nir/drawpixels: handle load_color0, load_input, load_interpolated_input
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74 _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76 /**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
83 read_from_write_only_variable_visitor() : found(NULL)
84 {
85 }
86
87 virtual ir_visitor_status visit(ir_dereference_variable *ir)
88 {
89 if (this->in_assignee)
90 return visit_continue;
91
92 ir_variable *var = ir->variable_referenced();
93 /* We can have memory_write_only set on both images and buffer variables,
94 * but in the former there is a distinction between reads from
95 * the variable itself (write_only) and from the memory they point to
96 * (memory_write_only), while in the case of buffer variables there is
97 * no such distinction, that is why this check here is limited to
98 * buffer variables alone.
99 */
100 if (!var || var->data.mode != ir_var_shader_storage)
101 return visit_continue;
102
103 if (var->data.memory_write_only) {
104 found = var;
105 return visit_stop;
106 }
107
108 return visit_continue;
109 }
110
111 ir_variable *get_variable() {
112 return found;
113 }
114
115 virtual ir_visitor_status visit_enter(ir_expression *ir)
116 {
117 /* .length() doesn't actually read anything */
118 if (ir->operation == ir_unop_ssbo_unsized_array_length)
119 return visit_continue_with_parent;
120
121 return visit_continue;
122 }
123
124 private:
125 ir_variable *found;
126 };
127
128 void
129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131 _mesa_glsl_initialize_variables(instructions, state);
132
133 state->symbols->separate_function_namespace = state->language_version == 110;
134
135 state->current_function = NULL;
136
137 state->toplevel_ir = instructions;
138
139 state->gs_input_prim_type_specified = false;
140 state->tcs_output_vertices_specified = false;
141 state->cs_input_local_size_specified = false;
142
143 /* Section 4.2 of the GLSL 1.20 specification states:
144 * "The built-in functions are scoped in a scope outside the global scope
145 * users declare global variables in. That is, a shader's global scope,
146 * available for user-defined functions and global variables, is nested
147 * inside the scope containing the built-in functions."
148 *
149 * Since built-in functions like ftransform() access built-in variables,
150 * it follows that those must be in the outer scope as well.
151 *
152 * We push scope here to create this nesting effect...but don't pop.
153 * This way, a shader's globals are still in the symbol table for use
154 * by the linker.
155 */
156 state->symbols->push_scope();
157
158 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159 ast->hir(instructions, state);
160
161 verify_subroutine_associated_funcs(state);
162 detect_recursion_unlinked(state, instructions);
163 detect_conflicting_assignments(state, instructions);
164
165 state->toplevel_ir = NULL;
166
167 /* Move all of the variable declarations to the front of the IR list, and
168 * reverse the order. This has the (intended!) side effect that vertex
169 * shader inputs and fragment shader outputs will appear in the IR in the
170 * same order that they appeared in the shader code. This results in the
171 * locations being assigned in the declared order. Many (arguably buggy)
172 * applications depend on this behavior, and it matches what nearly all
173 * other drivers do.
174 */
175 foreach_in_list_safe(ir_instruction, node, instructions) {
176 ir_variable *const var = node->as_variable();
177
178 if (var == NULL)
179 continue;
180
181 var->remove();
182 instructions->push_head(var);
183 }
184
185 /* Figure out if gl_FragCoord is actually used in fragment shader */
186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187 if (var != NULL)
188 state->fs_uses_gl_fragcoord = var->data.used;
189
190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191 *
192 * If multiple shaders using members of a built-in block belonging to
193 * the same interface are linked together in the same program, they
194 * must all redeclare the built-in block in the same way, as described
195 * in section 4.3.7 "Interface Blocks" for interface block matching, or
196 * a link error will result.
197 *
198 * The phrase "using members of a built-in block" implies that if two
199 * shaders are linked together and one of them *does not use* any members
200 * of the built-in block, then that shader does not need to have a matching
201 * redeclaration of the built-in block.
202 *
203 * This appears to be a clarification to the behaviour established for
204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205 * version.
206 *
207 * The definition of "interface" in section 4.3.7 that applies here is as
208 * follows:
209 *
210 * The boundary between adjacent programmable pipeline stages: This
211 * spans all the outputs in all compilation units of the first stage
212 * and all the inputs in all compilation units of the second stage.
213 *
214 * Therefore this rule applies to both inter- and intra-stage linking.
215 *
216 * The easiest way to implement this is to check whether the shader uses
217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218 * remove all the relevant variable declaration from the IR, so that the
219 * linker won't see them and complain about mismatches.
220 */
221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224 /* Check that we don't have reads from write-only variables */
225 read_from_write_only_variable_visitor v;
226 v.run(instructions);
227 ir_variable *error_var = v.get_variable();
228 if (error_var) {
229 /* It would be nice to have proper location information, but for that
230 * we would need to check this as we process each kind of AST node
231 */
232 YYLTYPE loc;
233 memset(&loc, 0, sizeof(loc));
234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235 error_var->name);
236 }
237 }
238
239
240 static ir_expression_operation
241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242 struct _mesa_glsl_parse_state *state)
243 {
244 switch (to->base_type) {
245 case GLSL_TYPE_FLOAT:
246 switch (from->base_type) {
247 case GLSL_TYPE_INT: return ir_unop_i2f;
248 case GLSL_TYPE_UINT: return ir_unop_u2f;
249 default: return (ir_expression_operation)0;
250 }
251
252 case GLSL_TYPE_UINT:
253 if (!state->has_implicit_uint_to_int_conversion())
254 return (ir_expression_operation)0;
255 switch (from->base_type) {
256 case GLSL_TYPE_INT: return ir_unop_i2u;
257 default: return (ir_expression_operation)0;
258 }
259
260 case GLSL_TYPE_DOUBLE:
261 if (!state->has_double())
262 return (ir_expression_operation)0;
263 switch (from->base_type) {
264 case GLSL_TYPE_INT: return ir_unop_i2d;
265 case GLSL_TYPE_UINT: return ir_unop_u2d;
266 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267 case GLSL_TYPE_INT64: return ir_unop_i642d;
268 case GLSL_TYPE_UINT64: return ir_unop_u642d;
269 default: return (ir_expression_operation)0;
270 }
271
272 case GLSL_TYPE_UINT64:
273 if (!state->has_int64())
274 return (ir_expression_operation)0;
275 switch (from->base_type) {
276 case GLSL_TYPE_INT: return ir_unop_i2u64;
277 case GLSL_TYPE_UINT: return ir_unop_u2u64;
278 case GLSL_TYPE_INT64: return ir_unop_i642u64;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_INT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2i64;
287 default: return (ir_expression_operation)0;
288 }
289
290 default: return (ir_expression_operation)0;
291 }
292 }
293
294
295 /**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to Type that the operand it to be converted to
301 * \param from Operand that is being converted
302 * \param state GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308 static bool
309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310 struct _mesa_glsl_parse_state *state)
311 {
312 void *ctx = state;
313 if (to->base_type == from->type->base_type)
314 return true;
315
316 /* Prior to GLSL 1.20, there are no implicit conversions */
317 if (!state->has_implicit_conversions())
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->EXT_gpu_shader4_enable &&
613 !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614 return glsl_type::error_type;
615 }
616
617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618 *
619 * "The operator modulus (%) operates on signed or unsigned integers or
620 * integer vectors."
621 */
622 if (!type_a->is_integer_32_64()) {
623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624 return glsl_type::error_type;
625 }
626 if (!type_b->is_integer_32_64()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628 return glsl_type::error_type;
629 }
630
631 /* "If the fundamental types in the operands do not match, then the
632 * conversions from section 4.1.10 "Implicit Conversions" are applied
633 * to create matching types."
634 *
635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636 * int -> uint conversion rules. Prior to that, there were no implicit
637 * conversions. So it's harmless to apply them universally - no implicit
638 * conversions will exist. If the types don't match, we'll receive false,
639 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640 *
641 * "The operand types must both be signed or unsigned."
642 */
643 if (!apply_implicit_conversion(type_a, value_b, state) &&
644 !apply_implicit_conversion(type_b, value_a, state)) {
645 _mesa_glsl_error(loc, state,
646 "could not implicitly convert operands to "
647 "modulus (%%) operator");
648 return glsl_type::error_type;
649 }
650 type_a = value_a->type;
651 type_b = value_b->type;
652
653 /* "The operands cannot be vectors of differing size. If one operand is
654 * a scalar and the other vector, then the scalar is applied component-
655 * wise to the vector, resulting in the same type as the vector. If both
656 * are vectors of the same size, the result is computed component-wise."
657 */
658 if (type_a->is_vector()) {
659 if (!type_b->is_vector()
660 || (type_a->vector_elements == type_b->vector_elements))
661 return type_a;
662 } else
663 return type_b;
664
665 /* "The operator modulus (%) is not defined for any other data types
666 * (non-integer types)."
667 */
668 _mesa_glsl_error(loc, state, "type mismatch");
669 return glsl_type::error_type;
670 }
671
672
673 static const struct glsl_type *
674 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676 {
677 const glsl_type *type_a = value_a->type;
678 const glsl_type *type_b = value_b->type;
679
680 /* From GLSL 1.50 spec, page 56:
681 * "The relational operators greater than (>), less than (<), greater
682 * than or equal (>=), and less than or equal (<=) operate only on
683 * scalar integer and scalar floating-point expressions."
684 */
685 if (!type_a->is_numeric()
686 || !type_b->is_numeric()
687 || !type_a->is_scalar()
688 || !type_b->is_scalar()) {
689 _mesa_glsl_error(loc, state,
690 "operands to relational operators must be scalar and "
691 "numeric");
692 return glsl_type::error_type;
693 }
694
695 /* "Either the operands' types must match, or the conversions from
696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
697 * operand, after which the types must match."
698 */
699 if (!apply_implicit_conversion(type_a, value_b, state)
700 && !apply_implicit_conversion(type_b, value_a, state)) {
701 _mesa_glsl_error(loc, state,
702 "could not implicitly convert operands to "
703 "relational operator");
704 return glsl_type::error_type;
705 }
706 type_a = value_a->type;
707 type_b = value_b->type;
708
709 if (type_a->base_type != type_b->base_type) {
710 _mesa_glsl_error(loc, state, "base type mismatch");
711 return glsl_type::error_type;
712 }
713
714 /* "The result is scalar Boolean."
715 */
716 return glsl_type::bool_type;
717 }
718
719 /**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728 static const struct glsl_type *
729 shift_result_type(const struct glsl_type *type_a,
730 const struct glsl_type *type_b,
731 ast_operators op,
732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733 {
734 if (!state->check_bitwise_operations_allowed(loc)) {
735 return glsl_type::error_type;
736 }
737
738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739 *
740 * "The shift operators (<<) and (>>). For both operators, the operands
741 * must be signed or unsigned integers or integer vectors. One operand
742 * can be signed while the other is unsigned."
743 */
744 if (!type_a->is_integer_32_64()) {
745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746 "integer vector", ast_expression::operator_string(op));
747 return glsl_type::error_type;
748
749 }
750 if (!type_b->is_integer_32()) {
751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752 "integer vector", ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "If the first operand is a scalar, the second operand has to be
757 * a scalar as well."
758 */
759 if (type_a->is_scalar() && !type_b->is_scalar()) {
760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761 "second must be scalar as well",
762 ast_expression::operator_string(op));
763 return glsl_type::error_type;
764 }
765
766 /* If both operands are vectors, check that they have same number of
767 * elements.
768 */
769 if (type_a->is_vector() &&
770 type_b->is_vector() &&
771 type_a->vector_elements != type_b->vector_elements) {
772 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773 "have same number of elements",
774 ast_expression::operator_string(op));
775 return glsl_type::error_type;
776 }
777
778 /* "In all cases, the resulting type will be the same type as the left
779 * operand."
780 */
781 return type_a;
782 }
783
784 /**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790 static ir_rvalue *
791 find_innermost_array_index(ir_rvalue *rv)
792 {
793 ir_dereference_array *last = NULL;
794 while (rv) {
795 if (rv->as_dereference_array()) {
796 last = rv->as_dereference_array();
797 rv = last->array;
798 } else if (rv->as_dereference_record())
799 rv = rv->as_dereference_record()->record;
800 else if (rv->as_swizzle())
801 rv = rv->as_swizzle()->val;
802 else
803 rv = NULL;
804 }
805
806 if (last)
807 return last->array_index;
808
809 return NULL;
810 }
811
812 /**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location. If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned. This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828 static ir_rvalue *
829 validate_assignment(struct _mesa_glsl_parse_state *state,
830 YYLTYPE loc, ir_rvalue *lhs,
831 ir_rvalue *rhs, bool is_initializer)
832 {
833 /* If there is already some error in the RHS, just return it. Anything
834 * else will lead to an avalanche of error message back to the user.
835 */
836 if (rhs->type->is_error())
837 return rhs;
838
839 /* In the Tessellation Control Shader:
840 * If a per-vertex output variable is used as an l-value, it is an error
841 * if the expression indicating the vertex number is not the identifier
842 * `gl_InvocationID`.
843 */
844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845 ir_variable *var = lhs->variable_referenced();
846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847 ir_rvalue *index = find_innermost_array_index(lhs);
848 ir_variable *index_var = index ? index->variable_referenced() : NULL;
849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850 _mesa_glsl_error(&loc, state,
851 "Tessellation control shader outputs can only "
852 "be indexed by gl_InvocationID");
853 return NULL;
854 }
855 }
856 }
857
858 /* If the types are identical, the assignment can trivially proceed.
859 */
860 if (rhs->type == lhs->type)
861 return rhs;
862
863 /* If the array element types are the same and the LHS is unsized,
864 * the assignment is okay for initializers embedded in variable
865 * declarations.
866 *
867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868 * is handled by ir_dereference::is_lvalue.
869 */
870 const glsl_type *lhs_t = lhs->type;
871 const glsl_type *rhs_t = rhs->type;
872 bool unsized_array = false;
873 while(lhs_t->is_array()) {
874 if (rhs_t == lhs_t)
875 break; /* the rest of the inner arrays match so break out early */
876 if (!rhs_t->is_array()) {
877 unsized_array = false;
878 break; /* number of dimensions mismatch */
879 }
880 if (lhs_t->length == rhs_t->length) {
881 lhs_t = lhs_t->fields.array;
882 rhs_t = rhs_t->fields.array;
883 continue;
884 } else if (lhs_t->is_unsized_array()) {
885 unsized_array = true;
886 } else {
887 unsized_array = false;
888 break; /* sized array mismatch */
889 }
890 lhs_t = lhs_t->fields.array;
891 rhs_t = rhs_t->fields.array;
892 }
893 if (unsized_array) {
894 if (is_initializer) {
895 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896 return rhs;
897 } else {
898 _mesa_glsl_error(&loc, state,
899 "implicitly sized arrays cannot be assigned");
900 return NULL;
901 }
902 }
903
904 /* Check for implicit conversion in GLSL 1.20 */
905 if (apply_implicit_conversion(lhs->type, rhs, state)) {
906 if (rhs->type == lhs->type)
907 return rhs;
908 }
909
910 _mesa_glsl_error(&loc, state,
911 "%s of type %s cannot be assigned to "
912 "variable of type %s",
913 is_initializer ? "initializer" : "value",
914 rhs->type->name, lhs->type->name);
915
916 return NULL;
917 }
918
919 static void
920 mark_whole_array_access(ir_rvalue *access)
921 {
922 ir_dereference_variable *deref = access->as_dereference_variable();
923
924 if (deref && deref->var) {
925 deref->var->data.max_array_access = deref->type->length - 1;
926 }
927 }
928
929 static bool
930 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931 const char *non_lvalue_description,
932 ir_rvalue *lhs, ir_rvalue *rhs,
933 ir_rvalue **out_rvalue, bool needs_rvalue,
934 bool is_initializer,
935 YYLTYPE lhs_loc)
936 {
937 void *ctx = state;
938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940 ir_variable *lhs_var = lhs->variable_referenced();
941 if (lhs_var)
942 lhs_var->data.assigned = true;
943
944 if (!error_emitted) {
945 if (non_lvalue_description != NULL) {
946 _mesa_glsl_error(&lhs_loc, state,
947 "assignment to %s",
948 non_lvalue_description);
949 error_emitted = true;
950 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
951 (lhs_var->data.mode == ir_var_shader_storage &&
952 lhs_var->data.memory_read_only))) {
953 /* We can have memory_read_only set on both images and buffer variables,
954 * but in the former there is a distinction between assignments to
955 * the variable itself (read_only) and to the memory they point to
956 * (memory_read_only), while in the case of buffer variables there is
957 * no such distinction, that is why this check here is limited to
958 * buffer variables alone.
959 */
960 _mesa_glsl_error(&lhs_loc, state,
961 "assignment to read-only variable '%s'",
962 lhs_var->name);
963 error_emitted = true;
964 } else if (lhs->type->is_array() &&
965 !state->check_version(120, 300, &lhs_loc,
966 "whole array assignment forbidden")) {
967 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
968 *
969 * "Other binary or unary expressions, non-dereferenced
970 * arrays, function names, swizzles with repeated fields,
971 * and constants cannot be l-values."
972 *
973 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
974 */
975 error_emitted = true;
976 } else if (!lhs->is_lvalue(state)) {
977 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
978 error_emitted = true;
979 }
980 }
981
982 ir_rvalue *new_rhs =
983 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
984 if (new_rhs != NULL) {
985 rhs = new_rhs;
986
987 /* If the LHS array was not declared with a size, it takes it size from
988 * the RHS. If the LHS is an l-value and a whole array, it must be a
989 * dereference of a variable. Any other case would require that the LHS
990 * is either not an l-value or not a whole array.
991 */
992 if (lhs->type->is_unsized_array()) {
993 ir_dereference *const d = lhs->as_dereference();
994
995 assert(d != NULL);
996
997 ir_variable *const var = d->variable_referenced();
998
999 assert(var != NULL);
1000
1001 if (var->data.max_array_access >= rhs->type->array_size()) {
1002 /* FINISHME: This should actually log the location of the RHS. */
1003 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1004 "previous access",
1005 var->data.max_array_access);
1006 }
1007
1008 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1009 rhs->type->array_size());
1010 d->type = var->type;
1011 }
1012 if (lhs->type->is_array()) {
1013 mark_whole_array_access(rhs);
1014 mark_whole_array_access(lhs);
1015 }
1016 } else {
1017 error_emitted = true;
1018 }
1019
1020 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1021 * but not post_inc) need the converted assigned value as an rvalue
1022 * to handle things like:
1023 *
1024 * i = j += 1;
1025 */
1026 if (needs_rvalue) {
1027 ir_rvalue *rvalue;
1028 if (!error_emitted) {
1029 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1030 ir_var_temporary);
1031 instructions->push_tail(var);
1032 instructions->push_tail(assign(var, rhs));
1033
1034 ir_dereference_variable *deref_var =
1035 new(ctx) ir_dereference_variable(var);
1036 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1037 rvalue = new(ctx) ir_dereference_variable(var);
1038 } else {
1039 rvalue = ir_rvalue::error_value(ctx);
1040 }
1041 *out_rvalue = rvalue;
1042 } else {
1043 if (!error_emitted)
1044 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1045 *out_rvalue = NULL;
1046 }
1047
1048 return error_emitted;
1049 }
1050
1051 static ir_rvalue *
1052 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1053 {
1054 void *ctx = ralloc_parent(lvalue);
1055 ir_variable *var;
1056
1057 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1058 ir_var_temporary);
1059 instructions->push_tail(var);
1060
1061 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1062 lvalue));
1063
1064 return new(ctx) ir_dereference_variable(var);
1065 }
1066
1067
1068 ir_rvalue *
1069 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1070 {
1071 (void) instructions;
1072 (void) state;
1073
1074 return NULL;
1075 }
1076
1077 bool
1078 ast_node::has_sequence_subexpression() const
1079 {
1080 return false;
1081 }
1082
1083 void
1084 ast_node::set_is_lhs(bool /* new_value */)
1085 {
1086 }
1087
1088 void
1089 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1090 struct _mesa_glsl_parse_state *state)
1091 {
1092 (void)hir(instructions, state);
1093 }
1094
1095 void
1096 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1097 struct _mesa_glsl_parse_state *state)
1098 {
1099 (void)hir(instructions, state);
1100 }
1101
1102 static ir_rvalue *
1103 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1104 {
1105 int join_op;
1106 ir_rvalue *cmp = NULL;
1107
1108 if (operation == ir_binop_all_equal)
1109 join_op = ir_binop_logic_and;
1110 else
1111 join_op = ir_binop_logic_or;
1112
1113 switch (op0->type->base_type) {
1114 case GLSL_TYPE_FLOAT:
1115 case GLSL_TYPE_FLOAT16:
1116 case GLSL_TYPE_UINT:
1117 case GLSL_TYPE_INT:
1118 case GLSL_TYPE_BOOL:
1119 case GLSL_TYPE_DOUBLE:
1120 case GLSL_TYPE_UINT64:
1121 case GLSL_TYPE_INT64:
1122 case GLSL_TYPE_UINT16:
1123 case GLSL_TYPE_INT16:
1124 case GLSL_TYPE_UINT8:
1125 case GLSL_TYPE_INT8:
1126 return new(mem_ctx) ir_expression(operation, op0, op1);
1127
1128 case GLSL_TYPE_ARRAY: {
1129 for (unsigned int i = 0; i < op0->type->length; i++) {
1130 ir_rvalue *e0, *e1, *result;
1131
1132 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1133 new(mem_ctx) ir_constant(i));
1134 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1135 new(mem_ctx) ir_constant(i));
1136 result = do_comparison(mem_ctx, operation, e0, e1);
1137
1138 if (cmp) {
1139 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1140 } else {
1141 cmp = result;
1142 }
1143 }
1144
1145 mark_whole_array_access(op0);
1146 mark_whole_array_access(op1);
1147 break;
1148 }
1149
1150 case GLSL_TYPE_STRUCT: {
1151 for (unsigned int i = 0; i < op0->type->length; i++) {
1152 ir_rvalue *e0, *e1, *result;
1153 const char *field_name = op0->type->fields.structure[i].name;
1154
1155 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1156 field_name);
1157 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1158 field_name);
1159 result = do_comparison(mem_ctx, operation, e0, e1);
1160
1161 if (cmp) {
1162 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1163 } else {
1164 cmp = result;
1165 }
1166 }
1167 break;
1168 }
1169
1170 case GLSL_TYPE_ERROR:
1171 case GLSL_TYPE_VOID:
1172 case GLSL_TYPE_SAMPLER:
1173 case GLSL_TYPE_IMAGE:
1174 case GLSL_TYPE_INTERFACE:
1175 case GLSL_TYPE_ATOMIC_UINT:
1176 case GLSL_TYPE_SUBROUTINE:
1177 case GLSL_TYPE_FUNCTION:
1178 /* I assume a comparison of a struct containing a sampler just
1179 * ignores the sampler present in the type.
1180 */
1181 break;
1182 }
1183
1184 if (cmp == NULL)
1185 cmp = new(mem_ctx) ir_constant(true);
1186
1187 return cmp;
1188 }
1189
1190 /* For logical operations, we want to ensure that the operands are
1191 * scalar booleans. If it isn't, emit an error and return a constant
1192 * boolean to avoid triggering cascading error messages.
1193 */
1194 static ir_rvalue *
1195 get_scalar_boolean_operand(exec_list *instructions,
1196 struct _mesa_glsl_parse_state *state,
1197 ast_expression *parent_expr,
1198 int operand,
1199 const char *operand_name,
1200 bool *error_emitted)
1201 {
1202 ast_expression *expr = parent_expr->subexpressions[operand];
1203 void *ctx = state;
1204 ir_rvalue *val = expr->hir(instructions, state);
1205
1206 if (val->type->is_boolean() && val->type->is_scalar())
1207 return val;
1208
1209 if (!*error_emitted) {
1210 YYLTYPE loc = expr->get_location();
1211 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1212 operand_name,
1213 parent_expr->operator_string(parent_expr->oper));
1214 *error_emitted = true;
1215 }
1216
1217 return new(ctx) ir_constant(true);
1218 }
1219
1220 /**
1221 * If name refers to a builtin array whose maximum allowed size is less than
1222 * size, report an error and return true. Otherwise return false.
1223 */
1224 void
1225 check_builtin_array_max_size(const char *name, unsigned size,
1226 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1227 {
1228 if ((strcmp("gl_TexCoord", name) == 0)
1229 && (size > state->Const.MaxTextureCoords)) {
1230 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1231 *
1232 * "The size [of gl_TexCoord] can be at most
1233 * gl_MaxTextureCoords."
1234 */
1235 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1236 "be larger than gl_MaxTextureCoords (%u)",
1237 state->Const.MaxTextureCoords);
1238 } else if (strcmp("gl_ClipDistance", name) == 0) {
1239 state->clip_dist_size = size;
1240 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1241 /* From section 7.1 (Vertex Shader Special Variables) of the
1242 * GLSL 1.30 spec:
1243 *
1244 * "The gl_ClipDistance array is predeclared as unsized and
1245 * must be sized by the shader either redeclaring it with a
1246 * size or indexing it only with integral constant
1247 * expressions. ... The size can be at most
1248 * gl_MaxClipDistances."
1249 */
1250 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1251 "be larger than gl_MaxClipDistances (%u)",
1252 state->Const.MaxClipPlanes);
1253 }
1254 } else if (strcmp("gl_CullDistance", name) == 0) {
1255 state->cull_dist_size = size;
1256 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1257 /* From the ARB_cull_distance spec:
1258 *
1259 * "The gl_CullDistance array is predeclared as unsized and
1260 * must be sized by the shader either redeclaring it with
1261 * a size or indexing it only with integral constant
1262 * expressions. The size determines the number and set of
1263 * enabled cull distances and can be at most
1264 * gl_MaxCullDistances."
1265 */
1266 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1267 "be larger than gl_MaxCullDistances (%u)",
1268 state->Const.MaxClipPlanes);
1269 }
1270 }
1271 }
1272
1273 /**
1274 * Create the constant 1, of a which is appropriate for incrementing and
1275 * decrementing values of the given GLSL type. For example, if type is vec4,
1276 * this creates a constant value of 1.0 having type float.
1277 *
1278 * If the given type is invalid for increment and decrement operators, return
1279 * a floating point 1--the error will be detected later.
1280 */
1281 static ir_rvalue *
1282 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1283 {
1284 switch (type->base_type) {
1285 case GLSL_TYPE_UINT:
1286 return new(ctx) ir_constant((unsigned) 1);
1287 case GLSL_TYPE_INT:
1288 return new(ctx) ir_constant(1);
1289 case GLSL_TYPE_UINT64:
1290 return new(ctx) ir_constant((uint64_t) 1);
1291 case GLSL_TYPE_INT64:
1292 return new(ctx) ir_constant((int64_t) 1);
1293 default:
1294 case GLSL_TYPE_FLOAT:
1295 return new(ctx) ir_constant(1.0f);
1296 }
1297 }
1298
1299 ir_rvalue *
1300 ast_expression::hir(exec_list *instructions,
1301 struct _mesa_glsl_parse_state *state)
1302 {
1303 return do_hir(instructions, state, true);
1304 }
1305
1306 void
1307 ast_expression::hir_no_rvalue(exec_list *instructions,
1308 struct _mesa_glsl_parse_state *state)
1309 {
1310 do_hir(instructions, state, false);
1311 }
1312
1313 void
1314 ast_expression::set_is_lhs(bool new_value)
1315 {
1316 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1317 * if we lack an identifier we can just skip it.
1318 */
1319 if (this->primary_expression.identifier == NULL)
1320 return;
1321
1322 this->is_lhs = new_value;
1323
1324 /* We need to go through the subexpressions tree to cover cases like
1325 * ast_field_selection
1326 */
1327 if (this->subexpressions[0] != NULL)
1328 this->subexpressions[0]->set_is_lhs(new_value);
1329 }
1330
1331 ir_rvalue *
1332 ast_expression::do_hir(exec_list *instructions,
1333 struct _mesa_glsl_parse_state *state,
1334 bool needs_rvalue)
1335 {
1336 void *ctx = state;
1337 static const int operations[AST_NUM_OPERATORS] = {
1338 -1, /* ast_assign doesn't convert to ir_expression. */
1339 -1, /* ast_plus doesn't convert to ir_expression. */
1340 ir_unop_neg,
1341 ir_binop_add,
1342 ir_binop_sub,
1343 ir_binop_mul,
1344 ir_binop_div,
1345 ir_binop_mod,
1346 ir_binop_lshift,
1347 ir_binop_rshift,
1348 ir_binop_less,
1349 ir_binop_less, /* This is correct. See the ast_greater case below. */
1350 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1351 ir_binop_gequal,
1352 ir_binop_all_equal,
1353 ir_binop_any_nequal,
1354 ir_binop_bit_and,
1355 ir_binop_bit_xor,
1356 ir_binop_bit_or,
1357 ir_unop_bit_not,
1358 ir_binop_logic_and,
1359 ir_binop_logic_xor,
1360 ir_binop_logic_or,
1361 ir_unop_logic_not,
1362
1363 /* Note: The following block of expression types actually convert
1364 * to multiple IR instructions.
1365 */
1366 ir_binop_mul, /* ast_mul_assign */
1367 ir_binop_div, /* ast_div_assign */
1368 ir_binop_mod, /* ast_mod_assign */
1369 ir_binop_add, /* ast_add_assign */
1370 ir_binop_sub, /* ast_sub_assign */
1371 ir_binop_lshift, /* ast_ls_assign */
1372 ir_binop_rshift, /* ast_rs_assign */
1373 ir_binop_bit_and, /* ast_and_assign */
1374 ir_binop_bit_xor, /* ast_xor_assign */
1375 ir_binop_bit_or, /* ast_or_assign */
1376
1377 -1, /* ast_conditional doesn't convert to ir_expression. */
1378 ir_binop_add, /* ast_pre_inc. */
1379 ir_binop_sub, /* ast_pre_dec. */
1380 ir_binop_add, /* ast_post_inc. */
1381 ir_binop_sub, /* ast_post_dec. */
1382 -1, /* ast_field_selection doesn't conv to ir_expression. */
1383 -1, /* ast_array_index doesn't convert to ir_expression. */
1384 -1, /* ast_function_call doesn't conv to ir_expression. */
1385 -1, /* ast_identifier doesn't convert to ir_expression. */
1386 -1, /* ast_int_constant doesn't convert to ir_expression. */
1387 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1388 -1, /* ast_float_constant doesn't conv to ir_expression. */
1389 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1390 -1, /* ast_sequence doesn't convert to ir_expression. */
1391 -1, /* ast_aggregate shouldn't ever even get here. */
1392 };
1393 ir_rvalue *result = NULL;
1394 ir_rvalue *op[3];
1395 const struct glsl_type *type, *orig_type;
1396 bool error_emitted = false;
1397 YYLTYPE loc;
1398
1399 loc = this->get_location();
1400
1401 switch (this->oper) {
1402 case ast_aggregate:
1403 unreachable("ast_aggregate: Should never get here.");
1404
1405 case ast_assign: {
1406 this->subexpressions[0]->set_is_lhs(true);
1407 op[0] = this->subexpressions[0]->hir(instructions, state);
1408 op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410 error_emitted =
1411 do_assignment(instructions, state,
1412 this->subexpressions[0]->non_lvalue_description,
1413 op[0], op[1], &result, needs_rvalue, false,
1414 this->subexpressions[0]->get_location());
1415 break;
1416 }
1417
1418 case ast_plus:
1419 op[0] = this->subexpressions[0]->hir(instructions, state);
1420
1421 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1422
1423 error_emitted = type->is_error();
1424
1425 result = op[0];
1426 break;
1427
1428 case ast_neg:
1429 op[0] = this->subexpressions[0]->hir(instructions, state);
1430
1431 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1432
1433 error_emitted = type->is_error();
1434
1435 result = new(ctx) ir_expression(operations[this->oper], type,
1436 op[0], NULL);
1437 break;
1438
1439 case ast_add:
1440 case ast_sub:
1441 case ast_mul:
1442 case ast_div:
1443 op[0] = this->subexpressions[0]->hir(instructions, state);
1444 op[1] = this->subexpressions[1]->hir(instructions, state);
1445
1446 type = arithmetic_result_type(op[0], op[1],
1447 (this->oper == ast_mul),
1448 state, & loc);
1449 error_emitted = type->is_error();
1450
1451 result = new(ctx) ir_expression(operations[this->oper], type,
1452 op[0], op[1]);
1453 break;
1454
1455 case ast_mod:
1456 op[0] = this->subexpressions[0]->hir(instructions, state);
1457 op[1] = this->subexpressions[1]->hir(instructions, state);
1458
1459 type = modulus_result_type(op[0], op[1], state, &loc);
1460
1461 assert(operations[this->oper] == ir_binop_mod);
1462
1463 result = new(ctx) ir_expression(operations[this->oper], type,
1464 op[0], op[1]);
1465 error_emitted = type->is_error();
1466 break;
1467
1468 case ast_lshift:
1469 case ast_rshift:
1470 if (!state->check_bitwise_operations_allowed(&loc)) {
1471 error_emitted = true;
1472 }
1473
1474 op[0] = this->subexpressions[0]->hir(instructions, state);
1475 op[1] = this->subexpressions[1]->hir(instructions, state);
1476 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1477 &loc);
1478 result = new(ctx) ir_expression(operations[this->oper], type,
1479 op[0], op[1]);
1480 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1481 break;
1482
1483 case ast_less:
1484 case ast_greater:
1485 case ast_lequal:
1486 case ast_gequal:
1487 op[0] = this->subexpressions[0]->hir(instructions, state);
1488 op[1] = this->subexpressions[1]->hir(instructions, state);
1489
1490 type = relational_result_type(op[0], op[1], state, & loc);
1491
1492 /* The relational operators must either generate an error or result
1493 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1494 */
1495 assert(type->is_error()
1496 || (type->is_boolean() && type->is_scalar()));
1497
1498 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1499 * the arguments and use < or >=.
