)
6599 return this->structure->hir(instructions, state);
6600
6601 return NULL;
6602 }
6603
6604
6605 /**
6606 * Process a structure or interface block tree into an array of structure fields
6607 *
6608 * After parsing, where there are some syntax differnces, structures and
6609 * interface blocks are almost identical. They are similar enough that the
6610 * AST for each can be processed the same way into a set of
6611 * \c glsl_struct_field to describe the members.
6612 *
6613 * If we're processing an interface block, var_mode should be the type of the
6614 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6615 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6616 * ir_var_auto.
6617 *
6618 * \return
6619 * The number of fields processed. A pointer to the array structure fields is
6620 * stored in \c *fields_ret.
6621 */
6622 static unsigned
6623 ast_process_struct_or_iface_block_members(exec_list *instructions,
6624 struct _mesa_glsl_parse_state *state,
6625 exec_list *declarations,
6626 glsl_struct_field **fields_ret,
6627 bool is_interface,
6628 enum glsl_matrix_layout matrix_layout,
6629 bool allow_reserved_names,
6630 ir_variable_mode var_mode,
6631 ast_type_qualifier *layout,
6632 unsigned block_stream,
6633 unsigned block_xfb_buffer,
6634 unsigned block_xfb_offset,
6635 unsigned expl_location,
6636 unsigned expl_align)
6637 {
6638 unsigned decl_count = 0;
6639 unsigned next_offset = 0;
6640
6641 /* Make an initial pass over the list of fields to determine how
6642 * many there are. Each element in this list is an ast_declarator_list.
6643 * This means that we actually need to count the number of elements in the
6644 * 'declarations' list in each of the elements.
6645 */
6646 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6647 decl_count += decl_list->declarations.length();
6648 }
6649
6650 /* Allocate storage for the fields and process the field
6651 * declarations. As the declarations are processed, try to also convert
6652 * the types to HIR. This ensures that structure definitions embedded in
6653 * other structure definitions or in interface blocks are processed.
6654 */
6655 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6656 decl_count);
6657
6658 bool first_member = true;
6659 bool first_member_has_explicit_location = false;
6660
6661 unsigned i = 0;
6662 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6663 const char *type_name;
6664 YYLTYPE loc = decl_list->get_location();
6665
6666 decl_list->type->specifier->hir(instructions, state);
6667
6668 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6669 *
6670 * "Anonymous structures are not supported; so embedded structures
6671 * must have a declarator. A name given to an embedded struct is
6672 * scoped at the same level as the struct it is embedded in."
6673 *
6674 * The same section of the GLSL 1.20 spec says:
6675 *
6676 * "Anonymous structures are not supported. Embedded structures are
6677 * not supported."
6678 *
6679 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6680 * embedded structures in 1.10 only.
6681 */
6682 if (state->language_version != 110 &&
6683 decl_list->type->specifier->structure != NULL)
6684 _mesa_glsl_error(&loc, state,
6685 "embedded structure declarations are not allowed");
6686
6687 const glsl_type *decl_type =
6688 decl_list->type->glsl_type(& type_name, state);
6689
6690 const struct ast_type_qualifier *const qual =
6691 &decl_list->type->qualifier;
6692
6693 /* From section 4.3.9 of the GLSL 4.40 spec:
6694 *
6695 * "[In interface blocks] opaque types are not allowed."
6696 *
6697 * It should be impossible for decl_type to be NULL here. Cases that
6698 * might naturally lead to decl_type being NULL, especially for the
6699 * is_interface case, will have resulted in compilation having
6700 * already halted due to a syntax error.
6701 */
6702 assert(decl_type);
6703
6704 if (is_interface) {
6705 if (decl_type->contains_opaque()) {
6706 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6707 "interface block contains opaque variable");
6708 }
6709 } else {
6710 if (decl_type->contains_atomic()) {
6711 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6712 *
6713 * "Members of structures cannot be declared as atomic counter
6714 * types."
6715 */
6716 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6717 }
6718
6719 if (decl_type->contains_image()) {
6720 /* FINISHME: Same problem as with atomic counters.
6721 * FINISHME: Request clarification from Khronos and add
6722 * FINISHME: spec quotation here.
6723 */
6724 _mesa_glsl_error(&loc, state, "image in structure");
6725 }
6726 }
6727
6728 if (qual->flags.q.explicit_binding) {
6729 _mesa_glsl_error(&loc, state,
6730 "binding layout qualifier cannot be applied "
6731 "to struct or interface block members");
6732 }
6733
6734 if (is_interface) {
6735 if (!first_member) {
6736 if (!layout->flags.q.explicit_location &&
6737 ((first_member_has_explicit_location &&
6738 !qual->flags.q.explicit_location) ||
6739 (!first_member_has_explicit_location &&
6740 qual->flags.q.explicit_location))) {
6741 _mesa_glsl_error(&loc, state,
6742 "when block-level location layout qualifier "
6743 "is not supplied either all members must "
6744 "have a location layout qualifier or all "
6745 "members must not have a location layout "
6746 "qualifier");
6747 }
6748 } else {
6749 first_member = false;
6750 first_member_has_explicit_location =
6751 qual->flags.q.explicit_location;
6752 }
6753 }
6754
6755 if (qual->flags.q.std140 ||
6756 qual->flags.q.std430 ||
6757 qual->flags.q.packed ||
6758 qual->flags.q.shared) {
6759 _mesa_glsl_error(&loc, state,
6760 "uniform/shader storage block layout qualifiers "
6761 "std140, std430, packed, and shared can only be "
6762 "applied to uniform/shader storage blocks, not "
6763 "members");
6764 }
6765
6766 if (qual->flags.q.constant) {
6767 _mesa_glsl_error(&loc, state,
6768 "const storage qualifier cannot be applied "
6769 "to struct or interface block members");
6770 }
6771
6772 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6773 *
6774 * "A block member may be declared with a stream identifier, but
6775 * the specified stream must match the stream associated with the
6776 * containing block."
