9c633863b193ad51280b156b215c1838b1616dd4
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61
62 using namespace ir_builder;
63
64 static void
65 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
66 exec_list *instructions);
67 static void
68 remove_per_vertex_blocks(exec_list *instructions,
69 _mesa_glsl_parse_state *state, ir_variable_mode mode);
70
71 /**
72 * Visitor class that finds the first instance of any write-only variable that
73 * is ever read, if any
74 */
75 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
76 {
77 public:
78 read_from_write_only_variable_visitor() : found(NULL)
79 {
80 }
81
82 virtual ir_visitor_status visit(ir_dereference_variable *ir)
83 {
84 if (this->in_assignee)
85 return visit_continue;
86
87 ir_variable *var = ir->variable_referenced();
88 /* We can have image_write_only set on both images and buffer variables,
89 * but in the former there is a distinction between reads from
90 * the variable itself (write_only) and from the memory they point to
91 * (image_write_only), while in the case of buffer variables there is
92 * no such distinction, that is why this check here is limited to
93 * buffer variables alone.
94 */
95 if (!var || var->data.mode != ir_var_shader_storage)
96 return visit_continue;
97
98 if (var->data.image_write_only) {
99 found = var;
100 return visit_stop;
101 }
102
103 return visit_continue;
104 }
105
106 ir_variable *get_variable() {
107 return found;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_expression *ir)
111 {
112 /* .length() doesn't actually read anything */
113 if (ir->operation == ir_unop_ssbo_unsized_array_length)
114 return visit_continue_with_parent;
115
116 return visit_continue;
117 }
118
119 private:
120 ir_variable *found;
121 };
122
123 void
124 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
125 {
126 _mesa_glsl_initialize_variables(instructions, state);
127
128 state->symbols->separate_function_namespace = state->language_version == 110;
129
130 state->current_function = NULL;
131
132 state->toplevel_ir = instructions;
133
134 state->gs_input_prim_type_specified = false;
135 state->tcs_output_vertices_specified = false;
136 state->cs_input_local_size_specified = false;
137
138 /* Section 4.2 of the GLSL 1.20 specification states:
139 * "The built-in functions are scoped in a scope outside the global scope
140 * users declare global variables in. That is, a shader's global scope,
141 * available for user-defined functions and global variables, is nested
142 * inside the scope containing the built-in functions."
143 *
144 * Since built-in functions like ftransform() access built-in variables,
145 * it follows that those must be in the outer scope as well.
146 *
147 * We push scope here to create this nesting effect...but don't pop.
148 * This way, a shader's globals are still in the symbol table for use
149 * by the linker.
150 */
151 state->symbols->push_scope();
152
153 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
154 ast->hir(instructions, state);
155
156 detect_recursion_unlinked(state, instructions);
157 detect_conflicting_assignments(state, instructions);
158
159 state->toplevel_ir = NULL;
160
161 /* Move all of the variable declarations to the front of the IR list, and
162 * reverse the order. This has the (intended!) side effect that vertex
163 * shader inputs and fragment shader outputs will appear in the IR in the
164 * same order that they appeared in the shader code. This results in the
165 * locations being assigned in the declared order. Many (arguably buggy)
166 * applications depend on this behavior, and it matches what nearly all
167 * other drivers do.
168 */
169 foreach_in_list_safe(ir_instruction, node, instructions) {
170 ir_variable *const var = node->as_variable();
171
172 if (var == NULL)
173 continue;
174
175 var->remove();
176 instructions->push_head(var);
177 }
178
179 /* Figure out if gl_FragCoord is actually used in fragment shader */
180 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
181 if (var != NULL)
182 state->fs_uses_gl_fragcoord = var->data.used;
183
184 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
185 *
186 * If multiple shaders using members of a built-in block belonging to
187 * the same interface are linked together in the same program, they
188 * must all redeclare the built-in block in the same way, as described
189 * in section 4.3.7 "Interface Blocks" for interface block matching, or
190 * a link error will result.
191 *
192 * The phrase "using members of a built-in block" implies that if two
193 * shaders are linked together and one of them *does not use* any members
194 * of the built-in block, then that shader does not need to have a matching
195 * redeclaration of the built-in block.
196 *
197 * This appears to be a clarification to the behaviour established for
198 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
199 * version.
200 *
201 * The definition of "interface" in section 4.3.7 that applies here is as
202 * follows:
203 *
204 * The boundary between adjacent programmable pipeline stages: This
205 * spans all the outputs in all compilation units of the first stage
206 * and all the inputs in all compilation units of the second stage.
207 *
208 * Therefore this rule applies to both inter- and intra-stage linking.
209 *
210 * The easiest way to implement this is to check whether the shader uses
211 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
212 * remove all the relevant variable declaration from the IR, so that the
213 * linker won't see them and complain about mismatches.
214 */
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
217
218 /* Check that we don't have reads from write-only variables */
219 read_from_write_only_variable_visitor v;
220 v.run(instructions);
221 ir_variable *error_var = v.get_variable();
222 if (error_var) {
223 /* It would be nice to have proper location information, but for that
224 * we would need to check this as we process each kind of AST node
225 */
226 YYLTYPE loc;
227 memset(&loc, 0, sizeof(loc));
228 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
229 error_var->name);
230 }
231 }
232
233
234 static ir_expression_operation
235 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
236 struct _mesa_glsl_parse_state *state)
237 {
238 switch (to->base_type) {
239 case GLSL_TYPE_FLOAT:
240 switch (from->base_type) {
241 case GLSL_TYPE_INT: return ir_unop_i2f;
242 case GLSL_TYPE_UINT: return ir_unop_u2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
248 && !state->MESA_shader_integer_functions_enable)
249 return (ir_expression_operation)0;
250 switch (from->base_type) {
251 case GLSL_TYPE_INT: return ir_unop_i2u;
252 default: return (ir_expression_operation)0;
253 }
254
255 case GLSL_TYPE_DOUBLE:
256 if (!state->has_double())
257 return (ir_expression_operation)0;
258 switch (from->base_type) {
259 case GLSL_TYPE_INT: return ir_unop_i2d;
260 case GLSL_TYPE_UINT: return ir_unop_u2d;
261 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
262 default: return (ir_expression_operation)0;
263 }
264
265 default: return (ir_expression_operation)0;
266 }
267 }
268
269
270 /**
271 * If a conversion is available, convert one operand to a different type
272 *
273 * The \c from \c ir_rvalue is converted "in place".
274 *
275 * \param to Type that the operand it to be converted to
276 * \param from Operand that is being converted
277 * \param state GLSL compiler state
278 *
279 * \return
280 * If a conversion is possible (or unnecessary), \c true is returned.
281 * Otherwise \c false is returned.
282 */
283 static bool
284 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
285 struct _mesa_glsl_parse_state *state)
286 {
287 void *ctx = state;
288 if (to->base_type == from->type->base_type)
289 return true;
290
291 /* Prior to GLSL 1.20, there are no implicit conversions */
292 if (!state->is_version(120, 0))
293 return false;
294
295 /* ESSL does not allow implicit conversions */
296 if (state->es_shader)
297 return false;
298
299 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
300 *
301 * "There are no implicit array or structure conversions. For
302 * example, an array of int cannot be implicitly converted to an
303 * array of float.
304 */
305 if (!to->is_numeric() || !from->type->is_numeric())
306 return false;
307
308 /* We don't actually want the specific type `to`, we want a type
309 * with the same base type as `to`, but the same vector width as
310 * `from`.
311 */
312 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
313 from->type->matrix_columns);
314
315 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
316 if (op) {
317 from = new(ctx) ir_expression(op, to, from, NULL);
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324
325 static const struct glsl_type *
326 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
327 bool multiply,
328 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
329 {
330 const glsl_type *type_a = value_a->type;
331 const glsl_type *type_b = value_b->type;
332
333 /* From GLSL 1.50 spec, page 56:
334 *
335 * "The arithmetic binary operators add (+), subtract (-),
336 * multiply (*), and divide (/) operate on integer and
337 * floating-point scalars, vectors, and matrices."
338 */
339 if (!type_a->is_numeric() || !type_b->is_numeric()) {
340 _mesa_glsl_error(loc, state,
341 "operands to arithmetic operators must be numeric");
342 return glsl_type::error_type;
343 }
344
345
346 /* "If one operand is floating-point based and the other is
347 * not, then the conversions from Section 4.1.10 "Implicit
348 * Conversions" are applied to the non-floating-point-based operand."
349 */
350 if (!apply_implicit_conversion(type_a, value_b, state)
351 && !apply_implicit_conversion(type_b, value_a, state)) {
352 _mesa_glsl_error(loc, state,
353 "could not implicitly convert operands to "
354 "arithmetic operator");
355 return glsl_type::error_type;
356 }
357 type_a = value_a->type;
358 type_b = value_b->type;
359
360 /* "If the operands are integer types, they must both be signed or
361 * both be unsigned."
362 *
363 * From this rule and the preceeding conversion it can be inferred that
364 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
365 * The is_numeric check above already filtered out the case where either
366 * type is not one of these, so now the base types need only be tested for
367 * equality.
368 */
369 if (type_a->base_type != type_b->base_type) {
370 _mesa_glsl_error(loc, state,
371 "base type mismatch for arithmetic operator");
372 return glsl_type::error_type;
373 }
374
375 /* "All arithmetic binary operators result in the same fundamental type
376 * (signed integer, unsigned integer, or floating-point) as the
377 * operands they operate on, after operand type conversion. After
378 * conversion, the following cases are valid
379 *
380 * * The two operands are scalars. In this case the operation is
381 * applied, resulting in a scalar."
382 */
383 if (type_a->is_scalar() && type_b->is_scalar())
384 return type_a;
385
386 /* "* One operand is a scalar, and the other is a vector or matrix.
387 * In this case, the scalar operation is applied independently to each
388 * component of the vector or matrix, resulting in the same size
389 * vector or matrix."
390 */
391 if (type_a->is_scalar()) {
392 if (!type_b->is_scalar())
393 return type_b;
394 } else if (type_b->is_scalar()) {
395 return type_a;
396 }
397
398 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
399 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
400 * handled.
401 */
402 assert(!type_a->is_scalar());
403 assert(!type_b->is_scalar());
404
405 /* "* The two operands are vectors of the same size. In this case, the
406 * operation is done component-wise resulting in the same size
407 * vector."
408 */
409 if (type_a->is_vector() && type_b->is_vector()) {
410 if (type_a == type_b) {
411 return type_a;
412 } else {
413 _mesa_glsl_error(loc, state,
414 "vector size mismatch for arithmetic operator");
415 return glsl_type::error_type;
416 }
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
421 * <vector, vector> have been handled. At least one of the operands must
422 * be matrix. Further, since there are no integer matrix types, the base
423 * type of both operands must be float.
424 */
425 assert(type_a->is_matrix() || type_b->is_matrix());
426 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
427 type_a->base_type == GLSL_TYPE_DOUBLE);
428 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
429 type_b->base_type == GLSL_TYPE_DOUBLE);
430
431 /* "* The operator is add (+), subtract (-), or divide (/), and the
432 * operands are matrices with the same number of rows and the same
433 * number of columns. In this case, the operation is done component-
434 * wise resulting in the same size matrix."
435 * * The operator is multiply (*), where both operands are matrices or
436 * one operand is a vector and the other a matrix. A right vector
437 * operand is treated as a column vector and a left vector operand as a
438 * row vector. In all these cases, it is required that the number of
439 * columns of the left operand is equal to the number of rows of the
440 * right operand. Then, the multiply (*) operation does a linear
441 * algebraic multiply, yielding an object that has the same number of
442 * rows as the left operand and the same number of columns as the right
443 * operand. Section 5.10 "Vector and Matrix Operations" explains in
444 * more detail how vectors and matrices are operated on."
445 */
446 if (! multiply) {
447 if (type_a == type_b)
448 return type_a;
449 } else {
450 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
451
452 if (type == glsl_type::error_type) {
453 _mesa_glsl_error(loc, state,
454 "size mismatch for matrix multiplication");
455 }
456
457 return type;
458 }
459
460
461 /* "All other cases are illegal."
462 */
463 _mesa_glsl_error(loc, state, "type mismatch");
464 return glsl_type::error_type;
465 }
466
467
468 static const struct glsl_type *
469 unary_arithmetic_result_type(const struct glsl_type *type,
470 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
471 {
472 /* From GLSL 1.50 spec, page 57:
473 *
474 * "The arithmetic unary operators negate (-), post- and pre-increment
475 * and decrement (-- and ++) operate on integer or floating-point
476 * values (including vectors and matrices). All unary operators work
477 * component-wise on their operands. These result with the same type
478 * they operated on."
479 */
480 if (!type->is_numeric()) {
481 _mesa_glsl_error(loc, state,
482 "operands to arithmetic operators must be numeric");
483 return glsl_type::error_type;
484 }
485
486 return type;
487 }
488
489 /**
490 * \brief Return the result type of a bit-logic operation.
491 *
492 * If the given types to the bit-logic operator are invalid, return
493 * glsl_type::error_type.
494 *
495 * \param value_a LHS of bit-logic op
496 * \param value_b RHS of bit-logic op
497 */
498 static const struct glsl_type *
499 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
500 ast_operators op,
501 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
502 {
503 const glsl_type *type_a = value_a->type;
504 const glsl_type *type_b = value_b->type;
505
506 if (!state->check_bitwise_operations_allowed(loc)) {
507 return glsl_type::error_type;
508 }
509
510 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
511 *
512 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
513 * (|). The operands must be of type signed or unsigned integers or
514 * integer vectors."
515 */
516 if (!type_a->is_integer()) {
517 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521 if (!type_b->is_integer()) {
522 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
523 ast_expression::operator_string(op));
524 return glsl_type::error_type;
525 }
526
527 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
528 * make sense for bitwise operations, as they don't operate on floats.
529 *
530 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
531 * here. It wasn't clear whether or not we should apply them to bitwise
532 * operations. However, Khronos has decided that they should in future
533 * language revisions. Applications also rely on this behavior. We opt
534 * to apply them in general, but issue a portability warning.
535 *
536 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
537 */
538 if (type_a->base_type != type_b->base_type) {
539 if (!apply_implicit_conversion(type_a, value_b, state)
540 && !apply_implicit_conversion(type_b, value_a, state)) {
541 _mesa_glsl_error(loc, state,
542 "could not implicitly convert operands to "
543 "`%s` operator",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 } else {
547 _mesa_glsl_warning(loc, state,
548 "some implementations may not support implicit "
549 "int -> uint conversions for `%s' operators; "
550 "consider casting explicitly for portability",
551 ast_expression::operator_string(op));
552 }
553 type_a = value_a->type;
554 type_b = value_b->type;
555 }
556
557 /* "The fundamental types of the operands (signed or unsigned) must
558 * match,"
559 */
560 if (type_a->base_type != type_b->base_type) {
561 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
562 "base type", ast_expression::operator_string(op));
563 return glsl_type::error_type;
564 }
565
566 /* "The operands cannot be vectors of differing size." */
567 if (type_a->is_vector() &&
568 type_b->is_vector() &&
569 type_a->vector_elements != type_b->vector_elements) {
570 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
571 "different sizes", ast_expression::operator_string(op));
572 return glsl_type::error_type;
573 }
574
575 /* "If one operand is a scalar and the other a vector, the scalar is
576 * applied component-wise to the vector, resulting in the same type as
577 * the vector. The fundamental types of the operands [...] will be the
578 * resulting fundamental type."
579 */
580 if (type_a->is_scalar())
581 return type_b;
582 else
583 return type_a;
584 }
585
586 static const struct glsl_type *
587 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
588 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
589 {
590 const glsl_type *type_a = value_a->type;
591 const glsl_type *type_b = value_b->type;
592
593 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
594 return glsl_type::error_type;
595 }
596
597 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
598 *
599 * "The operator modulus (%) operates on signed or unsigned integers or
600 * integer vectors."
601 */
602 if (!type_a->is_integer()) {
603 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
604 return glsl_type::error_type;
605 }
606 if (!type_b->is_integer()) {
607 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
608 return glsl_type::error_type;
609 }
610
611 /* "If the fundamental types in the operands do not match, then the
612 * conversions from section 4.1.10 "Implicit Conversions" are applied
613 * to create matching types."
614 *
615 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
616 * int -> uint conversion rules. Prior to that, there were no implicit
617 * conversions. So it's harmless to apply them universally - no implicit
618 * conversions will exist. If the types don't match, we'll receive false,
619 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
620 *
621 * "The operand types must both be signed or unsigned."