1500 */
1501 if (this->oper == ast_greater || this->oper == ast_lequal) {
1502 ir_rvalue *const tmp = op[0];
1503 op[0] = op[1];
1504 op[1] = tmp;
1505 }
1506
1507 result = new(ctx) ir_expression(operations[this->oper], type,
1508 op[0], op[1]);
1509 error_emitted = type->is_error();
1510 break;
1511
1512 case ast_nequal:
1513 case ast_equal:
1514 op[0] = this->subexpressions[0]->hir(instructions, state);
1515 op[1] = this->subexpressions[1]->hir(instructions, state);
1516
1517 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1518 *
1519 * "The equality operators equal (==), and not equal (!=)
1520 * operate on all types. They result in a scalar Boolean. If
1521 * the operand types do not match, then there must be a
1522 * conversion from Section 4.1.10 "Implicit Conversions"
1523 * applied to one operand that can make them match, in which
1524 * case this conversion is done."
1525 */
1526
1527 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1528 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1529 "no operation `%1$s' exists that takes a left-hand "
1530 "operand of type 'void' or a right operand of type "
1531 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1532 error_emitted = true;
1533 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1534 && !apply_implicit_conversion(op[1]->type, op[0], state))
1535 || (op[0]->type != op[1]->type)) {
1536 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1537 "type", (this->oper == ast_equal) ? "==" : "!=");
1538 error_emitted = true;
1539 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1540 !state->check_version(120, 300, &loc,
1541 "array comparisons forbidden")) {
1542 error_emitted = true;
1543 } else if ((op[0]->type->contains_subroutine() ||
1544 op[1]->type->contains_subroutine())) {
1545 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1546 error_emitted = true;
1547 } else if ((op[0]->type->contains_opaque() ||
1548 op[1]->type->contains_opaque())) {
1549 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1550 error_emitted = true;
1551 }
1552
1553 if (error_emitted) {
1554 result = new(ctx) ir_constant(false);
1555 } else {
1556 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1557 assert(result->type == glsl_type::bool_type);
1558 }
1559 break;
1560
1561 case ast_bit_and:
1562 case ast_bit_xor:
1563 case ast_bit_or:
1564 op[0] = this->subexpressions[0]->hir(instructions, state);
1565 op[1] = this->subexpressions[1]->hir(instructions, state);
1566 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1567 result = new(ctx) ir_expression(operations[this->oper], type,
1568 op[0], op[1]);
1569 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1570 break;
1571
1572 case ast_bit_not:
1573 op[0] = this->subexpressions[0]->hir(instructions, state);
1574
1575 if (!state->check_bitwise_operations_allowed(&loc)) {
1576 error_emitted = true;
1577 }
1578
1579 if (!op[0]->type->is_integer_32_64()) {
1580 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1581 error_emitted = true;
1582 }
1583
1584 type = error_emitted ? glsl_type::error_type : op[0]->type;
1585 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1586 break;
1587
1588 case ast_logic_and: {
1589 exec_list rhs_instructions;
1590 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1591 "LHS", &error_emitted);
1592 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1593 "RHS", &error_emitted);
1594
1595 if (rhs_instructions.is_empty()) {
1596 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1597 } else {
1598 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1599 "and_tmp",
1600 ir_var_temporary);
1601 instructions->push_tail(tmp);
1602
1603 ir_if *const stmt = new(ctx) ir_if(op[0]);
1604 instructions->push_tail(stmt);
1605
1606 stmt->then_instructions.append_list(&rhs_instructions);
1607 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1608 ir_assignment *const then_assign =
1609 new(ctx) ir_assignment(then_deref, op[1]);
1610 stmt->then_instructions.push_tail(then_assign);
1611
1612 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1613 ir_assignment *const else_assign =
1614 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1615 stmt->else_instructions.push_tail(else_assign);
1616
1617 result = new(ctx) ir_dereference_variable(tmp);
1618 }
1619 break;
1620 }
1621
1622 case ast_logic_or: {
1623 exec_list rhs_instructions;
1624 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1625 "LHS", &error_emitted);
1626 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1627 "RHS", &error_emitted);
1628
1629 if (rhs_instructions.is_empty()) {
1630 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1631 } else {
1632 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1633 "or_tmp",
1634 ir_var_temporary);
1635 instructions->push_tail(tmp);
1636
1637 ir_if *const stmt = new(ctx) ir_if(op[0]);
1638 instructions->push_tail(stmt);
1639
1640 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1641 ir_assignment *const then_assign =
1642 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1643 stmt->then_instructions.push_tail(then_assign);
1644
1645 stmt->else_instructions.append_list(&rhs_instructions);
1646 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1647 ir_assignment *const else_assign =
1648 new(ctx) ir_assignment(else_deref, op[1]);
1649 stmt->else_instructions.push_tail(else_assign);
1650
1651 result = new(ctx) ir_dereference_variable(tmp);
1652 }
1653 break;
1654 }
1655
1656 case ast_logic_xor:
1657 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1658 *
1659 * "The logical binary operators and (&&), or ( | | ), and
1660 * exclusive or (^^). They operate only on two Boolean
1661 * expressions and result in a Boolean expression."
1662 */
1663 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1664 &error_emitted);
1665 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1666 &error_emitted);
1667
1668 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1669 op[0], op[1]);
1670 break;
1671
1672 case ast_logic_not:
1673 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1674 "operand", &error_emitted);
1675
1676 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1677 op[0], NULL);
1678 break;
1679
1680 case ast_mul_assign:
1681 case ast_div_assign:
1682 case ast_add_assign:
1683 case ast_sub_assign: {
1684 this->subexpressions[0]->set_is_lhs(true);
1685 op[0] = this->subexpressions[0]->hir(instructions, state);
1686 op[1] = this->subexpressions[1]->hir(instructions, state);
1687
1688 orig_type = op[0]->type;
1689
1690 /* Break out if operand types were not parsed successfully. */
1691 if ((op[0]->type == glsl_type::error_type ||
1692 op[1]->type == glsl_type::error_type))
1693 break;
1694
1695 type = arithmetic_result_type(op[0], op[1],
1696 (this->oper == ast_mul_assign),
1697 state, & loc);
1698
1699 if (type != orig_type) {
1700 _mesa_glsl_error(& loc, state,
1701 "could not implicitly convert "
1702 "%s to %s", type->name, orig_type->name);
1703 type = glsl_type::error_type;
1704 }
1705
1706 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1707 op[0], op[1]);
1708
1709 error_emitted =
1710 do_assignment(instructions, state,
1711 this->subexpressions[0]->non_lvalue_description,
1712 op[0]->clone(ctx, NULL), temp_rhs,
1713 &result, needs_rvalue, false,
1714 this->subexpressions[0]->get_location());
1715
1716 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1717 * explicitly test for this because none of the binary expression
1718 * operators allow array operands either.
1719 */
1720
1721 break;
1722 }
1723
1724 case ast_mod_assign: {
1725 this->subexpressions[0]->set_is_lhs(true);
1726 op[0] = this->subexpressions[0]->hir(instructions, state);
1727 op[1] = this->subexpressions[1]->hir(instructions, state);
1728
1729 orig_type = op[0]->type;
1730 type = modulus_result_type(op[0], op[1], state, &loc);
1731
1732 if (type != orig_type) {
1733 _mesa_glsl_error(& loc, state,
1734 "could not implicitly convert "
1735 "%s to %s", type->name, orig_type->name);
1736 type = glsl_type::error_type;
1737 }
1738
1739 assert(operations[this->oper] == ir_binop_mod);
1740
1741 ir_rvalue *temp_rhs;
1742 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1743 op[0], op[1]);
1744
1745 error_emitted =
1746 do_assignment(instructions, state,
1747 this->subexpressions[0]->non_lvalue_description,
1748 op[0]->clone(ctx, NULL), temp_rhs,
1749 &result, needs_rvalue, false,
1750 this->subexpressions[0]->get_location());
1751 break;
1752 }
1753
1754 case ast_ls_assign:
1755 case ast_rs_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1760 &loc);
1761 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1762 type, op[0], op[1]);
1763 error_emitted =
1764 do_assignment(instructions, state,
1765 this->subexpressions[0]->non_lvalue_description,
1766 op[0]->clone(ctx, NULL), temp_rhs,
1767 &result, needs_rvalue, false,
1768 this->subexpressions[0]->get_location());
1769 break;
1770 }
1771
1772 case ast_and_assign:
1773 case ast_xor_assign:
1774 case ast_or_assign: {
1775 this->subexpressions[0]->set_is_lhs(true);
1776 op[0] = this->subexpressions[0]->hir(instructions, state);
1777 op[1] = this->subexpressions[1]->hir(instructions, state);
1778
1779 orig_type = op[0]->type;
1780 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1781
1782 if (type != orig_type) {
1783 _mesa_glsl_error(& loc, state,
1784 "could not implicitly convert "
1785 "%s to %s", type->name, orig_type->name);
1786 type = glsl_type::error_type;
1787 }
1788
1789 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1790 type, op[0], op[1]);
1791 error_emitted =
1792 do_assignment(instructions, state,
1793 this->subexpressions[0]->non_lvalue_description,
1794 op[0]->clone(ctx, NULL), temp_rhs,
1795 &result, needs_rvalue, false,
1796 this->subexpressions[0]->get_location());
1797 break;
1798 }
1799
1800 case ast_conditional: {
1801 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1802 *
1803 * "The ternary selection operator (?:). It operates on three
1804 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1805 * first expression, which must result in a scalar Boolean."
1806 */
1807 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1808 "condition", &error_emitted);
1809
1810 /* The :? operator is implemented by generating an anonymous temporary
1811 * followed by an if-statement. The last instruction in each branch of
1812 * the if-statement assigns a value to the anonymous temporary. This
1813 * temporary is the r-value of the expression.
1814 */
1815 exec_list then_instructions;
1816 exec_list else_instructions;
1817
1818 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1819 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1820
1821 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1822 *
1823 * "The second and third expressions can be any type, as
1824 * long their types match, or there is a conversion in
1825 * Section 4.1.10 "Implicit Conversions" that can be applied
1826 * to one of the expressions to make their types match. This
1827 * resulting matching type is the type of the entire
1828 * expression."
1829 */
1830 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1831 && !apply_implicit_conversion(op[2]->type, op[1], state))
1832 || (op[1]->type != op[2]->type)) {
1833 YYLTYPE loc = this->subexpressions[1]->get_location();
1834
1835 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1836 "operator must have matching types");
1837 error_emitted = true;
1838 type = glsl_type::error_type;
1839 } else {
1840 type = op[1]->type;
1841 }
1842
1843 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1844 *
1845 * "The second and third expressions must be the same type, but can
1846 * be of any type other than an array."
1847 */
1848 if (type->is_array() &&
1849 !state->check_version(120, 300, &loc,
1850 "second and third operands of ?: operator "
1851 "cannot be arrays")) {
1852 error_emitted = true;
1853 }
1854
1855 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1856 *
1857 * "Except for array indexing, structure member selection, and
1858 * parentheses, opaque variables are not allowed to be operands in
1859 * expressions; such use results in a compile-time error."
1860 */
1861 if (type->contains_opaque()) {
1862 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1863 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1864 "operands of the ?: operator", type->name);
1865 error_emitted = true;
1866 }
1867 }
1868
1869 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1870
1871 if (then_instructions.is_empty()
1872 && else_instructions.is_empty()
1873 && cond_val != NULL) {
1874 result = cond_val->value.b[0] ? op[1] : op[2];
1875 } else {
1876 /* The copy to conditional_tmp reads the whole array. */
1877 if (type->is_array()) {
1878 mark_whole_array_access(op[1]);
1879 mark_whole_array_access(op[2]);
1880 }
1881
1882 ir_variable *const tmp =
1883 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1884 instructions->push_tail(tmp);
1885
1886 ir_if *const stmt = new(ctx) ir_if(op[0]);
1887 instructions->push_tail(stmt);
1888
1889 then_instructions.move_nodes_to(& stmt->then_instructions);
1890 ir_dereference *const then_deref =
1891 new(ctx) ir_dereference_variable(tmp);
1892 ir_assignment *const then_assign =
1893 new(ctx) ir_assignment(then_deref, op[1]);
1894 stmt->then_instructions.push_tail(then_assign);
1895
1896 else_instructions.move_nodes_to(& stmt->else_instructions);
1897 ir_dereference *const else_deref =
1898 new(ctx) ir_dereference_variable(tmp);
1899 ir_assignment *const else_assign =
1900 new(ctx) ir_assignment(else_deref, op[2]);
1901 stmt->else_instructions.push_tail(else_assign);
1902
1903 result = new(ctx) ir_dereference_variable(tmp);
1904 }
1905 break;
1906 }
1907
1908 case ast_pre_inc:
1909 case ast_pre_dec: {
1910 this->non_lvalue_description = (this->oper == ast_pre_inc)
1911 ? "pre-increment operation" : "pre-decrement operation";
1912
1913 op[0] = this->subexpressions[0]->hir(instructions, state);
1914 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1915
1916 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1917
1918 ir_rvalue *temp_rhs;
1919 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1920 op[0], op[1]);
1921
1922 error_emitted =
1923 do_assignment(instructions, state,
1924 this->subexpressions[0]->non_lvalue_description,
1925 op[0]->clone(ctx, NULL), temp_rhs,
1926 &result, needs_rvalue, false,
1927 this->subexpressions[0]->get_location());
1928 break;
1929 }
1930
1931 case ast_post_inc:
1932 case ast_post_dec: {
1933 this->non_lvalue_description = (this->oper == ast_post_inc)
1934 ? "post-increment operation" : "post-decrement operation";
1935 op[0] = this->subexpressions[0]->hir(instructions, state);
1936 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1937
1938 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1939
1940 if (error_emitted) {
1941 result = ir_rvalue::error_value(ctx);
1942 break;
1943 }
1944
1945 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1946
1947 ir_rvalue *temp_rhs;
1948 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1949 op[0], op[1]);
1950
1951 /* Get a temporary of a copy of the lvalue before it's modified.
1952 * This may get thrown away later.
1953 */
1954 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1955
1956 ir_rvalue *junk_rvalue;
1957 error_emitted =
1958 do_assignment(instructions, state,
1959 this->subexpressions[0]->non_lvalue_description,
1960 op[0]->clone(ctx, NULL), temp_rhs,
1961 &junk_rvalue, false, false,
1962 this->subexpressions[0]->get_location());
1963
1964 break;
1965 }
1966
1967 case ast_field_selection:
1968 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1969 break;
1970
1971 case ast_array_index: {
1972 YYLTYPE index_loc = subexpressions[1]->get_location();
1973
1974 /* Getting if an array is being used uninitialized is beyond what we get
1975 * from ir_value.data.assigned. Setting is_lhs as true would force to
1976 * not raise a uninitialized warning when using an array
1977 */
1978 subexpressions[0]->set_is_lhs(true);
1979 op[0] = subexpressions[0]->hir(instructions, state);
1980 op[1] = subexpressions[1]->hir(instructions, state);
1981
1982 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1983 loc, index_loc);
1984
1985 if (result->type->is_error())
1986 error_emitted = true;
1987
1988 break;
1989 }
1990
1991 case ast_unsized_array_dim:
1992 unreachable("ast_unsized_array_dim: Should never get here.");
1993
1994 case ast_function_call:
1995 /* Should *NEVER* get here. ast_function_call should always be handled
1996 * by ast_function_expression::hir.
1997 */
1998 unreachable("ast_function_call: handled elsewhere ");
1999
2000 case ast_identifier: {
2001 /* ast_identifier can appear several places in a full abstract syntax
2002 * tree. This particular use must be at location specified in the grammar
2003 * as 'variable_identifier'.
2004 */
2005 ir_variable *var =
2006 state->symbols->get_variable(this->primary_expression.identifier);
2007
2008 if (var == NULL) {
2009 /* the identifier might be a subroutine name */
2010 char *sub_name;
2011 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2012 var = state->symbols->get_variable(sub_name);
2013 ralloc_free(sub_name);
2014 }
2015
2016 if (var != NULL) {
2017 var->data.used = true;
2018 result = new(ctx) ir_dereference_variable(var);
2019
2020 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2021 && !this->is_lhs
2022 && result->variable_referenced()->data.assigned != true
2023 && !is_gl_identifier(var->name)) {
2024 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2025 this->primary_expression.identifier);
2026 }
2027
2028 /* From the EXT_shader_framebuffer_fetch spec:
2029 *
2030 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2031 * enabled in addition, it's an error to use gl_LastFragData if it
2032 * hasn't been explicitly redeclared with layout(noncoherent)."
2033 */
2034 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2035 !state->EXT_shader_framebuffer_fetch_enable) {
2036 _mesa_glsl_error(&loc, state,
2037 "invalid use of framebuffer fetch output not "
2038 "qualified with layout(noncoherent)");
2039 }
2040
2041 } else {
2042 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2043 this->primary_expression.identifier);
2044
2045 result = ir_rvalue::error_value(ctx);
2046 error_emitted = true;
2047 }
2048 break;
2049 }
2050
2051 case ast_int_constant:
2052 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2053 break;
2054
2055 case ast_uint_constant:
2056 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2057 break;
2058
2059 case ast_float_constant:
2060 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2061 break;
2062
2063 case ast_bool_constant:
2064 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2065 break;
2066
2067 case ast_double_constant:
2068 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2069 break;
2070
2071 case ast_uint64_constant:
2072 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2073 break;
2074
2075 case ast_int64_constant:
2076 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2077 break;
2078
2079 case ast_sequence: {
2080 /* It should not be possible to generate a sequence in the AST without
2081 * any expressions in it.
2082 */
2083 assert(!this->expressions.is_empty());
2084
2085 /* The r-value of a sequence is the last expression in the sequence. If
2086 * the other expressions in the sequence do not have side-effects (and
2087 * therefore add instructions to the instruction list), they get dropped
2088 * on the floor.
2089 */
2090 exec_node *previous_tail = NULL;
2091 YYLTYPE previous_operand_loc = loc;
2092
2093 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2094 /* If one of the operands of comma operator does not generate any
2095 * code, we want to emit a warning. At each pass through the loop
2096 * previous_tail will point to the last instruction in the stream
2097 * *before* processing the previous operand. Naturally,
2098 * instructions->get_tail_raw() will point to the last instruction in
2099 * the stream *after* processing the previous operand. If the two
2100 * pointers match, then the previous operand had no effect.
2101 *
2102 * The warning behavior here differs slightly from GCC. GCC will
2103 * only emit a warning if none of the left-hand operands have an
2104 * effect. However, it will emit a warning for each. I believe that
2105 * there are some cases in C (especially with GCC extensions) where
2106 * it is useful to have an intermediate step in a sequence have no
2107 * effect, but I don't think these cases exist in GLSL. Either way,
2108 * it would be a giant hassle to replicate that behavior.
2109 */
2110 if (previous_tail == instructions->get_tail_raw()) {
2111 _mesa_glsl_warning(&previous_operand_loc, state,
2112 "left-hand operand of comma expression has "
2113 "no effect");
2114 }
2115
2116 /* The tail is directly accessed instead of using the get_tail()
2117 * method for performance reasons. get_tail() has extra code to
2118 * return NULL when the list is empty. We don't care about that
2119 * here, so using get_tail_raw() is fine.
2120 */
2121 previous_tail = instructions->get_tail_raw();
2122 previous_operand_loc = ast->get_location();
2123
2124 result = ast->hir(instructions, state);
2125 }
2126
2127 /* Any errors should have already been emitted in the loop above.
2128 */
2129 error_emitted = true;
2130 break;
2131 }
2132 }
2133 type = NULL; /* use result->type, not type. */
2134 assert(result != NULL || !needs_rvalue);
2135
2136 if (result && result->type->is_error() && !error_emitted)
2137 _mesa_glsl_error(& loc, state, "type mismatch");
2138
2139 return result;
2140 }
2141
2142 bool
2143 ast_expression::has_sequence_subexpression() const
2144 {
2145 switch (this->oper) {
2146 case ast_plus:
2147 case ast_neg:
2148 case ast_bit_not:
2149 case ast_logic_not:
2150 case ast_pre_inc:
2151 case ast_pre_dec:
2152 case ast_post_inc:
2153 case ast_post_dec:
2154 return this->subexpressions[0]->has_sequence_subexpression();
2155
2156 case ast_assign:
2157 case ast_add:
2158 case ast_sub:
2159 case ast_mul:
2160 case ast_div:
2161 case ast_mod:
2162 case ast_lshift:
2163 case ast_rshift:
2164 case ast_less:
2165 case ast_greater:
2166 case ast_lequal:
2167 case ast_gequal:
2168 case ast_nequal:
2169 case ast_equal:
2170 case ast_bit_and:
2171 case ast_bit_xor:
2172 case ast_bit_or:
2173 case ast_logic_and:
2174 case ast_logic_or:
2175 case ast_logic_xor:
2176 case ast_array_index:
2177 case ast_mul_assign:
2178 case ast_div_assign:
2179 case ast_add_assign:
2180 case ast_sub_assign:
2181 case ast_mod_assign:
2182 case ast_ls_assign:
2183 case ast_rs_assign:
2184 case ast_and_assign:
2185 case ast_xor_assign:
2186 case ast_or_assign:
2187 return this->subexpressions[0]->has_sequence_subexpression() ||
2188 this->subexpressions[1]->has_sequence_subexpression();
2189
2190 case ast_conditional:
2191 return this->subexpressions[0]->has_sequence_subexpression() ||
2192 this->subexpressions[1]->has_sequence_subexpression() ||
2193 this->subexpressions[2]->has_sequence_subexpression();
2194
2195 case ast_sequence:
2196 return true;
2197
2198 case ast_field_selection:
2199 case ast_identifier:
2200 case ast_int_constant:
2201 case ast_uint_constant:
2202 case ast_float_constant:
2203 case ast_bool_constant:
2204 case ast_double_constant:
2205 case ast_int64_constant:
2206 case ast_uint64_constant:
2207 return false;
2208
2209 case ast_aggregate:
2210 return false;
2211
2212 case ast_function_call:
2213 unreachable("should be handled by ast_function_expression::hir");
2214
2215 case ast_unsized_array_dim:
2216 unreachable("ast_unsized_array_dim: Should never get here.");
2217 }
2218
2219 return false;
2220 }
2221
2222 ir_rvalue *
2223 ast_expression_statement::hir(exec_list *instructions,
2224 struct _mesa_glsl_parse_state *state)
2225 {
2226 /* It is possible to have expression statements that don't have an
2227 * expression. This is the solitary semicolon:
2228 *
2229 * for (i = 0; i < 5; i++)
2230 * ;
2231 *
2232 * In this case the expression will be NULL. Test for NULL and don't do
2233 * anything in that case.
2234 */
2235 if (expression != NULL)
2236 expression->hir_no_rvalue(instructions, state);
2237
2238 /* Statements do not have r-values.
2239 */
2240 return NULL;
2241 }
2242
2243
2244 ir_rvalue *
2245 ast_compound_statement::hir(exec_list *instructions,
2246 struct _mesa_glsl_parse_state *state)
2247 {
2248 if (new_scope)
2249 state->symbols->push_scope();
2250
2251 foreach_list_typed (ast_node, ast, link, &this->statements)
2252 ast->hir(instructions, state);
2253
2254 if (new_scope)
2255 state->symbols->pop_scope();
2256
2257 /* Compound statements do not have r-values.
2258 */
2259 return NULL;
2260 }
2261
2262 /**
2263 * Evaluate the given exec_node (which should be an ast_node representing
2264 * a single array dimension) and return its integer value.
2265 */
2266 static unsigned
2267 process_array_size(exec_node *node,
2268 struct _mesa_glsl_parse_state *state)
2269 {
2270 void *mem_ctx = state;
2271
2272 exec_list dummy_instructions;
2273
2274 ast_node *array_size = exec_node_data(ast_node, node, link);
2275
2276 /**
2277 * Dimensions other than the outermost dimension can by unsized if they
2278 * are immediately sized by a constructor or initializer.
2279 */
2280 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2281 return 0;
2282
2283 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2284 YYLTYPE loc = array_size->get_location();
2285
2286 if (ir == NULL) {
2287 _mesa_glsl_error(& loc, state,
2288 "array size could not be resolved");
2289 return 0;
2290 }
2291
2292 if (!ir->type->is_integer_32()) {
2293 _mesa_glsl_error(& loc, state,
2294 "array size must be integer type");
2295 return 0;
2296 }
2297
2298 if (!ir->type->is_scalar()) {
2299 _mesa_glsl_error(& loc, state,
2300 "array size must be scalar type");
2301 return 0;
2302 }
2303
2304 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2305 if (size == NULL ||
2306 (state->is_version(120, 300) &&
2307 array_size->has_sequence_subexpression())) {
2308 _mesa_glsl_error(& loc, state, "array size must be a "
2309 "constant valued expression");
2310 return 0;
2311 }
2312
2313 if (size->value.i[0] <= 0) {
2314 _mesa_glsl_error(& loc, state, "array size must be > 0");
2315 return 0;
2316 }
2317
2318 assert(size->type == ir->type);
2319
2320 /* If the array size is const (and we've verified that
2321 * it is) then no instructions should have been emitted
2322 * when we converted it to HIR. If they were emitted,
2323 * then either the array size isn't const after all, or
2324 * we are emitting unnecessary instructions.
2325 */
2326 assert(dummy_instructions.is_empty());
2327
2328 return size->value.u[0];
2329 }
2330
2331 static const glsl_type *
2332 process_array_type(YYLTYPE *loc, const glsl_type *base,
2333 ast_array_specifier *array_specifier,
2334 struct _mesa_glsl_parse_state *state)
2335 {
2336 const glsl_type *array_type = base;
2337
2338 if (array_specifier != NULL) {
2339 if (base->is_array()) {
2340
2341 /* From page 19 (page 25) of the GLSL 1.20 spec:
2342 *
2343 * "Only one-dimensional arrays may be declared."
2344 */
2345 if (!state->check_arrays_of_arrays_allowed(loc)) {
2346 return glsl_type::error_type;
2347 }
2348 }
2349
2350 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2351 !node->is_head_sentinel(); node = node->prev) {
2352 unsigned array_size = process_array_size(node, state);
2353 array_type = glsl_type::get_array_instance(array_type, array_size);
2354 }
2355 }
2356
2357 return array_type;
2358 }
2359
2360 static bool
2361 precision_qualifier_allowed(const glsl_type *type)
2362 {
2363 /* Precision qualifiers apply to floating point, integer and opaque
2364 * types.
2365 *
2366 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2367 * "Any floating point or any integer declaration can have the type
2368 * preceded by one of these precision qualifiers [...] Literal
2369 * constants do not have precision qualifiers. Neither do Boolean
2370 * variables.
2371 *
2372 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2373 * spec also says:
2374 *
2375 * "Precision qualifiers are added for code portability with OpenGL
2376 * ES, not for functionality. They have the same syntax as in OpenGL
2377 * ES."
2378 *
2379 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2380 *
2381 * "uniform lowp sampler2D sampler;
2382 * highp vec2 coord;
2383 * ...
2384 * lowp vec4 col = texture2D (sampler, coord);
2385 * // texture2D returns lowp"
2386 *
2387 * From this, we infer that GLSL 1.30 (and later) should allow precision
2388 * qualifiers on sampler types just like float and integer types.
2389 */
2390 const glsl_type *const t = type->without_array();
2391
2392 return (t->is_float() || t->is_integer_32() || t->contains_opaque()) &&
2393 !t->is_struct();
2394 }
2395
2396 const glsl_type *
2397 ast_type_specifier::glsl_type(const char **name,
2398 struct _mesa_glsl_parse_state *state) const
2399 {
2400 const struct glsl_type *type;
2401
2402 if (this->type != NULL)
2403 type = this->type;
2404 else if (structure)
2405 type = structure->type;
2406 else
2407 type = state->symbols->get_type(this->type_name);
2408 *name = this->type_name;
2409
2410 YYLTYPE loc = this->get_location();
2411 type = process_array_type(&loc, type, this->array_specifier, state);
2412
2413 return type;
2414 }
2415
2416 /**
2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2418 *
2419 * "The precision statement
2420 *
2421 * precision precision-qualifier type;
2422 *
2423 * can be used to establish a default precision qualifier. The type field can
2424 * be either int or float or any of the sampler types, (...) If type is float,
2425 * the directive applies to non-precision-qualified floating point type
2426 * (scalar, vector, and matrix) declarations. If type is int, the directive
2427 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2428 * and unsigned) declarations."
2429 *
2430 * We use the symbol table to keep the values of the default precisions for
2431 * each 'type' in each scope and we use the 'type' string from the precision
2432 * statement as key in the symbol table. When we want to retrieve the default
2433 * precision associated with a given glsl_type we need to know the type string
2434 * associated with it. This is what this function returns.
2435 */
2436 static const char *
2437 get_type_name_for_precision_qualifier(const glsl_type *type)
2438 {
2439 switch (type->base_type) {
2440 case GLSL_TYPE_FLOAT:
2441 return "float";
2442 case GLSL_TYPE_UINT:
2443 case GLSL_TYPE_INT:
2444 return "int";
2445 case GLSL_TYPE_ATOMIC_UINT:
2446 return "atomic_uint";
2447 case GLSL_TYPE_IMAGE:
2448 /* fallthrough */
2449 case GLSL_TYPE_SAMPLER: {
2450 const unsigned type_idx =
2451 type->sampler_array + 2 * type->sampler_shadow;
2452 const unsigned offset = type->is_sampler() ? 0 : 4;
2453 assert(type_idx < 4);
2454 switch (type->sampled_type) {
2455 case GLSL_TYPE_FLOAT:
2456 switch (type->sampler_dimensionality) {
2457 case GLSL_SAMPLER_DIM_1D: {
2458 assert(type->is_sampler());
2459 static const char *const names[4] = {
2460 "sampler1D", "sampler1DArray",
2461 "sampler1DShadow", "sampler1DArrayShadow"
2462 };
2463 return names[type_idx];
2464 }
2465 case GLSL_SAMPLER_DIM_2D: {
2466 static const char *const names[8] = {
2467 "sampler2D", "sampler2DArray",
2468 "sampler2DShadow", "sampler2DArrayShadow",
2469 "image2D", "image2DArray", NULL, NULL
2470 };
2471 return names[offset + type_idx];
2472 }
2473 case GLSL_SAMPLER_DIM_3D: {
2474 static const char *const names[8] = {
2475 "sampler3D", NULL, NULL, NULL,
2476 "image3D", NULL, NULL, NULL
2477 };
2478 return names[offset + type_idx];
2479 }
2480 case GLSL_SAMPLER_DIM_CUBE: {
2481 static const char *const names[8] = {
2482 "samplerCube", "samplerCubeArray",
2483 "samplerCubeShadow", "samplerCubeArrayShadow",
2484 "imageCube", NULL, NULL, NULL
2485 };
2486 return names[offset + type_idx];
2487 }
2488 case GLSL_SAMPLER_DIM_MS: {
2489 assert(type->is_sampler());
2490 static const char *const names[4] = {
2491 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2492 };
2493 return names[type_idx];
2494 }
2495 case GLSL_SAMPLER_DIM_RECT: {
2496 assert(type->is_sampler());
2497 static const char *const names[4] = {
2498 "samplerRect", NULL, "samplerRectShadow", NULL
2499 };
2500 return names[type_idx];
2501 }
2502 case GLSL_SAMPLER_DIM_BUF: {
2503 static const char *const names[8] = {
2504 "samplerBuffer", NULL, NULL, NULL,
2505 "imageBuffer", NULL, NULL, NULL
2506 };
2507 return names[offset + type_idx];
2508 }
2509 case GLSL_SAMPLER_DIM_EXTERNAL: {
2510 assert(type->is_sampler());
2511 static const char *const names[4] = {
2512 "samplerExternalOES", NULL, NULL, NULL
2513 };
2514 return names[type_idx];
2515 }
2516 default:
2517 unreachable("Unsupported sampler/image dimensionality");
2518 } /* sampler/image float dimensionality */
2519 break;
2520 case GLSL_TYPE_INT:
2521 switch (type->sampler_dimensionality) {
2522 case GLSL_SAMPLER_DIM_1D: {
2523 assert(type->is_sampler());
2524 static const char *const names[4] = {
2525 "isampler1D", "isampler1DArray", NULL, NULL
2526 };
2527 return names[type_idx];
2528 }
2529 case GLSL_SAMPLER_DIM_2D: {
2530 static const char *const names[8] = {
2531 "isampler2D", "isampler2DArray", NULL, NULL,
2532 "iimage2D", "iimage2DArray", NULL, NULL
2533 };
2534 return names[offset + type_idx];
2535 }
2536 case GLSL_SAMPLER_DIM_3D: {
2537 static const char *const names[8] = {
2538 "isampler3D", NULL, NULL, NULL,
2539 "iimage3D", NULL, NULL, NULL
2540 };
2541 return names[offset + type_idx];
2542 }
2543 case GLSL_SAMPLER_DIM_CUBE: {
2544 static const char *const names[8] = {
2545 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2546 "iimageCube", NULL, NULL, NULL
2547 };
2548 return names[offset + type_idx];
2549 }
2550 case GLSL_SAMPLER_DIM_MS: {
2551 assert(type->is_sampler());
2552 static const char *const names[4] = {
2553 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2554 };
2555 return names[type_idx];
2556 }
2557 case GLSL_SAMPLER_DIM_RECT: {
2558 assert(type->is_sampler());
2559 static const char *const names[4] = {
2560 "isamplerRect", NULL, "isamplerRectShadow", NULL
2561 };
2562 return names[type_idx];
2563 }
2564 case GLSL_SAMPLER_DIM_BUF: {
2565 static const char *const names[8] = {
2566 "isamplerBuffer", NULL, NULL, NULL,
2567 "iimageBuffer", NULL, NULL, NULL
2568 };
2569 return names[offset + type_idx];
2570 }
2571 default:
2572 unreachable("Unsupported isampler/iimage dimensionality");
2573 } /* sampler/image int dimensionality */
2574 break;
2575 case GLSL_TYPE_UINT:
2576 switch (type->sampler_dimensionality) {
2577 case GLSL_SAMPLER_DIM_1D: {
2578 assert(type->is_sampler());
2579 static const char *const names[4] = {
2580 "usampler1D", "usampler1DArray", NULL, NULL
2581 };
2582 return names[type_idx];
2583 }
2584 case GLSL_SAMPLER_DIM_2D: {
2585 static const char *const names[8] = {
2586 "usampler2D", "usampler2DArray", NULL, NULL,
2587 "uimage2D", "uimage2DArray", NULL, NULL
2588 };
2589 return names[offset + type_idx];
2590 }
2591 case GLSL_SAMPLER_DIM_3D: {
2592 static const char *const names[8] = {
2593 "usampler3D", NULL, NULL, NULL,
2594 "uimage3D", NULL, NULL, NULL
2595 };
2596 return names[offset + type_idx];
2597 }
2598 case GLSL_SAMPLER_DIM_CUBE: {
2599 static const char *const names[8] = {
2600 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2601 "uimageCube", NULL, NULL, NULL
2602 };
2603 return names[offset + type_idx];
2604 }
2605 case GLSL_SAMPLER_DIM_MS: {
2606 assert(type->is_sampler());
2607 static const char *const names[4] = {
2608 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2609 };
2610 return names[type_idx];
2611 }
2612 case GLSL_SAMPLER_DIM_RECT: {
2613 assert(type->is_sampler());
2614 static const char *const names[4] = {
2615 "usamplerRect", NULL, "usamplerRectShadow", NULL
2616 };
2617 return names[type_idx];
2618 }
2619 case GLSL_SAMPLER_DIM_BUF: {
2620 static const char *const names[8] = {
2621 "usamplerBuffer", NULL, NULL, NULL,
2622 "uimageBuffer", NULL, NULL, NULL
2623 };
2624 return names[offset + type_idx];
2625 }
2626 default:
2627 unreachable("Unsupported usampler/uimage dimensionality");
2628 } /* sampler/image uint dimensionality */
2629 break;
2630 default:
2631 unreachable("Unsupported sampler/image type");
2632 } /* sampler/image type */
2633 break;
2634 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2635 break;
2636 default:
2637 unreachable("Unsupported type");
2638 } /* base type */
2639 }
2640
2641 static unsigned
2642 select_gles_precision(unsigned qual_precision,
2643 const glsl_type *type,
2644 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2645 {
2646 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2647 * In GLES we take the precision from the type qualifier if present,
2648 * otherwise, if the type of the variable allows precision qualifiers at
2649 * all, we look for the default precision qualifier for that type in the
2650 * current scope.