6777 */
6778 if (qual->flags.q.explicit_stream) {
6779 unsigned qual_stream;
6780 if (process_qualifier_constant(state, &loc, "stream",
6781 qual->stream, &qual_stream) &&
6782 qual_stream != block_stream) {
6783 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6784 "interface block member does not match "
6785 "the interface block (%u vs %u)", qual_stream,
6786 block_stream);
6787 }
6788 }
6789
6790 int xfb_buffer;
6791 unsigned explicit_xfb_buffer = 0;
6792 if (qual->flags.q.explicit_xfb_buffer) {
6793 unsigned qual_xfb_buffer;
6794 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6795 qual->xfb_buffer, &qual_xfb_buffer)) {
6796 explicit_xfb_buffer = 1;
6797 if (qual_xfb_buffer != block_xfb_buffer)
6798 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6799 "interface block member does not match "
6800 "the interface block (%u vs %u)",
6801 qual_xfb_buffer, block_xfb_buffer);
6802 }
6803 xfb_buffer = (int) qual_xfb_buffer;
6804 } else {
6805 if (layout)
6806 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6807 xfb_buffer = (int) block_xfb_buffer;
6808 }
6809
6810 int xfb_stride = -1;
6811 if (qual->flags.q.explicit_xfb_stride) {
6812 unsigned qual_xfb_stride;
6813 if (process_qualifier_constant(state, &loc, "xfb_stride",
6814 qual->xfb_stride, &qual_xfb_stride)) {
6815 xfb_stride = (int) qual_xfb_stride;
6816 }
6817 }
6818
6819 if (qual->flags.q.uniform && qual->has_interpolation()) {
6820 _mesa_glsl_error(&loc, state,
6821 "interpolation qualifiers cannot be used "
6822 "with uniform interface blocks");
6823 }
6824
6825 if ((qual->flags.q.uniform || !is_interface) &&
6826 qual->has_auxiliary_storage()) {
6827 _mesa_glsl_error(&loc, state,
6828 "auxiliary storage qualifiers cannot be used "
6829 "in uniform blocks or structures.");
6830 }
6831
6832 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6833 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6834 _mesa_glsl_error(&loc, state,
6835 "row_major and column_major can only be "
6836 "applied to interface blocks");
6837 } else
6838 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6839 }
6840
6841 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6842 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6843 "readonly and writeonly.");
6844 }
6845
6846 foreach_list_typed (ast_declaration, decl, link,
6847 &decl_list->declarations) {
6848 YYLTYPE loc = decl->get_location();
6849
6850 if (!allow_reserved_names)
6851 validate_identifier(decl->identifier, loc, state);
6852
6853 const struct glsl_type *field_type =
6854 process_array_type(&loc, decl_type, decl->array_specifier, state);
6855 validate_array_dimensions(field_type, state, &loc);
6856 fields[i].type = field_type;
6857 fields[i].name = decl->identifier;
6858 fields[i].interpolation =
6859 interpret_interpolation_qualifier(qual, field_type,
6860 var_mode, state, &loc);
6861 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6862 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6863 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6864 fields[i].precision = qual->precision;
6865 fields[i].offset = -1;
6866 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6867 fields[i].xfb_buffer = xfb_buffer;
6868 fields[i].xfb_stride = xfb_stride;
6869
6870 if (qual->flags.q.explicit_location) {
6871 unsigned qual_location;
6872 if (process_qualifier_constant(state, &loc, "location",
6873 qual->location, &qual_location)) {
6874 fields[i].location = qual_location +
6875 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6876 expl_location = fields[i].location +
6877 fields[i].type->count_attribute_slots(false);
6878 }
6879 } else {
6880 if (layout && layout->flags.q.explicit_location) {
6881 fields[i].location = expl_location;
6882 expl_location += fields[i].type->count_attribute_slots(false);
6883 } else {
6884 fields[i].location = -1;
6885 }
6886 }
6887
6888 /* Offset can only be used with std430 and std140 layouts an initial
6889 * value of 0 is used for error detection.
6890 */
6891 unsigned align = 0;
6892 unsigned size = 0;
6893 if (layout) {
6894 bool row_major;
6895 if (qual->flags.q.row_major ||
6896 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6897 row_major = true;
6898 } else {
6899 row_major = false;
6900 }
6901
6902 if(layout->flags.q.std140) {
6903 align = field_type->std140_base_alignment(row_major);
6904 size = field_type->std140_size(row_major);
6905 } else if (layout->flags.q.std430) {
6906 align = field_type->std430_base_alignment(row_major);
6907 size = field_type->std430_size(row_major);
6908 }
6909 }
6910
6911 if (qual->flags.q.explicit_offset) {
6912 unsigned qual_offset;
6913 if (process_qualifier_constant(state, &loc, "offset",
6914 qual->offset, &qual_offset)) {
6915 if (align != 0 && size != 0) {
6916 if (next_offset > qual_offset)
6917 _mesa_glsl_error(&loc, state, "layout qualifier "
6918 "offset overlaps previous member");
6919
6920 if (qual_offset % align) {
6921 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6922 "must be a multiple of the base "
6923 "alignment of %s", field_type->name);
6924 }
6925 fields[i].offset = qual_offset;
6926 next_offset = glsl_align(qual_offset + size, align);
6927 } else {
6928 _mesa_glsl_error(&loc, state, "offset can only be used "
6929 "with std430 and std140 layouts");
6930 }
6931 }
6932 }
6933
6934 if (qual->flags.q.explicit_align || expl_align != 0) {
6935 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6936 next_offset;
6937 if (align == 0 || size == 0) {
6938 _mesa_glsl_error(&loc, state, "align can only be used with "
6939 "std430 and std140 layouts");
6940 } else if (qual->flags.q.explicit_align) {
6941 unsigned member_align;
6942 if (process_qualifier_constant(state, &loc, "align",
6943 qual->align, &member_align)) {
6944 if (member_align == 0 ||
6945 member_align & (member_align - 1)) {
6946 _mesa_glsl_error(&loc, state, "align layout qualifier "
6947 "in not a power of 2");
6948 } else {
6949 fields[i].offset = glsl_align(offset, member_align);
6950 next_offset = glsl_align(fields[i].offset + size, align);
6951 }
6952 }
6953 } else {
6954 fields[i].offset = glsl_align(offset, expl_align);
6955 next_offset = glsl_align(fields[i].offset + size, align);
6956 }
6957 } else if (!qual->flags.q.explicit_offset) {
6958 if (align != 0 && size != 0)
6959 next_offset = glsl_align(next_offset + size, align);
6960 }
6961
6962 /* From the ARB_enhanced_layouts spec:
6963 *
6964 * "The given offset applies to the first component of the first
6965 * member of the qualified entity. Then, within the qualified
6966 * entity, subsequent components are each assigned, in order, to
6967 * the next available offset aligned to a multiple of that
6968 * component's size. Aggregate types are flattened down to the
6969 * component level to get this sequence of components."
6970 */
6971 if (qual->flags.q.explicit_xfb_offset) {
6972 unsigned xfb_offset;
6973 if (process_qualifier_constant(state, &loc, "xfb_offset",
6974 qual->offset, &xfb_offset)) {
6975 fields[i].offset = xfb_offset;
6976 block_xfb_offset = fields[i].offset +
6977 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6978 }
6979 } else {
6980 if (layout && layout->flags.q.explicit_xfb_offset) {
6981 unsigned align = field_type->is_64bit() ? 8 : 4;
6982 fields[i].offset = glsl_align(block_xfb_offset, align);
6983 block_xfb_offset +=
6984 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
6985 }
6986 }
6987
6988 /* Propogate row- / column-major information down the fields of the
6989 * structure or interface block. Structures need this data because
6990 * the structure may contain a structure that contains ... a matrix
6991 * that need the proper layout.