622 */
623 if (!apply_implicit_conversion(type_a, value_b, state) &&
624 !apply_implicit_conversion(type_b, value_a, state)) {
625 _mesa_glsl_error(loc, state,
626 "could not implicitly convert operands to "
627 "modulus (%%) operator");
628 return glsl_type::error_type;
629 }
630 type_a = value_a->type;
631 type_b = value_b->type;
632
633 /* "The operands cannot be vectors of differing size. If one operand is
634 * a scalar and the other vector, then the scalar is applied component-
635 * wise to the vector, resulting in the same type as the vector. If both
636 * are vectors of the same size, the result is computed component-wise."
637 */
638 if (type_a->is_vector()) {
639 if (!type_b->is_vector()
640 || (type_a->vector_elements == type_b->vector_elements))
641 return type_a;
642 } else
643 return type_b;
644
645 /* "The operator modulus (%) is not defined for any other data types
646 * (non-integer types)."
647 */
648 _mesa_glsl_error(loc, state, "type mismatch");
649 return glsl_type::error_type;
650 }
651
652
653 static const struct glsl_type *
654 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
655 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
656 {
657 const glsl_type *type_a = value_a->type;
658 const glsl_type *type_b = value_b->type;
659
660 /* From GLSL 1.50 spec, page 56:
661 * "The relational operators greater than (>), less than (<), greater
662 * than or equal (>=), and less than or equal (<=) operate only on
663 * scalar integer and scalar floating-point expressions."
664 */
665 if (!type_a->is_numeric()
666 || !type_b->is_numeric()
667 || !type_a->is_scalar()
668 || !type_b->is_scalar()) {
669 _mesa_glsl_error(loc, state,
670 "operands to relational operators must be scalar and "
671 "numeric");
672 return glsl_type::error_type;
673 }
674
675 /* "Either the operands' types must match, or the conversions from
676 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
677 * operand, after which the types must match."
678 */
679 if (!apply_implicit_conversion(type_a, value_b, state)
680 && !apply_implicit_conversion(type_b, value_a, state)) {
681 _mesa_glsl_error(loc, state,
682 "could not implicitly convert operands to "
683 "relational operator");
684 return glsl_type::error_type;
685 }
686 type_a = value_a->type;
687 type_b = value_b->type;
688
689 if (type_a->base_type != type_b->base_type) {
690 _mesa_glsl_error(loc, state, "base type mismatch");
691 return glsl_type::error_type;
692 }
693
694 /* "The result is scalar Boolean."
695 */
696 return glsl_type::bool_type;
697 }
698
699 /**
700 * \brief Return the result type of a bit-shift operation.
701 *
702 * If the given types to the bit-shift operator are invalid, return
703 * glsl_type::error_type.
704 *
705 * \param type_a Type of LHS of bit-shift op
706 * \param type_b Type of RHS of bit-shift op
707 */
708 static const struct glsl_type *
709 shift_result_type(const struct glsl_type *type_a,
710 const struct glsl_type *type_b,
711 ast_operators op,
712 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
713 {
714 if (!state->check_bitwise_operations_allowed(loc)) {
715 return glsl_type::error_type;
716 }
717
718 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
719 *
720 * "The shift operators (<<) and (>>). For both operators, the operands
721 * must be signed or unsigned integers or integer vectors. One operand
722 * can be signed while the other is unsigned."
723 */
724 if (!type_a->is_integer()) {
725 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
726 "integer vector", ast_expression::operator_string(op));
727 return glsl_type::error_type;
728
729 }
730 if (!type_b->is_integer()) {
731 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
732 "integer vector", ast_expression::operator_string(op));
733 return glsl_type::error_type;
734 }
735
736 /* "If the first operand is a scalar, the second operand has to be
737 * a scalar as well."
738 */
739 if (type_a->is_scalar() && !type_b->is_scalar()) {
740 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
741 "second must be scalar as well",
742 ast_expression::operator_string(op));
743 return glsl_type::error_type;
744 }
745
746 /* If both operands are vectors, check that they have same number of
747 * elements.
748 */
749 if (type_a->is_vector() &&
750 type_b->is_vector() &&
751 type_a->vector_elements != type_b->vector_elements) {
752 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
753 "have same number of elements",
754 ast_expression::operator_string(op));
755 return glsl_type::error_type;
756 }
757
758 /* "In all cases, the resulting type will be the same type as the left
759 * operand."
760 */
761 return type_a;
762 }
763
764 /**
765 * Returns the innermost array index expression in an rvalue tree.
766 * This is the largest indexing level -- if an array of blocks, then
767 * it is the block index rather than an indexing expression for an
768 * array-typed member of an array of blocks.
769 */
770 static ir_rvalue *
771 find_innermost_array_index(ir_rvalue *rv)
772 {
773 ir_dereference_array *last = NULL;
774 while (rv) {
775 if (rv->as_dereference_array()) {
776 last = rv->as_dereference_array();
777 rv = last->array;
778 } else if (rv->as_dereference_record())
779 rv = rv->as_dereference_record()->record;
780 else if (rv->as_swizzle())
781 rv = rv->as_swizzle()->val;
782 else
783 rv = NULL;
784 }
785
786 if (last)
787 return last->array_index;
788
789 return NULL;
790 }
791
792 /**
793 * Validates that a value can be assigned to a location with a specified type
794 *
795 * Validates that \c rhs can be assigned to some location. If the types are
796 * not an exact match but an automatic conversion is possible, \c rhs will be
797 * converted.
798 *
799 * \return
800 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
801 * Otherwise the actual RHS to be assigned will be returned. This may be
802 * \c rhs, or it may be \c rhs after some type conversion.
803 *
804 * \note
805 * In addition to being used for assignments, this function is used to
806 * type-check return values.
807 */
808 static ir_rvalue *
809 validate_assignment(struct _mesa_glsl_parse_state *state,
810 YYLTYPE loc, ir_rvalue *lhs,
811 ir_rvalue *rhs, bool is_initializer)
812 {
813 /* If there is already some error in the RHS, just return it. Anything
814 * else will lead to an avalanche of error message back to the user.
815 */
816 if (rhs->type->is_error())
817 return rhs;
818
819 /* In the Tessellation Control Shader:
820 * If a per-vertex output variable is used as an l-value, it is an error
821 * if the expression indicating the vertex number is not the identifier
822 * `gl_InvocationID`.
823 */
824 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
825 ir_variable *var = lhs->variable_referenced();
826 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
827 ir_rvalue *index = find_innermost_array_index(lhs);
828 ir_variable *index_var = index ? index->variable_referenced() : NULL;
829 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
830 _mesa_glsl_error(&loc, state,
831 "Tessellation control shader outputs can only "
832 "be indexed by gl_InvocationID");
833 return NULL;
834 }
835 }
836 }
837
838 /* If the types are identical, the assignment can trivially proceed.
839 */
840 if (rhs->type == lhs->type)
841 return rhs;
842
843 /* If the array element types are the same and the LHS is unsized,
844 * the assignment is okay for initializers embedded in variable
845 * declarations.
846 *
847 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
848 * is handled by ir_dereference::is_lvalue.
849 */
850 const glsl_type *lhs_t = lhs->type;
851 const glsl_type *rhs_t = rhs->type;
852 bool unsized_array = false;
853 while(lhs_t->is_array()) {
854 if (rhs_t == lhs_t)
855 break; /* the rest of the inner arrays match so break out early */
856 if (!rhs_t->is_array()) {
857 unsized_array = false;
858 break; /* number of dimensions mismatch */
859 }
860 if (lhs_t->length == rhs_t->length) {
861 lhs_t = lhs_t->fields.array;
862 rhs_t = rhs_t->fields.array;
863 continue;
864 } else if (lhs_t->is_unsized_array()) {
865 unsized_array = true;
866 } else {
867 unsized_array = false;
868 break; /* sized array mismatch */
869 }
870 lhs_t = lhs_t->fields.array;
871 rhs_t = rhs_t->fields.array;
872 }
873 if (unsized_array) {
874 if (is_initializer) {
875 return rhs;
876 } else {
877 _mesa_glsl_error(&loc, state,
878 "implicitly sized arrays cannot be assigned");
879 return NULL;
880 }
881 }
882
883 /* Check for implicit conversion in GLSL 1.20 */
884 if (apply_implicit_conversion(lhs->type, rhs, state)) {
885 if (rhs->type == lhs->type)
886 return rhs;
887 }
888
889 _mesa_glsl_error(&loc, state,
890 "%s of type %s cannot be assigned to "
891 "variable of type %s",
892 is_initializer ? "initializer" : "value",
893 rhs->type->name, lhs->type->name);
894
895 return NULL;
896 }
897
898 static void
899 mark_whole_array_access(ir_rvalue *access)
900 {
901 ir_dereference_variable *deref = access->as_dereference_variable();
902
903 if (deref && deref->var) {
904 deref->var->data.max_array_access = deref->type->length - 1;
905 }
906 }
907
908 static bool
909 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
910 const char *non_lvalue_description,
911 ir_rvalue *lhs, ir_rvalue *rhs,
912 ir_rvalue **out_rvalue, bool needs_rvalue,
913 bool is_initializer,
914 YYLTYPE lhs_loc)
915 {
916 void *ctx = state;
917 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
918
919 ir_variable *lhs_var = lhs->variable_referenced();
920 if (lhs_var)
921 lhs_var->data.assigned = true;
922
923 if (!error_emitted) {
924 if (non_lvalue_description != NULL) {
925 _mesa_glsl_error(&lhs_loc, state,
926 "assignment to %s",
927 non_lvalue_description);
928 error_emitted = true;
929 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
930 (lhs_var->data.mode == ir_var_shader_storage &&
931 lhs_var->data.image_read_only))) {
932 /* We can have image_read_only set on both images and buffer variables,
933 * but in the former there is a distinction between assignments to
934 * the variable itself (read_only) and to the memory they point to
935 * (image_read_only), while in the case of buffer variables there is
936 * no such distinction, that is why this check here is limited to
937 * buffer variables alone.
938 */
939 _mesa_glsl_error(&lhs_loc, state,
940 "assignment to read-only variable '%s'",
941 lhs_var->name);
942 error_emitted = true;
943 } else if (lhs->type->is_array() &&
944 !state->check_version(120, 300, &lhs_loc,
945 "whole array assignment forbidden")) {
946 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
947 *
948 * "Other binary or unary expressions, non-dereferenced
949 * arrays, function names, swizzles with repeated fields,
950 * and constants cannot be l-values."
951 *
952 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
953 */
954 error_emitted = true;
955 } else if (!lhs->is_lvalue()) {
956 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
957 error_emitted = true;
958 }
959 }
960
961 ir_rvalue *new_rhs =
962 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
963 if (new_rhs != NULL) {
964 rhs = new_rhs;
965
966 /* If the LHS array was not declared with a size, it takes it size from
967 * the RHS. If the LHS is an l-value and a whole array, it must be a
968 * dereference of a variable. Any other case would require that the LHS
969 * is either not an l-value or not a whole array.
970 */
971 if (lhs->type->is_unsized_array()) {
972 ir_dereference *const d = lhs->as_dereference();
973
974 assert(d != NULL);
975
976 ir_variable *const var = d->variable_referenced();
977
978 assert(var != NULL);
979
980 if (var->data.max_array_access >= rhs->type->array_size()) {
981 /* FINISHME: This should actually log the location of the RHS. */
982 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
983 "previous access",
984 var->data.max_array_access);
985 }
986
987 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
988 rhs->type->array_size());
989 d->type = var->type;
990 }
991 if (lhs->type->is_array()) {
992 mark_whole_array_access(rhs);
993 mark_whole_array_access(lhs);
994 }
995 }
996
997 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
998 * but not post_inc) need the converted assigned value as an rvalue
999 * to handle things like:
1000 *
1001 * i = j += 1;
1002 */
1003 if (needs_rvalue) {
1004 ir_rvalue *rvalue;
1005 if (!error_emitted) {
1006 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1007 ir_var_temporary);
1008 instructions->push_tail(var);
1009 instructions->push_tail(assign(var, rhs));
1010
1011 ir_dereference_variable *deref_var =
1012 new(ctx) ir_dereference_variable(var);
1013 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1014 rvalue = new(ctx) ir_dereference_variable(var);
1015 } else {
1016 rvalue = ir_rvalue::error_value(ctx);
1017 }
1018 *out_rvalue = rvalue;
1019 } else {
1020 if (!error_emitted)
1021 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1022 *out_rvalue = NULL;
1023 }
1024
1025 return error_emitted;
1026 }
1027
1028 static ir_rvalue *
1029 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1030 {
1031 void *ctx = ralloc_parent(lvalue);
1032 ir_variable *var;
1033
1034 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1035 ir_var_temporary);
1036 instructions->push_tail(var);
1037
1038 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1039 lvalue));
1040
1041 return new(ctx) ir_dereference_variable(var);
1042 }
1043
1044
1045 ir_rvalue *
1046 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1047 {
1048 (void) instructions;
1049 (void) state;
1050
1051 return NULL;
1052 }
1053
1054 bool
1055 ast_node::has_sequence_subexpression() const
1056 {
1057 return false;
1058 }
1059
1060 void
1061 ast_node::set_is_lhs(bool /* new_value */)
1062 {
1063 }
1064
1065 void
1066 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1067 struct _mesa_glsl_parse_state *state)
1068 {
1069 (void)hir(instructions, state);
1070 }
1071
1072 void
1073 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1074 struct _mesa_glsl_parse_state *state)
1075 {
1076 (void)hir(instructions, state);
1077 }
1078
1079 static ir_rvalue *
1080 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1081 {
1082 int join_op;
1083 ir_rvalue *cmp = NULL;
1084
1085 if (operation == ir_binop_all_equal)
1086 join_op = ir_binop_logic_and;
1087 else
1088 join_op = ir_binop_logic_or;
1089
1090 switch (op0->type->base_type) {
1091 case GLSL_TYPE_FLOAT:
1092 case GLSL_TYPE_UINT:
1093 case GLSL_TYPE_INT:
1094 case GLSL_TYPE_BOOL:
1095 case GLSL_TYPE_DOUBLE:
1096 return new(mem_ctx) ir_expression(operation, op0, op1);
1097
1098 case GLSL_TYPE_ARRAY: {
1099 for (unsigned int i = 0; i < op0->type->length; i++) {
1100 ir_rvalue *e0, *e1, *result;
1101
1102 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1103 new(mem_ctx) ir_constant(i));
1104 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1105 new(mem_ctx) ir_constant(i));
1106 result = do_comparison(mem_ctx, operation, e0, e1);
1107
1108 if (cmp) {
1109 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1110 } else {
1111 cmp = result;
1112 }
1113 }
1114
1115 mark_whole_array_access(op0);
1116 mark_whole_array_access(op1);
1117 break;
1118 }
1119
1120 case GLSL_TYPE_STRUCT: {
1121 for (unsigned int i = 0; i < op0->type->length; i++) {
1122 ir_rvalue *e0, *e1, *result;
1123 const char *field_name = op0->type->fields.structure[i].name;
1124
1125 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1126 field_name);
1127 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1128 field_name);
1129 result = do_comparison(mem_ctx, operation, e0, e1);
1130
1131 if (cmp) {
1132 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133 } else {
1134 cmp = result;
1135 }
1136 }
1137 break;
1138 }
1139
1140 case GLSL_TYPE_ERROR:
1141 case GLSL_TYPE_VOID:
1142 case GLSL_TYPE_SAMPLER:
1143 case GLSL_TYPE_IMAGE:
1144 case GLSL_TYPE_INTERFACE:
1145 case GLSL_TYPE_ATOMIC_UINT:
1146 case GLSL_TYPE_SUBROUTINE:
1147 case GLSL_TYPE_FUNCTION:
1148 /* I assume a comparison of a struct containing a sampler just
1149 * ignores the sampler present in the type.
1150 */
1151 break;
1152 }
1153
1154 if (cmp == NULL)
1155 cmp = new(mem_ctx) ir_constant(true);
1156
1157 return cmp;
1158 }
1159
1160 /* For logical operations, we want to ensure that the operands are
1161 * scalar booleans. If it isn't, emit an error and return a constant
1162 * boolean to avoid triggering cascading error messages.
1163 */
1164 ir_rvalue *
1165 get_scalar_boolean_operand(exec_list *instructions,
1166 struct _mesa_glsl_parse_state *state,
1167 ast_expression *parent_expr,
1168 int operand,
1169 const char *operand_name,
1170 bool *error_emitted)
1171 {
1172 ast_expression *expr = parent_expr->subexpressions[operand];
1173 void *ctx = state;
1174 ir_rvalue *val = expr->hir(instructions, state);
1175
1176 if (val->type->is_boolean() && val->type->is_scalar())
1177 return val;
1178
1179 if (!*error_emitted) {
1180 YYLTYPE loc = expr->get_location();
1181 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1182 operand_name,
1183 parent_expr->operator_string(parent_expr->oper));
1184 *error_emitted = true;
1185 }
1186
1187 return new(ctx) ir_constant(true);
1188 }
1189
1190 /**
1191 * If name refers to a builtin array whose maximum allowed size is less than
1192 * size, report an error and return true. Otherwise return false.