2651 */
2652 assert(state->es_shader);
2653
2654 unsigned precision = GLSL_PRECISION_NONE;
2655 if (qual_precision) {
2656 precision = qual_precision;
2657 } else if (precision_qualifier_allowed(type)) {
2658 const char *type_name =
2659 get_type_name_for_precision_qualifier(type->without_array());
2660 assert(type_name != NULL);
2661
2662 precision =
2663 state->symbols->get_default_precision_qualifier(type_name);
2664 if (precision == ast_precision_none) {
2665 _mesa_glsl_error(loc, state,
2666 "No precision specified in this scope for type `%s'",
2667 type->name);
2668 }
2669 }
2670
2671
2672 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2673 *
2674 * "The default precision of all atomic types is highp. It is an error to
2675 * declare an atomic type with a different precision or to specify the
2676 * default precision for an atomic type to be lowp or mediump."
2677 */
2678 if (type->is_atomic_uint() && precision != ast_precision_high) {
2679 _mesa_glsl_error(loc, state,
2680 "atomic_uint can only have highp precision qualifier");
2681 }
2682
2683 return precision;
2684 }
2685
2686 const glsl_type *
2687 ast_fully_specified_type::glsl_type(const char **name,
2688 struct _mesa_glsl_parse_state *state) const
2689 {
2690 return this->specifier->glsl_type(name, state);
2691 }
2692
2693 /**
2694 * Determine whether a toplevel variable declaration declares a varying. This
2695 * function operates by examining the variable's mode and the shader target,
2696 * so it correctly identifies linkage variables regardless of whether they are
2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2698 *
2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2700 * this function will produce undefined results.
2701 */
2702 static bool
2703 is_varying_var(ir_variable *var, gl_shader_stage target)
2704 {
2705 switch (target) {
2706 case MESA_SHADER_VERTEX:
2707 return var->data.mode == ir_var_shader_out;
2708 case MESA_SHADER_FRAGMENT:
2709 return var->data.mode == ir_var_shader_in ||
2710 (var->data.mode == ir_var_system_value &&
2711 var->data.location == SYSTEM_VALUE_FRAG_COORD);
2712 default:
2713 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2714 }
2715 }
2716
2717 static bool
2718 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2719 {
2720 if (is_varying_var(var, state->stage))
2721 return true;
2722
2723 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2724 * "Only variables output from a vertex shader can be candidates
2725 * for invariance".
2726 */
2727 if (!state->is_version(130, 100))
2728 return false;
2729
2730 /*
2731 * Later specs remove this language - so allowed invariant
2732 * on fragment shader outputs as well.
2733 */
2734 if (state->stage == MESA_SHADER_FRAGMENT &&
2735 var->data.mode == ir_var_shader_out)
2736 return true;
2737 return false;
2738 }
2739
2740 /**
2741 * Matrix layout qualifiers are only allowed on certain types
2742 */
2743 static void
2744 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2745 YYLTYPE *loc,
2746 const glsl_type *type,
2747 ir_variable *var)
2748 {
2749 if (var && !var->is_in_buffer_block()) {
2750 /* Layout qualifiers may only apply to interface blocks and fields in
2751 * them.
2752 */
2753 _mesa_glsl_error(loc, state,
2754 "uniform block layout qualifiers row_major and "
2755 "column_major may not be applied to variables "
2756 "outside of uniform blocks");
2757 } else if (!type->without_array()->is_matrix()) {
2758 /* The OpenGL ES 3.0 conformance tests did not originally allow
2759 * matrix layout qualifiers on non-matrices. However, the OpenGL
2760 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2761 * amended to specifically allow these layouts on all types. Emit
2762 * a warning so that people know their code may not be portable.
2763 */
2764 _mesa_glsl_warning(loc, state,
2765 "uniform block layout qualifiers row_major and "
2766 "column_major applied to non-matrix types may "
2767 "be rejected by older compilers");
2768 }
2769 }
2770
2771 static bool
2772 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2773 struct _mesa_glsl_parse_state *state,
2774 unsigned xfb_buffer) {
2775 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2776 _mesa_glsl_error(loc, state,
2777 "invalid xfb_buffer specified %d is larger than "
2778 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2779 xfb_buffer,
2780 state->Const.MaxTransformFeedbackBuffers - 1);
2781 return false;
2782 }
2783
2784 return true;
2785 }
2786
2787 /* From the ARB_enhanced_layouts spec:
2788 *
2789 * "Variables and block members qualified with *xfb_offset* can be
2790 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2791 * The offset must be a multiple of the size of the first component of
2792 * the first qualified variable or block member, or a compile-time error
2793 * results. Further, if applied to an aggregate containing a double,
2794 * the offset must also be a multiple of 8, and the space taken in the
2795 * buffer will be a multiple of 8.
2796 */
2797 static bool
2798 validate_xfb_offset_qualifier(YYLTYPE *loc,
2799 struct _mesa_glsl_parse_state *state,
2800 int xfb_offset, const glsl_type *type,
2801 unsigned component_size) {
2802 const glsl_type *t_without_array = type->without_array();
2803
2804 if (xfb_offset != -1 && type->is_unsized_array()) {
2805 _mesa_glsl_error(loc, state,
2806 "xfb_offset can't be used with unsized arrays.");
2807 return false;
2808 }
2809
2810 /* Make sure nested structs don't contain unsized arrays, and validate
2811 * any xfb_offsets on interface members.
2812 */
2813 if (t_without_array->is_struct() || t_without_array->is_interface())
2814 for (unsigned int i = 0; i < t_without_array->length; i++) {
2815 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2816
2817 /* When the interface block doesn't have an xfb_offset qualifier then
2818 * we apply the component size rules at the member level.
2819 */
2820 if (xfb_offset == -1)
2821 component_size = member_t->contains_double() ? 8 : 4;
2822
2823 int xfb_offset = t_without_array->fields.structure[i].offset;
2824 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2825 component_size);
2826 }
2827
2828 /* Nested structs or interface block without offset may not have had an
2829 * offset applied yet so return.
2830 */
2831 if (xfb_offset == -1) {
2832 return true;
2833 }
2834
2835 if (xfb_offset % component_size) {
2836 _mesa_glsl_error(loc, state,
2837 "invalid qualifier xfb_offset=%d must be a multiple "
2838 "of the first component size of the first qualified "
2839 "variable or block member. Or double if an aggregate "
2840 "that contains a double (%d).",
2841 xfb_offset, component_size);
2842 return false;
2843 }
2844
2845 return true;
2846 }
2847
2848 static bool
2849 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2850 unsigned stream)
2851 {
2852 if (stream >= state->ctx->Const.MaxVertexStreams) {
2853 _mesa_glsl_error(loc, state,
2854 "invalid stream specified %d is larger than "
2855 "MAX_VERTEX_STREAMS - 1 (%d).",
2856 stream, state->ctx->Const.MaxVertexStreams - 1);
2857 return false;
2858 }
2859
2860 return true;
2861 }
2862
2863 static void
2864 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2865 YYLTYPE *loc,
2866 ir_variable *var,
2867 const glsl_type *type,
2868 const ast_type_qualifier *qual)
2869 {
2870 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2871 _mesa_glsl_error(loc, state,
2872 "the \"binding\" qualifier only applies to uniforms and "
2873 "shader storage buffer objects");
2874 return;
2875 }
2876
2877 unsigned qual_binding;
2878 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2879 &qual_binding)) {
2880 return;
2881 }
2882
2883 const struct gl_context *const ctx = state->ctx;
2884 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2885 unsigned max_index = qual_binding + elements - 1;
2886 const glsl_type *base_type = type->without_array();
2887
2888 if (base_type->is_interface()) {
2889 /* UBOs. From page 60 of the GLSL 4.20 specification:
2890 * "If the binding point for any uniform block instance is less than zero,
2891 * or greater than or equal to the implementation-dependent maximum
2892 * number of uniform buffer bindings, a compilation error will occur.
2893 * When the binding identifier is used with a uniform block instanced as
2894 * an array of size N, all elements of the array from binding through
2895 * binding + N – 1 must be within this range."
2896 *
2897 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2898 */
2899 if (qual->flags.q.uniform &&
2900 max_index >= ctx->Const.MaxUniformBufferBindings) {
2901 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2902 "the maximum number of UBO binding points (%d)",
2903 qual_binding, elements,
2904 ctx->Const.MaxUniformBufferBindings);
2905 return;
2906 }
2907
2908 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2909 * "If the binding point for any uniform or shader storage block instance
2910 * is less than zero, or greater than or equal to the
2911 * implementation-dependent maximum number of uniform buffer bindings, a
2912 * compile-time error will occur. When the binding identifier is used
2913 * with a uniform or shader storage block instanced as an array of size
2914 * N, all elements of the array from binding through binding + N – 1 must
2915 * be within this range."
2916 */
2917 if (qual->flags.q.buffer &&
2918 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2919 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2920 "the maximum number of SSBO binding points (%d)",
2921 qual_binding, elements,
2922 ctx->Const.MaxShaderStorageBufferBindings);
2923 return;
2924 }
2925 } else if (base_type->is_sampler()) {
2926 /* Samplers. From page 63 of the GLSL 4.20 specification:
2927 * "If the binding is less than zero, or greater than or equal to the
2928 * implementation-dependent maximum supported number of units, a
2929 * compilation error will occur. When the binding identifier is used
2930 * with an array of size N, all elements of the array from binding
2931 * through binding + N - 1 must be within this range."
2932 */
2933 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2934
2935 if (max_index >= limit) {
2936 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2937 "exceeds the maximum number of texture image units "
2938 "(%u)", qual_binding, elements, limit);
2939
2940 return;
2941 }
2942 } else if (base_type->contains_atomic()) {
2943 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2944 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2945 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2946 "maximum number of atomic counter buffer bindings "
2947 "(%u)", qual_binding,
2948 ctx->Const.MaxAtomicBufferBindings);
2949
2950 return;
2951 }
2952 } else if ((state->is_version(420, 310) ||
2953 state->ARB_shading_language_420pack_enable) &&
2954 base_type->is_image()) {
2955 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2956 if (max_index >= ctx->Const.MaxImageUnits) {
2957 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2958 "maximum number of image units (%d)", max_index,
2959 ctx->Const.MaxImageUnits);
2960 return;
2961 }
2962
2963 } else {
2964 _mesa_glsl_error(loc, state,
2965 "the \"binding\" qualifier only applies to uniform "
2966 "blocks, storage blocks, opaque variables, or arrays "
2967 "thereof");
2968 return;
2969 }
2970
2971 var->data.explicit_binding = true;
2972 var->data.binding = qual_binding;
2973
2974 return;
2975 }
2976
2977 static void
2978 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2979 YYLTYPE *loc,
2980 const glsl_interp_mode interpolation,
2981 const struct glsl_type *var_type,
2982 ir_variable_mode mode)
2983 {
2984 if (state->stage != MESA_SHADER_FRAGMENT ||
2985 interpolation == INTERP_MODE_FLAT ||
2986 mode != ir_var_shader_in)
2987 return;
2988
2989 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2990 * so must integer vertex outputs.
2991 *
2992 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2993 * "Fragment shader inputs that are signed or unsigned integers or
2994 * integer vectors must be qualified with the interpolation qualifier
2995 * flat."
2996 *
2997 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2998 * "Fragment shader inputs that are, or contain, signed or unsigned
2999 * integers or integer vectors must be qualified with the
3000 * interpolation qualifier flat."
3001 *
3002 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3003 * "Vertex shader outputs that are, or contain, signed or unsigned
3004 * integers or integer vectors must be qualified with the
3005 * interpolation qualifier flat."
3006 *
3007 * Note that prior to GLSL 1.50, this requirement applied to vertex
3008 * outputs rather than fragment inputs. That creates problems in the
3009 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3010 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3011 * apply the restriction to both vertex outputs and fragment inputs.
3012 *
3013 * Note also that the desktop GLSL specs are missing the text "or
3014 * contain"; this is presumably an oversight, since there is no
3015 * reasonable way to interpolate a fragment shader input that contains
3016 * an integer. See Khronos bug #15671.
3017 */
3018 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3019 && var_type->contains_integer()) {
3020 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3021 "an integer, then it must be qualified with 'flat'");
3022 }
3023
3024 /* Double fragment inputs must be qualified with 'flat'.
3025 *
3026 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3027 * "This extension does not support interpolation of double-precision
3028 * values; doubles used as fragment shader inputs must be qualified as
3029 * "flat"."
3030 *
3031 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3032 * "Fragment shader inputs that are signed or unsigned integers, integer
3033 * vectors, or any double-precision floating-point type must be
3034 * qualified with the interpolation qualifier flat."
3035 *
3036 * Note that the GLSL specs are missing the text "or contain"; this is
3037 * presumably an oversight. See Khronos bug #15671.
3038 *
3039 * The 'double' type does not exist in GLSL ES so far.
3040 */
3041 if (state->has_double()
3042 && var_type->contains_double()) {
3043 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3044 "a double, then it must be qualified with 'flat'");
3045 }
3046
3047 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3048 *
3049 * From section 4.3.4 of the ARB_bindless_texture spec:
3050 *
3051 * "(modify last paragraph, p. 35, allowing samplers and images as
3052 * fragment shader inputs) ... Fragment inputs can only be signed and
3053 * unsigned integers and integer vectors, floating point scalars,
3054 * floating-point vectors, matrices, sampler and image types, or arrays
3055 * or structures of these. Fragment shader inputs that are signed or
3056 * unsigned integers, integer vectors, or any double-precision floating-
3057 * point type, or any sampler or image type must be qualified with the
3058 * interpolation qualifier "flat"."
3059 */
3060 if (state->has_bindless()
3061 && (var_type->contains_sampler() || var_type->contains_image())) {
3062 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3063 "a bindless sampler (or image), then it must be "
3064 "qualified with 'flat'");
3065 }
3066 }
3067
3068 static void
3069 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3070 YYLTYPE *loc,
3071 const glsl_interp_mode interpolation,
3072 const struct ast_type_qualifier *qual,
3073 const struct glsl_type *var_type,
3074 ir_variable_mode mode)
3075 {
3076 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3077 * not to vertex shader inputs nor fragment shader outputs.
3078 *
3079 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3080 * "Outputs from a vertex shader (out) and inputs to a fragment
3081 * shader (in) can be further qualified with one or more of these
3082 * interpolation qualifiers"
3083 * ...
3084 * "These interpolation qualifiers may only precede the qualifiers in,
3085 * centroid in, out, or centroid out in a declaration. They do not apply
3086 * to the deprecated storage qualifiers varying or centroid
3087 * varying. They also do not apply to inputs into a vertex shader or
3088 * outputs from a fragment shader."
3089 *
3090 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3091 * "Outputs from a shader (out) and inputs to a shader (in) can be
3092 * further qualified with one of these interpolation qualifiers."
3093 * ...
3094 * "These interpolation qualifiers may only precede the qualifiers
3095 * in, centroid in, out, or centroid out in a declaration. They do
3096 * not apply to inputs into a vertex shader or outputs from a
3097 * fragment shader."
3098 */
3099 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3100 && interpolation != INTERP_MODE_NONE) {
3101 const char *i = interpolation_string(interpolation);
3102 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3103 _mesa_glsl_error(loc, state,
3104 "interpolation qualifier `%s' can only be applied to "
3105 "shader inputs or outputs.", i);
3106
3107 switch (state->stage) {
3108 case MESA_SHADER_VERTEX:
3109 if (mode == ir_var_shader_in) {
3110 _mesa_glsl_error(loc, state,
3111 "interpolation qualifier '%s' cannot be applied to "
3112 "vertex shader inputs", i);
3113 }
3114 break;
3115 case MESA_SHADER_FRAGMENT:
3116 if (mode == ir_var_shader_out) {
3117 _mesa_glsl_error(loc, state,
3118 "interpolation qualifier '%s' cannot be applied to "
3119 "fragment shader outputs", i);
3120 }
3121 break;
3122 default:
3123 break;
3124 }
3125 }
3126
3127 /* Interpolation qualifiers cannot be applied to 'centroid' and
3128 * 'centroid varying'.
3129 *
3130 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3131 * "interpolation qualifiers may only precede the qualifiers in,
3132 * centroid in, out, or centroid out in a declaration. They do not apply
3133 * to the deprecated storage qualifiers varying or centroid varying."
3134 *
3135 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3136 *
3137 * GL_EXT_gpu_shader4 allows this.
3138 */
3139 if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3140 && interpolation != INTERP_MODE_NONE
3141 && qual->flags.q.varying) {
3142
3143 const char *i = interpolation_string(interpolation);
3144 const char *s;
3145 if (qual->flags.q.centroid)
3146 s = "centroid varying";
3147 else
3148 s = "varying";
3149
3150 _mesa_glsl_error(loc, state,
3151 "qualifier '%s' cannot be applied to the "
3152 "deprecated storage qualifier '%s'", i, s);
3153 }
3154
3155 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3156 var_type, mode);
3157 }
3158
3159 static glsl_interp_mode
3160 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3161 const struct glsl_type *var_type,
3162 ir_variable_mode mode,
3163 struct _mesa_glsl_parse_state *state,
3164 YYLTYPE *loc)
3165 {
3166 glsl_interp_mode interpolation;
3167 if (qual->flags.q.flat)
3168 interpolation = INTERP_MODE_FLAT;
3169 else if (qual->flags.q.noperspective)
3170 interpolation = INTERP_MODE_NOPERSPECTIVE;
3171 else if (qual->flags.q.smooth)
3172 interpolation = INTERP_MODE_SMOOTH;
3173 else
3174 interpolation = INTERP_MODE_NONE;
3175
3176 validate_interpolation_qualifier(state, loc,
3177 interpolation,
3178 qual, var_type, mode);
3179
3180 return interpolation;
3181 }
3182
3183
3184 static void
3185 apply_explicit_location(const struct ast_type_qualifier *qual,
3186 ir_variable *var,
3187 struct _mesa_glsl_parse_state *state,
3188 YYLTYPE *loc)
3189 {
3190 bool fail = false;
3191
3192 unsigned qual_location;
3193 if (!process_qualifier_constant(state, loc, "location", qual->location,
3194 &qual_location)) {
3195 return;
3196 }
3197
3198 /* Checks for GL_ARB_explicit_uniform_location. */
3199 if (qual->flags.q.uniform) {
3200 if (!state->check_explicit_uniform_location_allowed(loc, var))
3201 return;
3202
3203 const struct gl_context *const ctx = state->ctx;
3204 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3205
3206 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3207 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3208 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3209 ctx->Const.MaxUserAssignableUniformLocations);
3210 return;
3211 }
3212
3213 var->data.explicit_location = true;
3214 var->data.location = qual_location;
3215 return;
3216 }
3217
3218 /* Between GL_ARB_explicit_attrib_location an
3219 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3220 * stage can be assigned explicit locations. The checking here associates
3221 * the correct extension with the correct stage's input / output:
3222 *
3223 * input output
3224 * ----- ------
3225 * vertex explicit_loc sso
3226 * tess control sso sso
3227 * tess eval sso sso
3228 * geometry sso sso
3229 * fragment sso explicit_loc
3230 */
3231 switch (state->stage) {
3232 case MESA_SHADER_VERTEX:
3233 if (var->data.mode == ir_var_shader_in) {
3234 if (!state->check_explicit_attrib_location_allowed(loc, var))
3235 return;
3236
3237 break;
3238 }
3239
3240 if (var->data.mode == ir_var_shader_out) {
3241 if (!state->check_separate_shader_objects_allowed(loc, var))
3242 return;
3243
3244 break;
3245 }
3246
3247 fail = true;
3248 break;
3249
3250 case MESA_SHADER_TESS_CTRL:
3251 case MESA_SHADER_TESS_EVAL:
3252 case MESA_SHADER_GEOMETRY:
3253 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3254 if (!state->check_separate_shader_objects_allowed(loc, var))
3255 return;
3256
3257 break;
3258 }
3259
3260 fail = true;
3261 break;
3262
3263 case MESA_SHADER_FRAGMENT:
3264 if (var->data.mode == ir_var_shader_in) {
3265 if (!state->check_separate_shader_objects_allowed(loc, var))
3266 return;
3267
3268 break;
3269 }
3270
3271 if (var->data.mode == ir_var_shader_out) {
3272 if (!state->check_explicit_attrib_location_allowed(loc, var))
3273 return;
3274
3275 break;
3276 }
3277
3278 fail = true;
3279 break;
3280
3281 case MESA_SHADER_COMPUTE:
3282 _mesa_glsl_error(loc, state,
3283 "compute shader variables cannot be given "
3284 "explicit locations");
3285 return;
3286 default:
3287 fail = true;
3288 break;
3289 };
3290
3291 if (fail) {
3292 _mesa_glsl_error(loc, state,
3293 "%s cannot be given an explicit location in %s shader",
3294 mode_string(var),
3295 _mesa_shader_stage_to_string(state->stage));
3296 } else {
3297 var->data.explicit_location = true;
3298
3299 switch (state->stage) {
3300 case MESA_SHADER_VERTEX:
3301 var->data.location = (var->data.mode == ir_var_shader_in)
3302 ? (qual_location + VERT_ATTRIB_GENERIC0)
3303 : (qual_location + VARYING_SLOT_VAR0);
3304 break;
3305
3306 case MESA_SHADER_TESS_CTRL:
3307 case MESA_SHADER_TESS_EVAL:
3308 case MESA_SHADER_GEOMETRY:
3309 if (var->data.patch)
3310 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3311 else
3312 var->data.location = qual_location + VARYING_SLOT_VAR0;
3313 break;
3314
3315 case MESA_SHADER_FRAGMENT:
3316 var->data.location = (var->data.mode == ir_var_shader_out)
3317 ? (qual_location + FRAG_RESULT_DATA0)
3318 : (qual_location + VARYING_SLOT_VAR0);
3319 break;
3320 default:
3321 assert(!"Unexpected shader type");
3322 break;
3323 }
3324
3325 /* Check if index was set for the uniform instead of the function */
3326 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3327 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3328 "used with subroutine functions");
3329 return;
3330 }
3331
3332 unsigned qual_index;
3333 if (qual->flags.q.explicit_index &&
3334 process_qualifier_constant(state, loc, "index", qual->index,
3335 &qual_index)) {
3336 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3337 * Layout Qualifiers):
3338 *
3339 * "It is also a compile-time error if a fragment shader
3340 * sets a layout index to less than 0 or greater than 1."
3341 *
3342 * Older specifications don't mandate a behavior; we take
3343 * this as a clarification and always generate the error.
3344 */
3345 if (qual_index > 1) {
3346 _mesa_glsl_error(loc, state,
3347 "explicit index may only be 0 or 1");
3348 } else {
3349 var->data.explicit_index = true;
3350 var->data.index = qual_index;
3351 }
3352 }
3353 }
3354 }
3355
3356 static bool
3357 validate_storage_for_sampler_image_types(ir_variable *var,
3358 struct _mesa_glsl_parse_state *state,
3359 YYLTYPE *loc)
3360 {
3361 /* From section 4.1.7 of the GLSL 4.40 spec:
3362 *
3363 * "[Opaque types] can only be declared as function
3364 * parameters or uniform-qualified variables."
3365 *
3366 * From section 4.1.7 of the ARB_bindless_texture spec:
3367 *
3368 * "Samplers may be declared as shader inputs and outputs, as uniform
3369 * variables, as temporary variables, and as function parameters."
3370 *
3371 * From section 4.1.X of the ARB_bindless_texture spec:
3372 *
3373 * "Images may be declared as shader inputs and outputs, as uniform
3374 * variables, as temporary variables, and as function parameters."
3375 */
3376 if (state->has_bindless()) {
3377 if (var->data.mode != ir_var_auto &&
3378 var->data.mode != ir_var_uniform &&
3379 var->data.mode != ir_var_shader_in &&
3380 var->data.mode != ir_var_shader_out &&
3381 var->data.mode != ir_var_function_in &&
3382 var->data.mode != ir_var_function_out &&
3383 var->data.mode != ir_var_function_inout) {
3384 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3385 "only be declared as shader inputs and outputs, as "
3386 "uniform variables, as temporary variables and as "
3387 "function parameters");
3388 return false;
3389 }
3390 } else {
3391 if (var->data.mode != ir_var_uniform &&
3392 var->data.mode != ir_var_function_in) {
3393 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3394 "declared as function parameters or "
3395 "uniform-qualified global variables");
3396 return false;
3397 }
3398 }
3399 return true;
3400 }
3401
3402 static bool
3403 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3404 YYLTYPE *loc,
3405 const struct ast_type_qualifier *qual,
3406 const glsl_type *type)
3407 {
3408 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3409 *
3410 * "Memory qualifiers are only supported in the declarations of image
3411 * variables, buffer variables, and shader storage blocks; it is an error
3412 * to use such qualifiers in any other declarations.
3413 */
3414 if (!type->is_image() && !qual->flags.q.buffer) {
3415 if (qual->flags.q.read_only ||
3416 qual->flags.q.write_only ||
3417 qual->flags.q.coherent ||
3418 qual->flags.q._volatile ||
3419 qual->flags.q.restrict_flag) {
3420 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3421 "in the declarations of image variables, buffer "
3422 "variables, and shader storage blocks");
3423 return false;
3424 }
3425 }
3426 return true;
3427 }
3428
3429 static bool
3430 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3431 YYLTYPE *loc,
3432 const struct ast_type_qualifier *qual,
3433 const glsl_type *type)
3434 {
3435 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3436 *
3437 * "Format layout qualifiers can be used on image variable declarations
3438 * (those declared with a basic type having “image ” in its keyword)."
3439 */
3440 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3441 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3442 "applied to images");
3443 return false;
3444 }
3445 return true;
3446 }
3447
3448 static void
3449 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3450 ir_variable *var,
3451 struct _mesa_glsl_parse_state *state,
3452 YYLTYPE *loc)
3453 {
3454 const glsl_type *base_type = var->type->without_array();
3455
3456 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3457 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3458 return;
3459
3460 if (!base_type->is_image())
3461 return;
3462
3463 if (!validate_storage_for_sampler_image_types(var, state, loc))
3464 return;
3465
3466 var->data.memory_read_only |= qual->flags.q.read_only;
3467 var->data.memory_write_only |= qual->flags.q.write_only;
3468 var->data.memory_coherent |= qual->flags.q.coherent;
3469 var->data.memory_volatile |= qual->flags.q._volatile;
3470 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3471
3472 if (qual->flags.q.explicit_image_format) {
3473 if (var->data.mode == ir_var_function_in) {
3474 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3475 "image function parameters");
3476 }
3477
3478 if (qual->image_base_type != base_type->sampled_type) {
3479 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3480 "data type of the image");
3481 }
3482
3483 var->data.image_format = qual->image_format;
3484 } else if (state->has_image_load_formatted()) {
3485 if (var->data.mode == ir_var_uniform &&
3486 state->EXT_shader_image_load_formatted_warn) {
3487 _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3488 }
3489 } else {
3490 if (var->data.mode == ir_var_uniform) {
3491 if (state->es_shader ||
3492 !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3493 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3494 "format layout qualifier");
3495 } else if (!qual->flags.q.write_only) {
3496 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3497 "`writeonly' must have a format layout qualifier");
3498 }
3499 }
3500 var->data.image_format = GL_NONE;
3501 }
3502
3503 /* From page 70 of the GLSL ES 3.1 specification:
3504 *
3505 * "Except for image variables qualified with the format qualifiers r32f,
3506 * r32i, and r32ui, image variables must specify either memory qualifier
3507 * readonly or the memory qualifier writeonly."
3508 */
3509 if (state->es_shader &&
3510 var->data.image_format != GL_R32F &&
3511 var->data.image_format != GL_R32I &&
3512 var->data.image_format != GL_R32UI &&
3513 !var->data.memory_read_only &&
3514 !var->data.memory_write_only) {
3515 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3516 "r32i or r32ui must be qualified `readonly' or "
3517 "`writeonly'");
3518 }
3519 }
3520
3521 static inline const char*
3522 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3523 {
3524 if (origin_upper_left && pixel_center_integer)
3525 return "origin_upper_left, pixel_center_integer";
3526 else if (origin_upper_left)
3527 return "origin_upper_left";
3528 else if (pixel_center_integer)
3529 return "pixel_center_integer";
3530 else
3531 return " ";
3532 }
3533
3534 static inline bool
3535 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3536 const struct ast_type_qualifier *qual)
3537 {
3538 /* If gl_FragCoord was previously declared, and the qualifiers were
3539 * different in any way, return true.
3540 */
3541 if (state->fs_redeclares_gl_fragcoord) {
3542 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3543 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3544 }
3545
3546 return false;
3547 }
3548
3549 static inline void
3550 validate_array_dimensions(const glsl_type *t,
3551 struct _mesa_glsl_parse_state *state,
3552 YYLTYPE *loc) {
3553 if (t->is_array()) {
3554 t = t->fields.array;
3555 while (t->is_array()) {
3556 if (t->is_unsized_array()) {
3557 _mesa_glsl_error(loc, state,
3558 "only the outermost array dimension can "
3559 "be unsized",
3560 t->name);
3561 break;
3562 }
3563 t = t->fields.array;
3564 }
3565 }
3566 }
3567
3568 static void
3569 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3570 ir_variable *var,
3571 struct _mesa_glsl_parse_state *state,
3572 YYLTYPE *loc)
3573 {
3574 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3575 qual->flags.q.bindless_image ||
3576 qual->flags.q.bound_sampler ||
3577 qual->flags.q.bound_image;
3578
3579 /* The ARB_bindless_texture spec says:
3580 *
3581 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3582 * spec"
3583 *
3584 * "If these layout qualifiers are applied to other types of default block
3585 * uniforms, or variables with non-uniform storage, a compile-time error
3586 * will be generated."
3587 */
3588 if (has_local_qualifiers && !qual->flags.q.uniform) {
3589 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3590 "can only be applied to default block uniforms or "
3591 "variables with uniform storage");
3592 return;
3593 }
3594
3595 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3596 * but it makes sense to only allow bindless_sampler/bound_sampler for
3597 * sampler types, and respectively bindless_image/bound_image for image
3598 * types.
3599 */
3600 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3601 !var->type->contains_sampler()) {
3602 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3603 "be applied to sampler types");
3604 return;
3605 }
3606
3607 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3608 !var->type->contains_image()) {
3609 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3610 "applied to image types");
3611 return;
3612 }
3613
3614 /* The bindless_sampler/bindless_image (and respectively
3615 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3616 * local scope.
3617 */
3618 if (var->type->contains_sampler() || var->type->contains_image()) {
3619 var->data.bindless = qual->flags.q.bindless_sampler ||
3620 qual->flags.q.bindless_image ||
3621 state->bindless_sampler_specified ||
3622 state->bindless_image_specified;
3623
3624 var->data.bound = qual->flags.q.bound_sampler ||
3625 qual->flags.q.bound_image ||
3626 state->bound_sampler_specified ||
3627 state->bound_image_specified;
3628 }
3629 }
3630
3631 static void
3632 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3633 ir_variable *var,
3634 struct _mesa_glsl_parse_state *state,
3635 YYLTYPE *loc)
3636 {
3637 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3638
3639 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3640 *
3641 * "Within any shader, the first redeclarations of gl_FragCoord
3642 * must appear before any use of gl_FragCoord."
3643 *
3644 * Generate a compiler error if above condition is not met by the
3645 * fragment shader.
3646 */
3647 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3648 if (earlier != NULL &&
3649 earlier->data.used &&
3650 !state->fs_redeclares_gl_fragcoord) {
3651 _mesa_glsl_error(loc, state,
3652 "gl_FragCoord used before its first redeclaration "
3653 "in fragment shader");
3654 }
3655
3656 /* Make sure all gl_FragCoord redeclarations specify the same layout
3657 * qualifiers.