6992 */
6993 if (is_interface && layout &&
6994 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6995 (field_type->without_array()->is_matrix()
6996 || field_type->without_array()->is_record())) {
6997 /* If no layout is specified for the field, inherit the layout
6998 * from the block.
6999 */
7000 fields[i].matrix_layout = matrix_layout;
7001
7002 if (qual->flags.q.row_major)
7003 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7004 else if (qual->flags.q.column_major)
7005 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7006
7007 /* If we're processing an uniform or buffer block, the matrix
7008 * layout must be decided by this point.
7009 */
7010 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7011 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7012 }
7013
7014 /* Image qualifiers are allowed on buffer variables, which can only
7015 * be defined inside shader storage buffer objects
7016 */
7017 if (layout && var_mode == ir_var_shader_storage) {
7018 /* For readonly and writeonly qualifiers the field definition,
7019 * if set, overwrites the layout qualifier.
7020 */
7021 if (qual->flags.q.read_only) {
7022 fields[i].image_read_only = true;
7023 fields[i].image_write_only = false;
7024 } else if (qual->flags.q.write_only) {
7025 fields[i].image_read_only = false;
7026 fields[i].image_write_only = true;
7027 } else {
7028 fields[i].image_read_only = layout->flags.q.read_only;
7029 fields[i].image_write_only = layout->flags.q.write_only;
7030 }
7031
7032 /* For other qualifiers, we set the flag if either the layout
7033 * qualifier or the field qualifier are set
7034 */
7035 fields[i].image_coherent = qual->flags.q.coherent ||
7036 layout->flags.q.coherent;
7037 fields[i].image_volatile = qual->flags.q._volatile ||
7038 layout->flags.q._volatile;
7039 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7040 layout->flags.q.restrict_flag;
7041 }
7042
7043 i++;
7044 }
7045 }
7046
7047 assert(i == decl_count);
7048
7049 *fields_ret = fields;
7050 return decl_count;
7051 }
7052
7053
7054 ir_rvalue *
7055 ast_struct_specifier::hir(exec_list *instructions,
7056 struct _mesa_glsl_parse_state *state)
7057 {
7058 YYLTYPE loc = this->get_location();
7059
7060 unsigned expl_location = 0;
7061 if (layout && layout->flags.q.explicit_location) {
7062 if (!process_qualifier_constant(state, &loc, "location",
7063 layout->location, &expl_location)) {
7064 return NULL;
7065 } else {
7066 expl_location = VARYING_SLOT_VAR0 + expl_location;
7067 }
7068 }
7069
7070 glsl_struct_field *fields;
7071 unsigned decl_count =
7072 ast_process_struct_or_iface_block_members(instructions,
7073 state,
7074 &this->declarations,
7075 &fields,
7076 false,
7077 GLSL_MATRIX_LAYOUT_INHERITED,
7078 false /* allow_reserved_names */,
7079 ir_var_auto,
7080 layout,
7081 0, /* for interface only */
7082 0, /* for interface only */
7083 0, /* for interface only */
7084 expl_location,
7085 0 /* for interface only */);
7086
7087 validate_identifier(this->name, loc, state);
7088
7089 const glsl_type *t =
7090 glsl_type::get_record_instance(fields, decl_count, this->name);
7091
7092 if (!state->symbols->add_type(name, t)) {
7093 const glsl_type *match = state->symbols->get_type(name);
7094 /* allow struct matching for desktop GL - older UE4 does this */
7095 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7096 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7097 else
7098 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7099 } else {
7100 const glsl_type **s = reralloc(state, state->user_structures,
7101 const glsl_type *,
7102 state->num_user_structures + 1);
7103 if (s != NULL) {
7104 s[state->num_user_structures] = t;
7105 state->user_structures = s;
7106 state->num_user_structures++;
7107 }
7108 }
7109
7110 /* Structure type definitions do not have r-values.
7111 */
7112 return NULL;
7113 }
7114
7115
7116 /**
7117 * Visitor class which detects whether a given interface block has been used.
7118 */
7119 class interface_block_usage_visitor : public ir_hierarchical_visitor
7120 {
7121 public:
7122 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7123 : mode(mode), block(block), found(false)
7124 {
7125 }
7126
7127 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7128 {
7129 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7130 found = true;
7131 return visit_stop;
7132 }
7133 return visit_continue;
7134 }
7135
7136 bool usage_found() const
7137 {
7138 return this->found;
7139 }
7140
7141 private:
7142 ir_variable_mode mode;
7143 const glsl_type *block;
7144 bool found;
7145 };
7146
7147 static bool
7148 is_unsized_array_last_element(ir_variable *v)
7149 {
7150 const glsl_type *interface_type = v->get_interface_type();
7151 int length = interface_type->length;
7152
7153 assert(v->type->is_unsized_array());
7154
7155 /* Check if it is the last element of the interface */
7156 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7157 return true;
7158 return false;
7159 }
7160
7161 static void
7162 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7163 {
7164 var->data.image_read_only = field.image_read_only;
7165 var->data.image_write_only = field.image_write_only;
7166 var->data.image_coherent = field.image_coherent;
7167 var->data.image_volatile = field.image_volatile;
7168 var->data.image_restrict = field.image_restrict;
7169 }
7170
7171 ir_rvalue *
7172 ast_interface_block::hir(exec_list *instructions,
7173 struct _mesa_glsl_parse_state *state)
7174 {
7175 YYLTYPE loc = this->get_location();
7176
7177 /* Interface blocks must be declared at global scope */
7178 if (state->current_function != NULL) {
7179 _mesa_glsl_error(&loc, state,
7180 "Interface block `%s' must be declared "
7181 "at global scope",
7182 this->block_name);
7183 }
7184
7185 /* Validate qualifiers:
7186 *
7187 * - Layout Qualifiers as per the table in Section 4.4
7188 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7189 *
7190 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7191 * GLSL 4.50 spec:
7192 *
7193 * "Additionally, memory qualifiers may also be used in the declaration
7194 * of shader storage blocks"
7195 *
7196 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7197 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7198 * Layout Qualifiers) of the GLSL 4.50 spec says:
7199 *
7200 * "The std430 qualifier is supported only for shader storage blocks;
7201 * using std430 on a uniform block will result in a compile-time error."
