673ce8f716f15046f8a1f747da8a09d30568e754
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 default: return (ir_expression_operation)0;
243 }
244
245 case GLSL_TYPE_UINT:
246 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
247 return (ir_expression_operation)0;
248 switch (from->base_type) {
249 case GLSL_TYPE_INT: return ir_unop_i2u;
250 default: return (ir_expression_operation)0;
251 }
252
253 case GLSL_TYPE_DOUBLE:
254 if (!state->has_double())
255 return (ir_expression_operation)0;
256 switch (from->base_type) {
257 case GLSL_TYPE_INT: return ir_unop_i2d;
258 case GLSL_TYPE_UINT: return ir_unop_u2d;
259 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
260 default: return (ir_expression_operation)0;
261 }
262
263 default: return (ir_expression_operation)0;
264 }
265 }
266
267
268 /**
269 * If a conversion is available, convert one operand to a different type
270 *
271 * The \c from \c ir_rvalue is converted "in place".
272 *
273 * \param to Type that the operand it to be converted to
274 * \param from Operand that is being converted
275 * \param state GLSL compiler state
276 *
277 * \return
278 * If a conversion is possible (or unnecessary), \c true is returned.
279 * Otherwise \c false is returned.
280 */
281 bool
282 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
283 struct _mesa_glsl_parse_state *state)
284 {
285 void *ctx = state;
286 if (to->base_type == from->type->base_type)
287 return true;
288
289 /* Prior to GLSL 1.20, there are no implicit conversions */
290 if (!state->is_version(120, 0))
291 return false;
292
293 /* ESSL does not allow implicit conversions */
294 if (state->es_shader)
295 return false;
296
297 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
298 *
299 * "There are no implicit array or structure conversions. For
300 * example, an array of int cannot be implicitly converted to an
301 * array of float.
302 */
303 if (!to->is_numeric() || !from->type->is_numeric())
304 return false;
305
306 /* We don't actually want the specific type `to`, we want a type
307 * with the same base type as `to`, but the same vector width as
308 * `from`.
309 */
310 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
311 from->type->matrix_columns);
312
313 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
314 if (op) {
315 from = new(ctx) ir_expression(op, to, from, NULL);
316 return true;
317 } else {
318 return false;
319 }
320 }
321
322
323 static const struct glsl_type *
324 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
325 bool multiply,
326 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
327 {
328 const glsl_type *type_a = value_a->type;
329 const glsl_type *type_b = value_b->type;
330
331 /* From GLSL 1.50 spec, page 56:
332 *
333 * "The arithmetic binary operators add (+), subtract (-),
334 * multiply (*), and divide (/) operate on integer and
335 * floating-point scalars, vectors, and matrices."
336 */
337 if (!type_a->is_numeric() || !type_b->is_numeric()) {
338 _mesa_glsl_error(loc, state,
339 "operands to arithmetic operators must be numeric");
340 return glsl_type::error_type;
341 }
342
343
344 /* "If one operand is floating-point based and the other is
345 * not, then the conversions from Section 4.1.10 "Implicit
346 * Conversions" are applied to the non-floating-point-based operand."
347 */
348 if (!apply_implicit_conversion(type_a, value_b, state)
349 && !apply_implicit_conversion(type_b, value_a, state)) {
350 _mesa_glsl_error(loc, state,
351 "could not implicitly convert operands to "
352 "arithmetic operator");
353 return glsl_type::error_type;
354 }
355 type_a = value_a->type;
356 type_b = value_b->type;
357
358 /* "If the operands are integer types, they must both be signed or
359 * both be unsigned."
360 *
361 * From this rule and the preceeding conversion it can be inferred that
362 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
363 * The is_numeric check above already filtered out the case where either
364 * type is not one of these, so now the base types need only be tested for
365 * equality.
366 */
367 if (type_a->base_type != type_b->base_type) {
368 _mesa_glsl_error(loc, state,
369 "base type mismatch for arithmetic operator");
370 return glsl_type::error_type;
371 }
372
373 /* "All arithmetic binary operators result in the same fundamental type
374 * (signed integer, unsigned integer, or floating-point) as the
375 * operands they operate on, after operand type conversion. After
376 * conversion, the following cases are valid
377 *
378 * * The two operands are scalars. In this case the operation is
379 * applied, resulting in a scalar."
380 */
381 if (type_a->is_scalar() && type_b->is_scalar())
382 return type_a;
383
384 /* "* One operand is a scalar, and the other is a vector or matrix.
385 * In this case, the scalar operation is applied independently to each
386 * component of the vector or matrix, resulting in the same size
387 * vector or matrix."
388 */
389 if (type_a->is_scalar()) {
390 if (!type_b->is_scalar())
391 return type_b;
392 } else if (type_b->is_scalar()) {
393 return type_a;
394 }
395
396 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
397 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
398 * handled.
399 */
400 assert(!type_a->is_scalar());
401 assert(!type_b->is_scalar());
402
403 /* "* The two operands are vectors of the same size. In this case, the
404 * operation is done component-wise resulting in the same size
405 * vector."
406 */
407 if (type_a->is_vector() && type_b->is_vector()) {
408 if (type_a == type_b) {
409 return type_a;
410 } else {
411 _mesa_glsl_error(loc, state,
412 "vector size mismatch for arithmetic operator");
413 return glsl_type::error_type;
414 }
415 }
416
417 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
418 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
419 * <vector, vector> have been handled. At least one of the operands must
420 * be matrix. Further, since there are no integer matrix types, the base
421 * type of both operands must be float.
422 */
423 assert(type_a->is_matrix() || type_b->is_matrix());
424 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
425 type_a->base_type == GLSL_TYPE_DOUBLE);
426 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
427 type_b->base_type == GLSL_TYPE_DOUBLE);
428
429 /* "* The operator is add (+), subtract (-), or divide (/), and the
430 * operands are matrices with the same number of rows and the same
431 * number of columns. In this case, the operation is done component-
432 * wise resulting in the same size matrix."
433 * * The operator is multiply (*), where both operands are matrices or
434 * one operand is a vector and the other a matrix. A right vector
435 * operand is treated as a column vector and a left vector operand as a
436 * row vector. In all these cases, it is required that the number of
437 * columns of the left operand is equal to the number of rows of the
438 * right operand. Then, the multiply (*) operation does a linear
439 * algebraic multiply, yielding an object that has the same number of
440 * rows as the left operand and the same number of columns as the right
441 * operand. Section 5.10 "Vector and Matrix Operations" explains in
442 * more detail how vectors and matrices are operated on."
443 */
444 if (! multiply) {
445 if (type_a == type_b)
446 return type_a;
447 } else {
448 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
449
450 if (type == glsl_type::error_type) {
451 _mesa_glsl_error(loc, state,
452 "size mismatch for matrix multiplication");
453 }
454
455 return type;
456 }
457
458
459 /* "All other cases are illegal."
460 */
461 _mesa_glsl_error(loc, state, "type mismatch");
462 return glsl_type::error_type;
463 }
464
465
466 static const struct glsl_type *
467 unary_arithmetic_result_type(const struct glsl_type *type,
468 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
469 {
470 /* From GLSL 1.50 spec, page 57:
471 *
472 * "The arithmetic unary operators negate (-), post- and pre-increment
473 * and decrement (-- and ++) operate on integer or floating-point
474 * values (including vectors and matrices). All unary operators work
475 * component-wise on their operands. These result with the same type
476 * they operated on."
477 */
478 if (!type->is_numeric()) {
479 _mesa_glsl_error(loc, state,
480 "operands to arithmetic operators must be numeric");
481 return glsl_type::error_type;
482 }
483
484 return type;
485 }
486
487 /**
488 * \brief Return the result type of a bit-logic operation.
489 *
490 * If the given types to the bit-logic operator are invalid, return
491 * glsl_type::error_type.
492 *
493 * \param value_a LHS of bit-logic op
494 * \param value_b RHS of bit-logic op
495 */
496 static const struct glsl_type *
497 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
498 ast_operators op,
499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501 const glsl_type *type_a = value_a->type;
502 const glsl_type *type_b = value_b->type;
503
504 if (!state->check_bitwise_operations_allowed(loc)) {
505 return glsl_type::error_type;
506 }
507
508 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
509 *
510 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
511 * (|). The operands must be of type signed or unsigned integers or
512 * integer vectors."
513 */
514 if (!type_a->is_integer()) {
515 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
516 ast_expression::operator_string(op));
517 return glsl_type::error_type;
518 }
519 if (!type_b->is_integer()) {
520 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
521 ast_expression::operator_string(op));
522 return glsl_type::error_type;
523 }
524
525 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
526 * make sense for bitwise operations, as they don't operate on floats.
527 *
528 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
529 * here. It wasn't clear whether or not we should apply them to bitwise
530 * operations. However, Khronos has decided that they should in future
531 * language revisions. Applications also rely on this behavior. We opt
532 * to apply them in general, but issue a portability warning.
533 *
534 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
535 */
536 if (type_a->base_type != type_b->base_type) {
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "`%s` operator",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 } else {
545 _mesa_glsl_warning(loc, state,
546 "some implementations may not support implicit "
547 "int -> uint conversions for `%s' operators; "
548 "consider casting explicitly for portability",
549 ast_expression::operator_string(op));
550 }
551 type_a = value_a->type;
552 type_b = value_b->type;
553 }
554
555 /* "The fundamental types of the operands (signed or unsigned) must
556 * match,"
557 */
558 if (type_a->base_type != type_b->base_type) {
559 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
560 "base type", ast_expression::operator_string(op));
561 return glsl_type::error_type;
562 }
563
564 /* "The operands cannot be vectors of differing size." */
565 if (type_a->is_vector() &&
566 type_b->is_vector() &&
567 type_a->vector_elements != type_b->vector_elements) {
568 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
569 "different sizes", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If one operand is a scalar and the other a vector, the scalar is
574 * applied component-wise to the vector, resulting in the same type as
575 * the vector. The fundamental types of the operands [...] will be the
576 * resulting fundamental type."
577 */
578 if (type_a->is_scalar())
579 return type_b;
580 else
581 return type_a;
582 }
583
584 static const struct glsl_type *
585 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
586 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
587 {
588 const glsl_type *type_a = value_a->type;
589 const glsl_type *type_b = value_b->type;
590
591 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
592 return glsl_type::error_type;
593 }
594
595 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
596 *
597 * "The operator modulus (%) operates on signed or unsigned integers or
598 * integer vectors."
599 */
600 if (!type_a->is_integer()) {
601 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
602 return glsl_type::error_type;
603 }
604 if (!type_b->is_integer()) {
605 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
606 return glsl_type::error_type;
607 }
608
609 /* "If the fundamental types in the operands do not match, then the
610 * conversions from section 4.1.10 "Implicit Conversions" are applied
611 * to create matching types."
612 *
613 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
614 * int -> uint conversion rules. Prior to that, there were no implicit
615 * conversions. So it's harmless to apply them universally - no implicit
616 * conversions will exist. If the types don't match, we'll receive false,
617 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
618 *
619 * "The operand types must both be signed or unsigned."
620 */
621 if (!apply_implicit_conversion(type_a, value_b, state) &&
622 !apply_implicit_conversion(type_b, value_a, state)) {
623 _mesa_glsl_error(loc, state,
624 "could not implicitly convert operands to "
625 "modulus (%%) operator");
626 return glsl_type::error_type;
627 }
628 type_a = value_a->type;
629 type_b = value_b->type;
630
631 /* "The operands cannot be vectors of differing size. If one operand is
632 * a scalar and the other vector, then the scalar is applied component-
633 * wise to the vector, resulting in the same type as the vector. If both
634 * are vectors of the same size, the result is computed component-wise."
635 */
636 if (type_a->is_vector()) {
637 if (!type_b->is_vector()
638 || (type_a->vector_elements == type_b->vector_elements))
639 return type_a;
640 } else
641 return type_b;
642
643 /* "The operator modulus (%) is not defined for any other data types
644 * (non-integer types)."
645 */
646 _mesa_glsl_error(loc, state, "type mismatch");
647 return glsl_type::error_type;
648 }
649
650
651 static const struct glsl_type *
652 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
653 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
654 {
655 const glsl_type *type_a = value_a->type;
656 const glsl_type *type_b = value_b->type;
657
658 /* From GLSL 1.50 spec, page 56:
659 * "The relational operators greater than (>), less than (<), greater
660 * than or equal (>=), and less than or equal (<=) operate only on
661 * scalar integer and scalar floating-point expressions."
662 */
663 if (!type_a->is_numeric()
664 || !type_b->is_numeric()
665 || !type_a->is_scalar()
666 || !type_b->is_scalar()) {
667 _mesa_glsl_error(loc, state,
668 "operands to relational operators must be scalar and "
669 "numeric");
670 return glsl_type::error_type;
671 }
672
673 /* "Either the operands' types must match, or the conversions from
674 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
675 * operand, after which the types must match."
676 */
677 if (!apply_implicit_conversion(type_a, value_b, state)
678 && !apply_implicit_conversion(type_b, value_a, state)) {
679 _mesa_glsl_error(loc, state,
680 "could not implicitly convert operands to "
681 "relational operator");
682 return glsl_type::error_type;
683 }
684 type_a = value_a->type;
685 type_b = value_b->type;
686
687 if (type_a->base_type != type_b->base_type) {
688 _mesa_glsl_error(loc, state, "base type mismatch");
689 return glsl_type::error_type;
690 }
691
692 /* "The result is scalar Boolean."
693 */
694 return glsl_type::bool_type;
695 }
696
697 /**
698 * \brief Return the result type of a bit-shift operation.
699 *
700 * If the given types to the bit-shift operator are invalid, return
701 * glsl_type::error_type.
702 *
703 * \param type_a Type of LHS of bit-shift op
704 * \param type_b Type of RHS of bit-shift op
705 */
706 static const struct glsl_type *
707 shift_result_type(const struct glsl_type *type_a,
708 const struct glsl_type *type_b,
709 ast_operators op,
710 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
711 {
712 if (!state->check_bitwise_operations_allowed(loc)) {
713 return glsl_type::error_type;
714 }
715
716 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
717 *
718 * "The shift operators (<<) and (>>). For both operators, the operands
719 * must be signed or unsigned integers or integer vectors. One operand
720 * can be signed while the other is unsigned."
721 */
722 if (!type_a->is_integer()) {
723 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
724 "integer vector", ast_expression::operator_string(op));
725 return glsl_type::error_type;
726
727 }
728 if (!type_b->is_integer()) {
729 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
730 "integer vector", ast_expression::operator_string(op));
731 return glsl_type::error_type;
732 }
733
734 /* "If the first operand is a scalar, the second operand has to be
735 * a scalar as well."
736 */
737 if (type_a->is_scalar() && !type_b->is_scalar()) {
738 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
739 "second must be scalar as well",
740 ast_expression::operator_string(op));
741 return glsl_type::error_type;
742 }
743
744 /* If both operands are vectors, check that they have same number of
745 * elements.
746 */
747 if (type_a->is_vector() &&
748 type_b->is_vector() &&
749 type_a->vector_elements != type_b->vector_elements) {
750 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
751 "have same number of elements",
752 ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "In all cases, the resulting type will be the same type as the left
757 * operand."
758 */
759 return type_a;
760 }
761
762 /**
763 * Returns the innermost array index expression in an rvalue tree.
764 * This is the largest indexing level -- if an array of blocks, then
765 * it is the block index rather than an indexing expression for an
766 * array-typed member of an array of blocks.
767 */
768 static ir_rvalue *
769 find_innermost_array_index(ir_rvalue *rv)
770 {
771 ir_dereference_array *last = NULL;
772 while (rv) {
773 if (rv->as_dereference_array()) {
774 last = rv->as_dereference_array();
775 rv = last->array;
776 } else if (rv->as_dereference_record())
777 rv = rv->as_dereference_record()->record;
778 else if (rv->as_swizzle())
779 rv = rv->as_swizzle()->val;
780 else
781 rv = NULL;
782 }
783
784 if (last)
785 return last->array_index;
786
787 return NULL;
788 }
789
790 /**
791 * Validates that a value can be assigned to a location with a specified type
792 *
793 * Validates that \c rhs can be assigned to some location. If the types are
794 * not an exact match but an automatic conversion is possible, \c rhs will be
795 * converted.
796 *
797 * \return
798 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
799 * Otherwise the actual RHS to be assigned will be returned. This may be
800 * \c rhs, or it may be \c rhs after some type conversion.
801 *
802 * \note
803 * In addition to being used for assignments, this function is used to
804 * type-check return values.
805 */
806 static ir_rvalue *
807 validate_assignment(struct _mesa_glsl_parse_state *state,
808 YYLTYPE loc, ir_rvalue *lhs,
809 ir_rvalue *rhs, bool is_initializer)
810 {
811 /* If there is already some error in the RHS, just return it. Anything
812 * else will lead to an avalanche of error message back to the user.
813 */
814 if (rhs->type->is_error())
815 return rhs;
816
817 /* In the Tessellation Control Shader:
818 * If a per-vertex output variable is used as an l-value, it is an error
819 * if the expression indicating the vertex number is not the identifier
820 * `gl_InvocationID`.
821 */
822 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
823 ir_variable *var = lhs->variable_referenced();
824 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
825 ir_rvalue *index = find_innermost_array_index(lhs);
826 ir_variable *index_var = index ? index->variable_referenced() : NULL;
827 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
828 _mesa_glsl_error(&loc, state,
829 "Tessellation control shader outputs can only "
830 "be indexed by gl_InvocationID");
831 return NULL;
832 }
833 }
834 }
835
836 /* If the types are identical, the assignment can trivially proceed.
837 */
838 if (rhs->type == lhs->type)
839 return rhs;
840
841 /* If the array element types are the same and the LHS is unsized,
842 * the assignment is okay for initializers embedded in variable
843 * declarations.
844 *
845 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
846 * is handled by ir_dereference::is_lvalue.
847 */
848 const glsl_type *lhs_t = lhs->type;
849 const glsl_type *rhs_t = rhs->type;
850 bool unsized_array = false;
851 while(lhs_t->is_array()) {
852 if (rhs_t == lhs_t)
853 break; /* the rest of the inner arrays match so break out early */
854 if (!rhs_t->is_array()) {
855 unsized_array = false;
856 break; /* number of dimensions mismatch */
857 }
858 if (lhs_t->length == rhs_t->length) {
859 lhs_t = lhs_t->fields.array;
860 rhs_t = rhs_t->fields.array;
861 continue;
862 } else if (lhs_t->is_unsized_array()) {
863 unsized_array = true;
864 } else {
865 unsized_array = false;
866 break; /* sized array mismatch */
867 }
868 lhs_t = lhs_t->fields.array;
869 rhs_t = rhs_t->fields.array;
870 }
871 if (unsized_array) {
872 if (is_initializer) {
873 return rhs;
874 } else {
875 _mesa_glsl_error(&loc, state,
876 "implicitly sized arrays cannot be assigned");
877 return NULL;
878 }
879 }
880
881 /* Check for implicit conversion in GLSL 1.20 */
882 if (apply_implicit_conversion(lhs->type, rhs, state)) {
883 if (rhs->type == lhs->type)
884 return rhs;
885 }
886
887 _mesa_glsl_error(&loc, state,
888 "%s of type %s cannot be assigned to "
889 "variable of type %s",
890 is_initializer ? "initializer" : "value",
891 rhs->type->name, lhs->type->name);
892
893 return NULL;
894 }
895
896 static void
897 mark_whole_array_access(ir_rvalue *access)
898 {
899 ir_dereference_variable *deref = access->as_dereference_variable();
900
901 if (deref && deref->var) {
902 deref->var->data.max_array_access = deref->type->length - 1;
903 }
904 }
905
906 static bool
907 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
908 const char *non_lvalue_description,
909 ir_rvalue *lhs, ir_rvalue *rhs,
910 ir_rvalue **out_rvalue, bool needs_rvalue,
911 bool is_initializer,
912 YYLTYPE lhs_loc)
913 {
914 void *ctx = state;
915 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
916
917 ir_variable *lhs_var = lhs->variable_referenced();
918 if (lhs_var)
919 lhs_var->data.assigned = true;
920
921 if (!error_emitted) {
922 if (non_lvalue_description != NULL) {
923 _mesa_glsl_error(&lhs_loc, state,
924 "assignment to %s",
925 non_lvalue_description);
926 error_emitted = true;
927 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
928 (lhs_var->data.mode == ir_var_shader_storage &&
929 lhs_var->data.image_read_only))) {
930 /* We can have image_read_only set on both images and buffer variables,
931 * but in the former there is a distinction between assignments to
932 * the variable itself (read_only) and to the memory they point to
933 * (image_read_only), while in the case of buffer variables there is
934 * no such distinction, that is why this check here is limited to
935 * buffer variables alone.
936 */
937 _mesa_glsl_error(&lhs_loc, state,
938 "assignment to read-only variable '%s'",
939 lhs_var->name);
940 error_emitted = true;
941 } else if (lhs->type->is_array() &&
942 !state->check_version(120, 300, &lhs_loc,
943 "whole array assignment forbidden")) {
944 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
945 *
946 * "Other binary or unary expressions, non-dereferenced
947 * arrays, function names, swizzles with repeated fields,
948 * and constants cannot be l-values."
949 *
950 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
951 */
952 error_emitted = true;
953 } else if (!lhs->is_lvalue()) {
954 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
955 error_emitted = true;
956 }
957 }
958
959 ir_rvalue *new_rhs =
960 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
961 if (new_rhs != NULL) {
962 rhs = new_rhs;
963
964 /* If the LHS array was not declared with a size, it takes it size from
965 * the RHS. If the LHS is an l-value and a whole array, it must be a
966 * dereference of a variable. Any other case would require that the LHS
967 * is either not an l-value or not a whole array.
968 */
969 if (lhs->type->is_unsized_array()) {
970 ir_dereference *const d = lhs->as_dereference();
971
972 assert(d != NULL);
973
974 ir_variable *const var = d->variable_referenced();
975
976 assert(var != NULL);
977
978 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
979 /* FINISHME: This should actually log the location of the RHS. */
980 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
981 "previous access",
982 var->data.max_array_access);
983 }
984
985 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
986 rhs->type->array_size());
987 d->type = var->type;
988 }
989 if (lhs->type->is_array()) {
990 mark_whole_array_access(rhs);
991 mark_whole_array_access(lhs);
992 }
993 }
994
995 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
996 * but not post_inc) need the converted assigned value as an rvalue
997 * to handle things like:
998 *
999 * i = j += 1;
1000 */
1001 if (needs_rvalue) {
1002 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1003 ir_var_temporary);
1004 instructions->push_tail(var);
1005 instructions->push_tail(assign(var, rhs));
1006
1007 if (!error_emitted) {
1008 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1009 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1010 }
1011 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1012
1013 *out_rvalue = rvalue;
1014 } else {
1015 if (!error_emitted)
1016 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1017 *out_rvalue = NULL;
1018 }
1019
1020 return error_emitted;
1021 }
1022
1023 static ir_rvalue *
1024 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1025 {
1026 void *ctx = ralloc_parent(lvalue);
1027 ir_variable *var;
1028
1029 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1030 ir_var_temporary);
1031 instructions->push_tail(var);
1032
1033 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1034 lvalue));
1035
1036 return new(ctx) ir_dereference_variable(var);
1037 }
1038
1039
1040 ir_rvalue *
1041 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1042 {
1043 (void) instructions;
1044 (void) state;
1045
1046 return NULL;
1047 }
1048
1049 bool
1050 ast_node::has_sequence_subexpression() const
1051 {
1052 return false;
1053 }
1054
1055 void
1056 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1057 struct _mesa_glsl_parse_state *state)
1058 {
1059 (void)hir(instructions, state);
1060 }
1061
1062 void
1063 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1064 struct _mesa_glsl_parse_state *state)
1065 {
1066 (void)hir(instructions, state);
1067 }
1068
1069 static ir_rvalue *
1070 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1071 {
1072 int join_op;
1073 ir_rvalue *cmp = NULL;
1074
1075 if (operation == ir_binop_all_equal)
1076 join_op = ir_binop_logic_and;
1077 else
1078 join_op = ir_binop_logic_or;
1079
1080 switch (op0->type->base_type) {
1081 case GLSL_TYPE_FLOAT:
1082 case GLSL_TYPE_UINT:
1083 case GLSL_TYPE_INT:
1084 case GLSL_TYPE_BOOL:
1085 case GLSL_TYPE_DOUBLE:
1086 return new(mem_ctx) ir_expression(operation, op0, op1);
1087
1088 case GLSL_TYPE_ARRAY: {
1089 for (unsigned int i = 0; i < op0->type->length; i++) {
1090 ir_rvalue *e0, *e1, *result;
1091
1092 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1093 new(mem_ctx) ir_constant(i));
1094 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1095 new(mem_ctx) ir_constant(i));
1096 result = do_comparison(mem_ctx, operation, e0, e1);
1097
1098 if (cmp) {
1099 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1100 } else {
1101 cmp = result;
1102 }
1103 }
1104
1105 mark_whole_array_access(op0);
1106 mark_whole_array_access(op1);
1107 break;
1108 }
1109
1110 case GLSL_TYPE_STRUCT: {
1111 for (unsigned int i = 0; i < op0->type->length; i++) {
1112 ir_rvalue *e0, *e1, *result;
1113 const char *field_name = op0->type->fields.structure[i].name;
1114
1115 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1116 field_name);
1117 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1118 field_name);
1119 result = do_comparison(mem_ctx, operation, e0, e1);
1120
1121 if (cmp) {
1122 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1123 } else {
1124 cmp = result;
1125 }
1126 }
1127 break;
1128 }
1129
1130 case GLSL_TYPE_ERROR:
1131 case GLSL_TYPE_VOID:
1132 case GLSL_TYPE_SAMPLER:
1133 case GLSL_TYPE_IMAGE:
1134 case GLSL_TYPE_INTERFACE:
1135 case GLSL_TYPE_ATOMIC_UINT:
1136 case GLSL_TYPE_SUBROUTINE:
1137 case GLSL_TYPE_FUNCTION:
1138 /* I assume a comparison of a struct containing a sampler just
1139 * ignores the sampler present in the type.
1140 */
1141 break;
1142 }
1143
1144 if (cmp == NULL)
1145 cmp = new(mem_ctx) ir_constant(true);
1146
1147 return cmp;
1148 }
1149
1150 /* For logical operations, we want to ensure that the operands are
1151 * scalar booleans. If it isn't, emit an error and return a constant
1152 * boolean to avoid triggering cascading error messages.
1153 */
1154 ir_rvalue *
1155 get_scalar_boolean_operand(exec_list *instructions,
1156 struct _mesa_glsl_parse_state *state,
1157 ast_expression *parent_expr,
1158 int operand,
1159 const char *operand_name,
1160 bool *error_emitted)
1161 {
1162 ast_expression *expr = parent_expr->subexpressions[operand];
1163 void *ctx = state;
1164 ir_rvalue *val = expr->hir(instructions, state);
1165
1166 if (val->type->is_boolean() && val->type->is_scalar())
1167 return val;
1168
1169 if (!*error_emitted) {
1170 YYLTYPE loc = expr->get_location();
1171 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1172 operand_name,
1173 parent_expr->operator_string(parent_expr->oper));
1174 *error_emitted = true;
1175 }
1176
1177 return new(ctx) ir_constant(true);
1178 }
1179
1180 /**
1181 * If name refers to a builtin array whose maximum allowed size is less than
1182 * size, report an error and return true. Otherwise return false.
1183 */
1184 void
1185 check_builtin_array_max_size(const char *name, unsigned size,
1186 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1187 {
1188 if ((strcmp("gl_TexCoord", name) == 0)
1189 && (size > state->Const.MaxTextureCoords)) {
1190 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1191 *
1192 * "The size [of gl_TexCoord] can be at most
1193 * gl_MaxTextureCoords."
1194 */
1195 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1196 "be larger than gl_MaxTextureCoords (%u)",
1197 state->Const.MaxTextureCoords);
1198 } else if (strcmp("gl_ClipDistance", name) == 0
1199 && size > state->Const.MaxClipPlanes) {
1200 /* From section 7.1 (Vertex Shader Special Variables) of the
1201 * GLSL 1.30 spec:
1202 *
1203 * "The gl_ClipDistance array is predeclared as unsized and
1204 * must be sized by the shader either redeclaring it with a
1205 * size or indexing it only with integral constant
1206 * expressions. ... The size can be at most
1207 * gl_MaxClipDistances."
1208 */
1209 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1210 "be larger than gl_MaxClipDistances (%u)",
1211 state->Const.MaxClipPlanes);
1212 }
1213 }
1214
1215 /**
1216 * Create the constant 1, of a which is appropriate for incrementing and
1217 * decrementing values of the given GLSL type. For example, if type is vec4,
1218 * this creates a constant value of 1.0 having type float.
1219 *
1220 * If the given type is invalid for increment and decrement operators, return
1221 * a floating point 1--the error will be detected later.
1222 */
1223 static ir_rvalue *
1224 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1225 {
1226 switch (type->base_type) {
1227 case GLSL_TYPE_UINT:
1228 return new(ctx) ir_constant((unsigned) 1);
1229 case GLSL_TYPE_INT:
1230 return new(ctx) ir_constant(1);
1231 default:
1232 case GLSL_TYPE_FLOAT:
1233 return new(ctx) ir_constant(1.0f);
1234 }
1235 }
1236
1237 ir_rvalue *
1238 ast_expression::hir(exec_list *instructions,
1239 struct _mesa_glsl_parse_state *state)
1240 {
1241 return do_hir(instructions, state, true);
1242 }
1243
1244 void
1245 ast_expression::hir_no_rvalue(exec_list *instructions,
1246 struct _mesa_glsl_parse_state *state)
1247 {
1248 do_hir(instructions, state, false);
1249 }
1250
1251 void
1252 ast_expression::set_is_lhs(bool new_value)
1253 {
1254 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1255 * if we lack a identifier we can just skip it.