3658 */
3659 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3660 const char *const qual_string =
3661 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3662 qual->flags.q.pixel_center_integer);
3663
3664 const char *const state_string =
3665 get_layout_qualifier_string(state->fs_origin_upper_left,
3666 state->fs_pixel_center_integer);
3667
3668 _mesa_glsl_error(loc, state,
3669 "gl_FragCoord redeclared with different layout "
3670 "qualifiers (%s) and (%s) ",
3671 state_string,
3672 qual_string);
3673 }
3674 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3675 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3676 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3677 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3678 state->fs_redeclares_gl_fragcoord =
3679 state->fs_origin_upper_left ||
3680 state->fs_pixel_center_integer ||
3681 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3682 }
3683
3684 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3685 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3686 const char *const qual_string = (qual->flags.q.origin_upper_left)
3687 ? "origin_upper_left" : "pixel_center_integer";
3688
3689 _mesa_glsl_error(loc, state,
3690 "layout qualifier `%s' can only be applied to "
3691 "fragment shader input `gl_FragCoord'",
3692 qual_string);
3693 }
3694
3695 if (qual->flags.q.explicit_location) {
3696 apply_explicit_location(qual, var, state, loc);
3697
3698 if (qual->flags.q.explicit_component) {
3699 unsigned qual_component;
3700 if (process_qualifier_constant(state, loc, "component",
3701 qual->component, &qual_component)) {
3702 const glsl_type *type = var->type->without_array();
3703 unsigned components = type->component_slots();
3704
3705 if (type->is_matrix() || type->is_struct()) {
3706 _mesa_glsl_error(loc, state, "component layout qualifier "
3707 "cannot be applied to a matrix, a structure, "
3708 "a block, or an array containing any of "
3709 "these.");
3710 } else if (components > 4 && type->is_64bit()) {
3711 _mesa_glsl_error(loc, state, "component layout qualifier "
3712 "cannot be applied to dvec%u.",
3713 components / 2);
3714 } else if (qual_component != 0 &&
3715 (qual_component + components - 1) > 3) {
3716 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3717 (qual_component + components - 1));
3718 } else if (qual_component == 1 && type->is_64bit()) {
3719 /* We don't bother checking for 3 as it should be caught by the
3720 * overflow check above.
3721 */
3722 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3723 "component 1 or 3");
3724 } else {
3725 var->data.explicit_component = true;
3726 var->data.location_frac = qual_component;
3727 }
3728 }
3729 }
3730 } else if (qual->flags.q.explicit_index) {
3731 if (!qual->subroutine_list)
3732 _mesa_glsl_error(loc, state,
3733 "explicit index requires explicit location");
3734 } else if (qual->flags.q.explicit_component) {
3735 _mesa_glsl_error(loc, state,
3736 "explicit component requires explicit location");
3737 }
3738
3739 if (qual->flags.q.explicit_binding) {
3740 apply_explicit_binding(state, loc, var, var->type, qual);
3741 }
3742
3743 if (state->stage == MESA_SHADER_GEOMETRY &&
3744 qual->flags.q.out && qual->flags.q.stream) {
3745 unsigned qual_stream;
3746 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3747 &qual_stream) &&
3748 validate_stream_qualifier(loc, state, qual_stream)) {
3749 var->data.stream = qual_stream;
3750 }
3751 }
3752
3753 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3754 unsigned qual_xfb_buffer;
3755 if (process_qualifier_constant(state, loc, "xfb_buffer",
3756 qual->xfb_buffer, &qual_xfb_buffer) &&
3757 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3758 var->data.xfb_buffer = qual_xfb_buffer;
3759 if (qual->flags.q.explicit_xfb_buffer)
3760 var->data.explicit_xfb_buffer = true;
3761 }
3762 }
3763
3764 if (qual->flags.q.explicit_xfb_offset) {
3765 unsigned qual_xfb_offset;
3766 unsigned component_size = var->type->contains_double() ? 8 : 4;
3767
3768 if (process_qualifier_constant(state, loc, "xfb_offset",
3769 qual->offset, &qual_xfb_offset) &&
3770 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3771 var->type, component_size)) {
3772 var->data.offset = qual_xfb_offset;
3773 var->data.explicit_xfb_offset = true;
3774 }
3775 }
3776
3777 if (qual->flags.q.explicit_xfb_stride) {
3778 unsigned qual_xfb_stride;
3779 if (process_qualifier_constant(state, loc, "xfb_stride",
3780 qual->xfb_stride, &qual_xfb_stride)) {
3781 var->data.xfb_stride = qual_xfb_stride;
3782 var->data.explicit_xfb_stride = true;
3783 }
3784 }
3785
3786 if (var->type->contains_atomic()) {
3787 if (var->data.mode == ir_var_uniform) {
3788 if (var->data.explicit_binding) {
3789 unsigned *offset =
3790 &state->atomic_counter_offsets[var->data.binding];
3791
3792 if (*offset % ATOMIC_COUNTER_SIZE)
3793 _mesa_glsl_error(loc, state,
3794 "misaligned atomic counter offset");
3795
3796 var->data.offset = *offset;
3797 *offset += var->type->atomic_size();
3798
3799 } else {
3800 _mesa_glsl_error(loc, state,
3801 "atomic counters require explicit binding point");
3802 }
3803 } else if (var->data.mode != ir_var_function_in) {
3804 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3805 "function parameters or uniform-qualified "
3806 "global variables");
3807 }
3808 }
3809
3810 if (var->type->contains_sampler() &&
3811 !validate_storage_for_sampler_image_types(var, state, loc))
3812 return;
3813
3814 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3815 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3816 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3817 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3818 * These extensions and all following extensions that add the 'layout'
3819 * keyword have been modified to require the use of 'in' or 'out'.
3820 *
3821 * The following extension do not allow the deprecated keywords:
3822 *
3823 * GL_AMD_conservative_depth
3824 * GL_ARB_conservative_depth
3825 * GL_ARB_gpu_shader5
3826 * GL_ARB_separate_shader_objects
3827 * GL_ARB_tessellation_shader
3828 * GL_ARB_transform_feedback3
3829 * GL_ARB_uniform_buffer_object
3830 *
3831 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3832 * allow layout with the deprecated keywords.
3833 */
3834 const bool relaxed_layout_qualifier_checking =
3835 state->ARB_fragment_coord_conventions_enable;
3836
3837 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3838 || qual->flags.q.varying;
3839 if (qual->has_layout() && uses_deprecated_qualifier) {
3840 if (relaxed_layout_qualifier_checking) {
3841 _mesa_glsl_warning(loc, state,
3842 "`layout' qualifier may not be used with "
3843 "`attribute' or `varying'");
3844 } else {
3845 _mesa_glsl_error(loc, state,
3846 "`layout' qualifier may not be used with "
3847 "`attribute' or `varying'");
3848 }
3849 }
3850
3851 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3852 * AMD_conservative_depth.
3853 */
3854 if (qual->flags.q.depth_type
3855 && !state->is_version(420, 0)
3856 && !state->AMD_conservative_depth_enable
3857 && !state->ARB_conservative_depth_enable) {
3858 _mesa_glsl_error(loc, state,
3859 "extension GL_AMD_conservative_depth or "
3860 "GL_ARB_conservative_depth must be enabled "
3861 "to use depth layout qualifiers");
3862 } else if (qual->flags.q.depth_type
3863 && strcmp(var->name, "gl_FragDepth") != 0) {
3864 _mesa_glsl_error(loc, state,
3865 "depth layout qualifiers can be applied only to "
3866 "gl_FragDepth");
3867 }
3868
3869 switch (qual->depth_type) {
3870 case ast_depth_any:
3871 var->data.depth_layout = ir_depth_layout_any;
3872 break;
3873 case ast_depth_greater:
3874 var->data.depth_layout = ir_depth_layout_greater;
3875 break;
3876 case ast_depth_less:
3877 var->data.depth_layout = ir_depth_layout_less;
3878 break;
3879 case ast_depth_unchanged:
3880 var->data.depth_layout = ir_depth_layout_unchanged;
3881 break;
3882 default:
3883 var->data.depth_layout = ir_depth_layout_none;
3884 break;
3885 }
3886
3887 if (qual->flags.q.std140 ||
3888 qual->flags.q.std430 ||
3889 qual->flags.q.packed ||
3890 qual->flags.q.shared) {
3891 _mesa_glsl_error(loc, state,
3892 "uniform and shader storage block layout qualifiers "
3893 "std140, std430, packed, and shared can only be "
3894 "applied to uniform or shader storage blocks, not "
3895 "members");
3896 }
3897
3898 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3899 validate_matrix_layout_for_type(state, loc, var->type, var);
3900 }
3901
3902 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3903 * Inputs):
3904 *
3905 * "Fragment shaders also allow the following layout qualifier on in only
3906 * (not with variable declarations)
3907 * layout-qualifier-id
3908 * early_fragment_tests
3909 * [...]"
3910 */
3911 if (qual->flags.q.early_fragment_tests) {
3912 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3913 "valid in fragment shader input layout declaration.");
3914 }
3915
3916 if (qual->flags.q.inner_coverage) {
3917 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3918 "valid in fragment shader input layout declaration.");
3919 }
3920
3921 if (qual->flags.q.post_depth_coverage) {
3922 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3923 "valid in fragment shader input layout declaration.");
3924 }
3925
3926 if (state->has_bindless())
3927 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3928
3929 if (qual->flags.q.pixel_interlock_ordered ||
3930 qual->flags.q.pixel_interlock_unordered ||
3931 qual->flags.q.sample_interlock_ordered ||
3932 qual->flags.q.sample_interlock_unordered) {
3933 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3934 "pixel_interlock_ordered, pixel_interlock_unordered, "
3935 "sample_interlock_ordered and sample_interlock_unordered, "
3936 "only valid in fragment shader input layout declaration.");
3937 }
3938 }
3939
3940 static void
3941 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3942 ir_variable *var,
3943 struct _mesa_glsl_parse_state *state,
3944 YYLTYPE *loc,
3945 bool is_parameter)
3946 {
3947 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3948
3949 if (qual->flags.q.invariant) {
3950 if (var->data.used) {
3951 _mesa_glsl_error(loc, state,
3952 "variable `%s' may not be redeclared "
3953 "`invariant' after being used",
3954 var->name);
3955 } else {
3956 var->data.explicit_invariant = true;
3957 var->data.invariant = true;
3958 }
3959 }
3960
3961 if (qual->flags.q.precise) {
3962 if (var->data.used) {
3963 _mesa_glsl_error(loc, state,
3964 "variable `%s' may not be redeclared "
3965 "`precise' after being used",
3966 var->name);
3967 } else {
3968 var->data.precise = 1;
3969 }
3970 }
3971
3972 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3973 _mesa_glsl_error(loc, state,
3974 "`subroutine' may only be applied to uniforms, "
3975 "subroutine type declarations, or function definitions");
3976 }
3977
3978 if (qual->flags.q.constant || qual->flags.q.attribute
3979 || qual->flags.q.uniform
3980 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3981 var->data.read_only = 1;
3982
3983 if (qual->flags.q.centroid)
3984 var->data.centroid = 1;
3985
3986 if (qual->flags.q.sample)
3987 var->data.sample = 1;
3988
3989 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3990 if (state->es_shader) {
3991 var->data.precision =
3992 select_gles_precision(qual->precision, var->type, state, loc);
3993 }
3994
3995 if (qual->flags.q.patch)
3996 var->data.patch = 1;
3997
3998 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3999 var->type = glsl_type::error_type;
4000 _mesa_glsl_error(loc, state,
4001 "`attribute' variables may not be declared in the "
4002 "%s shader",
4003 _mesa_shader_stage_to_string(state->stage));
4004 }
4005
4006 /* Disallow layout qualifiers which may only appear on layout declarations. */
4007 if (qual->flags.q.prim_type) {
4008 _mesa_glsl_error(loc, state,
4009 "Primitive type may only be specified on GS input or output "
4010 "layout declaration, not on variables.");
4011 }
4012
4013 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4014 *
4015 * "However, the const qualifier cannot be used with out or inout."
4016 *
4017 * The same section of the GLSL 4.40 spec further clarifies this saying:
4018 *
4019 * "The const qualifier cannot be used with out or inout, or a
4020 * compile-time error results."
4021 */
4022 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4023 _mesa_glsl_error(loc, state,
4024 "`const' may not be applied to `out' or `inout' "
4025 "function parameters");
4026 }
4027
4028 /* If there is no qualifier that changes the mode of the variable, leave
4029 * the setting alone.
4030 */
4031 assert(var->data.mode != ir_var_temporary);
4032 if (qual->flags.q.in && qual->flags.q.out)
4033 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4034 else if (qual->flags.q.in)
4035 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4036 else if (qual->flags.q.attribute
4037 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4038 var->data.mode = ir_var_shader_in;
4039 else if (qual->flags.q.out)
4040 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4041 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4042 var->data.mode = ir_var_shader_out;
4043 else if (qual->flags.q.uniform)
4044 var->data.mode = ir_var_uniform;
4045 else if (qual->flags.q.buffer)
4046 var->data.mode = ir_var_shader_storage;
4047 else if (qual->flags.q.shared_storage)
4048 var->data.mode = ir_var_shader_shared;
4049
4050 if (!is_parameter && state->has_framebuffer_fetch() &&
4051 state->stage == MESA_SHADER_FRAGMENT) {
4052 if (state->is_version(130, 300))
4053 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4054 else
4055 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4056 }
4057
4058 if (var->data.fb_fetch_output) {
4059 var->data.assigned = true;
4060 var->data.memory_coherent = !qual->flags.q.non_coherent;
4061
4062 /* From the EXT_shader_framebuffer_fetch spec:
4063 *
4064 * "It is an error to declare an inout fragment output not qualified
4065 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4066 * extension hasn't been enabled."
4067 */
4068 if (var->data.memory_coherent &&
4069 !state->EXT_shader_framebuffer_fetch_enable)
4070 _mesa_glsl_error(loc, state,
4071 "invalid declaration of framebuffer fetch output not "
4072 "qualified with layout(noncoherent)");
4073
4074 } else {
4075 /* From the EXT_shader_framebuffer_fetch spec:
4076 *
4077 * "Fragment outputs declared inout may specify the following layout
4078 * qualifier: [...] noncoherent"
4079 */
4080 if (qual->flags.q.non_coherent)
4081 _mesa_glsl_error(loc, state,
4082 "invalid layout(noncoherent) qualifier not part of "
4083 "framebuffer fetch output declaration");
4084 }
4085
4086 if (!is_parameter && is_varying_var(var, state->stage)) {
4087 /* User-defined ins/outs are not permitted in compute shaders. */
4088 if (state->stage == MESA_SHADER_COMPUTE) {
4089 _mesa_glsl_error(loc, state,
4090 "user-defined input and output variables are not "
4091 "permitted in compute shaders");
4092 }
4093
4094 /* This variable is being used to link data between shader stages (in
4095 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4096 * that is allowed for such purposes.
4097 *
4098 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4099 *
4100 * "The varying qualifier can be used only with the data types
4101 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4102 * these."
4103 *
4104 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4105 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4106 *
4107 * "Fragment inputs can only be signed and unsigned integers and
4108 * integer vectors, float, floating-point vectors, matrices, or
4109 * arrays of these. Structures cannot be input.
4110 *
4111 * Similar text exists in the section on vertex shader outputs.
4112 *
4113 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4114 * 3.00 spec allows structs as well. Varying structs are also allowed
4115 * in GLSL 1.50.
4116 *
4117 * From section 4.3.4 of the ARB_bindless_texture spec:
4118 *
4119 * "(modify third paragraph of the section to allow sampler and image
4120 * types) ... Vertex shader inputs can only be float,
4121 * single-precision floating-point scalars, single-precision
4122 * floating-point vectors, matrices, signed and unsigned integers
4123 * and integer vectors, sampler and image types."
4124 *
4125 * From section 4.3.6 of the ARB_bindless_texture spec:
4126 *
4127 * "Output variables can only be floating-point scalars,
4128 * floating-point vectors, matrices, signed or unsigned integers or
4129 * integer vectors, sampler or image types, or arrays or structures
4130 * of any these."
4131 */
4132 switch (var->type->without_array()->base_type) {
4133 case GLSL_TYPE_FLOAT:
4134 /* Ok in all GLSL versions */
4135 break;
4136 case GLSL_TYPE_UINT:
4137 case GLSL_TYPE_INT:
4138 if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4139 break;
4140 _mesa_glsl_error(loc, state,
4141 "varying variables must be of base type float in %s",
4142 state->get_version_string());
4143 break;
4144 case GLSL_TYPE_STRUCT:
4145 if (state->is_version(150, 300))
4146 break;
4147 _mesa_glsl_error(loc, state,
4148 "varying variables may not be of type struct");
4149 break;
4150 case GLSL_TYPE_DOUBLE:
4151 case GLSL_TYPE_UINT64:
4152 case GLSL_TYPE_INT64:
4153 break;
4154 case GLSL_TYPE_SAMPLER:
4155 case GLSL_TYPE_IMAGE:
4156 if (state->has_bindless())
4157 break;
4158 /* fallthrough */
4159 default:
4160 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4161 break;
4162 }
4163 }
4164
4165 if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4166 var->data.explicit_invariant = true;
4167 var->data.invariant = true;
4168 }
4169
4170 var->data.interpolation =
4171 interpret_interpolation_qualifier(qual, var->type,
4172 (ir_variable_mode) var->data.mode,
4173 state, loc);
4174
4175 /* Does the declaration use the deprecated 'attribute' or 'varying'
4176 * keywords?
4177 */
4178 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4179 || qual->flags.q.varying;
4180
4181
4182 /* Validate auxiliary storage qualifiers */
4183
4184 /* From section 4.3.4 of the GLSL 1.30 spec:
4185 * "It is an error to use centroid in in a vertex shader."
4186 *
4187 * From section 4.3.4 of the GLSL ES 3.00 spec:
4188 * "It is an error to use centroid in or interpolation qualifiers in
4189 * a vertex shader input."
4190 */
4191
4192 /* Section 4.3.6 of the GLSL 1.30 specification states:
4193 * "It is an error to use centroid out in a fragment shader."
4194 *
4195 * The GL_ARB_shading_language_420pack extension specification states:
4196 * "It is an error to use auxiliary storage qualifiers or interpolation
4197 * qualifiers on an output in a fragment shader."
4198 */
4199 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4200 _mesa_glsl_error(loc, state,
4201 "sample qualifier may only be used on `in` or `out` "
4202 "variables between shader stages");
4203 }
4204 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4205 _mesa_glsl_error(loc, state,
4206 "centroid qualifier may only be used with `in', "
4207 "`out' or `varying' variables between shader stages");
4208 }
4209
4210 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4211 _mesa_glsl_error(loc, state,
4212 "the shared storage qualifiers can only be used with "
4213 "compute shaders");
4214 }
4215
4216 apply_image_qualifier_to_variable(qual, var, state, loc);
4217 }
4218
4219 /**
4220 * Get the variable that is being redeclared by this declaration or if it
4221 * does not exist, the current declared variable.
4222 *
4223 * Semantic checks to verify the validity of the redeclaration are also
4224 * performed. If semantic checks fail, compilation error will be emitted via
4225 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4226 *
4227 * \returns
4228 * A pointer to an existing variable in the current scope if the declaration
4229 * is a redeclaration, current variable otherwise. \c is_declared boolean
4230 * will return \c true if the declaration is a redeclaration, \c false
4231 * otherwise.
4232 */
4233 static ir_variable *
4234 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4235 struct _mesa_glsl_parse_state *state,
4236 bool allow_all_redeclarations,
4237 bool *is_redeclaration)
4238 {
4239 ir_variable *var = *var_ptr;
4240
4241 /* Check if this declaration is actually a re-declaration, either to
4242 * resize an array or add qualifiers to an existing variable.
4243 *
4244 * This is allowed for variables in the current scope, or when at
4245 * global scope (for built-ins in the implicit outer scope).
4246 */
4247 ir_variable *earlier = state->symbols->get_variable(var->name);
4248 if (earlier == NULL ||
4249 (state->current_function != NULL &&
4250 !state->symbols->name_declared_this_scope(var->name))) {
4251 *is_redeclaration = false;
4252 return var;
4253 }
4254
4255 *is_redeclaration = true;
4256
4257 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4258 /* Verify that the redeclaration of a built-in does not change the
4259 * storage qualifier. There are a couple special cases.
4260 *
4261 * 1. Some built-in variables that are defined as 'in' in the
4262 * specification are implemented as system values. Allow
4263 * ir_var_system_value -> ir_var_shader_in.
4264 *
4265 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4266 * specification requires that redeclarations omit any qualifier.
4267 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4268 */
4269 if (earlier->data.mode != var->data.mode &&
4270 !(earlier->data.mode == ir_var_system_value &&
4271 var->data.mode == ir_var_shader_in) &&
4272 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4273 var->data.mode == ir_var_auto)) {
4274 _mesa_glsl_error(&loc, state,
4275 "redeclaration cannot change qualification of `%s'",
4276 var->name);
4277 }
4278 }
4279
4280 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4281 *
4282 * "It is legal to declare an array without a size and then
4283 * later re-declare the same name as an array of the same
4284 * type and specify a size."
4285 */
4286 if (earlier->type->is_unsized_array() && var->type->is_array()
4287 && (var->type->fields.array == earlier->type->fields.array)) {
4288 const int size = var->type->array_size();
4289 check_builtin_array_max_size(var->name, size, loc, state);
4290 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4291 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4292 "previous access",
4293 earlier->data.max_array_access);
4294 }
4295
4296 earlier->type = var->type;
4297 delete var;
4298 var = NULL;
4299 *var_ptr = NULL;
4300 } else if (earlier->type != var->type) {
4301 _mesa_glsl_error(&loc, state,
4302 "redeclaration of `%s' has incorrect type",
4303 var->name);
4304 } else if ((state->ARB_fragment_coord_conventions_enable ||
4305 state->is_version(150, 0))
4306 && strcmp(var->name, "gl_FragCoord") == 0) {
4307 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4308 * qualifiers.
4309 *
4310 * We don't really need to do anything here, just allow the
4311 * redeclaration. Any error on the gl_FragCoord is handled on the ast
4312 * level at apply_layout_qualifier_to_variable using the
4313 * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4314 * linker.cpp.
4315 */
4316 /* According to section 4.3.7 of the GLSL 1.30 spec,
4317 * the following built-in varaibles can be redeclared with an
4318 * interpolation qualifier:
4319 * * gl_FrontColor
4320 * * gl_BackColor
4321 * * gl_FrontSecondaryColor
4322 * * gl_BackSecondaryColor
4323 * * gl_Color
4324 * * gl_SecondaryColor
4325 */
4326 } else if (state->is_version(130, 0)
4327 && (strcmp(var->name, "gl_FrontColor") == 0
4328 || strcmp(var->name, "gl_BackColor") == 0
4329 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4330 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4331 || strcmp(var->name, "gl_Color") == 0
4332 || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4333 earlier->data.interpolation = var->data.interpolation;
4334
4335 /* Layout qualifiers for gl_FragDepth. */
4336 } else if ((state->is_version(420, 0) ||
4337 state->AMD_conservative_depth_enable ||
4338 state->ARB_conservative_depth_enable)
4339 && strcmp(var->name, "gl_FragDepth") == 0) {
4340
4341 /** From the AMD_conservative_depth spec:
4342 * Within any shader, the first redeclarations of gl_FragDepth
4343 * must appear before any use of gl_FragDepth.
4344 */
4345 if (earlier->data.used) {
4346 _mesa_glsl_error(&loc, state,
4347 "the first redeclaration of gl_FragDepth "
4348 "must appear before any use of gl_FragDepth");
4349 }
4350
4351 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4352 if (earlier->data.depth_layout != ir_depth_layout_none
4353 && earlier->data.depth_layout != var->data.depth_layout) {
4354 _mesa_glsl_error(&loc, state,
4355 "gl_FragDepth: depth layout is declared here "
4356 "as '%s, but it was previously declared as "
4357 "'%s'",
4358 depth_layout_string(var->data.depth_layout),
4359 depth_layout_string(earlier->data.depth_layout));
4360 }
4361
4362 earlier->data.depth_layout = var->data.depth_layout;
4363
4364 } else if (state->has_framebuffer_fetch() &&
4365 strcmp(var->name, "gl_LastFragData") == 0 &&
4366 var->data.mode == ir_var_auto) {
4367 /* According to the EXT_shader_framebuffer_fetch spec:
4368 *
4369 * "By default, gl_LastFragData is declared with the mediump precision
4370 * qualifier. This can be changed by redeclaring the corresponding
4371 * variables with the desired precision qualifier."
4372 *
4373 * "Fragment shaders may specify the following layout qualifier only for
4374 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4375 */
4376 earlier->data.precision = var->data.precision;
4377 earlier->data.memory_coherent = var->data.memory_coherent;
4378
4379 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4380 state->allow_builtin_variable_redeclaration) ||
4381 allow_all_redeclarations) {
4382 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4383 * valid, but some applications do it.
4384 */
4385 } else {
4386 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4387 }
4388
4389 return earlier;
4390 }
4391
4392 /**
4393 * Generate the IR for an initializer in a variable declaration
4394 */
4395 static ir_rvalue *
4396 process_initializer(ir_variable *var, ast_declaration *decl,
4397 ast_fully_specified_type *type,
4398 exec_list *initializer_instructions,
4399 struct _mesa_glsl_parse_state *state)
4400 {
4401 void *mem_ctx = state;
4402 ir_rvalue *result = NULL;
4403
4404 YYLTYPE initializer_loc = decl->initializer->get_location();
4405
4406 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4407 *
4408 * "All uniform variables are read-only and are initialized either
4409 * directly by an application via API commands, or indirectly by
4410 * OpenGL."
4411 */
4412 if (var->data.mode == ir_var_uniform) {
4413 state->check_version(120, 0, &initializer_loc,
4414 "cannot initialize uniform %s",
4415 var->name);
4416 }
4417
4418 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4419 *
4420 * "Buffer variables cannot have initializers."
4421 */
4422 if (var->data.mode == ir_var_shader_storage) {
4423 _mesa_glsl_error(&initializer_loc, state,
4424 "cannot initialize buffer variable %s",
4425 var->name);
4426 }
4427
4428 /* From section 4.1.7 of the GLSL 4.40 spec:
4429 *
4430 * "Opaque variables [...] are initialized only through the
4431 * OpenGL API; they cannot be declared with an initializer in a
4432 * shader."
4433 *
4434 * From section 4.1.7 of the ARB_bindless_texture spec:
4435 *
4436 * "Samplers may be declared as shader inputs and outputs, as uniform
4437 * variables, as temporary variables, and as function parameters."
4438 *
4439 * From section 4.1.X of the ARB_bindless_texture spec:
4440 *
4441 * "Images may be declared as shader inputs and outputs, as uniform
4442 * variables, as temporary variables, and as function parameters."
4443 */
4444 if (var->type->contains_atomic() ||
4445 (!state->has_bindless() && var->type->contains_opaque())) {
4446 _mesa_glsl_error(&initializer_loc, state,
4447 "cannot initialize %s variable %s",
4448 var->name, state->has_bindless() ? "atomic" : "opaque");
4449 }
4450
4451 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4452 _mesa_glsl_error(&initializer_loc, state,
4453 "cannot initialize %s shader input / %s %s",
4454 _mesa_shader_stage_to_string(state->stage),
4455 (state->stage == MESA_SHADER_VERTEX)
4456 ? "attribute" : "varying",
4457 var->name);
4458 }
4459
4460 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4461 _mesa_glsl_error(&initializer_loc, state,
4462 "cannot initialize %s shader output %s",
4463 _mesa_shader_stage_to_string(state->stage),
4464 var->name);
4465 }
4466
4467 /* If the initializer is an ast_aggregate_initializer, recursively store
4468 * type information from the LHS into it, so that its hir() function can do
4469 * type checking.
4470 */
4471 if (decl->initializer->oper == ast_aggregate)
4472 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4473
4474 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4475 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4476
4477 /* Calculate the constant value if this is a const or uniform
4478 * declaration.
4479 *
4480 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4481 *
4482 * "Declarations of globals without a storage qualifier, or with
4483 * just the const qualifier, may include initializers, in which case
4484 * they will be initialized before the first line of main() is
4485 * executed. Such initializers must be a constant expression."
4486 *
4487 * The same section of the GLSL ES 3.00.4 spec has similar language.
4488 */
4489 if (type->qualifier.flags.q.constant
4490 || type->qualifier.flags.q.uniform
4491 || (state->es_shader && state->current_function == NULL)) {
4492 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4493 lhs, rhs, true);
4494 if (new_rhs != NULL) {
4495 rhs = new_rhs;
4496
4497 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4498 * says:
4499 *
4500 * "A constant expression is one of
4501 *
4502 * ...
4503 *
4504 * - an expression formed by an operator on operands that are
4505 * all constant expressions, including getting an element of
4506 * a constant array, or a field of a constant structure, or
4507 * components of a constant vector. However, the sequence
4508 * operator ( , ) and the assignment operators ( =, +=, ...)
4509 * are not included in the operators that can create a
4510 * constant expression."
4511 *
4512 * Section 12.43 (Sequence operator and constant expressions) says:
4513 *
4514 * "Should the following construct be allowed?
4515 *
4516 * float a[2,3];
4517 *
4518 * The expression within the brackets uses the sequence operator
4519 * (',') and returns the integer 3 so the construct is declaring
4520 * a single-dimensional array of size 3. In some languages, the
4521 * construct declares a two-dimensional array. It would be
4522 * preferable to make this construct illegal to avoid confusion.
4523 *
4524 * One possibility is to change the definition of the sequence
4525 * operator so that it does not return a constant-expression and
4526 * hence cannot be used to declare an array size.
4527 *
4528 * RESOLUTION: The result of a sequence operator is not a
4529 * constant-expression."
4530 *
4531 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4532 * contains language almost identical to the section 4.3.3 in the
4533 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4534 * versions.
4535 */
4536 ir_constant *constant_value =
4537 rhs->constant_expression_value(mem_ctx);
4538
4539 if (!constant_value ||
4540 (state->is_version(430, 300) &&
4541 decl->initializer->has_sequence_subexpression())) {
4542 const char *const variable_mode =
4543 (type->qualifier.flags.q.constant)
4544 ? "const"
4545 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4546
4547 /* If ARB_shading_language_420pack is enabled, initializers of
4548 * const-qualified local variables do not have to be constant
4549 * expressions. Const-qualified global variables must still be
4550 * initialized with constant expressions.
4551 */
4552 if (!state->has_420pack()
4553 || state->current_function == NULL) {
4554 _mesa_glsl_error(& initializer_loc, state,
4555 "initializer of %s variable `%s' must be a "
4556 "constant expression",
4557 variable_mode,
4558 decl->identifier);
4559 if (var->type->is_numeric()) {
4560 /* Reduce cascading errors. */
4561 var->constant_value = type->qualifier.flags.q.constant
4562 ? ir_constant::zero(state, var->type) : NULL;
4563 }
4564 }
4565 } else {
4566 rhs = constant_value;
4567 var->constant_value = type->qualifier.flags.q.constant
4568 ? constant_value : NULL;
4569 }
4570 } else {
4571 if (var->type->is_numeric()) {
4572 /* Reduce cascading errors. */
4573 rhs = var->constant_value = type->qualifier.flags.q.constant
4574 ? ir_constant::zero(state, var->type) : NULL;
4575 }
4576 }
4577 }
4578
4579 if (rhs && !rhs->type->is_error()) {
4580 bool temp = var->data.read_only;
4581 if (type->qualifier.flags.q.constant)
4582 var->data.read_only = false;
4583
4584 /* Never emit code to initialize a uniform.
4585 */
4586 const glsl_type *initializer_type;
4587 bool error_emitted = false;
4588 if (!type->qualifier.flags.q.uniform) {
4589 error_emitted =
4590 do_assignment(initializer_instructions, state,
4591 NULL, lhs, rhs,
4592 &result, true, true,
4593 type->get_location());
4594 initializer_type = result->type;
4595 } else
4596 initializer_type = rhs->type;
4597
4598 if (!error_emitted) {
4599 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4600 var->data.has_initializer = true;
4601
4602 /* If the declared variable is an unsized array, it must inherrit
4603 * its full type from the initializer. A declaration such as
4604 *
4605 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4606 *
4607 * becomes
4608 *
4609 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4610 *
4611 * The assignment generated in the if-statement (below) will also
4612 * automatically handle this case for non-uniforms.
4613 *
4614 * If the declared variable is not an array, the types must
4615 * already match exactly. As a result, the type assignment
4616 * here can be done unconditionally. For non-uniforms the call
4617 * to do_assignment can change the type of the initializer (via
4618 * the implicit conversion rules). For uniforms the initializer
4619 * must be a constant expression, and the type of that expression
4620 * was validated above.
4621 */
4622 var->type = initializer_type;
4623 }
4624
4625 var->data.read_only = temp;
4626 }
4627
4628 return result;
4629 }
4630
4631 static void
4632 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4633 YYLTYPE loc, ir_variable *var,
4634 unsigned num_vertices,
4635 unsigned *size,
4636 const char *var_category)
4637 {
4638 if (var->type->is_unsized_array()) {
4639 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4640 *
4641 * All geometry shader input unsized array declarations will be
4642 * sized by an earlier input layout qualifier, when present, as per
4643 * the following table.
4644 *
4645 * Followed by a table mapping each allowed input layout qualifier to
4646 * the corresponding input length.
4647 *
4648 * Similarly for tessellation control shader outputs.
4649 */
4650 if (num_vertices != 0)
4651 var->type = glsl_type::get_array_instance(var->type->fields.array,
4652 num_vertices);
4653 } else {
4654 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4655 * includes the following examples of compile-time errors:
4656 *
4657 * // code sequence within one shader...
4658 * in vec4 Color1[]; // size unknown
4659 * ...Color1.length()...// illegal, length() unknown
4660 * in vec4 Color2[2]; // size is 2
4661 * ...Color1.length()...// illegal, Color1 still has no size
4662 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4663 * layout(lines) in; // legal, input size is 2, matching
4664 * in vec4 Color4[3]; // illegal, contradicts layout
4665 * ...
4666 *
4667 * To detect the case illustrated by Color3, we verify that the size of
4668 * an explicitly-sized array matches the size of any previously declared
4669 * explicitly-sized array. To detect the case illustrated by Color4, we
4670 * verify that the size of an explicitly-sized array is consistent with
4671 * any previously declared input layout.