1193 */
1194 void
1195 check_builtin_array_max_size(const char *name, unsigned size,
1196 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1197 {
1198 if ((strcmp("gl_TexCoord", name) == 0)
1199 && (size > state->Const.MaxTextureCoords)) {
1200 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1201 *
1202 * "The size [of gl_TexCoord] can be at most
1203 * gl_MaxTextureCoords."
1204 */
1205 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1206 "be larger than gl_MaxTextureCoords (%u)",
1207 state->Const.MaxTextureCoords);
1208 } else if (strcmp("gl_ClipDistance", name) == 0) {
1209 state->clip_dist_size = size;
1210 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1211 /* From section 7.1 (Vertex Shader Special Variables) of the
1212 * GLSL 1.30 spec:
1213 *
1214 * "The gl_ClipDistance array is predeclared as unsized and
1215 * must be sized by the shader either redeclaring it with a
1216 * size or indexing it only with integral constant
1217 * expressions. ... The size can be at most
1218 * gl_MaxClipDistances."
1219 */
1220 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1221 "be larger than gl_MaxClipDistances (%u)",
1222 state->Const.MaxClipPlanes);
1223 }
1224 } else if (strcmp("gl_CullDistance", name) == 0) {
1225 state->cull_dist_size = size;
1226 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1227 /* From the ARB_cull_distance spec:
1228 *
1229 * "The gl_CullDistance array is predeclared as unsized and
1230 * must be sized by the shader either redeclaring it with
1231 * a size or indexing it only with integral constant
1232 * expressions. The size determines the number and set of
1233 * enabled cull distances and can be at most
1234 * gl_MaxCullDistances."
1235 */
1236 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1237 "be larger than gl_MaxCullDistances (%u)",
1238 state->Const.MaxClipPlanes);
1239 }
1240 }
1241 }
1242
1243 /**
1244 * Create the constant 1, of a which is appropriate for incrementing and
1245 * decrementing values of the given GLSL type. For example, if type is vec4,
1246 * this creates a constant value of 1.0 having type float.
1247 *
1248 * If the given type is invalid for increment and decrement operators, return
1249 * a floating point 1--the error will be detected later.
1250 */
1251 static ir_rvalue *
1252 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1253 {
1254 switch (type->base_type) {
1255 case GLSL_TYPE_UINT:
1256 return new(ctx) ir_constant((unsigned) 1);
1257 case GLSL_TYPE_INT:
1258 return new(ctx) ir_constant(1);
1259 default:
1260 case GLSL_TYPE_FLOAT:
1261 return new(ctx) ir_constant(1.0f);
1262 }
1263 }
1264
1265 ir_rvalue *
1266 ast_expression::hir(exec_list *instructions,
1267 struct _mesa_glsl_parse_state *state)
1268 {
1269 return do_hir(instructions, state, true);
1270 }
1271
1272 void
1273 ast_expression::hir_no_rvalue(exec_list *instructions,
1274 struct _mesa_glsl_parse_state *state)
1275 {
1276 do_hir(instructions, state, false);
1277 }
1278
1279 void
1280 ast_expression::set_is_lhs(bool new_value)
1281 {
1282 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1283 * if we lack an identifier we can just skip it.
1284 */
1285 if (this->primary_expression.identifier == NULL)
1286 return;
1287
1288 this->is_lhs = new_value;
1289
1290 /* We need to go through the subexpressions tree to cover cases like
1291 * ast_field_selection
1292 */
1293 if (this->subexpressions[0] != NULL)
1294 this->subexpressions[0]->set_is_lhs(new_value);
1295 }
1296
1297 ir_rvalue *
1298 ast_expression::do_hir(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state,
1300 bool needs_rvalue)
1301 {
1302 void *ctx = state;
1303 static const int operations[AST_NUM_OPERATORS] = {
1304 -1, /* ast_assign doesn't convert to ir_expression. */
1305 -1, /* ast_plus doesn't convert to ir_expression. */
1306 ir_unop_neg,
1307 ir_binop_add,
1308 ir_binop_sub,
1309 ir_binop_mul,
1310 ir_binop_div,
1311 ir_binop_mod,
1312 ir_binop_lshift,
1313 ir_binop_rshift,
1314 ir_binop_less,
1315 ir_binop_greater,
1316 ir_binop_lequal,
1317 ir_binop_gequal,
1318 ir_binop_all_equal,
1319 ir_binop_any_nequal,
1320 ir_binop_bit_and,
1321 ir_binop_bit_xor,
1322 ir_binop_bit_or,
1323 ir_unop_bit_not,
1324 ir_binop_logic_and,
1325 ir_binop_logic_xor,
1326 ir_binop_logic_or,
1327 ir_unop_logic_not,
1328
1329 /* Note: The following block of expression types actually convert
1330 * to multiple IR instructions.
1331 */
1332 ir_binop_mul, /* ast_mul_assign */
1333 ir_binop_div, /* ast_div_assign */
1334 ir_binop_mod, /* ast_mod_assign */
1335 ir_binop_add, /* ast_add_assign */
1336 ir_binop_sub, /* ast_sub_assign */
1337 ir_binop_lshift, /* ast_ls_assign */
1338 ir_binop_rshift, /* ast_rs_assign */
1339 ir_binop_bit_and, /* ast_and_assign */
1340 ir_binop_bit_xor, /* ast_xor_assign */
1341 ir_binop_bit_or, /* ast_or_assign */
1342
1343 -1, /* ast_conditional doesn't convert to ir_expression. */
1344 ir_binop_add, /* ast_pre_inc. */
1345 ir_binop_sub, /* ast_pre_dec. */
1346 ir_binop_add, /* ast_post_inc. */
1347 ir_binop_sub, /* ast_post_dec. */
1348 -1, /* ast_field_selection doesn't conv to ir_expression. */
1349 -1, /* ast_array_index doesn't convert to ir_expression. */
1350 -1, /* ast_function_call doesn't conv to ir_expression. */
1351 -1, /* ast_identifier doesn't convert to ir_expression. */
1352 -1, /* ast_int_constant doesn't convert to ir_expression. */
1353 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1354 -1, /* ast_float_constant doesn't conv to ir_expression. */
1355 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1356 -1, /* ast_sequence doesn't convert to ir_expression. */
1357 -1, /* ast_aggregate shouldn't ever even get here. */
1358 };
1359 ir_rvalue *result = NULL;
1360 ir_rvalue *op[3];
1361 const struct glsl_type *type, *orig_type;
1362 bool error_emitted = false;
1363 YYLTYPE loc;
1364
1365 loc = this->get_location();
1366
1367 switch (this->oper) {
1368 case ast_aggregate:
1369 assert(!"ast_aggregate: Should never get here.");
1370 break;
1371
1372 case ast_assign: {
1373 this->subexpressions[0]->set_is_lhs(true);
1374 op[0] = this->subexpressions[0]->hir(instructions, state);
1375 op[1] = this->subexpressions[1]->hir(instructions, state);
1376
1377 error_emitted =
1378 do_assignment(instructions, state,
1379 this->subexpressions[0]->non_lvalue_description,
1380 op[0], op[1], &result, needs_rvalue, false,
1381 this->subexpressions[0]->get_location());
1382 break;
1383 }
1384
1385 case ast_plus:
1386 op[0] = this->subexpressions[0]->hir(instructions, state);
1387
1388 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1389
1390 error_emitted = type->is_error();
1391
1392 result = op[0];
1393 break;
1394
1395 case ast_neg:
1396 op[0] = this->subexpressions[0]->hir(instructions, state);
1397
1398 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1399
1400 error_emitted = type->is_error();
1401
1402 result = new(ctx) ir_expression(operations[this->oper], type,
1403 op[0], NULL);
1404 break;
1405
1406 case ast_add:
1407 case ast_sub:
1408 case ast_mul:
1409 case ast_div:
1410 op[0] = this->subexpressions[0]->hir(instructions, state);
1411 op[1] = this->subexpressions[1]->hir(instructions, state);
1412
1413 type = arithmetic_result_type(op[0], op[1],
1414 (this->oper == ast_mul),
1415 state, & loc);
1416 error_emitted = type->is_error();
1417
1418 result = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420 break;
1421
1422 case ast_mod:
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424 op[1] = this->subexpressions[1]->hir(instructions, state);
1425
1426 type = modulus_result_type(op[0], op[1], state, &loc);
1427
1428 assert(operations[this->oper] == ir_binop_mod);
1429
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], op[1]);
1432 error_emitted = type->is_error();
1433 break;
1434
1435 case ast_lshift:
1436 case ast_rshift:
1437 if (!state->check_bitwise_operations_allowed(&loc)) {
1438 error_emitted = true;
1439 }
1440
1441 op[0] = this->subexpressions[0]->hir(instructions, state);
1442 op[1] = this->subexpressions[1]->hir(instructions, state);
1443 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1444 &loc);
1445 result = new(ctx) ir_expression(operations[this->oper], type,
1446 op[0], op[1]);
1447 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1448 break;
1449
1450 case ast_less:
1451 case ast_greater:
1452 case ast_lequal:
1453 case ast_gequal:
1454 op[0] = this->subexpressions[0]->hir(instructions, state);
1455 op[1] = this->subexpressions[1]->hir(instructions, state);
1456
1457 type = relational_result_type(op[0], op[1], state, & loc);
1458
1459 /* The relational operators must either generate an error or result
1460 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1461 */
1462 assert(type->is_error()
1463 || ((type->base_type == GLSL_TYPE_BOOL)
1464 && type->is_scalar()));
1465
1466 result = new(ctx) ir_expression(operations[this->oper], type,
1467 op[0], op[1]);
1468 error_emitted = type->is_error();
1469 break;
1470
1471 case ast_nequal:
1472 case ast_equal:
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475
1476 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1477 *
1478 * "The equality operators equal (==), and not equal (!=)
1479 * operate on all types. They result in a scalar Boolean. If
1480 * the operand types do not match, then there must be a
1481 * conversion from Section 4.1.10 "Implicit Conversions"
1482 * applied to one operand that can make them match, in which
1483 * case this conversion is done."
1484 */
1485
1486 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1487 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1488 "no operation `%1$s' exists that takes a left-hand "
1489 "operand of type 'void' or a right operand of type "
1490 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1491 error_emitted = true;
1492 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1493 && !apply_implicit_conversion(op[1]->type, op[0], state))
1494 || (op[0]->type != op[1]->type)) {
1495 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1496 "type", (this->oper == ast_equal) ? "==" : "!=");
1497 error_emitted = true;
1498 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1499 !state->check_version(120, 300, &loc,
1500 "array comparisons forbidden")) {
1501 error_emitted = true;
1502 } else if ((op[0]->type->contains_subroutine() ||
1503 op[1]->type->contains_subroutine())) {
1504 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1505 error_emitted = true;
1506 } else if ((op[0]->type->contains_opaque() ||
1507 op[1]->type->contains_opaque())) {
1508 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1509 error_emitted = true;
1510 }
1511
1512 if (error_emitted) {
1513 result = new(ctx) ir_constant(false);
1514 } else {
1515 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1516 assert(result->type == glsl_type::bool_type);
1517 }
1518 break;
1519
1520 case ast_bit_and:
1521 case ast_bit_xor:
1522 case ast_bit_or:
1523 op[0] = this->subexpressions[0]->hir(instructions, state);
1524 op[1] = this->subexpressions[1]->hir(instructions, state);
1525 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1526 result = new(ctx) ir_expression(operations[this->oper], type,
1527 op[0], op[1]);
1528 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1529 break;
1530
1531 case ast_bit_not:
1532 op[0] = this->subexpressions[0]->hir(instructions, state);
1533
1534 if (!state->check_bitwise_operations_allowed(&loc)) {
1535 error_emitted = true;
1536 }
1537
1538 if (!op[0]->type->is_integer()) {
1539 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1540 error_emitted = true;
1541 }
1542
1543 type = error_emitted ? glsl_type::error_type : op[0]->type;
1544 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1545 break;
1546
1547 case ast_logic_and: {
1548 exec_list rhs_instructions;
1549 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1550 "LHS", &error_emitted);
1551 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1552 "RHS", &error_emitted);
1553
1554 if (rhs_instructions.is_empty()) {
1555 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1556 type = result->type;
1557 } else {
1558 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1559 "and_tmp",
1560 ir_var_temporary);
1561 instructions->push_tail(tmp);
1562
1563 ir_if *const stmt = new(ctx) ir_if(op[0]);
1564 instructions->push_tail(stmt);
1565
1566 stmt->then_instructions.append_list(&rhs_instructions);
1567 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1568 ir_assignment *const then_assign =
1569 new(ctx) ir_assignment(then_deref, op[1]);
1570 stmt->then_instructions.push_tail(then_assign);
1571
1572 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1573 ir_assignment *const else_assign =
1574 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1575 stmt->else_instructions.push_tail(else_assign);
1576
1577 result = new(ctx) ir_dereference_variable(tmp);
1578 type = tmp->type;
1579 }
1580 break;
1581 }
1582
1583 case ast_logic_or: {
1584 exec_list rhs_instructions;
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "LHS", &error_emitted);
1587 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588 "RHS", &error_emitted);
1589
1590 if (rhs_instructions.is_empty()) {
1591 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1592 type = result->type;
1593 } else {
1594 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1595 "or_tmp",
1596 ir_var_temporary);
1597 instructions->push_tail(tmp);
1598
1599 ir_if *const stmt = new(ctx) ir_if(op[0]);
1600 instructions->push_tail(stmt);
1601
1602 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const then_assign =
1604 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1605 stmt->then_instructions.push_tail(then_assign);
1606
1607 stmt->else_instructions.append_list(&rhs_instructions);
1608 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1609 ir_assignment *const else_assign =
1610 new(ctx) ir_assignment(else_deref, op[1]);
1611 stmt->else_instructions.push_tail(else_assign);
1612
1613 result = new(ctx) ir_dereference_variable(tmp);
1614 type = tmp->type;
1615 }
1616 break;
1617 }
1618
1619 case ast_logic_xor:
1620 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1621 *
1622 * "The logical binary operators and (&&), or ( | | ), and
1623 * exclusive or (^^). They operate only on two Boolean
1624 * expressions and result in a Boolean expression."
1625 */
1626 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1627 &error_emitted);
1628 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1629 &error_emitted);
1630
1631 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1632 op[0], op[1]);
1633 break;
1634
1635 case ast_logic_not:
1636 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637 "operand", &error_emitted);
1638
1639 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1640 op[0], NULL);
1641 break;
1642
1643 case ast_mul_assign:
1644 case ast_div_assign:
1645 case ast_add_assign:
1646 case ast_sub_assign: {
1647 this->subexpressions[0]->set_is_lhs(true);
1648 op[0] = this->subexpressions[0]->hir(instructions, state);
1649 op[1] = this->subexpressions[1]->hir(instructions, state);
1650
1651 orig_type = op[0]->type;
1652 type = arithmetic_result_type(op[0], op[1],
1653 (this->oper == ast_mul_assign),
1654 state, & loc);
1655
1656 if (type != orig_type) {
1657 _mesa_glsl_error(& loc, state,
1658 "could not implicitly convert "
1659 "%s to %s", type->name, orig_type->name);
1660 type = glsl_type::error_type;
1661 }
1662
1663 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1664 op[0], op[1]);
1665
1666 error_emitted =
1667 do_assignment(instructions, state,
1668 this->subexpressions[0]->non_lvalue_description,
1669 op[0]->clone(ctx, NULL), temp_rhs,
1670 &result, needs_rvalue, false,
1671 this->subexpressions[0]->get_location());
1672
1673 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1674 * explicitly test for this because none of the binary expression
1675 * operators allow array operands either.