1256 */
1257 if (this->primary_expression.identifier == NULL)
1258 return;
1259
1260 this->is_lhs = new_value;
1261
1262 /* We need to go through the subexpressions tree to cover cases like
1263 * ast_field_selection
1264 */
1265 if (this->subexpressions[0] != NULL)
1266 this->subexpressions[0]->set_is_lhs(new_value);
1267 }
1268
1269 ir_rvalue *
1270 ast_expression::do_hir(exec_list *instructions,
1271 struct _mesa_glsl_parse_state *state,
1272 bool needs_rvalue)
1273 {
1274 void *ctx = state;
1275 static const int operations[AST_NUM_OPERATORS] = {
1276 -1, /* ast_assign doesn't convert to ir_expression. */
1277 -1, /* ast_plus doesn't convert to ir_expression. */
1278 ir_unop_neg,
1279 ir_binop_add,
1280 ir_binop_sub,
1281 ir_binop_mul,
1282 ir_binop_div,
1283 ir_binop_mod,
1284 ir_binop_lshift,
1285 ir_binop_rshift,
1286 ir_binop_less,
1287 ir_binop_greater,
1288 ir_binop_lequal,
1289 ir_binop_gequal,
1290 ir_binop_all_equal,
1291 ir_binop_any_nequal,
1292 ir_binop_bit_and,
1293 ir_binop_bit_xor,
1294 ir_binop_bit_or,
1295 ir_unop_bit_not,
1296 ir_binop_logic_and,
1297 ir_binop_logic_xor,
1298 ir_binop_logic_or,
1299 ir_unop_logic_not,
1300
1301 /* Note: The following block of expression types actually convert
1302 * to multiple IR instructions.
1303 */
1304 ir_binop_mul, /* ast_mul_assign */
1305 ir_binop_div, /* ast_div_assign */
1306 ir_binop_mod, /* ast_mod_assign */
1307 ir_binop_add, /* ast_add_assign */
1308 ir_binop_sub, /* ast_sub_assign */
1309 ir_binop_lshift, /* ast_ls_assign */
1310 ir_binop_rshift, /* ast_rs_assign */
1311 ir_binop_bit_and, /* ast_and_assign */
1312 ir_binop_bit_xor, /* ast_xor_assign */
1313 ir_binop_bit_or, /* ast_or_assign */
1314
1315 -1, /* ast_conditional doesn't convert to ir_expression. */
1316 ir_binop_add, /* ast_pre_inc. */
1317 ir_binop_sub, /* ast_pre_dec. */
1318 ir_binop_add, /* ast_post_inc. */
1319 ir_binop_sub, /* ast_post_dec. */
1320 -1, /* ast_field_selection doesn't conv to ir_expression. */
1321 -1, /* ast_array_index doesn't convert to ir_expression. */
1322 -1, /* ast_function_call doesn't conv to ir_expression. */
1323 -1, /* ast_identifier doesn't convert to ir_expression. */
1324 -1, /* ast_int_constant doesn't convert to ir_expression. */
1325 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1326 -1, /* ast_float_constant doesn't conv to ir_expression. */
1327 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1328 -1, /* ast_sequence doesn't convert to ir_expression. */
1329 };
1330 ir_rvalue *result = NULL;
1331 ir_rvalue *op[3];
1332 const struct glsl_type *type; /* a temporary variable for switch cases */
1333 bool error_emitted = false;
1334 YYLTYPE loc;
1335
1336 loc = this->get_location();
1337
1338 switch (this->oper) {
1339 case ast_aggregate:
1340 assert(!"ast_aggregate: Should never get here.");
1341 break;
1342
1343 case ast_assign: {
1344 this->subexpressions[0]->set_is_lhs(true);
1345 op[0] = this->subexpressions[0]->hir(instructions, state);
1346 op[1] = this->subexpressions[1]->hir(instructions, state);
1347
1348 error_emitted =
1349 do_assignment(instructions, state,
1350 this->subexpressions[0]->non_lvalue_description,
1351 op[0], op[1], &result, needs_rvalue, false,
1352 this->subexpressions[0]->get_location());
1353 break;
1354 }
1355
1356 case ast_plus:
1357 op[0] = this->subexpressions[0]->hir(instructions, state);
1358
1359 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1360
1361 error_emitted = type->is_error();
1362
1363 result = op[0];
1364 break;
1365
1366 case ast_neg:
1367 op[0] = this->subexpressions[0]->hir(instructions, state);
1368
1369 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1370
1371 error_emitted = type->is_error();
1372
1373 result = new(ctx) ir_expression(operations[this->oper], type,
1374 op[0], NULL);
1375 break;
1376
1377 case ast_add:
1378 case ast_sub:
1379 case ast_mul:
1380 case ast_div:
1381 op[0] = this->subexpressions[0]->hir(instructions, state);
1382 op[1] = this->subexpressions[1]->hir(instructions, state);
1383
1384 type = arithmetic_result_type(op[0], op[1],
1385 (this->oper == ast_mul),
1386 state, & loc);
1387 error_emitted = type->is_error();
1388
1389 result = new(ctx) ir_expression(operations[this->oper], type,
1390 op[0], op[1]);
1391 break;
1392
1393 case ast_mod:
1394 op[0] = this->subexpressions[0]->hir(instructions, state);
1395 op[1] = this->subexpressions[1]->hir(instructions, state);
1396
1397 type = modulus_result_type(op[0], op[1], state, &loc);
1398
1399 assert(operations[this->oper] == ir_binop_mod);
1400
1401 result = new(ctx) ir_expression(operations[this->oper], type,
1402 op[0], op[1]);
1403 error_emitted = type->is_error();
1404 break;
1405
1406 case ast_lshift:
1407 case ast_rshift:
1408 if (!state->check_bitwise_operations_allowed(&loc)) {
1409 error_emitted = true;
1410 }
1411
1412 op[0] = this->subexpressions[0]->hir(instructions, state);
1413 op[1] = this->subexpressions[1]->hir(instructions, state);
1414 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1415 &loc);
1416 result = new(ctx) ir_expression(operations[this->oper], type,
1417 op[0], op[1]);
1418 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1419 break;
1420
1421 case ast_less:
1422 case ast_greater:
1423 case ast_lequal:
1424 case ast_gequal:
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 type = relational_result_type(op[0], op[1], state, & loc);
1429
1430 /* The relational operators must either generate an error or result
1431 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1432 */
1433 assert(type->is_error()
1434 || ((type->base_type == GLSL_TYPE_BOOL)
1435 && type->is_scalar()));
1436
1437 result = new(ctx) ir_expression(operations[this->oper], type,
1438 op[0], op[1]);
1439 error_emitted = type->is_error();
1440 break;
1441
1442 case ast_nequal:
1443 case ast_equal:
1444 op[0] = this->subexpressions[0]->hir(instructions, state);
1445 op[1] = this->subexpressions[1]->hir(instructions, state);
1446
1447 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1448 *
1449 * "The equality operators equal (==), and not equal (!=)
1450 * operate on all types. They result in a scalar Boolean. If
1451 * the operand types do not match, then there must be a
1452 * conversion from Section 4.1.10 "Implicit Conversions"
1453 * applied to one operand that can make them match, in which
1454 * case this conversion is done."
1455 */
1456
1457 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1458 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1459 "no operation `%1$s' exists that takes a left-hand "
1460 "operand of type 'void' or a right operand of type "
1461 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1462 error_emitted = true;
1463 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1464 && !apply_implicit_conversion(op[1]->type, op[0], state))
1465 || (op[0]->type != op[1]->type)) {
1466 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1467 "type", (this->oper == ast_equal) ? "==" : "!=");
1468 error_emitted = true;
1469 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1470 !state->check_version(120, 300, &loc,
1471 "array comparisons forbidden")) {
1472 error_emitted = true;
1473 } else if ((op[0]->type->contains_opaque() ||
1474 op[1]->type->contains_opaque())) {
1475 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1476 error_emitted = true;
1477 }
1478
1479 if (error_emitted) {
1480 result = new(ctx) ir_constant(false);
1481 } else {
1482 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1483 assert(result->type == glsl_type::bool_type);
1484 }
1485 break;
1486
1487 case ast_bit_and:
1488 case ast_bit_xor:
1489 case ast_bit_or:
1490 op[0] = this->subexpressions[0]->hir(instructions, state);
1491 op[1] = this->subexpressions[1]->hir(instructions, state);
1492 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1493 result = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1496 break;
1497
1498 case ast_bit_not:
1499 op[0] = this->subexpressions[0]->hir(instructions, state);
1500
1501 if (!state->check_bitwise_operations_allowed(&loc)) {
1502 error_emitted = true;
1503 }
1504
1505 if (!op[0]->type->is_integer()) {
1506 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1507 error_emitted = true;
1508 }
1509
1510 type = error_emitted ? glsl_type::error_type : op[0]->type;
1511 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1512 break;
1513
1514 case ast_logic_and: {
1515 exec_list rhs_instructions;
1516 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1517 "LHS", &error_emitted);
1518 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1519 "RHS", &error_emitted);
1520
1521 if (rhs_instructions.is_empty()) {
1522 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1523 type = result->type;
1524 } else {
1525 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1526 "and_tmp",
1527 ir_var_temporary);
1528 instructions->push_tail(tmp);
1529
1530 ir_if *const stmt = new(ctx) ir_if(op[0]);
1531 instructions->push_tail(stmt);
1532
1533 stmt->then_instructions.append_list(&rhs_instructions);
1534 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1535 ir_assignment *const then_assign =
1536 new(ctx) ir_assignment(then_deref, op[1]);
1537 stmt->then_instructions.push_tail(then_assign);
1538
1539 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1540 ir_assignment *const else_assign =
1541 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1542 stmt->else_instructions.push_tail(else_assign);
1543
1544 result = new(ctx) ir_dereference_variable(tmp);
1545 type = tmp->type;
1546 }
1547 break;
1548 }
1549
1550 case ast_logic_or: {
1551 exec_list rhs_instructions;
1552 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1553 "LHS", &error_emitted);
1554 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1555 "RHS", &error_emitted);
1556
1557 if (rhs_instructions.is_empty()) {
1558 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1559 type = result->type;
1560 } else {
1561 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1562 "or_tmp",
1563 ir_var_temporary);
1564 instructions->push_tail(tmp);
1565
1566 ir_if *const stmt = new(ctx) ir_if(op[0]);
1567 instructions->push_tail(stmt);
1568
1569 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1570 ir_assignment *const then_assign =
1571 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1572 stmt->then_instructions.push_tail(then_assign);
1573
1574 stmt->else_instructions.append_list(&rhs_instructions);
1575 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1576 ir_assignment *const else_assign =
1577 new(ctx) ir_assignment(else_deref, op[1]);
1578 stmt->else_instructions.push_tail(else_assign);
1579
1580 result = new(ctx) ir_dereference_variable(tmp);
1581 type = tmp->type;
1582 }
1583 break;
1584 }
1585
1586 case ast_logic_xor:
1587 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1588 *
1589 * "The logical binary operators and (&&), or ( | | ), and
1590 * exclusive or (^^). They operate only on two Boolean
1591 * expressions and result in a Boolean expression."
1592 */
1593 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1594 &error_emitted);
1595 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1596 &error_emitted);
1597
1598 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1599 op[0], op[1]);
1600 break;
1601
1602 case ast_logic_not:
1603 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1604 "operand", &error_emitted);
1605
1606 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1607 op[0], NULL);
1608 break;
1609
1610 case ast_mul_assign:
1611 case ast_div_assign:
1612 case ast_add_assign:
1613 case ast_sub_assign: {
1614 this->subexpressions[0]->set_is_lhs(true);
1615 op[0] = this->subexpressions[0]->hir(instructions, state);
1616 op[1] = this->subexpressions[1]->hir(instructions, state);
1617
1618 type = arithmetic_result_type(op[0], op[1],
1619 (this->oper == ast_mul_assign),
1620 state, & loc);
1621
1622 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1623 op[0], op[1]);
1624
1625 error_emitted =
1626 do_assignment(instructions, state,
1627 this->subexpressions[0]->non_lvalue_description,
1628 op[0]->clone(ctx, NULL), temp_rhs,
1629 &result, needs_rvalue, false,
1630 this->subexpressions[0]->get_location());
1631
1632 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1633 * explicitly test for this because none of the binary expression
1634 * operators allow array operands either.
1635 */
1636
1637 break;
1638 }
1639
1640 case ast_mod_assign: {
1641 this->subexpressions[0]->set_is_lhs(true);
1642 op[0] = this->subexpressions[0]->hir(instructions, state);
1643 op[1] = this->subexpressions[1]->hir(instructions, state);
1644
1645 type = modulus_result_type(op[0], op[1], state, &loc);
1646
1647 assert(operations[this->oper] == ir_binop_mod);
1648
1649 ir_rvalue *temp_rhs;
1650 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1651 op[0], op[1]);
1652
1653 error_emitted =
1654 do_assignment(instructions, state,
1655 this->subexpressions[0]->non_lvalue_description,
1656 op[0]->clone(ctx, NULL), temp_rhs,
1657 &result, needs_rvalue, false,
1658 this->subexpressions[0]->get_location());
1659 break;
1660 }
1661
1662 case ast_ls_assign:
1663 case ast_rs_assign: {
1664 this->subexpressions[0]->set_is_lhs(true);
1665 op[0] = this->subexpressions[0]->hir(instructions, state);
1666 op[1] = this->subexpressions[1]->hir(instructions, state);
1667 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1668 &loc);
1669 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1670 type, op[0], op[1]);
1671 error_emitted =
1672 do_assignment(instructions, state,
1673 this->subexpressions[0]->non_lvalue_description,
1674 op[0]->clone(ctx, NULL), temp_rhs,
1675 &result, needs_rvalue, false,
1676 this->subexpressions[0]->get_location());
1677 break;
1678 }
1679
1680 case ast_and_assign:
1681 case ast_xor_assign:
1682 case ast_or_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1688 type, op[0], op[1]);
1689 error_emitted =
1690 do_assignment(instructions, state,
1691 this->subexpressions[0]->non_lvalue_description,
1692 op[0]->clone(ctx, NULL), temp_rhs,
1693 &result, needs_rvalue, false,
1694 this->subexpressions[0]->get_location());
1695 break;
1696 }
1697
1698 case ast_conditional: {
1699 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1700 *
1701 * "The ternary selection operator (?:). It operates on three
1702 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1703 * first expression, which must result in a scalar Boolean."
1704 */
1705 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1706 "condition", &error_emitted);
1707
1708 /* The :? operator is implemented by generating an anonymous temporary
1709 * followed by an if-statement. The last instruction in each branch of
1710 * the if-statement assigns a value to the anonymous temporary. This
1711 * temporary is the r-value of the expression.
1712 */
1713 exec_list then_instructions;
1714 exec_list else_instructions;
1715
1716 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1717 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1718
1719 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1720 *
1721 * "The second and third expressions can be any type, as
1722 * long their types match, or there is a conversion in
1723 * Section 4.1.10 "Implicit Conversions" that can be applied
1724 * to one of the expressions to make their types match. This
1725 * resulting matching type is the type of the entire
1726 * expression."
1727 */
1728 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1729 && !apply_implicit_conversion(op[2]->type, op[1], state))
1730 || (op[1]->type != op[2]->type)) {
1731 YYLTYPE loc = this->subexpressions[1]->get_location();
1732
1733 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1734 "operator must have matching types");
1735 error_emitted = true;
1736 type = glsl_type::error_type;
1737 } else {
1738 type = op[1]->type;
1739 }
1740
1741 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1742 *
1743 * "The second and third expressions must be the same type, but can
1744 * be of any type other than an array."
1745 */
1746 if (type->is_array() &&
1747 !state->check_version(120, 300, &loc,
1748 "second and third operands of ?: operator "
1749 "cannot be arrays")) {
1750 error_emitted = true;
1751 }
1752
1753 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1754 *
1755 * "Except for array indexing, structure member selection, and
1756 * parentheses, opaque variables are not allowed to be operands in
1757 * expressions; such use results in a compile-time error."
1758 */
1759 if (type->contains_opaque()) {
1760 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1761 "of the ?: operator");
1762 error_emitted = true;
1763 }
1764
1765 ir_constant *cond_val = op[0]->constant_expression_value();
1766
1767 if (then_instructions.is_empty()
1768 && else_instructions.is_empty()
1769 && cond_val != NULL) {
1770 result = cond_val->value.b[0] ? op[1] : op[2];
1771 } else {
1772 /* The copy to conditional_tmp reads the whole array. */
1773 if (type->is_array()) {
1774 mark_whole_array_access(op[1]);
1775 mark_whole_array_access(op[2]);
1776 }
1777
1778 ir_variable *const tmp =
1779 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1780 instructions->push_tail(tmp);
1781
1782 ir_if *const stmt = new(ctx) ir_if(op[0]);
1783 instructions->push_tail(stmt);
1784
1785 then_instructions.move_nodes_to(& stmt->then_instructions);
1786 ir_dereference *const then_deref =
1787 new(ctx) ir_dereference_variable(tmp);
1788 ir_assignment *const then_assign =
1789 new(ctx) ir_assignment(then_deref, op[1]);
1790 stmt->then_instructions.push_tail(then_assign);
1791
1792 else_instructions.move_nodes_to(& stmt->else_instructions);
1793 ir_dereference *const else_deref =
1794 new(ctx) ir_dereference_variable(tmp);
1795 ir_assignment *const else_assign =
1796 new(ctx) ir_assignment(else_deref, op[2]);
1797 stmt->else_instructions.push_tail(else_assign);
1798
1799 result = new(ctx) ir_dereference_variable(tmp);
1800 }
1801 break;
1802 }
1803
1804 case ast_pre_inc:
1805 case ast_pre_dec: {
1806 this->non_lvalue_description = (this->oper == ast_pre_inc)
1807 ? "pre-increment operation" : "pre-decrement operation";
1808
1809 op[0] = this->subexpressions[0]->hir(instructions, state);
1810 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1811
1812 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1813
1814 ir_rvalue *temp_rhs;
1815 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1816 op[0], op[1]);
1817
1818 error_emitted =
1819 do_assignment(instructions, state,
1820 this->subexpressions[0]->non_lvalue_description,
1821 op[0]->clone(ctx, NULL), temp_rhs,
1822 &result, needs_rvalue, false,
1823 this->subexpressions[0]->get_location());
1824 break;
1825 }
1826
1827 case ast_post_inc:
1828 case ast_post_dec: {
1829 this->non_lvalue_description = (this->oper == ast_post_inc)
1830 ? "post-increment operation" : "post-decrement operation";
1831 op[0] = this->subexpressions[0]->hir(instructions, state);
1832 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1833
1834 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1835
1836 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1837
1838 ir_rvalue *temp_rhs;
1839 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1840 op[0], op[1]);
1841
1842 /* Get a temporary of a copy of the lvalue before it's modified.
1843 * This may get thrown away later.
1844 */
1845 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1846
1847 ir_rvalue *junk_rvalue;
1848 error_emitted =
1849 do_assignment(instructions, state,
1850 this->subexpressions[0]->non_lvalue_description,
1851 op[0]->clone(ctx, NULL), temp_rhs,
1852 &junk_rvalue, false, false,
1853 this->subexpressions[0]->get_location());
1854
1855 break;
1856 }
1857
1858 case ast_field_selection:
1859 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1860 break;
1861
1862 case ast_array_index: {
1863 YYLTYPE index_loc = subexpressions[1]->get_location();
1864
1865 /* Getting if an array is being used uninitialized is beyond what we get
1866 * from ir_value.data.assigned. Setting is_lhs as true would force to
1867 * not raise a uninitialized warning when using an array
1868 */
1869 subexpressions[0]->set_is_lhs(true);
1870 op[0] = subexpressions[0]->hir(instructions, state);
1871 op[1] = subexpressions[1]->hir(instructions, state);
1872
1873 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1874 loc, index_loc);
1875
1876 if (result->type->is_error())
1877 error_emitted = true;
1878
1879 break;
1880 }
1881
1882 case ast_unsized_array_dim:
1883 assert(!"ast_unsized_array_dim: Should never get here.");
1884 break;
1885
1886 case ast_function_call:
1887 /* Should *NEVER* get here. ast_function_call should always be handled
1888 * by ast_function_expression::hir.
1889 */
1890 assert(0);
1891 break;
1892
1893 case ast_identifier: {
1894 /* ast_identifier can appear several places in a full abstract syntax
1895 * tree. This particular use must be at location specified in the grammar
1896 * as 'variable_identifier'.
1897 */
1898 ir_variable *var =
1899 state->symbols->get_variable(this->primary_expression.identifier);
1900
1901 if (var != NULL) {
1902 var->data.used = true;
1903 result = new(ctx) ir_dereference_variable(var);
1904
1905 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1906 && !this->is_lhs
1907 && result->variable_referenced()->data.assigned != true) {
1908 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1909 this->primary_expression.identifier);
1910 }
1911 } else {
1912 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1913 this->primary_expression.identifier);
1914
1915 result = ir_rvalue::error_value(ctx);
1916 error_emitted = true;
1917 }
1918 break;
1919 }
1920
1921 case ast_int_constant:
1922 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1923 break;
1924
1925 case ast_uint_constant:
1926 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1927 break;
1928
1929 case ast_float_constant:
1930 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1931 break;
1932
1933 case ast_bool_constant:
1934 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1935 break;
1936
1937 case ast_double_constant:
1938 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1939 break;
1940
1941 case ast_sequence: {
1942 /* It should not be possible to generate a sequence in the AST without
1943 * any expressions in it.
1944 */
1945 assert(!this->expressions.is_empty());
1946
1947 /* The r-value of a sequence is the last expression in the sequence. If
1948 * the other expressions in the sequence do not have side-effects (and
1949 * therefore add instructions to the instruction list), they get dropped
1950 * on the floor.
1951 */
1952 exec_node *previous_tail_pred = NULL;
1953 YYLTYPE previous_operand_loc = loc;
1954
1955 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1956 /* If one of the operands of comma operator does not generate any
1957 * code, we want to emit a warning. At each pass through the loop
1958 * previous_tail_pred will point to the last instruction in the
1959 * stream *before* processing the previous operand. Naturally,
1960 * instructions->tail_pred will point to the last instruction in the
1961 * stream *after* processing the previous operand. If the two
1962 * pointers match, then the previous operand had no effect.
1963 *
1964 * The warning behavior here differs slightly from GCC. GCC will
1965 * only emit a warning if none of the left-hand operands have an
1966 * effect. However, it will emit a warning for each. I believe that
1967 * there are some cases in C (especially with GCC extensions) where
1968 * it is useful to have an intermediate step in a sequence have no
1969 * effect, but I don't think these cases exist in GLSL. Either way,
1970 * it would be a giant hassle to replicate that behavior.
1971 */
1972 if (previous_tail_pred == instructions->tail_pred) {
1973 _mesa_glsl_warning(&previous_operand_loc, state,
1974 "left-hand operand of comma expression has "
1975 "no effect");
1976 }
1977
1978 /* tail_pred is directly accessed instead of using the get_tail()
1979 * method for performance reasons. get_tail() has extra code to
1980 * return NULL when the list is empty. We don't care about that
1981 * here, so using tail_pred directly is fine.
1982 */
1983 previous_tail_pred = instructions->tail_pred;
1984 previous_operand_loc = ast->get_location();
1985
1986 result = ast->hir(instructions, state);
1987 }
1988
1989 /* Any errors should have already been emitted in the loop above.
1990 */
1991 error_emitted = true;
1992 break;
1993 }
1994 }
1995 type = NULL; /* use result->type, not type. */
1996 assert(result != NULL || !needs_rvalue);
1997
1998 if (result && result->type->is_error() && !error_emitted)
1999 _mesa_glsl_error(& loc, state, "type mismatch");
2000
2001 return result;
2002 }
2003
2004 bool
2005 ast_expression::has_sequence_subexpression() const
2006 {
2007 switch (this->oper) {
2008 case ast_plus:
2009 case ast_neg:
2010 case ast_bit_not:
2011 case ast_logic_not:
2012 case ast_pre_inc:
2013 case ast_pre_dec:
2014 case ast_post_inc:
2015 case ast_post_dec:
2016 return this->subexpressions[0]->has_sequence_subexpression();
2017
2018 case ast_assign:
2019 case ast_add:
2020 case ast_sub:
2021 case ast_mul:
2022 case ast_div:
2023 case ast_mod:
2024 case ast_lshift:
2025 case ast_rshift:
2026 case ast_less:
2027 case ast_greater:
2028 case ast_lequal:
2029 case ast_gequal:
2030 case ast_nequal:
2031 case ast_equal:
2032 case ast_bit_and:
2033 case ast_bit_xor:
2034 case ast_bit_or:
2035 case ast_logic_and:
2036 case ast_logic_or:
2037 case ast_logic_xor:
2038 case ast_array_index:
2039 case ast_mul_assign:
2040 case ast_div_assign:
2041 case ast_add_assign:
2042 case ast_sub_assign:
2043 case ast_mod_assign:
2044 case ast_ls_assign:
2045 case ast_rs_assign:
2046 case ast_and_assign:
2047 case ast_xor_assign:
2048 case ast_or_assign:
2049 return this->subexpressions[0]->has_sequence_subexpression() ||
2050 this->subexpressions[1]->has_sequence_subexpression();
2051
2052 case ast_conditional:
2053 return this->subexpressions[0]->has_sequence_subexpression() ||
2054 this->subexpressions[1]->has_sequence_subexpression() ||
2055 this->subexpressions[2]->has_sequence_subexpression();
2056
2057 case ast_sequence:
2058 return true;
2059
2060 case ast_field_selection:
2061 case ast_identifier:
2062 case ast_int_constant:
2063 case ast_uint_constant:
2064 case ast_float_constant:
2065 case ast_bool_constant:
2066 case ast_double_constant:
2067 return false;
2068
2069 case ast_aggregate:
2070 unreachable("ast_aggregate: Should never get here.");
2071
2072 case ast_function_call:
2073 unreachable("should be handled by ast_function_expression::hir");
2074
2075 case ast_unsized_array_dim:
2076 unreachable("ast_unsized_array_dim: Should never get here.");
2077 }
2078
2079 return false;
2080 }
2081
2082 ir_rvalue *
2083 ast_expression_statement::hir(exec_list *instructions,
2084 struct _mesa_glsl_parse_state *state)
2085 {
2086 /* It is possible to have expression statements that don't have an
2087 * expression. This is the solitary semicolon:
2088 *
2089 * for (i = 0; i < 5; i++)
2090 * ;
2091 *
2092 * In this case the expression will be NULL. Test for NULL and don't do
2093 * anything in that case.
2094 */
2095 if (expression != NULL)
2096 expression->hir_no_rvalue(instructions, state);
2097
2098 /* Statements do not have r-values.
2099 */
2100 return NULL;
2101 }
2102
2103
2104 ir_rvalue *
2105 ast_compound_statement::hir(exec_list *instructions,
2106 struct _mesa_glsl_parse_state *state)
2107 {
2108 if (new_scope)
2109 state->symbols->push_scope();
2110
2111 foreach_list_typed (ast_node, ast, link, &this->statements)
2112 ast->hir(instructions, state);
2113
2114 if (new_scope)
2115 state->symbols->pop_scope();
2116
2117 /* Compound statements do not have r-values.
2118 */
2119 return NULL;
2120 }
2121
2122 /**
2123 * Evaluate the given exec_node (which should be an ast_node representing
2124 * a single array dimension) and return its integer value.
2125 */
2126 static unsigned
2127 process_array_size(exec_node *node,
2128 struct _mesa_glsl_parse_state *state)
2129 {
2130 exec_list dummy_instructions;
2131
2132 ast_node *array_size = exec_node_data(ast_node, node, link);
2133
2134 /**
2135 * Dimensions other than the outermost dimension can by unsized if they
2136 * are immediately sized by a constructor or initializer.
2137 */
2138 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2139 return 0;
2140
2141 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2142 YYLTYPE loc = array_size->get_location();
2143
2144 if (ir == NULL) {
2145 _mesa_glsl_error(& loc, state,
2146 "array size could not be resolved");
2147 return 0;
2148 }
2149
2150 if (!ir->type->is_integer()) {
2151 _mesa_glsl_error(& loc, state,
2152 "array size must be integer type");
2153 return 0;
2154 }
2155
2156 if (!ir->type->is_scalar()) {
2157 _mesa_glsl_error(& loc, state,
2158 "array size must be scalar type");
2159 return 0;
2160 }
2161
2162 ir_constant *const size = ir->constant_expression_value();
2163 if (size == NULL ||
2164 (state->is_version(120, 300) &&
2165 array_size->has_sequence_subexpression())) {
2166 _mesa_glsl_error(& loc, state, "array size must be a "
2167 "constant valued expression");
2168 return 0;
2169 }
2170
2171 if (size->value.i[0] <= 0) {
2172 _mesa_glsl_error(& loc, state, "array size must be > 0");
2173 return 0;
2174 }
2175
2176 assert(size->type == ir->type);
2177
2178 /* If the array size is const (and we've verified that
2179 * it is) then no instructions should have been emitted
2180 * when we converted it to HIR. If they were emitted,
2181 * then either the array size isn't const after all, or
2182 * we are emitting unnecessary instructions.
2183 */
2184 assert(dummy_instructions.is_empty());
2185
2186 return size->value.u[0];
2187 }
2188
2189 static const glsl_type *
2190 process_array_type(YYLTYPE *loc, const glsl_type *base,
2191 ast_array_specifier *array_specifier,
2192 struct _mesa_glsl_parse_state *state)
2193 {
2194 const glsl_type *array_type = base;
2195
2196 if (array_specifier != NULL) {
2197 if (base->is_array()) {
2198
2199 /* From page 19 (page 25) of the GLSL 1.20 spec:
2200 *
2201 * "Only one-dimensional arrays may be declared."