4672 */
4673 if (num_vertices != 0 && var->type->length != num_vertices) {
4674 _mesa_glsl_error(&loc, state,
4675 "%s size contradicts previously declared layout "
4676 "(size is %u, but layout requires a size of %u)",
4677 var_category, var->type->length, num_vertices);
4678 } else if (*size != 0 && var->type->length != *size) {
4679 _mesa_glsl_error(&loc, state,
4680 "%s sizes are inconsistent (size is %u, but a "
4681 "previous declaration has size %u)",
4682 var_category, var->type->length, *size);
4683 } else {
4684 *size = var->type->length;
4685 }
4686 }
4687 }
4688
4689 static void
4690 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4691 YYLTYPE loc, ir_variable *var)
4692 {
4693 unsigned num_vertices = 0;
4694
4695 if (state->tcs_output_vertices_specified) {
4696 if (!state->out_qualifier->vertices->
4697 process_qualifier_constant(state, "vertices",
4698 &num_vertices, false)) {
4699 return;
4700 }
4701
4702 if (num_vertices > state->Const.MaxPatchVertices) {
4703 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4704 "GL_MAX_PATCH_VERTICES", num_vertices);
4705 return;
4706 }
4707 }
4708
4709 if (!var->type->is_array() && !var->data.patch) {
4710 _mesa_glsl_error(&loc, state,
4711 "tessellation control shader outputs must be arrays");
4712
4713 /* To avoid cascading failures, short circuit the checks below. */
4714 return;
4715 }
4716
4717 if (var->data.patch)
4718 return;
4719
4720 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4721 &state->tcs_output_size,
4722 "tessellation control shader output");
4723 }
4724
4725 /**
4726 * Do additional processing necessary for tessellation control/evaluation shader
4727 * input declarations. This covers both interface block arrays and bare input
4728 * variables.
4729 */
4730 static void
4731 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4732 YYLTYPE loc, ir_variable *var)
4733 {
4734 if (!var->type->is_array() && !var->data.patch) {
4735 _mesa_glsl_error(&loc, state,
4736 "per-vertex tessellation shader inputs must be arrays");
4737 /* Avoid cascading failures. */
4738 return;
4739 }
4740
4741 if (var->data.patch)
4742 return;
4743
4744 /* The ARB_tessellation_shader spec says:
4745 *
4746 * "Declaring an array size is optional. If no size is specified, it
4747 * will be taken from the implementation-dependent maximum patch size
4748 * (gl_MaxPatchVertices). If a size is specified, it must match the
4749 * maximum patch size; otherwise, a compile or link error will occur."
4750 *
4751 * This text appears twice, once for TCS inputs, and again for TES inputs.
4752 */
4753 if (var->type->is_unsized_array()) {
4754 var->type = glsl_type::get_array_instance(var->type->fields.array,
4755 state->Const.MaxPatchVertices);
4756 } else if (var->type->length != state->Const.MaxPatchVertices) {
4757 _mesa_glsl_error(&loc, state,
4758 "per-vertex tessellation shader input arrays must be "
4759 "sized to gl_MaxPatchVertices (%d).",
4760 state->Const.MaxPatchVertices);
4761 }
4762 }
4763
4764
4765 /**
4766 * Do additional processing necessary for geometry shader input declarations
4767 * (this covers both interface blocks arrays and bare input variables).
4768 */
4769 static void
4770 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4771 YYLTYPE loc, ir_variable *var)
4772 {
4773 unsigned num_vertices = 0;
4774
4775 if (state->gs_input_prim_type_specified) {
4776 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4777 }
4778
4779 /* Geometry shader input variables must be arrays. Caller should have
4780 * reported an error for this.
4781 */
4782 if (!var->type->is_array()) {
4783 assert(state->error);
4784
4785 /* To avoid cascading failures, short circuit the checks below. */
4786 return;
4787 }
4788
4789 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4790 &state->gs_input_size,
4791 "geometry shader input");
4792 }
4793
4794 static void
4795 validate_identifier(const char *identifier, YYLTYPE loc,
4796 struct _mesa_glsl_parse_state *state)
4797 {
4798 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4799 *
4800 * "Identifiers starting with "gl_" are reserved for use by
4801 * OpenGL, and may not be declared in a shader as either a
4802 * variable or a function."
4803 */
4804 if (is_gl_identifier(identifier)) {
4805 _mesa_glsl_error(&loc, state,
4806 "identifier `%s' uses reserved `gl_' prefix",
4807 identifier);
4808 } else if (strstr(identifier, "__")) {
4809 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4810 * spec:
4811 *
4812 * "In addition, all identifiers containing two
4813 * consecutive underscores (__) are reserved as
4814 * possible future keywords."
4815 *
4816 * The intention is that names containing __ are reserved for internal
4817 * use by the implementation, and names prefixed with GL_ are reserved
4818 * for use by Khronos. Names simply containing __ are dangerous to use,
4819 * but should be allowed.
4820 *
4821 * A future version of the GLSL specification will clarify this.
4822 */
4823 _mesa_glsl_warning(&loc, state,
4824 "identifier `%s' uses reserved `__' string",
4825 identifier);
4826 }
4827 }
4828
4829 ir_rvalue *
4830 ast_declarator_list::hir(exec_list *instructions,
4831 struct _mesa_glsl_parse_state *state)
4832 {
4833 void *ctx = state;
4834 const struct glsl_type *decl_type;
4835 const char *type_name = NULL;
4836 ir_rvalue *result = NULL;
4837 YYLTYPE loc = this->get_location();
4838
4839 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4840 *
4841 * "To ensure that a particular output variable is invariant, it is
4842 * necessary to use the invariant qualifier. It can either be used to
4843 * qualify a previously declared variable as being invariant
4844 *
4845 * invariant gl_Position; // make existing gl_Position be invariant"
4846 *
4847 * In these cases the parser will set the 'invariant' flag in the declarator
4848 * list, and the type will be NULL.
4849 */
4850 if (this->invariant) {
4851 assert(this->type == NULL);
4852
4853 if (state->current_function != NULL) {
4854 _mesa_glsl_error(& loc, state,
4855 "all uses of `invariant' keyword must be at global "
4856 "scope");
4857 }
4858
4859 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4860 assert(decl->array_specifier == NULL);
4861 assert(decl->initializer == NULL);
4862
4863 ir_variable *const earlier =
4864 state->symbols->get_variable(decl->identifier);
4865 if (earlier == NULL) {
4866 _mesa_glsl_error(& loc, state,
4867 "undeclared variable `%s' cannot be marked "
4868 "invariant", decl->identifier);
4869 } else if (!is_allowed_invariant(earlier, state)) {
4870 _mesa_glsl_error(&loc, state,
4871 "`%s' cannot be marked invariant; interfaces between "
4872 "shader stages only.", decl->identifier);
4873 } else if (earlier->data.used) {
4874 _mesa_glsl_error(& loc, state,
4875 "variable `%s' may not be redeclared "
4876 "`invariant' after being used",
4877 earlier->name);
4878 } else {
4879 earlier->data.explicit_invariant = true;
4880 earlier->data.invariant = true;
4881 }
4882 }
4883
4884 /* Invariant redeclarations do not have r-values.
4885 */
4886 return NULL;
4887 }
4888
4889 if (this->precise) {
4890 assert(this->type == NULL);
4891
4892 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4893 assert(decl->array_specifier == NULL);
4894 assert(decl->initializer == NULL);
4895
4896 ir_variable *const earlier =
4897 state->symbols->get_variable(decl->identifier);
4898 if (earlier == NULL) {
4899 _mesa_glsl_error(& loc, state,
4900 "undeclared variable `%s' cannot be marked "
4901 "precise", decl->identifier);
4902 } else if (state->current_function != NULL &&
4903 !state->symbols->name_declared_this_scope(decl->identifier)) {
4904 /* Note: we have to check if we're in a function, since
4905 * builtins are treated as having come from another scope.
4906 */
4907 _mesa_glsl_error(& loc, state,
4908 "variable `%s' from an outer scope may not be "
4909 "redeclared `precise' in this scope",
4910 earlier->name);
4911 } else if (earlier->data.used) {
4912 _mesa_glsl_error(& loc, state,
4913 "variable `%s' may not be redeclared "
4914 "`precise' after being used",
4915 earlier->name);
4916 } else {
4917 earlier->data.precise = true;
4918 }
4919 }
4920
4921 /* Precise redeclarations do not have r-values either. */
4922 return NULL;
4923 }
4924
4925 assert(this->type != NULL);
4926 assert(!this->invariant);
4927 assert(!this->precise);
4928
4929 /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
4930 * indicate that it needs to be updated later (see glsl_parser.yy).
4931 * This is done here, based on the layout qualifier and the type of the image var
4932 */
4933 if (this->type->qualifier.flags.q.explicit_image_format &&
4934 this->type->specifier->type->is_image() &&
4935 this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
4936 /* "The ARB_shader_image_load_store says:
4937 * If both extensions are enabled in the shading language, the "size*" layout
4938 * qualifiers are treated as format qualifiers, and are mapped to equivalent
4939 * format qualifiers in the table below, according to the type of image
4940 * variable.
4941 * image* iimage* uimage*
4942 * -------- -------- --------
4943 * size1x8 n/a r8i r8ui
4944 * size1x16 r16f r16i r16ui
4945 * size1x32 r32f r32i r32ui
4946 * size2x32 rg32f rg32i rg32ui
4947 * size4x32 rgba32f rgba32i rgba32ui"
4948 */
4949 if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
4950 this->type->qualifier.image_format = GL_R8 +
4951 this->type->qualifier.image_format - GL_R8I;
4952 this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
4953 } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
4954 this->type->qualifier.image_format = GL_R8UI +
4955 this->type->qualifier.image_format - GL_R8I;
4956 this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
4957 } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
4958 this->type->qualifier.image_base_type = GLSL_TYPE_INT;
4959 } else {
4960 assert(false);
4961 }
4962 }
4963
4964 /* The type specifier may contain a structure definition. Process that
4965 * before any of the variable declarations.
4966 */
4967 (void) this->type->specifier->hir(instructions, state);
4968
4969 decl_type = this->type->glsl_type(& type_name, state);
4970
4971 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4972 * "Buffer variables may only be declared inside interface blocks
4973 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4974 * shader storage blocks. It is a compile-time error to declare buffer
4975 * variables at global scope (outside a block)."
4976 */
4977 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4978 _mesa_glsl_error(&loc, state,
4979 "buffer variables cannot be declared outside "
4980 "interface blocks");
4981 }
4982
4983 /* An offset-qualified atomic counter declaration sets the default
4984 * offset for the next declaration within the same atomic counter
4985 * buffer.
4986 */
4987 if (decl_type && decl_type->contains_atomic()) {
4988 if (type->qualifier.flags.q.explicit_binding &&
4989 type->qualifier.flags.q.explicit_offset) {
4990 unsigned qual_binding;
4991 unsigned qual_offset;
4992 if (process_qualifier_constant(state, &loc, "binding",
4993 type->qualifier.binding,
4994 &qual_binding)
4995 && process_qualifier_constant(state, &loc, "offset",
4996 type->qualifier.offset,
4997 &qual_offset)) {
4998 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
4999 state->atomic_counter_offsets[qual_binding] = qual_offset;
5000 }
5001 }
5002
5003 ast_type_qualifier allowed_atomic_qual_mask;
5004 allowed_atomic_qual_mask.flags.i = 0;
5005 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5006 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5007 allowed_atomic_qual_mask.flags.q.uniform = 1;
5008
5009 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5010 "invalid layout qualifier for",
5011 "atomic_uint");
5012 }
5013
5014 if (this->declarations.is_empty()) {
5015 /* If there is no structure involved in the program text, there are two
5016 * possible scenarios:
5017 *
5018 * - The program text contained something like 'vec4;'. This is an
5019 * empty declaration. It is valid but weird. Emit a warning.
5020 *
5021 * - The program text contained something like 'S;' and 'S' is not the
5022 * name of a known structure type. This is both invalid and weird.
5023 * Emit an error.
5024 *
5025 * - The program text contained something like 'mediump float;'
5026 * when the programmer probably meant 'precision mediump
5027 * float;' Emit a warning with a description of what they
5028 * probably meant to do.
5029 *
5030 * Note that if decl_type is NULL and there is a structure involved,
5031 * there must have been some sort of error with the structure. In this
5032 * case we assume that an error was already generated on this line of
5033 * code for the structure. There is no need to generate an additional,
5034 * confusing error.
5035 */
5036 assert(this->type->specifier->structure == NULL || decl_type != NULL
5037 || state->error);
5038
5039 if (decl_type == NULL) {
5040 _mesa_glsl_error(&loc, state,
5041 "invalid type `%s' in empty declaration",
5042 type_name);
5043 } else {
5044 if (decl_type->is_array()) {
5045 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5046 * spec:
5047 *
5048 * "... any declaration that leaves the size undefined is
5049 * disallowed as this would add complexity and there are no
5050 * use-cases."
5051 */
5052 if (state->es_shader && decl_type->is_unsized_array()) {
5053 _mesa_glsl_error(&loc, state, "array size must be explicitly "
5054 "or implicitly defined");
5055 }
5056
5057 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5058 *
5059 * "The combinations of types and qualifiers that cause
5060 * compile-time or link-time errors are the same whether or not
5061 * the declaration is empty."
5062 */
5063 validate_array_dimensions(decl_type, state, &loc);
5064 }
5065
5066 if (decl_type->is_atomic_uint()) {
5067 /* Empty atomic counter declarations are allowed and useful
5068 * to set the default offset qualifier.
5069 */
5070 return NULL;
5071 } else if (this->type->qualifier.precision != ast_precision_none) {
5072 if (this->type->specifier->structure != NULL) {
5073 _mesa_glsl_error(&loc, state,
5074 "precision qualifiers can't be applied "
5075 "to structures");
5076 } else {
5077 static const char *const precision_names[] = {
5078 "highp",
5079 "highp",
5080 "mediump",
5081 "lowp"
5082 };
5083
5084 _mesa_glsl_warning(&loc, state,
5085 "empty declaration with precision "
5086 "qualifier, to set the default precision, "
5087 "use `precision %s %s;'",
5088 precision_names[this->type->
5089 qualifier.precision],
5090 type_name);
5091 }
5092 } else if (this->type->specifier->structure == NULL) {
5093 _mesa_glsl_warning(&loc, state, "empty declaration");
5094 }
5095 }
5096 }
5097
5098 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5099 const struct glsl_type *var_type;
5100 ir_variable *var;
5101 const char *identifier = decl->identifier;
5102 /* FINISHME: Emit a warning if a variable declaration shadows a
5103 * FINISHME: declaration at a higher scope.
5104 */
5105
5106 if ((decl_type == NULL) || decl_type->is_void()) {
5107 if (type_name != NULL) {
5108 _mesa_glsl_error(& loc, state,
5109 "invalid type `%s' in declaration of `%s'",
5110 type_name, decl->identifier);
5111 } else {
5112 _mesa_glsl_error(& loc, state,
5113 "invalid type in declaration of `%s'",
5114 decl->identifier);
5115 }
5116 continue;
5117 }
5118
5119 if (this->type->qualifier.is_subroutine_decl()) {
5120 const glsl_type *t;
5121 const char *name;
5122
5123 t = state->symbols->get_type(this->type->specifier->type_name);
5124 if (!t)
5125 _mesa_glsl_error(& loc, state,
5126 "invalid type in declaration of `%s'",
5127 decl->identifier);
5128 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5129
5130 identifier = name;
5131
5132 }
5133 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5134 state);
5135
5136 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5137
5138 /* The 'varying in' and 'varying out' qualifiers can only be used with
5139 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5140 * yet.
5141 */
5142 if (this->type->qualifier.flags.q.varying) {
5143 if (this->type->qualifier.flags.q.in) {
5144 _mesa_glsl_error(& loc, state,
5145 "`varying in' qualifier in declaration of "
5146 "`%s' only valid for geometry shaders using "
5147 "ARB_geometry_shader4 or EXT_geometry_shader4",
5148 decl->identifier);
5149 } else if (this->type->qualifier.flags.q.out) {
5150 _mesa_glsl_error(& loc, state,
5151 "`varying out' qualifier in declaration of "
5152 "`%s' only valid for geometry shaders using "
5153 "ARB_geometry_shader4 or EXT_geometry_shader4",
5154 decl->identifier);
5155 }
5156 }
5157
5158 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5159 *
5160 * "Global variables can only use the qualifiers const,
5161 * attribute, uniform, or varying. Only one may be
5162 * specified.
5163 *
5164 * Local variables can only use the qualifier const."
5165 *
5166 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5167 * any extension that adds the 'layout' keyword.
5168 */
5169 if (!state->is_version(130, 300)
5170 && !state->has_explicit_attrib_location()
5171 && !state->has_separate_shader_objects()
5172 && !state->ARB_fragment_coord_conventions_enable) {
5173 /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5174 * outputs. (the varying flag is not set by the parser)
5175 */
5176 if (this->type->qualifier.flags.q.out &&
5177 (!state->EXT_gpu_shader4_enable ||
5178 state->stage != MESA_SHADER_FRAGMENT)) {
5179 _mesa_glsl_error(& loc, state,
5180 "`out' qualifier in declaration of `%s' "
5181 "only valid for function parameters in %s",
5182 decl->identifier, state->get_version_string());
5183 }
5184 if (this->type->qualifier.flags.q.in) {
5185 _mesa_glsl_error(& loc, state,
5186 "`in' qualifier in declaration of `%s' "
5187 "only valid for function parameters in %s",
5188 decl->identifier, state->get_version_string());
5189 }
5190 /* FINISHME: Test for other invalid qualifiers. */
5191 }
5192
5193 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5194 & loc, false);
5195 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5196 &loc);
5197
5198 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5199 && (var->type->is_numeric() || var->type->is_boolean())
5200 && state->zero_init) {
5201 const ir_constant_data data = { { 0 } };
5202 var->data.has_initializer = true;
5203 var->constant_initializer = new(var) ir_constant(var->type, &data);
5204 }
5205
5206 if (this->type->qualifier.flags.q.invariant) {
5207 if (!is_allowed_invariant(var, state)) {
5208 _mesa_glsl_error(&loc, state,
5209 "`%s' cannot be marked invariant; interfaces between "
5210 "shader stages only", var->name);
5211 }
5212 }
5213
5214 if (state->current_function != NULL) {
5215 const char *mode = NULL;
5216 const char *extra = "";
5217
5218 /* There is no need to check for 'inout' here because the parser will
5219 * only allow that in function parameter lists.
5220 */
5221 if (this->type->qualifier.flags.q.attribute) {
5222 mode = "attribute";
5223 } else if (this->type->qualifier.is_subroutine_decl()) {
5224 mode = "subroutine uniform";
5225 } else if (this->type->qualifier.flags.q.uniform) {
5226 mode = "uniform";
5227 } else if (this->type->qualifier.flags.q.varying) {
5228 mode = "varying";
5229 } else if (this->type->qualifier.flags.q.in) {
5230 mode = "in";
5231 extra = " or in function parameter list";
5232 } else if (this->type->qualifier.flags.q.out) {
5233 mode = "out";
5234 extra = " or in function parameter list";
5235 }
5236
5237 if (mode) {
5238 _mesa_glsl_error(& loc, state,
5239 "%s variable `%s' must be declared at "
5240 "global scope%s",
5241 mode, var->name, extra);
5242 }
5243 } else if (var->data.mode == ir_var_shader_in) {
5244 var->data.read_only = true;
5245
5246 if (state->stage == MESA_SHADER_VERTEX) {
5247 bool error_emitted = false;
5248
5249 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5250 *
5251 * "Vertex shader inputs can only be float, floating-point
5252 * vectors, matrices, signed and unsigned integers and integer
5253 * vectors. Vertex shader inputs can also form arrays of these
5254 * types, but not structures."
5255 *
5256 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5257 *
5258 * "Vertex shader inputs can only be float, floating-point
5259 * vectors, matrices, signed and unsigned integers and integer
5260 * vectors. They cannot be arrays or structures."
5261 *
5262 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5263 *
5264 * "The attribute qualifier can be used only with float,
5265 * floating-point vectors, and matrices. Attribute variables
5266 * cannot be declared as arrays or structures."
5267 *
5268 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5269 *
5270 * "Vertex shader inputs can only be float, floating-point
5271 * vectors, matrices, signed and unsigned integers and integer
5272 * vectors. Vertex shader inputs cannot be arrays or
5273 * structures."
5274 *
5275 * From section 4.3.4 of the ARB_bindless_texture spec:
5276 *
5277 * "(modify third paragraph of the section to allow sampler and
5278 * image types) ... Vertex shader inputs can only be float,
5279 * single-precision floating-point scalars, single-precision
5280 * floating-point vectors, matrices, signed and unsigned
5281 * integers and integer vectors, sampler and image types."
5282 */
5283 const glsl_type *check_type = var->type->without_array();
5284
5285 switch (check_type->base_type) {
5286 case GLSL_TYPE_FLOAT:
5287 break;
5288 case GLSL_TYPE_UINT64:
5289 case GLSL_TYPE_INT64:
5290 break;
5291 case GLSL_TYPE_UINT:
5292 case GLSL_TYPE_INT:
5293 if (state->is_version(120, 300) || state->EXT_gpu_shader4_enable)
5294 break;
5295 case GLSL_TYPE_DOUBLE:
5296 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5297 break;
5298 case GLSL_TYPE_SAMPLER:
5299 if (check_type->is_sampler() && state->has_bindless())
5300 break;
5301 case GLSL_TYPE_IMAGE:
5302 if (check_type->is_image() && state->has_bindless())
5303 break;
5304 /* FALLTHROUGH */
5305 default:
5306 _mesa_glsl_error(& loc, state,
5307 "vertex shader input / attribute cannot have "
5308 "type %s`%s'",
5309 var->type->is_array() ? "array of " : "",
5310 check_type->name);
5311 error_emitted = true;
5312 }
5313
5314 if (!error_emitted && var->type->is_array() &&
5315 !state->check_version(150, 0, &loc,
5316 "vertex shader input / attribute "
5317 "cannot have array type")) {
5318 error_emitted = true;
5319 }
5320 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5321 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5322 *
5323 * Geometry shader input variables get the per-vertex values
5324 * written out by vertex shader output variables of the same
5325 * names. Since a geometry shader operates on a set of
5326 * vertices, each input varying variable (or input block, see
5327 * interface blocks below) needs to be declared as an array.
5328 */
5329 if (!var->type->is_array()) {
5330 _mesa_glsl_error(&loc, state,
5331 "geometry shader inputs must be arrays");
5332 }
5333
5334 handle_geometry_shader_input_decl(state, loc, var);
5335 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5336 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5337 *
5338 * It is a compile-time error to declare a fragment shader
5339 * input with, or that contains, any of the following types:
5340 *
5341 * * A boolean type
5342 * * An opaque type
5343 * * An array of arrays
5344 * * An array of structures
5345 * * A structure containing an array
5346 * * A structure containing a structure
5347 */
5348 if (state->es_shader) {
5349 const glsl_type *check_type = var->type->without_array();
5350 if (check_type->is_boolean() ||
5351 check_type->contains_opaque()) {
5352 _mesa_glsl_error(&loc, state,
5353 "fragment shader input cannot have type %s",
5354 check_type->name);
5355 }
5356 if (var->type->is_array() &&
5357 var->type->fields.array->is_array()) {
5358 _mesa_glsl_error(&loc, state,
5359 "%s shader output "
5360 "cannot have an array of arrays",
5361 _mesa_shader_stage_to_string(state->stage));
5362 }
5363 if (var->type->is_array() &&
5364 var->type->fields.array->is_struct()) {
5365 _mesa_glsl_error(&loc, state,
5366 "fragment shader input "
5367 "cannot have an array of structs");
5368 }
5369 if (var->type->is_struct()) {
5370 for (unsigned i = 0; i < var->type->length; i++) {
5371 if (var->type->fields.structure[i].type->is_array() ||
5372 var->type->fields.structure[i].type->is_struct())
5373 _mesa_glsl_error(&loc, state,
5374 "fragment shader input cannot have "
5375 "a struct that contains an "
5376 "array or struct");
5377 }
5378 }
5379 }
5380 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5381 state->stage == MESA_SHADER_TESS_EVAL) {
5382 handle_tess_shader_input_decl(state, loc, var);
5383 }
5384 } else if (var->data.mode == ir_var_shader_out) {
5385 const glsl_type *check_type = var->type->without_array();
5386
5387 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5388 *
5389 * It is a compile-time error to declare a fragment shader output
5390 * that contains any of the following:
5391 *
5392 * * A Boolean type (bool, bvec2 ...)
5393 * * A double-precision scalar or vector (double, dvec2 ...)
5394 * * An opaque type
5395 * * Any matrix type
5396 * * A structure
5397 */
5398 if (state->stage == MESA_SHADER_FRAGMENT) {
5399 if (check_type->is_struct() || check_type->is_matrix())
5400 _mesa_glsl_error(&loc, state,
5401 "fragment shader output "
5402 "cannot have struct or matrix type");
5403 switch (check_type->base_type) {
5404 case GLSL_TYPE_UINT:
5405 case GLSL_TYPE_INT:
5406 case GLSL_TYPE_FLOAT:
5407 break;
5408 default:
5409 _mesa_glsl_error(&loc, state,
5410 "fragment shader output cannot have "
5411 "type %s", check_type->name);
5412 }
5413 }
5414
5415 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5416 *
5417 * It is a compile-time error to declare a vertex shader output
5418 * with, or that contains, any of the following types:
5419 *
5420 * * A boolean type
5421 * * An opaque type
5422 * * An array of arrays
5423 * * An array of structures
5424 * * A structure containing an array
5425 * * A structure containing a structure
5426 *
5427 * It is a compile-time error to declare a fragment shader output
5428 * with, or that contains, any of the following types:
5429 *
5430 * * A boolean type
5431 * * An opaque type
5432 * * A matrix
5433 * * A structure
5434 * * An array of array
5435 *
5436 * ES 3.20 updates this to apply to tessellation and geometry shaders
5437 * as well. Because there are per-vertex arrays in the new stages,
5438 * it strikes the "array of..." rules and replaces them with these:
5439 *
5440 * * For per-vertex-arrayed variables (applies to tessellation
5441 * control, tessellation evaluation and geometry shaders):
5442 *
5443 * * Per-vertex-arrayed arrays of arrays
5444 * * Per-vertex-arrayed arrays of structures
5445 *
5446 * * For non-per-vertex-arrayed variables:
5447 *
5448 * * An array of arrays
5449 * * An array of structures
5450 *
5451 * which basically says to unwrap the per-vertex aspect and apply
5452 * the old rules.
5453 */
5454 if (state->es_shader) {
5455 if (var->type->is_array() &&
5456 var->type->fields.array->is_array()) {
5457 _mesa_glsl_error(&loc, state,
5458 "%s shader output "
5459 "cannot have an array of arrays",
5460 _mesa_shader_stage_to_string(state->stage));
5461 }
5462 if (state->stage <= MESA_SHADER_GEOMETRY) {
5463 const glsl_type *type = var->type;
5464
5465 if (state->stage == MESA_SHADER_TESS_CTRL &&
5466 !var->data.patch && var->type->is_array()) {
5467 type = var->type->fields.array;
5468 }
5469
5470 if (type->is_array() && type->fields.array->is_struct()) {
5471 _mesa_glsl_error(&loc, state,
5472 "%s shader output cannot have "
5473 "an array of structs",
5474 _mesa_shader_stage_to_string(state->stage));
5475 }
5476 if (type->is_struct()) {
5477 for (unsigned i = 0; i < type->length; i++) {
5478 if (type->fields.structure[i].type->is_array() ||
5479 type->fields.structure[i].type->is_struct())
5480 _mesa_glsl_error(&loc, state,
5481 "%s shader output cannot have a "
5482 "struct that contains an "
5483 "array or struct",
5484 _mesa_shader_stage_to_string(state->stage));
5485 }
5486 }
5487 }
5488 }
5489
5490 if (state->stage == MESA_SHADER_TESS_CTRL) {
5491 handle_tess_ctrl_shader_output_decl(state, loc, var);
5492 }
5493 } else if (var->type->contains_subroutine()) {
5494 /* declare subroutine uniforms as hidden */
5495 var->data.how_declared = ir_var_hidden;
5496 }
5497
5498 /* From section 4.3.4 of the GLSL 4.00 spec:
5499 * "Input variables may not be declared using the patch in qualifier
5500 * in tessellation control or geometry shaders."
5501 *
5502 * From section 4.3.6 of the GLSL 4.00 spec:
5503 * "It is an error to use patch out in a vertex, tessellation
5504 * evaluation, or geometry shader."
5505 *
5506 * This doesn't explicitly forbid using them in a fragment shader, but
5507 * that's probably just an oversight.
5508 */
5509 if (state->stage != MESA_SHADER_TESS_EVAL
5510 && this->type->qualifier.flags.q.patch
5511 && this->type->qualifier.flags.q.in) {
5512
5513 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5514 "tessellation evaluation shader");
5515 }
5516
5517 if (state->stage != MESA_SHADER_TESS_CTRL
5518 && this->type->qualifier.flags.q.patch
5519 && this->type->qualifier.flags.q.out) {
5520
5521 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5522 "tessellation control shader");
5523 }
5524
5525 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5526 */
5527 if (this->type->qualifier.precision != ast_precision_none) {
5528 state->check_precision_qualifiers_allowed(&loc);
5529 }
5530
5531 if (this->type->qualifier.precision != ast_precision_none &&
5532 !precision_qualifier_allowed(var->type)) {
5533 _mesa_glsl_error(&loc, state,
5534 "precision qualifiers apply only to floating point"
5535 ", integer and opaque types");
5536 }
5537
5538 /* From section 4.1.7 of the GLSL 4.40 spec:
5539 *
5540 * "[Opaque types] can only be declared as function
5541 * parameters or uniform-qualified variables."
5542 *
5543 * From section 4.1.7 of the ARB_bindless_texture spec:
5544 *
5545 * "Samplers may be declared as shader inputs and outputs, as uniform
5546 * variables, as temporary variables, and as function parameters."
5547 *
5548 * From section 4.1.X of the ARB_bindless_texture spec:
5549 *
5550 * "Images may be declared as shader inputs and outputs, as uniform
5551 * variables, as temporary variables, and as function parameters."
5552 */
5553 if (!this->type->qualifier.flags.q.uniform &&
5554 (var_type->contains_atomic() ||
5555 (!state->has_bindless() && var_type->contains_opaque()))) {
5556 _mesa_glsl_error(&loc, state,
5557 "%s variables must be declared uniform",
5558 state->has_bindless() ? "atomic" : "opaque");
5559 }
5560
5561 /* Process the initializer and add its instructions to a temporary
5562 * list. This list will be added to the instruction stream (below) after
5563 * the declaration is added. This is done because in some cases (such as
5564 * redeclarations) the declaration may not actually be added to the
5565 * instruction stream.
5566 */
5567 exec_list initializer_instructions;
5568
5569 /* Examine var name here since var may get deleted in the next call */
5570 bool var_is_gl_id = is_gl_identifier(var->name);
5571
5572 bool is_redeclaration;
5573 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5574 false /* allow_all_redeclarations */,
5575 &is_redeclaration);
5576 if (is_redeclaration) {
5577 if (var_is_gl_id &&
5578 var->data.how_declared == ir_var_declared_in_block) {
5579 _mesa_glsl_error(&loc, state,
5580 "`%s' has already been redeclared using "
5581 "gl_PerVertex", var->name);
5582 }
5583 var->data.how_declared = ir_var_declared_normally;
5584 }
5585
5586 if (decl->initializer != NULL) {
5587 result = process_initializer(var,
5588 decl, this->type,
5589 &initializer_instructions, state);
5590 } else {
5591 validate_array_dimensions(var_type, state, &loc);
5592 }
5593
5594 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5595 *
5596 * "It is an error to write to a const variable outside of
5597 * its declaration, so they must be initialized when
5598 * declared."
5599 */
5600 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5601 _mesa_glsl_error(& loc, state,
5602 "const declaration of `%s' must be initialized",
5603 decl->identifier);
5604 }
5605
5606 if (state->es_shader) {
5607 const glsl_type *const t = var->type;
5608
5609 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5610 *
5611 * The GL_OES_tessellation_shader spec says about inputs:
5612 *
5613 * "Declaring an array size is optional. If no size is specified,
5614 * it will be taken from the implementation-dependent maximum
5615 * patch size (gl_MaxPatchVertices)."
5616 *
5617 * and about TCS outputs:
5618 *
5619 * "If no size is specified, it will be taken from output patch
5620 * size declared in the shader."
5621 *
5622 * The GL_OES_geometry_shader spec says:
5623 *
5624 * "All geometry shader input unsized array declarations will be
5625 * sized by an earlier input primitive layout qualifier, when
5626 * present, as per the following table."
5627 */
5628 const bool implicitly_sized =
5629 (var->data.mode == ir_var_shader_in &&
5630 state->stage >= MESA_SHADER_TESS_CTRL &&
5631 state->stage <= MESA_SHADER_GEOMETRY) ||
5632 (var->data.mode == ir_var_shader_out &&
5633 state->stage == MESA_SHADER_TESS_CTRL);
5634
5635 if (t->is_unsized_array() && !implicitly_sized)
5636 /* Section 10.17 of the GLSL ES 1.00 specification states that
5637 * unsized array declarations have been removed from the language.
5638 * Arrays that are sized using an initializer are still explicitly
5639 * sized. However, GLSL ES 1.00 does not allow array
5640 * initializers. That is only allowed in GLSL ES 3.00.
5641 *
5642 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5643 *
5644 * "An array type can also be formed without specifying a size
5645 * if the definition includes an initializer:
5646 *
5647 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5648 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5649 *
5650 * float a[5];
5651 * float b[] = a;"
5652 */
5653 _mesa_glsl_error(& loc, state,
5654 "unsized array declarations are not allowed in "
5655 "GLSL ES");
5656 }
5657
5658 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5659 *
5660 * "It is a compile-time error to declare an unsized array of
5661 * atomic_uint"
5662 */
5663 if (var->type->is_unsized_array() &&
5664 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5665 _mesa_glsl_error(& loc, state,
5666 "Unsized array of atomic_uint is not allowed");
5667 }
5668
5669 /* If the declaration is not a redeclaration, there are a few additional
5670 * semantic checks that must be applied. In addition, variable that was
5671 * created for the declaration should be added to the IR stream.