7202 */
7203 ast_type_qualifier allowed_blk_qualifiers;
7204 allowed_blk_qualifiers.flags.i = 0;
7205 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7206 allowed_blk_qualifiers.flags.q.shared = 1;
7207 allowed_blk_qualifiers.flags.q.packed = 1;
7208 allowed_blk_qualifiers.flags.q.std140 = 1;
7209 allowed_blk_qualifiers.flags.q.row_major = 1;
7210 allowed_blk_qualifiers.flags.q.column_major = 1;
7211 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7212 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7213 if (this->layout.flags.q.buffer) {
7214 allowed_blk_qualifiers.flags.q.buffer = 1;
7215 allowed_blk_qualifiers.flags.q.std430 = 1;
7216 allowed_blk_qualifiers.flags.q.coherent = 1;
7217 allowed_blk_qualifiers.flags.q._volatile = 1;
7218 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7219 allowed_blk_qualifiers.flags.q.read_only = 1;
7220 allowed_blk_qualifiers.flags.q.write_only = 1;
7221 } else {
7222 allowed_blk_qualifiers.flags.q.uniform = 1;
7223 }
7224 } else {
7225 /* Interface block */
7226 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7227
7228 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7229 if (this->layout.flags.q.out) {
7230 allowed_blk_qualifiers.flags.q.out = 1;
7231 if (state->stage == MESA_SHADER_GEOMETRY ||
7232 state->stage == MESA_SHADER_TESS_CTRL ||
7233 state->stage == MESA_SHADER_TESS_EVAL ||
7234 state->stage == MESA_SHADER_VERTEX ) {
7235 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7236 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7237 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7238 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7239 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7240 if (state->stage == MESA_SHADER_GEOMETRY) {
7241 allowed_blk_qualifiers.flags.q.stream = 1;
7242 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7243 }
7244 if (state->stage == MESA_SHADER_TESS_CTRL) {
7245 allowed_blk_qualifiers.flags.q.patch = 1;
7246 }
7247 }
7248 } else {
7249 allowed_blk_qualifiers.flags.q.in = 1;
7250 if (state->stage == MESA_SHADER_TESS_EVAL) {
7251 allowed_blk_qualifiers.flags.q.patch = 1;
7252 }
7253 }
7254 }
7255
7256 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7257 "invalid qualifier for block",
7258 this->block_name);
7259
7260 /* The ast_interface_block has a list of ast_declarator_lists. We
7261 * need to turn those into ir_variables with an association
7262 * with this uniform block.
7263 */
7264 enum glsl_interface_packing packing;
7265 if (this->layout.flags.q.shared) {
7266 packing = GLSL_INTERFACE_PACKING_SHARED;
7267 } else if (this->layout.flags.q.packed) {
7268 packing = GLSL_INTERFACE_PACKING_PACKED;
7269 } else if (this->layout.flags.q.std430) {
7270 packing = GLSL_INTERFACE_PACKING_STD430;
7271 } else {
7272 /* The default layout is std140.
7273 */
7274 packing = GLSL_INTERFACE_PACKING_STD140;
7275 }
7276
7277 ir_variable_mode var_mode;
7278 const char *iface_type_name;
7279 if (this->layout.flags.q.in) {
7280 var_mode = ir_var_shader_in;
7281 iface_type_name = "in";
7282 } else if (this->layout.flags.q.out) {
7283 var_mode = ir_var_shader_out;
7284 iface_type_name = "out";
7285 } else if (this->layout.flags.q.uniform) {
7286 var_mode = ir_var_uniform;
7287 iface_type_name = "uniform";
7288 } else if (this->layout.flags.q.buffer) {
7289 var_mode = ir_var_shader_storage;
7290 iface_type_name = "buffer";
7291 } else {
7292 var_mode = ir_var_auto;
7293 iface_type_name = "UNKNOWN";
7294 assert(!"interface block layout qualifier not found!");
7295 }
7296
7297 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7298 if (this->layout.flags.q.row_major)
7299 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7300 else if (this->layout.flags.q.column_major)
7301 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7302
7303 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7304 exec_list declared_variables;
7305 glsl_struct_field *fields;
7306
7307 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7308 * that we don't have incompatible qualifiers
7309 */
7310 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7311 _mesa_glsl_error(&loc, state,
7312 "Interface block sets both readonly and writeonly");
7313 }
7314
7315 unsigned qual_stream;
7316 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7317 &qual_stream) ||
7318 !validate_stream_qualifier(&loc, state, qual_stream)) {
7319 /* If the stream qualifier is invalid it doesn't make sense to continue
7320 * on and try to compare stream layouts on member variables against it
7321 * so just return early.
7322 */
7323 return NULL;
7324 }
7325
7326 unsigned qual_xfb_buffer;
7327 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7328 layout.xfb_buffer, &qual_xfb_buffer) ||
7329 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7330 return NULL;
7331 }
7332
7333 unsigned qual_xfb_offset;
7334 if (layout.flags.q.explicit_xfb_offset) {
7335 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7336 layout.offset, &qual_xfb_offset)) {
7337 return NULL;
7338 }
7339 }
7340
7341 unsigned qual_xfb_stride;
7342 if (layout.flags.q.explicit_xfb_stride) {
7343 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7344 layout.xfb_stride, &qual_xfb_stride)) {
7345 return NULL;
7346 }
7347 }
7348
7349 unsigned expl_location = 0;
7350 if (layout.flags.q.explicit_location) {
7351 if (!process_qualifier_constant(state, &loc, "location",
7352 layout.location, &expl_location)) {
7353 return NULL;
7354 } else {
7355 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7356 : VARYING_SLOT_VAR0;
7357 }
7358 }
7359
7360 unsigned expl_align = 0;
7361 if (layout.flags.q.explicit_align) {
7362 if (!process_qualifier_constant(state, &loc, "align",
7363 layout.align, &expl_align)) {
7364 return NULL;
7365 } else {
7366 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7367 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7368 "power of 2.");
7369 return NULL;
7370 }
7371 }
7372 }
7373
7374 unsigned int num_variables =
7375 ast_process_struct_or_iface_block_members(&declared_variables,
7376 state,
7377 &this->declarations,
7378 &fields,
7379 true,
7380 matrix_layout,
7381 redeclaring_per_vertex,
7382 var_mode,
7383 &this->layout,
7384 qual_stream,
7385 qual_xfb_buffer,
7386 qual_xfb_offset,
7387 expl_location,
7388 expl_align);
7389
7390 if (!redeclaring_per_vertex) {
7391 validate_identifier(this->block_name, loc, state);
7392
7393 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7394 *
7395 * "Block names have no other use within a shader beyond interface
7396 * matching; it is a compile-time error to use a block name at global
7397 * scope for anything other than as a block name."
7398 */
7399 ir_variable *var = state->symbols->get_variable(this->block_name);
7400 if (var && !var->type->is_interface()) {
7401 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7402 "already used in the scope.",
7403 this->block_name);
7404 }
7405 }
7406
7407 const glsl_type *earlier_per_vertex = NULL;
7408 if (redeclaring_per_vertex) {
7409 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7410 * the named interface block gl_in, we can find it by looking at the
7411 * previous declaration of gl_in. Otherwise we can find it by looking
7412 * at the previous decalartion of any of the built-in outputs,
7413 * e.g. gl_Position.
7414 *
7415 * Also check that the instance name and array-ness of the redeclaration
7416 * are correct.