2202 */
2203 if (!state->check_arrays_of_arrays_allowed(loc)) {
2204 return glsl_type::error_type;
2205 }
2206 }
2207
2208 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2209 !node->is_head_sentinel(); node = node->prev) {
2210 unsigned array_size = process_array_size(node, state);
2211 array_type = glsl_type::get_array_instance(array_type, array_size);
2212 }
2213 }
2214
2215 return array_type;
2216 }
2217
2218 static bool
2219 precision_qualifier_allowed(const glsl_type *type)
2220 {
2221 /* Precision qualifiers apply to floating point, integer and opaque
2222 * types.
2223 *
2224 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2225 * "Any floating point or any integer declaration can have the type
2226 * preceded by one of these precision qualifiers [...] Literal
2227 * constants do not have precision qualifiers. Neither do Boolean
2228 * variables.
2229 *
2230 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2231 * spec also says:
2232 *
2233 * "Precision qualifiers are added for code portability with OpenGL
2234 * ES, not for functionality. They have the same syntax as in OpenGL
2235 * ES."
2236 *
2237 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2238 *
2239 * "uniform lowp sampler2D sampler;
2240 * highp vec2 coord;
2241 * ...
2242 * lowp vec4 col = texture2D (sampler, coord);
2243 * // texture2D returns lowp"
2244 *
2245 * From this, we infer that GLSL 1.30 (and later) should allow precision
2246 * qualifiers on sampler types just like float and integer types.
2247 */
2248 return (type->is_float()
2249 || type->is_integer()
2250 || type->contains_opaque())
2251 && !type->without_array()->is_record();
2252 }
2253
2254 const glsl_type *
2255 ast_type_specifier::glsl_type(const char **name,
2256 struct _mesa_glsl_parse_state *state) const
2257 {
2258 const struct glsl_type *type;
2259
2260 type = state->symbols->get_type(this->type_name);
2261 *name = this->type_name;
2262
2263 YYLTYPE loc = this->get_location();
2264 type = process_array_type(&loc, type, this->array_specifier, state);
2265
2266 return type;
2267 }
2268
2269 /**
2270 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2271 *
2272 * "The precision statement
2273 *
2274 * precision precision-qualifier type;
2275 *
2276 * can be used to establish a default precision qualifier. The type field can
2277 * be either int or float or any of the sampler types, (...) If type is float,
2278 * the directive applies to non-precision-qualified floating point type
2279 * (scalar, vector, and matrix) declarations. If type is int, the directive
2280 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2281 * and unsigned) declarations."
2282 *
2283 * We use the symbol table to keep the values of the default precisions for
2284 * each 'type' in each scope and we use the 'type' string from the precision
2285 * statement as key in the symbol table. When we want to retrieve the default
2286 * precision associated with a given glsl_type we need to know the type string
2287 * associated with it. This is what this function returns.
2288 */
2289 static const char *
2290 get_type_name_for_precision_qualifier(const glsl_type *type)
2291 {
2292 switch (type->base_type) {
2293 case GLSL_TYPE_FLOAT:
2294 return "float";
2295 case GLSL_TYPE_UINT:
2296 case GLSL_TYPE_INT:
2297 return "int";
2298 case GLSL_TYPE_ATOMIC_UINT:
2299 return "atomic_uint";
2300 case GLSL_TYPE_IMAGE:
2301 /* fallthrough */
2302 case GLSL_TYPE_SAMPLER: {
2303 const unsigned type_idx =
2304 type->sampler_array + 2 * type->sampler_shadow;
2305 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2306 assert(type_idx < 4);
2307 switch (type->sampled_type) {
2308 case GLSL_TYPE_FLOAT:
2309 switch (type->sampler_dimensionality) {
2310 case GLSL_SAMPLER_DIM_1D: {
2311 assert(type->base_type == GLSL_TYPE_SAMPLER);
2312 static const char *const names[4] = {
2313 "sampler1D", "sampler1DArray",
2314 "sampler1DShadow", "sampler1DArrayShadow"
2315 };
2316 return names[type_idx];
2317 }
2318 case GLSL_SAMPLER_DIM_2D: {
2319 static const char *const names[8] = {
2320 "sampler2D", "sampler2DArray",
2321 "sampler2DShadow", "sampler2DArrayShadow",
2322 "image2D", "image2DArray", NULL, NULL
2323 };
2324 return names[offset + type_idx];
2325 }
2326 case GLSL_SAMPLER_DIM_3D: {
2327 static const char *const names[8] = {
2328 "sampler3D", NULL, NULL, NULL,
2329 "image3D", NULL, NULL, NULL
2330 };
2331 return names[offset + type_idx];
2332 }
2333 case GLSL_SAMPLER_DIM_CUBE: {
2334 static const char *const names[8] = {
2335 "samplerCube", "samplerCubeArray",
2336 "samplerCubeShadow", "samplerCubeArrayShadow",
2337 "imageCube", NULL, NULL, NULL
2338 };
2339 return names[offset + type_idx];
2340 }
2341 case GLSL_SAMPLER_DIM_MS: {
2342 assert(type->base_type == GLSL_TYPE_SAMPLER);
2343 static const char *const names[4] = {
2344 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2345 };
2346 return names[type_idx];
2347 }
2348 case GLSL_SAMPLER_DIM_RECT: {
2349 assert(type->base_type == GLSL_TYPE_SAMPLER);
2350 static const char *const names[4] = {
2351 "samplerRect", NULL, "samplerRectShadow", NULL
2352 };
2353 return names[type_idx];
2354 }
2355 case GLSL_SAMPLER_DIM_BUF: {
2356 static const char *const names[8] = {
2357 "samplerBuffer", NULL, NULL, NULL,
2358 "imageBuffer", NULL, NULL, NULL
2359 };
2360 return names[offset + type_idx];
2361 }
2362 case GLSL_SAMPLER_DIM_EXTERNAL: {
2363 assert(type->base_type == GLSL_TYPE_SAMPLER);
2364 static const char *const names[4] = {
2365 "samplerExternalOES", NULL, NULL, NULL
2366 };
2367 return names[type_idx];
2368 }
2369 default:
2370 unreachable("Unsupported sampler/image dimensionality");
2371 } /* sampler/image float dimensionality */
2372 break;
2373 case GLSL_TYPE_INT:
2374 switch (type->sampler_dimensionality) {
2375 case GLSL_SAMPLER_DIM_1D: {
2376 assert(type->base_type == GLSL_TYPE_SAMPLER);
2377 static const char *const names[4] = {
2378 "isampler1D", "isampler1DArray", NULL, NULL
2379 };
2380 return names[type_idx];
2381 }
2382 case GLSL_SAMPLER_DIM_2D: {
2383 static const char *const names[8] = {
2384 "isampler2D", "isampler2DArray", NULL, NULL,
2385 "iimage2D", "iimage2DArray", NULL, NULL
2386 };
2387 return names[offset + type_idx];
2388 }
2389 case GLSL_SAMPLER_DIM_3D: {
2390 static const char *const names[8] = {
2391 "isampler3D", NULL, NULL, NULL,
2392 "iimage3D", NULL, NULL, NULL
2393 };
2394 return names[offset + type_idx];
2395 }
2396 case GLSL_SAMPLER_DIM_CUBE: {
2397 static const char *const names[8] = {
2398 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2399 "iimageCube", NULL, NULL, NULL
2400 };
2401 return names[offset + type_idx];
2402 }
2403 case GLSL_SAMPLER_DIM_MS: {
2404 assert(type->base_type == GLSL_TYPE_SAMPLER);
2405 static const char *const names[4] = {
2406 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2407 };
2408 return names[type_idx];
2409 }
2410 case GLSL_SAMPLER_DIM_RECT: {
2411 assert(type->base_type == GLSL_TYPE_SAMPLER);
2412 static const char *const names[4] = {
2413 "isamplerRect", NULL, "isamplerRectShadow", NULL
2414 };
2415 return names[type_idx];
2416 }
2417 case GLSL_SAMPLER_DIM_BUF: {
2418 static const char *const names[8] = {
2419 "isamplerBuffer", NULL, NULL, NULL,
2420 "iimageBuffer", NULL, NULL, NULL
2421 };
2422 return names[offset + type_idx];
2423 }
2424 default:
2425 unreachable("Unsupported isampler/iimage dimensionality");
2426 } /* sampler/image int dimensionality */
2427 break;
2428 case GLSL_TYPE_UINT:
2429 switch (type->sampler_dimensionality) {
2430 case GLSL_SAMPLER_DIM_1D: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "usampler1D", "usampler1DArray", NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 case GLSL_SAMPLER_DIM_2D: {
2438 static const char *const names[8] = {
2439 "usampler2D", "usampler2DArray", NULL, NULL,
2440 "uimage2D", "uimage2DArray", NULL, NULL
2441 };
2442 return names[offset + type_idx];
2443 }
2444 case GLSL_SAMPLER_DIM_3D: {
2445 static const char *const names[8] = {
2446 "usampler3D", NULL, NULL, NULL,
2447 "uimage3D", NULL, NULL, NULL
2448 };
2449 return names[offset + type_idx];
2450 }
2451 case GLSL_SAMPLER_DIM_CUBE: {
2452 static const char *const names[8] = {
2453 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2454 "uimageCube", NULL, NULL, NULL
2455 };
2456 return names[offset + type_idx];
2457 }
2458 case GLSL_SAMPLER_DIM_MS: {
2459 assert(type->base_type == GLSL_TYPE_SAMPLER);
2460 static const char *const names[4] = {
2461 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2462 };
2463 return names[type_idx];
2464 }
2465 case GLSL_SAMPLER_DIM_RECT: {
2466 assert(type->base_type == GLSL_TYPE_SAMPLER);
2467 static const char *const names[4] = {
2468 "usamplerRect", NULL, "usamplerRectShadow", NULL
2469 };
2470 return names[type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_BUF: {
2473 static const char *const names[8] = {
2474 "usamplerBuffer", NULL, NULL, NULL,
2475 "uimageBuffer", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 default:
2480 unreachable("Unsupported usampler/uimage dimensionality");
2481 } /* sampler/image uint dimensionality */
2482 break;
2483 default:
2484 unreachable("Unsupported sampler/image type");
2485 } /* sampler/image type */
2486 break;
2487 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2488 break;
2489 default:
2490 unreachable("Unsupported type");
2491 } /* base type */
2492 }
2493
2494 static unsigned
2495 select_gles_precision(unsigned qual_precision,
2496 const glsl_type *type,
2497 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2498 {
2499 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2500 * In GLES we take the precision from the type qualifier if present,
2501 * otherwise, if the type of the variable allows precision qualifiers at
2502 * all, we look for the default precision qualifier for that type in the
2503 * current scope.
2504 */
2505 assert(state->es_shader);
2506
2507 unsigned precision = GLSL_PRECISION_NONE;
2508 if (qual_precision) {
2509 precision = qual_precision;
2510 } else if (precision_qualifier_allowed(type)) {
2511 const char *type_name =
2512 get_type_name_for_precision_qualifier(type->without_array());
2513 assert(type_name != NULL);
2514
2515 precision =
2516 state->symbols->get_default_precision_qualifier(type_name);
2517 if (precision == ast_precision_none) {
2518 _mesa_glsl_error(loc, state,
2519 "No precision specified in this scope for type `%s'",
2520 type->name);
2521 }
2522 }
2523 return precision;
2524 }
2525
2526 const glsl_type *
2527 ast_fully_specified_type::glsl_type(const char **name,
2528 struct _mesa_glsl_parse_state *state) const
2529 {
2530 return this->specifier->glsl_type(name, state);
2531 }
2532
2533 /**
2534 * Determine whether a toplevel variable declaration declares a varying. This
2535 * function operates by examining the variable's mode and the shader target,
2536 * so it correctly identifies linkage variables regardless of whether they are
2537 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2538 *
2539 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2540 * this function will produce undefined results.
2541 */
2542 static bool
2543 is_varying_var(ir_variable *var, gl_shader_stage target)
2544 {
2545 switch (target) {
2546 case MESA_SHADER_VERTEX:
2547 return var->data.mode == ir_var_shader_out;
2548 case MESA_SHADER_FRAGMENT:
2549 return var->data.mode == ir_var_shader_in;
2550 default:
2551 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2552 }
2553 }
2554
2555
2556 /**
2557 * Matrix layout qualifiers are only allowed on certain types
2558 */
2559 static void
2560 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2561 YYLTYPE *loc,
2562 const glsl_type *type,
2563 ir_variable *var)
2564 {
2565 if (var && !var->is_in_buffer_block()) {
2566 /* Layout qualifiers may only apply to interface blocks and fields in
2567 * them.
2568 */
2569 _mesa_glsl_error(loc, state,
2570 "uniform block layout qualifiers row_major and "
2571 "column_major may not be applied to variables "
2572 "outside of uniform blocks");
2573 } else if (!type->without_array()->is_matrix()) {
2574 /* The OpenGL ES 3.0 conformance tests did not originally allow
2575 * matrix layout qualifiers on non-matrices. However, the OpenGL
2576 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2577 * amended to specifically allow these layouts on all types. Emit
2578 * a warning so that people know their code may not be portable.
2579 */
2580 _mesa_glsl_warning(loc, state,
2581 "uniform block layout qualifiers row_major and "
2582 "column_major applied to non-matrix types may "
2583 "be rejected by older compilers");
2584 }
2585 }
2586
2587 static bool
2588 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2589 unsigned stream)
2590 {
2591 if (stream >= state->ctx->Const.MaxVertexStreams) {
2592 _mesa_glsl_error(loc, state,
2593 "invalid stream specified %d is larger than "
2594 "MAX_VERTEX_STREAMS - 1 (%d).",
2595 stream, state->ctx->Const.MaxVertexStreams - 1);
2596 return false;
2597 }
2598
2599 return true;
2600 }
2601
2602 static void
2603 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2604 YYLTYPE *loc,
2605 ir_variable *var,
2606 const glsl_type *type,
2607 const ast_type_qualifier *qual)
2608 {
2609 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2610 _mesa_glsl_error(loc, state,
2611 "the \"binding\" qualifier only applies to uniforms and "
2612 "shader storage buffer objects");
2613 return;
2614 }
2615
2616 unsigned qual_binding;
2617 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2618 &qual_binding)) {
2619 return;
2620 }
2621
2622 const struct gl_context *const ctx = state->ctx;
2623 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2624 unsigned max_index = qual_binding + elements - 1;
2625 const glsl_type *base_type = type->without_array();
2626
2627 if (base_type->is_interface()) {
2628 /* UBOs. From page 60 of the GLSL 4.20 specification:
2629 * "If the binding point for any uniform block instance is less than zero,
2630 * or greater than or equal to the implementation-dependent maximum
2631 * number of uniform buffer bindings, a compilation error will occur.
2632 * When the binding identifier is used with a uniform block instanced as
2633 * an array of size N, all elements of the array from binding through
2634 * binding + N – 1 must be within this range."
2635 *
2636 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2637 */
2638 if (qual->flags.q.uniform &&
2639 max_index >= ctx->Const.MaxUniformBufferBindings) {
2640 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2641 "the maximum number of UBO binding points (%d)",
2642 qual_binding, elements,
2643 ctx->Const.MaxUniformBufferBindings);
2644 return;
2645 }
2646
2647 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2648 * "If the binding point for any uniform or shader storage block instance
2649 * is less than zero, or greater than or equal to the
2650 * implementation-dependent maximum number of uniform buffer bindings, a
2651 * compile-time error will occur. When the binding identifier is used
2652 * with a uniform or shader storage block instanced as an array of size
2653 * N, all elements of the array from binding through binding + N – 1 must
2654 * be within this range."
2655 */
2656 if (qual->flags.q.buffer &&
2657 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2658 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2659 "the maximum number of SSBO binding points (%d)",
2660 qual_binding, elements,
2661 ctx->Const.MaxShaderStorageBufferBindings);
2662 return;
2663 }
2664 } else if (base_type->is_sampler()) {
2665 /* Samplers. From page 63 of the GLSL 4.20 specification:
2666 * "If the binding is less than zero, or greater than or equal to the
2667 * implementation-dependent maximum supported number of units, a
2668 * compilation error will occur. When the binding identifier is used
2669 * with an array of size N, all elements of the array from binding
2670 * through binding + N - 1 must be within this range."
2671 */
2672 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2673
2674 if (max_index >= limit) {
2675 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2676 "exceeds the maximum number of texture image units "
2677 "(%u)", qual_binding, elements, limit);
2678
2679 return;
2680 }
2681 } else if (base_type->contains_atomic()) {
2682 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2683 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2684 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2685 " maximum number of atomic counter buffer bindings"
2686 "(%u)", qual_binding,
2687 ctx->Const.MaxAtomicBufferBindings);
2688
2689 return;
2690 }
2691 } else if ((state->is_version(420, 310) ||
2692 state->ARB_shading_language_420pack_enable) &&
2693 base_type->is_image()) {
2694 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2695 if (max_index >= ctx->Const.MaxImageUnits) {
2696 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2697 " maximum number of image units (%d)", max_index,
2698 ctx->Const.MaxImageUnits);
2699 return;
2700 }
2701
2702 } else {
2703 _mesa_glsl_error(loc, state,
2704 "the \"binding\" qualifier only applies to uniform "
2705 "blocks, opaque variables, or arrays thereof");
2706 return;
2707 }
2708
2709 var->data.explicit_binding = true;
2710 var->data.binding = qual_binding;
2711
2712 return;
2713 }
2714
2715
2716 static glsl_interp_qualifier
2717 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2718 ir_variable_mode mode,
2719 struct _mesa_glsl_parse_state *state,
2720 YYLTYPE *loc)
2721 {
2722 glsl_interp_qualifier interpolation;
2723 if (qual->flags.q.flat)
2724 interpolation = INTERP_QUALIFIER_FLAT;
2725 else if (qual->flags.q.noperspective)
2726 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2727 else if (qual->flags.q.smooth)
2728 interpolation = INTERP_QUALIFIER_SMOOTH;
2729 else
2730 interpolation = INTERP_QUALIFIER_NONE;
2731
2732 if (interpolation != INTERP_QUALIFIER_NONE) {
2733 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2734 _mesa_glsl_error(loc, state,
2735 "interpolation qualifier `%s' can only be applied to "
2736 "shader inputs or outputs.",
2737 interpolation_string(interpolation));
2738
2739 }
2740
2741 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2742 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2743 _mesa_glsl_error(loc, state,
2744 "interpolation qualifier `%s' cannot be applied to "
2745 "vertex shader inputs or fragment shader outputs",
2746 interpolation_string(interpolation));
2747 }
2748 } else if (state->es_shader &&
2749 ((mode == ir_var_shader_in &&
2750 state->stage != MESA_SHADER_VERTEX) ||
2751 (mode == ir_var_shader_out &&
2752 state->stage != MESA_SHADER_FRAGMENT))) {
2753 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2754 *
2755 * "When no interpolation qualifier is present, smooth interpolation
2756 * is used."
2757 */
2758 interpolation = INTERP_QUALIFIER_SMOOTH;
2759 }
2760
2761 return interpolation;
2762 }
2763
2764
2765 static void
2766 apply_explicit_location(const struct ast_type_qualifier *qual,
2767 ir_variable *var,
2768 struct _mesa_glsl_parse_state *state,
2769 YYLTYPE *loc)
2770 {
2771 bool fail = false;
2772
2773 unsigned qual_location;
2774 if (!process_qualifier_constant(state, loc, "location", qual->location,
2775 &qual_location)) {
2776 return;
2777 }
2778
2779 /* Checks for GL_ARB_explicit_uniform_location. */
2780 if (qual->flags.q.uniform) {
2781 if (!state->check_explicit_uniform_location_allowed(loc, var))
2782 return;
2783
2784 const struct gl_context *const ctx = state->ctx;
2785 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2786
2787 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2788 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2789 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2790 ctx->Const.MaxUserAssignableUniformLocations);
2791 return;
2792 }
2793
2794 var->data.explicit_location = true;
2795 var->data.location = qual_location;
2796 return;
2797 }
2798
2799 /* Between GL_ARB_explicit_attrib_location an
2800 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2801 * stage can be assigned explicit locations. The checking here associates
2802 * the correct extension with the correct stage's input / output:
2803 *
2804 * input output
2805 * ----- ------
2806 * vertex explicit_loc sso
2807 * tess control sso sso
2808 * tess eval sso sso
2809 * geometry sso sso
2810 * fragment sso explicit_loc
2811 */
2812 switch (state->stage) {
2813 case MESA_SHADER_VERTEX:
2814 if (var->data.mode == ir_var_shader_in) {
2815 if (!state->check_explicit_attrib_location_allowed(loc, var))
2816 return;
2817
2818 break;
2819 }
2820
2821 if (var->data.mode == ir_var_shader_out) {
2822 if (!state->check_separate_shader_objects_allowed(loc, var))
2823 return;
2824
2825 break;
2826 }
2827
2828 fail = true;
2829 break;
2830
2831 case MESA_SHADER_TESS_CTRL:
2832 case MESA_SHADER_TESS_EVAL:
2833 case MESA_SHADER_GEOMETRY:
2834 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2835 if (!state->check_separate_shader_objects_allowed(loc, var))
2836 return;
2837
2838 break;
2839 }
2840
2841 fail = true;
2842 break;
2843
2844 case MESA_SHADER_FRAGMENT:
2845 if (var->data.mode == ir_var_shader_in) {
2846 if (!state->check_separate_shader_objects_allowed(loc, var))
2847 return;
2848
2849 break;
2850 }
2851
2852 if (var->data.mode == ir_var_shader_out) {
2853 if (!state->check_explicit_attrib_location_allowed(loc, var))
2854 return;
2855
2856 break;
2857 }
2858
2859 fail = true;
2860 break;
2861
2862 case MESA_SHADER_COMPUTE:
2863 _mesa_glsl_error(loc, state,
2864 "compute shader variables cannot be given "
2865 "explicit locations");
2866 return;
2867 };
2868
2869 if (fail) {
2870 _mesa_glsl_error(loc, state,
2871 "%s cannot be given an explicit location in %s shader",
2872 mode_string(var),
2873 _mesa_shader_stage_to_string(state->stage));
2874 } else {
2875 var->data.explicit_location = true;
2876
2877 switch (state->stage) {
2878 case MESA_SHADER_VERTEX:
2879 var->data.location = (var->data.mode == ir_var_shader_in)
2880 ? (qual_location + VERT_ATTRIB_GENERIC0)
2881 : (qual_location + VARYING_SLOT_VAR0);
2882 break;
2883
2884 case MESA_SHADER_TESS_CTRL:
2885 case MESA_SHADER_TESS_EVAL:
2886 case MESA_SHADER_GEOMETRY:
2887 if (var->data.patch)
2888 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2889 else
2890 var->data.location = qual_location + VARYING_SLOT_VAR0;
2891 break;
2892
2893 case MESA_SHADER_FRAGMENT:
2894 var->data.location = (var->data.mode == ir_var_shader_out)
2895 ? (qual_location + FRAG_RESULT_DATA0)
2896 : (qual_location + VARYING_SLOT_VAR0);
2897 break;
2898 case MESA_SHADER_COMPUTE:
2899 assert(!"Unexpected shader type");
2900 break;
2901 }
2902
2903 /* Check if index was set for the uniform instead of the function */
2904 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2905 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2906 "used with subroutine functions");
2907 return;
2908 }
2909
2910 unsigned qual_index;
2911 if (qual->flags.q.explicit_index &&
2912 process_qualifier_constant(state, loc, "index", qual->index,
2913 &qual_index)) {
2914 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2915 * Layout Qualifiers):
2916 *
2917 * "It is also a compile-time error if a fragment shader
2918 * sets a layout index to less than 0 or greater than 1."
2919 *
2920 * Older specifications don't mandate a behavior; we take
2921 * this as a clarification and always generate the error.
2922 */
2923 if (qual_index > 1) {
2924 _mesa_glsl_error(loc, state,
2925 "explicit index may only be 0 or 1");
2926 } else {
2927 var->data.explicit_index = true;
2928 var->data.index = qual_index;
2929 }
2930 }
2931 }
2932 }
2933
2934 static void
2935 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2936 ir_variable *var,
2937 struct _mesa_glsl_parse_state *state,
2938 YYLTYPE *loc)
2939 {
2940 const glsl_type *base_type = var->type->without_array();
2941
2942 if (base_type->is_image()) {
2943 if (var->data.mode != ir_var_uniform &&
2944 var->data.mode != ir_var_function_in) {
2945 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2946 "function parameters or uniform-qualified "
2947 "global variables");
2948 }
2949
2950 var->data.image_read_only |= qual->flags.q.read_only;
2951 var->data.image_write_only |= qual->flags.q.write_only;
2952 var->data.image_coherent |= qual->flags.q.coherent;
2953 var->data.image_volatile |= qual->flags.q._volatile;
2954 var->data.image_restrict |= qual->flags.q.restrict_flag;
2955 var->data.read_only = true;
2956
2957 if (qual->flags.q.explicit_image_format) {
2958 if (var->data.mode == ir_var_function_in) {
2959 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2960 "used on image function parameters");
2961 }
2962
2963 if (qual->image_base_type != base_type->sampled_type) {
2964 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2965 "base data type of the image");
2966 }
2967
2968 var->data.image_format = qual->image_format;
2969 } else {
2970 if (var->data.mode == ir_var_uniform) {
2971 if (state->es_shader) {
2972 _mesa_glsl_error(loc, state, "all image uniforms "
2973 "must have a format layout qualifier");
2974
2975 } else if (!qual->flags.q.write_only) {
2976 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2977 "`writeonly' must have a format layout "
2978 "qualifier");
2979 }
2980 }
2981
2982 var->data.image_format = GL_NONE;
2983 }
2984
2985 /* From page 70 of the GLSL ES 3.1 specification:
2986 *
2987 * "Except for image variables qualified with the format qualifiers
2988 * r32f, r32i, and r32ui, image variables must specify either memory
2989 * qualifier readonly or the memory qualifier writeonly."
2990 */
2991 if (state->es_shader &&
2992 var->data.image_format != GL_R32F &&
2993 var->data.image_format != GL_R32I &&
2994 var->data.image_format != GL_R32UI &&
2995 !var->data.image_read_only &&
2996 !var->data.image_write_only) {
2997 _mesa_glsl_error(loc, state, "image variables of format other than "
2998 "r32f, r32i or r32ui must be qualified `readonly' or "
2999 "`writeonly'");
3000 }
3001
3002 } else if (qual->flags.q.read_only ||
3003 qual->flags.q.write_only ||
3004 qual->flags.q.coherent ||
3005 qual->flags.q._volatile ||
3006 qual->flags.q.restrict_flag ||
3007 qual->flags.q.explicit_image_format) {
3008 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3009 "images");
3010 }
3011 }
3012
3013 static inline const char*
3014 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3015 {
3016 if (origin_upper_left && pixel_center_integer)
3017 return "origin_upper_left, pixel_center_integer";
3018 else if (origin_upper_left)
3019 return "origin_upper_left";
3020 else if (pixel_center_integer)
3021 return "pixel_center_integer";
3022 else
3023 return " ";
3024 }
3025
3026 static inline bool
3027 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3028 const struct ast_type_qualifier *qual)
3029 {
3030 /* If gl_FragCoord was previously declared, and the qualifiers were
3031 * different in any way, return true.
3032 */
3033 if (state->fs_redeclares_gl_fragcoord) {
3034 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3035 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3036 }
3037
3038 return false;
3039 }
3040
3041 static inline void
3042 validate_array_dimensions(const glsl_type *t,
3043 struct _mesa_glsl_parse_state *state,
3044 YYLTYPE *loc) {
3045 if (t->is_array()) {
3046 t = t->fields.array;
3047 while (t->is_array()) {
3048 if (t->is_unsized_array()) {
3049 _mesa_glsl_error(loc, state,
3050 "only the outermost array dimension can "
3051 "be unsized",
3052 t->name);
3053 break;
3054 }
3055 t = t->fields.array;
3056 }
3057 }
3058 }
3059
3060 static void
3061 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3062 ir_variable *var,
3063 struct _mesa_glsl_parse_state *state,
3064 YYLTYPE *loc)
3065 {
3066 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3067
3068 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3069 *
3070 * "Within any shader, the first redeclarations of gl_FragCoord
3071 * must appear before any use of gl_FragCoord."
3072 *
3073 * Generate a compiler error if above condition is not met by the
3074 * fragment shader.
3075 */
3076 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3077 if (earlier != NULL &&
3078 earlier->data.used &&
3079 !state->fs_redeclares_gl_fragcoord) {
3080 _mesa_glsl_error(loc, state,
3081 "gl_FragCoord used before its first redeclaration "
3082 "in fragment shader");
3083 }
3084
3085 /* Make sure all gl_FragCoord redeclarations specify the same layout
3086 * qualifiers.