5672 */
5673 if (!is_redeclaration) {
5674 validate_identifier(decl->identifier, loc, state);
5675
5676 /* Add the variable to the symbol table. Note that the initializer's
5677 * IR was already processed earlier (though it hasn't been emitted
5678 * yet), without the variable in scope.
5679 *
5680 * This differs from most C-like languages, but it follows the GLSL
5681 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5682 * spec:
5683 *
5684 * "Within a declaration, the scope of a name starts immediately
5685 * after the initializer if present or immediately after the name
5686 * being declared if not."
5687 */
5688 if (!state->symbols->add_variable(var)) {
5689 YYLTYPE loc = this->get_location();
5690 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5691 "current scope", decl->identifier);
5692 continue;
5693 }
5694
5695 /* Push the variable declaration to the top. It means that all the
5696 * variable declarations will appear in a funny last-to-first order,
5697 * but otherwise we run into trouble if a function is prototyped, a
5698 * global var is decled, then the function is defined with usage of
5699 * the global var. See glslparsertest's CorrectModule.frag.
5700 */
5701 instructions->push_head(var);
5702 }
5703
5704 instructions->append_list(&initializer_instructions);
5705 }
5706
5707
5708 /* Generally, variable declarations do not have r-values. However,
5709 * one is used for the declaration in
5710 *
5711 * while (bool b = some_condition()) {
5712 * ...
5713 * }
5714 *
5715 * so we return the rvalue from the last seen declaration here.
5716 */
5717 return result;
5718 }
5719
5720
5721 ir_rvalue *
5722 ast_parameter_declarator::hir(exec_list *instructions,
5723 struct _mesa_glsl_parse_state *state)
5724 {
5725 void *ctx = state;
5726 const struct glsl_type *type;
5727 const char *name = NULL;
5728 YYLTYPE loc = this->get_location();
5729
5730 type = this->type->glsl_type(& name, state);
5731
5732 if (type == NULL) {
5733 if (name != NULL) {
5734 _mesa_glsl_error(& loc, state,
5735 "invalid type `%s' in declaration of `%s'",
5736 name, this->identifier);
5737 } else {
5738 _mesa_glsl_error(& loc, state,
5739 "invalid type in declaration of `%s'",
5740 this->identifier);
5741 }
5742
5743 type = glsl_type::error_type;
5744 }
5745
5746 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5747 *
5748 * "Functions that accept no input arguments need not use void in the
5749 * argument list because prototypes (or definitions) are required and
5750 * therefore there is no ambiguity when an empty argument list "( )" is
5751 * declared. The idiom "(void)" as a parameter list is provided for
5752 * convenience."
5753 *
5754 * Placing this check here prevents a void parameter being set up
5755 * for a function, which avoids tripping up checks for main taking
5756 * parameters and lookups of an unnamed symbol.
5757 */
5758 if (type->is_void()) {
5759 if (this->identifier != NULL)
5760 _mesa_glsl_error(& loc, state,
5761 "named parameter cannot have type `void'");
5762
5763 is_void = true;
5764 return NULL;
5765 }
5766
5767 if (formal_parameter && (this->identifier == NULL)) {
5768 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5769 return NULL;
5770 }
5771
5772 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5773 * call already handled the "vec4[..] foo" case.
5774 */
5775 type = process_array_type(&loc, type, this->array_specifier, state);
5776
5777 if (!type->is_error() && type->is_unsized_array()) {
5778 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5779 "a declared size");
5780 type = glsl_type::error_type;
5781 }
5782
5783 is_void = false;
5784 ir_variable *var = new(ctx)
5785 ir_variable(type, this->identifier, ir_var_function_in);
5786
5787 /* Apply any specified qualifiers to the parameter declaration. Note that
5788 * for function parameters the default mode is 'in'.
5789 */
5790 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5791 true);
5792
5793 /* From section 4.1.7 of the GLSL 4.40 spec:
5794 *
5795 * "Opaque variables cannot be treated as l-values; hence cannot
5796 * be used as out or inout function parameters, nor can they be
5797 * assigned into."
5798 *
5799 * From section 4.1.7 of the ARB_bindless_texture spec:
5800 *
5801 * "Samplers can be used as l-values, so can be assigned into and used
5802 * as "out" and "inout" function parameters."
5803 *
5804 * From section 4.1.X of the ARB_bindless_texture spec:
5805 *
5806 * "Images can be used as l-values, so can be assigned into and used as
5807 * "out" and "inout" function parameters."
5808 */
5809 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5810 && (type->contains_atomic() ||
5811 (!state->has_bindless() && type->contains_opaque()))) {
5812 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5813 "contain %s variables",
5814 state->has_bindless() ? "atomic" : "opaque");
5815 type = glsl_type::error_type;
5816 }
5817
5818 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5819 *
5820 * "When calling a function, expressions that do not evaluate to
5821 * l-values cannot be passed to parameters declared as out or inout."
5822 *
5823 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5824 *
5825 * "Other binary or unary expressions, non-dereferenced arrays,
5826 * function names, swizzles with repeated fields, and constants
5827 * cannot be l-values."
5828 *
5829 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5830 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5831 */
5832 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5833 && type->is_array()
5834 && !state->check_version(120, 100, &loc,
5835 "arrays cannot be out or inout parameters")) {
5836 type = glsl_type::error_type;
5837 }
5838
5839 instructions->push_tail(var);
5840
5841 /* Parameter declarations do not have r-values.
5842 */
5843 return NULL;
5844 }
5845
5846
5847 void
5848 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5849 bool formal,
5850 exec_list *ir_parameters,
5851 _mesa_glsl_parse_state *state)
5852 {
5853 ast_parameter_declarator *void_param = NULL;
5854 unsigned count = 0;
5855
5856 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5857 param->formal_parameter = formal;
5858 param->hir(ir_parameters, state);
5859
5860 if (param->is_void)
5861 void_param = param;
5862
5863 count++;
5864 }
5865
5866 if ((void_param != NULL) && (count > 1)) {
5867 YYLTYPE loc = void_param->get_location();
5868
5869 _mesa_glsl_error(& loc, state,
5870 "`void' parameter must be only parameter");
5871 }
5872 }
5873
5874
5875 void
5876 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5877 {
5878 /* IR invariants disallow function declarations or definitions
5879 * nested within other function definitions. But there is no
5880 * requirement about the relative order of function declarations
5881 * and definitions with respect to one another. So simply insert
5882 * the new ir_function block at the end of the toplevel instruction
5883 * list.
5884 */
5885 state->toplevel_ir->push_tail(f);
5886 }
5887
5888
5889 ir_rvalue *
5890 ast_function::hir(exec_list *instructions,
5891 struct _mesa_glsl_parse_state *state)
5892 {
5893 void *ctx = state;
5894 ir_function *f = NULL;
5895 ir_function_signature *sig = NULL;
5896 exec_list hir_parameters;
5897 YYLTYPE loc = this->get_location();
5898
5899 const char *const name = identifier;
5900
5901 /* New functions are always added to the top-level IR instruction stream,
5902 * so this instruction list pointer is ignored. See also emit_function
5903 * (called below).
5904 */
5905 (void) instructions;
5906
5907 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5908 *
5909 * "Function declarations (prototypes) cannot occur inside of functions;
5910 * they must be at global scope, or for the built-in functions, outside
5911 * the global scope."
5912 *
5913 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5914 *
5915 * "User defined functions may only be defined within the global scope."
5916 *
5917 * Note that this language does not appear in GLSL 1.10.
5918 */
5919 if ((state->current_function != NULL) &&
5920 state->is_version(120, 100)) {
5921 YYLTYPE loc = this->get_location();
5922 _mesa_glsl_error(&loc, state,
5923 "declaration of function `%s' not allowed within "
5924 "function body", name);
5925 }
5926
5927 validate_identifier(name, this->get_location(), state);
5928
5929 /* Convert the list of function parameters to HIR now so that they can be
5930 * used below to compare this function's signature with previously seen
5931 * signatures for functions with the same name.
5932 */
5933 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5934 is_definition,
5935 & hir_parameters, state);
5936
5937 const char *return_type_name;
5938 const glsl_type *return_type =
5939 this->return_type->glsl_type(& return_type_name, state);
5940
5941 if (!return_type) {
5942 YYLTYPE loc = this->get_location();
5943 _mesa_glsl_error(&loc, state,
5944 "function `%s' has undeclared return type `%s'",
5945 name, return_type_name);
5946 return_type = glsl_type::error_type;
5947 }
5948
5949 /* ARB_shader_subroutine states:
5950 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5951 * subroutine(...) to a function declaration."
5952 */
5953 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5954 YYLTYPE loc = this->get_location();
5955 _mesa_glsl_error(&loc, state,
5956 "function declaration `%s' cannot have subroutine prepended",
5957 name);
5958 }
5959
5960 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5961 * "No qualifier is allowed on the return type of a function."
5962 */
5963 if (this->return_type->has_qualifiers(state)) {
5964 YYLTYPE loc = this->get_location();
5965 _mesa_glsl_error(& loc, state,
5966 "function `%s' return type has qualifiers", name);
5967 }
5968
5969 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5970 *
5971 * "Arrays are allowed as arguments and as the return type. In both
5972 * cases, the array must be explicitly sized."
5973 */
5974 if (return_type->is_unsized_array()) {
5975 YYLTYPE loc = this->get_location();
5976 _mesa_glsl_error(& loc, state,
5977 "function `%s' return type array must be explicitly "
5978 "sized", name);
5979 }
5980
5981 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5982 *
5983 * "Arrays are allowed as arguments, but not as the return type. [...]
5984 * The return type can also be a structure if the structure does not
5985 * contain an array."
5986 */
5987 if (state->language_version == 100 && return_type->contains_array()) {
5988 YYLTYPE loc = this->get_location();
5989 _mesa_glsl_error(& loc, state,
5990 "function `%s' return type contains an array", name);
5991 }
5992
5993 /* From section 4.1.7 of the GLSL 4.40 spec:
5994 *
5995 * "[Opaque types] can only be declared as function parameters
5996 * or uniform-qualified variables."
5997 *
5998 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5999 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6000 * (Images)", this should be allowed.
6001 */
6002 if (return_type->contains_atomic() ||
6003 (!state->has_bindless() && return_type->contains_opaque())) {
6004 YYLTYPE loc = this->get_location();
6005 _mesa_glsl_error(&loc, state,
6006 "function `%s' return type can't contain an %s type",
6007 name, state->has_bindless() ? "atomic" : "opaque");
6008 }
6009
6010 /**/
6011 if (return_type->is_subroutine()) {
6012 YYLTYPE loc = this->get_location();
6013 _mesa_glsl_error(&loc, state,
6014 "function `%s' return type can't be a subroutine type",
6015 name);
6016 }
6017
6018 /* Get the precision for the return type */
6019 unsigned return_precision;
6020
6021 if (state->es_shader) {
6022 YYLTYPE loc = this->get_location();
6023 return_precision =
6024 select_gles_precision(this->return_type->qualifier.precision,
6025 return_type,
6026 state,
6027 &loc);
6028 } else {
6029 return_precision = GLSL_PRECISION_NONE;
6030 }
6031
6032 /* Create an ir_function if one doesn't already exist. */
6033 f = state->symbols->get_function(name);
6034 if (f == NULL) {
6035 f = new(ctx) ir_function(name);
6036 if (!this->return_type->qualifier.is_subroutine_decl()) {
6037 if (!state->symbols->add_function(f)) {
6038 /* This function name shadows a non-function use of the same name. */
6039 YYLTYPE loc = this->get_location();
6040 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6041 "non-function", name);
6042 return NULL;
6043 }
6044 }
6045 emit_function(state, f);
6046 }
6047
6048 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6049 *
6050 * "A shader cannot redefine or overload built-in functions."
6051 *
6052 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6053 *
6054 * "User code can overload the built-in functions but cannot redefine
6055 * them."
6056 */
6057 if (state->es_shader) {
6058 /* Local shader has no exact candidates; check the built-ins. */
6059 if (state->language_version >= 300 &&
6060 _mesa_glsl_has_builtin_function(state, name)) {
6061 YYLTYPE loc = this->get_location();
6062 _mesa_glsl_error(& loc, state,
6063 "A shader cannot redefine or overload built-in "
6064 "function `%s' in GLSL ES 3.00", name);
6065 return NULL;
6066 }
6067
6068 if (state->language_version == 100) {
6069 ir_function_signature *sig =
6070 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6071 if (sig && sig->is_builtin()) {
6072 _mesa_glsl_error(& loc, state,
6073 "A shader cannot redefine built-in "
6074 "function `%s' in GLSL ES 1.00", name);
6075 }
6076 }
6077 }
6078
6079 /* Verify that this function's signature either doesn't match a previously
6080 * seen signature for a function with the same name, or, if a match is found,
6081 * that the previously seen signature does not have an associated definition.
6082 */
6083 if (state->es_shader || f->has_user_signature()) {
6084 sig = f->exact_matching_signature(state, &hir_parameters);
6085 if (sig != NULL) {
6086 const char *badvar = sig->qualifiers_match(&hir_parameters);
6087 if (badvar != NULL) {
6088 YYLTYPE loc = this->get_location();
6089
6090 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6091 "qualifiers don't match prototype", name, badvar);
6092 }
6093
6094 if (sig->return_type != return_type) {
6095 YYLTYPE loc = this->get_location();
6096
6097 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6098 "match prototype", name);
6099 }
6100
6101 if (sig->return_precision != return_precision) {
6102 YYLTYPE loc = this->get_location();
6103
6104 _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6105 "doesn't match prototype", name);
6106 }
6107
6108 if (sig->is_defined) {
6109 if (is_definition) {
6110 YYLTYPE loc = this->get_location();
6111 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6112 } else {
6113 /* We just encountered a prototype that exactly matches a
6114 * function that's already been defined. This is redundant,
6115 * and we should ignore it.
6116 */
6117 return NULL;
6118 }
6119 } else if (state->language_version == 100 && !is_definition) {
6120 /* From the GLSL 1.00 spec, section 4.2.7:
6121 *
6122 * "A particular variable, structure or function declaration
6123 * may occur at most once within a scope with the exception
6124 * that a single function prototype plus the corresponding
6125 * function definition are allowed."
6126 */
6127 YYLTYPE loc = this->get_location();
6128 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6129 }
6130 }
6131 }
6132
6133 /* Verify the return type of main() */
6134 if (strcmp(name, "main") == 0) {
6135 if (! return_type->is_void()) {
6136 YYLTYPE loc = this->get_location();
6137
6138 _mesa_glsl_error(& loc, state, "main() must return void");
6139 }
6140
6141 if (!hir_parameters.is_empty()) {
6142 YYLTYPE loc = this->get_location();
6143
6144 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6145 }
6146 }
6147
6148 /* Finish storing the information about this new function in its signature.
6149 */
6150 if (sig == NULL) {
6151 sig = new(ctx) ir_function_signature(return_type);
6152 sig->return_precision = return_precision;
6153 f->add_signature(sig);
6154 }
6155
6156 sig->replace_parameters(&hir_parameters);
6157 signature = sig;
6158
6159 if (this->return_type->qualifier.subroutine_list) {
6160 int idx;
6161
6162 if (this->return_type->qualifier.flags.q.explicit_index) {
6163 unsigned qual_index;
6164 if (process_qualifier_constant(state, &loc, "index",
6165 this->return_type->qualifier.index,
6166 &qual_index)) {
6167 if (!state->has_explicit_uniform_location()) {
6168 _mesa_glsl_error(&loc, state, "subroutine index requires "
6169 "GL_ARB_explicit_uniform_location or "
6170 "GLSL 4.30");
6171 } else if (qual_index >= MAX_SUBROUTINES) {
6172 _mesa_glsl_error(&loc, state,
6173 "invalid subroutine index (%d) index must "
6174 "be a number between 0 and "
6175 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6176 MAX_SUBROUTINES - 1);
6177 } else {
6178 f->subroutine_index = qual_index;
6179 }
6180 }
6181 }
6182
6183 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6184 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6185 f->num_subroutine_types);
6186 idx = 0;
6187 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6188 const struct glsl_type *type;
6189 /* the subroutine type must be already declared */
6190 type = state->symbols->get_type(decl->identifier);
6191 if (!type) {
6192 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6193 }
6194
6195 for (int i = 0; i < state->num_subroutine_types; i++) {
6196 ir_function *fn = state->subroutine_types[i];
6197 ir_function_signature *tsig = NULL;
6198
6199 if (strcmp(fn->name, decl->identifier))
6200 continue;
6201
6202 tsig = fn->matching_signature(state, &sig->parameters,
6203 false);
6204 if (!tsig) {
6205 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6206 } else {
6207 if (tsig->return_type != sig->return_type) {
6208 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6209 }
6210 }
6211 }
6212 f->subroutine_types[idx++] = type;
6213 }
6214 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6215 ir_function *,
6216 state->num_subroutines + 1);
6217 state->subroutines[state->num_subroutines] = f;
6218 state->num_subroutines++;
6219
6220 }
6221
6222 if (this->return_type->qualifier.is_subroutine_decl()) {
6223 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6224 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6225 return NULL;
6226 }
6227 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6228 ir_function *,
6229 state->num_subroutine_types + 1);
6230 state->subroutine_types[state->num_subroutine_types] = f;
6231 state->num_subroutine_types++;
6232
6233 f->is_subroutine = true;
6234 }
6235
6236 /* Function declarations (prototypes) do not have r-values.
6237 */
6238 return NULL;
6239 }
6240
6241
6242 ir_rvalue *
6243 ast_function_definition::hir(exec_list *instructions,
6244 struct _mesa_glsl_parse_state *state)
6245 {
6246 prototype->is_definition = true;
6247 prototype->hir(instructions, state);
6248
6249 ir_function_signature *signature = prototype->signature;
6250 if (signature == NULL)
6251 return NULL;
6252
6253 assert(state->current_function == NULL);
6254 state->current_function = signature;
6255 state->found_return = false;
6256 state->found_begin_interlock = false;
6257 state->found_end_interlock = false;
6258
6259 /* Duplicate parameters declared in the prototype as concrete variables.
6260 * Add these to the symbol table.
6261 */
6262 state->symbols->push_scope();
6263 foreach_in_list(ir_variable, var, &signature->parameters) {
6264 assert(var->as_variable() != NULL);
6265
6266 /* The only way a parameter would "exist" is if two parameters have
6267 * the same name.
6268 */
6269 if (state->symbols->name_declared_this_scope(var->name)) {
6270 YYLTYPE loc = this->get_location();
6271
6272 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6273 } else {
6274 state->symbols->add_variable(var);
6275 }
6276 }
6277
6278 /* Convert the body of the function to HIR. */
6279 this->body->hir(&signature->body, state);
6280 signature->is_defined = true;
6281
6282 state->symbols->pop_scope();
6283
6284 assert(state->current_function == signature);
6285 state->current_function = NULL;
6286
6287 if (!signature->return_type->is_void() && !state->found_return) {
6288 YYLTYPE loc = this->get_location();
6289 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6290 "%s, but no return statement",
6291 signature->function_name(),
6292 signature->return_type->name);
6293 }
6294
6295 /* Function definitions do not have r-values.
6296 */
6297 return NULL;
6298 }
6299
6300
6301 ir_rvalue *
6302 ast_jump_statement::hir(exec_list *instructions,
6303 struct _mesa_glsl_parse_state *state)
6304 {
6305 void *ctx = state;
6306
6307 switch (mode) {
6308 case ast_return: {
6309 ir_return *inst;
6310 assert(state->current_function);
6311
6312 if (opt_return_value) {
6313 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6314
6315 /* The value of the return type can be NULL if the shader says
6316 * 'return foo();' and foo() is a function that returns void.
6317 *
6318 * NOTE: The GLSL spec doesn't say that this is an error. The type
6319 * of the return value is void. If the return type of the function is
6320 * also void, then this should compile without error. Seriously.
6321 */
6322 const glsl_type *const ret_type =
6323 (ret == NULL) ? glsl_type::void_type : ret->type;
6324
6325 /* Implicit conversions are not allowed for return values prior to
6326 * ARB_shading_language_420pack.
6327 */
6328 if (state->current_function->return_type != ret_type) {
6329 YYLTYPE loc = this->get_location();
6330
6331 if (state->has_420pack()) {
6332 if (!apply_implicit_conversion(state->current_function->return_type,
6333 ret, state)
6334 || (ret->type != state->current_function->return_type)) {
6335 _mesa_glsl_error(& loc, state,
6336 "could not implicitly convert return value "
6337 "to %s, in function `%s'",
6338 state->current_function->return_type->name,
6339 state->current_function->function_name());
6340 }
6341 } else {
6342 _mesa_glsl_error(& loc, state,
6343 "`return' with wrong type %s, in function `%s' "
6344 "returning %s",
6345 ret_type->name,
6346 state->current_function->function_name(),
6347 state->current_function->return_type->name);
6348 }
6349 } else if (state->current_function->return_type->base_type ==
6350 GLSL_TYPE_VOID) {
6351 YYLTYPE loc = this->get_location();
6352
6353 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6354 * specs add a clarification:
6355 *
6356 * "A void function can only use return without a return argument, even if
6357 * the return argument has void type. Return statements only accept values:
6358 *
6359 * void func1() { }
6360 * void func2() { return func1(); } // illegal return statement"
6361 */
6362 _mesa_glsl_error(& loc, state,
6363 "void functions can only use `return' without a "
6364 "return argument");
6365 }
6366
6367 inst = new(ctx) ir_return(ret);
6368 } else {
6369 if (state->current_function->return_type->base_type !=
6370 GLSL_TYPE_VOID) {
6371 YYLTYPE loc = this->get_location();
6372
6373 _mesa_glsl_error(& loc, state,
6374 "`return' with no value, in function %s returning "
6375 "non-void",
6376 state->current_function->function_name());
6377 }
6378 inst = new(ctx) ir_return;
6379 }
6380
6381 state->found_return = true;
6382 instructions->push_tail(inst);
6383 break;
6384 }
6385
6386 case ast_discard:
6387 if (state->stage != MESA_SHADER_FRAGMENT) {
6388 YYLTYPE loc = this->get_location();
6389
6390 _mesa_glsl_error(& loc, state,
6391 "`discard' may only appear in a fragment shader");
6392 }
6393 instructions->push_tail(new(ctx) ir_discard);
6394 break;
6395
6396 case ast_break:
6397 case ast_continue:
6398 if (mode == ast_continue &&
6399 state->loop_nesting_ast == NULL) {
6400 YYLTYPE loc = this->get_location();
6401
6402 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6403 } else if (mode == ast_break &&
6404 state->loop_nesting_ast == NULL &&
6405 state->switch_state.switch_nesting_ast == NULL) {
6406 YYLTYPE loc = this->get_location();
6407
6408 _mesa_glsl_error(& loc, state,
6409 "break may only appear in a loop or a switch");
6410 } else {
6411 /* For a loop, inline the for loop expression again, since we don't
6412 * know where near the end of the loop body the normal copy of it is
6413 * going to be placed. Same goes for the condition for a do-while
6414 * loop.
6415 */
6416 if (state->loop_nesting_ast != NULL &&
6417 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6418 if (state->loop_nesting_ast->rest_expression) {
6419 state->loop_nesting_ast->rest_expression->hir(instructions,
6420 state);
6421 }
6422 if (state->loop_nesting_ast->mode ==
6423 ast_iteration_statement::ast_do_while) {
6424 state->loop_nesting_ast->condition_to_hir(instructions, state);
6425 }
6426 }
6427
6428 if (state->switch_state.is_switch_innermost &&
6429 mode == ast_continue) {
6430 /* Set 'continue_inside' to true. */
6431 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6432 ir_dereference_variable *deref_continue_inside_var =
6433 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6434 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6435 true_val));
6436
6437 /* Break out from the switch, continue for the loop will
6438 * be called right after switch. */
6439 ir_loop_jump *const jump =
6440 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6441 instructions->push_tail(jump);
6442
6443 } else if (state->switch_state.is_switch_innermost &&
6444 mode == ast_break) {
6445 /* Force break out of switch by inserting a break. */
6446 ir_loop_jump *const jump =
6447 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6448 instructions->push_tail(jump);
6449 } else {
6450 ir_loop_jump *const jump =
6451 new(ctx) ir_loop_jump((mode == ast_break)
6452 ? ir_loop_jump::jump_break
6453 : ir_loop_jump::jump_continue);
6454 instructions->push_tail(jump);
6455 }
6456 }
6457
6458 break;
6459 }
6460
6461 /* Jump instructions do not have r-values.
6462 */
6463 return NULL;
6464 }
6465
6466
6467 ir_rvalue *
6468 ast_demote_statement::hir(exec_list *instructions,
6469 struct _mesa_glsl_parse_state *state)
6470 {
6471 void *ctx = state;
6472
6473 if (state->stage != MESA_SHADER_FRAGMENT) {
6474 YYLTYPE loc = this->get_location();
6475
6476 _mesa_glsl_error(& loc, state,
6477 "`demote' may only appear in a fragment shader");
6478 }
6479
6480 instructions->push_tail(new(ctx) ir_demote);
6481
6482 return NULL;
6483 }
6484
6485
6486 ir_rvalue *
6487 ast_selection_statement::hir(exec_list *instructions,
6488 struct _mesa_glsl_parse_state *state)
6489 {
6490 void *ctx = state;
6491
6492 ir_rvalue *const condition = this->condition->hir(instructions, state);
6493
6494 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6495 *
6496 * "Any expression whose type evaluates to a Boolean can be used as the
6497 * conditional expression bool-expression. Vector types are not accepted
6498 * as the expression to if."
6499 *
6500 * The checks are separated so that higher quality diagnostics can be
6501 * generated for cases where both rules are violated.
6502 */
6503 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6504 YYLTYPE loc = this->condition->get_location();
6505
6506 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6507 "boolean");
6508 }
6509
6510 ir_if *const stmt = new(ctx) ir_if(condition);
6511
6512 if (then_statement != NULL) {
6513 state->symbols->push_scope();
6514 then_statement->hir(& stmt->then_instructions, state);
6515 state->symbols->pop_scope();
6516 }
6517
6518 if (else_statement != NULL) {
6519 state->symbols->push_scope();
6520 else_statement->hir(& stmt->else_instructions, state);
6521 state->symbols->pop_scope();
6522 }
6523
6524 instructions->push_tail(stmt);
6525
6526 /* if-statements do not have r-values.
6527 */
6528 return NULL;
6529 }
6530
6531
6532 struct case_label {
6533 /** Value of the case label. */
6534 unsigned value;
6535
6536 /** Does this label occur after the default? */
6537 bool after_default;
6538
6539 /**
6540 * AST for the case label.
6541 *
6542 * This is only used to generate error messages for duplicate labels.
6543 */
6544 ast_expression *ast;
6545 };
6546
6547 /* Used for detection of duplicate case values, compare
6548 * given contents directly.
6549 */
6550 static bool
6551 compare_case_value(const void *a, const void *b)
6552 {
6553 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6554 }
6555
6556
6557 /* Used for detection of duplicate case values, just
6558 * returns key contents as is.
6559 */
6560 static unsigned
6561 key_contents(const void *key)
6562 {
6563 return ((struct case_label *) key)->value;
6564 }
6565
6566
6567 ir_rvalue *
6568 ast_switch_statement::hir(exec_list *instructions,
6569 struct _mesa_glsl_parse_state *state)
6570 {
6571 void *ctx = state;
6572
6573 ir_rvalue *const test_expression =
6574 this->test_expression->hir(instructions, state);
6575
6576 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6577 *
6578 * "The type of init-expression in a switch statement must be a
6579 * scalar integer."
6580 */
6581 if (!test_expression->type->is_scalar() ||
6582 !test_expression->type->is_integer_32()) {
6583 YYLTYPE loc = this->test_expression->get_location();
6584
6585 _mesa_glsl_error(& loc,
6586 state,
6587 "switch-statement expression must be scalar "
6588 "integer");
6589 return NULL;
6590 }
6591
6592 /* Track the switch-statement nesting in a stack-like manner.
6593 */
6594 struct glsl_switch_state saved = state->switch_state;
6595
6596 state->switch_state.is_switch_innermost = true;
6597 state->switch_state.switch_nesting_ast = this;
6598 state->switch_state.labels_ht =
6599 _mesa_hash_table_create(NULL, key_contents,
6600 compare_case_value);
6601 state->switch_state.previous_default = NULL;
6602
6603 /* Initalize is_fallthru state to false.
6604 */
6605 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6606 state->switch_state.is_fallthru_var =
6607 new(ctx) ir_variable(glsl_type::bool_type,
6608 "switch_is_fallthru_tmp",
6609 ir_var_temporary);
6610 instructions->push_tail(state->switch_state.is_fallthru_var);
6611
6612 ir_dereference_variable *deref_is_fallthru_var =
6613 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6614 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6615 is_fallthru_val));
6616
6617 /* Initialize continue_inside state to false.
6618 */
6619 state->switch_state.continue_inside =
6620 new(ctx) ir_variable(glsl_type::bool_type,
6621 "continue_inside_tmp",
6622 ir_var_temporary);
6623 instructions->push_tail(state->switch_state.continue_inside);
6624
6625 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6626 ir_dereference_variable *deref_continue_inside_var =
6627 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6628 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6629 false_val));
6630
6631 state->switch_state.run_default =
6632 new(ctx) ir_variable(glsl_type::bool_type,
6633 "run_default_tmp",
6634 ir_var_temporary);
6635 instructions->push_tail(state->switch_state.run_default);
6636
6637 /* Loop around the switch is used for flow control. */
6638 ir_loop * loop = new(ctx) ir_loop();
6639 instructions->push_tail(loop);
6640
6641 /* Cache test expression.
6642 */
6643 test_to_hir(&loop->body_instructions, state);
6644
6645 /* Emit code for body of switch stmt.
6646 */
6647 body->hir(&loop->body_instructions, state);
6648
6649 /* Insert a break at the end to exit loop. */
6650 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6651 loop->body_instructions.push_tail(jump);
6652
6653 /* If we are inside loop, check if continue got called inside switch. */
6654 if (state->loop_nesting_ast != NULL) {
6655 ir_dereference_variable *deref_continue_inside =
6656 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6657 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6658 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6659
6660 if (state->loop_nesting_ast != NULL) {
6661 if (state->loop_nesting_ast->rest_expression) {
6662 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6663 state);
6664 }
6665 if (state->loop_nesting_ast->mode ==
6666 ast_iteration_statement::ast_do_while) {
6667 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6668 }
6669 }
6670 irif->then_instructions.push_tail(jump);
6671 instructions->push_tail(irif);
6672 }
6673
6674 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6675
6676 state->switch_state = saved;
6677
6678 /* Switch statements do not have r-values. */
6679 return NULL;
6680 }
6681
6682
6683 void
6684 ast_switch_statement::test_to_hir(exec_list *instructions,
6685 struct _mesa_glsl_parse_state *state)
6686 {
6687 void *ctx = state;
6688
6689 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6690 * on the switch test case. The first one would be already raised when
6691 * getting the test_expression at ast_switch_statement::hir
6692 */
6693 test_expression->set_is_lhs(true);
6694 /* Cache value of test expression. */
6695 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6696
6697 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6698 "switch_test_tmp",
6699 ir_var_temporary);
6700 ir_dereference_variable *deref_test_var =
6701 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6702
6703 instructions->push_tail(state->switch_state.test_var);
6704 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6705 }
6706
6707
6708 ir_rvalue *
6709 ast_switch_body::hir(exec_list *instructions,
6710 struct _mesa_glsl_parse_state *state)
6711 {
6712 if (stmts != NULL)
6713 stmts->hir(instructions, state);
6714
6715 /* Switch bodies do not have r-values. */
6716 return NULL;
6717 }
6718
6719 ir_rvalue *
6720 ast_case_statement_list::hir(exec_list *instructions,
6721 struct _mesa_glsl_parse_state *state)
6722 {
6723 exec_list default_case, after_default, tmp;
6724
6725 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6726 case_stmt->hir(&tmp, state);
6727
6728 /* Default case. */
6729 if (state->switch_state.previous_default && default_case.is_empty()) {
6730 default_case.append_list(&tmp);
6731 continue;
6732 }
6733
6734 /* If default case found, append 'after_default' list. */
6735 if (!default_case.is_empty())
6736 after_default.append_list(&tmp);
6737 else
6738 instructions->append_list(&tmp);
6739 }
6740
6741 /* Handle the default case. This is done here because default might not be
6742 * the last case. We need to add checks against following cases first to see
6743 * if default should be chosen or not.
6744 */
6745 if (!default_case.is_empty()) {
6746 ir_factory body(instructions, state);
6747
6748 ir_expression *cmp = NULL;
6749
6750 hash_table_foreach(state->switch_state.labels_ht, entry) {
6751 const struct case_label *const l = (struct case_label *) entry->data;
6752
6753 /* If the switch init-value is the value of one of the labels that
6754 * occurs after the default case, disable execution of the default
6755 * case.
6756 */
6757 if (l->after_default) {
6758 ir_constant *const cnst =
6759 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6760 ? body.constant(unsigned(l->value))
6761 : body.constant(int(l->value));
6762
6763 cmp = cmp == NULL
6764 ? equal(cnst, state->switch_state.test_var)
6765 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6766 }
6767 }
6768
6769 if (cmp != NULL)
6770 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6771 else
6772 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6773
6774 /* Append default case and all cases after it. */
6775 instructions->append_list(&default_case);
6776 instructions->append_list(&after_default);
6777 }
6778
6779 /* Case statements do not have r-values. */
6780 return NULL;
6781 }
6782
6783 ir_rvalue *
6784 ast_case_statement::hir(exec_list *instructions,
6785 struct _mesa_glsl_parse_state *state)
6786 {
6787 labels->hir(instructions, state);
6788
6789 /* Guard case statements depending on fallthru state. */
6790 ir_dereference_variable *const deref_fallthru_guard =
6791 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6792 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6793
6794 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6795 stmt->hir(& test_fallthru->then_instructions, state);
6796
6797 instructions->push_tail(test_fallthru);
6798
6799 /* Case statements do not have r-values. */
6800 return NULL;
6801 }
6802
6803
6804 ir_rvalue *
6805 ast_case_label_list::hir(exec_list *instructions,
6806 struct _mesa_glsl_parse_state *state)
6807 {
6808 foreach_list_typed (ast_case_label, label, link, & this->labels)
6809 label->hir(instructions, state);
6810
6811 /* Case labels do not have r-values. */
6812 return NULL;
6813 }
6814
6815 ir_rvalue *
6816 ast_case_label::hir(exec_list *instructions,
6817 struct _mesa_glsl_parse_state *state)
6818 {
6819 ir_factory body(instructions, state);
6820
6821 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6822
6823 /* If not default case, ... */
6824 if (this->test_value != NULL) {
6825 /* Conditionally set fallthru state based on
6826 * comparison of cached test expression value to case label.