7417 */
7418 switch (var_mode) {
7419 case ir_var_shader_in:
7420 if (ir_variable *earlier_gl_in =
7421 state->symbols->get_variable("gl_in")) {
7422 earlier_per_vertex = earlier_gl_in->get_interface_type();
7423 } else {
7424 _mesa_glsl_error(&loc, state,
7425 "redeclaration of gl_PerVertex input not allowed "
7426 "in the %s shader",
7427 _mesa_shader_stage_to_string(state->stage));
7428 }
7429 if (this->instance_name == NULL ||
7430 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7431 !this->array_specifier->is_single_dimension()) {
7432 _mesa_glsl_error(&loc, state,
7433 "gl_PerVertex input must be redeclared as "
7434 "gl_in[]");
7435 }
7436 break;
7437 case ir_var_shader_out:
7438 if (ir_variable *earlier_gl_Position =
7439 state->symbols->get_variable("gl_Position")) {
7440 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7441 } else if (ir_variable *earlier_gl_out =
7442 state->symbols->get_variable("gl_out")) {
7443 earlier_per_vertex = earlier_gl_out->get_interface_type();
7444 } else {
7445 _mesa_glsl_error(&loc, state,
7446 "redeclaration of gl_PerVertex output not "
7447 "allowed in the %s shader",
7448 _mesa_shader_stage_to_string(state->stage));
7449 }
7450 if (state->stage == MESA_SHADER_TESS_CTRL) {
7451 if (this->instance_name == NULL ||
7452 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7453 _mesa_glsl_error(&loc, state,
7454 "gl_PerVertex output must be redeclared as "
7455 "gl_out[]");
7456 }
7457 } else {
7458 if (this->instance_name != NULL) {
7459 _mesa_glsl_error(&loc, state,
7460 "gl_PerVertex output may not be redeclared with "
7461 "an instance name");
7462 }
7463 }
7464 break;
7465 default:
7466 _mesa_glsl_error(&loc, state,
7467 "gl_PerVertex must be declared as an input or an "
7468 "output");
7469 break;
7470 }
7471
7472 if (earlier_per_vertex == NULL) {
7473 /* An error has already been reported. Bail out to avoid null
7474 * dereferences later in this function.
7475 */
7476 return NULL;
7477 }
7478
7479 /* Copy locations from the old gl_PerVertex interface block. */
7480 for (unsigned i = 0; i < num_variables; i++) {
7481 int j = earlier_per_vertex->field_index(fields[i].name);
7482 if (j == -1) {
7483 _mesa_glsl_error(&loc, state,
7484 "redeclaration of gl_PerVertex must be a subset "
7485 "of the built-in members of gl_PerVertex");
7486 } else {
7487 fields[i].location =
7488 earlier_per_vertex->fields.structure[j].location;
7489 fields[i].offset =
7490 earlier_per_vertex->fields.structure[j].offset;
7491 fields[i].interpolation =
7492 earlier_per_vertex->fields.structure[j].interpolation;
7493 fields[i].centroid =
7494 earlier_per_vertex->fields.structure[j].centroid;
7495 fields[i].sample =
7496 earlier_per_vertex->fields.structure[j].sample;
7497 fields[i].patch =
7498 earlier_per_vertex->fields.structure[j].patch;
7499 fields[i].precision =
7500 earlier_per_vertex->fields.structure[j].precision;
7501 fields[i].explicit_xfb_buffer =
7502 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7503 fields[i].xfb_buffer =
7504 earlier_per_vertex->fields.structure[j].xfb_buffer;
7505 fields[i].xfb_stride =
7506 earlier_per_vertex->fields.structure[j].xfb_stride;
7507 }
7508 }
7509
7510 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7511 * spec:
7512 *
7513 * If a built-in interface block is redeclared, it must appear in
7514 * the shader before any use of any member included in the built-in
7515 * declaration, or a compilation error will result.
7516 *
7517 * This appears to be a clarification to the behaviour established for
7518 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7519 * regardless of GLSL version.
7520 */
7521 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7522 v.run(instructions);
7523 if (v.usage_found()) {
7524 _mesa_glsl_error(&loc, state,
7525 "redeclaration of a built-in interface block must "
7526 "appear before any use of any member of the "
7527 "interface block");
7528 }
7529 }
7530
7531 const glsl_type *block_type =
7532 glsl_type::get_interface_instance(fields,
7533 num_variables,
7534 packing,
7535 matrix_layout ==
7536 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7537 this->block_name);
7538
7539 unsigned component_size = block_type->contains_double() ? 8 : 4;
7540 int xfb_offset =
7541 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7542 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7543 component_size);
7544
7545 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7546 YYLTYPE loc = this->get_location();
7547 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7548 "already taken in the current scope",
7549 this->block_name, iface_type_name);
7550 }
7551
7552 /* Since interface blocks cannot contain statements, it should be
7553 * impossible for the block to generate any instructions.
7554 */
7555 assert(declared_variables.is_empty());
7556
7557 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7558 *
7559 * Geometry shader input variables get the per-vertex values written
7560 * out by vertex shader output variables of the same names. Since a
7561 * geometry shader operates on a set of vertices, each input varying
7562 * variable (or input block, see interface blocks below) needs to be
7563 * declared as an array.
7564 */
7565 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7566 var_mode == ir_var_shader_in) {
7567 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7568 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7569 state->stage == MESA_SHADER_TESS_EVAL) &&
7570 !this->layout.flags.q.patch &&
7571 this->array_specifier == NULL &&
7572 var_mode == ir_var_shader_in) {
7573 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7574 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7575 !this->layout.flags.q.patch &&
7576 this->array_specifier == NULL &&
7577 var_mode == ir_var_shader_out) {
7578 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7579 }
7580
7581
7582 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7583 * says:
7584 *
7585 * "If an instance name (instance-name) is used, then it puts all the
7586 * members inside a scope within its own name space, accessed with the
7587 * field selector ( . ) operator (analogously to structures)."
7588 */
7589 if (this->instance_name) {
7590 if (redeclaring_per_vertex) {
7591 /* When a built-in in an unnamed interface block is redeclared,
7592 * get_variable_being_redeclared() calls
7593 * check_builtin_array_max_size() to make sure that built-in array
7594 * variables aren't redeclared to illegal sizes. But we're looking
7595 * at a redeclaration of a named built-in interface block. So we
7596 * have to manually call check_builtin_array_max_size() for all parts
7597 * of the interface that are arrays.
7598 */
7599 for (unsigned i = 0; i < num_variables; i++) {
7600 if (fields[i].type->is_array()) {
7601 const unsigned size = fields[i].type->array_size();
7602 check_builtin_array_max_size(fields[i].name, size, loc, state);
7603 }
7604 }
7605 } else {
7606 validate_identifier(this->instance_name, loc, state);
7607 }
7608
7609 ir_variable *var;
7610
7611 if (this->array_specifier != NULL) {
7612 const glsl_type *block_array_type =
7613 process_array_type(&loc, block_type, this->array_specifier, state);
7614
7615 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7616 *
7617 * For uniform blocks declared an array, each individual array
7618 * element corresponds to a separate buffer object backing one
7619 * instance of the block. As the array size indicates the number
7620 * of buffer objects needed, uniform block array declarations
7621 * must specify an array size.