3087 */
3088 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3089 const char *const qual_string =
3090 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3091 qual->flags.q.pixel_center_integer);
3092
3093 const char *const state_string =
3094 get_layout_qualifier_string(state->fs_origin_upper_left,
3095 state->fs_pixel_center_integer);
3096
3097 _mesa_glsl_error(loc, state,
3098 "gl_FragCoord redeclared with different layout "
3099 "qualifiers (%s) and (%s) ",
3100 state_string,
3101 qual_string);
3102 }
3103 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3104 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3105 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3106 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3107 state->fs_redeclares_gl_fragcoord =
3108 state->fs_origin_upper_left ||
3109 state->fs_pixel_center_integer ||
3110 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3111 }
3112
3113 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3114 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3115 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3116 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3117 const char *const qual_string = (qual->flags.q.origin_upper_left)
3118 ? "origin_upper_left" : "pixel_center_integer";
3119
3120 _mesa_glsl_error(loc, state,
3121 "layout qualifier `%s' can only be applied to "
3122 "fragment shader input `gl_FragCoord'",
3123 qual_string);
3124 }
3125
3126 if (qual->flags.q.explicit_location) {
3127 apply_explicit_location(qual, var, state, loc);
3128 } else if (qual->flags.q.explicit_index) {
3129 if (!qual->flags.q.subroutine_def)
3130 _mesa_glsl_error(loc, state,
3131 "explicit index requires explicit location");
3132 }
3133
3134 if (qual->flags.q.explicit_binding) {
3135 apply_explicit_binding(state, loc, var, var->type, qual);
3136 }
3137
3138 if (state->stage == MESA_SHADER_GEOMETRY &&
3139 qual->flags.q.out && qual->flags.q.stream) {
3140 unsigned qual_stream;
3141 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3142 &qual_stream) &&
3143 validate_stream_qualifier(loc, state, qual_stream)) {
3144 var->data.stream = qual_stream;
3145 }
3146 }
3147
3148 if (var->type->contains_atomic()) {
3149 if (var->data.mode == ir_var_uniform) {
3150 if (var->data.explicit_binding) {
3151 unsigned *offset =
3152 &state->atomic_counter_offsets[var->data.binding];
3153
3154 if (*offset % ATOMIC_COUNTER_SIZE)
3155 _mesa_glsl_error(loc, state,
3156 "misaligned atomic counter offset");
3157
3158 var->data.offset = *offset;
3159 *offset += var->type->atomic_size();
3160
3161 } else {
3162 _mesa_glsl_error(loc, state,
3163 "atomic counters require explicit binding point");
3164 }
3165 } else if (var->data.mode != ir_var_function_in) {
3166 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3167 "function parameters or uniform-qualified "
3168 "global variables");
3169 }
3170 }
3171
3172 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3173 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3174 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3175 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3176 * These extensions and all following extensions that add the 'layout'
3177 * keyword have been modified to require the use of 'in' or 'out'.
3178 *
3179 * The following extension do not allow the deprecated keywords:
3180 *
3181 * GL_AMD_conservative_depth
3182 * GL_ARB_conservative_depth
3183 * GL_ARB_gpu_shader5
3184 * GL_ARB_separate_shader_objects
3185 * GL_ARB_tessellation_shader
3186 * GL_ARB_transform_feedback3
3187 * GL_ARB_uniform_buffer_object
3188 *
3189 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3190 * allow layout with the deprecated keywords.
3191 */
3192 const bool relaxed_layout_qualifier_checking =
3193 state->ARB_fragment_coord_conventions_enable;
3194
3195 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3196 || qual->flags.q.varying;
3197 if (qual->has_layout() && uses_deprecated_qualifier) {
3198 if (relaxed_layout_qualifier_checking) {
3199 _mesa_glsl_warning(loc, state,
3200 "`layout' qualifier may not be used with "
3201 "`attribute' or `varying'");
3202 } else {
3203 _mesa_glsl_error(loc, state,
3204 "`layout' qualifier may not be used with "
3205 "`attribute' or `varying'");
3206 }
3207 }
3208
3209 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3210 * AMD_conservative_depth.
3211 */
3212 int depth_layout_count = qual->flags.q.depth_any
3213 + qual->flags.q.depth_greater
3214 + qual->flags.q.depth_less
3215 + qual->flags.q.depth_unchanged;
3216 if (depth_layout_count > 0
3217 && !state->AMD_conservative_depth_enable
3218 && !state->ARB_conservative_depth_enable) {
3219 _mesa_glsl_error(loc, state,
3220 "extension GL_AMD_conservative_depth or "
3221 "GL_ARB_conservative_depth must be enabled "
3222 "to use depth layout qualifiers");
3223 } else if (depth_layout_count > 0
3224 && strcmp(var->name, "gl_FragDepth") != 0) {
3225 _mesa_glsl_error(loc, state,
3226 "depth layout qualifiers can be applied only to "
3227 "gl_FragDepth");
3228 } else if (depth_layout_count > 1
3229 && strcmp(var->name, "gl_FragDepth") == 0) {
3230 _mesa_glsl_error(loc, state,
3231 "at most one depth layout qualifier can be applied to "
3232 "gl_FragDepth");
3233 }
3234 if (qual->flags.q.depth_any)
3235 var->data.depth_layout = ir_depth_layout_any;
3236 else if (qual->flags.q.depth_greater)
3237 var->data.depth_layout = ir_depth_layout_greater;
3238 else if (qual->flags.q.depth_less)
3239 var->data.depth_layout = ir_depth_layout_less;
3240 else if (qual->flags.q.depth_unchanged)
3241 var->data.depth_layout = ir_depth_layout_unchanged;
3242 else
3243 var->data.depth_layout = ir_depth_layout_none;
3244
3245 if (qual->flags.q.std140 ||
3246 qual->flags.q.std430 ||
3247 qual->flags.q.packed ||
3248 qual->flags.q.shared) {
3249 _mesa_glsl_error(loc, state,
3250 "uniform and shader storage block layout qualifiers "
3251 "std140, std430, packed, and shared can only be "
3252 "applied to uniform or shader storage blocks, not "
3253 "members");
3254 }
3255
3256 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3257 validate_matrix_layout_for_type(state, loc, var->type, var);
3258 }
3259
3260 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3261 * Inputs):
3262 *
3263 * "Fragment shaders also allow the following layout qualifier on in only
3264 * (not with variable declarations)
3265 * layout-qualifier-id
3266 * early_fragment_tests
3267 * [...]"
3268 */
3269 if (qual->flags.q.early_fragment_tests) {
3270 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3271 "valid in fragment shader input layout declaration.");
3272 }
3273 }
3274
3275 static void
3276 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3277 ir_variable *var,
3278 struct _mesa_glsl_parse_state *state,
3279 YYLTYPE *loc,
3280 bool is_parameter)
3281 {
3282 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3283
3284 if (qual->flags.q.invariant) {
3285 if (var->data.used) {
3286 _mesa_glsl_error(loc, state,
3287 "variable `%s' may not be redeclared "
3288 "`invariant' after being used",
3289 var->name);
3290 } else {
3291 var->data.invariant = 1;
3292 }
3293 }
3294
3295 if (qual->flags.q.precise) {
3296 if (var->data.used) {
3297 _mesa_glsl_error(loc, state,
3298 "variable `%s' may not be redeclared "
3299 "`precise' after being used",
3300 var->name);
3301 } else {
3302 var->data.precise = 1;
3303 }
3304 }
3305
3306 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3307 _mesa_glsl_error(loc, state,
3308 "`subroutine' may only be applied to uniforms, "
3309 "subroutine type declarations, or function definitions");
3310 }
3311
3312 if (qual->flags.q.constant || qual->flags.q.attribute
3313 || qual->flags.q.uniform
3314 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3315 var->data.read_only = 1;
3316
3317 if (qual->flags.q.centroid)
3318 var->data.centroid = 1;
3319
3320 if (qual->flags.q.sample)
3321 var->data.sample = 1;
3322
3323 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3324 if (state->es_shader) {
3325 var->data.precision =
3326 select_gles_precision(qual->precision, var->type, state, loc);
3327 }
3328
3329 if (qual->flags.q.patch)
3330 var->data.patch = 1;
3331
3332 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3333 var->type = glsl_type::error_type;
3334 _mesa_glsl_error(loc, state,
3335 "`attribute' variables may not be declared in the "
3336 "%s shader",
3337 _mesa_shader_stage_to_string(state->stage));
3338 }
3339
3340 /* Disallow layout qualifiers which may only appear on layout declarations. */
3341 if (qual->flags.q.prim_type) {
3342 _mesa_glsl_error(loc, state,
3343 "Primitive type may only be specified on GS input or output "
3344 "layout declaration, not on variables.");
3345 }
3346
3347 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3348 *
3349 * "However, the const qualifier cannot be used with out or inout."
3350 *
3351 * The same section of the GLSL 4.40 spec further clarifies this saying:
3352 *
3353 * "The const qualifier cannot be used with out or inout, or a
3354 * compile-time error results."
3355 */
3356 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3357 _mesa_glsl_error(loc, state,
3358 "`const' may not be applied to `out' or `inout' "
3359 "function parameters");
3360 }
3361
3362 /* If there is no qualifier that changes the mode of the variable, leave
3363 * the setting alone.
3364 */
3365 assert(var->data.mode != ir_var_temporary);
3366 if (qual->flags.q.in && qual->flags.q.out)
3367 var->data.mode = ir_var_function_inout;
3368 else if (qual->flags.q.in)
3369 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3370 else if (qual->flags.q.attribute
3371 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3372 var->data.mode = ir_var_shader_in;
3373 else if (qual->flags.q.out)
3374 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3375 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3376 var->data.mode = ir_var_shader_out;
3377 else if (qual->flags.q.uniform)
3378 var->data.mode = ir_var_uniform;
3379 else if (qual->flags.q.buffer)
3380 var->data.mode = ir_var_shader_storage;
3381 else if (qual->flags.q.shared_storage)
3382 var->data.mode = ir_var_shader_shared;
3383
3384 if (!is_parameter && is_varying_var(var, state->stage)) {
3385 /* User-defined ins/outs are not permitted in compute shaders. */
3386 if (state->stage == MESA_SHADER_COMPUTE) {
3387 _mesa_glsl_error(loc, state,
3388 "user-defined input and output variables are not "
3389 "permitted in compute shaders");
3390 }
3391
3392 /* This variable is being used to link data between shader stages (in
3393 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3394 * that is allowed for such purposes.
3395 *
3396 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3397 *
3398 * "The varying qualifier can be used only with the data types
3399 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3400 * these."
3401 *
3402 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3403 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3404 *
3405 * "Fragment inputs can only be signed and unsigned integers and
3406 * integer vectors, float, floating-point vectors, matrices, or
3407 * arrays of these. Structures cannot be input.
3408 *
3409 * Similar text exists in the section on vertex shader outputs.
3410 *
3411 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3412 * 3.00 spec allows structs as well. Varying structs are also allowed
3413 * in GLSL 1.50.
3414 */
3415 switch (var->type->get_scalar_type()->base_type) {
3416 case GLSL_TYPE_FLOAT:
3417 /* Ok in all GLSL versions */
3418 break;
3419 case GLSL_TYPE_UINT:
3420 case GLSL_TYPE_INT:
3421 if (state->is_version(130, 300))
3422 break;
3423 _mesa_glsl_error(loc, state,
3424 "varying variables must be of base type float in %s",
3425 state->get_version_string());
3426 break;
3427 case GLSL_TYPE_STRUCT:
3428 if (state->is_version(150, 300))
3429 break;
3430 _mesa_glsl_error(loc, state,
3431 "varying variables may not be of type struct");
3432 break;
3433 case GLSL_TYPE_DOUBLE:
3434 break;
3435 default:
3436 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3437 break;
3438 }
3439 }
3440
3441 if (state->all_invariant && (state->current_function == NULL)) {
3442 switch (state->stage) {
3443 case MESA_SHADER_VERTEX:
3444 if (var->data.mode == ir_var_shader_out)
3445 var->data.invariant = true;
3446 break;
3447 case MESA_SHADER_TESS_CTRL:
3448 case MESA_SHADER_TESS_EVAL:
3449 case MESA_SHADER_GEOMETRY:
3450 if ((var->data.mode == ir_var_shader_in)
3451 || (var->data.mode == ir_var_shader_out))
3452 var->data.invariant = true;
3453 break;
3454 case MESA_SHADER_FRAGMENT:
3455 if (var->data.mode == ir_var_shader_in)
3456 var->data.invariant = true;
3457 break;
3458 case MESA_SHADER_COMPUTE:
3459 /* Invariance isn't meaningful in compute shaders. */
3460 break;
3461 }
3462 }
3463
3464 var->data.interpolation =
3465 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3466 state, loc);
3467
3468 /* Does the declaration use the deprecated 'attribute' or 'varying'
3469 * keywords?
3470 */
3471 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3472 || qual->flags.q.varying;
3473
3474
3475 /* Validate auxiliary storage qualifiers */
3476
3477 /* From section 4.3.4 of the GLSL 1.30 spec:
3478 * "It is an error to use centroid in in a vertex shader."
3479 *
3480 * From section 4.3.4 of the GLSL ES 3.00 spec:
3481 * "It is an error to use centroid in or interpolation qualifiers in
3482 * a vertex shader input."
3483 */
3484
3485 /* Section 4.3.6 of the GLSL 1.30 specification states:
3486 * "It is an error to use centroid out in a fragment shader."
3487 *
3488 * The GL_ARB_shading_language_420pack extension specification states:
3489 * "It is an error to use auxiliary storage qualifiers or interpolation
3490 * qualifiers on an output in a fragment shader."
3491 */
3492 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3493 _mesa_glsl_error(loc, state,
3494 "sample qualifier may only be used on `in` or `out` "
3495 "variables between shader stages");
3496 }
3497 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3498 _mesa_glsl_error(loc, state,
3499 "centroid qualifier may only be used with `in', "
3500 "`out' or `varying' variables between shader stages");
3501 }
3502
3503 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3504 _mesa_glsl_error(loc, state,
3505 "the shared storage qualifiers can only be used with "
3506 "compute shaders");
3507 }
3508
3509 apply_image_qualifier_to_variable(qual, var, state, loc);
3510 }
3511
3512 /**
3513 * Get the variable that is being redeclared by this declaration
3514 *
3515 * Semantic checks to verify the validity of the redeclaration are also
3516 * performed. If semantic checks fail, compilation error will be emitted via
3517 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3518 *
3519 * \returns
3520 * A pointer to an existing variable in the current scope if the declaration
3521 * is a redeclaration, \c NULL otherwise.
3522 */
3523 static ir_variable *
3524 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3525 struct _mesa_glsl_parse_state *state,
3526 bool allow_all_redeclarations)
3527 {
3528 /* Check if this declaration is actually a re-declaration, either to
3529 * resize an array or add qualifiers to an existing variable.
3530 *
3531 * This is allowed for variables in the current scope, or when at
3532 * global scope (for built-ins in the implicit outer scope).
3533 */
3534 ir_variable *earlier = state->symbols->get_variable(var->name);
3535 if (earlier == NULL ||
3536 (state->current_function != NULL &&
3537 !state->symbols->name_declared_this_scope(var->name))) {
3538 return NULL;
3539 }
3540
3541
3542 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3543 *
3544 * "It is legal to declare an array without a size and then
3545 * later re-declare the same name as an array of the same
3546 * type and specify a size."
3547 */
3548 if (earlier->type->is_unsized_array() && var->type->is_array()
3549 && (var->type->fields.array == earlier->type->fields.array)) {
3550 /* FINISHME: This doesn't match the qualifiers on the two
3551 * FINISHME: declarations. It's not 100% clear whether this is
3552 * FINISHME: required or not.
3553 */
3554
3555 const unsigned size = unsigned(var->type->array_size());
3556 check_builtin_array_max_size(var->name, size, loc, state);
3557 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3558 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3559 "previous access",
3560 earlier->data.max_array_access);
3561 }
3562
3563 earlier->type = var->type;
3564 delete var;
3565 var = NULL;
3566 } else if ((state->ARB_fragment_coord_conventions_enable ||
3567 state->is_version(150, 0))
3568 && strcmp(var->name, "gl_FragCoord") == 0
3569 && earlier->type == var->type
3570 && var->data.mode == ir_var_shader_in) {
3571 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3572 * qualifiers.
3573 */
3574 earlier->data.origin_upper_left = var->data.origin_upper_left;
3575 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3576
3577 /* According to section 4.3.7 of the GLSL 1.30 spec,
3578 * the following built-in varaibles can be redeclared with an
3579 * interpolation qualifier:
3580 * * gl_FrontColor
3581 * * gl_BackColor
3582 * * gl_FrontSecondaryColor
3583 * * gl_BackSecondaryColor
3584 * * gl_Color
3585 * * gl_SecondaryColor
3586 */
3587 } else if (state->is_version(130, 0)
3588 && (strcmp(var->name, "gl_FrontColor") == 0
3589 || strcmp(var->name, "gl_BackColor") == 0
3590 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3591 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3592 || strcmp(var->name, "gl_Color") == 0
3593 || strcmp(var->name, "gl_SecondaryColor") == 0)
3594 && earlier->type == var->type
3595 && earlier->data.mode == var->data.mode) {
3596 earlier->data.interpolation = var->data.interpolation;
3597
3598 /* Layout qualifiers for gl_FragDepth. */
3599 } else if ((state->AMD_conservative_depth_enable ||
3600 state->ARB_conservative_depth_enable)
3601 && strcmp(var->name, "gl_FragDepth") == 0
3602 && earlier->type == var->type
3603 && earlier->data.mode == var->data.mode) {
3604
3605 /** From the AMD_conservative_depth spec:
3606 * Within any shader, the first redeclarations of gl_FragDepth
3607 * must appear before any use of gl_FragDepth.
3608 */
3609 if (earlier->data.used) {
3610 _mesa_glsl_error(&loc, state,
3611 "the first redeclaration of gl_FragDepth "
3612 "must appear before any use of gl_FragDepth");
3613 }
3614
3615 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3616 if (earlier->data.depth_layout != ir_depth_layout_none
3617 && earlier->data.depth_layout != var->data.depth_layout) {
3618 _mesa_glsl_error(&loc, state,
3619 "gl_FragDepth: depth layout is declared here "
3620 "as '%s, but it was previously declared as "
3621 "'%s'",
3622 depth_layout_string(var->data.depth_layout),
3623 depth_layout_string(earlier->data.depth_layout));
3624 }
3625
3626 earlier->data.depth_layout = var->data.depth_layout;
3627
3628 } else if (allow_all_redeclarations) {
3629 if (earlier->data.mode != var->data.mode) {
3630 _mesa_glsl_error(&loc, state,
3631 "redeclaration of `%s' with incorrect qualifiers",
3632 var->name);
3633 } else if (earlier->type != var->type) {
3634 _mesa_glsl_error(&loc, state,
3635 "redeclaration of `%s' has incorrect type",
3636 var->name);
3637 }
3638 } else {
3639 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3640 }
3641
3642 return earlier;
3643 }
3644
3645 /**
3646 * Generate the IR for an initializer in a variable declaration
3647 */
3648 ir_rvalue *
3649 process_initializer(ir_variable *var, ast_declaration *decl,
3650 ast_fully_specified_type *type,
3651 exec_list *initializer_instructions,
3652 struct _mesa_glsl_parse_state *state)
3653 {
3654 ir_rvalue *result = NULL;
3655
3656 YYLTYPE initializer_loc = decl->initializer->get_location();
3657
3658 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3659 *
3660 * "All uniform variables are read-only and are initialized either
3661 * directly by an application via API commands, or indirectly by
3662 * OpenGL."
3663 */
3664 if (var->data.mode == ir_var_uniform) {
3665 state->check_version(120, 0, &initializer_loc,
3666 "cannot initialize uniform %s",
3667 var->name);
3668 }
3669
3670 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3671 *
3672 * "Buffer variables cannot have initializers."
3673 */
3674 if (var->data.mode == ir_var_shader_storage) {
3675 _mesa_glsl_error(&initializer_loc, state,
3676 "cannot initialize buffer variable %s",
3677 var->name);
3678 }
3679
3680 /* From section 4.1.7 of the GLSL 4.40 spec:
3681 *
3682 * "Opaque variables [...] are initialized only through the
3683 * OpenGL API; they cannot be declared with an initializer in a
3684 * shader."
3685 */
3686 if (var->type->contains_opaque()) {
3687 _mesa_glsl_error(&initializer_loc, state,
3688 "cannot initialize opaque variable %s",
3689 var->name);
3690 }
3691
3692 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3693 _mesa_glsl_error(&initializer_loc, state,
3694 "cannot initialize %s shader input / %s %s",
3695 _mesa_shader_stage_to_string(state->stage),
3696 (state->stage == MESA_SHADER_VERTEX)
3697 ? "attribute" : "varying",
3698 var->name);
3699 }
3700
3701 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3702 _mesa_glsl_error(&initializer_loc, state,
3703 "cannot initialize %s shader output %s",
3704 _mesa_shader_stage_to_string(state->stage),
3705 var->name);
3706 }
3707
3708 /* If the initializer is an ast_aggregate_initializer, recursively store
3709 * type information from the LHS into it, so that its hir() function can do
3710 * type checking.
3711 */
3712 if (decl->initializer->oper == ast_aggregate)
3713 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3714
3715 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3716 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3717
3718 /* Calculate the constant value if this is a const or uniform
3719 * declaration.
3720 *
3721 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3722 *
3723 * "Declarations of globals without a storage qualifier, or with
3724 * just the const qualifier, may include initializers, in which case
3725 * they will be initialized before the first line of main() is
3726 * executed. Such initializers must be a constant expression."
3727 *
3728 * The same section of the GLSL ES 3.00.4 spec has similar language.
3729 */
3730 if (type->qualifier.flags.q.constant
3731 || type->qualifier.flags.q.uniform
3732 || (state->es_shader && state->current_function == NULL)) {
3733 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3734 lhs, rhs, true);
3735 if (new_rhs != NULL) {
3736 rhs = new_rhs;
3737
3738 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3739 * says:
3740 *
3741 * "A constant expression is one of
3742 *
3743 * ...
3744 *
3745 * - an expression formed by an operator on operands that are
3746 * all constant expressions, including getting an element of
3747 * a constant array, or a field of a constant structure, or
3748 * components of a constant vector. However, the sequence
3749 * operator ( , ) and the assignment operators ( =, +=, ...)
3750 * are not included in the operators that can create a
3751 * constant expression."
3752 *
3753 * Section 12.43 (Sequence operator and constant expressions) says:
3754 *
3755 * "Should the following construct be allowed?
3756 *
3757 * float a[2,3];
3758 *
3759 * The expression within the brackets uses the sequence operator
3760 * (',') and returns the integer 3 so the construct is declaring
3761 * a single-dimensional array of size 3. In some languages, the
3762 * construct declares a two-dimensional array. It would be
3763 * preferable to make this construct illegal to avoid confusion.
3764 *
3765 * One possibility is to change the definition of the sequence
3766 * operator so that it does not return a constant-expression and
3767 * hence cannot be used to declare an array size.
3768 *
3769 * RESOLUTION: The result of a sequence operator is not a
3770 * constant-expression."
3771 *
3772 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3773 * contains language almost identical to the section 4.3.3 in the
3774 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3775 * versions.
3776 */
3777 ir_constant *constant_value = rhs->constant_expression_value();
3778 if (!constant_value ||
3779 (state->is_version(430, 300) &&
3780 decl->initializer->has_sequence_subexpression())) {
3781 const char *const variable_mode =
3782 (type->qualifier.flags.q.constant)
3783 ? "const"
3784 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3785
3786 /* If ARB_shading_language_420pack is enabled, initializers of
3787 * const-qualified local variables do not have to be constant
3788 * expressions. Const-qualified global variables must still be
3789 * initialized with constant expressions.
3790 */
3791 if (!state->has_420pack()
3792 || state->current_function == NULL) {
3793 _mesa_glsl_error(& initializer_loc, state,
3794 "initializer of %s variable `%s' must be a "
3795 "constant expression",
3796 variable_mode,
3797 decl->identifier);
3798 if (var->type->is_numeric()) {
3799 /* Reduce cascading errors. */
3800 var->constant_value = type->qualifier.flags.q.constant
3801 ? ir_constant::zero(state, var->type) : NULL;
3802 }
3803 }
3804 } else {
3805 rhs = constant_value;
3806 var->constant_value = type->qualifier.flags.q.constant
3807 ? constant_value : NULL;
3808 }
3809 } else {
3810 if (var->type->is_numeric()) {
3811 /* Reduce cascading errors. */
3812 var->constant_value = type->qualifier.flags.q.constant
3813 ? ir_constant::zero(state, var->type) : NULL;
3814 }
3815 }
3816 }
3817
3818 if (rhs && !rhs->type->is_error()) {
3819 bool temp = var->data.read_only;
3820 if (type->qualifier.flags.q.constant)
3821 var->data.read_only = false;
3822
3823 /* Never emit code to initialize a uniform.
3824 */
3825 const glsl_type *initializer_type;
3826 if (!type->qualifier.flags.q.uniform) {
3827 do_assignment(initializer_instructions, state,
3828 NULL,
3829 lhs, rhs,
3830 &result, true,
3831 true,
3832 type->get_location());
3833 initializer_type = result->type;
3834 } else
3835 initializer_type = rhs->type;
3836
3837 var->constant_initializer = rhs->constant_expression_value();
3838 var->data.has_initializer = true;
3839
3840 /* If the declared variable is an unsized array, it must inherrit
3841 * its full type from the initializer. A declaration such as
3842 *
3843 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3844 *
3845 * becomes
3846 *
3847 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3848 *
3849 * The assignment generated in the if-statement (below) will also
3850 * automatically handle this case for non-uniforms.
3851 *
3852 * If the declared variable is not an array, the types must
3853 * already match exactly. As a result, the type assignment
3854 * here can be done unconditionally. For non-uniforms the call
3855 * to do_assignment can change the type of the initializer (via
3856 * the implicit conversion rules). For uniforms the initializer
3857 * must be a constant expression, and the type of that expression
3858 * was validated above.
3859 */
3860 var->type = initializer_type;
3861
3862 var->data.read_only = temp;
3863 }
3864
3865 return result;
3866 }
3867
3868 static void
3869 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3870 YYLTYPE loc, ir_variable *var,
3871 unsigned num_vertices,
3872 unsigned *size,
3873 const char *var_category)
3874 {
3875 if (var->type->is_unsized_array()) {
3876 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3877 *
3878 * All geometry shader input unsized array declarations will be
3879 * sized by an earlier input layout qualifier, when present, as per
3880 * the following table.
3881 *
3882 * Followed by a table mapping each allowed input layout qualifier to
3883 * the corresponding input length.
3884 *
3885 * Similarly for tessellation control shader outputs.
3886 */
3887 if (num_vertices != 0)
3888 var->type = glsl_type::get_array_instance(var->type->fields.array,
3889 num_vertices);
3890 } else {
3891 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3892 * includes the following examples of compile-time errors:
3893 *
3894 * // code sequence within one shader...
3895 * in vec4 Color1[]; // size unknown
3896 * ...Color1.length()...// illegal, length() unknown
3897 * in vec4 Color2[2]; // size is 2
3898 * ...Color1.length()...// illegal, Color1 still has no size
3899 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3900 * layout(lines) in; // legal, input size is 2, matching
3901 * in vec4 Color4[3]; // illegal, contradicts layout
3902 * ...
3903 *
3904 * To detect the case illustrated by Color3, we verify that the size of
3905 * an explicitly-sized array matches the size of any previously declared
3906 * explicitly-sized array. To detect the case illustrated by Color4, we
3907 * verify that the size of an explicitly-sized array is consistent with
3908 * any previously declared input layout.
3909 */
3910 if (num_vertices != 0 && var->type->length != num_vertices) {
3911 _mesa_glsl_error(&loc, state,
3912 "%s size contradicts previously declared layout "
3913 "(size is %u, but layout requires a size of %u)",
3914 var_category, var->type->length, num_vertices);
3915 } else if (*size != 0 && var->type->length != *size) {
3916 _mesa_glsl_error(&loc, state,
3917 "%s sizes are inconsistent (size is %u, but a "
3918 "previous declaration has size %u)",
3919 var_category, var->type->length, *size);
3920 } else {
3921 *size = var->type->length;
3922 }
3923 }
3924 }
3925
3926 static void
3927 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3928 YYLTYPE loc, ir_variable *var)
3929 {
3930 unsigned num_vertices = 0;
3931
3932 if (state->tcs_output_vertices_specified) {
3933 if (!state->out_qualifier->vertices->
3934 process_qualifier_constant(state, "vertices",
3935 &num_vertices, false)) {
3936 return;
3937 }
3938
3939 if (num_vertices > state->Const.MaxPatchVertices) {
3940 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3941 "GL_MAX_PATCH_VERTICES", num_vertices);
3942 return;
3943 }
3944 }
3945
3946 if (!var->type->is_array() && !var->data.patch) {
3947 _mesa_glsl_error(&loc, state,
3948 "tessellation control shader outputs must be arrays");
3949
3950 /* To avoid cascading failures, short circuit the checks below. */
3951 return;
3952 }
3953
3954 if (var->data.patch)
3955 return;
3956
3957 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3958 &state->tcs_output_size,
3959 "tessellation control shader output");
3960 }
3961
3962 /**
3963 * Do additional processing necessary for tessellation control/evaluation shader
3964 * input declarations. This covers both interface block arrays and bare input
3965 * variables.
3966 */
3967 static void
3968 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3969 YYLTYPE loc, ir_variable *var)
3970 {
3971 if (!var->type->is_array() && !var->data.patch) {
3972 _mesa_glsl_error(&loc, state,
3973 "per-vertex tessellation shader inputs must be arrays");
3974 /* Avoid cascading failures. */
3975 return;
3976 }
3977
3978 if (var->data.patch)
3979 return;
3980
3981 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3982 if (var->type->is_unsized_array()) {
3983 var->type = glsl_type::get_array_instance(var->type->fields.array,
3984 state->Const.MaxPatchVertices);
3985 }
3986 }
3987
3988
3989 /**
3990 * Do additional processing necessary for geometry shader input declarations
3991 * (this covers both interface blocks arrays and bare input variables).
3992 */
3993 static void
3994 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3995 YYLTYPE loc, ir_variable *var)
3996 {
3997 unsigned num_vertices = 0;
3998
3999 if (state->gs_input_prim_type_specified) {
4000 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4001 }
4002
4003 /* Geometry shader input variables must be arrays. Caller should have
4004 * reported an error for this.