1676 */
1677
1678 break;
1679 }
1680
1681 case ast_mod_assign: {
1682 this->subexpressions[0]->set_is_lhs(true);
1683 op[0] = this->subexpressions[0]->hir(instructions, state);
1684 op[1] = this->subexpressions[1]->hir(instructions, state);
1685
1686 orig_type = op[0]->type;
1687 type = modulus_result_type(op[0], op[1], state, &loc);
1688
1689 if (type != orig_type) {
1690 _mesa_glsl_error(& loc, state,
1691 "could not implicitly convert "
1692 "%s to %s", type->name, orig_type->name);
1693 type = glsl_type::error_type;
1694 }
1695
1696 assert(operations[this->oper] == ir_binop_mod);
1697
1698 ir_rvalue *temp_rhs;
1699 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1700 op[0], op[1]);
1701
1702 error_emitted =
1703 do_assignment(instructions, state,
1704 this->subexpressions[0]->non_lvalue_description,
1705 op[0]->clone(ctx, NULL), temp_rhs,
1706 &result, needs_rvalue, false,
1707 this->subexpressions[0]->get_location());
1708 break;
1709 }
1710
1711 case ast_ls_assign:
1712 case ast_rs_assign: {
1713 this->subexpressions[0]->set_is_lhs(true);
1714 op[0] = this->subexpressions[0]->hir(instructions, state);
1715 op[1] = this->subexpressions[1]->hir(instructions, state);
1716 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1717 &loc);
1718 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1719 type, op[0], op[1]);
1720 error_emitted =
1721 do_assignment(instructions, state,
1722 this->subexpressions[0]->non_lvalue_description,
1723 op[0]->clone(ctx, NULL), temp_rhs,
1724 &result, needs_rvalue, false,
1725 this->subexpressions[0]->get_location());
1726 break;
1727 }
1728
1729 case ast_and_assign:
1730 case ast_xor_assign:
1731 case ast_or_assign: {
1732 this->subexpressions[0]->set_is_lhs(true);
1733 op[0] = this->subexpressions[0]->hir(instructions, state);
1734 op[1] = this->subexpressions[1]->hir(instructions, state);
1735
1736 orig_type = op[0]->type;
1737 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1738
1739 if (type != orig_type) {
1740 _mesa_glsl_error(& loc, state,
1741 "could not implicitly convert "
1742 "%s to %s", type->name, orig_type->name);
1743 type = glsl_type::error_type;
1744 }
1745
1746 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1747 type, op[0], op[1]);
1748 error_emitted =
1749 do_assignment(instructions, state,
1750 this->subexpressions[0]->non_lvalue_description,
1751 op[0]->clone(ctx, NULL), temp_rhs,
1752 &result, needs_rvalue, false,
1753 this->subexpressions[0]->get_location());
1754 break;
1755 }
1756
1757 case ast_conditional: {
1758 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1759 *
1760 * "The ternary selection operator (?:). It operates on three
1761 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1762 * first expression, which must result in a scalar Boolean."
1763 */
1764 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1765 "condition", &error_emitted);
1766
1767 /* The :? operator is implemented by generating an anonymous temporary
1768 * followed by an if-statement. The last instruction in each branch of
1769 * the if-statement assigns a value to the anonymous temporary. This
1770 * temporary is the r-value of the expression.
1771 */
1772 exec_list then_instructions;
1773 exec_list else_instructions;
1774
1775 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1776 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1777
1778 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1779 *
1780 * "The second and third expressions can be any type, as
1781 * long their types match, or there is a conversion in
1782 * Section 4.1.10 "Implicit Conversions" that can be applied
1783 * to one of the expressions to make their types match. This
1784 * resulting matching type is the type of the entire
1785 * expression."
1786 */
1787 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1788 && !apply_implicit_conversion(op[2]->type, op[1], state))
1789 || (op[1]->type != op[2]->type)) {
1790 YYLTYPE loc = this->subexpressions[1]->get_location();
1791
1792 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1793 "operator must have matching types");
1794 error_emitted = true;
1795 type = glsl_type::error_type;
1796 } else {
1797 type = op[1]->type;
1798 }
1799
1800 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1801 *
1802 * "The second and third expressions must be the same type, but can
1803 * be of any type other than an array."
1804 */
1805 if (type->is_array() &&
1806 !state->check_version(120, 300, &loc,
1807 "second and third operands of ?: operator "
1808 "cannot be arrays")) {
1809 error_emitted = true;
1810 }
1811
1812 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1813 *
1814 * "Except for array indexing, structure member selection, and
1815 * parentheses, opaque variables are not allowed to be operands in
1816 * expressions; such use results in a compile-time error."
1817 */
1818 if (type->contains_opaque()) {
1819 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1820 "of the ?: operator");
1821 error_emitted = true;
1822 }
1823
1824 ir_constant *cond_val = op[0]->constant_expression_value();
1825
1826 if (then_instructions.is_empty()
1827 && else_instructions.is_empty()
1828 && cond_val != NULL) {
1829 result = cond_val->value.b[0] ? op[1] : op[2];
1830 } else {
1831 /* The copy to conditional_tmp reads the whole array. */
1832 if (type->is_array()) {
1833 mark_whole_array_access(op[1]);
1834 mark_whole_array_access(op[2]);
1835 }
1836
1837 ir_variable *const tmp =
1838 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1839 instructions->push_tail(tmp);
1840
1841 ir_if *const stmt = new(ctx) ir_if(op[0]);
1842 instructions->push_tail(stmt);
1843
1844 then_instructions.move_nodes_to(& stmt->then_instructions);
1845 ir_dereference *const then_deref =
1846 new(ctx) ir_dereference_variable(tmp);
1847 ir_assignment *const then_assign =
1848 new(ctx) ir_assignment(then_deref, op[1]);
1849 stmt->then_instructions.push_tail(then_assign);
1850
1851 else_instructions.move_nodes_to(& stmt->else_instructions);
1852 ir_dereference *const else_deref =
1853 new(ctx) ir_dereference_variable(tmp);
1854 ir_assignment *const else_assign =
1855 new(ctx) ir_assignment(else_deref, op[2]);
1856 stmt->else_instructions.push_tail(else_assign);
1857
1858 result = new(ctx) ir_dereference_variable(tmp);
1859 }
1860 break;
1861 }
1862
1863 case ast_pre_inc:
1864 case ast_pre_dec: {
1865 this->non_lvalue_description = (this->oper == ast_pre_inc)
1866 ? "pre-increment operation" : "pre-decrement operation";
1867
1868 op[0] = this->subexpressions[0]->hir(instructions, state);
1869 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1870
1871 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1872
1873 ir_rvalue *temp_rhs;
1874 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1875 op[0], op[1]);
1876
1877 error_emitted =
1878 do_assignment(instructions, state,
1879 this->subexpressions[0]->non_lvalue_description,
1880 op[0]->clone(ctx, NULL), temp_rhs,
1881 &result, needs_rvalue, false,
1882 this->subexpressions[0]->get_location());
1883 break;
1884 }
1885
1886 case ast_post_inc:
1887 case ast_post_dec: {
1888 this->non_lvalue_description = (this->oper == ast_post_inc)
1889 ? "post-increment operation" : "post-decrement operation";
1890 op[0] = this->subexpressions[0]->hir(instructions, state);
1891 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1892
1893 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 /* Get a temporary of a copy of the lvalue before it's modified.
1902 * This may get thrown away later.
1903 */
1904 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1905
1906 ir_rvalue *junk_rvalue;
1907 error_emitted =
1908 do_assignment(instructions, state,
1909 this->subexpressions[0]->non_lvalue_description,
1910 op[0]->clone(ctx, NULL), temp_rhs,
1911 &junk_rvalue, false, false,
1912 this->subexpressions[0]->get_location());
1913
1914 break;
1915 }
1916
1917 case ast_field_selection:
1918 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1919 break;
1920
1921 case ast_array_index: {
1922 YYLTYPE index_loc = subexpressions[1]->get_location();
1923
1924 /* Getting if an array is being used uninitialized is beyond what we get
1925 * from ir_value.data.assigned. Setting is_lhs as true would force to
1926 * not raise a uninitialized warning when using an array
1927 */
1928 subexpressions[0]->set_is_lhs(true);
1929 op[0] = subexpressions[0]->hir(instructions, state);
1930 op[1] = subexpressions[1]->hir(instructions, state);
1931
1932 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1933 loc, index_loc);
1934
1935 if (result->type->is_error())
1936 error_emitted = true;
1937
1938 break;
1939 }
1940
1941 case ast_unsized_array_dim:
1942 assert(!"ast_unsized_array_dim: Should never get here.");
1943 break;
1944
1945 case ast_function_call:
1946 /* Should *NEVER* get here. ast_function_call should always be handled
1947 * by ast_function_expression::hir.
1948 */
1949 assert(0);
1950 break;
1951
1952 case ast_identifier: {
1953 /* ast_identifier can appear several places in a full abstract syntax
1954 * tree. This particular use must be at location specified in the grammar
1955 * as 'variable_identifier'.
1956 */
1957 ir_variable *var =
1958 state->symbols->get_variable(this->primary_expression.identifier);
1959
1960 if (var == NULL) {
1961 /* the identifier might be a subroutine name */
1962 char *sub_name;
1963 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1964 var = state->symbols->get_variable(sub_name);
1965 ralloc_free(sub_name);
1966 }
1967
1968 if (var != NULL) {
1969 var->data.used = true;
1970 result = new(ctx) ir_dereference_variable(var);
1971
1972 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1973 && !this->is_lhs
1974 && result->variable_referenced()->data.assigned != true
1975 && !is_gl_identifier(var->name)) {
1976 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
1977 this->primary_expression.identifier);
1978 }
1979 } else {
1980 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1981 this->primary_expression.identifier);
1982
1983 result = ir_rvalue::error_value(ctx);
1984 error_emitted = true;
1985 }
1986 break;
1987 }
1988
1989 case ast_int_constant:
1990 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1991 break;
1992
1993 case ast_uint_constant:
1994 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1995 break;
1996
1997 case ast_float_constant:
1998 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1999 break;
2000
2001 case ast_bool_constant:
2002 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2003 break;
2004
2005 case ast_double_constant:
2006 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2007 break;
2008
2009 case ast_sequence: {
2010 /* It should not be possible to generate a sequence in the AST without
2011 * any expressions in it.
2012 */
2013 assert(!this->expressions.is_empty());
2014
2015 /* The r-value of a sequence is the last expression in the sequence. If
2016 * the other expressions in the sequence do not have side-effects (and
2017 * therefore add instructions to the instruction list), they get dropped
2018 * on the floor.
2019 */
2020 exec_node *previous_tail = NULL;
2021 YYLTYPE previous_operand_loc = loc;
2022
2023 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2024 /* If one of the operands of comma operator does not generate any
2025 * code, we want to emit a warning. At each pass through the loop
2026 * previous_tail will point to the last instruction in the stream
2027 * *before* processing the previous operand. Naturally,
2028 * instructions->get_tail_raw() will point to the last instruction in
2029 * the stream *after* processing the previous operand. If the two
2030 * pointers match, then the previous operand had no effect.
2031 *
2032 * The warning behavior here differs slightly from GCC. GCC will
2033 * only emit a warning if none of the left-hand operands have an
2034 * effect. However, it will emit a warning for each. I believe that
2035 * there are some cases in C (especially with GCC extensions) where
2036 * it is useful to have an intermediate step in a sequence have no
2037 * effect, but I don't think these cases exist in GLSL. Either way,
2038 * it would be a giant hassle to replicate that behavior.
2039 */
2040 if (previous_tail == instructions->get_tail_raw()) {
2041 _mesa_glsl_warning(&previous_operand_loc, state,
2042 "left-hand operand of comma expression has "
2043 "no effect");
2044 }
2045
2046 /* The tail is directly accessed instead of using the get_tail()
2047 * method for performance reasons. get_tail() has extra code to
2048 * return NULL when the list is empty. We don't care about that
2049 * here, so using get_tail_raw() is fine.
2050 */
2051 previous_tail = instructions->get_tail_raw();
2052 previous_operand_loc = ast->get_location();
2053
2054 result = ast->hir(instructions, state);
2055 }
2056
2057 /* Any errors should have already been emitted in the loop above.
2058 */
2059 error_emitted = true;
2060 break;
2061 }
2062 }
2063 type = NULL; /* use result->type, not type. */
2064 assert(result != NULL || !needs_rvalue);
2065
2066 if (result && result->type->is_error() && !error_emitted)
2067 _mesa_glsl_error(& loc, state, "type mismatch");
2068
2069 return result;
2070 }
2071
2072 bool
2073 ast_expression::has_sequence_subexpression() const
2074 {
2075 switch (this->oper) {
2076 case ast_plus:
2077 case ast_neg:
2078 case ast_bit_not:
2079 case ast_logic_not:
2080 case ast_pre_inc:
2081 case ast_pre_dec:
2082 case ast_post_inc:
2083 case ast_post_dec:
2084 return this->subexpressions[0]->has_sequence_subexpression();
2085
2086 case ast_assign:
2087 case ast_add:
2088 case ast_sub:
2089 case ast_mul:
2090 case ast_div:
2091 case ast_mod:
2092 case ast_lshift:
2093 case ast_rshift:
2094 case ast_less:
2095 case ast_greater:
2096 case ast_lequal:
2097 case ast_gequal:
2098 case ast_nequal:
2099 case ast_equal:
2100 case ast_bit_and:
2101 case ast_bit_xor:
2102 case ast_bit_or:
2103 case ast_logic_and:
2104 case ast_logic_or:
2105 case ast_logic_xor:
2106 case ast_array_index:
2107 case ast_mul_assign:
2108 case ast_div_assign:
2109 case ast_add_assign:
2110 case ast_sub_assign:
2111 case ast_mod_assign:
2112 case ast_ls_assign:
2113 case ast_rs_assign:
2114 case ast_and_assign:
2115 case ast_xor_assign:
2116 case ast_or_assign:
2117 return this->subexpressions[0]->has_sequence_subexpression() ||
2118 this->subexpressions[1]->has_sequence_subexpression();
2119
2120 case ast_conditional:
2121 return this->subexpressions[0]->has_sequence_subexpression() ||
2122 this->subexpressions[1]->has_sequence_subexpression() ||
2123 this->subexpressions[2]->has_sequence_subexpression();
2124
2125 case ast_sequence:
2126 return true;
2127
2128 case ast_field_selection:
2129 case ast_identifier:
2130 case ast_int_constant:
2131 case ast_uint_constant:
2132 case ast_float_constant:
2133 case ast_bool_constant:
2134 case ast_double_constant:
2135 return false;
2136
2137 case ast_aggregate:
2138 return false;
2139
2140 case ast_function_call:
2141 unreachable("should be handled by ast_function_expression::hir");
2142
2143 case ast_unsized_array_dim:
2144 unreachable("ast_unsized_array_dim: Should never get here.");
2145 }
2146
2147 return false;
2148 }
2149
2150 ir_rvalue *
2151 ast_expression_statement::hir(exec_list *instructions,
2152 struct _mesa_glsl_parse_state *state)
2153 {
2154 /* It is possible to have expression statements that don't have an
2155 * expression. This is the solitary semicolon:
2156 *
2157 * for (i = 0; i < 5; i++)
2158 * ;
2159 *
2160 * In this case the expression will be NULL. Test for NULL and don't do
2161 * anything in that case.
2162 */
2163 if (expression != NULL)
2164 expression->hir_no_rvalue(instructions, state);
2165
2166 /* Statements do not have r-values.
2167 */
2168 return NULL;
2169 }
2170
2171
2172 ir_rvalue *
2173 ast_compound_statement::hir(exec_list *instructions,
2174 struct _mesa_glsl_parse_state *state)
2175 {
2176 if (new_scope)
2177 state->symbols->push_scope();
2178
2179 foreach_list_typed (ast_node, ast, link, &this->statements)
2180 ast->hir(instructions, state);
2181
2182 if (new_scope)
2183 state->symbols->pop_scope();
2184
2185 /* Compound statements do not have r-values.
2186 */
2187 return NULL;
2188 }
2189
2190 /**
2191 * Evaluate the given exec_node (which should be an ast_node representing
2192 * a single array dimension) and return its integer value.
2193 */
2194 static unsigned
2195 process_array_size(exec_node *node,
2196 struct _mesa_glsl_parse_state *state)
2197 {
2198 exec_list dummy_instructions;
2199
2200 ast_node *array_size = exec_node_data(ast_node, node, link);
2201
2202 /**
2203 * Dimensions other than the outermost dimension can by unsized if they
2204 * are immediately sized by a constructor or initializer.