7622 *
7623 * And a few paragraphs later:
7624 *
7625 * Geometry shader input blocks must be declared as arrays and
7626 * follow the array declaration and linking rules for all
7627 * geometry shader inputs. All other input and output block
7628 * arrays must specify an array size.
7629 *
7630 * The same applies to tessellation shaders.
7631 *
7632 * The upshot of this is that the only circumstance where an
7633 * interface array size *doesn't* need to be specified is on a
7634 * geometry shader input, tessellation control shader input,
7635 * tessellation control shader output, and tessellation evaluation
7636 * shader input.
7637 */
7638 if (block_array_type->is_unsized_array()) {
7639 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7640 state->stage == MESA_SHADER_TESS_CTRL ||
7641 state->stage == MESA_SHADER_TESS_EVAL;
7642 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7643
7644 if (this->layout.flags.q.in) {
7645 if (!allow_inputs)
7646 _mesa_glsl_error(&loc, state,
7647 "unsized input block arrays not allowed in "
7648 "%s shader",
7649 _mesa_shader_stage_to_string(state->stage));
7650 } else if (this->layout.flags.q.out) {
7651 if (!allow_outputs)
7652 _mesa_glsl_error(&loc, state,
7653 "unsized output block arrays not allowed in "
7654 "%s shader",
7655 _mesa_shader_stage_to_string(state->stage));
7656 } else {
7657 /* by elimination, this is a uniform block array */
7658 _mesa_glsl_error(&loc, state,
7659 "unsized uniform block arrays not allowed in "
7660 "%s shader",
7661 _mesa_shader_stage_to_string(state->stage));
7662 }
7663 }
7664
7665 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7666 *
7667 * * Arrays of arrays of blocks are not allowed
7668 */
7669 if (state->es_shader && block_array_type->is_array() &&
7670 block_array_type->fields.array->is_array()) {
7671 _mesa_glsl_error(&loc, state,
7672 "arrays of arrays interface blocks are "
7673 "not allowed");
7674 }
7675
7676 var = new(state) ir_variable(block_array_type,
7677 this->instance_name,
7678 var_mode);
7679 } else {
7680 var = new(state) ir_variable(block_type,
7681 this->instance_name,
7682 var_mode);
7683 }
7684
7685 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7686 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7687
7688 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7689 var->data.read_only = true;
7690
7691 var->data.patch = this->layout.flags.q.patch;
7692
7693 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7694 handle_geometry_shader_input_decl(state, loc, var);
7695 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7696 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7697 handle_tess_shader_input_decl(state, loc, var);
7698 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7699 handle_tess_ctrl_shader_output_decl(state, loc, var);
7700
7701 for (unsigned i = 0; i < num_variables; i++) {
7702 if (var->data.mode == ir_var_shader_storage)
7703 apply_memory_qualifiers(var, fields[i]);
7704 }
7705
7706 if (ir_variable *earlier =
7707 state->symbols->get_variable(this->instance_name)) {
7708 if (!redeclaring_per_vertex) {
7709 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7710 this->instance_name);
7711 }
7712 earlier->data.how_declared = ir_var_declared_normally;
7713 earlier->type = var->type;
7714 earlier->reinit_interface_type(block_type);
7715 delete var;
7716 } else {
7717 if (this->layout.flags.q.explicit_binding) {
7718 apply_explicit_binding(state, &loc, var, var->type,
7719 &this->layout);
7720 }
7721
7722 var->data.stream = qual_stream;
7723 if (layout.flags.q.explicit_location) {
7724 var->data.location = expl_location;
7725 var->data.explicit_location = true;
7726 }
7727
7728 state->symbols->add_variable(var);
7729 instructions->push_tail(var);
7730 }
7731 } else {
7732 /* In order to have an array size, the block must also be declared with
7733 * an instance name.
7734 */
7735 assert(this->array_specifier == NULL);
7736
7737 for (unsigned i = 0; i < num_variables; i++) {
7738 ir_variable *var =
7739 new(state) ir_variable(fields[i].type,
7740 ralloc_strdup(state, fields[i].name),
7741 var_mode);
7742 var->data.interpolation = fields[i].interpolation;
7743 var->data.centroid = fields[i].centroid;
7744 var->data.sample = fields[i].sample;
7745 var->data.patch = fields[i].patch;
7746 var->data.stream = qual_stream;
7747 var->data.location = fields[i].location;
7748
7749 if (fields[i].location != -1)
7750 var->data.explicit_location = true;
7751
7752 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7753 var->data.xfb_buffer = fields[i].xfb_buffer;
7754
7755 if (fields[i].offset != -1)
7756 var->data.explicit_xfb_offset = true;
7757 var->data.offset = fields[i].offset;
7758
7759 var->init_interface_type(block_type);
7760
7761 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7762 var->data.read_only = true;
7763
7764 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7765 if (state->es_shader) {
7766 var->data.precision =
7767 select_gles_precision(fields[i].precision, fields[i].type,
7768 state, &loc);
7769 }
7770
7771 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7772 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7773 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7774 } else {
7775 var->data.matrix_layout = fields[i].matrix_layout;
7776 }
7777
7778 if (var->data.mode == ir_var_shader_storage)
7779 apply_memory_qualifiers(var, fields[i]);
7780
7781 /* Examine var name here since var may get deleted in the next call */
7782 bool var_is_gl_id = is_gl_identifier(var->name);
7783
7784 if (redeclaring_per_vertex) {
7785 ir_variable *earlier =
7786 get_variable_being_redeclared(var, loc, state,
7787 true /* allow_all_redeclarations */);
7788 if (!var_is_gl_id || earlier == NULL) {
7789 _mesa_glsl_error(&loc, state,
7790 "redeclaration of gl_PerVertex can only "
7791 "include built-in variables");
7792 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7793 _mesa_glsl_error(&loc, state,
7794 "`%s' has already been redeclared",
7795 earlier->name);
7796 } else {
7797 earlier->data.how_declared = ir_var_declared_in_block;
7798 earlier->reinit_interface_type(block_type);
7799 }
7800 continue;
7801 }
7802
7803 if (state->symbols->get_variable(var->name) != NULL)
7804 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7805
7806 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7807 * The UBO declaration itself doesn't get an ir_variable unless it
7808 * has an instance name. This is ugly.
7809 */
7810 if (this->layout.flags.q.explicit_binding) {
7811 apply_explicit_binding(state, &loc, var,
7812 var->get_interface_type(), &this->layout);
7813 }
7814
7815 if (var->type->is_unsized_array()) {
7816 if (var->is_in_shader_storage_block()) {
7817 if (is_unsized_array_last_element(var)) {
7818 var->data.from_ssbo_unsized_array = true;
7819 }
7820 } else {
7821 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7822 *
7823 * "If an array is declared as the last member of a shader storage
7824 * block and the size is not specified at compile-time, it is
7825 * sized at run-time. In all other cases, arrays are sized only
7826 * at compile-time."