4005 */
4006 if (!var->type->is_array()) {
4007 assert(state->error);
4008
4009 /* To avoid cascading failures, short circuit the checks below. */
4010 return;
4011 }
4012
4013 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4014 &state->gs_input_size,
4015 "geometry shader input");
4016 }
4017
4018 void
4019 validate_identifier(const char *identifier, YYLTYPE loc,
4020 struct _mesa_glsl_parse_state *state)
4021 {
4022 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4023 *
4024 * "Identifiers starting with "gl_" are reserved for use by
4025 * OpenGL, and may not be declared in a shader as either a
4026 * variable or a function."
4027 */
4028 if (is_gl_identifier(identifier)) {
4029 _mesa_glsl_error(&loc, state,
4030 "identifier `%s' uses reserved `gl_' prefix",
4031 identifier);
4032 } else if (strstr(identifier, "__")) {
4033 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4034 * spec:
4035 *
4036 * "In addition, all identifiers containing two
4037 * consecutive underscores (__) are reserved as
4038 * possible future keywords."
4039 *
4040 * The intention is that names containing __ are reserved for internal
4041 * use by the implementation, and names prefixed with GL_ are reserved
4042 * for use by Khronos. Names simply containing __ are dangerous to use,
4043 * but should be allowed.
4044 *
4045 * A future version of the GLSL specification will clarify this.
4046 */
4047 _mesa_glsl_warning(&loc, state,
4048 "identifier `%s' uses reserved `__' string",
4049 identifier);
4050 }
4051 }
4052
4053 ir_rvalue *
4054 ast_declarator_list::hir(exec_list *instructions,
4055 struct _mesa_glsl_parse_state *state)
4056 {
4057 void *ctx = state;
4058 const struct glsl_type *decl_type;
4059 const char *type_name = NULL;
4060 ir_rvalue *result = NULL;
4061 YYLTYPE loc = this->get_location();
4062
4063 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4064 *
4065 * "To ensure that a particular output variable is invariant, it is
4066 * necessary to use the invariant qualifier. It can either be used to
4067 * qualify a previously declared variable as being invariant
4068 *
4069 * invariant gl_Position; // make existing gl_Position be invariant"
4070 *
4071 * In these cases the parser will set the 'invariant' flag in the declarator
4072 * list, and the type will be NULL.
4073 */
4074 if (this->invariant) {
4075 assert(this->type == NULL);
4076
4077 if (state->current_function != NULL) {
4078 _mesa_glsl_error(& loc, state,
4079 "all uses of `invariant' keyword must be at global "
4080 "scope");
4081 }
4082
4083 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4084 assert(decl->array_specifier == NULL);
4085 assert(decl->initializer == NULL);
4086
4087 ir_variable *const earlier =
4088 state->symbols->get_variable(decl->identifier);
4089 if (earlier == NULL) {
4090 _mesa_glsl_error(& loc, state,
4091 "undeclared variable `%s' cannot be marked "
4092 "invariant", decl->identifier);
4093 } else if (!is_varying_var(earlier, state->stage)) {
4094 _mesa_glsl_error(&loc, state,
4095 "`%s' cannot be marked invariant; interfaces between "
4096 "shader stages only.", decl->identifier);
4097 } else if (earlier->data.used) {
4098 _mesa_glsl_error(& loc, state,
4099 "variable `%s' may not be redeclared "
4100 "`invariant' after being used",
4101 earlier->name);
4102 } else {
4103 earlier->data.invariant = true;
4104 }
4105 }
4106
4107 /* Invariant redeclarations do not have r-values.
4108 */
4109 return NULL;
4110 }
4111
4112 if (this->precise) {
4113 assert(this->type == NULL);
4114
4115 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4116 assert(decl->array_specifier == NULL);
4117 assert(decl->initializer == NULL);
4118
4119 ir_variable *const earlier =
4120 state->symbols->get_variable(decl->identifier);
4121 if (earlier == NULL) {
4122 _mesa_glsl_error(& loc, state,
4123 "undeclared variable `%s' cannot be marked "
4124 "precise", decl->identifier);
4125 } else if (state->current_function != NULL &&
4126 !state->symbols->name_declared_this_scope(decl->identifier)) {
4127 /* Note: we have to check if we're in a function, since
4128 * builtins are treated as having come from another scope.
4129 */
4130 _mesa_glsl_error(& loc, state,
4131 "variable `%s' from an outer scope may not be "
4132 "redeclared `precise' in this scope",
4133 earlier->name);
4134 } else if (earlier->data.used) {
4135 _mesa_glsl_error(& loc, state,
4136 "variable `%s' may not be redeclared "
4137 "`precise' after being used",
4138 earlier->name);
4139 } else {
4140 earlier->data.precise = true;
4141 }
4142 }
4143
4144 /* Precise redeclarations do not have r-values either. */
4145 return NULL;
4146 }
4147
4148 assert(this->type != NULL);
4149 assert(!this->invariant);
4150 assert(!this->precise);
4151
4152 /* The type specifier may contain a structure definition. Process that
4153 * before any of the variable declarations.
4154 */
4155 (void) this->type->specifier->hir(instructions, state);
4156
4157 decl_type = this->type->glsl_type(& type_name, state);
4158
4159 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4160 * "Buffer variables may only be declared inside interface blocks
4161 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4162 * shader storage blocks. It is a compile-time error to declare buffer
4163 * variables at global scope (outside a block)."
4164 */
4165 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4166 _mesa_glsl_error(&loc, state,
4167 "buffer variables cannot be declared outside "
4168 "interface blocks");
4169 }
4170
4171 /* An offset-qualified atomic counter declaration sets the default
4172 * offset for the next declaration within the same atomic counter
4173 * buffer.
4174 */
4175 if (decl_type && decl_type->contains_atomic()) {
4176 if (type->qualifier.flags.q.explicit_binding &&
4177 type->qualifier.flags.q.explicit_offset) {
4178 unsigned qual_binding;
4179 unsigned qual_offset;
4180 if (process_qualifier_constant(state, &loc, "binding",
4181 type->qualifier.binding,
4182 &qual_binding)
4183 && process_qualifier_constant(state, &loc, "offset",
4184 type->qualifier.offset,
4185 &qual_offset)) {
4186 state->atomic_counter_offsets[qual_binding] = qual_offset;
4187 }
4188 }
4189 }
4190
4191 if (this->declarations.is_empty()) {
4192 /* If there is no structure involved in the program text, there are two
4193 * possible scenarios:
4194 *
4195 * - The program text contained something like 'vec4;'. This is an
4196 * empty declaration. It is valid but weird. Emit a warning.
4197 *
4198 * - The program text contained something like 'S;' and 'S' is not the
4199 * name of a known structure type. This is both invalid and weird.
4200 * Emit an error.
4201 *
4202 * - The program text contained something like 'mediump float;'
4203 * when the programmer probably meant 'precision mediump
4204 * float;' Emit a warning with a description of what they
4205 * probably meant to do.
4206 *
4207 * Note that if decl_type is NULL and there is a structure involved,
4208 * there must have been some sort of error with the structure. In this
4209 * case we assume that an error was already generated on this line of
4210 * code for the structure. There is no need to generate an additional,
4211 * confusing error.
4212 */
4213 assert(this->type->specifier->structure == NULL || decl_type != NULL
4214 || state->error);
4215
4216 if (decl_type == NULL) {
4217 _mesa_glsl_error(&loc, state,
4218 "invalid type `%s' in empty declaration",
4219 type_name);
4220 } else {
4221 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4222 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4223 * spec:
4224 *
4225 * "... any declaration that leaves the size undefined is
4226 * disallowed as this would add complexity and there are no
4227 * use-cases."
4228 */
4229 if (state->es_shader && decl_type->is_unsized_array()) {
4230 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4231 "or implicitly defined");
4232 }
4233
4234 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4235 *
4236 * "The combinations of types and qualifiers that cause
4237 * compile-time or link-time errors are the same whether or not
4238 * the declaration is empty."
4239 */
4240 validate_array_dimensions(decl_type, state, &loc);
4241 }
4242
4243 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4244 /* Empty atomic counter declarations are allowed and useful
4245 * to set the default offset qualifier.
4246 */
4247 return NULL;
4248 } else if (this->type->qualifier.precision != ast_precision_none) {
4249 if (this->type->specifier->structure != NULL) {
4250 _mesa_glsl_error(&loc, state,
4251 "precision qualifiers can't be applied "
4252 "to structures");
4253 } else {
4254 static const char *const precision_names[] = {
4255 "highp",
4256 "highp",
4257 "mediump",
4258 "lowp"
4259 };
4260
4261 _mesa_glsl_warning(&loc, state,
4262 "empty declaration with precision "
4263 "qualifier, to set the default precision, "
4264 "use `precision %s %s;'",
4265 precision_names[this->type->
4266 qualifier.precision],
4267 type_name);
4268 }
4269 } else if (this->type->specifier->structure == NULL) {
4270 _mesa_glsl_warning(&loc, state, "empty declaration");
4271 }
4272 }
4273 }
4274
4275 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4276 const struct glsl_type *var_type;
4277 ir_variable *var;
4278 const char *identifier = decl->identifier;
4279 /* FINISHME: Emit a warning if a variable declaration shadows a
4280 * FINISHME: declaration at a higher scope.
4281 */
4282
4283 if ((decl_type == NULL) || decl_type->is_void()) {
4284 if (type_name != NULL) {
4285 _mesa_glsl_error(& loc, state,
4286 "invalid type `%s' in declaration of `%s'",
4287 type_name, decl->identifier);
4288 } else {
4289 _mesa_glsl_error(& loc, state,
4290 "invalid type in declaration of `%s'",
4291 decl->identifier);
4292 }
4293 continue;
4294 }
4295
4296 if (this->type->qualifier.flags.q.subroutine) {
4297 const glsl_type *t;
4298 const char *name;
4299
4300 t = state->symbols->get_type(this->type->specifier->type_name);
4301 if (!t)
4302 _mesa_glsl_error(& loc, state,
4303 "invalid type in declaration of `%s'",
4304 decl->identifier);
4305 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4306
4307 identifier = name;
4308
4309 }
4310 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4311 state);
4312
4313 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4314
4315 /* The 'varying in' and 'varying out' qualifiers can only be used with
4316 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4317 * yet.
4318 */
4319 if (this->type->qualifier.flags.q.varying) {
4320 if (this->type->qualifier.flags.q.in) {
4321 _mesa_glsl_error(& loc, state,
4322 "`varying in' qualifier in declaration of "
4323 "`%s' only valid for geometry shaders using "
4324 "ARB_geometry_shader4 or EXT_geometry_shader4",
4325 decl->identifier);
4326 } else if (this->type->qualifier.flags.q.out) {
4327 _mesa_glsl_error(& loc, state,
4328 "`varying out' qualifier in declaration of "
4329 "`%s' only valid for geometry shaders using "
4330 "ARB_geometry_shader4 or EXT_geometry_shader4",
4331 decl->identifier);
4332 }
4333 }
4334
4335 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4336 *
4337 * "Global variables can only use the qualifiers const,
4338 * attribute, uniform, or varying. Only one may be
4339 * specified.
4340 *
4341 * Local variables can only use the qualifier const."
4342 *
4343 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4344 * any extension that adds the 'layout' keyword.
4345 */
4346 if (!state->is_version(130, 300)
4347 && !state->has_explicit_attrib_location()
4348 && !state->has_separate_shader_objects()
4349 && !state->ARB_fragment_coord_conventions_enable) {
4350 if (this->type->qualifier.flags.q.out) {
4351 _mesa_glsl_error(& loc, state,
4352 "`out' qualifier in declaration of `%s' "
4353 "only valid for function parameters in %s",
4354 decl->identifier, state->get_version_string());
4355 }
4356 if (this->type->qualifier.flags.q.in) {
4357 _mesa_glsl_error(& loc, state,
4358 "`in' qualifier in declaration of `%s' "
4359 "only valid for function parameters in %s",
4360 decl->identifier, state->get_version_string());
4361 }
4362 /* FINISHME: Test for other invalid qualifiers. */
4363 }
4364
4365 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4366 & loc, false);
4367 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4368 &loc);
4369
4370 if (this->type->qualifier.flags.q.invariant) {
4371 if (!is_varying_var(var, state->stage)) {
4372 _mesa_glsl_error(&loc, state,
4373 "`%s' cannot be marked invariant; interfaces between "
4374 "shader stages only", var->name);
4375 }
4376 }
4377
4378 if (state->current_function != NULL) {
4379 const char *mode = NULL;
4380 const char *extra = "";
4381
4382 /* There is no need to check for 'inout' here because the parser will
4383 * only allow that in function parameter lists.
4384 */
4385 if (this->type->qualifier.flags.q.attribute) {
4386 mode = "attribute";
4387 } else if (this->type->qualifier.flags.q.subroutine) {
4388 mode = "subroutine uniform";
4389 } else if (this->type->qualifier.flags.q.uniform) {
4390 mode = "uniform";
4391 } else if (this->type->qualifier.flags.q.varying) {
4392 mode = "varying";
4393 } else if (this->type->qualifier.flags.q.in) {
4394 mode = "in";
4395 extra = " or in function parameter list";
4396 } else if (this->type->qualifier.flags.q.out) {
4397 mode = "out";
4398 extra = " or in function parameter list";
4399 }
4400
4401 if (mode) {
4402 _mesa_glsl_error(& loc, state,
4403 "%s variable `%s' must be declared at "
4404 "global scope%s",
4405 mode, var->name, extra);
4406 }
4407 } else if (var->data.mode == ir_var_shader_in) {
4408 var->data.read_only = true;
4409
4410 if (state->stage == MESA_SHADER_VERTEX) {
4411 bool error_emitted = false;
4412
4413 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4414 *
4415 * "Vertex shader inputs can only be float, floating-point
4416 * vectors, matrices, signed and unsigned integers and integer
4417 * vectors. Vertex shader inputs can also form arrays of these
4418 * types, but not structures."
4419 *
4420 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4421 *
4422 * "Vertex shader inputs can only be float, floating-point
4423 * vectors, matrices, signed and unsigned integers and integer
4424 * vectors. They cannot be arrays or structures."
4425 *
4426 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4427 *
4428 * "The attribute qualifier can be used only with float,
4429 * floating-point vectors, and matrices. Attribute variables
4430 * cannot be declared as arrays or structures."
4431 *
4432 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4433 *
4434 * "Vertex shader inputs can only be float, floating-point
4435 * vectors, matrices, signed and unsigned integers and integer
4436 * vectors. Vertex shader inputs cannot be arrays or
4437 * structures."
4438 */
4439 const glsl_type *check_type = var->type->without_array();
4440
4441 switch (check_type->base_type) {
4442 case GLSL_TYPE_FLOAT:
4443 break;
4444 case GLSL_TYPE_UINT:
4445 case GLSL_TYPE_INT:
4446 if (state->is_version(120, 300))
4447 break;
4448 case GLSL_TYPE_DOUBLE:
4449 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4450 break;
4451 /* FALLTHROUGH */
4452 default:
4453 _mesa_glsl_error(& loc, state,
4454 "vertex shader input / attribute cannot have "
4455 "type %s`%s'",
4456 var->type->is_array() ? "array of " : "",
4457 check_type->name);
4458 error_emitted = true;
4459 }
4460
4461 if (!error_emitted && var->type->is_array() &&
4462 !state->check_version(150, 0, &loc,
4463 "vertex shader input / attribute "
4464 "cannot have array type")) {
4465 error_emitted = true;
4466 }
4467 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4468 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4469 *
4470 * Geometry shader input variables get the per-vertex values
4471 * written out by vertex shader output variables of the same
4472 * names. Since a geometry shader operates on a set of
4473 * vertices, each input varying variable (or input block, see
4474 * interface blocks below) needs to be declared as an array.
4475 */
4476 if (!var->type->is_array()) {
4477 _mesa_glsl_error(&loc, state,
4478 "geometry shader inputs must be arrays");
4479 }
4480
4481 handle_geometry_shader_input_decl(state, loc, var);
4482 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4483 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4484 *
4485 * It is a compile-time error to declare a fragment shader
4486 * input with, or that contains, any of the following types:
4487 *
4488 * * A boolean type
4489 * * An opaque type
4490 * * An array of arrays
4491 * * An array of structures
4492 * * A structure containing an array
4493 * * A structure containing a structure
4494 */
4495 if (state->es_shader) {
4496 const glsl_type *check_type = var->type->without_array();
4497 if (check_type->is_boolean() ||
4498 check_type->contains_opaque()) {
4499 _mesa_glsl_error(&loc, state,
4500 "fragment shader input cannot have type %s",
4501 check_type->name);
4502 }
4503 if (var->type->is_array() &&
4504 var->type->fields.array->is_array()) {
4505 _mesa_glsl_error(&loc, state,
4506 "%s shader output "
4507 "cannot have an array of arrays",
4508 _mesa_shader_stage_to_string(state->stage));
4509 }
4510 if (var->type->is_array() &&
4511 var->type->fields.array->is_record()) {
4512 _mesa_glsl_error(&loc, state,
4513 "fragment shader input "
4514 "cannot have an array of structs");
4515 }
4516 if (var->type->is_record()) {
4517 for (unsigned i = 0; i < var->type->length; i++) {
4518 if (var->type->fields.structure[i].type->is_array() ||
4519 var->type->fields.structure[i].type->is_record())
4520 _mesa_glsl_error(&loc, state,
4521 "fragement shader input cannot have "
4522 "a struct that contains an "
4523 "array or struct");
4524 }
4525 }
4526 }
4527 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4528 state->stage == MESA_SHADER_TESS_EVAL) {
4529 handle_tess_shader_input_decl(state, loc, var);
4530 }
4531 } else if (var->data.mode == ir_var_shader_out) {
4532 const glsl_type *check_type = var->type->without_array();
4533
4534 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4535 *
4536 * It is a compile-time error to declare a vertex, tessellation
4537 * evaluation, tessellation control, or geometry shader output
4538 * that contains any of the following:
4539 *
4540 * * A Boolean type (bool, bvec2 ...)
4541 * * An opaque type
4542 */
4543 if (check_type->is_boolean() || check_type->contains_opaque())
4544 _mesa_glsl_error(&loc, state,
4545 "%s shader output cannot have type %s",
4546 _mesa_shader_stage_to_string(state->stage),
4547 check_type->name);
4548
4549 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4550 *
4551 * It is a compile-time error to declare a fragment shader output
4552 * that contains any of the following:
4553 *
4554 * * A Boolean type (bool, bvec2 ...)
4555 * * A double-precision scalar or vector (double, dvec2 ...)
4556 * * An opaque type
4557 * * Any matrix type
4558 * * A structure
4559 */
4560 if (state->stage == MESA_SHADER_FRAGMENT) {
4561 if (check_type->is_record() || check_type->is_matrix())
4562 _mesa_glsl_error(&loc, state,
4563 "fragment shader output "
4564 "cannot have struct or matrix type");
4565 switch (check_type->base_type) {
4566 case GLSL_TYPE_UINT:
4567 case GLSL_TYPE_INT:
4568 case GLSL_TYPE_FLOAT:
4569 break;
4570 default:
4571 _mesa_glsl_error(&loc, state,
4572 "fragment shader output cannot have "
4573 "type %s", check_type->name);
4574 }
4575 }
4576
4577 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4578 *
4579 * It is a compile-time error to declare a vertex shader output
4580 * with, or that contains, any of the following types:
4581 *
4582 * * A boolean type
4583 * * An opaque type
4584 * * An array of arrays
4585 * * An array of structures
4586 * * A structure containing an array
4587 * * A structure containing a structure
4588 *
4589 * It is a compile-time error to declare a fragment shader output
4590 * with, or that contains, any of the following types:
4591 *
4592 * * A boolean type
4593 * * An opaque type
4594 * * A matrix
4595 * * A structure
4596 * * An array of array
4597 */
4598 if (state->es_shader) {
4599 if (var->type->is_array() &&
4600 var->type->fields.array->is_array()) {
4601 _mesa_glsl_error(&loc, state,
4602 "%s shader output "
4603 "cannot have an array of arrays",
4604 _mesa_shader_stage_to_string(state->stage));
4605 }
4606 if (state->stage == MESA_SHADER_VERTEX) {
4607 if (var->type->is_array() &&
4608 var->type->fields.array->is_record()) {
4609 _mesa_glsl_error(&loc, state,
4610 "vertex shader output "
4611 "cannot have an array of structs");
4612 }
4613 if (var->type->is_record()) {
4614 for (unsigned i = 0; i < var->type->length; i++) {
4615 if (var->type->fields.structure[i].type->is_array() ||
4616 var->type->fields.structure[i].type->is_record())
4617 _mesa_glsl_error(&loc, state,
4618 "vertex shader output cannot have a "
4619 "struct that contains an "
4620 "array or struct");
4621 }
4622 }
4623 }
4624 }
4625
4626 if (state->stage == MESA_SHADER_TESS_CTRL) {
4627 handle_tess_ctrl_shader_output_decl(state, loc, var);
4628 }
4629 } else if (var->type->contains_subroutine()) {
4630 /* declare subroutine uniforms as hidden */
4631 var->data.how_declared = ir_var_hidden;
4632 }
4633
4634 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4635 * so must integer vertex outputs.
4636 *
4637 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4638 * "Fragment shader inputs that are signed or unsigned integers or
4639 * integer vectors must be qualified with the interpolation qualifier
4640 * flat."
4641 *
4642 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4643 * "Fragment shader inputs that are, or contain, signed or unsigned
4644 * integers or integer vectors must be qualified with the
4645 * interpolation qualifier flat."
4646 *
4647 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4648 * "Vertex shader outputs that are, or contain, signed or unsigned
4649 * integers or integer vectors must be qualified with the
4650 * interpolation qualifier flat."
4651 *
4652 * Note that prior to GLSL 1.50, this requirement applied to vertex
4653 * outputs rather than fragment inputs. That creates problems in the
4654 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4655 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4656 * apply the restriction to both vertex outputs and fragment inputs.
4657 *
4658 * Note also that the desktop GLSL specs are missing the text "or
4659 * contain"; this is presumably an oversight, since there is no
4660 * reasonable way to interpolate a fragment shader input that contains
4661 * an integer.
4662 */
4663 if (state->is_version(130, 300) &&
4664 var->type->contains_integer() &&
4665 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4666 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4667 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4668 && state->es_shader))) {
4669 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4670 "vertex output" : "fragment input";
4671 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4672 "an integer, then it must be qualified with 'flat'",
4673 var_type);
4674 }
4675
4676 /* Double fragment inputs must be qualified with 'flat'. */
4677 if (var->type->contains_double() &&
4678 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4679 state->stage == MESA_SHADER_FRAGMENT &&
4680 var->data.mode == ir_var_shader_in) {
4681 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4682 "a double, then it must be qualified with 'flat'",
4683 var_type);
4684 }
4685
4686 /* Interpolation qualifiers cannot be applied to 'centroid' and
4687 * 'centroid varying'.
4688 *
4689 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4690 * "interpolation qualifiers may only precede the qualifiers in,
4691 * centroid in, out, or centroid out in a declaration. They do not apply
4692 * to the deprecated storage qualifiers varying or centroid varying."
4693 *
4694 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4695 */
4696 if (state->is_version(130, 0)
4697 && this->type->qualifier.has_interpolation()
4698 && this->type->qualifier.flags.q.varying) {
4699
4700 const char *i = interpolation_string(var->data.interpolation);
4701 const char *s;
4702 if (this->type->qualifier.flags.q.centroid)
4703 s = "centroid varying";
4704 else
4705 s = "varying";
4706
4707 _mesa_glsl_error(&loc, state,
4708 "qualifier '%s' cannot be applied to the "
4709 "deprecated storage qualifier '%s'", i, s);
4710 }
4711
4712
4713 /* Interpolation qualifiers can only apply to vertex shader outputs and
4714 * fragment shader inputs.
4715 *
4716 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4717 * "Outputs from a vertex shader (out) and inputs to a fragment
4718 * shader (in) can be further qualified with one or more of these
4719 * interpolation qualifiers"
4720 *
4721 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4722 * "These interpolation qualifiers may only precede the qualifiers
4723 * in, centroid in, out, or centroid out in a declaration. They do
4724 * not apply to inputs into a vertex shader or outputs from a
4725 * fragment shader."
4726 */
4727 if (state->is_version(130, 300)
4728 && this->type->qualifier.has_interpolation()) {
4729
4730 const char *i = interpolation_string(var->data.interpolation);
4731 switch (state->stage) {
4732 case MESA_SHADER_VERTEX:
4733 if (this->type->qualifier.flags.q.in) {
4734 _mesa_glsl_error(&loc, state,
4735 "qualifier '%s' cannot be applied to vertex "
4736 "shader inputs", i);
4737 }
4738 break;
4739 case MESA_SHADER_FRAGMENT:
4740 if (this->type->qualifier.flags.q.out) {
4741 _mesa_glsl_error(&loc, state,
4742 "qualifier '%s' cannot be applied to fragment "
4743 "shader outputs", i);
4744 }
4745 break;
4746 default:
4747 break;
4748 }
4749 }
4750
4751
4752 /* From section 4.3.4 of the GLSL 4.00 spec:
4753 * "Input variables may not be declared using the patch in qualifier
4754 * in tessellation control or geometry shaders."
4755 *
4756 * From section 4.3.6 of the GLSL 4.00 spec:
4757 * "It is an error to use patch out in a vertex, tessellation
4758 * evaluation, or geometry shader."
4759 *
4760 * This doesn't explicitly forbid using them in a fragment shader, but
4761 * that's probably just an oversight.
4762 */
4763 if (state->stage != MESA_SHADER_TESS_EVAL
4764 && this->type->qualifier.flags.q.patch
4765 && this->type->qualifier.flags.q.in) {
4766
4767 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4768 "tessellation evaluation shader");
4769 }
4770
4771 if (state->stage != MESA_SHADER_TESS_CTRL
4772 && this->type->qualifier.flags.q.patch
4773 && this->type->qualifier.flags.q.out) {
4774
4775 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4776 "tessellation control shader");
4777 }
4778
4779 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4780 */
4781 if (this->type->qualifier.precision != ast_precision_none) {
4782 state->check_precision_qualifiers_allowed(&loc);
4783 }
4784
4785
4786 /* If a precision qualifier is allowed on a type, it is allowed on
4787 * an array of that type.
4788 */
4789 if (!(this->type->qualifier.precision == ast_precision_none
4790 || precision_qualifier_allowed(var->type->without_array()))) {
4791
4792 _mesa_glsl_error(&loc, state,
4793 "precision qualifiers apply only to floating point"
4794 ", integer and opaque types");
4795 }
4796
4797 /* From section 4.1.7 of the GLSL 4.40 spec:
4798 *
4799 * "[Opaque types] can only be declared as function
4800 * parameters or uniform-qualified variables."
4801 */
4802 if (var_type->contains_opaque() &&
4803 !this->type->qualifier.flags.q.uniform) {
4804 _mesa_glsl_error(&loc, state,
4805 "opaque variables must be declared uniform");
4806 }
4807
4808 /* Process the initializer and add its instructions to a temporary
4809 * list. This list will be added to the instruction stream (below) after
4810 * the declaration is added. This is done because in some cases (such as
4811 * redeclarations) the declaration may not actually be added to the
4812 * instruction stream.
4813 */
4814 exec_list initializer_instructions;
4815
4816 /* Examine var name here since var may get deleted in the next call */
4817 bool var_is_gl_id = is_gl_identifier(var->name);
4818
4819 ir_variable *earlier =
4820 get_variable_being_redeclared(var, decl->get_location(), state,
4821 false /* allow_all_redeclarations */);
4822 if (earlier != NULL) {
4823 if (var_is_gl_id &&
4824 earlier->data.how_declared == ir_var_declared_in_block) {
4825 _mesa_glsl_error(&loc, state,
4826 "`%s' has already been redeclared using "
4827 "gl_PerVertex", earlier->name);
4828 }
4829 earlier->data.how_declared = ir_var_declared_normally;
4830 }
4831
4832 if (decl->initializer != NULL) {
4833 result = process_initializer((earlier == NULL) ? var : earlier,
4834 decl, this->type,
4835 &initializer_instructions, state);
4836 } else {
4837 validate_array_dimensions(var_type, state, &loc);
4838 }
4839
4840 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4841 *
4842 * "It is an error to write to a const variable outside of
4843 * its declaration, so they must be initialized when
4844 * declared."
4845 */
4846 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4847 _mesa_glsl_error(& loc, state,
4848 "const declaration of `%s' must be initialized",
4849 decl->identifier);
4850 }
4851
4852 if (state->es_shader) {
4853 const glsl_type *const t = (earlier == NULL)
4854 ? var->type : earlier->type;
4855
4856 if (t->is_unsized_array())
4857 /* Section 10.17 of the GLSL ES 1.00 specification states that
4858 * unsized array declarations have been removed from the language.
4859 * Arrays that are sized using an initializer are still explicitly
4860 * sized. However, GLSL ES 1.00 does not allow array
4861 * initializers. That is only allowed in GLSL ES 3.00.
4862 *
4863 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4864 *
4865 * "An array type can also be formed without specifying a size
4866 * if the definition includes an initializer:
4867 *
4868 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4869 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4870 *
4871 * float a[5];
4872 * float b[] = a;"
4873 */
4874 _mesa_glsl_error(& loc, state,
4875 "unsized array declarations are not allowed in "
4876 "GLSL ES");
4877 }
4878
4879 /* If the declaration is not a redeclaration, there are a few additional
4880 * semantic checks that must be applied. In addition, variable that was
4881 * created for the declaration should be added to the IR stream.