2205 */
2206 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2207 return 0;
2208
2209 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2210 YYLTYPE loc = array_size->get_location();
2211
2212 if (ir == NULL) {
2213 _mesa_glsl_error(& loc, state,
2214 "array size could not be resolved");
2215 return 0;
2216 }
2217
2218 if (!ir->type->is_integer()) {
2219 _mesa_glsl_error(& loc, state,
2220 "array size must be integer type");
2221 return 0;
2222 }
2223
2224 if (!ir->type->is_scalar()) {
2225 _mesa_glsl_error(& loc, state,
2226 "array size must be scalar type");
2227 return 0;
2228 }
2229
2230 ir_constant *const size = ir->constant_expression_value();
2231 if (size == NULL ||
2232 (state->is_version(120, 300) &&
2233 array_size->has_sequence_subexpression())) {
2234 _mesa_glsl_error(& loc, state, "array size must be a "
2235 "constant valued expression");
2236 return 0;
2237 }
2238
2239 if (size->value.i[0] <= 0) {
2240 _mesa_glsl_error(& loc, state, "array size must be > 0");
2241 return 0;
2242 }
2243
2244 assert(size->type == ir->type);
2245
2246 /* If the array size is const (and we've verified that
2247 * it is) then no instructions should have been emitted
2248 * when we converted it to HIR. If they were emitted,
2249 * then either the array size isn't const after all, or
2250 * we are emitting unnecessary instructions.
2251 */
2252 assert(dummy_instructions.is_empty());
2253
2254 return size->value.u[0];
2255 }
2256
2257 static const glsl_type *
2258 process_array_type(YYLTYPE *loc, const glsl_type *base,
2259 ast_array_specifier *array_specifier,
2260 struct _mesa_glsl_parse_state *state)
2261 {
2262 const glsl_type *array_type = base;
2263
2264 if (array_specifier != NULL) {
2265 if (base->is_array()) {
2266
2267 /* From page 19 (page 25) of the GLSL 1.20 spec:
2268 *
2269 * "Only one-dimensional arrays may be declared."
2270 */
2271 if (!state->check_arrays_of_arrays_allowed(loc)) {
2272 return glsl_type::error_type;
2273 }
2274 }
2275
2276 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2277 !node->is_head_sentinel(); node = node->prev) {
2278 unsigned array_size = process_array_size(node, state);
2279 array_type = glsl_type::get_array_instance(array_type, array_size);
2280 }
2281 }
2282
2283 return array_type;
2284 }
2285
2286 static bool
2287 precision_qualifier_allowed(const glsl_type *type)
2288 {
2289 /* Precision qualifiers apply to floating point, integer and opaque
2290 * types.
2291 *
2292 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2293 * "Any floating point or any integer declaration can have the type
2294 * preceded by one of these precision qualifiers [...] Literal
2295 * constants do not have precision qualifiers. Neither do Boolean
2296 * variables.
2297 *
2298 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2299 * spec also says:
2300 *
2301 * "Precision qualifiers are added for code portability with OpenGL
2302 * ES, not for functionality. They have the same syntax as in OpenGL
2303 * ES."
2304 *
2305 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2306 *
2307 * "uniform lowp sampler2D sampler;
2308 * highp vec2 coord;
2309 * ...
2310 * lowp vec4 col = texture2D (sampler, coord);
2311 * // texture2D returns lowp"
2312 *
2313 * From this, we infer that GLSL 1.30 (and later) should allow precision
2314 * qualifiers on sampler types just like float and integer types.
2315 */
2316 const glsl_type *const t = type->without_array();
2317
2318 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2319 !t->is_record();
2320 }
2321
2322 const glsl_type *
2323 ast_type_specifier::glsl_type(const char **name,
2324 struct _mesa_glsl_parse_state *state) const
2325 {
2326 const struct glsl_type *type;
2327
2328 type = state->symbols->get_type(this->type_name);
2329 *name = this->type_name;
2330
2331 YYLTYPE loc = this->get_location();
2332 type = process_array_type(&loc, type, this->array_specifier, state);
2333
2334 return type;
2335 }
2336
2337 /**
2338 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2339 *
2340 * "The precision statement
2341 *
2342 * precision precision-qualifier type;
2343 *
2344 * can be used to establish a default precision qualifier. The type field can
2345 * be either int or float or any of the sampler types, (...) If type is float,
2346 * the directive applies to non-precision-qualified floating point type
2347 * (scalar, vector, and matrix) declarations. If type is int, the directive
2348 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2349 * and unsigned) declarations."
2350 *
2351 * We use the symbol table to keep the values of the default precisions for
2352 * each 'type' in each scope and we use the 'type' string from the precision
2353 * statement as key in the symbol table. When we want to retrieve the default
2354 * precision associated with a given glsl_type we need to know the type string
2355 * associated with it. This is what this function returns.
2356 */
2357 static const char *
2358 get_type_name_for_precision_qualifier(const glsl_type *type)
2359 {
2360 switch (type->base_type) {
2361 case GLSL_TYPE_FLOAT:
2362 return "float";
2363 case GLSL_TYPE_UINT:
2364 case GLSL_TYPE_INT:
2365 return "int";
2366 case GLSL_TYPE_ATOMIC_UINT:
2367 return "atomic_uint";
2368 case GLSL_TYPE_IMAGE:
2369 /* fallthrough */
2370 case GLSL_TYPE_SAMPLER: {
2371 const unsigned type_idx =
2372 type->sampler_array + 2 * type->sampler_shadow;
2373 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2374 assert(type_idx < 4);
2375 switch (type->sampled_type) {
2376 case GLSL_TYPE_FLOAT:
2377 switch (type->sampler_dimensionality) {
2378 case GLSL_SAMPLER_DIM_1D: {
2379 assert(type->base_type == GLSL_TYPE_SAMPLER);
2380 static const char *const names[4] = {
2381 "sampler1D", "sampler1DArray",
2382 "sampler1DShadow", "sampler1DArrayShadow"
2383 };
2384 return names[type_idx];
2385 }
2386 case GLSL_SAMPLER_DIM_2D: {
2387 static const char *const names[8] = {
2388 "sampler2D", "sampler2DArray",
2389 "sampler2DShadow", "sampler2DArrayShadow",
2390 "image2D", "image2DArray", NULL, NULL
2391 };
2392 return names[offset + type_idx];
2393 }
2394 case GLSL_SAMPLER_DIM_3D: {
2395 static const char *const names[8] = {
2396 "sampler3D", NULL, NULL, NULL,
2397 "image3D", NULL, NULL, NULL
2398 };
2399 return names[offset + type_idx];
2400 }
2401 case GLSL_SAMPLER_DIM_CUBE: {
2402 static const char *const names[8] = {
2403 "samplerCube", "samplerCubeArray",
2404 "samplerCubeShadow", "samplerCubeArrayShadow",
2405 "imageCube", NULL, NULL, NULL
2406 };
2407 return names[offset + type_idx];
2408 }
2409 case GLSL_SAMPLER_DIM_MS: {
2410 assert(type->base_type == GLSL_TYPE_SAMPLER);
2411 static const char *const names[4] = {
2412 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2413 };
2414 return names[type_idx];
2415 }
2416 case GLSL_SAMPLER_DIM_RECT: {
2417 assert(type->base_type == GLSL_TYPE_SAMPLER);
2418 static const char *const names[4] = {
2419 "samplerRect", NULL, "samplerRectShadow", NULL
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_BUF: {
2424 static const char *const names[8] = {
2425 "samplerBuffer", NULL, NULL, NULL,
2426 "imageBuffer", NULL, NULL, NULL
2427 };
2428 return names[offset + type_idx];
2429 }
2430 case GLSL_SAMPLER_DIM_EXTERNAL: {
2431 assert(type->base_type == GLSL_TYPE_SAMPLER);
2432 static const char *const names[4] = {
2433 "samplerExternalOES", NULL, NULL, NULL
2434 };
2435 return names[type_idx];
2436 }
2437 default:
2438 unreachable("Unsupported sampler/image dimensionality");
2439 } /* sampler/image float dimensionality */
2440 break;
2441 case GLSL_TYPE_INT:
2442 switch (type->sampler_dimensionality) {
2443 case GLSL_SAMPLER_DIM_1D: {
2444 assert(type->base_type == GLSL_TYPE_SAMPLER);
2445 static const char *const names[4] = {
2446 "isampler1D", "isampler1DArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_2D: {
2451 static const char *const names[8] = {
2452 "isampler2D", "isampler2DArray", NULL, NULL,
2453 "iimage2D", "iimage2DArray", NULL, NULL
2454 };
2455 return names[offset + type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_3D: {
2458 static const char *const names[8] = {
2459 "isampler3D", NULL, NULL, NULL,
2460 "iimage3D", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_CUBE: {
2465 static const char *const names[8] = {
2466 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2467 "iimageCube", NULL, NULL, NULL
2468 };
2469 return names[offset + type_idx];
2470 }
2471 case GLSL_SAMPLER_DIM_MS: {
2472 assert(type->base_type == GLSL_TYPE_SAMPLER);
2473 static const char *const names[4] = {
2474 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2475 };
2476 return names[type_idx];
2477 }
2478 case GLSL_SAMPLER_DIM_RECT: {
2479 assert(type->base_type == GLSL_TYPE_SAMPLER);
2480 static const char *const names[4] = {
2481 "isamplerRect", NULL, "isamplerRectShadow", NULL
2482 };
2483 return names[type_idx];
2484 }
2485 case GLSL_SAMPLER_DIM_BUF: {
2486 static const char *const names[8] = {
2487 "isamplerBuffer", NULL, NULL, NULL,
2488 "iimageBuffer", NULL, NULL, NULL
2489 };
2490 return names[offset + type_idx];
2491 }
2492 default:
2493 unreachable("Unsupported isampler/iimage dimensionality");
2494 } /* sampler/image int dimensionality */
2495 break;
2496 case GLSL_TYPE_UINT:
2497 switch (type->sampler_dimensionality) {
2498 case GLSL_SAMPLER_DIM_1D: {
2499 assert(type->base_type == GLSL_TYPE_SAMPLER);
2500 static const char *const names[4] = {
2501 "usampler1D", "usampler1DArray", NULL, NULL
2502 };
2503 return names[type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_2D: {
2506 static const char *const names[8] = {
2507 "usampler2D", "usampler2DArray", NULL, NULL,
2508 "uimage2D", "uimage2DArray", NULL, NULL
2509 };
2510 return names[offset + type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_3D: {
2513 static const char *const names[8] = {
2514 "usampler3D", NULL, NULL, NULL,
2515 "uimage3D", NULL, NULL, NULL
2516 };
2517 return names[offset + type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_CUBE: {
2520 static const char *const names[8] = {
2521 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2522 "uimageCube", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 case GLSL_SAMPLER_DIM_MS: {
2527 assert(type->base_type == GLSL_TYPE_SAMPLER);
2528 static const char *const names[4] = {
2529 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2530 };
2531 return names[type_idx];
2532 }
2533 case GLSL_SAMPLER_DIM_RECT: {
2534 assert(type->base_type == GLSL_TYPE_SAMPLER);
2535 static const char *const names[4] = {
2536 "usamplerRect", NULL, "usamplerRectShadow", NULL
2537 };
2538 return names[type_idx];
2539 }
2540 case GLSL_SAMPLER_DIM_BUF: {
2541 static const char *const names[8] = {
2542 "usamplerBuffer", NULL, NULL, NULL,
2543 "uimageBuffer", NULL, NULL, NULL
2544 };
2545 return names[offset + type_idx];
2546 }
2547 default:
2548 unreachable("Unsupported usampler/uimage dimensionality");
2549 } /* sampler/image uint dimensionality */
2550 break;
2551 default:
2552 unreachable("Unsupported sampler/image type");
2553 } /* sampler/image type */
2554 break;
2555 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2556 break;
2557 default:
2558 unreachable("Unsupported type");
2559 } /* base type */
2560 }
2561
2562 static unsigned
2563 select_gles_precision(unsigned qual_precision,
2564 const glsl_type *type,
2565 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2566 {
2567 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2568 * In GLES we take the precision from the type qualifier if present,
2569 * otherwise, if the type of the variable allows precision qualifiers at
2570 * all, we look for the default precision qualifier for that type in the
2571 * current scope.
2572 */
2573 assert(state->es_shader);
2574
2575 unsigned precision = GLSL_PRECISION_NONE;
2576 if (qual_precision) {
2577 precision = qual_precision;
2578 } else if (precision_qualifier_allowed(type)) {
2579 const char *type_name =
2580 get_type_name_for_precision_qualifier(type->without_array());
2581 assert(type_name != NULL);
2582
2583 precision =
2584 state->symbols->get_default_precision_qualifier(type_name);
2585 if (precision == ast_precision_none) {
2586 _mesa_glsl_error(loc, state,
2587 "No precision specified in this scope for type `%s'",
2588 type->name);
2589 }
2590 }
2591
2592
2593 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2594 *
2595 * "The default precision of all atomic types is highp. It is an error to
2596 * declare an atomic type with a different precision or to specify the
2597 * default precision for an atomic type to be lowp or mediump."
2598 */
2599 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2600 precision != ast_precision_high) {
2601 _mesa_glsl_error(loc, state,
2602 "atomic_uint can only have highp precision qualifier");
2603 }
2604
2605 return precision;
2606 }
2607
2608 const glsl_type *
2609 ast_fully_specified_type::glsl_type(const char **name,
2610 struct _mesa_glsl_parse_state *state) const
2611 {
2612 return this->specifier->glsl_type(name, state);
2613 }
2614
2615 /**
2616 * Determine whether a toplevel variable declaration declares a varying. This
2617 * function operates by examining the variable's mode and the shader target,
2618 * so it correctly identifies linkage variables regardless of whether they are
2619 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2620 *
2621 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2622 * this function will produce undefined results.
2623 */
2624 static bool
2625 is_varying_var(ir_variable *var, gl_shader_stage target)
2626 {
2627 switch (target) {
2628 case MESA_SHADER_VERTEX:
2629 return var->data.mode == ir_var_shader_out;
2630 case MESA_SHADER_FRAGMENT:
2631 return var->data.mode == ir_var_shader_in;
2632 default:
2633 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2634 }
2635 }
2636
2637 static bool
2638 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2639 {
2640 if (is_varying_var(var, state->stage))
2641 return true;
2642
2643 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2644 * "Only variables output from a vertex shader can be candidates
2645 * for invariance".
2646 */
2647 if (!state->is_version(130, 0))
2648 return false;
2649
2650 /*
2651 * Later specs remove this language - so allowed invariant
2652 * on fragment shader outputs as well.
2653 */
2654 if (state->stage == MESA_SHADER_FRAGMENT &&
2655 var->data.mode == ir_var_shader_out)
2656 return true;
2657 return false;
2658 }
2659
2660 /**
2661 * Matrix layout qualifiers are only allowed on certain types
2662 */
2663 static void
2664 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2665 YYLTYPE *loc,
2666 const glsl_type *type,
2667 ir_variable *var)
2668 {
2669 if (var && !var->is_in_buffer_block()) {
2670 /* Layout qualifiers may only apply to interface blocks and fields in
2671 * them.
2672 */
2673 _mesa_glsl_error(loc, state,
2674 "uniform block layout qualifiers row_major and "
2675 "column_major may not be applied to variables "
2676 "outside of uniform blocks");
2677 } else if (!type->without_array()->is_matrix()) {
2678 /* The OpenGL ES 3.0 conformance tests did not originally allow
2679 * matrix layout qualifiers on non-matrices. However, the OpenGL
2680 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2681 * amended to specifically allow these layouts on all types. Emit
2682 * a warning so that people know their code may not be portable.
2683 */
2684 _mesa_glsl_warning(loc, state,
2685 "uniform block layout qualifiers row_major and "
2686 "column_major applied to non-matrix types may "
2687 "be rejected by older compilers");
2688 }
2689 }
2690
2691 static bool
2692 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2693 struct _mesa_glsl_parse_state *state,
2694 unsigned xfb_buffer) {
2695 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2696 _mesa_glsl_error(loc, state,
2697 "invalid xfb_buffer specified %d is larger than "
2698 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2699 xfb_buffer,
2700 state->Const.MaxTransformFeedbackBuffers - 1);
2701 return false;
2702 }
2703
2704 return true;
2705 }
2706
2707 /* From the ARB_enhanced_layouts spec:
2708 *
2709 * "Variables and block members qualified with *xfb_offset* can be
2710 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2711 * The offset must be a multiple of the size of the first component of
2712 * the first qualified variable or block member, or a compile-time error
2713 * results. Further, if applied to an aggregate containing a double,
2714 * the offset must also be a multiple of 8, and the space taken in the
2715 * buffer will be a multiple of 8.
2716 */
2717 static bool
2718 validate_xfb_offset_qualifier(YYLTYPE *loc,
2719 struct _mesa_glsl_parse_state *state,
2720 int xfb_offset, const glsl_type *type,
2721 unsigned component_size) {
2722 const glsl_type *t_without_array = type->without_array();
2723
2724 if (xfb_offset != -1 && type->is_unsized_array()) {
2725 _mesa_glsl_error(loc, state,
2726 "xfb_offset can't be used with unsized arrays.");
2727 return false;
2728 }
2729
2730 /* Make sure nested structs don't contain unsized arrays, and validate
2731 * any xfb_offsets on interface members.