7827 */
7828 if (state->es_shader) {
7829 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7830 "definition: only last member of a shader "
7831 "storage block can be defined as unsized "
7832 "array", fields[i].name);
7833 }
7834 }
7835 }
7836
7837 state->symbols->add_variable(var);
7838 instructions->push_tail(var);
7839 }
7840
7841 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7842 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7843 *
7844 * It is also a compilation error ... to redeclare a built-in
7845 * block and then use a member from that built-in block that was
7846 * not included in the redeclaration.
7847 *
7848 * This appears to be a clarification to the behaviour established
7849 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7850 * behaviour regardless of GLSL version.
7851 *
7852 * To prevent the shader from using a member that was not included in
7853 * the redeclaration, we disable any ir_variables that are still
7854 * associated with the old declaration of gl_PerVertex (since we've
7855 * already updated all of the variables contained in the new
7856 * gl_PerVertex to point to it).
7857 *
7858 * As a side effect this will prevent
7859 * validate_intrastage_interface_blocks() from getting confused and
7860 * thinking there are conflicting definitions of gl_PerVertex in the
7861 * shader.
7862 */
7863 foreach_in_list_safe(ir_instruction, node, instructions) {
7864 ir_variable *const var = node->as_variable();
7865 if (var != NULL &&
7866 var->get_interface_type() == earlier_per_vertex &&
7867 var->data.mode == var_mode) {
7868 if (var->data.how_declared == ir_var_declared_normally) {
7869 _mesa_glsl_error(&loc, state,
7870 "redeclaration of gl_PerVertex cannot "
7871 "follow a redeclaration of `%s'",
7872 var->name);
7873 }
7874 state->symbols->disable_variable(var->name);
7875 var->remove();
7876 }
7877 }
7878 }
7879 }
7880
7881 return NULL;
7882 }
7883
7884
7885 ir_rvalue *
7886 ast_tcs_output_layout::hir(exec_list *instructions,
7887 struct _mesa_glsl_parse_state *state)
7888 {
7889 YYLTYPE loc = this->get_location();
7890
7891 unsigned num_vertices;
7892 if (!state->out_qualifier->vertices->
7893 process_qualifier_constant(state, "vertices", &num_vertices,
7894 false)) {
7895 /* return here to stop cascading incorrect error messages */
7896 return NULL;
7897 }
7898
7899 /* If any shader outputs occurred before this declaration and specified an
7900 * array size, make sure the size they specified is consistent with the
7901 * primitive type.
7902 */
7903 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7904 _mesa_glsl_error(&loc, state,
7905 "this tessellation control shader output layout "
7906 "specifies %u vertices, but a previous output "
7907 "is declared with size %u",
7908 num_vertices, state->tcs_output_size);
7909 return NULL;
7910 }
7911
7912 state->tcs_output_vertices_specified = true;
7913
7914 /* If any shader outputs occurred before this declaration and did not
7915 * specify an array size, their size is determined now.
7916 */
7917 foreach_in_list (ir_instruction, node, instructions) {
7918 ir_variable *var = node->as_variable();
7919 if (var == NULL || var->data.mode != ir_var_shader_out)
7920 continue;
7921
7922 /* Note: Not all tessellation control shader output are arrays. */
7923 if (!var->type->is_unsized_array() || var->data.patch)
7924 continue;
7925
7926 if (var->data.max_array_access >= (int)num_vertices) {
7927 _mesa_glsl_error(&loc, state,
7928 "this tessellation control shader output layout "
7929 "specifies %u vertices, but an access to element "
7930 "%u of output `%s' already exists", num_vertices,
7931 var->data.max_array_access, var->name);
7932 } else {
7933 var->type = glsl_type::get_array_instance(var->type->fields.array,
7934 num_vertices);
7935 }
7936 }
7937
7938 return NULL;
7939 }
7940
7941
7942 ir_rvalue *
7943 ast_gs_input_layout::hir(exec_list *instructions,
7944 struct _mesa_glsl_parse_state *state)
7945 {
7946 YYLTYPE loc = this->get_location();
7947
7948 /* Should have been prevented by the parser. */
7949 assert(!state->gs_input_prim_type_specified
7950 || state->in_qualifier->prim_type == this->prim_type);
7951
7952 /* If any shader inputs occurred before this declaration and specified an
7953 * array size, make sure the size they specified is consistent with the
7954 * primitive type.
7955 */
7956 unsigned num_vertices = vertices_per_prim(this->prim_type);
7957 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7958 _mesa_glsl_error(&loc, state,
7959 "this geometry shader input layout implies %u vertices"
7960 " per primitive, but a previous input is declared"
7961 " with size %u", num_vertices, state->gs_input_size);
7962 return NULL;
7963 }
7964
7965 state->gs_input_prim_type_specified = true;
7966
7967 /* If any shader inputs occurred before this declaration and did not
7968 * specify an array size, their size is determined now.
7969 */
7970 foreach_in_list(ir_instruction, node, instructions) {
7971 ir_variable *var = node->as_variable();
7972 if (var == NULL || var->data.mode != ir_var_shader_in)
7973 continue;
7974
7975 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7976 * array; skip it.
7977 */
7978
7979 if (var->type->is_unsized_array()) {
7980 if (var->data.max_array_access >= (int)num_vertices) {
7981 _mesa_glsl_error(&loc, state,
7982 "this geometry shader input layout implies %u"
7983 " vertices, but an access to element %u of input"
7984 " `%s' already exists", num_vertices,
7985 var->data.max_array_access, var->name);
7986 } else {
7987 var->type = glsl_type::get_array_instance(var->type->fields.array,
7988 num_vertices);
7989 }
7990 }
7991 }
7992
7993 return NULL;
7994 }
7995
7996
7997 ir_rvalue *
7998 ast_cs_input_layout::hir(exec_list *instructions,
7999 struct _mesa_glsl_parse_state *state)
8000 {
8001 YYLTYPE loc = this->get_location();
8002
8003 /* From the ARB_compute_shader specification:
8004 *
8005 * If the local size of the shader in any dimension is greater
8006 * than the maximum size supported by the implementation for that
8007 * dimension, a compile-time error results.
8008 *
8009 * It is not clear from the spec how the error should be reported if
8010 * the total size of the work group exceeds
8011 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8012 * report it at compile time as well.