4882 */
4883 if (earlier == NULL) {
4884 validate_identifier(decl->identifier, loc, state);
4885
4886 /* Add the variable to the symbol table. Note that the initializer's
4887 * IR was already processed earlier (though it hasn't been emitted
4888 * yet), without the variable in scope.
4889 *
4890 * This differs from most C-like languages, but it follows the GLSL
4891 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4892 * spec:
4893 *
4894 * "Within a declaration, the scope of a name starts immediately
4895 * after the initializer if present or immediately after the name
4896 * being declared if not."
4897 */
4898 if (!state->symbols->add_variable(var)) {
4899 YYLTYPE loc = this->get_location();
4900 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4901 "current scope", decl->identifier);
4902 continue;
4903 }
4904
4905 /* Push the variable declaration to the top. It means that all the
4906 * variable declarations will appear in a funny last-to-first order,
4907 * but otherwise we run into trouble if a function is prototyped, a
4908 * global var is decled, then the function is defined with usage of
4909 * the global var. See glslparsertest's CorrectModule.frag.
4910 */
4911 instructions->push_head(var);
4912 }
4913
4914 instructions->append_list(&initializer_instructions);
4915 }
4916
4917
4918 /* Generally, variable declarations do not have r-values. However,
4919 * one is used for the declaration in
4920 *
4921 * while (bool b = some_condition()) {
4922 * ...
4923 * }
4924 *
4925 * so we return the rvalue from the last seen declaration here.
4926 */
4927 return result;
4928 }
4929
4930
4931 ir_rvalue *
4932 ast_parameter_declarator::hir(exec_list *instructions,
4933 struct _mesa_glsl_parse_state *state)
4934 {
4935 void *ctx = state;
4936 const struct glsl_type *type;
4937 const char *name = NULL;
4938 YYLTYPE loc = this->get_location();
4939
4940 type = this->type->glsl_type(& name, state);
4941
4942 if (type == NULL) {
4943 if (name != NULL) {
4944 _mesa_glsl_error(& loc, state,
4945 "invalid type `%s' in declaration of `%s'",
4946 name, this->identifier);
4947 } else {
4948 _mesa_glsl_error(& loc, state,
4949 "invalid type in declaration of `%s'",
4950 this->identifier);
4951 }
4952
4953 type = glsl_type::error_type;
4954 }
4955
4956 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4957 *
4958 * "Functions that accept no input arguments need not use void in the
4959 * argument list because prototypes (or definitions) are required and
4960 * therefore there is no ambiguity when an empty argument list "( )" is
4961 * declared. The idiom "(void)" as a parameter list is provided for
4962 * convenience."
4963 *
4964 * Placing this check here prevents a void parameter being set up
4965 * for a function, which avoids tripping up checks for main taking
4966 * parameters and lookups of an unnamed symbol.
4967 */
4968 if (type->is_void()) {
4969 if (this->identifier != NULL)
4970 _mesa_glsl_error(& loc, state,
4971 "named parameter cannot have type `void'");
4972
4973 is_void = true;
4974 return NULL;
4975 }
4976
4977 if (formal_parameter && (this->identifier == NULL)) {
4978 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4979 return NULL;
4980 }
4981
4982 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4983 * call already handled the "vec4[..] foo" case.
4984 */
4985 type = process_array_type(&loc, type, this->array_specifier, state);
4986
4987 if (!type->is_error() && type->is_unsized_array()) {
4988 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4989 "a declared size");
4990 type = glsl_type::error_type;
4991 }
4992
4993 is_void = false;
4994 ir_variable *var = new(ctx)
4995 ir_variable(type, this->identifier, ir_var_function_in);
4996
4997 /* Apply any specified qualifiers to the parameter declaration. Note that
4998 * for function parameters the default mode is 'in'.
4999 */
5000 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5001 true);
5002
5003 /* From section 4.1.7 of the GLSL 4.40 spec:
5004 *
5005 * "Opaque variables cannot be treated as l-values; hence cannot
5006 * be used as out or inout function parameters, nor can they be
5007 * assigned into."
5008 */
5009 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5010 && type->contains_opaque()) {
5011 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5012 "contain opaque variables");
5013 type = glsl_type::error_type;
5014 }
5015
5016 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5017 *
5018 * "When calling a function, expressions that do not evaluate to
5019 * l-values cannot be passed to parameters declared as out or inout."
5020 *
5021 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5022 *
5023 * "Other binary or unary expressions, non-dereferenced arrays,
5024 * function names, swizzles with repeated fields, and constants
5025 * cannot be l-values."
5026 *
5027 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5028 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5029 */
5030 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5031 && type->is_array()
5032 && !state->check_version(120, 100, &loc,
5033 "arrays cannot be out or inout parameters")) {
5034 type = glsl_type::error_type;
5035 }
5036
5037 instructions->push_tail(var);
5038
5039 /* Parameter declarations do not have r-values.
5040 */
5041 return NULL;
5042 }
5043
5044
5045 void
5046 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5047 bool formal,
5048 exec_list *ir_parameters,
5049 _mesa_glsl_parse_state *state)
5050 {
5051 ast_parameter_declarator *void_param = NULL;
5052 unsigned count = 0;
5053
5054 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5055 param->formal_parameter = formal;
5056 param->hir(ir_parameters, state);
5057
5058 if (param->is_void)
5059 void_param = param;
5060
5061 count++;
5062 }
5063
5064 if ((void_param != NULL) && (count > 1)) {
5065 YYLTYPE loc = void_param->get_location();
5066
5067 _mesa_glsl_error(& loc, state,
5068 "`void' parameter must be only parameter");
5069 }
5070 }
5071
5072
5073 void
5074 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5075 {
5076 /* IR invariants disallow function declarations or definitions
5077 * nested within other function definitions. But there is no
5078 * requirement about the relative order of function declarations
5079 * and definitions with respect to one another. So simply insert
5080 * the new ir_function block at the end of the toplevel instruction
5081 * list.
5082 */
5083 state->toplevel_ir->push_tail(f);
5084 }
5085
5086
5087 ir_rvalue *
5088 ast_function::hir(exec_list *instructions,
5089 struct _mesa_glsl_parse_state *state)
5090 {
5091 void *ctx = state;
5092 ir_function *f = NULL;
5093 ir_function_signature *sig = NULL;
5094 exec_list hir_parameters;
5095 YYLTYPE loc = this->get_location();
5096
5097 const char *const name = identifier;
5098
5099 /* New functions are always added to the top-level IR instruction stream,
5100 * so this instruction list pointer is ignored. See also emit_function
5101 * (called below).
5102 */
5103 (void) instructions;
5104
5105 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5106 *
5107 * "Function declarations (prototypes) cannot occur inside of functions;
5108 * they must be at global scope, or for the built-in functions, outside
5109 * the global scope."
5110 *
5111 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5112 *
5113 * "User defined functions may only be defined within the global scope."
5114 *
5115 * Note that this language does not appear in GLSL 1.10.
5116 */
5117 if ((state->current_function != NULL) &&
5118 state->is_version(120, 100)) {
5119 YYLTYPE loc = this->get_location();
5120 _mesa_glsl_error(&loc, state,
5121 "declaration of function `%s' not allowed within "
5122 "function body", name);
5123 }
5124
5125 validate_identifier(name, this->get_location(), state);
5126
5127 /* Convert the list of function parameters to HIR now so that they can be
5128 * used below to compare this function's signature with previously seen
5129 * signatures for functions with the same name.
5130 */
5131 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5132 is_definition,
5133 & hir_parameters, state);
5134
5135 const char *return_type_name;
5136 const glsl_type *return_type =
5137 this->return_type->glsl_type(& return_type_name, state);
5138
5139 if (!return_type) {
5140 YYLTYPE loc = this->get_location();
5141 _mesa_glsl_error(&loc, state,
5142 "function `%s' has undeclared return type `%s'",
5143 name, return_type_name);
5144 return_type = glsl_type::error_type;
5145 }
5146
5147 /* ARB_shader_subroutine states:
5148 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5149 * subroutine(...) to a function declaration."
5150 */
5151 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5152 YYLTYPE loc = this->get_location();
5153 _mesa_glsl_error(&loc, state,
5154 "function declaration `%s' cannot have subroutine prepended",
5155 name);
5156 }
5157
5158 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5159 * "No qualifier is allowed on the return type of a function."
5160 */
5161 if (this->return_type->has_qualifiers(state)) {
5162 YYLTYPE loc = this->get_location();
5163 _mesa_glsl_error(& loc, state,
5164 "function `%s' return type has qualifiers", name);
5165 }
5166
5167 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5168 *
5169 * "Arrays are allowed as arguments and as the return type. In both
5170 * cases, the array must be explicitly sized."
5171 */
5172 if (return_type->is_unsized_array()) {
5173 YYLTYPE loc = this->get_location();
5174 _mesa_glsl_error(& loc, state,
5175 "function `%s' return type array must be explicitly "
5176 "sized", name);
5177 }
5178
5179 /* From section 4.1.7 of the GLSL 4.40 spec:
5180 *
5181 * "[Opaque types] can only be declared as function parameters
5182 * or uniform-qualified variables."
5183 */
5184 if (return_type->contains_opaque()) {
5185 YYLTYPE loc = this->get_location();
5186 _mesa_glsl_error(&loc, state,
5187 "function `%s' return type can't contain an opaque type",
5188 name);
5189 }
5190
5191 /* Create an ir_function if one doesn't already exist. */
5192 f = state->symbols->get_function(name);
5193 if (f == NULL) {
5194 f = new(ctx) ir_function(name);
5195 if (!this->return_type->qualifier.flags.q.subroutine) {
5196 if (!state->symbols->add_function(f)) {
5197 /* This function name shadows a non-function use of the same name. */
5198 YYLTYPE loc = this->get_location();
5199 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5200 "non-function", name);
5201 return NULL;
5202 }
5203 }
5204 emit_function(state, f);
5205 }
5206
5207 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5208 *
5209 * "A shader cannot redefine or overload built-in functions."
5210 *
5211 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5212 *
5213 * "User code can overload the built-in functions but cannot redefine
5214 * them."
5215 */
5216 if (state->es_shader && state->language_version >= 300) {
5217 /* Local shader has no exact candidates; check the built-ins. */
5218 _mesa_glsl_initialize_builtin_functions();
5219 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5220 YYLTYPE loc = this->get_location();
5221 _mesa_glsl_error(& loc, state,
5222 "A shader cannot redefine or overload built-in "
5223 "function `%s' in GLSL ES 3.00", name);
5224 return NULL;
5225 }
5226 }
5227
5228 /* Verify that this function's signature either doesn't match a previously
5229 * seen signature for a function with the same name, or, if a match is found,
5230 * that the previously seen signature does not have an associated definition.
5231 */
5232 if (state->es_shader || f->has_user_signature()) {
5233 sig = f->exact_matching_signature(state, &hir_parameters);
5234 if (sig != NULL) {
5235 const char *badvar = sig->qualifiers_match(&hir_parameters);
5236 if (badvar != NULL) {
5237 YYLTYPE loc = this->get_location();
5238
5239 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5240 "qualifiers don't match prototype", name, badvar);
5241 }
5242
5243 if (sig->return_type != return_type) {
5244 YYLTYPE loc = this->get_location();
5245
5246 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5247 "match prototype", name);
5248 }
5249
5250 if (sig->is_defined) {
5251 if (is_definition) {
5252 YYLTYPE loc = this->get_location();
5253 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5254 } else {
5255 /* We just encountered a prototype that exactly matches a
5256 * function that's already been defined. This is redundant,
5257 * and we should ignore it.
5258 */
5259 return NULL;
5260 }
5261 }
5262 }
5263 }
5264
5265 /* Verify the return type of main() */
5266 if (strcmp(name, "main") == 0) {
5267 if (! return_type->is_void()) {
5268 YYLTYPE loc = this->get_location();
5269
5270 _mesa_glsl_error(& loc, state, "main() must return void");
5271 }
5272
5273 if (!hir_parameters.is_empty()) {
5274 YYLTYPE loc = this->get_location();
5275
5276 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5277 }
5278 }
5279
5280 /* Finish storing the information about this new function in its signature.
5281 */
5282 if (sig == NULL) {
5283 sig = new(ctx) ir_function_signature(return_type);
5284 f->add_signature(sig);
5285 }
5286
5287 sig->replace_parameters(&hir_parameters);
5288 signature = sig;
5289
5290 if (this->return_type->qualifier.flags.q.subroutine_def) {
5291 int idx;
5292
5293 if (this->return_type->qualifier.flags.q.explicit_index) {
5294 unsigned qual_index;
5295 if (process_qualifier_constant(state, &loc, "index",
5296 this->return_type->qualifier.index,
5297 &qual_index)) {
5298 if (!state->has_explicit_uniform_location()) {
5299 _mesa_glsl_error(&loc, state, "subroutine index requires "
5300 "GL_ARB_explicit_uniform_location or "
5301 "GLSL 4.30");
5302 } else if (qual_index >= MAX_SUBROUTINES) {
5303 _mesa_glsl_error(&loc, state,
5304 "invalid subroutine index (%d) index must "
5305 "be a number between 0 and "
5306 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5307 MAX_SUBROUTINES - 1);
5308 } else {
5309 f->subroutine_index = qual_index;
5310 }
5311 }
5312 }
5313
5314 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5315 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5316 f->num_subroutine_types);
5317 idx = 0;
5318 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5319 const struct glsl_type *type;
5320 /* the subroutine type must be already declared */
5321 type = state->symbols->get_type(decl->identifier);
5322 if (!type) {
5323 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5324 }
5325 f->subroutine_types[idx++] = type;
5326 }
5327 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5328 ir_function *,
5329 state->num_subroutines + 1);
5330 state->subroutines[state->num_subroutines] = f;
5331 state->num_subroutines++;
5332
5333 }
5334
5335 if (this->return_type->qualifier.flags.q.subroutine) {
5336 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5337 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5338 return NULL;
5339 }
5340 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5341 ir_function *,
5342 state->num_subroutine_types + 1);
5343 state->subroutine_types[state->num_subroutine_types] = f;
5344 state->num_subroutine_types++;
5345
5346 f->is_subroutine = true;
5347 }
5348
5349 /* Function declarations (prototypes) do not have r-values.
5350 */
5351 return NULL;
5352 }
5353
5354
5355 ir_rvalue *
5356 ast_function_definition::hir(exec_list *instructions,
5357 struct _mesa_glsl_parse_state *state)
5358 {
5359 prototype->is_definition = true;
5360 prototype->hir(instructions, state);
5361
5362 ir_function_signature *signature = prototype->signature;
5363 if (signature == NULL)
5364 return NULL;
5365
5366 assert(state->current_function == NULL);
5367 state->current_function = signature;
5368 state->found_return = false;
5369
5370 /* Duplicate parameters declared in the prototype as concrete variables.
5371 * Add these to the symbol table.
5372 */
5373 state->symbols->push_scope();
5374 foreach_in_list(ir_variable, var, &signature->parameters) {
5375 assert(var->as_variable() != NULL);
5376
5377 /* The only way a parameter would "exist" is if two parameters have
5378 * the same name.
5379 */
5380 if (state->symbols->name_declared_this_scope(var->name)) {
5381 YYLTYPE loc = this->get_location();
5382
5383 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5384 } else {
5385 state->symbols->add_variable(var);
5386 }
5387 }
5388
5389 /* Convert the body of the function to HIR. */
5390 this->body->hir(&signature->body, state);
5391 signature->is_defined = true;
5392
5393 state->symbols->pop_scope();
5394
5395 assert(state->current_function == signature);
5396 state->current_function = NULL;
5397
5398 if (!signature->return_type->is_void() && !state->found_return) {
5399 YYLTYPE loc = this->get_location();
5400 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5401 "%s, but no return statement",
5402 signature->function_name(),
5403 signature->return_type->name);
5404 }
5405
5406 /* Function definitions do not have r-values.
5407 */
5408 return NULL;
5409 }
5410
5411
5412 ir_rvalue *
5413 ast_jump_statement::hir(exec_list *instructions,
5414 struct _mesa_glsl_parse_state *state)
5415 {
5416 void *ctx = state;
5417
5418 switch (mode) {
5419 case ast_return: {
5420 ir_return *inst;
5421 assert(state->current_function);
5422
5423 if (opt_return_value) {
5424 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5425
5426 /* The value of the return type can be NULL if the shader says
5427 * 'return foo();' and foo() is a function that returns void.
5428 *
5429 * NOTE: The GLSL spec doesn't say that this is an error. The type
5430 * of the return value is void. If the return type of the function is
5431 * also void, then this should compile without error. Seriously.
5432 */
5433 const glsl_type *const ret_type =
5434 (ret == NULL) ? glsl_type::void_type : ret->type;
5435
5436 /* Implicit conversions are not allowed for return values prior to
5437 * ARB_shading_language_420pack.
5438 */
5439 if (state->current_function->return_type != ret_type) {
5440 YYLTYPE loc = this->get_location();
5441
5442 if (state->has_420pack()) {
5443 if (!apply_implicit_conversion(state->current_function->return_type,
5444 ret, state)) {
5445 _mesa_glsl_error(& loc, state,
5446 "could not implicitly convert return value "
5447 "to %s, in function `%s'",
5448 state->current_function->return_type->name,
5449 state->current_function->function_name());
5450 }
5451 } else {
5452 _mesa_glsl_error(& loc, state,
5453 "`return' with wrong type %s, in function `%s' "
5454 "returning %s",
5455 ret_type->name,
5456 state->current_function->function_name(),
5457 state->current_function->return_type->name);
5458 }
5459 } else if (state->current_function->return_type->base_type ==
5460 GLSL_TYPE_VOID) {
5461 YYLTYPE loc = this->get_location();
5462
5463 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5464 * specs add a clarification:
5465 *
5466 * "A void function can only use return without a return argument, even if
5467 * the return argument has void type. Return statements only accept values:
5468 *
5469 * void func1() { }
5470 * void func2() { return func1(); } // illegal return statement"
5471 */
5472 _mesa_glsl_error(& loc, state,
5473 "void functions can only use `return' without a "
5474 "return argument");
5475 }
5476
5477 inst = new(ctx) ir_return(ret);
5478 } else {
5479 if (state->current_function->return_type->base_type !=
5480 GLSL_TYPE_VOID) {
5481 YYLTYPE loc = this->get_location();
5482
5483 _mesa_glsl_error(& loc, state,
5484 "`return' with no value, in function %s returning "
5485 "non-void",
5486 state->current_function->function_name());
5487 }
5488 inst = new(ctx) ir_return;
5489 }
5490
5491 state->found_return = true;
5492 instructions->push_tail(inst);
5493 break;
5494 }
5495
5496 case ast_discard:
5497 if (state->stage != MESA_SHADER_FRAGMENT) {
5498 YYLTYPE loc = this->get_location();
5499
5500 _mesa_glsl_error(& loc, state,
5501 "`discard' may only appear in a fragment shader");
5502 }
5503 instructions->push_tail(new(ctx) ir_discard);
5504 break;
5505
5506 case ast_break:
5507 case ast_continue:
5508 if (mode == ast_continue &&
5509 state->loop_nesting_ast == NULL) {
5510 YYLTYPE loc = this->get_location();
5511
5512 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5513 } else if (mode == ast_break &&
5514 state->loop_nesting_ast == NULL &&
5515 state->switch_state.switch_nesting_ast == NULL) {
5516 YYLTYPE loc = this->get_location();
5517
5518 _mesa_glsl_error(& loc, state,
5519 "break may only appear in a loop or a switch");
5520 } else {
5521 /* For a loop, inline the for loop expression again, since we don't
5522 * know where near the end of the loop body the normal copy of it is
5523 * going to be placed. Same goes for the condition for a do-while
5524 * loop.
5525 */
5526 if (state->loop_nesting_ast != NULL &&
5527 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5528 if (state->loop_nesting_ast->rest_expression) {
5529 state->loop_nesting_ast->rest_expression->hir(instructions,
5530 state);
5531 }
5532 if (state->loop_nesting_ast->mode ==
5533 ast_iteration_statement::ast_do_while) {
5534 state->loop_nesting_ast->condition_to_hir(instructions, state);
5535 }
5536 }
5537
5538 if (state->switch_state.is_switch_innermost &&
5539 mode == ast_continue) {
5540 /* Set 'continue_inside' to true. */
5541 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5542 ir_dereference_variable *deref_continue_inside_var =
5543 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5544 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5545 true_val));
5546
5547 /* Break out from the switch, continue for the loop will
5548 * be called right after switch. */
5549 ir_loop_jump *const jump =
5550 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5551 instructions->push_tail(jump);
5552
5553 } else if (state->switch_state.is_switch_innermost &&
5554 mode == ast_break) {
5555 /* Force break out of switch by inserting a break. */
5556 ir_loop_jump *const jump =
5557 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5558 instructions->push_tail(jump);
5559 } else {
5560 ir_loop_jump *const jump =
5561 new(ctx) ir_loop_jump((mode == ast_break)
5562 ? ir_loop_jump::jump_break
5563 : ir_loop_jump::jump_continue);
5564 instructions->push_tail(jump);
5565 }
5566 }
5567
5568 break;
5569 }
5570
5571 /* Jump instructions do not have r-values.
5572 */
5573 return NULL;
5574 }
5575
5576
5577 ir_rvalue *
5578 ast_selection_statement::hir(exec_list *instructions,
5579 struct _mesa_glsl_parse_state *state)
5580 {
5581 void *ctx = state;
5582
5583 ir_rvalue *const condition = this->condition->hir(instructions, state);
5584
5585 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5586 *
5587 * "Any expression whose type evaluates to a Boolean can be used as the
5588 * conditional expression bool-expression. Vector types are not accepted
5589 * as the expression to if."
5590 *
5591 * The checks are separated so that higher quality diagnostics can be
5592 * generated for cases where both rules are violated.
5593 */
5594 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5595 YYLTYPE loc = this->condition->get_location();
5596
5597 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5598 "boolean");
5599 }
5600
5601 ir_if *const stmt = new(ctx) ir_if(condition);
5602
5603 if (then_statement != NULL) {
5604 state->symbols->push_scope();
5605 then_statement->hir(& stmt->then_instructions, state);
5606 state->symbols->pop_scope();
5607 }
5608
5609 if (else_statement != NULL) {
5610 state->symbols->push_scope();
5611 else_statement->hir(& stmt->else_instructions, state);
5612 state->symbols->pop_scope();
5613 }
5614
5615 instructions->push_tail(stmt);
5616
5617 /* if-statements do not have r-values.
5618 */
5619 return NULL;
5620 }
5621
5622
5623 ir_rvalue *
5624 ast_switch_statement::hir(exec_list *instructions,
5625 struct _mesa_glsl_parse_state *state)
5626 {
5627 void *ctx = state;
5628
5629 ir_rvalue *const test_expression =
5630 this->test_expression->hir(instructions, state);
5631
5632 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5633 *
5634 * "The type of init-expression in a switch statement must be a
5635 * scalar integer."
5636 */
5637 if (!test_expression->type->is_scalar() ||
5638 !test_expression->type->is_integer()) {
5639 YYLTYPE loc = this->test_expression->get_location();
5640
5641 _mesa_glsl_error(& loc,
5642 state,
5643 "switch-statement expression must be scalar "
5644 "integer");
5645 }
5646
5647 /* Track the switch-statement nesting in a stack-like manner.
5648 */
5649 struct glsl_switch_state saved = state->switch_state;
5650
5651 state->switch_state.is_switch_innermost = true;
5652 state->switch_state.switch_nesting_ast = this;
5653 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5654 hash_table_pointer_compare);
5655 state->switch_state.previous_default = NULL;
5656
5657 /* Initalize is_fallthru state to false.
5658 */
5659 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5660 state->switch_state.is_fallthru_var =
5661 new(ctx) ir_variable(glsl_type::bool_type,
5662 "switch_is_fallthru_tmp",
5663 ir_var_temporary);
5664 instructions->push_tail(state->switch_state.is_fallthru_var);
5665
5666 ir_dereference_variable *deref_is_fallthru_var =
5667 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5668 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5669 is_fallthru_val));
5670
5671 /* Initialize continue_inside state to false.
5672 */
5673 state->switch_state.continue_inside =
5674 new(ctx) ir_variable(glsl_type::bool_type,
5675 "continue_inside_tmp",
5676 ir_var_temporary);
5677 instructions->push_tail(state->switch_state.continue_inside);
5678
5679 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5680 ir_dereference_variable *deref_continue_inside_var =
5681 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5682 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5683 false_val));
5684
5685 state->switch_state.run_default =
5686 new(ctx) ir_variable(glsl_type::bool_type,
5687 "run_default_tmp",
5688 ir_var_temporary);
5689 instructions->push_tail(state->switch_state.run_default);
5690
5691 /* Loop around the switch is used for flow control. */
5692 ir_loop * loop = new(ctx) ir_loop();
5693 instructions->push_tail(loop);
5694
5695 /* Cache test expression.
5696 */
5697 test_to_hir(&loop->body_instructions, state);
5698
5699 /* Emit code for body of switch stmt.
5700 */
5701 body->hir(&loop->body_instructions, state);
5702
5703 /* Insert a break at the end to exit loop. */
5704 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5705 loop->body_instructions.push_tail(jump);
5706
5707 /* If we are inside loop, check if continue got called inside switch. */
5708 if (state->loop_nesting_ast != NULL) {
5709 ir_dereference_variable *deref_continue_inside =
5710 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5711 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5712 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5713
5714 if (state->loop_nesting_ast != NULL) {
5715 if (state->loop_nesting_ast->rest_expression) {
5716 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5717 state);
5718 }
5719 if (state->loop_nesting_ast->mode ==
5720 ast_iteration_statement::ast_do_while) {
5721 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5722 }
5723 }
5724 irif->then_instructions.push_tail(jump);
5725 instructions->push_tail(irif);
5726 }
5727
5728 hash_table_dtor(state->switch_state.labels_ht);
5729
5730 state->switch_state = saved;
5731
5732 /* Switch statements do not have r-values. */
5733 return NULL;
5734 }
5735
5736
5737 void
5738 ast_switch_statement::test_to_hir(exec_list *instructions,
5739 struct _mesa_glsl_parse_state *state)
5740 {
5741 void *ctx = state;
5742
5743 /* set to true to avoid a duplicate "use of uninitialized variable" warning
5744 * on the switch test case. The first one would be already raised when
5745 * getting the test_expression at ast_switch_statement::hir
5746 */
5747 test_expression->set_is_lhs(true);
5748 /* Cache value of test expression. */
5749 ir_rvalue *const test_val =
5750 test_expression->hir(instructions,
5751 state);
5752
5753 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5754 "switch_test_tmp",
5755 ir_var_temporary);
5756 ir_dereference_variable *deref_test_var =
5757 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5758
5759 instructions->push_tail(state->switch_state.test_var);
5760 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5761 }
5762
5763
5764 ir_rvalue *
5765 ast_switch_body::hir(exec_list *instructions,
5766 struct _mesa_glsl_parse_state *state)
5767 {
5768 if (stmts != NULL)
5769 stmts->hir(instructions, state);
5770
5771 /* Switch bodies do not have r-values. */
5772 return NULL;
5773 }
5774
5775 ir_rvalue *
5776 ast_case_statement_list::hir(exec_list *instructions,
5777 struct _mesa_glsl_parse_state *state)
5778 {
5779 exec_list default_case, after_default, tmp;
5780
5781 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5782 case_stmt->hir(&tmp, state);
5783
5784 /* Default case. */
5785 if (state->switch_state.previous_default && default_case.is_empty()) {
5786 default_case.append_list(&tmp);
5787 continue;
5788 }
5789
5790 /* If default case found, append 'after_default' list. */
5791 if (!default_case.is_empty())
5792 after_default.append_list(&tmp);
5793 else
5794 instructions->append_list(&tmp);
5795 }
5796
5797 /* Handle the default case. This is done here because default might not be
5798 * the last case. We need to add checks against following cases first to see
5799 * if default should be chosen or not.
5800 */
5801 if (!default_case.is_empty()) {
5802
5803 ir_rvalue *const true_val = new (state) ir_constant(true);
5804 ir_dereference_variable *deref_run_default_var =
5805 new(state) ir_dereference_variable(state->switch_state.run_default);
5806
5807 /* Choose to run default case initially, following conditional
5808 * assignments might change this.
5809 */
5810 ir_assignment *const init_var =
5811 new(state) ir_assignment(deref_run_default_var, true_val);
5812 instructions->push_tail(init_var);
5813
5814 /* Default case was the last one, no checks required. */
5815 if (after_default.is_empty()) {
5816 instructions->append_list(&default_case);
5817 return NULL;
5818 }
5819
5820 foreach_in_list(ir_instruction, ir, &after_default) {
5821 ir_assignment *assign = ir->as_assignment();
5822
5823 if (!assign)
5824 continue;
5825
5826 /* Clone the check between case label and init expression. */
5827 ir_expression *exp = (ir_expression*) assign->condition;
5828 ir_expression *clone = exp->clone(state, NULL);
5829
5830 ir_dereference_variable *deref_var =
5831 new(state) ir_dereference_variable(state->switch_state.run_default);
5832 ir_rvalue *const false_val = new (state) ir_constant(false);
5833
5834 ir_assignment *const set_false =
5835 new(state) ir_assignment(deref_var, false_val, clone);
5836
5837 instructions->push_tail(set_false);
5838 }
5839
5840 /* Append default case and all cases after it. */
5841 instructions->append_list(&default_case);
5842 instructions->append_list(&after_default);
5843 }
5844
5845 /* Case statements do not have r-values. */
5846 return NULL;
5847 }
5848
5849 ir_rvalue *
5850 ast_case_statement::hir(exec_list *instructions,
5851 struct _mesa_glsl_parse_state *state)
5852 {
5853 labels->hir(instructions, state);
5854
5855 /* Guard case statements depending on fallthru state. */
5856 ir_dereference_variable *const deref_fallthru_guard =
5857 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5858 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5859
5860 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5861 stmt->hir(& test_fallthru->then_instructions, state);
5862
5863 instructions->push_tail(test_fallthru);
5864
5865 /* Case statements do not have r-values. */
5866 return NULL;
5867 }
5868
5869
5870 ir_rvalue *
5871 ast_case_label_list::hir(exec_list *instructions,
5872 struct _mesa_glsl_parse_state *state)
5873 {
5874 foreach_list_typed (ast_case_label, label, link, & this->labels)
5875 label->hir(instructions, state);
5876
5877 /* Case labels do not have r-values. */
5878 return NULL;
5879 }
5880
5881 ir_rvalue *
5882 ast_case_label::hir(exec_list *instructions,
5883 struct _mesa_glsl_parse_state *state)
5884 {
5885 void *ctx = state;
5886
5887 ir_dereference_variable *deref_fallthru_var =
5888 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5889
5890 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5891
5892 /* If not default case, ... */
5893 if (this->test_value != NULL) {
5894 /* Conditionally set fallthru state based on
5895 * comparison of cached test expression value to case label.