6827 */
6828 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6829 ir_constant *label_const =
6830 label_rval->constant_expression_value(body.mem_ctx);
6831
6832 if (!label_const) {
6833 YYLTYPE loc = this->test_value->get_location();
6834
6835 _mesa_glsl_error(& loc, state,
6836 "switch statement case label must be a "
6837 "constant expression");
6838
6839 /* Stuff a dummy value in to allow processing to continue. */
6840 label_const = body.constant(0);
6841 } else {
6842 hash_entry *entry =
6843 _mesa_hash_table_search(state->switch_state.labels_ht,
6844 &label_const->value.u[0]);
6845
6846 if (entry) {
6847 const struct case_label *const l =
6848 (struct case_label *) entry->data;
6849 const ast_expression *const previous_label = l->ast;
6850 YYLTYPE loc = this->test_value->get_location();
6851
6852 _mesa_glsl_error(& loc, state, "duplicate case value");
6853
6854 loc = previous_label->get_location();
6855 _mesa_glsl_error(& loc, state, "this is the previous case label");
6856 } else {
6857 struct case_label *l = ralloc(state->switch_state.labels_ht,
6858 struct case_label);
6859
6860 l->value = label_const->value.u[0];
6861 l->after_default = state->switch_state.previous_default != NULL;
6862 l->ast = this->test_value;
6863
6864 _mesa_hash_table_insert(state->switch_state.labels_ht,
6865 &label_const->value.u[0],
6866 l);
6867 }
6868 }
6869
6870 /* Create an r-value version of the ir_constant label here (after we may
6871 * have created a fake one in error cases) that can be passed to
6872 * apply_implicit_conversion below.
6873 */
6874 ir_rvalue *label = label_const;
6875
6876 ir_rvalue *deref_test_var =
6877 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6878
6879 /*
6880 * From GLSL 4.40 specification section 6.2 ("Selection"):
6881 *
6882 * "The type of the init-expression value in a switch statement must
6883 * be a scalar int or uint. The type of the constant-expression value
6884 * in a case label also must be a scalar int or uint. When any pair
6885 * of these values is tested for "equal value" and the types do not
6886 * match, an implicit conversion will be done to convert the int to a
6887 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6888 * is done."
6889 */
6890 if (label->type != state->switch_state.test_var->type) {
6891 YYLTYPE loc = this->test_value->get_location();
6892
6893 const glsl_type *type_a = label->type;
6894 const glsl_type *type_b = state->switch_state.test_var->type;
6895
6896 /* Check if int->uint implicit conversion is supported. */
6897 bool integer_conversion_supported =
6898 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6899 state);
6900
6901 if ((!type_a->is_integer_32() || !type_b->is_integer_32()) ||
6902 !integer_conversion_supported) {
6903 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6904 "init-expression and case label (%s != %s)",
6905 type_a->name, type_b->name);
6906 } else {
6907 /* Conversion of the case label. */
6908 if (type_a->base_type == GLSL_TYPE_INT) {
6909 if (!apply_implicit_conversion(glsl_type::uint_type,
6910 label, state))
6911 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6912 } else {
6913 /* Conversion of the init-expression value. */
6914 if (!apply_implicit_conversion(glsl_type::uint_type,
6915 deref_test_var, state))
6916 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6917 }
6918 }
6919
6920 /* If the implicit conversion was allowed, the types will already be
6921 * the same. If the implicit conversion wasn't allowed, smash the
6922 * type of the label anyway. This will prevent the expression
6923 * constructor (below) from failing an assertion.
6924 */
6925 label->type = deref_test_var->type;
6926 }
6927
6928 body.emit(assign(fallthru_var,
6929 logic_or(fallthru_var, equal(label, deref_test_var))));
6930 } else { /* default case */
6931 if (state->switch_state.previous_default) {
6932 YYLTYPE loc = this->get_location();
6933 _mesa_glsl_error(& loc, state,
6934 "multiple default labels in one switch");
6935
6936 loc = state->switch_state.previous_default->get_location();
6937 _mesa_glsl_error(& loc, state, "this is the first default label");
6938 }
6939 state->switch_state.previous_default = this;
6940
6941 /* Set fallthru condition on 'run_default' bool. */
6942 body.emit(assign(fallthru_var,
6943 logic_or(fallthru_var,
6944 state->switch_state.run_default)));
6945 }
6946
6947 /* Case statements do not have r-values. */
6948 return NULL;
6949 }
6950
6951 void
6952 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6953 struct _mesa_glsl_parse_state *state)
6954 {
6955 void *ctx = state;
6956
6957 if (condition != NULL) {
6958 ir_rvalue *const cond =
6959 condition->hir(instructions, state);
6960
6961 if ((cond == NULL)
6962 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6963 YYLTYPE loc = condition->get_location();
6964
6965 _mesa_glsl_error(& loc, state,
6966 "loop condition must be scalar boolean");
6967 } else {
6968 /* As the first code in the loop body, generate a block that looks
6969 * like 'if (!condition) break;' as the loop termination condition.
6970 */
6971 ir_rvalue *const not_cond =
6972 new(ctx) ir_expression(ir_unop_logic_not, cond);
6973
6974 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6975
6976 ir_jump *const break_stmt =
6977 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6978
6979 if_stmt->then_instructions.push_tail(break_stmt);
6980 instructions->push_tail(if_stmt);
6981 }
6982 }
6983 }
6984
6985
6986 ir_rvalue *
6987 ast_iteration_statement::hir(exec_list *instructions,
6988 struct _mesa_glsl_parse_state *state)
6989 {
6990 void *ctx = state;
6991
6992 /* For-loops and while-loops start a new scope, but do-while loops do not.
6993 */
6994 if (mode != ast_do_while)
6995 state->symbols->push_scope();
6996
6997 if (init_statement != NULL)
6998 init_statement->hir(instructions, state);
6999
7000 ir_loop *const stmt = new(ctx) ir_loop();
7001 instructions->push_tail(stmt);
7002
7003 /* Track the current loop nesting. */
7004 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7005
7006 state->loop_nesting_ast = this;
7007
7008 /* Likewise, indicate that following code is closest to a loop,
7009 * NOT closest to a switch.
7010 */
7011 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7012 state->switch_state.is_switch_innermost = false;
7013
7014 if (mode != ast_do_while)
7015 condition_to_hir(&stmt->body_instructions, state);
7016
7017 if (body != NULL)
7018 body->hir(& stmt->body_instructions, state);
7019
7020 if (rest_expression != NULL)
7021 rest_expression->hir(& stmt->body_instructions, state);
7022
7023 if (mode == ast_do_while)
7024 condition_to_hir(&stmt->body_instructions, state);
7025
7026 if (mode != ast_do_while)
7027 state->symbols->pop_scope();
7028
7029 /* Restore previous nesting before returning. */
7030 state->loop_nesting_ast = nesting_ast;
7031 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7032
7033 /* Loops do not have r-values.
7034 */
7035 return NULL;
7036 }
7037
7038
7039 /**
7040 * Determine if the given type is valid for establishing a default precision
7041 * qualifier.
7042 *
7043 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7044 *
7045 * "The precision statement
7046 *
7047 * precision precision-qualifier type;
7048 *
7049 * can be used to establish a default precision qualifier. The type field
7050 * can be either int or float or any of the sampler types, and the
7051 * precision-qualifier can be lowp, mediump, or highp."
7052 *
7053 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
7054 * qualifiers on sampler types, but this seems like an oversight (since the
7055 * intention of including these in GLSL 1.30 is to allow compatibility with ES
7056 * shaders). So we allow int, float, and all sampler types regardless of GLSL
7057 * version.
7058 */
7059 static bool
7060 is_valid_default_precision_type(const struct glsl_type *const type)
7061 {
7062 if (type == NULL)
7063 return false;
7064
7065 switch (type->base_type) {
7066 case GLSL_TYPE_INT:
7067 case GLSL_TYPE_FLOAT:
7068 /* "int" and "float" are valid, but vectors and matrices are not. */
7069 return type->vector_elements == 1 && type->matrix_columns == 1;
7070 case GLSL_TYPE_SAMPLER:
7071 case GLSL_TYPE_IMAGE:
7072 case GLSL_TYPE_ATOMIC_UINT:
7073 return true;
7074 default:
7075 return false;
7076 }
7077 }
7078
7079
7080 ir_rvalue *
7081 ast_type_specifier::hir(exec_list *instructions,
7082 struct _mesa_glsl_parse_state *state)
7083 {
7084 if (this->default_precision == ast_precision_none && this->structure == NULL)
7085 return NULL;
7086
7087 YYLTYPE loc = this->get_location();
7088
7089 /* If this is a precision statement, check that the type to which it is
7090 * applied is either float or int.
7091 *
7092 * From section 4.5.3 of the GLSL 1.30 spec:
7093 * "The precision statement
7094 * precision precision-qualifier type;
7095 * can be used to establish a default precision qualifier. The type
7096 * field can be either int or float [...]. Any other types or
7097 * qualifiers will result in an error.
7098 */
7099 if (this->default_precision != ast_precision_none) {
7100 if (!state->check_precision_qualifiers_allowed(&loc))
7101 return NULL;
7102
7103 if (this->structure != NULL) {
7104 _mesa_glsl_error(&loc, state,
7105 "precision qualifiers do not apply to structures");
7106 return NULL;
7107 }
7108
7109 if (this->array_specifier != NULL) {
7110 _mesa_glsl_error(&loc, state,
7111 "default precision statements do not apply to "
7112 "arrays");
7113 return NULL;
7114 }
7115
7116 const struct glsl_type *const type =
7117 state->symbols->get_type(this->type_name);
7118 if (!is_valid_default_precision_type(type)) {
7119 _mesa_glsl_error(&loc, state,
7120 "default precision statements apply only to "
7121 "float, int, and opaque types");
7122 return NULL;
7123 }
7124
7125 if (state->es_shader) {
7126 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7127 * spec says:
7128 *
7129 * "Non-precision qualified declarations will use the precision
7130 * qualifier specified in the most recent precision statement
7131 * that is still in scope. The precision statement has the same
7132 * scoping rules as variable declarations. If it is declared
7133 * inside a compound statement, its effect stops at the end of
7134 * the innermost statement it was declared in. Precision
7135 * statements in nested scopes override precision statements in
7136 * outer scopes. Multiple precision statements for the same basic
7137 * type can appear inside the same scope, with later statements
7138 * overriding earlier statements within that scope."
7139 *
7140 * Default precision specifications follow the same scope rules as
7141 * variables. So, we can track the state of the default precision
7142 * qualifiers in the symbol table, and the rules will just work. This
7143 * is a slight abuse of the symbol table, but it has the semantics
7144 * that we want.
7145 */
7146 state->symbols->add_default_precision_qualifier(this->type_name,
7147 this->default_precision);
7148 }
7149
7150 /* FINISHME: Translate precision statements into IR. */
7151 return NULL;
7152 }
7153
7154 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7155 * process_record_constructor() can do type-checking on C-style initializer
7156 * expressions of structs, but ast_struct_specifier should only be translated
7157 * to HIR if it is declaring the type of a structure.
7158 *
7159 * The ->is_declaration field is false for initializers of variables
7160 * declared separately from the struct's type definition.
7161 *
7162 * struct S { ... }; (is_declaration = true)
7163 * struct T { ... } t = { ... }; (is_declaration = true)
7164 * S s = { ... }; (is_declaration = false)
7165 */
7166 if (this->structure != NULL && this->structure->is_declaration)
7167 return this->structure->hir(instructions, state);
7168
7169 return NULL;
7170 }
7171
7172
7173 /**
7174 * Process a structure or interface block tree into an array of structure fields
7175 *
7176 * After parsing, where there are some syntax differnces, structures and
7177 * interface blocks are almost identical. They are similar enough that the
7178 * AST for each can be processed the same way into a set of
7179 * \c glsl_struct_field to describe the members.
7180 *
7181 * If we're processing an interface block, var_mode should be the type of the
7182 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7183 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7184 * ir_var_auto.
7185 *
7186 * \return
7187 * The number of fields processed. A pointer to the array structure fields is
7188 * stored in \c *fields_ret.
7189 */
7190 static unsigned
7191 ast_process_struct_or_iface_block_members(exec_list *instructions,
7192 struct _mesa_glsl_parse_state *state,
7193 exec_list *declarations,
7194 glsl_struct_field **fields_ret,
7195 bool is_interface,
7196 enum glsl_matrix_layout matrix_layout,
7197 bool allow_reserved_names,
7198 ir_variable_mode var_mode,
7199 ast_type_qualifier *layout,
7200 unsigned block_stream,
7201 unsigned block_xfb_buffer,
7202 unsigned block_xfb_offset,
7203 unsigned expl_location,
7204 unsigned expl_align)
7205 {
7206 unsigned decl_count = 0;
7207 unsigned next_offset = 0;
7208
7209 /* Make an initial pass over the list of fields to determine how
7210 * many there are. Each element in this list is an ast_declarator_list.
7211 * This means that we actually need to count the number of elements in the
7212 * 'declarations' list in each of the elements.
7213 */
7214 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7215 decl_count += decl_list->declarations.length();
7216 }
7217
7218 /* Allocate storage for the fields and process the field
7219 * declarations. As the declarations are processed, try to also convert
7220 * the types to HIR. This ensures that structure definitions embedded in
7221 * other structure definitions or in interface blocks are processed.
7222 */
7223 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7224 decl_count);
7225
7226 bool first_member = true;
7227 bool first_member_has_explicit_location = false;
7228
7229 unsigned i = 0;
7230 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7231 const char *type_name;
7232 YYLTYPE loc = decl_list->get_location();
7233
7234 decl_list->type->specifier->hir(instructions, state);
7235
7236 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7237 *
7238 * "Anonymous structures are not supported; so embedded structures
7239 * must have a declarator. A name given to an embedded struct is
7240 * scoped at the same level as the struct it is embedded in."
7241 *
7242 * The same section of the GLSL 1.20 spec says:
7243 *
7244 * "Anonymous structures are not supported. Embedded structures are
7245 * not supported."
7246 *
7247 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7248 * embedded structures in 1.10 only.
7249 */
7250 if (state->language_version != 110 &&
7251 decl_list->type->specifier->structure != NULL)
7252 _mesa_glsl_error(&loc, state,
7253 "embedded structure declarations are not allowed");
7254
7255 const glsl_type *decl_type =
7256 decl_list->type->glsl_type(& type_name, state);
7257
7258 const struct ast_type_qualifier *const qual =
7259 &decl_list->type->qualifier;
7260
7261 /* From section 4.3.9 of the GLSL 4.40 spec:
7262 *
7263 * "[In interface blocks] opaque types are not allowed."
7264 *
7265 * It should be impossible for decl_type to be NULL here. Cases that
7266 * might naturally lead to decl_type being NULL, especially for the
7267 * is_interface case, will have resulted in compilation having
7268 * already halted due to a syntax error.
7269 */
7270 assert(decl_type);
7271
7272 if (is_interface) {
7273 /* From section 4.3.7 of the ARB_bindless_texture spec:
7274 *
7275 * "(remove the following bullet from the last list on p. 39,
7276 * thereby permitting sampler types in interface blocks; image
7277 * types are also permitted in blocks by this extension)"
7278 *
7279 * * sampler types are not allowed
7280 */
7281 if (decl_type->contains_atomic() ||
7282 (!state->has_bindless() && decl_type->contains_opaque())) {
7283 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7284 "interface block contains %s variable",
7285 state->has_bindless() ? "atomic" : "opaque");
7286 }
7287 } else {
7288 if (decl_type->contains_atomic()) {
7289 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7290 *
7291 * "Members of structures cannot be declared as atomic counter
7292 * types."
7293 */
7294 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7295 }
7296
7297 if (!state->has_bindless() && decl_type->contains_image()) {
7298 /* FINISHME: Same problem as with atomic counters.
7299 * FINISHME: Request clarification from Khronos and add
7300 * FINISHME: spec quotation here.
7301 */
7302 _mesa_glsl_error(&loc, state, "image in structure");
7303 }
7304 }
7305
7306 if (qual->flags.q.explicit_binding) {
7307 _mesa_glsl_error(&loc, state,
7308 "binding layout qualifier cannot be applied "
7309 "to struct or interface block members");
7310 }
7311
7312 if (is_interface) {
7313 if (!first_member) {
7314 if (!layout->flags.q.explicit_location &&
7315 ((first_member_has_explicit_location &&
7316 !qual->flags.q.explicit_location) ||
7317 (!first_member_has_explicit_location &&
7318 qual->flags.q.explicit_location))) {
7319 _mesa_glsl_error(&loc, state,
7320 "when block-level location layout qualifier "
7321 "is not supplied either all members must "
7322 "have a location layout qualifier or all "
7323 "members must not have a location layout "
7324 "qualifier");
7325 }
7326 } else {
7327 first_member = false;
7328 first_member_has_explicit_location =
7329 qual->flags.q.explicit_location;
7330 }
7331 }
7332
7333 if (qual->flags.q.std140 ||
7334 qual->flags.q.std430 ||
7335 qual->flags.q.packed ||
7336 qual->flags.q.shared) {
7337 _mesa_glsl_error(&loc, state,
7338 "uniform/shader storage block layout qualifiers "
7339 "std140, std430, packed, and shared can only be "
7340 "applied to uniform/shader storage blocks, not "
7341 "members");
7342 }
7343
7344 if (qual->flags.q.constant) {
7345 _mesa_glsl_error(&loc, state,
7346 "const storage qualifier cannot be applied "
7347 "to struct or interface block members");
7348 }
7349
7350 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7351 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7352
7353 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7354 *
7355 * "A block member may be declared with a stream identifier, but
7356 * the specified stream must match the stream associated with the
7357 * containing block."
7358 */
7359 if (qual->flags.q.explicit_stream) {
7360 unsigned qual_stream;
7361 if (process_qualifier_constant(state, &loc, "stream",
7362 qual->stream, &qual_stream) &&
7363 qual_stream != block_stream) {
7364 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7365 "interface block member does not match "
7366 "the interface block (%u vs %u)", qual_stream,
7367 block_stream);
7368 }
7369 }
7370
7371 int xfb_buffer;
7372 unsigned explicit_xfb_buffer = 0;
7373 if (qual->flags.q.explicit_xfb_buffer) {
7374 unsigned qual_xfb_buffer;
7375 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7376 qual->xfb_buffer, &qual_xfb_buffer)) {
7377 explicit_xfb_buffer = 1;
7378 if (qual_xfb_buffer != block_xfb_buffer)
7379 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7380 "interface block member does not match "
7381 "the interface block (%u vs %u)",
7382 qual_xfb_buffer, block_xfb_buffer);
7383 }
7384 xfb_buffer = (int) qual_xfb_buffer;
7385 } else {
7386 if (layout)
7387 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7388 xfb_buffer = (int) block_xfb_buffer;
7389 }
7390
7391 int xfb_stride = -1;
7392 if (qual->flags.q.explicit_xfb_stride) {
7393 unsigned qual_xfb_stride;
7394 if (process_qualifier_constant(state, &loc, "xfb_stride",
7395 qual->xfb_stride, &qual_xfb_stride)) {
7396 xfb_stride = (int) qual_xfb_stride;
7397 }
7398 }
7399
7400 if (qual->flags.q.uniform && qual->has_interpolation()) {
7401 _mesa_glsl_error(&loc, state,
7402 "interpolation qualifiers cannot be used "
7403 "with uniform interface blocks");
7404 }
7405
7406 if ((qual->flags.q.uniform || !is_interface) &&
7407 qual->has_auxiliary_storage()) {
7408 _mesa_glsl_error(&loc, state,
7409 "auxiliary storage qualifiers cannot be used "
7410 "in uniform blocks or structures.");
7411 }
7412
7413 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7414 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7415 _mesa_glsl_error(&loc, state,
7416 "row_major and column_major can only be "
7417 "applied to interface blocks");
7418 } else
7419 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7420 }
7421
7422 foreach_list_typed (ast_declaration, decl, link,
7423 &decl_list->declarations) {
7424 YYLTYPE loc = decl->get_location();
7425
7426 if (!allow_reserved_names)
7427 validate_identifier(decl->identifier, loc, state);
7428
7429 const struct glsl_type *field_type =
7430 process_array_type(&loc, decl_type, decl->array_specifier, state);
7431 validate_array_dimensions(field_type, state, &loc);
7432 fields[i].type = field_type;
7433 fields[i].name = decl->identifier;
7434 fields[i].interpolation =
7435 interpret_interpolation_qualifier(qual, field_type,
7436 var_mode, state, &loc);
7437 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7438 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7439 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7440 fields[i].offset = -1;
7441 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7442 fields[i].xfb_buffer = xfb_buffer;
7443 fields[i].xfb_stride = xfb_stride;
7444
7445 if (qual->flags.q.explicit_location) {
7446 unsigned qual_location;
7447 if (process_qualifier_constant(state, &loc, "location",
7448 qual->location, &qual_location)) {
7449 fields[i].location = qual_location +
7450 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7451 expl_location = fields[i].location +
7452 fields[i].type->count_attribute_slots(false);
7453 }
7454 } else {
7455 if (layout && layout->flags.q.explicit_location) {
7456 fields[i].location = expl_location;
7457 expl_location += fields[i].type->count_attribute_slots(false);
7458 } else {
7459 fields[i].location = -1;
7460 }
7461 }
7462
7463 /* Offset can only be used with std430 and std140 layouts an initial
7464 * value of 0 is used for error detection.
7465 */
7466 unsigned align = 0;
7467 unsigned size = 0;
7468 if (layout) {
7469 bool row_major;
7470 if (qual->flags.q.row_major ||
7471 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7472 row_major = true;
7473 } else {
7474 row_major = false;
7475 }
7476
7477 if(layout->flags.q.std140) {
7478 align = field_type->std140_base_alignment(row_major);
7479 size = field_type->std140_size(row_major);
7480 } else if (layout->flags.q.std430) {
7481 align = field_type->std430_base_alignment(row_major);
7482 size = field_type->std430_size(row_major);
7483 }
7484 }
7485
7486 if (qual->flags.q.explicit_offset) {
7487 unsigned qual_offset;
7488 if (process_qualifier_constant(state, &loc, "offset",
7489 qual->offset, &qual_offset)) {
7490 if (align != 0 && size != 0) {
7491 if (next_offset > qual_offset)
7492 _mesa_glsl_error(&loc, state, "layout qualifier "
7493 "offset overlaps previous member");
7494
7495 if (qual_offset % align) {
7496 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7497 "must be a multiple of the base "
7498 "alignment of %s", field_type->name);
7499 }
7500 fields[i].offset = qual_offset;
7501 next_offset = qual_offset + size;
7502 } else {
7503 _mesa_glsl_error(&loc, state, "offset can only be used "
7504 "with std430 and std140 layouts");
7505 }
7506 }
7507 }
7508
7509 if (qual->flags.q.explicit_align || expl_align != 0) {
7510 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7511 next_offset;
7512 if (align == 0 || size == 0) {
7513 _mesa_glsl_error(&loc, state, "align can only be used with "
7514 "std430 and std140 layouts");
7515 } else if (qual->flags.q.explicit_align) {
7516 unsigned member_align;
7517 if (process_qualifier_constant(state, &loc, "align",
7518 qual->align, &member_align)) {
7519 if (member_align == 0 ||
7520 member_align & (member_align - 1)) {
7521 _mesa_glsl_error(&loc, state, "align layout qualifier "
7522 "is not a power of 2");
7523 } else {
7524 fields[i].offset = glsl_align(offset, member_align);
7525 next_offset = fields[i].offset + size;
7526 }
7527 }
7528 } else {
7529 fields[i].offset = glsl_align(offset, expl_align);
7530 next_offset = fields[i].offset + size;
7531 }
7532 } else if (!qual->flags.q.explicit_offset) {
7533 if (align != 0 && size != 0)
7534 next_offset = glsl_align(next_offset, align) + size;
7535 }
7536
7537 /* From the ARB_enhanced_layouts spec:
7538 *
7539 * "The given offset applies to the first component of the first
7540 * member of the qualified entity. Then, within the qualified
7541 * entity, subsequent components are each assigned, in order, to
7542 * the next available offset aligned to a multiple of that
7543 * component's size. Aggregate types are flattened down to the
7544 * component level to get this sequence of components."
7545 */
7546 if (qual->flags.q.explicit_xfb_offset) {
7547 unsigned xfb_offset;
7548 if (process_qualifier_constant(state, &loc, "xfb_offset",
7549 qual->offset, &xfb_offset)) {
7550 fields[i].offset = xfb_offset;
7551 block_xfb_offset = fields[i].offset +
7552 4 * field_type->component_slots();
7553 }
7554 } else {
7555 if (layout && layout->flags.q.explicit_xfb_offset) {
7556 unsigned align = field_type->is_64bit() ? 8 : 4;
7557 fields[i].offset = glsl_align(block_xfb_offset, align);
7558 block_xfb_offset += 4 * field_type->component_slots();
7559 }
7560 }
7561
7562 /* Propogate row- / column-major information down the fields of the
7563 * structure or interface block. Structures need this data because
7564 * the structure may contain a structure that contains ... a matrix
7565 * that need the proper layout.
7566 */
7567 if (is_interface && layout &&
7568 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7569 (field_type->without_array()->is_matrix()
7570 || field_type->without_array()->is_struct())) {
7571 /* If no layout is specified for the field, inherit the layout
7572 * from the block.
7573 */
7574 fields[i].matrix_layout = matrix_layout;
7575
7576 if (qual->flags.q.row_major)
7577 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7578 else if (qual->flags.q.column_major)
7579 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7580
7581 /* If we're processing an uniform or buffer block, the matrix
7582 * layout must be decided by this point.
7583 */
7584 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7585 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7586 }
7587
7588 /* Memory qualifiers are allowed on buffer and image variables, while
7589 * the format qualifier is only accepted for images.
7590 */
7591 if (var_mode == ir_var_shader_storage ||
7592 field_type->without_array()->is_image()) {
7593 /* For readonly and writeonly qualifiers the field definition,
7594 * if set, overwrites the layout qualifier.
7595 */
7596 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7597 fields[i].memory_read_only = qual->flags.q.read_only;
7598 fields[i].memory_write_only = qual->flags.q.write_only;
7599 } else {
7600 fields[i].memory_read_only =
7601 layout ? layout->flags.q.read_only : 0;
7602 fields[i].memory_write_only =
7603 layout ? layout->flags.q.write_only : 0;
7604 }
7605
7606 /* For other qualifiers, we set the flag if either the layout
7607 * qualifier or the field qualifier are set
7608 */
7609 fields[i].memory_coherent = qual->flags.q.coherent ||
7610 (layout && layout->flags.q.coherent);
7611 fields[i].memory_volatile = qual->flags.q._volatile ||
7612 (layout && layout->flags.q._volatile);
7613 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7614 (layout && layout->flags.q.restrict_flag);
7615
7616 if (field_type->without_array()->is_image()) {
7617 if (qual->flags.q.explicit_image_format) {
7618 if (qual->image_base_type !=
7619 field_type->without_array()->sampled_type) {
7620 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7621 "match the base data type of the image");
7622 }
7623
7624 fields[i].image_format = qual->image_format;
7625 } else {
7626 if (!qual->flags.q.write_only) {
7627 _mesa_glsl_error(&loc, state, "image not qualified with "
7628 "`writeonly' must have a format layout "
7629 "qualifier");
7630 }
7631
7632 fields[i].image_format = GL_NONE;
7633 }
7634 }
7635 }
7636
7637 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7638 if (state->es_shader) {
7639 fields[i].precision = select_gles_precision(qual->precision,
7640 field_type,
7641 state,
7642 &loc);
7643 } else {
7644 fields[i].precision = qual->precision;
7645 }
7646
7647 i++;
7648 }
7649 }
7650
7651 assert(i == decl_count);
7652
7653 *fields_ret = fields;
7654 return decl_count;
7655 }
7656
7657
7658 ir_rvalue *
7659 ast_struct_specifier::hir(exec_list *instructions,
7660 struct _mesa_glsl_parse_state *state)
7661 {
7662 YYLTYPE loc = this->get_location();
7663
7664 unsigned expl_location = 0;
7665 if (layout && layout->flags.q.explicit_location) {
7666 if (!process_qualifier_constant(state, &loc, "location",
7667 layout->location, &expl_location)) {
7668 return NULL;
7669 } else {
7670 expl_location = VARYING_SLOT_VAR0 + expl_location;
7671 }
7672 }
7673
7674 glsl_struct_field *fields;
7675 unsigned decl_count =
7676 ast_process_struct_or_iface_block_members(instructions,
7677 state,
7678 &this->declarations,
7679 &fields,
7680 false,
7681 GLSL_MATRIX_LAYOUT_INHERITED,
7682 false /* allow_reserved_names */,
7683 ir_var_auto,
7684 layout,
7685 0, /* for interface only */
7686 0, /* for interface only */
7687 0, /* for interface only */
7688 expl_location,
7689 0 /* for interface only */);
7690
7691 validate_identifier(this->name, loc, state);
7692
7693 type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7694
7695 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7696 const glsl_type *match = state->symbols->get_type(name);
7697 /* allow struct matching for desktop GL - older UE4 does this */
7698 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7699 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7700 else
7701 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7702 } else {
7703 const glsl_type **s = reralloc(state, state->user_structures,
7704 const glsl_type *,
7705 state->num_user_structures + 1);
7706 if (s != NULL) {
7707 s[state->num_user_structures] = type;
7708 state->user_structures = s;
7709 state->num_user_structures++;
7710 }
7711 }
7712
7713 /* Structure type definitions do not have r-values.
7714 */
7715 return NULL;
7716 }
7717
7718
7719 /**
7720 * Visitor class which detects whether a given interface block has been used.
7721 */
7722 class interface_block_usage_visitor : public ir_hierarchical_visitor
7723 {
7724 public:
7725 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7726 : mode(mode), block(block), found(false)
7727 {
7728 }
7729
7730 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7731 {
7732 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7733 found = true;
7734 return visit_stop;
7735 }
7736 return visit_continue;
7737 }
7738
7739 bool usage_found() const
7740 {
7741 return this->found;
7742 }
7743
7744 private:
7745 ir_variable_mode mode;
7746 const glsl_type *block;
7747 bool found;
7748 };
7749
7750 static bool
7751 is_unsized_array_last_element(ir_variable *v)
7752 {
7753 const glsl_type *interface_type = v->get_interface_type();
7754 int length = interface_type->length;
7755
7756 assert(v->type->is_unsized_array());
7757
7758 /* Check if it is the last element of the interface */
7759 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7760 return true;
7761 return false;
7762 }
7763
7764 static void
7765 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7766 {
7767 var->data.memory_read_only = field.memory_read_only;
7768 var->data.memory_write_only = field.memory_write_only;
7769 var->data.memory_coherent = field.memory_coherent;
7770 var->data.memory_volatile = field.memory_volatile;
7771 var->data.memory_restrict = field.memory_restrict;
7772 }
7773
7774 ir_rvalue *
7775 ast_interface_block::hir(exec_list *instructions,
7776 struct _mesa_glsl_parse_state *state)
7777 {
7778 YYLTYPE loc = this->get_location();
7779
7780 /* Interface blocks must be declared at global scope */
7781 if (state->current_function != NULL) {
7782 _mesa_glsl_error(&loc, state,
7783 "Interface block `%s' must be declared "
7784 "at global scope",
7785 this->block_name);
7786 }
7787
7788 /* Validate qualifiers:
7789 *
7790 * - Layout Qualifiers as per the table in Section 4.4
7791 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7792 *
7793 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7794 * GLSL 4.50 spec:
7795 *
7796 * "Additionally, memory qualifiers may also be used in the declaration
7797 * of shader storage blocks"
7798 *
7799 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7800 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7801 * Layout Qualifiers) of the GLSL 4.50 spec says:
7802 *
7803 * "The std430 qualifier is supported only for shader storage blocks;
7804 * using std430 on a uniform block will result in a compile-time error."
7805 */
7806 ast_type_qualifier allowed_blk_qualifiers;
7807 allowed_blk_qualifiers.flags.i = 0;
7808 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7809 allowed_blk_qualifiers.flags.q.shared = 1;
7810 allowed_blk_qualifiers.flags.q.packed = 1;
7811 allowed_blk_qualifiers.flags.q.std140 = 1;
7812 allowed_blk_qualifiers.flags.q.row_major = 1;
7813 allowed_blk_qualifiers.flags.q.column_major = 1;
7814 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7815 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7816 if (this->layout.flags.q.buffer) {
7817 allowed_blk_qualifiers.flags.q.buffer = 1;
7818 allowed_blk_qualifiers.flags.q.std430 = 1;
7819 allowed_blk_qualifiers.flags.q.coherent = 1;
7820 allowed_blk_qualifiers.flags.q._volatile = 1;
7821 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7822 allowed_blk_qualifiers.flags.q.read_only = 1;
7823 allowed_blk_qualifiers.flags.q.write_only = 1;
7824 } else {
7825 allowed_blk_qualifiers.flags.q.uniform = 1;
7826 }
7827 } else {
7828 /* Interface block */
7829 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7830
7831 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7832 if (this->layout.flags.q.out) {
7833 allowed_blk_qualifiers.flags.q.out = 1;
7834 if (state->stage == MESA_SHADER_GEOMETRY ||
7835 state->stage == MESA_SHADER_TESS_CTRL ||
7836 state->stage == MESA_SHADER_TESS_EVAL ||
7837 state->stage == MESA_SHADER_VERTEX ) {
7838 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7839 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7840 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7841 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7842 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7843 if (state->stage == MESA_SHADER_GEOMETRY) {
7844 allowed_blk_qualifiers.flags.q.stream = 1;
7845 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7846 }
7847 if (state->stage == MESA_SHADER_TESS_CTRL) {
7848 allowed_blk_qualifiers.flags.q.patch = 1;
7849 }
7850 }
7851 } else {
7852 allowed_blk_qualifiers.flags.q.in = 1;
7853 if (state->stage == MESA_SHADER_TESS_EVAL) {
7854 allowed_blk_qualifiers.flags.q.patch = 1;
7855 }
7856 }
7857 }
7858
7859 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7860 "invalid qualifier for block",
7861 this->block_name);
7862
7863 enum glsl_interface_packing packing;
7864 if (this->layout.flags.q.std140) {
7865 packing = GLSL_INTERFACE_PACKING_STD140;
7866 } else if (this->layout.flags.q.packed) {
7867 packing = GLSL_INTERFACE_PACKING_PACKED;
7868 } else if (this->layout.flags.q.std430) {
7869 packing = GLSL_INTERFACE_PACKING_STD430;
7870 } else {
7871 /* The default layout is shared.