2732 */
2733 if (t_without_array->is_record() || t_without_array->is_interface())
2734 for (unsigned int i = 0; i < t_without_array->length; i++) {
2735 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2736
2737 /* When the interface block doesn't have an xfb_offset qualifier then
2738 * we apply the component size rules at the member level.
2739 */
2740 if (xfb_offset == -1)
2741 component_size = member_t->contains_double() ? 8 : 4;
2742
2743 int xfb_offset = t_without_array->fields.structure[i].offset;
2744 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2745 component_size);
2746 }
2747
2748 /* Nested structs or interface block without offset may not have had an
2749 * offset applied yet so return.
2750 */
2751 if (xfb_offset == -1) {
2752 return true;
2753 }
2754
2755 if (xfb_offset % component_size) {
2756 _mesa_glsl_error(loc, state,
2757 "invalid qualifier xfb_offset=%d must be a multiple "
2758 "of the first component size of the first qualified "
2759 "variable or block member. Or double if an aggregate "
2760 "that contains a double (%d).",
2761 xfb_offset, component_size);
2762 return false;
2763 }
2764
2765 return true;
2766 }
2767
2768 static bool
2769 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2770 unsigned stream)
2771 {
2772 if (stream >= state->ctx->Const.MaxVertexStreams) {
2773 _mesa_glsl_error(loc, state,
2774 "invalid stream specified %d is larger than "
2775 "MAX_VERTEX_STREAMS - 1 (%d).",
2776 stream, state->ctx->Const.MaxVertexStreams - 1);
2777 return false;
2778 }
2779
2780 return true;
2781 }
2782
2783 static void
2784 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2785 YYLTYPE *loc,
2786 ir_variable *var,
2787 const glsl_type *type,
2788 const ast_type_qualifier *qual)
2789 {
2790 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2791 _mesa_glsl_error(loc, state,
2792 "the \"binding\" qualifier only applies to uniforms and "
2793 "shader storage buffer objects");
2794 return;
2795 }
2796
2797 unsigned qual_binding;
2798 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2799 &qual_binding)) {
2800 return;
2801 }
2802
2803 const struct gl_context *const ctx = state->ctx;
2804 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2805 unsigned max_index = qual_binding + elements - 1;
2806 const glsl_type *base_type = type->without_array();
2807
2808 if (base_type->is_interface()) {
2809 /* UBOs. From page 60 of the GLSL 4.20 specification:
2810 * "If the binding point for any uniform block instance is less than zero,
2811 * or greater than or equal to the implementation-dependent maximum
2812 * number of uniform buffer bindings, a compilation error will occur.
2813 * When the binding identifier is used with a uniform block instanced as
2814 * an array of size N, all elements of the array from binding through
2815 * binding + N – 1 must be within this range."
2816 *
2817 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2818 */
2819 if (qual->flags.q.uniform &&
2820 max_index >= ctx->Const.MaxUniformBufferBindings) {
2821 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2822 "the maximum number of UBO binding points (%d)",
2823 qual_binding, elements,
2824 ctx->Const.MaxUniformBufferBindings);
2825 return;
2826 }
2827
2828 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2829 * "If the binding point for any uniform or shader storage block instance
2830 * is less than zero, or greater than or equal to the
2831 * implementation-dependent maximum number of uniform buffer bindings, a
2832 * compile-time error will occur. When the binding identifier is used
2833 * with a uniform or shader storage block instanced as an array of size
2834 * N, all elements of the array from binding through binding + N – 1 must
2835 * be within this range."
2836 */
2837 if (qual->flags.q.buffer &&
2838 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2839 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2840 "the maximum number of SSBO binding points (%d)",
2841 qual_binding, elements,
2842 ctx->Const.MaxShaderStorageBufferBindings);
2843 return;
2844 }
2845 } else if (base_type->is_sampler()) {
2846 /* Samplers. From page 63 of the GLSL 4.20 specification:
2847 * "If the binding is less than zero, or greater than or equal to the
2848 * implementation-dependent maximum supported number of units, a
2849 * compilation error will occur. When the binding identifier is used
2850 * with an array of size N, all elements of the array from binding
2851 * through binding + N - 1 must be within this range."
2852 */
2853 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2854
2855 if (max_index >= limit) {
2856 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2857 "exceeds the maximum number of texture image units "
2858 "(%u)", qual_binding, elements, limit);
2859
2860 return;
2861 }
2862 } else if (base_type->contains_atomic()) {
2863 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2864 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2865 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2866 " maximum number of atomic counter buffer bindings"
2867 "(%u)", qual_binding,
2868 ctx->Const.MaxAtomicBufferBindings);
2869
2870 return;
2871 }
2872 } else if ((state->is_version(420, 310) ||
2873 state->ARB_shading_language_420pack_enable) &&
2874 base_type->is_image()) {
2875 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2876 if (max_index >= ctx->Const.MaxImageUnits) {
2877 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2878 " maximum number of image units (%d)", max_index,
2879 ctx->Const.MaxImageUnits);
2880 return;
2881 }
2882
2883 } else {
2884 _mesa_glsl_error(loc, state,
2885 "the \"binding\" qualifier only applies to uniform "
2886 "blocks, opaque variables, or arrays thereof");
2887 return;
2888 }
2889
2890 var->data.explicit_binding = true;
2891 var->data.binding = qual_binding;
2892
2893 return;
2894 }
2895
2896
2897 static void
2898 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2899 YYLTYPE *loc,
2900 const glsl_interp_mode interpolation,
2901 const struct ast_type_qualifier *qual,
2902 const struct glsl_type *var_type,
2903 ir_variable_mode mode)
2904 {
2905 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2906 * not to vertex shader inputs nor fragment shader outputs.
2907 *
2908 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2909 * "Outputs from a vertex shader (out) and inputs to a fragment
2910 * shader (in) can be further qualified with one or more of these
2911 * interpolation qualifiers"
2912 * ...
2913 * "These interpolation qualifiers may only precede the qualifiers in,
2914 * centroid in, out, or centroid out in a declaration. They do not apply
2915 * to the deprecated storage qualifiers varying or centroid
2916 * varying. They also do not apply to inputs into a vertex shader or
2917 * outputs from a fragment shader."
2918 *
2919 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2920 * "Outputs from a shader (out) and inputs to a shader (in) can be
2921 * further qualified with one of these interpolation qualifiers."
2922 * ...
2923 * "These interpolation qualifiers may only precede the qualifiers
2924 * in, centroid in, out, or centroid out in a declaration. They do
2925 * not apply to inputs into a vertex shader or outputs from a
2926 * fragment shader."
2927 */
2928 if (state->is_version(130, 300)
2929 && interpolation != INTERP_MODE_NONE) {
2930 const char *i = interpolation_string(interpolation);
2931 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2932 _mesa_glsl_error(loc, state,
2933 "interpolation qualifier `%s' can only be applied to "
2934 "shader inputs or outputs.", i);
2935
2936 switch (state->stage) {
2937 case MESA_SHADER_VERTEX:
2938 if (mode == ir_var_shader_in) {
2939 _mesa_glsl_error(loc, state,
2940 "interpolation qualifier '%s' cannot be applied to "
2941 "vertex shader inputs", i);
2942 }
2943 break;
2944 case MESA_SHADER_FRAGMENT:
2945 if (mode == ir_var_shader_out) {
2946 _mesa_glsl_error(loc, state,
2947 "interpolation qualifier '%s' cannot be applied to "
2948 "fragment shader outputs", i);
2949 }
2950 break;
2951 default:
2952 break;
2953 }
2954 }
2955
2956 /* Interpolation qualifiers cannot be applied to 'centroid' and
2957 * 'centroid varying'.
2958 *
2959 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2960 * "interpolation qualifiers may only precede the qualifiers in,
2961 * centroid in, out, or centroid out in a declaration. They do not apply
2962 * to the deprecated storage qualifiers varying or centroid varying."
2963 *
2964 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2965 */
2966 if (state->is_version(130, 0)
2967 && interpolation != INTERP_MODE_NONE
2968 && qual->flags.q.varying) {
2969
2970 const char *i = interpolation_string(interpolation);
2971 const char *s;
2972 if (qual->flags.q.centroid)
2973 s = "centroid varying";
2974 else
2975 s = "varying";
2976
2977 _mesa_glsl_error(loc, state,
2978 "qualifier '%s' cannot be applied to the "
2979 "deprecated storage qualifier '%s'", i, s);
2980 }
2981
2982 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2983 * so must integer vertex outputs.
2984 *
2985 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2986 * "Fragment shader inputs that are signed or unsigned integers or
2987 * integer vectors must be qualified with the interpolation qualifier
2988 * flat."
2989 *
2990 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2991 * "Fragment shader inputs that are, or contain, signed or unsigned
2992 * integers or integer vectors must be qualified with the
2993 * interpolation qualifier flat."
2994 *
2995 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2996 * "Vertex shader outputs that are, or contain, signed or unsigned
2997 * integers or integer vectors must be qualified with the
2998 * interpolation qualifier flat."
2999 *
3000 * Note that prior to GLSL 1.50, this requirement applied to vertex
3001 * outputs rather than fragment inputs. That creates problems in the
3002 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3003 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3004 * apply the restriction to both vertex outputs and fragment inputs.
3005 *
3006 * Note also that the desktop GLSL specs are missing the text "or
3007 * contain"; this is presumably an oversight, since there is no
3008 * reasonable way to interpolate a fragment shader input that contains
3009 * an integer. See Khronos bug #15671.
3010 */
3011 if (state->is_version(130, 300)
3012 && var_type->contains_integer()
3013 && interpolation != INTERP_MODE_FLAT
3014 && state->stage == MESA_SHADER_FRAGMENT
3015 && mode == ir_var_shader_in) {
3016 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3017 "an integer, then it must be qualified with 'flat'");
3018 }
3019
3020 /* Double fragment inputs must be qualified with 'flat'.
3021 *
3022 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3023 * "This extension does not support interpolation of double-precision
3024 * values; doubles used as fragment shader inputs must be qualified as
3025 * "flat"."
3026 *
3027 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3028 * "Fragment shader inputs that are signed or unsigned integers, integer
3029 * vectors, or any double-precision floating-point type must be
3030 * qualified with the interpolation qualifier flat."
3031 *
3032 * Note that the GLSL specs are missing the text "or contain"; this is
3033 * presumably an oversight. See Khronos bug #15671.
3034 *
3035 * The 'double' type does not exist in GLSL ES so far.
3036 */
3037 if (state->has_double()
3038 && var_type->contains_double()
3039 && interpolation != INTERP_MODE_FLAT
3040 && state->stage == MESA_SHADER_FRAGMENT
3041 && mode == ir_var_shader_in) {
3042 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3043 "a double, then it must be qualified with 'flat'");
3044 }
3045 }
3046
3047 static glsl_interp_mode
3048 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3049 const struct glsl_type *var_type,
3050 ir_variable_mode mode,
3051 struct _mesa_glsl_parse_state *state,
3052 YYLTYPE *loc)
3053 {
3054 glsl_interp_mode interpolation;
3055 if (qual->flags.q.flat)
3056 interpolation = INTERP_MODE_FLAT;
3057 else if (qual->flags.q.noperspective)
3058 interpolation = INTERP_MODE_NOPERSPECTIVE;
3059 else if (qual->flags.q.smooth)
3060 interpolation = INTERP_MODE_SMOOTH;
3061 else if (state->es_shader &&
3062 ((mode == ir_var_shader_in &&
3063 state->stage != MESA_SHADER_VERTEX) ||
3064 (mode == ir_var_shader_out &&
3065 state->stage != MESA_SHADER_FRAGMENT)))
3066 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3067 *
3068 * "When no interpolation qualifier is present, smooth interpolation
3069 * is used."
3070 */
3071 interpolation = INTERP_MODE_SMOOTH;
3072 else
3073 interpolation = INTERP_MODE_NONE;
3074
3075 validate_interpolation_qualifier(state, loc,
3076 interpolation,
3077 qual, var_type, mode);
3078
3079 return interpolation;
3080 }
3081
3082
3083 static void
3084 apply_explicit_location(const struct ast_type_qualifier *qual,
3085 ir_variable *var,
3086 struct _mesa_glsl_parse_state *state,
3087 YYLTYPE *loc)
3088 {
3089 bool fail = false;
3090
3091 unsigned qual_location;
3092 if (!process_qualifier_constant(state, loc, "location", qual->location,
3093 &qual_location)) {
3094 return;
3095 }
3096
3097 /* Checks for GL_ARB_explicit_uniform_location. */
3098 if (qual->flags.q.uniform) {
3099 if (!state->check_explicit_uniform_location_allowed(loc, var))
3100 return;
3101
3102 const struct gl_context *const ctx = state->ctx;
3103 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3104
3105 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3106 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3107 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3108 ctx->Const.MaxUserAssignableUniformLocations);
3109 return;
3110 }
3111
3112 var->data.explicit_location = true;
3113 var->data.location = qual_location;
3114 return;
3115 }
3116
3117 /* Between GL_ARB_explicit_attrib_location an
3118 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3119 * stage can be assigned explicit locations. The checking here associates
3120 * the correct extension with the correct stage's input / output:
3121 *
3122 * input output
3123 * ----- ------
3124 * vertex explicit_loc sso
3125 * tess control sso sso
3126 * tess eval sso sso
3127 * geometry sso sso
3128 * fragment sso explicit_loc
3129 */
3130 switch (state->stage) {
3131 case MESA_SHADER_VERTEX:
3132 if (var->data.mode == ir_var_shader_in) {
3133 if (!state->check_explicit_attrib_location_allowed(loc, var))
3134 return;
3135
3136 break;
3137 }
3138
3139 if (var->data.mode == ir_var_shader_out) {
3140 if (!state->check_separate_shader_objects_allowed(loc, var))
3141 return;
3142
3143 break;
3144 }
3145
3146 fail = true;
3147 break;
3148
3149 case MESA_SHADER_TESS_CTRL:
3150 case MESA_SHADER_TESS_EVAL:
3151 case MESA_SHADER_GEOMETRY:
3152 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3153 if (!state->check_separate_shader_objects_allowed(loc, var))
3154 return;
3155
3156 break;
3157 }
3158
3159 fail = true;
3160 break;
3161
3162 case MESA_SHADER_FRAGMENT:
3163 if (var->data.mode == ir_var_shader_in) {
3164 if (!state->check_separate_shader_objects_allowed(loc, var))
3165 return;
3166
3167 break;
3168 }
3169
3170 if (var->data.mode == ir_var_shader_out) {
3171 if (!state->check_explicit_attrib_location_allowed(loc, var))
3172 return;
3173
3174 break;
3175 }
3176
3177 fail = true;
3178 break;
3179
3180 case MESA_SHADER_COMPUTE:
3181 _mesa_glsl_error(loc, state,
3182 "compute shader variables cannot be given "
3183 "explicit locations");
3184 return;
3185 };
3186
3187 if (fail) {
3188 _mesa_glsl_error(loc, state,
3189 "%s cannot be given an explicit location in %s shader",
3190 mode_string(var),
3191 _mesa_shader_stage_to_string(state->stage));
3192 } else {
3193 var->data.explicit_location = true;
3194
3195 switch (state->stage) {
3196 case MESA_SHADER_VERTEX:
3197 var->data.location = (var->data.mode == ir_var_shader_in)
3198 ? (qual_location + VERT_ATTRIB_GENERIC0)
3199 : (qual_location + VARYING_SLOT_VAR0);
3200 break;
3201
3202 case MESA_SHADER_TESS_CTRL:
3203 case MESA_SHADER_TESS_EVAL:
3204 case MESA_SHADER_GEOMETRY:
3205 if (var->data.patch)
3206 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3207 else
3208 var->data.location = qual_location + VARYING_SLOT_VAR0;
3209 break;
3210
3211 case MESA_SHADER_FRAGMENT:
3212 var->data.location = (var->data.mode == ir_var_shader_out)
3213 ? (qual_location + FRAG_RESULT_DATA0)
3214 : (qual_location + VARYING_SLOT_VAR0);
3215 break;
3216 case MESA_SHADER_COMPUTE:
3217 assert(!"Unexpected shader type");
3218 break;
3219 }
3220
3221 /* Check if index was set for the uniform instead of the function */
3222 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3223 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3224 "used with subroutine functions");
3225 return;
3226 }
3227
3228 unsigned qual_index;
3229 if (qual->flags.q.explicit_index &&
3230 process_qualifier_constant(state, loc, "index", qual->index,
3231 &qual_index)) {
3232 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3233 * Layout Qualifiers):
3234 *
3235 * "It is also a compile-time error if a fragment shader
3236 * sets a layout index to less than 0 or greater than 1."