8013 */
8014 GLuint64 total_invocations = 1;
8015 unsigned qual_local_size[3];
8016 for (int i = 0; i < 3; i++) {
8017
8018 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8019 'x' + i);
8020 /* Infer a local_size of 1 for unspecified dimensions */
8021 if (this->local_size[i] == NULL) {
8022 qual_local_size[i] = 1;
8023 } else if (!this->local_size[i]->
8024 process_qualifier_constant(state, local_size_str,
8025 &qual_local_size[i], false)) {
8026 ralloc_free(local_size_str);
8027 return NULL;
8028 }
8029 ralloc_free(local_size_str);
8030
8031 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8032 _mesa_glsl_error(&loc, state,
8033 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8034 " (%d)", 'x' + i,
8035 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8036 break;
8037 }
8038 total_invocations *= qual_local_size[i];
8039 if (total_invocations >
8040 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8041 _mesa_glsl_error(&loc, state,
8042 "product of local_sizes exceeds "
8043 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8044 state->ctx->Const.MaxComputeWorkGroupInvocations);
8045 break;
8046 }
8047 }
8048
8049 /* If any compute input layout declaration preceded this one, make sure it
8050 * was consistent with this one.
8051 */
8052 if (state->cs_input_local_size_specified) {
8053 for (int i = 0; i < 3; i++) {
8054 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8055 _mesa_glsl_error(&loc, state,
8056 "compute shader input layout does not match"
8057 " previous declaration");
8058 return NULL;
8059 }
8060 }
8061 }
8062
8063 /* The ARB_compute_variable_group_size spec says:
8064 *
8065 * If a compute shader including a *local_size_variable* qualifier also
8066 * declares a fixed local group size using the *local_size_x*,
8067 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8068 * results
8069 */
8070 if (state->cs_input_local_size_variable_specified) {
8071 _mesa_glsl_error(&loc, state,
8072 "compute shader can't include both a variable and a "
8073 "fixed local group size");
8074 return NULL;
8075 }
8076
8077 state->cs_input_local_size_specified = true;
8078 for (int i = 0; i < 3; i++)
8079 state->cs_input_local_size[i] = qual_local_size[i];
8080
8081 /* We may now declare the built-in constant gl_WorkGroupSize (see
8082 * builtin_variable_generator::generate_constants() for why we didn't
8083 * declare it earlier).
8084 */
8085 ir_variable *var = new(state->symbols)
8086 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8087 var->data.how_declared = ir_var_declared_implicitly;
8088 var->data.read_only = true;
8089 instructions->push_tail(var);
8090 state->symbols->add_variable(var);
8091 ir_constant_data data;
8092 memset(&data, 0, sizeof(data));
8093 for (int i = 0; i < 3; i++)
8094 data.u[i] = qual_local_size[i];
8095 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8096 var->constant_initializer =
8097 new(var) ir_constant(glsl_type::uvec3_type, &data);
8098 var->data.has_initializer = true;
8099
8100 return NULL;
8101 }
8102
8103
8104 static void
8105 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8106 exec_list *instructions)
8107 {
8108 bool gl_FragColor_assigned = false;
8109 bool gl_FragData_assigned = false;
8110 bool gl_FragSecondaryColor_assigned = false;
8111 bool gl_FragSecondaryData_assigned = false;
8112 bool user_defined_fs_output_assigned = false;
8113 ir_variable *user_defined_fs_output = NULL;
8114
8115 /* It would be nice to have proper location information. */
8116 YYLTYPE loc;
8117 memset(&loc, 0, sizeof(loc));
8118
8119 foreach_in_list(ir_instruction, node, instructions) {
8120 ir_variable *var = node->as_variable();
8121
8122 if (!var || !var->data.assigned)
8123 continue;
8124
8125 if (strcmp(var->name, "gl_FragColor") == 0)
8126 gl_FragColor_assigned = true;
8127 else if (strcmp(var->name, "gl_FragData") == 0)
8128 gl_FragData_assigned = true;
8129 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8130 gl_FragSecondaryColor_assigned = true;
8131 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8132 gl_FragSecondaryData_assigned = true;
8133 else if (!is_gl_identifier(var->name)) {
8134 if (state->stage == MESA_SHADER_FRAGMENT &&
8135 var->data.mode == ir_var_shader_out) {
8136 user_defined_fs_output_assigned = true;
8137 user_defined_fs_output = var;
8138 }
8139 }
8140 }
8141
8142 /* From the GLSL 1.30 spec:
8143 *
8144 * "If a shader statically assigns a value to gl_FragColor, it
8145 * may not assign a value to any element of gl_FragData. If a
8146 * shader statically writes a value to any element of
8147 * gl_FragData, it may not assign a value to
8148 * gl_FragColor. That is, a shader may assign values to either
8149 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8150 * linked together must also consistently write just one of
8151 * these variables. Similarly, if user declared output
8152 * variables are in use (statically assigned to), then the
8153 * built-in variables gl_FragColor and gl_FragData may not be
8154 * assigned to. These incorrect usages all generate compile
8155 * time errors."
8156 */
8157 if (gl_FragColor_assigned && gl_FragData_assigned) {
8158 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8159 "`gl_FragColor' and `gl_FragData'");
8160 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8161 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8162 "`gl_FragColor' and `%s'",
8163 user_defined_fs_output->name);
8164 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8165 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8166 "`gl_FragSecondaryColorEXT' and"
8167 " `gl_FragSecondaryDataEXT'");
8168 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8169 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8170 "`gl_FragColor' and"
8171 " `gl_FragSecondaryDataEXT'");
8172 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8173 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8174 "`gl_FragData' and"
8175 " `gl_FragSecondaryColorEXT'");
8176 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8177 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8178 "`gl_FragData' and `%s'",
8179 user_defined_fs_output->name);
8180 }
8181
8182 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8183 !state->EXT_blend_func_extended_enable) {
8184 _mesa_glsl_error(&loc, state,
8185 "Dual source blending requires EXT_blend_func_extended");
8186 }
8187 }
8188
8189
8190 static void
8191 remove_per_vertex_blocks(exec_list *instructions,
8192 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8193 {
8194 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8195 * if it exists in this shader type.
8196 */
8197 const glsl_type *per_vertex = NULL;
8198 switch (mode) {
8199 case ir_var_shader_in:
8200 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8201 per_vertex = gl_in->get_interface_type();
8202 break;
8203 case ir_var_shader_out:
8204 if (ir_variable *gl_Position =
8205 state->symbols->get_variable("gl_Position")) {
8206 per_vertex = gl_Position->get_interface_type();
8207 }
8208 break;
8209 default:
8210 assert(!"Unexpected mode");
8211 break;
8212 }
8213
8214 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8215 * need to do anything.
8216 */
8217 if (per_vertex == NULL)
8218 return;
8219
8220 /* If the interface block is used by the shader, then we don't need to do
8221 * anything.
8222 */
8223 interface_block_usage_visitor v(mode, per_vertex);
8224 v.run(instructions);
8225 if (v.usage_found())
8226 return;
8227
8228 /* Remove any ir_variable declarations that refer to the interface block
8229 * we're removing.
8230 */
8231 foreach_in_list_safe(ir_instruction, node, instructions) {
8232 ir_variable *const var = node->as_variable();
8233 if (var != NULL && var->get_interface_type() == per_vertex &&
8234 var->data.mode == mode) {
8235 state->symbols->disable_variable(var->name);
8236 var->remove();
8237 }
8238 }
8239 }