7872 */
7873 packing = GLSL_INTERFACE_PACKING_SHARED;
7874 }
7875
7876 ir_variable_mode var_mode;
7877 const char *iface_type_name;
7878 if (this->layout.flags.q.in) {
7879 var_mode = ir_var_shader_in;
7880 iface_type_name = "in";
7881 } else if (this->layout.flags.q.out) {
7882 var_mode = ir_var_shader_out;
7883 iface_type_name = "out";
7884 } else if (this->layout.flags.q.uniform) {
7885 var_mode = ir_var_uniform;
7886 iface_type_name = "uniform";
7887 } else if (this->layout.flags.q.buffer) {
7888 var_mode = ir_var_shader_storage;
7889 iface_type_name = "buffer";
7890 } else {
7891 var_mode = ir_var_auto;
7892 iface_type_name = "UNKNOWN";
7893 assert(!"interface block layout qualifier not found!");
7894 }
7895
7896 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7897 if (this->layout.flags.q.row_major)
7898 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7899 else if (this->layout.flags.q.column_major)
7900 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7901
7902 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7903 exec_list declared_variables;
7904 glsl_struct_field *fields;
7905
7906 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7907 * that we don't have incompatible qualifiers
7908 */
7909 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7910 _mesa_glsl_error(&loc, state,
7911 "Interface block sets both readonly and writeonly");
7912 }
7913
7914 unsigned qual_stream;
7915 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7916 &qual_stream) ||
7917 !validate_stream_qualifier(&loc, state, qual_stream)) {
7918 /* If the stream qualifier is invalid it doesn't make sense to continue
7919 * on and try to compare stream layouts on member variables against it
7920 * so just return early.
7921 */
7922 return NULL;
7923 }
7924
7925 unsigned qual_xfb_buffer;
7926 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7927 layout.xfb_buffer, &qual_xfb_buffer) ||
7928 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7929 return NULL;
7930 }
7931
7932 unsigned qual_xfb_offset;
7933 if (layout.flags.q.explicit_xfb_offset) {
7934 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7935 layout.offset, &qual_xfb_offset)) {
7936 return NULL;
7937 }
7938 }
7939
7940 unsigned qual_xfb_stride;
7941 if (layout.flags.q.explicit_xfb_stride) {
7942 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7943 layout.xfb_stride, &qual_xfb_stride)) {
7944 return NULL;
7945 }
7946 }
7947
7948 unsigned expl_location = 0;
7949 if (layout.flags.q.explicit_location) {
7950 if (!process_qualifier_constant(state, &loc, "location",
7951 layout.location, &expl_location)) {
7952 return NULL;
7953 } else {
7954 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7955 : VARYING_SLOT_VAR0;
7956 }
7957 }
7958
7959 unsigned expl_align = 0;
7960 if (layout.flags.q.explicit_align) {
7961 if (!process_qualifier_constant(state, &loc, "align",
7962 layout.align, &expl_align)) {
7963 return NULL;
7964 } else {
7965 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7966 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7967 "power of 2.");
7968 return NULL;
7969 }
7970 }
7971 }
7972
7973 unsigned int num_variables =
7974 ast_process_struct_or_iface_block_members(&declared_variables,
7975 state,
7976 &this->declarations,
7977 &fields,
7978 true,
7979 matrix_layout,
7980 redeclaring_per_vertex,
7981 var_mode,
7982 &this->layout,
7983 qual_stream,
7984 qual_xfb_buffer,
7985 qual_xfb_offset,
7986 expl_location,
7987 expl_align);
7988
7989 if (!redeclaring_per_vertex) {
7990 validate_identifier(this->block_name, loc, state);
7991
7992 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7993 *
7994 * "Block names have no other use within a shader beyond interface
7995 * matching; it is a compile-time error to use a block name at global
7996 * scope for anything other than as a block name."
7997 */
7998 ir_variable *var = state->symbols->get_variable(this->block_name);
7999 if (var && !var->type->is_interface()) {
8000 _mesa_glsl_error(&loc, state, "Block name `%s' is "
8001 "already used in the scope.",
8002 this->block_name);
8003 }
8004 }
8005
8006 const glsl_type *earlier_per_vertex = NULL;
8007 if (redeclaring_per_vertex) {
8008 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
8009 * the named interface block gl_in, we can find it by looking at the
8010 * previous declaration of gl_in. Otherwise we can find it by looking
8011 * at the previous decalartion of any of the built-in outputs,
8012 * e.g. gl_Position.
8013 *
8014 * Also check that the instance name and array-ness of the redeclaration
8015 * are correct.
8016 */
8017 switch (var_mode) {
8018 case ir_var_shader_in:
8019 if (ir_variable *earlier_gl_in =
8020 state->symbols->get_variable("gl_in")) {
8021 earlier_per_vertex = earlier_gl_in->get_interface_type();
8022 } else {
8023 _mesa_glsl_error(&loc, state,
8024 "redeclaration of gl_PerVertex input not allowed "
8025 "in the %s shader",
8026 _mesa_shader_stage_to_string(state->stage));
8027 }
8028 if (this->instance_name == NULL ||
8029 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8030 !this->array_specifier->is_single_dimension()) {
8031 _mesa_glsl_error(&loc, state,
8032 "gl_PerVertex input must be redeclared as "
8033 "gl_in[]");
8034 }
8035 break;
8036 case ir_var_shader_out:
8037 if (ir_variable *earlier_gl_Position =
8038 state->symbols->get_variable("gl_Position")) {
8039 earlier_per_vertex = earlier_gl_Position->get_interface_type();
8040 } else if (ir_variable *earlier_gl_out =
8041 state->symbols->get_variable("gl_out")) {
8042 earlier_per_vertex = earlier_gl_out->get_interface_type();
8043 } else {
8044 _mesa_glsl_error(&loc, state,
8045 "redeclaration of gl_PerVertex output not "
8046 "allowed in the %s shader",
8047 _mesa_shader_stage_to_string(state->stage));
8048 }
8049 if (state->stage == MESA_SHADER_TESS_CTRL) {
8050 if (this->instance_name == NULL ||
8051 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8052 _mesa_glsl_error(&loc, state,
8053 "gl_PerVertex output must be redeclared as "
8054 "gl_out[]");
8055 }
8056 } else {
8057 if (this->instance_name != NULL) {
8058 _mesa_glsl_error(&loc, state,
8059 "gl_PerVertex output may not be redeclared with "
8060 "an instance name");
8061 }
8062 }
8063 break;
8064 default:
8065 _mesa_glsl_error(&loc, state,
8066 "gl_PerVertex must be declared as an input or an "
8067 "output");
8068 break;
8069 }
8070
8071 if (earlier_per_vertex == NULL) {
8072 /* An error has already been reported. Bail out to avoid null
8073 * dereferences later in this function.
8074 */
8075 return NULL;
8076 }
8077
8078 /* Copy locations from the old gl_PerVertex interface block. */
8079 for (unsigned i = 0; i < num_variables; i++) {
8080 int j = earlier_per_vertex->field_index(fields[i].name);
8081 if (j == -1) {
8082 _mesa_glsl_error(&loc, state,
8083 "redeclaration of gl_PerVertex must be a subset "
8084 "of the built-in members of gl_PerVertex");
8085 } else {
8086 fields[i].location =
8087 earlier_per_vertex->fields.structure[j].location;
8088 fields[i].offset =
8089 earlier_per_vertex->fields.structure[j].offset;
8090 fields[i].interpolation =
8091 earlier_per_vertex->fields.structure[j].interpolation;
8092 fields[i].centroid =
8093 earlier_per_vertex->fields.structure[j].centroid;
8094 fields[i].sample =
8095 earlier_per_vertex->fields.structure[j].sample;
8096 fields[i].patch =
8097 earlier_per_vertex->fields.structure[j].patch;
8098 fields[i].precision =
8099 earlier_per_vertex->fields.structure[j].precision;
8100 fields[i].explicit_xfb_buffer =
8101 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8102 fields[i].xfb_buffer =
8103 earlier_per_vertex->fields.structure[j].xfb_buffer;
8104 fields[i].xfb_stride =
8105 earlier_per_vertex->fields.structure[j].xfb_stride;
8106 }
8107 }
8108
8109 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8110 * spec:
8111 *
8112 * If a built-in interface block is redeclared, it must appear in
8113 * the shader before any use of any member included in the built-in
8114 * declaration, or a compilation error will result.
8115 *
8116 * This appears to be a clarification to the behaviour established for
8117 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8118 * regardless of GLSL version.
8119 */
8120 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8121 v.run(instructions);
8122 if (v.usage_found()) {
8123 _mesa_glsl_error(&loc, state,
8124 "redeclaration of a built-in interface block must "
8125 "appear before any use of any member of the "
8126 "interface block");
8127 }
8128 }
8129
8130 const glsl_type *block_type =
8131 glsl_type::get_interface_instance(fields,
8132 num_variables,
8133 packing,
8134 matrix_layout ==
8135 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8136 this->block_name);
8137
8138 unsigned component_size = block_type->contains_double() ? 8 : 4;
8139 int xfb_offset =
8140 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8141 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8142 component_size);
8143
8144 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8145 YYLTYPE loc = this->get_location();
8146 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8147 "already taken in the current scope",
8148 this->block_name, iface_type_name);
8149 }
8150
8151 /* Since interface blocks cannot contain statements, it should be
8152 * impossible for the block to generate any instructions.
8153 */
8154 assert(declared_variables.is_empty());
8155
8156 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8157 *
8158 * Geometry shader input variables get the per-vertex values written
8159 * out by vertex shader output variables of the same names. Since a
8160 * geometry shader operates on a set of vertices, each input varying
8161 * variable (or input block, see interface blocks below) needs to be
8162 * declared as an array.
8163 */
8164 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8165 var_mode == ir_var_shader_in) {
8166 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8167 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8168 state->stage == MESA_SHADER_TESS_EVAL) &&
8169 !this->layout.flags.q.patch &&
8170 this->array_specifier == NULL &&
8171 var_mode == ir_var_shader_in) {
8172 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8173 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8174 !this->layout.flags.q.patch &&
8175 this->array_specifier == NULL &&
8176 var_mode == ir_var_shader_out) {
8177 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8178 }
8179
8180
8181 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8182 * says:
8183 *
8184 * "If an instance name (instance-name) is used, then it puts all the
8185 * members inside a scope within its own name space, accessed with the
8186 * field selector ( . ) operator (analogously to structures)."
8187 */
8188 if (this->instance_name) {
8189 if (redeclaring_per_vertex) {
8190 /* When a built-in in an unnamed interface block is redeclared,
8191 * get_variable_being_redeclared() calls
8192 * check_builtin_array_max_size() to make sure that built-in array
8193 * variables aren't redeclared to illegal sizes. But we're looking
8194 * at a redeclaration of a named built-in interface block. So we
8195 * have to manually call check_builtin_array_max_size() for all parts
8196 * of the interface that are arrays.
8197 */
8198 for (unsigned i = 0; i < num_variables; i++) {
8199 if (fields[i].type->is_array()) {
8200 const unsigned size = fields[i].type->array_size();
8201 check_builtin_array_max_size(fields[i].name, size, loc, state);
8202 }
8203 }
8204 } else {
8205 validate_identifier(this->instance_name, loc, state);
8206 }
8207
8208 ir_variable *var;
8209
8210 if (this->array_specifier != NULL) {
8211 const glsl_type *block_array_type =
8212 process_array_type(&loc, block_type, this->array_specifier, state);
8213
8214 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8215 *
8216 * For uniform blocks declared an array, each individual array
8217 * element corresponds to a separate buffer object backing one
8218 * instance of the block. As the array size indicates the number
8219 * of buffer objects needed, uniform block array declarations
8220 * must specify an array size.
8221 *
8222 * And a few paragraphs later:
8223 *
8224 * Geometry shader input blocks must be declared as arrays and
8225 * follow the array declaration and linking rules for all
8226 * geometry shader inputs. All other input and output block
8227 * arrays must specify an array size.
8228 *
8229 * The same applies to tessellation shaders.
8230 *
8231 * The upshot of this is that the only circumstance where an
8232 * interface array size *doesn't* need to be specified is on a
8233 * geometry shader input, tessellation control shader input,
8234 * tessellation control shader output, and tessellation evaluation
8235 * shader input.
8236 */
8237 if (block_array_type->is_unsized_array()) {
8238 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8239 state->stage == MESA_SHADER_TESS_CTRL ||
8240 state->stage == MESA_SHADER_TESS_EVAL;
8241 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8242
8243 if (this->layout.flags.q.in) {
8244 if (!allow_inputs)
8245 _mesa_glsl_error(&loc, state,
8246 "unsized input block arrays not allowed in "
8247 "%s shader",
8248 _mesa_shader_stage_to_string(state->stage));
8249 } else if (this->layout.flags.q.out) {
8250 if (!allow_outputs)
8251 _mesa_glsl_error(&loc, state,
8252 "unsized output block arrays not allowed in "
8253 "%s shader",
8254 _mesa_shader_stage_to_string(state->stage));
8255 } else {
8256 /* by elimination, this is a uniform block array */
8257 _mesa_glsl_error(&loc, state,
8258 "unsized uniform block arrays not allowed in "
8259 "%s shader",
8260 _mesa_shader_stage_to_string(state->stage));
8261 }
8262 }
8263
8264 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8265 *
8266 * * Arrays of arrays of blocks are not allowed
8267 */
8268 if (state->es_shader && block_array_type->is_array() &&
8269 block_array_type->fields.array->is_array()) {
8270 _mesa_glsl_error(&loc, state,
8271 "arrays of arrays interface blocks are "
8272 "not allowed");
8273 }
8274
8275 var = new(state) ir_variable(block_array_type,
8276 this->instance_name,
8277 var_mode);
8278 } else {
8279 var = new(state) ir_variable(block_type,
8280 this->instance_name,
8281 var_mode);
8282 }
8283
8284 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8285 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8286
8287 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8288 var->data.read_only = true;
8289
8290 var->data.patch = this->layout.flags.q.patch;
8291
8292 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8293 handle_geometry_shader_input_decl(state, loc, var);
8294 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8295 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8296 handle_tess_shader_input_decl(state, loc, var);
8297 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8298 handle_tess_ctrl_shader_output_decl(state, loc, var);
8299
8300 for (unsigned i = 0; i < num_variables; i++) {
8301 if (var->data.mode == ir_var_shader_storage)
8302 apply_memory_qualifiers(var, fields[i]);
8303 }
8304
8305 if (ir_variable *earlier =
8306 state->symbols->get_variable(this->instance_name)) {
8307 if (!redeclaring_per_vertex) {
8308 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8309 this->instance_name);
8310 }
8311 earlier->data.how_declared = ir_var_declared_normally;
8312 earlier->type = var->type;
8313 earlier->reinit_interface_type(block_type);
8314 delete var;
8315 } else {
8316 if (this->layout.flags.q.explicit_binding) {
8317 apply_explicit_binding(state, &loc, var, var->type,
8318 &this->layout);
8319 }
8320
8321 var->data.stream = qual_stream;
8322 if (layout.flags.q.explicit_location) {
8323 var->data.location = expl_location;
8324 var->data.explicit_location = true;
8325 }
8326
8327 state->symbols->add_variable(var);
8328 instructions->push_tail(var);
8329 }
8330 } else {
8331 /* In order to have an array size, the block must also be declared with
8332 * an instance name.
8333 */
8334 assert(this->array_specifier == NULL);
8335
8336 for (unsigned i = 0; i < num_variables; i++) {
8337 ir_variable *var =
8338 new(state) ir_variable(fields[i].type,
8339 ralloc_strdup(state, fields[i].name),
8340 var_mode);
8341 var->data.interpolation = fields[i].interpolation;
8342 var->data.centroid = fields[i].centroid;
8343 var->data.sample = fields[i].sample;
8344 var->data.patch = fields[i].patch;
8345 var->data.stream = qual_stream;
8346 var->data.location = fields[i].location;
8347
8348 if (fields[i].location != -1)
8349 var->data.explicit_location = true;
8350
8351 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8352 var->data.xfb_buffer = fields[i].xfb_buffer;
8353
8354 if (fields[i].offset != -1)
8355 var->data.explicit_xfb_offset = true;
8356 var->data.offset = fields[i].offset;
8357
8358 var->init_interface_type(block_type);
8359
8360 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8361 var->data.read_only = true;
8362
8363 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8364 if (state->es_shader) {
8365 var->data.precision =
8366 select_gles_precision(fields[i].precision, fields[i].type,
8367 state, &loc);
8368 }
8369
8370 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8371 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8372 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8373 } else {
8374 var->data.matrix_layout = fields[i].matrix_layout;
8375 }
8376
8377 if (var->data.mode == ir_var_shader_storage)
8378 apply_memory_qualifiers(var, fields[i]);
8379
8380 /* Examine var name here since var may get deleted in the next call */
8381 bool var_is_gl_id = is_gl_identifier(var->name);
8382
8383 if (redeclaring_per_vertex) {
8384 bool is_redeclaration;
8385 var =
8386 get_variable_being_redeclared(&var, loc, state,
8387 true /* allow_all_redeclarations */,
8388 &is_redeclaration);
8389 if (!var_is_gl_id || !is_redeclaration) {
8390 _mesa_glsl_error(&loc, state,
8391 "redeclaration of gl_PerVertex can only "
8392 "include built-in variables");
8393 } else if (var->data.how_declared == ir_var_declared_normally) {
8394 _mesa_glsl_error(&loc, state,
8395 "`%s' has already been redeclared",
8396 var->name);
8397 } else {
8398 var->data.how_declared = ir_var_declared_in_block;
8399 var->reinit_interface_type(block_type);
8400 }
8401 continue;
8402 }
8403
8404 if (state->symbols->get_variable(var->name) != NULL)
8405 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8406
8407 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8408 * The UBO declaration itself doesn't get an ir_variable unless it
8409 * has an instance name. This is ugly.
8410 */
8411 if (this->layout.flags.q.explicit_binding) {
8412 apply_explicit_binding(state, &loc, var,
8413 var->get_interface_type(), &this->layout);
8414 }
8415
8416 if (var->type->is_unsized_array()) {
8417 if (var->is_in_shader_storage_block() &&
8418 is_unsized_array_last_element(var)) {
8419 var->data.from_ssbo_unsized_array = true;
8420 } else {
8421 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8422 *
8423 * "If an array is declared as the last member of a shader storage
8424 * block and the size is not specified at compile-time, it is
8425 * sized at run-time. In all other cases, arrays are sized only
8426 * at compile-time."
8427 *
8428 * In desktop GLSL it is allowed to have unsized-arrays that are
8429 * not last, as long as we can determine that they are implicitly
8430 * sized.
8431 */
8432 if (state->es_shader) {
8433 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8434 "definition: only last member of a shader "
8435 "storage block can be defined as unsized "
8436 "array", fields[i].name);
8437 }
8438 }
8439 }
8440
8441 state->symbols->add_variable(var);
8442 instructions->push_tail(var);
8443 }
8444
8445 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8446 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8447 *
8448 * It is also a compilation error ... to redeclare a built-in
8449 * block and then use a member from that built-in block that was
8450 * not included in the redeclaration.
8451 *
8452 * This appears to be a clarification to the behaviour established
8453 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8454 * behaviour regardless of GLSL version.
8455 *
8456 * To prevent the shader from using a member that was not included in
8457 * the redeclaration, we disable any ir_variables that are still
8458 * associated with the old declaration of gl_PerVertex (since we've
8459 * already updated all of the variables contained in the new
8460 * gl_PerVertex to point to it).
8461 *
8462 * As a side effect this will prevent
8463 * validate_intrastage_interface_blocks() from getting confused and
8464 * thinking there are conflicting definitions of gl_PerVertex in the
8465 * shader.
8466 */
8467 foreach_in_list_safe(ir_instruction, node, instructions) {
8468 ir_variable *const var = node->as_variable();
8469 if (var != NULL &&
8470 var->get_interface_type() == earlier_per_vertex &&
8471 var->data.mode == var_mode) {
8472 if (var->data.how_declared == ir_var_declared_normally) {
8473 _mesa_glsl_error(&loc, state,
8474 "redeclaration of gl_PerVertex cannot "
8475 "follow a redeclaration of `%s'",
8476 var->name);
8477 }
8478 state->symbols->disable_variable(var->name);
8479 var->remove();
8480 }
8481 }
8482 }
8483 }
8484
8485 return NULL;
8486 }
8487
8488
8489 ir_rvalue *
8490 ast_tcs_output_layout::hir(exec_list *instructions,
8491 struct _mesa_glsl_parse_state *state)
8492 {
8493 YYLTYPE loc = this->get_location();
8494
8495 unsigned num_vertices;
8496 if (!state->out_qualifier->vertices->
8497 process_qualifier_constant(state, "vertices", &num_vertices,
8498 false)) {
8499 /* return here to stop cascading incorrect error messages */
8500 return NULL;
8501 }
8502
8503 /* If any shader outputs occurred before this declaration and specified an
8504 * array size, make sure the size they specified is consistent with the
8505 * primitive type.
8506 */
8507 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8508 _mesa_glsl_error(&loc, state,
8509 "this tessellation control shader output layout "
8510 "specifies %u vertices, but a previous output "
8511 "is declared with size %u",
8512 num_vertices, state->tcs_output_size);
8513 return NULL;
8514 }
8515
8516 state->tcs_output_vertices_specified = true;
8517
8518 /* If any shader outputs occurred before this declaration and did not
8519 * specify an array size, their size is determined now.
8520 */
8521 foreach_in_list (ir_instruction, node, instructions) {
8522 ir_variable *var = node->as_variable();
8523 if (var == NULL || var->data.mode != ir_var_shader_out)
8524 continue;
8525
8526 /* Note: Not all tessellation control shader output are arrays. */
8527 if (!var->type->is_unsized_array() || var->data.patch)
8528 continue;
8529
8530 if (var->data.max_array_access >= (int)num_vertices) {
8531 _mesa_glsl_error(&loc, state,
8532 "this tessellation control shader output layout "
8533 "specifies %u vertices, but an access to element "
8534 "%u of output `%s' already exists", num_vertices,
8535 var->data.max_array_access, var->name);
8536 } else {
8537 var->type = glsl_type::get_array_instance(var->type->fields.array,
8538 num_vertices);
8539 }
8540 }
8541
8542 return NULL;
8543 }
8544
8545
8546 ir_rvalue *
8547 ast_gs_input_layout::hir(exec_list *instructions,
8548 struct _mesa_glsl_parse_state *state)
8549 {
8550 YYLTYPE loc = this->get_location();
8551
8552 /* Should have been prevented by the parser. */
8553 assert(!state->gs_input_prim_type_specified
8554 || state->in_qualifier->prim_type == this->prim_type);
8555
8556 /* If any shader inputs occurred before this declaration and specified an
8557 * array size, make sure the size they specified is consistent with the
8558 * primitive type.
8559 */
8560 unsigned num_vertices = vertices_per_prim(this->prim_type);
8561 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8562 _mesa_glsl_error(&loc, state,
8563 "this geometry shader input layout implies %u vertices"
8564 " per primitive, but a previous input is declared"
8565 " with size %u", num_vertices, state->gs_input_size);
8566 return NULL;
8567 }
8568
8569 state->gs_input_prim_type_specified = true;
8570
8571 /* If any shader inputs occurred before this declaration and did not
8572 * specify an array size, their size is determined now.
8573 */
8574 foreach_in_list(ir_instruction, node, instructions) {
8575 ir_variable *var = node->as_variable();
8576 if (var == NULL || var->data.mode != ir_var_shader_in)
8577 continue;
8578
8579 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8580 * array; skip it.
8581 */
8582
8583 if (var->type->is_unsized_array()) {
8584 if (var->data.max_array_access >= (int)num_vertices) {
8585 _mesa_glsl_error(&loc, state,
8586 "this geometry shader input layout implies %u"
8587 " vertices, but an access to element %u of input"
8588 " `%s' already exists", num_vertices,
8589 var->data.max_array_access, var->name);
8590 } else {
8591 var->type = glsl_type::get_array_instance(var->type->fields.array,
8592 num_vertices);
8593 }
8594 }
8595 }
8596
8597 return NULL;
8598 }
8599
8600
8601 ir_rvalue *
8602 ast_cs_input_layout::hir(exec_list *instructions,
8603 struct _mesa_glsl_parse_state *state)
8604 {
8605 YYLTYPE loc = this->get_location();
8606
8607 /* From the ARB_compute_shader specification:
8608 *
8609 * If the local size of the shader in any dimension is greater
8610 * than the maximum size supported by the implementation for that
8611 * dimension, a compile-time error results.
8612 *
8613 * It is not clear from the spec how the error should be reported if
8614 * the total size of the work group exceeds
8615 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8616 * report it at compile time as well.
8617 */
8618 GLuint64 total_invocations = 1;
8619 unsigned qual_local_size[3];
8620 for (int i = 0; i < 3; i++) {
8621
8622 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8623 'x' + i);
8624 /* Infer a local_size of 1 for unspecified dimensions */
8625 if (this->local_size[i] == NULL) {
8626 qual_local_size[i] = 1;
8627 } else if (!this->local_size[i]->
8628 process_qualifier_constant(state, local_size_str,
8629 &qual_local_size[i], false)) {
8630 ralloc_free(local_size_str);
8631 return NULL;
8632 }
8633 ralloc_free(local_size_str);
8634
8635 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8636 _mesa_glsl_error(&loc, state,
8637 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8638 " (%d)", 'x' + i,
8639 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8640 break;
8641 }
8642 total_invocations *= qual_local_size[i];
8643 if (total_invocations >
8644 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8645 _mesa_glsl_error(&loc, state,
8646 "product of local_sizes exceeds "
8647 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8648 state->ctx->Const.MaxComputeWorkGroupInvocations);
8649 break;
8650 }
8651 }
8652
8653 /* If any compute input layout declaration preceded this one, make sure it
8654 * was consistent with this one.
8655 */
8656 if (state->cs_input_local_size_specified) {
8657 for (int i = 0; i < 3; i++) {
8658 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8659 _mesa_glsl_error(&loc, state,
8660 "compute shader input layout does not match"
8661 " previous declaration");
8662 return NULL;
8663 }
8664 }
8665 }
8666
8667 /* The ARB_compute_variable_group_size spec says:
8668 *
8669 * If a compute shader including a *local_size_variable* qualifier also
8670 * declares a fixed local group size using the *local_size_x*,
8671 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8672 * results
8673 */
8674 if (state->cs_input_local_size_variable_specified) {
8675 _mesa_glsl_error(&loc, state,
8676 "compute shader can't include both a variable and a "
8677 "fixed local group size");
8678 return NULL;
8679 }
8680
8681 state->cs_input_local_size_specified = true;
8682 for (int i = 0; i < 3; i++)
8683 state->cs_input_local_size[i] = qual_local_size[i];
8684
8685 /* We may now declare the built-in constant gl_WorkGroupSize (see
8686 * builtin_variable_generator::generate_constants() for why we didn't
8687 * declare it earlier).
8688 */
8689 ir_variable *var = new(state->symbols)
8690 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8691 var->data.how_declared = ir_var_declared_implicitly;
8692 var->data.read_only = true;
8693 instructions->push_tail(var);
8694 state->symbols->add_variable(var);
8695 ir_constant_data data;
8696 memset(&data, 0, sizeof(data));
8697 for (int i = 0; i < 3; i++)
8698 data.u[i] = qual_local_size[i];
8699 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8700 var->constant_initializer =
8701 new(var) ir_constant(glsl_type::uvec3_type, &data);
8702 var->data.has_initializer = true;
8703
8704 return NULL;
8705 }
8706
8707
8708 static void
8709 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8710 exec_list *instructions)
8711 {
8712 bool gl_FragColor_assigned = false;
8713 bool gl_FragData_assigned = false;
8714 bool gl_FragSecondaryColor_assigned = false;
8715 bool gl_FragSecondaryData_assigned = false;
8716 bool user_defined_fs_output_assigned = false;
8717 ir_variable *user_defined_fs_output = NULL;
8718
8719 /* It would be nice to have proper location information. */
8720 YYLTYPE loc;
8721 memset(&loc, 0, sizeof(loc));
8722
8723 foreach_in_list(ir_instruction, node, instructions) {
8724 ir_variable *var = node->as_variable();
8725
8726 if (!var || !var->data.assigned)
8727 continue;
8728
8729 if (strcmp(var->name, "gl_FragColor") == 0)
8730 gl_FragColor_assigned = true;
8731 else if (strcmp(var->name, "gl_FragData") == 0)
8732 gl_FragData_assigned = true;
8733 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8734 gl_FragSecondaryColor_assigned = true;
8735 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8736 gl_FragSecondaryData_assigned = true;
8737 else if (!is_gl_identifier(var->name)) {
8738 if (state->stage == MESA_SHADER_FRAGMENT &&
8739 var->data.mode == ir_var_shader_out) {
8740 user_defined_fs_output_assigned = true;
8741 user_defined_fs_output = var;
8742 }
8743 }
8744 }
8745
8746 /* From the GLSL 1.30 spec:
8747 *
8748 * "If a shader statically assigns a value to gl_FragColor, it
8749 * may not assign a value to any element of gl_FragData. If a
8750 * shader statically writes a value to any element of
8751 * gl_FragData, it may not assign a value to
8752 * gl_FragColor. That is, a shader may assign values to either
8753 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8754 * linked together must also consistently write just one of
8755 * these variables. Similarly, if user declared output
8756 * variables are in use (statically assigned to), then the
8757 * built-in variables gl_FragColor and gl_FragData may not be
8758 * assigned to. These incorrect usages all generate compile
8759 * time errors."
8760 */
8761 if (gl_FragColor_assigned && gl_FragData_assigned) {
8762 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8763 "`gl_FragColor' and `gl_FragData'");
8764 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8765 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8766 "`gl_FragColor' and `%s'",
8767 user_defined_fs_output->name);
8768 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8769 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8770 "`gl_FragSecondaryColorEXT' and"
8771 " `gl_FragSecondaryDataEXT'");
8772 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8773 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8774 "`gl_FragColor' and"
8775 " `gl_FragSecondaryDataEXT'");
8776 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8777 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8778 "`gl_FragData' and"
8779 " `gl_FragSecondaryColorEXT'");
8780 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8781 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8782 "`gl_FragData' and `%s'",
8783 user_defined_fs_output->name);
8784 }
8785
8786 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8787 !state->EXT_blend_func_extended_enable) {
8788 _mesa_glsl_error(&loc, state,
8789 "Dual source blending requires EXT_blend_func_extended");
8790 }
8791 }
8792
8793 static void
8794 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8795 {
8796 YYLTYPE loc;
8797 memset(&loc, 0, sizeof(loc));
8798
8799 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8800 *
8801 * "A program will fail to compile or link if any shader
8802 * or stage contains two or more functions with the same
8803 * name if the name is associated with a subroutine type."
8804 */
8805
8806 for (int i = 0; i < state->num_subroutines; i++) {
8807 unsigned definitions = 0;
8808 ir_function *fn = state->subroutines[i];
8809 /* Calculate number of function definitions with the same name */
8810 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8811 if (sig->is_defined) {
8812 if (++definitions > 1) {
8813 _mesa_glsl_error(&loc, state,
8814 "%s shader contains two or more function "
8815 "definitions with name `%s', which is "
8816 "associated with a subroutine type.\n",
8817 _mesa_shader_stage_to_string(state->stage),
8818 fn->name);
8819 return;
8820 }
8821 }
8822 }
8823 }
8824 }
8825
8826 static void
8827 remove_per_vertex_blocks(exec_list *instructions,
8828 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8829 {
8830 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8831 * if it exists in this shader type.
8832 */
8833 const glsl_type *per_vertex = NULL;
8834 switch (mode) {
8835 case ir_var_shader_in:
8836 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8837 per_vertex = gl_in->get_interface_type();
8838 break;
8839 case ir_var_shader_out:
8840 if (ir_variable *gl_Position =
8841 state->symbols->get_variable("gl_Position")) {
8842 per_vertex = gl_Position->get_interface_type();
8843 }
8844 break;
8845 default:
8846 assert(!"Unexpected mode");
8847 break;
8848 }
8849
8850 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8851 * need to do anything.
8852 */
8853 if (per_vertex == NULL)
8854 return;
8855
8856 /* If the interface block is used by the shader, then we don't need to do
8857 * anything.
8858 */
8859 interface_block_usage_visitor v(mode, per_vertex);
8860 v.run(instructions);
8861 if (v.usage_found())
8862 return;
8863
8864 /* Remove any ir_variable declarations that refer to the interface block
8865 * we're removing.
8866 */
8867 foreach_in_list_safe(ir_instruction, node, instructions) {
8868 ir_variable *const var = node->as_variable();
8869 if (var != NULL && var->get_interface_type() == per_vertex &&
8870 var->data.mode == mode) {
8871 state->symbols->disable_variable(var->name);
8872 var->remove();
8873 }
8874 }
8875 }
8876
8877 ir_rvalue *
8878 ast_warnings_toggle::hir(exec_list *,
8879 struct _mesa_glsl_parse_state *state)
8880 {
8881 state->warnings_enabled = enable;
8882 return NULL;
8883 }