3237 *
3238 * Older specifications don't mandate a behavior; we take
3239 * this as a clarification and always generate the error.
3240 */
3241 if (qual_index > 1) {
3242 _mesa_glsl_error(loc, state,
3243 "explicit index may only be 0 or 1");
3244 } else {
3245 var->data.explicit_index = true;
3246 var->data.index = qual_index;
3247 }
3248 }
3249 }
3250 }
3251
3252 static void
3253 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3254 ir_variable *var,
3255 struct _mesa_glsl_parse_state *state,
3256 YYLTYPE *loc)
3257 {
3258 const glsl_type *base_type = var->type->without_array();
3259
3260 if (base_type->is_image()) {
3261 if (var->data.mode != ir_var_uniform &&
3262 var->data.mode != ir_var_function_in) {
3263 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3264 "function parameters or uniform-qualified "
3265 "global variables");
3266 }
3267
3268 var->data.image_read_only |= qual->flags.q.read_only;
3269 var->data.image_write_only |= qual->flags.q.write_only;
3270 var->data.image_coherent |= qual->flags.q.coherent;
3271 var->data.image_volatile |= qual->flags.q._volatile;
3272 var->data.image_restrict |= qual->flags.q.restrict_flag;
3273 var->data.read_only = true;
3274
3275 if (qual->flags.q.explicit_image_format) {
3276 if (var->data.mode == ir_var_function_in) {
3277 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3278 "used on image function parameters");
3279 }
3280
3281 if (qual->image_base_type != base_type->sampled_type) {
3282 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3283 "base data type of the image");
3284 }
3285
3286 var->data.image_format = qual->image_format;
3287 } else {
3288 if (var->data.mode == ir_var_uniform) {
3289 if (state->es_shader) {
3290 _mesa_glsl_error(loc, state, "all image uniforms "
3291 "must have a format layout qualifier");
3292
3293 } else if (!qual->flags.q.write_only) {
3294 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3295 "`writeonly' must have a format layout "
3296 "qualifier");
3297 }
3298 }
3299
3300 var->data.image_format = GL_NONE;
3301 }
3302
3303 /* From page 70 of the GLSL ES 3.1 specification:
3304 *
3305 * "Except for image variables qualified with the format qualifiers
3306 * r32f, r32i, and r32ui, image variables must specify either memory
3307 * qualifier readonly or the memory qualifier writeonly."
3308 */
3309 if (state->es_shader &&
3310 var->data.image_format != GL_R32F &&
3311 var->data.image_format != GL_R32I &&
3312 var->data.image_format != GL_R32UI &&
3313 !var->data.image_read_only &&
3314 !var->data.image_write_only) {
3315 _mesa_glsl_error(loc, state, "image variables of format other than "
3316 "r32f, r32i or r32ui must be qualified `readonly' or "
3317 "`writeonly'");
3318 }
3319
3320 } else if (qual->flags.q.read_only ||
3321 qual->flags.q.write_only ||
3322 qual->flags.q.coherent ||
3323 qual->flags.q._volatile ||
3324 qual->flags.q.restrict_flag ||
3325 qual->flags.q.explicit_image_format) {
3326 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3327 "images");
3328 }
3329 }
3330
3331 static inline const char*
3332 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3333 {
3334 if (origin_upper_left && pixel_center_integer)
3335 return "origin_upper_left, pixel_center_integer";
3336 else if (origin_upper_left)
3337 return "origin_upper_left";
3338 else if (pixel_center_integer)
3339 return "pixel_center_integer";
3340 else
3341 return " ";
3342 }
3343
3344 static inline bool
3345 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3346 const struct ast_type_qualifier *qual)
3347 {
3348 /* If gl_FragCoord was previously declared, and the qualifiers were
3349 * different in any way, return true.
3350 */
3351 if (state->fs_redeclares_gl_fragcoord) {
3352 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3353 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3354 }
3355
3356 return false;
3357 }
3358
3359 static inline void
3360 validate_array_dimensions(const glsl_type *t,
3361 struct _mesa_glsl_parse_state *state,
3362 YYLTYPE *loc) {
3363 if (t->is_array()) {
3364 t = t->fields.array;
3365 while (t->is_array()) {
3366 if (t->is_unsized_array()) {
3367 _mesa_glsl_error(loc, state,
3368 "only the outermost array dimension can "
3369 "be unsized",
3370 t->name);
3371 break;
3372 }
3373 t = t->fields.array;
3374 }
3375 }
3376 }
3377
3378 static void
3379 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3380 ir_variable *var,
3381 struct _mesa_glsl_parse_state *state,
3382 YYLTYPE *loc)
3383 {
3384 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3385
3386 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3387 *
3388 * "Within any shader, the first redeclarations of gl_FragCoord
3389 * must appear before any use of gl_FragCoord."
3390 *
3391 * Generate a compiler error if above condition is not met by the
3392 * fragment shader.
3393 */
3394 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3395 if (earlier != NULL &&
3396 earlier->data.used &&
3397 !state->fs_redeclares_gl_fragcoord) {
3398 _mesa_glsl_error(loc, state,
3399 "gl_FragCoord used before its first redeclaration "
3400 "in fragment shader");
3401 }
3402
3403 /* Make sure all gl_FragCoord redeclarations specify the same layout
3404 * qualifiers.
3405 */
3406 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3407 const char *const qual_string =
3408 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3409 qual->flags.q.pixel_center_integer);
3410
3411 const char *const state_string =
3412 get_layout_qualifier_string(state->fs_origin_upper_left,
3413 state->fs_pixel_center_integer);
3414
3415 _mesa_glsl_error(loc, state,
3416 "gl_FragCoord redeclared with different layout "
3417 "qualifiers (%s) and (%s) ",
3418 state_string,
3419 qual_string);
3420 }
3421 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3422 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3423 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3424 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3425 state->fs_redeclares_gl_fragcoord =
3426 state->fs_origin_upper_left ||
3427 state->fs_pixel_center_integer ||
3428 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3429 }
3430
3431 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3432 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3433 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3434 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3435 const char *const qual_string = (qual->flags.q.origin_upper_left)
3436 ? "origin_upper_left" : "pixel_center_integer";
3437
3438 _mesa_glsl_error(loc, state,
3439 "layout qualifier `%s' can only be applied to "
3440 "fragment shader input `gl_FragCoord'",
3441 qual_string);
3442 }
3443
3444 if (qual->flags.q.explicit_location) {
3445 apply_explicit_location(qual, var, state, loc);
3446
3447 if (qual->flags.q.explicit_component) {
3448 unsigned qual_component;
3449 if (process_qualifier_constant(state, loc, "component",
3450 qual->component, &qual_component)) {
3451 const glsl_type *type = var->type->without_array();
3452 unsigned components = type->component_slots();
3453
3454 if (type->is_matrix() || type->is_record()) {
3455 _mesa_glsl_error(loc, state, "component layout qualifier "
3456 "cannot be applied to a matrix, a structure, "
3457 "a block, or an array containing any of "
3458 "these.");
3459 } else if (qual_component != 0 &&
3460 (qual_component + components - 1) > 3) {
3461 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3462 (qual_component + components - 1));
3463 } else if (qual_component == 1 && type->is_64bit()) {
3464 /* We don't bother checking for 3 as it should be caught by the
3465 * overflow check above.
3466 */
3467 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3468 "component 1 or 3");
3469 } else {
3470 var->data.explicit_component = true;
3471 var->data.location_frac = qual_component;
3472 }
3473 }
3474 }
3475 } else if (qual->flags.q.explicit_index) {
3476 if (!qual->flags.q.subroutine_def)
3477 _mesa_glsl_error(loc, state,
3478 "explicit index requires explicit location");
3479 } else if (qual->flags.q.explicit_component) {
3480 _mesa_glsl_error(loc, state,
3481 "explicit component requires explicit location");
3482 }
3483
3484 if (qual->flags.q.explicit_binding) {
3485 apply_explicit_binding(state, loc, var, var->type, qual);
3486 }
3487
3488 if (state->stage == MESA_SHADER_GEOMETRY &&
3489 qual->flags.q.out && qual->flags.q.stream) {
3490 unsigned qual_stream;
3491 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3492 &qual_stream) &&
3493 validate_stream_qualifier(loc, state, qual_stream)) {
3494 var->data.stream = qual_stream;
3495 }
3496 }
3497
3498 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3499 unsigned qual_xfb_buffer;
3500 if (process_qualifier_constant(state, loc, "xfb_buffer",
3501 qual->xfb_buffer, &qual_xfb_buffer) &&
3502 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3503 var->data.xfb_buffer = qual_xfb_buffer;
3504 if (qual->flags.q.explicit_xfb_buffer)
3505 var->data.explicit_xfb_buffer = true;
3506 }
3507 }
3508
3509 if (qual->flags.q.explicit_xfb_offset) {
3510 unsigned qual_xfb_offset;
3511 unsigned component_size = var->type->contains_double() ? 8 : 4;
3512
3513 if (process_qualifier_constant(state, loc, "xfb_offset",
3514 qual->offset, &qual_xfb_offset) &&
3515 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3516 var->type, component_size)) {
3517 var->data.offset = qual_xfb_offset;
3518 var->data.explicit_xfb_offset = true;
3519 }
3520 }
3521
3522 if (qual->flags.q.explicit_xfb_stride) {
3523 unsigned qual_xfb_stride;
3524 if (process_qualifier_constant(state, loc, "xfb_stride",
3525 qual->xfb_stride, &qual_xfb_stride)) {
3526 var->data.xfb_stride = qual_xfb_stride;
3527 var->data.explicit_xfb_stride = true;
3528 }
3529 }
3530
3531 if (var->type->contains_atomic()) {
3532 if (var->data.mode == ir_var_uniform) {
3533 if (var->data.explicit_binding) {
3534 unsigned *offset =
3535 &state->atomic_counter_offsets[var->data.binding];
3536
3537 if (*offset % ATOMIC_COUNTER_SIZE)
3538 _mesa_glsl_error(loc, state,
3539 "misaligned atomic counter offset");
3540
3541 var->data.offset = *offset;
3542 *offset += var->type->atomic_size();
3543
3544 } else {
3545 _mesa_glsl_error(loc, state,
3546 "atomic counters require explicit binding point");
3547 }
3548 } else if (var->data.mode != ir_var_function_in) {
3549 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3550 "function parameters or uniform-qualified "
3551 "global variables");
3552 }
3553 }
3554
3555 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3556 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3557 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3558 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3559 * These extensions and all following extensions that add the 'layout'
3560 * keyword have been modified to require the use of 'in' or 'out'.
3561 *
3562 * The following extension do not allow the deprecated keywords:
3563 *
3564 * GL_AMD_conservative_depth
3565 * GL_ARB_conservative_depth
3566 * GL_ARB_gpu_shader5
3567 * GL_ARB_separate_shader_objects
3568 * GL_ARB_tessellation_shader
3569 * GL_ARB_transform_feedback3
3570 * GL_ARB_uniform_buffer_object
3571 *
3572 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3573 * allow layout with the deprecated keywords.
3574 */
3575 const bool relaxed_layout_qualifier_checking =
3576 state->ARB_fragment_coord_conventions_enable;
3577
3578 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3579 || qual->flags.q.varying;
3580 if (qual->has_layout() && uses_deprecated_qualifier) {
3581 if (relaxed_layout_qualifier_checking) {
3582 _mesa_glsl_warning(loc, state,
3583 "`layout' qualifier may not be used with "
3584 "`attribute' or `varying'");
3585 } else {
3586 _mesa_glsl_error(loc, state,
3587 "`layout' qualifier may not be used with "
3588 "`attribute' or `varying'");
3589 }
3590 }
3591
3592 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3593 * AMD_conservative_depth.
3594 */
3595 int depth_layout_count = qual->flags.q.depth_any
3596 + qual->flags.q.depth_greater
3597 + qual->flags.q.depth_less
3598 + qual->flags.q.depth_unchanged;
3599 if (depth_layout_count > 0
3600 && !state->is_version(420, 0)
3601 && !state->AMD_conservative_depth_enable
3602 && !state->ARB_conservative_depth_enable) {
3603 _mesa_glsl_error(loc, state,
3604 "extension GL_AMD_conservative_depth or "
3605 "GL_ARB_conservative_depth must be enabled "
3606 "to use depth layout qualifiers");
3607 } else if (depth_layout_count > 0
3608 && strcmp(var->name, "gl_FragDepth") != 0) {
3609 _mesa_glsl_error(loc, state,
3610 "depth layout qualifiers can be applied only to "
3611 "gl_FragDepth");
3612 } else if (depth_layout_count > 1
3613 && strcmp(var->name, "gl_FragDepth") == 0) {
3614 _mesa_glsl_error(loc, state,
3615 "at most one depth layout qualifier can be applied to "
3616 "gl_FragDepth");
3617 }
3618 if (qual->flags.q.depth_any)
3619 var->data.depth_layout = ir_depth_layout_any;
3620 else if (qual->flags.q.depth_greater)
3621 var->data.depth_layout = ir_depth_layout_greater;
3622 else if (qual->flags.q.depth_less)
3623 var->data.depth_layout = ir_depth_layout_less;
3624 else if (qual->flags.q.depth_unchanged)
3625 var->data.depth_layout = ir_depth_layout_unchanged;
3626 else
3627 var->data.depth_layout = ir_depth_layout_none;
3628
3629 if (qual->flags.q.std140 ||
3630 qual->flags.q.std430 ||
3631 qual->flags.q.packed ||
3632 qual->flags.q.shared) {
3633 _mesa_glsl_error(loc, state,
3634 "uniform and shader storage block layout qualifiers "
3635 "std140, std430, packed, and shared can only be "
3636 "applied to uniform or shader storage blocks, not "
3637 "members");
3638 }
3639
3640 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3641 validate_matrix_layout_for_type(state, loc, var->type, var);
3642 }
3643
3644 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3645 * Inputs):
3646 *
3647 * "Fragment shaders also allow the following layout qualifier on in only
3648 * (not with variable declarations)
3649 * layout-qualifier-id
3650 * early_fragment_tests
3651 * [...]"
3652 */
3653 if (qual->flags.q.early_fragment_tests) {
3654 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3655 "valid in fragment shader input layout declaration.");
3656 }
3657
3658 if (qual->flags.q.inner_coverage) {
3659 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3660 "valid in fragment shader input layout declaration.");
3661 }
3662
3663 if (qual->flags.q.post_depth_coverage) {
3664 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3665 "valid in fragment shader input layout declaration.");
3666 }
3667 }
3668
3669 static void
3670 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3671 ir_variable *var,
3672 struct _mesa_glsl_parse_state *state,
3673 YYLTYPE *loc,
3674 bool is_parameter)
3675 {
3676 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3677
3678 if (qual->flags.q.invariant) {
3679 if (var->data.used) {
3680 _mesa_glsl_error(loc, state,
3681 "variable `%s' may not be redeclared "
3682 "`invariant' after being used",
3683 var->name);
3684 } else {
3685 var->data.invariant = 1;
3686 }
3687 }
3688
3689 if (qual->flags.q.precise) {
3690 if (var->data.used) {
3691 _mesa_glsl_error(loc, state,
3692 "variable `%s' may not be redeclared "
3693 "`precise' after being used",
3694 var->name);
3695 } else {
3696 var->data.precise = 1;
3697 }
3698 }
3699
3700 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3701 _mesa_glsl_error(loc, state,
3702 "`subroutine' may only be applied to uniforms, "
3703 "subroutine type declarations, or function definitions");
3704 }
3705
3706 if (qual->flags.q.constant || qual->flags.q.attribute
3707 || qual->flags.q.uniform
3708 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3709 var->data.read_only = 1;
3710
3711 if (qual->flags.q.centroid)
3712 var->data.centroid = 1;
3713
3714 if (qual->flags.q.sample)
3715 var->data.sample = 1;
3716
3717 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3718 if (state->es_shader) {
3719 var->data.precision =
3720 select_gles_precision(qual->precision, var->type, state, loc);
3721 }
3722
3723 if (qual->flags.q.patch)
3724 var->data.patch = 1;
3725
3726 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3727 var->type = glsl_type::error_type;
3728 _mesa_glsl_error(loc, state,
3729 "`attribute' variables may not be declared in the "
3730 "%s shader",
3731 _mesa_shader_stage_to_string(state->stage));
3732 }
3733
3734 /* Disallow layout qualifiers which may only appear on layout declarations. */
3735 if (qual->flags.q.prim_type) {
3736 _mesa_glsl_error(loc, state,
3737 "Primitive type may only be specified on GS input or output "
3738 "layout declaration, not on variables.");
3739 }
3740
3741 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3742 *
3743 * "However, the const qualifier cannot be used with out or inout."