5896 */
5897 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5898 ir_constant *label_const = label_rval->constant_expression_value();
5899
5900 if (!label_const) {
5901 YYLTYPE loc = this->test_value->get_location();
5902
5903 _mesa_glsl_error(& loc, state,
5904 "switch statement case label must be a "
5905 "constant expression");
5906
5907 /* Stuff a dummy value in to allow processing to continue. */
5908 label_const = new(ctx) ir_constant(0);
5909 } else {
5910 ast_expression *previous_label = (ast_expression *)
5911 hash_table_find(state->switch_state.labels_ht,
5912 (void *)(uintptr_t)label_const->value.u[0]);
5913
5914 if (previous_label) {
5915 YYLTYPE loc = this->test_value->get_location();
5916 _mesa_glsl_error(& loc, state, "duplicate case value");
5917
5918 loc = previous_label->get_location();
5919 _mesa_glsl_error(& loc, state, "this is the previous case label");
5920 } else {
5921 hash_table_insert(state->switch_state.labels_ht,
5922 this->test_value,
5923 (void *)(uintptr_t)label_const->value.u[0]);
5924 }
5925 }
5926
5927 ir_dereference_variable *deref_test_var =
5928 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5929
5930 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5931 label_const,
5932 deref_test_var);
5933
5934 /*
5935 * From GLSL 4.40 specification section 6.2 ("Selection"):
5936 *
5937 * "The type of the init-expression value in a switch statement must
5938 * be a scalar int or uint. The type of the constant-expression value
5939 * in a case label also must be a scalar int or uint. When any pair
5940 * of these values is tested for "equal value" and the types do not
5941 * match, an implicit conversion will be done to convert the int to a
5942 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5943 * is done."
5944 */
5945 if (label_const->type != state->switch_state.test_var->type) {
5946 YYLTYPE loc = this->test_value->get_location();
5947
5948 const glsl_type *type_a = label_const->type;
5949 const glsl_type *type_b = state->switch_state.test_var->type;
5950
5951 /* Check if int->uint implicit conversion is supported. */
5952 bool integer_conversion_supported =
5953 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5954 state);
5955
5956 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5957 !integer_conversion_supported) {
5958 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5959 "init-expression and case label (%s != %s)",
5960 type_a->name, type_b->name);
5961 } else {
5962 /* Conversion of the case label. */
5963 if (type_a->base_type == GLSL_TYPE_INT) {
5964 if (!apply_implicit_conversion(glsl_type::uint_type,
5965 test_cond->operands[0], state))
5966 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5967 } else {
5968 /* Conversion of the init-expression value. */
5969 if (!apply_implicit_conversion(glsl_type::uint_type,
5970 test_cond->operands[1], state))
5971 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5972 }
5973 }
5974 }
5975
5976 ir_assignment *set_fallthru_on_test =
5977 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5978
5979 instructions->push_tail(set_fallthru_on_test);
5980 } else { /* default case */
5981 if (state->switch_state.previous_default) {
5982 YYLTYPE loc = this->get_location();
5983 _mesa_glsl_error(& loc, state,
5984 "multiple default labels in one switch");
5985
5986 loc = state->switch_state.previous_default->get_location();
5987 _mesa_glsl_error(& loc, state, "this is the first default label");
5988 }
5989 state->switch_state.previous_default = this;
5990
5991 /* Set fallthru condition on 'run_default' bool. */
5992 ir_dereference_variable *deref_run_default =
5993 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5994 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5995 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5996 cond_true,
5997 deref_run_default);
5998
5999 /* Set falltrhu state. */
6000 ir_assignment *set_fallthru =
6001 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6002
6003 instructions->push_tail(set_fallthru);
6004 }
6005
6006 /* Case statements do not have r-values. */
6007 return NULL;
6008 }
6009
6010 void
6011 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6012 struct _mesa_glsl_parse_state *state)
6013 {
6014 void *ctx = state;
6015
6016 if (condition != NULL) {
6017 ir_rvalue *const cond =
6018 condition->hir(instructions, state);
6019
6020 if ((cond == NULL)
6021 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6022 YYLTYPE loc = condition->get_location();
6023
6024 _mesa_glsl_error(& loc, state,
6025 "loop condition must be scalar boolean");
6026 } else {
6027 /* As the first code in the loop body, generate a block that looks
6028 * like 'if (!condition) break;' as the loop termination condition.
6029 */
6030 ir_rvalue *const not_cond =
6031 new(ctx) ir_expression(ir_unop_logic_not, cond);
6032
6033 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6034
6035 ir_jump *const break_stmt =
6036 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6037
6038 if_stmt->then_instructions.push_tail(break_stmt);
6039 instructions->push_tail(if_stmt);
6040 }
6041 }
6042 }
6043
6044
6045 ir_rvalue *
6046 ast_iteration_statement::hir(exec_list *instructions,
6047 struct _mesa_glsl_parse_state *state)
6048 {
6049 void *ctx = state;
6050
6051 /* For-loops and while-loops start a new scope, but do-while loops do not.
6052 */
6053 if (mode != ast_do_while)
6054 state->symbols->push_scope();
6055
6056 if (init_statement != NULL)
6057 init_statement->hir(instructions, state);
6058
6059 ir_loop *const stmt = new(ctx) ir_loop();
6060 instructions->push_tail(stmt);
6061
6062 /* Track the current loop nesting. */
6063 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6064
6065 state->loop_nesting_ast = this;
6066
6067 /* Likewise, indicate that following code is closest to a loop,
6068 * NOT closest to a switch.
6069 */
6070 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6071 state->switch_state.is_switch_innermost = false;
6072
6073 if (mode != ast_do_while)
6074 condition_to_hir(&stmt->body_instructions, state);
6075
6076 if (body != NULL)
6077 body->hir(& stmt->body_instructions, state);
6078
6079 if (rest_expression != NULL)
6080 rest_expression->hir(& stmt->body_instructions, state);
6081
6082 if (mode == ast_do_while)
6083 condition_to_hir(&stmt->body_instructions, state);
6084
6085 if (mode != ast_do_while)
6086 state->symbols->pop_scope();
6087
6088 /* Restore previous nesting before returning. */
6089 state->loop_nesting_ast = nesting_ast;
6090 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6091
6092 /* Loops do not have r-values.
6093 */
6094 return NULL;
6095 }
6096
6097
6098 /**
6099 * Determine if the given type is valid for establishing a default precision
6100 * qualifier.
6101 *
6102 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6103 *
6104 * "The precision statement
6105 *
6106 * precision precision-qualifier type;
6107 *
6108 * can be used to establish a default precision qualifier. The type field
6109 * can be either int or float or any of the sampler types, and the
6110 * precision-qualifier can be lowp, mediump, or highp."
6111 *
6112 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6113 * qualifiers on sampler types, but this seems like an oversight (since the
6114 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6115 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6116 * version.
6117 */
6118 static bool
6119 is_valid_default_precision_type(const struct glsl_type *const type)
6120 {
6121 if (type == NULL)
6122 return false;
6123
6124 switch (type->base_type) {
6125 case GLSL_TYPE_INT:
6126 case GLSL_TYPE_FLOAT:
6127 /* "int" and "float" are valid, but vectors and matrices are not. */
6128 return type->vector_elements == 1 && type->matrix_columns == 1;
6129 case GLSL_TYPE_SAMPLER:
6130 case GLSL_TYPE_IMAGE:
6131 case GLSL_TYPE_ATOMIC_UINT:
6132 return true;
6133 default:
6134 return false;
6135 }
6136 }
6137
6138
6139 ir_rvalue *
6140 ast_type_specifier::hir(exec_list *instructions,
6141 struct _mesa_glsl_parse_state *state)
6142 {
6143 if (this->default_precision == ast_precision_none && this->structure == NULL)
6144 return NULL;
6145
6146 YYLTYPE loc = this->get_location();
6147
6148 /* If this is a precision statement, check that the type to which it is
6149 * applied is either float or int.
6150 *
6151 * From section 4.5.3 of the GLSL 1.30 spec:
6152 * "The precision statement
6153 * precision precision-qualifier type;
6154 * can be used to establish a default precision qualifier. The type
6155 * field can be either int or float [...]. Any other types or
6156 * qualifiers will result in an error.
6157 */
6158 if (this->default_precision != ast_precision_none) {
6159 if (!state->check_precision_qualifiers_allowed(&loc))
6160 return NULL;
6161
6162 if (this->structure != NULL) {
6163 _mesa_glsl_error(&loc, state,
6164 "precision qualifiers do not apply to structures");
6165 return NULL;
6166 }
6167
6168 if (this->array_specifier != NULL) {
6169 _mesa_glsl_error(&loc, state,
6170 "default precision statements do not apply to "
6171 "arrays");
6172 return NULL;
6173 }
6174
6175 const struct glsl_type *const type =
6176 state->symbols->get_type(this->type_name);
6177 if (!is_valid_default_precision_type(type)) {
6178 _mesa_glsl_error(&loc, state,
6179 "default precision statements apply only to "
6180 "float, int, and opaque types");
6181 return NULL;
6182 }
6183
6184 if (state->es_shader) {
6185 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6186 * spec says:
6187 *
6188 * "Non-precision qualified declarations will use the precision
6189 * qualifier specified in the most recent precision statement
6190 * that is still in scope. The precision statement has the same
6191 * scoping rules as variable declarations. If it is declared
6192 * inside a compound statement, its effect stops at the end of
6193 * the innermost statement it was declared in. Precision
6194 * statements in nested scopes override precision statements in
6195 * outer scopes. Multiple precision statements for the same basic
6196 * type can appear inside the same scope, with later statements
6197 * overriding earlier statements within that scope."
6198 *
6199 * Default precision specifications follow the same scope rules as
6200 * variables. So, we can track the state of the default precision
6201 * qualifiers in the symbol table, and the rules will just work. This
6202 * is a slight abuse of the symbol table, but it has the semantics
6203 * that we want.
6204 */
6205 state->symbols->add_default_precision_qualifier(this->type_name,
6206 this->default_precision);
6207 }
6208
6209 /* FINISHME: Translate precision statements into IR. */
6210 return NULL;
6211 }
6212
6213 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6214 * process_record_constructor() can do type-checking on C-style initializer
6215 * expressions of structs, but ast_struct_specifier should only be translated
6216 * to HIR if it is declaring the type of a structure.
6217 *
6218 * The ->is_declaration field is false for initializers of variables
6219 * declared separately from the struct's type definition.
6220 *
6221 * struct S { ... }; (is_declaration = true)
6222 * struct T { ... } t = { ... }; (is_declaration = true)
6223 * S s = { ... }; (is_declaration = false)
6224 */
6225 if (this->structure != NULL && this->structure->is_declaration)
6226 return this->structure->hir(instructions, state);
6227
6228 return NULL;
6229 }
6230
6231
6232 /**
6233 * Process a structure or interface block tree into an array of structure fields
6234 *
6235 * After parsing, where there are some syntax differnces, structures and
6236 * interface blocks are almost identical. They are similar enough that the
6237 * AST for each can be processed the same way into a set of
6238 * \c glsl_struct_field to describe the members.
6239 *
6240 * If we're processing an interface block, var_mode should be the type of the
6241 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6242 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6243 * ir_var_auto.
6244 *
6245 * \return
6246 * The number of fields processed. A pointer to the array structure fields is
6247 * stored in \c *fields_ret.
6248 */
6249 static unsigned
6250 ast_process_struct_or_iface_block_members(exec_list *instructions,
6251 struct _mesa_glsl_parse_state *state,
6252 exec_list *declarations,
6253 glsl_struct_field **fields_ret,
6254 bool is_interface,
6255 enum glsl_matrix_layout matrix_layout,
6256 bool allow_reserved_names,
6257 ir_variable_mode var_mode,
6258 ast_type_qualifier *layout,
6259 unsigned block_stream,
6260 unsigned expl_location,
6261 unsigned expl_align)
6262 {
6263 unsigned decl_count = 0;
6264 unsigned next_offset = 0;
6265
6266 /* Make an initial pass over the list of fields to determine how
6267 * many there are. Each element in this list is an ast_declarator_list.
6268 * This means that we actually need to count the number of elements in the
6269 * 'declarations' list in each of the elements.
6270 */
6271 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6272 decl_count += decl_list->declarations.length();
6273 }
6274
6275 /* Allocate storage for the fields and process the field
6276 * declarations. As the declarations are processed, try to also convert
6277 * the types to HIR. This ensures that structure definitions embedded in
6278 * other structure definitions or in interface blocks are processed.
6279 */
6280 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6281 decl_count);
6282
6283 bool first_member = true;
6284 bool first_member_has_explicit_location = false;
6285
6286 unsigned i = 0;
6287 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6288 const char *type_name;
6289 YYLTYPE loc = decl_list->get_location();
6290
6291 decl_list->type->specifier->hir(instructions, state);
6292
6293 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6294 *
6295 * "Anonymous structures are not supported; so embedded structures
6296 * must have a declarator. A name given to an embedded struct is
6297 * scoped at the same level as the struct it is embedded in."
6298 *
6299 * The same section of the GLSL 1.20 spec says:
6300 *
6301 * "Anonymous structures are not supported. Embedded structures are
6302 * not supported."
6303 *
6304 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6305 * embedded structures in 1.10 only.
6306 */
6307 if (state->language_version != 110 &&
6308 decl_list->type->specifier->structure != NULL)
6309 _mesa_glsl_error(&loc, state,
6310 "embedded structure declarations are not allowed");
6311
6312 const glsl_type *decl_type =
6313 decl_list->type->glsl_type(& type_name, state);
6314
6315 const struct ast_type_qualifier *const qual =
6316 &decl_list->type->qualifier;
6317
6318 /* From section 4.3.9 of the GLSL 4.40 spec:
6319 *
6320 * "[In interface blocks] opaque types are not allowed."
6321 *
6322 * It should be impossible for decl_type to be NULL here. Cases that
6323 * might naturally lead to decl_type being NULL, especially for the
6324 * is_interface case, will have resulted in compilation having
6325 * already halted due to a syntax error.
6326 */
6327 assert(decl_type);
6328
6329 if (is_interface) {
6330 if (decl_type->contains_opaque()) {
6331 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6332 "interface block contains opaque variable");
6333 }
6334 } else {
6335 if (decl_type->contains_atomic()) {
6336 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6337 *
6338 * "Members of structures cannot be declared as atomic counter
6339 * types."
6340 */
6341 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6342 }
6343
6344 if (decl_type->contains_image()) {
6345 /* FINISHME: Same problem as with atomic counters.
6346 * FINISHME: Request clarification from Khronos and add
6347 * FINISHME: spec quotation here.
6348 */
6349 _mesa_glsl_error(&loc, state, "image in structure");
6350 }
6351 }
6352
6353 if (qual->flags.q.explicit_binding) {
6354 _mesa_glsl_error(&loc, state,
6355 "binding layout qualifier cannot be applied "
6356 "to struct or interface block members");
6357 }
6358
6359 if (is_interface) {
6360 if (!first_member) {
6361 if (!layout->flags.q.explicit_location &&
6362 ((first_member_has_explicit_location &&
6363 !qual->flags.q.explicit_location) ||
6364 (!first_member_has_explicit_location &&
6365 qual->flags.q.explicit_location))) {
6366 _mesa_glsl_error(&loc, state,
6367 "when block-level location layout qualifier "
6368 "is not supplied either all members must "
6369 "have a location layout qualifier or all "
6370 "members must not have a location layout "
6371 "qualifier");
6372 }
6373 } else {
6374 first_member = false;
6375 first_member_has_explicit_location =
6376 qual->flags.q.explicit_location;
6377 }
6378 }
6379
6380 if (qual->flags.q.std140 ||
6381 qual->flags.q.std430 ||
6382 qual->flags.q.packed ||
6383 qual->flags.q.shared) {
6384 _mesa_glsl_error(&loc, state,
6385 "uniform/shader storage block layout qualifiers "
6386 "std140, std430, packed, and shared can only be "
6387 "applied to uniform/shader storage blocks, not "
6388 "members");
6389 }
6390
6391 if (qual->flags.q.constant) {
6392 _mesa_glsl_error(&loc, state,
6393 "const storage qualifier cannot be applied "
6394 "to struct or interface block members");
6395 }
6396
6397 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6398 *
6399 * "A block member may be declared with a stream identifier, but
6400 * the specified stream must match the stream associated with the
6401 * containing block."
6402 */
6403 if (qual->flags.q.explicit_stream) {
6404 unsigned qual_stream;
6405 if (process_qualifier_constant(state, &loc, "stream",
6406 qual->stream, &qual_stream) &&
6407 qual_stream != block_stream) {
6408 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6409 "interface block member does not match "
6410 "the interface block (%u vs %u)", qual_stream,
6411 block_stream);
6412 }
6413 }
6414
6415 if (qual->flags.q.uniform && qual->has_interpolation()) {
6416 _mesa_glsl_error(&loc, state,
6417 "interpolation qualifiers cannot be used "
6418 "with uniform interface blocks");
6419 }
6420
6421 if ((qual->flags.q.uniform || !is_interface) &&
6422 qual->has_auxiliary_storage()) {
6423 _mesa_glsl_error(&loc, state,
6424 "auxiliary storage qualifiers cannot be used "
6425 "in uniform blocks or structures.");
6426 }
6427
6428 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6429 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6430 _mesa_glsl_error(&loc, state,
6431 "row_major and column_major can only be "
6432 "applied to interface blocks");
6433 } else
6434 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6435 }
6436
6437 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6438 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6439 "readonly and writeonly.");
6440 }
6441
6442 foreach_list_typed (ast_declaration, decl, link,
6443 &decl_list->declarations) {
6444 YYLTYPE loc = decl->get_location();
6445
6446 if (!allow_reserved_names)
6447 validate_identifier(decl->identifier, loc, state);
6448
6449 const struct glsl_type *field_type =
6450 process_array_type(&loc, decl_type, decl->array_specifier, state);
6451 validate_array_dimensions(field_type, state, &loc);
6452 fields[i].type = field_type;
6453 fields[i].name = decl->identifier;
6454 fields[i].interpolation =
6455 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6456 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6457 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6458 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6459 fields[i].precision = qual->precision;
6460
6461 if (qual->flags.q.explicit_location) {
6462 unsigned qual_location;
6463 if (process_qualifier_constant(state, &loc, "location",
6464 qual->location, &qual_location)) {
6465 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6466 expl_location = fields[i].location +
6467 fields[i].type->count_attribute_slots(false);
6468 }
6469 } else {
6470 if (layout && layout->flags.q.explicit_location) {
6471 fields[i].location = expl_location;
6472 expl_location += fields[i].type->count_attribute_slots(false);
6473 } else {
6474 fields[i].location = -1;
6475 }
6476 }
6477
6478 /* Offset can only be used with std430 and std140 layouts an initial
6479 * value of 0 is used for error detection.
6480 */
6481 unsigned align = 0;
6482 unsigned size = 0;
6483 if (layout) {
6484 bool row_major;
6485 if (qual->flags.q.row_major ||
6486 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6487 row_major = true;
6488 } else {
6489 row_major = false;
6490 }
6491
6492 if(layout->flags.q.std140) {
6493 align = field_type->std140_base_alignment(row_major);
6494 size = field_type->std140_size(row_major);
6495 } else if (layout->flags.q.std430) {
6496 align = field_type->std430_base_alignment(row_major);
6497 size = field_type->std430_size(row_major);
6498 }
6499 }
6500
6501 if (qual->flags.q.explicit_offset) {
6502 unsigned qual_offset;
6503 if (process_qualifier_constant(state, &loc, "offset",
6504 qual->offset, &qual_offset)) {
6505 if (align != 0 && size != 0) {
6506 if (next_offset > qual_offset)
6507 _mesa_glsl_error(&loc, state, "layout qualifier "
6508 "offset overlaps previous member");
6509
6510 if (qual_offset % align) {
6511 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6512 "must be a multiple of the base "
6513 "alignment of %s", field_type->name);
6514 }
6515 fields[i].offset = qual_offset;
6516 next_offset = glsl_align(qual_offset + size, align);
6517 } else {
6518 _mesa_glsl_error(&loc, state, "offset can only be used "
6519 "with std430 and std140 layouts");
6520 }
6521 }
6522 } else {
6523 fields[i].offset = -1;
6524 }
6525
6526 if (qual->flags.q.explicit_align || expl_align != 0) {
6527 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6528 next_offset;
6529 if (align == 0 || size == 0) {
6530 _mesa_glsl_error(&loc, state, "align can only be used with "
6531 "std430 and std140 layouts");
6532 } else if (qual->flags.q.explicit_align) {
6533 unsigned member_align;
6534 if (process_qualifier_constant(state, &loc, "align",
6535 qual->align, &member_align)) {
6536 if (member_align == 0 ||
6537 member_align & (member_align - 1)) {
6538 _mesa_glsl_error(&loc, state, "align layout qualifier "
6539 "in not a power of 2");
6540 } else {
6541 fields[i].offset = glsl_align(offset, member_align);
6542 next_offset = glsl_align(fields[i].offset + size, align);
6543 }
6544 }
6545 } else {
6546 fields[i].offset = glsl_align(offset, expl_align);
6547 next_offset = glsl_align(fields[i].offset + size, align);
6548 }
6549 }
6550
6551 if (!qual->flags.q.explicit_offset) {
6552 if (align != 0 && size != 0)
6553 next_offset = glsl_align(next_offset + size, align);
6554 }
6555
6556 /* Propogate row- / column-major information down the fields of the
6557 * structure or interface block. Structures need this data because
6558 * the structure may contain a structure that contains ... a matrix
6559 * that need the proper layout.
6560 */
6561 if (is_interface &&
6562 (layout->flags.q.uniform || layout->flags.q.buffer) &&
6563 (field_type->without_array()->is_matrix()
6564 || field_type->without_array()->is_record())) {
6565 /* If no layout is specified for the field, inherit the layout
6566 * from the block.
6567 */
6568 fields[i].matrix_layout = matrix_layout;
6569
6570 if (qual->flags.q.row_major)
6571 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6572 else if (qual->flags.q.column_major)
6573 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6574
6575 /* If we're processing an uniform or buffer block, the matrix
6576 * layout must be decided by this point.
6577 */
6578 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6579 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6580 }
6581
6582 /* Image qualifiers are allowed on buffer variables, which can only
6583 * be defined inside shader storage buffer objects
6584 */
6585 if (layout && var_mode == ir_var_shader_storage) {
6586 /* For readonly and writeonly qualifiers the field definition,
6587 * if set, overwrites the layout qualifier.
6588 */
6589 if (qual->flags.q.read_only) {
6590 fields[i].image_read_only = true;
6591 fields[i].image_write_only = false;
6592 } else if (qual->flags.q.write_only) {
6593 fields[i].image_read_only = false;
6594 fields[i].image_write_only = true;
6595 } else {
6596 fields[i].image_read_only = layout->flags.q.read_only;
6597 fields[i].image_write_only = layout->flags.q.write_only;
6598 }
6599
6600 /* For other qualifiers, we set the flag if either the layout
6601 * qualifier or the field qualifier are set
6602 */
6603 fields[i].image_coherent = qual->flags.q.coherent ||
6604 layout->flags.q.coherent;
6605 fields[i].image_volatile = qual->flags.q._volatile ||
6606 layout->flags.q._volatile;
6607 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6608 layout->flags.q.restrict_flag;
6609 }
6610
6611 i++;
6612 }
6613 }
6614
6615 assert(i == decl_count);
6616
6617 *fields_ret = fields;
6618 return decl_count;
6619 }
6620
6621
6622 ir_rvalue *
6623 ast_struct_specifier::hir(exec_list *instructions,
6624 struct _mesa_glsl_parse_state *state)
6625 {
6626 YYLTYPE loc = this->get_location();
6627
6628 unsigned expl_location = 0;
6629 if (layout && layout->flags.q.explicit_location) {
6630 if (!process_qualifier_constant(state, &loc, "location",
6631 layout->location, &expl_location)) {
6632 return NULL;
6633 } else {
6634 expl_location = VARYING_SLOT_VAR0 + expl_location;
6635 }
6636 }
6637
6638 glsl_struct_field *fields;
6639 unsigned decl_count =
6640 ast_process_struct_or_iface_block_members(instructions,
6641 state,
6642 &this->declarations,
6643 &fields,
6644 false,
6645 GLSL_MATRIX_LAYOUT_INHERITED,
6646 false /* allow_reserved_names */,
6647 ir_var_auto,
6648 layout,
6649 0, /* for interface only */
6650 expl_location,
6651 0 /* for interface only */);
6652
6653 validate_identifier(this->name, loc, state);
6654
6655 const glsl_type *t =
6656 glsl_type::get_record_instance(fields, decl_count, this->name);
6657
6658 if (!state->symbols->add_type(name, t)) {
6659 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6660 } else {
6661 const glsl_type **s = reralloc(state, state->user_structures,
6662 const glsl_type *,
6663 state->num_user_structures + 1);
6664 if (s != NULL) {
6665 s[state->num_user_structures] = t;
6666 state->user_structures = s;
6667 state->num_user_structures++;
6668 }
6669 }
6670
6671 /* Structure type definitions do not have r-values.
6672 */
6673 return NULL;
6674 }
6675
6676
6677 /**
6678 * Visitor class which detects whether a given interface block has been used.
6679 */
6680 class interface_block_usage_visitor : public ir_hierarchical_visitor
6681 {
6682 public:
6683 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6684 : mode(mode), block(block), found(false)
6685 {
6686 }
6687
6688 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6689 {
6690 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6691 found = true;
6692 return visit_stop;
6693 }
6694 return visit_continue;
6695 }
6696
6697 bool usage_found() const
6698 {
6699 return this->found;
6700 }
6701
6702 private:
6703 ir_variable_mode mode;
6704 const glsl_type *block;
6705 bool found;
6706 };
6707
6708 static bool
6709 is_unsized_array_last_element(ir_variable *v)
6710 {
6711 const glsl_type *interface_type = v->get_interface_type();
6712 int length = interface_type->length;
6713
6714 assert(v->type->is_unsized_array());
6715
6716 /* Check if it is the last element of the interface */
6717 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6718 return true;
6719 return false;
6720 }
6721
6722 ir_rvalue *
6723 ast_interface_block::hir(exec_list *instructions,
6724 struct _mesa_glsl_parse_state *state)
6725 {
6726 YYLTYPE loc = this->get_location();
6727
6728 /* Interface blocks must be declared at global scope */
6729 if (state->current_function != NULL) {
6730 _mesa_glsl_error(&loc, state,
6731 "Interface block `%s' must be declared "
6732 "at global scope",
6733 this->block_name);
6734 }
6735
6736 if (!this->layout.flags.q.buffer &&
6737 this->layout.flags.q.std430) {
6738 _mesa_glsl_error(&loc, state,
6739 "std430 storage block layout qualifier is supported "
6740 "only for shader storage blocks");
6741 }
6742
6743 /* The ast_interface_block has a list of ast_declarator_lists. We
6744 * need to turn those into ir_variables with an association
6745 * with this uniform block.
6746 */
6747 enum glsl_interface_packing packing;
6748 if (this->layout.flags.q.shared) {
6749 packing = GLSL_INTERFACE_PACKING_SHARED;
6750 } else if (this->layout.flags.q.packed) {
6751 packing = GLSL_INTERFACE_PACKING_PACKED;
6752 } else if (this->layout.flags.q.std430) {
6753 packing = GLSL_INTERFACE_PACKING_STD430;
6754 } else {
6755 /* The default layout is std140.
6756 */
6757 packing = GLSL_INTERFACE_PACKING_STD140;
6758 }
6759
6760 ir_variable_mode var_mode;
6761 const char *iface_type_name;
6762 if (this->layout.flags.q.in) {
6763 var_mode = ir_var_shader_in;
6764 iface_type_name = "in";
6765 } else if (this->layout.flags.q.out) {
6766 var_mode = ir_var_shader_out;
6767 iface_type_name = "out";
6768 } else if (this->layout.flags.q.uniform) {
6769 var_mode = ir_var_uniform;
6770 iface_type_name = "uniform";
6771 } else if (this->layout.flags.q.buffer) {
6772 var_mode = ir_var_shader_storage;
6773 iface_type_name = "buffer";
6774 } else {
6775 var_mode = ir_var_auto;
6776 iface_type_name = "UNKNOWN";
6777 assert(!"interface block layout qualifier not found!");
6778 }
6779
6780 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6781 if (this->layout.flags.q.row_major)
6782 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6783 else if (this->layout.flags.q.column_major)
6784 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6785
6786 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6787 exec_list declared_variables;
6788 glsl_struct_field *fields;
6789
6790 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6791 * that we don't have incompatible qualifiers
6792 */
6793 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6794 _mesa_glsl_error(&loc, state,
6795 "Interface block sets both readonly and writeonly");
6796 }
6797
6798 unsigned qual_stream;
6799 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6800 &qual_stream) ||
6801 !validate_stream_qualifier(&loc, state, qual_stream)) {
6802 /* If the stream qualifier is invalid it doesn't make sense to continue
6803 * on and try to compare stream layouts on member variables against it
6804 * so just return early.
6805 */
6806 return NULL;
6807 }
6808
6809 unsigned expl_location = 0;
6810 if (layout.flags.q.explicit_location) {
6811 if (!process_qualifier_constant(state, &loc, "location",
6812 layout.location, &expl_location)) {
6813 return NULL;
6814 } else {
6815 expl_location = VARYING_SLOT_VAR0 + expl_location;
6816 }
6817 }
6818
6819 unsigned expl_align = 0;
6820 if (layout.flags.q.explicit_align) {
6821 if (!process_qualifier_constant(state, &loc, "align",
6822 layout.align, &expl_align)) {
6823 return NULL;
6824 } else {
6825 if (expl_align == 0 || expl_align & (expl_align - 1)) {
6826 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
6827 "power of 2.");
6828 return NULL;
6829 }
6830 }
6831 }
6832
6833 unsigned int num_variables =
6834 ast_process_struct_or_iface_block_members(&declared_variables,
6835 state,
6836 &this->declarations,
6837 &fields,
6838 true,
6839 matrix_layout,
6840 redeclaring_per_vertex,
6841 var_mode,
6842 &this->layout,
6843 qual_stream,
6844 expl_location,
6845 expl_align);
6846
6847 if (!redeclaring_per_vertex) {
6848 validate_identifier(this->block_name, loc, state);
6849
6850 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6851 *
6852 * "Block names have no other use within a shader beyond interface
6853 * matching; it is a compile-time error to use a block name at global
6854 * scope for anything other than as a block name."
6855 */
6856 ir_variable *var = state->symbols->get_variable(this->block_name);
6857 if (var && !var->type->is_interface()) {
6858 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6859 "already used in the scope.",
6860 this->block_name);
6861 }
6862 }
6863
6864 const glsl_type *earlier_per_vertex = NULL;
6865 if (redeclaring_per_vertex) {
6866 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6867 * the named interface block gl_in, we can find it by looking at the
6868 * previous declaration of gl_in. Otherwise we can find it by looking
6869 * at the previous decalartion of any of the built-in outputs,
6870 * e.g. gl_Position.
6871 *
6872 * Also check that the instance name and array-ness of the redeclaration
6873 * are correct.
6874 */
6875 switch (var_mode) {
6876 case ir_var_shader_in:
6877 if (ir_variable *earlier_gl_in =
6878 state->symbols->get_variable("gl_in")) {
6879 earlier_per_vertex = earlier_gl_in->get_interface_type();
6880 } else {
6881 _mesa_glsl_error(&loc, state,
6882 "redeclaration of gl_PerVertex input not allowed "
6883 "in the %s shader",
6884 _mesa_shader_stage_to_string(state->stage));
6885 }
6886 if (this->instance_name == NULL ||
6887 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6888 !this->array_specifier->is_single_dimension()) {
6889 _mesa_glsl_error(&loc, state,
6890 "gl_PerVertex input must be redeclared as "
6891 "gl_in[]");
6892 }
6893 break;
6894 case ir_var_shader_out:
6895 if (ir_variable *earlier_gl_Position =
6896 state->symbols->get_variable("gl_Position")) {
6897 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6898 } else if (ir_variable *earlier_gl_out =
6899 state->symbols->get_variable("gl_out")) {
6900 earlier_per_vertex = earlier_gl_out->get_interface_type();
6901 } else {
6902 _mesa_glsl_error(&loc, state,
6903 "redeclaration of gl_PerVertex output not "
6904 "allowed in the %s shader",
6905 _mesa_shader_stage_to_string(state->stage));
6906 }
6907 if (state->stage == MESA_SHADER_TESS_CTRL) {
6908 if (this->instance_name == NULL ||
6909 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6910 _mesa_glsl_error(&loc, state,
6911 "gl_PerVertex output must be redeclared as "
6912 "gl_out[]");
6913 }
6914 } else {
6915 if (this->instance_name != NULL) {
6916 _mesa_glsl_error(&loc, state,
6917 "gl_PerVertex output may not be redeclared with "
6918 "an instance name");
6919 }
6920 }
6921 break;
6922 default:
6923 _mesa_glsl_error(&loc, state,
6924 "gl_PerVertex must be declared as an input or an "
6925 "output");
6926 break;
6927 }
6928
6929 if (earlier_per_vertex == NULL) {
6930 /* An error has already been reported. Bail out to avoid null
6931 * dereferences later in this function.
6932 */
6933 return NULL;
6934 }
6935
6936 /* Copy locations from the old gl_PerVertex interface block. */
6937 for (unsigned i = 0; i < num_variables; i++) {
6938 int j = earlier_per_vertex->field_index(fields[i].name);
6939 if (j == -1) {
6940 _mesa_glsl_error(&loc, state,
6941 "redeclaration of gl_PerVertex must be a subset "
6942 "of the built-in members of gl_PerVertex");
6943 } else {
6944 fields[i].location =
6945 earlier_per_vertex->fields.structure[j].location;
6946 fields[i].offset =
6947 earlier_per_vertex->fields.structure[j].offset;
6948 fields[i].interpolation =
6949 earlier_per_vertex->fields.structure[j].interpolation;
6950 fields[i].centroid =
6951 earlier_per_vertex->fields.structure[j].centroid;
6952 fields[i].sample =
6953 earlier_per_vertex->fields.structure[j].sample;
6954 fields[i].patch =
6955 earlier_per_vertex->fields.structure[j].patch;
6956 fields[i].precision =
6957 earlier_per_vertex->fields.structure[j].precision;
6958 }
6959 }
6960
6961 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6962 * spec:
6963 *
6964 * If a built-in interface block is redeclared, it must appear in
6965 * the shader before any use of any member included in the built-in
6966 * declaration, or a compilation error will result.
6967 *
6968 * This appears to be a clarification to the behaviour established for
6969 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6970 * regardless of GLSL version.
6971 */
6972 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6973 v.run(instructions);
6974 if (v.usage_found()) {
6975 _mesa_glsl_error(&loc, state,
6976 "redeclaration of a built-in interface block must "
6977 "appear before any use of any member of the "
6978 "interface block");
6979 }
6980 }
6981
6982 const glsl_type *block_type =
6983 glsl_type::get_interface_instance(fields,
6984 num_variables,
6985 packing,
6986 this->block_name);
6987
6988 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6989 YYLTYPE loc = this->get_location();
6990 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6991 "already taken in the current scope",
6992 this->block_name, iface_type_name);
6993 }
6994
6995 /* Since interface blocks cannot contain statements, it should be
6996 * impossible for the block to generate any instructions.
6997 */
6998 assert(declared_variables.is_empty());
6999
7000 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7001 *
7002 * Geometry shader input variables get the per-vertex values written
7003 * out by vertex shader output variables of the same names. Since a
7004 * geometry shader operates on a set of vertices, each input varying
7005 * variable (or input block, see interface blocks below) needs to be
7006 * declared as an array.
7007 */
7008 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7009 var_mode == ir_var_shader_in) {
7010 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7011 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7012 state->stage == MESA_SHADER_TESS_EVAL) &&
7013 this->array_specifier == NULL &&
7014 var_mode == ir_var_shader_in) {
7015 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7016 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7017 this->array_specifier == NULL &&
7018 var_mode == ir_var_shader_out) {
7019 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7020 }
7021
7022
7023 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7024 * says:
7025 *
7026 * "If an instance name (instance-name) is used, then it puts all the
7027 * members inside a scope within its own name space, accessed with the
7028 * field selector ( . ) operator (analogously to structures)."
7029 */
7030 if (this->instance_name) {
7031 if (redeclaring_per_vertex) {
7032 /* When a built-in in an unnamed interface block is redeclared,
7033 * get_variable_being_redeclared() calls
7034 * check_builtin_array_max_size() to make sure that built-in array
7035 * variables aren't redeclared to illegal sizes. But we're looking
7036 * at a redeclaration of a named built-in interface block. So we
7037 * have to manually call check_builtin_array_max_size() for all parts
7038 * of the interface that are arrays.
7039 */
7040 for (unsigned i = 0; i < num_variables; i++) {
7041 if (fields[i].type->is_array()) {
7042 const unsigned size = fields[i].type->array_size();
7043 check_builtin_array_max_size(fields[i].name, size, loc, state);
7044 }
7045 }
7046 } else {
7047 validate_identifier(this->instance_name, loc, state);
7048 }
7049
7050 ir_variable *var;
7051
7052 if (this->array_specifier != NULL) {
7053 const glsl_type *block_array_type =
7054 process_array_type(&loc, block_type, this->array_specifier, state);
7055
7056 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7057 *
7058 * For uniform blocks declared an array, each individual array
7059 * element corresponds to a separate buffer object backing one
7060 * instance of the block. As the array size indicates the number
7061 * of buffer objects needed, uniform block array declarations
7062 * must specify an array size.
7063 *
7064 * And a few paragraphs later:
7065 *
7066 * Geometry shader input blocks must be declared as arrays and
7067 * follow the array declaration and linking rules for all
7068 * geometry shader inputs. All other input and output block
7069 * arrays must specify an array size.
7070 *
7071 * The same applies to tessellation shaders.
7072 *
7073 * The upshot of this is that the only circumstance where an
7074 * interface array size *doesn't* need to be specified is on a
7075 * geometry shader input, tessellation control shader input,
7076 * tessellation control shader output, and tessellation evaluation
7077 * shader input.
7078 */
7079 if (block_array_type->is_unsized_array()) {
7080 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7081 state->stage == MESA_SHADER_TESS_CTRL ||
7082 state->stage == MESA_SHADER_TESS_EVAL;
7083 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7084
7085 if (this->layout.flags.q.in) {
7086 if (!allow_inputs)
7087 _mesa_glsl_error(&loc, state,
7088 "unsized input block arrays not allowed in "
7089 "%s shader",
7090 _mesa_shader_stage_to_string(state->stage));
7091 } else if (this->layout.flags.q.out) {
7092 if (!allow_outputs)
7093 _mesa_glsl_error(&loc, state,
7094 "unsized output block arrays not allowed in "
7095 "%s shader",
7096 _mesa_shader_stage_to_string(state->stage));
7097 } else {
7098 /* by elimination, this is a uniform block array */
7099 _mesa_glsl_error(&loc, state,
7100 "unsized uniform block arrays not allowed in "
7101 "%s shader",
7102 _mesa_shader_stage_to_string(state->stage));
7103 }
7104 }
7105
7106 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7107 *
7108 * * Arrays of arrays of blocks are not allowed
7109 */
7110 if (state->es_shader && block_array_type->is_array() &&
7111 block_array_type->fields.array->is_array()) {
7112 _mesa_glsl_error(&loc, state,
7113 "arrays of arrays interface blocks are "
7114 "not allowed");
7115 }
7116
7117 var = new(state) ir_variable(block_array_type,
7118 this->instance_name,
7119 var_mode);
7120 } else {
7121 var = new(state) ir_variable(block_type,
7122 this->instance_name,
7123 var_mode);
7124 }
7125
7126 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7127 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7128
7129 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7130 var->data.read_only = true;
7131
7132 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7133 handle_geometry_shader_input_decl(state, loc, var);
7134 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7135 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7136 handle_tess_shader_input_decl(state, loc, var);
7137 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7138 handle_tess_ctrl_shader_output_decl(state, loc, var);
7139
7140 for (unsigned i = 0; i < num_variables; i++) {
7141 if (fields[i].type->is_unsized_array()) {
7142 if (var_mode == ir_var_shader_storage) {
7143 if (i != (num_variables - 1)) {
7144 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7145 "only last member of a shader storage block "
7146 "can be defined as unsized array",
7147 fields[i].name);
7148 }
7149 } else {
7150 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7151 *
7152 * "If an array is declared as the last member of a shader storage
7153 * block and the size is not specified at compile-time, it is
7154 * sized at run-time. In all other cases, arrays are sized only
7155 * at compile-time."
7156 */
7157 if (state->es_shader) {
7158 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7159 "only last member of a shader storage block "
7160 "can be defined as unsized array",
7161 fields[i].name);
7162 }
7163 }
7164 }
7165 }
7166
7167 if (ir_variable *earlier =
7168 state->symbols->get_variable(this->instance_name)) {
7169 if (!redeclaring_per_vertex) {
7170 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7171 this->instance_name);
7172 }
7173 earlier->data.how_declared = ir_var_declared_normally;
7174 earlier->type = var->type;
7175 earlier->reinit_interface_type(block_type);
7176 delete var;
7177 } else {
7178 if (this->layout.flags.q.explicit_binding) {
7179 apply_explicit_binding(state, &loc, var, var->type,
7180 &this->layout);
7181 }
7182
7183 var->data.stream = qual_stream;
7184 if (layout.flags.q.explicit_location) {
7185 var->data.location = expl_location;
7186 var->data.explicit_location = true;
7187 }
7188
7189 state->symbols->add_variable(var);
7190 instructions->push_tail(var);
7191 }
7192 } else {
7193 /* In order to have an array size, the block must also be declared with
7194 * an instance name.
7195 */
7196 assert(this->array_specifier == NULL);
7197
7198 for (unsigned i = 0; i < num_variables; i++) {
7199 ir_variable *var =
7200 new(state) ir_variable(fields[i].type,
7201 ralloc_strdup(state, fields[i].name),
7202 var_mode);
7203 var->data.interpolation = fields[i].interpolation;
7204 var->data.centroid = fields[i].centroid;
7205 var->data.sample = fields[i].sample;
7206 var->data.patch = fields[i].patch;
7207 var->data.stream = qual_stream;
7208 var->data.location = fields[i].location;
7209 if (fields[i].location != -1)
7210 var->data.explicit_location = true;
7211 var->init_interface_type(block_type);
7212
7213 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7214 var->data.read_only = true;
7215
7216 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7217 if (state->es_shader) {
7218 var->data.precision =
7219 select_gles_precision(fields[i].precision, fields[i].type,
7220 state, &loc);
7221 }
7222
7223 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7224 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7225 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7226 } else {
7227 var->data.matrix_layout = fields[i].matrix_layout;
7228 }
7229
7230 if (var->data.mode == ir_var_shader_storage) {
7231 var->data.image_read_only = fields[i].image_read_only;
7232 var->data.image_write_only = fields[i].image_write_only;
7233 var->data.image_coherent = fields[i].image_coherent;
7234 var->data.image_volatile = fields[i].image_volatile;
7235 var->data.image_restrict = fields[i].image_restrict;
7236 }
7237
7238 /* Examine var name here since var may get deleted in the next call */
7239 bool var_is_gl_id = is_gl_identifier(var->name);
7240
7241 if (redeclaring_per_vertex) {
7242 ir_variable *earlier =
7243 get_variable_being_redeclared(var, loc, state,
7244 true /* allow_all_redeclarations */);
7245 if (!var_is_gl_id || earlier == NULL) {
7246 _mesa_glsl_error(&loc, state,
7247 "redeclaration of gl_PerVertex can only "
7248 "include built-in variables");
7249 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7250 _mesa_glsl_error(&loc, state,
7251 "`%s' has already been redeclared",
7252 earlier->name);
7253 } else {
7254 earlier->data.how_declared = ir_var_declared_in_block;
7255 earlier->reinit_interface_type(block_type);
7256 }
7257 continue;
7258 }
7259
7260 if (state->symbols->get_variable(var->name) != NULL)
7261 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7262
7263 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7264 * The UBO declaration itself doesn't get an ir_variable unless it
7265 * has an instance name. This is ugly.
7266 */
7267 if (this->layout.flags.q.explicit_binding) {
7268 apply_explicit_binding(state, &loc, var,
7269 var->get_interface_type(), &this->layout);
7270 }
7271
7272 if (var->type->is_unsized_array()) {
7273 if (var->is_in_shader_storage_block()) {
7274 if (!is_unsized_array_last_element(var)) {
7275 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7276 "only last member of a shader storage block "
7277 "can be defined as unsized array",
7278 var->name);
7279 }
7280 var->data.from_ssbo_unsized_array = true;
7281 } else {
7282 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7283 *
7284 * "If an array is declared as the last member of a shader storage
7285 * block and the size is not specified at compile-time, it is
7286 * sized at run-time. In all other cases, arrays are sized only
7287 * at compile-time."
7288 */
7289 if (state->es_shader) {
7290 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7291 "only last member of a shader storage block "
7292 "can be defined as unsized array",
7293 var->name);
7294 }
7295 }
7296 }
7297
7298 state->symbols->add_variable(var);
7299 instructions->push_tail(var);
7300 }
7301
7302 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7303 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7304 *
7305 * It is also a compilation error ... to redeclare a built-in
7306 * block and then use a member from that built-in block that was
7307 * not included in the redeclaration.
7308 *
7309 * This appears to be a clarification to the behaviour established
7310 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7311 * behaviour regardless of GLSL version.
7312 *
7313 * To prevent the shader from using a member that was not included in
7314 * the redeclaration, we disable any ir_variables that are still
7315 * associated with the old declaration of gl_PerVertex (since we've
7316 * already updated all of the variables contained in the new
7317 * gl_PerVertex to point to it).
7318 *
7319 * As a side effect this will prevent
7320 * validate_intrastage_interface_blocks() from getting confused and
7321 * thinking there are conflicting definitions of gl_PerVertex in the
7322 * shader.
7323 */
7324 foreach_in_list_safe(ir_instruction, node, instructions) {
7325 ir_variable *const var = node->as_variable();
7326 if (var != NULL &&
7327 var->get_interface_type() == earlier_per_vertex &&
7328 var->data.mode == var_mode) {
7329 if (var->data.how_declared == ir_var_declared_normally) {
7330 _mesa_glsl_error(&loc, state,
7331 "redeclaration of gl_PerVertex cannot "
7332 "follow a redeclaration of `%s'",
7333 var->name);
7334 }
7335 state->symbols->disable_variable(var->name);
7336 var->remove();
7337 }
7338 }
7339 }
7340 }
7341
7342 return NULL;
7343 }
7344
7345
7346 ir_rvalue *
7347 ast_tcs_output_layout::hir(exec_list *instructions,
7348 struct _mesa_glsl_parse_state *state)
7349 {
7350 YYLTYPE loc = this->get_location();
7351
7352 unsigned num_vertices;
7353 if (!state->out_qualifier->vertices->
7354 process_qualifier_constant(state, "vertices", &num_vertices,
7355 false)) {
7356 /* return here to stop cascading incorrect error messages */
7357 return NULL;
7358 }
7359
7360 /* If any shader outputs occurred before this declaration and specified an
7361 * array size, make sure the size they specified is consistent with the
7362 * primitive type.
7363 */
7364 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7365 _mesa_glsl_error(&loc, state,
7366 "this tessellation control shader output layout "
7367 "specifies %u vertices, but a previous output "
7368 "is declared with size %u",
7369 num_vertices, state->tcs_output_size);
7370 return NULL;
7371 }
7372
7373 state->tcs_output_vertices_specified = true;
7374
7375 /* If any shader outputs occurred before this declaration and did not
7376 * specify an array size, their size is determined now.
7377 */
7378 foreach_in_list (ir_instruction, node, instructions) {
7379 ir_variable *var = node->as_variable();
7380 if (var == NULL || var->data.mode != ir_var_shader_out)
7381 continue;
7382
7383 /* Note: Not all tessellation control shader output are arrays. */
7384 if (!var->type->is_unsized_array() || var->data.patch)
7385 continue;
7386
7387 if (var->data.max_array_access >= num_vertices) {
7388 _mesa_glsl_error(&loc, state,
7389 "this tessellation control shader output layout "
7390 "specifies %u vertices, but an access to element "
7391 "%u of output `%s' already exists", num_vertices,
7392 var->data.max_array_access, var->name);
7393 } else {
7394 var->type = glsl_type::get_array_instance(var->type->fields.array,
7395 num_vertices);
7396 }
7397 }
7398
7399 return NULL;
7400 }
7401
7402
7403 ir_rvalue *
7404 ast_gs_input_layout::hir(exec_list *instructions,
7405 struct _mesa_glsl_parse_state *state)
7406 {
7407 YYLTYPE loc = this->get_location();
7408
7409 /* If any geometry input layout declaration preceded this one, make sure it
7410 * was consistent with this one.
7411 */
7412 if (state->gs_input_prim_type_specified &&
7413 state->in_qualifier->prim_type != this->prim_type) {
7414 _mesa_glsl_error(&loc, state,
7415 "geometry shader input layout does not match"
7416 " previous declaration");
7417 return NULL;
7418 }
7419
7420 /* If any shader inputs occurred before this declaration and specified an
7421 * array size, make sure the size they specified is consistent with the
7422 * primitive type.
7423 */
7424 unsigned num_vertices = vertices_per_prim(this->prim_type);
7425 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7426 _mesa_glsl_error(&loc, state,
7427 "this geometry shader input layout implies %u vertices"
7428 " per primitive, but a previous input is declared"
7429 " with size %u", num_vertices, state->gs_input_size);
7430 return NULL;
7431 }
7432
7433 state->gs_input_prim_type_specified = true;
7434
7435 /* If any shader inputs occurred before this declaration and did not
7436 * specify an array size, their size is determined now.
7437 */
7438 foreach_in_list(ir_instruction, node, instructions) {
7439 ir_variable *var = node->as_variable();
7440 if (var == NULL || var->data.mode != ir_var_shader_in)
7441 continue;
7442
7443 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7444 * array; skip it.
7445 */
7446
7447 if (var->type->is_unsized_array()) {
7448 if (var->data.max_array_access >= num_vertices) {
7449 _mesa_glsl_error(&loc, state,
7450 "this geometry shader input layout implies %u"
7451 " vertices, but an access to element %u of input"
7452 " `%s' already exists", num_vertices,
7453 var->data.max_array_access, var->name);
7454 } else {
7455 var->type = glsl_type::get_array_instance(var->type->fields.array,
7456 num_vertices);
7457 }
7458 }
7459 }
7460
7461 return NULL;
7462 }
7463
7464
7465 ir_rvalue *
7466 ast_cs_input_layout::hir(exec_list *instructions,
7467 struct _mesa_glsl_parse_state *state)
7468 {
7469 YYLTYPE loc = this->get_location();
7470
7471 /* From the ARB_compute_shader specification:
7472 *
7473 * If the local size of the shader in any dimension is greater
7474 * than the maximum size supported by the implementation for that
7475 * dimension, a compile-time error results.
7476 *
7477 * It is not clear from the spec how the error should be reported if
7478 * the total size of the work group exceeds
7479 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7480 * report it at compile time as well.
7481 */
7482 GLuint64 total_invocations = 1;
7483 unsigned qual_local_size[3];
7484 for (int i = 0; i < 3; i++) {
7485
7486 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7487 'x' + i);
7488 /* Infer a local_size of 1 for unspecified dimensions */
7489 if (this->local_size[i] == NULL) {
7490 qual_local_size[i] = 1;
7491 } else if (!this->local_size[i]->
7492 process_qualifier_constant(state, local_size_str,
7493 &qual_local_size[i], false)) {
7494 ralloc_free(local_size_str);
7495 return NULL;
7496 }
7497 ralloc_free(local_size_str);
7498
7499 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7500 _mesa_glsl_error(&loc, state,
7501 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7502 " (%d)", 'x' + i,
7503 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7504 break;
7505 }
7506 total_invocations *= qual_local_size[i];
7507 if (total_invocations >
7508 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7509 _mesa_glsl_error(&loc, state,
7510 "product of local_sizes exceeds "
7511 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7512 state->ctx->Const.MaxComputeWorkGroupInvocations);
7513 break;
7514 }
7515 }
7516
7517 /* If any compute input layout declaration preceded this one, make sure it
7518 * was consistent with this one.
7519 */
7520 if (state->cs_input_local_size_specified) {
7521 for (int i = 0; i < 3; i++) {
7522 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7523 _mesa_glsl_error(&loc, state,
7524 "compute shader input layout does not match"
7525 " previous declaration");
7526 return NULL;
7527 }
7528 }
7529 }
7530
7531 state->cs_input_local_size_specified = true;
7532 for (int i = 0; i < 3; i++)
7533 state->cs_input_local_size[i] = qual_local_size[i];
7534
7535 /* We may now declare the built-in constant gl_WorkGroupSize (see
7536 * builtin_variable_generator::generate_constants() for why we didn't
7537 * declare it earlier).
7538 */
7539 ir_variable *var = new(state->symbols)
7540 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7541 var->data.how_declared = ir_var_declared_implicitly;
7542 var->data.read_only = true;
7543 instructions->push_tail(var);
7544 state->symbols->add_variable(var);
7545 ir_constant_data data;
7546 memset(&data, 0, sizeof(data));
7547 for (int i = 0; i < 3; i++)
7548 data.u[i] = qual_local_size[i];
7549 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7550 var->constant_initializer =
7551 new(var) ir_constant(glsl_type::uvec3_type, &data);
7552 var->data.has_initializer = true;
7553
7554 return NULL;
7555 }
7556
7557
7558 static void
7559 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7560 exec_list *instructions)
7561 {
7562 bool gl_FragColor_assigned = false;
7563 bool gl_FragData_assigned = false;
7564 bool gl_FragSecondaryColor_assigned = false;
7565 bool gl_FragSecondaryData_assigned = false;
7566 bool user_defined_fs_output_assigned = false;
7567 ir_variable *user_defined_fs_output = NULL;
7568
7569 /* It would be nice to have proper location information. */
7570 YYLTYPE loc;
7571 memset(&loc, 0, sizeof(loc));
7572
7573 foreach_in_list(ir_instruction, node, instructions) {
7574 ir_variable *var = node->as_variable();
7575
7576 if (!var || !var->data.assigned)
7577 continue;
7578
7579 if (strcmp(var->name, "gl_FragColor") == 0)
7580 gl_FragColor_assigned = true;
7581 else if (strcmp(var->name, "gl_FragData") == 0)
7582 gl_FragData_assigned = true;
7583 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7584 gl_FragSecondaryColor_assigned = true;
7585 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7586 gl_FragSecondaryData_assigned = true;
7587 else if (!is_gl_identifier(var->name)) {
7588 if (state->stage == MESA_SHADER_FRAGMENT &&
7589 var->data.mode == ir_var_shader_out) {
7590 user_defined_fs_output_assigned = true;
7591 user_defined_fs_output = var;
7592 }
7593 }
7594 }
7595
7596 /* From the GLSL 1.30 spec:
7597 *
7598 * "If a shader statically assigns a value to gl_FragColor, it
7599 * may not assign a value to any element of gl_FragData. If a
7600 * shader statically writes a value to any element of
7601 * gl_FragData, it may not assign a value to
7602 * gl_FragColor. That is, a shader may assign values to either
7603 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7604 * linked together must also consistently write just one of
7605 * these variables. Similarly, if user declared output
7606 * variables are in use (statically assigned to), then the
7607 * built-in variables gl_FragColor and gl_FragData may not be
7608 * assigned to. These incorrect usages all generate compile
7609 * time errors."
7610 */
7611 if (gl_FragColor_assigned && gl_FragData_assigned) {
7612 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7613 "`gl_FragColor' and `gl_FragData'");
7614 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7615 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7616 "`gl_FragColor' and `%s'",
7617 user_defined_fs_output->name);
7618 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7619 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7620 "`gl_FragSecondaryColorEXT' and"
7621 " `gl_FragSecondaryDataEXT'");
7622 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7623 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7624 "`gl_FragColor' and"
7625 " `gl_FragSecondaryDataEXT'");
7626 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7627 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7628 "`gl_FragData' and"
7629 " `gl_FragSecondaryColorEXT'");
7630 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7631 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7632 "`gl_FragData' and `%s'",
7633 user_defined_fs_output->name);
7634 }
7635
7636 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7637 !state->EXT_blend_func_extended_enable) {
7638 _mesa_glsl_error(&loc, state,
7639 "Dual source blending requires EXT_blend_func_extended");
7640 }
7641 }
7642
7643
7644 static void
7645 remove_per_vertex_blocks(exec_list *instructions,
7646 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7647 {
7648 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7649 * if it exists in this shader type.
7650 */
7651 const glsl_type *per_vertex = NULL;
7652 switch (mode) {
7653 case ir_var_shader_in:
7654 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7655 per_vertex = gl_in->get_interface_type();
7656 break;
7657 case ir_var_shader_out:
7658 if (ir_variable *gl_Position =
7659 state->symbols->get_variable("gl_Position")) {
7660 per_vertex = gl_Position->get_interface_type();
7661 }
7662 break;
7663 default:
7664 assert(!"Unexpected mode");
7665 break;
7666 }
7667
7668 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7669 * need to do anything.
7670 */
7671 if (per_vertex == NULL)
7672 return;
7673
7674 /* If the interface block is used by the shader, then we don't need to do
7675 * anything.
7676 */
7677 interface_block_usage_visitor v(mode, per_vertex);
7678 v.run(instructions);
7679 if (v.usage_found())
7680 return;
7681
7682 /* Remove any ir_variable declarations that refer to the interface block
7683 * we're removing.
7684 */
7685 foreach_in_list_safe(ir_instruction, node, instructions) {
7686 ir_variable *const var = node->as_variable();
7687 if (var != NULL && var->get_interface_type() == per_vertex &&
7688 var->data.mode == mode) {
7689 state->symbols->disable_variable(var->name);
7690 var->remove();
7691 }
7692 }
7693 }