3744 *
3745 * The same section of the GLSL 4.40 spec further clarifies this saying:
3746 *
3747 * "The const qualifier cannot be used with out or inout, or a
3748 * compile-time error results."
3749 */
3750 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3751 _mesa_glsl_error(loc, state,
3752 "`const' may not be applied to `out' or `inout' "
3753 "function parameters");
3754 }
3755
3756 /* If there is no qualifier that changes the mode of the variable, leave
3757 * the setting alone.
3758 */
3759 assert(var->data.mode != ir_var_temporary);
3760 if (qual->flags.q.in && qual->flags.q.out)
3761 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3762 else if (qual->flags.q.in)
3763 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3764 else if (qual->flags.q.attribute
3765 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3766 var->data.mode = ir_var_shader_in;
3767 else if (qual->flags.q.out)
3768 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3769 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3770 var->data.mode = ir_var_shader_out;
3771 else if (qual->flags.q.uniform)
3772 var->data.mode = ir_var_uniform;
3773 else if (qual->flags.q.buffer)
3774 var->data.mode = ir_var_shader_storage;
3775 else if (qual->flags.q.shared_storage)
3776 var->data.mode = ir_var_shader_shared;
3777
3778 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3779 qual->flags.q.in && qual->flags.q.out;
3780
3781 if (!is_parameter && is_varying_var(var, state->stage)) {
3782 /* User-defined ins/outs are not permitted in compute shaders. */
3783 if (state->stage == MESA_SHADER_COMPUTE) {
3784 _mesa_glsl_error(loc, state,
3785 "user-defined input and output variables are not "
3786 "permitted in compute shaders");
3787 }
3788
3789 /* This variable is being used to link data between shader stages (in
3790 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3791 * that is allowed for such purposes.
3792 *
3793 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3794 *
3795 * "The varying qualifier can be used only with the data types
3796 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3797 * these."
3798 *
3799 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3800 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3801 *
3802 * "Fragment inputs can only be signed and unsigned integers and
3803 * integer vectors, float, floating-point vectors, matrices, or
3804 * arrays of these. Structures cannot be input.
3805 *
3806 * Similar text exists in the section on vertex shader outputs.
3807 *
3808 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3809 * 3.00 spec allows structs as well. Varying structs are also allowed
3810 * in GLSL 1.50.
3811 */
3812 switch (var->type->get_scalar_type()->base_type) {
3813 case GLSL_TYPE_FLOAT:
3814 /* Ok in all GLSL versions */
3815 break;
3816 case GLSL_TYPE_UINT:
3817 case GLSL_TYPE_INT:
3818 if (state->is_version(130, 300))
3819 break;
3820 _mesa_glsl_error(loc, state,
3821 "varying variables must be of base type float in %s",
3822 state->get_version_string());
3823 break;
3824 case GLSL_TYPE_STRUCT:
3825 if (state->is_version(150, 300))
3826 break;
3827 _mesa_glsl_error(loc, state,
3828 "varying variables may not be of type struct");
3829 break;
3830 case GLSL_TYPE_DOUBLE:
3831 break;
3832 default:
3833 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3834 break;
3835 }
3836 }
3837
3838 if (state->all_invariant && (state->current_function == NULL)) {
3839 switch (state->stage) {
3840 case MESA_SHADER_VERTEX:
3841 if (var->data.mode == ir_var_shader_out)
3842 var->data.invariant = true;
3843 break;
3844 case MESA_SHADER_TESS_CTRL:
3845 case MESA_SHADER_TESS_EVAL:
3846 case MESA_SHADER_GEOMETRY:
3847 if ((var->data.mode == ir_var_shader_in)
3848 || (var->data.mode == ir_var_shader_out))
3849 var->data.invariant = true;
3850 break;
3851 case MESA_SHADER_FRAGMENT:
3852 if (var->data.mode == ir_var_shader_in)
3853 var->data.invariant = true;
3854 break;
3855 case MESA_SHADER_COMPUTE:
3856 /* Invariance isn't meaningful in compute shaders. */
3857 break;
3858 }
3859 }
3860
3861 var->data.interpolation =
3862 interpret_interpolation_qualifier(qual, var->type,
3863 (ir_variable_mode) var->data.mode,
3864 state, loc);
3865
3866 /* Does the declaration use the deprecated 'attribute' or 'varying'
3867 * keywords?
3868 */
3869 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3870 || qual->flags.q.varying;
3871
3872
3873 /* Validate auxiliary storage qualifiers */
3874
3875 /* From section 4.3.4 of the GLSL 1.30 spec:
3876 * "It is an error to use centroid in in a vertex shader."
3877 *
3878 * From section 4.3.4 of the GLSL ES 3.00 spec:
3879 * "It is an error to use centroid in or interpolation qualifiers in
3880 * a vertex shader input."
3881 */
3882
3883 /* Section 4.3.6 of the GLSL 1.30 specification states:
3884 * "It is an error to use centroid out in a fragment shader."
3885 *
3886 * The GL_ARB_shading_language_420pack extension specification states:
3887 * "It is an error to use auxiliary storage qualifiers or interpolation
3888 * qualifiers on an output in a fragment shader."
3889 */
3890 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3891 _mesa_glsl_error(loc, state,
3892 "sample qualifier may only be used on `in` or `out` "
3893 "variables between shader stages");
3894 }
3895 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3896 _mesa_glsl_error(loc, state,
3897 "centroid qualifier may only be used with `in', "
3898 "`out' or `varying' variables between shader stages");
3899 }
3900
3901 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3902 _mesa_glsl_error(loc, state,
3903 "the shared storage qualifiers can only be used with "
3904 "compute shaders");
3905 }
3906
3907 apply_image_qualifier_to_variable(qual, var, state, loc);
3908 }
3909
3910 /**
3911 * Get the variable that is being redeclared by this declaration
3912 *
3913 * Semantic checks to verify the validity of the redeclaration are also
3914 * performed. If semantic checks fail, compilation error will be emitted via
3915 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3916 *
3917 * \returns
3918 * A pointer to an existing variable in the current scope if the declaration
3919 * is a redeclaration, \c NULL otherwise.
3920 */
3921 static ir_variable *
3922 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3923 struct _mesa_glsl_parse_state *state,
3924 bool allow_all_redeclarations)
3925 {
3926 /* Check if this declaration is actually a re-declaration, either to
3927 * resize an array or add qualifiers to an existing variable.
3928 *
3929 * This is allowed for variables in the current scope, or when at
3930 * global scope (for built-ins in the implicit outer scope).
3931 */
3932 ir_variable *earlier = state->symbols->get_variable(var->name);
3933 if (earlier == NULL ||
3934 (state->current_function != NULL &&
3935 !state->symbols->name_declared_this_scope(var->name))) {
3936 return NULL;
3937 }
3938
3939
3940 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3941 *
3942 * "It is legal to declare an array without a size and then
3943 * later re-declare the same name as an array of the same
3944 * type and specify a size."
3945 */
3946 if (earlier->type->is_unsized_array() && var->type->is_array()
3947 && (var->type->fields.array == earlier->type->fields.array)) {
3948 /* FINISHME: This doesn't match the qualifiers on the two
3949 * FINISHME: declarations. It's not 100% clear whether this is
3950 * FINISHME: required or not.
3951 */
3952
3953 const int size = var->type->array_size();
3954 check_builtin_array_max_size(var->name, size, loc, state);
3955 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3956 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3957 "previous access",
3958 earlier->data.max_array_access);
3959 }
3960
3961 earlier->type = var->type;
3962 delete var;
3963 var = NULL;
3964 } else if ((state->ARB_fragment_coord_conventions_enable ||
3965 state->is_version(150, 0))
3966 && strcmp(var->name, "gl_FragCoord") == 0
3967 && earlier->type == var->type
3968 && var->data.mode == ir_var_shader_in) {
3969 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3970 * qualifiers.
3971 */
3972 earlier->data.origin_upper_left = var->data.origin_upper_left;
3973 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3974
3975 /* According to section 4.3.7 of the GLSL 1.30 spec,
3976 * the following built-in varaibles can be redeclared with an
3977 * interpolation qualifier:
3978 * * gl_FrontColor
3979 * * gl_BackColor
3980 * * gl_FrontSecondaryColor
3981 * * gl_BackSecondaryColor
3982 * * gl_Color
3983 * * gl_SecondaryColor
3984 */
3985 } else if (state->is_version(130, 0)
3986 && (strcmp(var->name, "gl_FrontColor") == 0
3987 || strcmp(var->name, "gl_BackColor") == 0
3988 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3989 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3990 || strcmp(var->name, "gl_Color") == 0
3991 || strcmp(var->name, "gl_SecondaryColor") == 0)
3992 && earlier->type == var->type
3993 && earlier->data.mode == var->data.mode) {
3994 earlier->data.interpolation = var->data.interpolation;
3995
3996 /* Layout qualifiers for gl_FragDepth. */
3997 } else if ((state->is_version(420, 0) ||
3998 state->AMD_conservative_depth_enable ||
3999 state->ARB_conservative_depth_enable)
4000 && strcmp(var->name, "gl_FragDepth") == 0
4001 && earlier->type == var->type
4002 && earlier->data.mode == var->data.mode) {
4003
4004 /** From the AMD_conservative_depth spec:
4005 * Within any shader, the first redeclarations of gl_FragDepth
4006 * must appear before any use of gl_FragDepth.
4007 */
4008 if (earlier->data.used) {
4009 _mesa_glsl_error(&loc, state,
4010 "the first redeclaration of gl_FragDepth "
4011 "must appear before any use of gl_FragDepth");
4012 }
4013
4014 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4015 if (earlier->data.depth_layout != ir_depth_layout_none
4016 && earlier->data.depth_layout != var->data.depth_layout) {
4017 _mesa_glsl_error(&loc, state,
4018 "gl_FragDepth: depth layout is declared here "
4019 "as '%s, but it was previously declared as "
4020 "'%s'",
4021 depth_layout_string(var->data.depth_layout),
4022 depth_layout_string(earlier->data.depth_layout));
4023 }
4024
4025 earlier->data.depth_layout = var->data.depth_layout;
4026
4027 } else if (state->has_framebuffer_fetch() &&
4028 strcmp(var->name, "gl_LastFragData") == 0 &&
4029 var->type == earlier->type &&
4030 var->data.mode == ir_var_auto) {
4031 /* According to the EXT_shader_framebuffer_fetch spec:
4032 *
4033 * "By default, gl_LastFragData is declared with the mediump precision
4034 * qualifier. This can be changed by redeclaring the corresponding
4035 * variables with the desired precision qualifier."
4036 */
4037 earlier->data.precision = var->data.precision;
4038
4039 } else if (allow_all_redeclarations) {
4040 if (earlier->data.mode != var->data.mode) {
4041 _mesa_glsl_error(&loc, state,
4042 "redeclaration of `%s' with incorrect qualifiers",
4043 var->name);
4044 } else if (earlier->type != var->type) {
4045 _mesa_glsl_error(&loc, state,
4046 "redeclaration of `%s' has incorrect type",
4047 var->name);
4048 }
4049 } else {
4050 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4051 }
4052
4053 return earlier;
4054 }
4055
4056 /**
4057 * Generate the IR for an initializer in a variable declaration
4058 */
4059 ir_rvalue *
4060 process_initializer(ir_variable *var, ast_declaration *decl,
4061 ast_fully_specified_type *type,
4062 exec_list *initializer_instructions,
4063 struct _mesa_glsl_parse_state *state)
4064 {
4065 ir_rvalue *result = NULL;
4066
4067 YYLTYPE initializer_loc = decl->initializer->get_location();
4068
4069 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4070 *
4071 * "All uniform variables are read-only and are initialized either
4072 * directly by an application via API commands, or indirectly by
4073 * OpenGL."
4074 */
4075 if (var->data.mode == ir_var_uniform) {
4076 state->check_version(120, 0, &initializer_loc,
4077 "cannot initialize uniform %s",
4078 var->name);
4079 }
4080
4081 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4082 *
4083 * "Buffer variables cannot have initializers."
4084 */
4085 if (var->data.mode == ir_var_shader_storage) {
4086 _mesa_glsl_error(&initializer_loc, state,
4087 "cannot initialize buffer variable %s",
4088 var->name);
4089 }
4090
4091 /* From section 4.1.7 of the GLSL 4.40 spec:
4092 *
4093 * "Opaque variables [...] are initialized only through the
4094 * OpenGL API; they cannot be declared with an initializer in a
4095 * shader."
4096 */
4097 if (var->type->contains_opaque()) {
4098 _mesa_glsl_error(&initializer_loc, state,
4099 "cannot initialize opaque variable %s",
4100 var->name);
4101 }
4102
4103 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4104 _mesa_glsl_error(&initializer_loc, state,
4105 "cannot initialize %s shader input / %s %s",
4106 _mesa_shader_stage_to_string(state->stage),
4107 (state->stage == MESA_SHADER_VERTEX)
4108 ? "attribute" : "varying",
4109 var->name);
4110 }
4111
4112 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4113 _mesa_glsl_error(&initializer_loc, state,
4114 "cannot initialize %s shader output %s",
4115 _mesa_shader_stage_to_string(state->stage),
4116 var->name);
4117 }
4118
4119 /* If the initializer is an ast_aggregate_initializer, recursively store
4120 * type information from the LHS into it, so that its hir() function can do
4121 * type checking.
4122 */
4123 if (decl->initializer->oper == ast_aggregate)
4124 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4125
4126 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4127 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4128
4129 /* Calculate the constant value if this is a const or uniform
4130 * declaration.
4131 *
4132 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4133 *
4134 * "Declarations of globals without a storage qualifier, or with
4135 * just the const qualifier, may include initializers, in which case
4136 * they will be initialized before the first line of main() is
4137 * executed. Such initializers must be a constant expression."
4138 *
4139 * The same section of the GLSL ES 3.00.4 spec has similar language.
4140 */
4141 if (type->qualifier.flags.q.constant
4142 || type->qualifier.flags.q.uniform
4143 || (state->es_shader && state->current_function == NULL)) {
4144 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4145 lhs, rhs, true);
4146 if (new_rhs != NULL) {
4147 rhs = new_rhs;
4148
4149 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4150 * says:
4151 *
4152 * "A constant expression is one of
4153 *
4154 * ...
4155 *
4156 * - an expression formed by an operator on operands that are
4157 * all constant expressions, including getting an element of
4158 * a constant array, or a field of a constant structure, or
4159 * components of a constant vector. However, the sequence
4160 * operator ( , ) and the assignment operators ( =, +=, ...)
4161 * are not included in the operators that can create a
4162 * constant expression."
4163 *
4164 * Section 12.43 (Sequence operator and constant expressions) says:
4165 *
4166 * "Should the following construct be allowed?
4167 *
4168 * float a[2,3];
4169 *
4170 * The expression within the brackets uses the sequence operator
4171 * (',') and returns the integer 3 so the construct is declaring
4172 * a single-dimensional array of size 3. In some languages, the
4173 * construct declares a two-dimensional array. It would be
4174 * preferable to make this construct illegal to avoid confusion.
4175 *
4176 * One possibility is to change the definition of the sequence
4177 * operator so that it does not return a constant-expression and
4178 * hence cannot be used to declare an array size.
4179 *
4180 * RESOLUTION: The result of a sequence operator is not a
4181 * constant-expression."
4182 *
4183 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4184 * contains language almost identical to the section 4.3.3 in the
4185 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4186 * versions.
4187 */
4188 ir_constant *constant_value = rhs->constant_expression_value();
4189 if (!constant_value ||
4190 (state->is_version(430, 300) &&
4191 decl->initializer->has_sequence_subexpression())) {
4192 const char *const variable_mode =
4193 (type->qualifier.flags.q.constant)
4194 ? "const"
4195 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4196
4197 /* If ARB_shading_language_420pack is enabled, initializers of
4198 * const-qualified local variables do not have to be constant
4199 * expressions. Const-qualified global variables must still be
4200 * initialized with constant expressions.
4201 */
4202 if (!state->has_420pack()
4203 || state->current_function == NULL) {
4204 _mesa_glsl_error(& initializer_loc, state,
4205 "initializer of %s variable `%s' must be a "
4206 "constant expression",
4207 variable_mode,
4208 decl->identifier);
4209 if (var->type->is_numeric()) {
4210 /* Reduce cascading errors. */
4211 var->constant_value = type->qualifier.flags.q.constant
4212 ? ir_constant::zero(state, var->type) : NULL;
4213 }
4214 }
4215 } else {
4216 rhs = constant_value;
4217 var->constant_value = type->qualifier.flags.q.constant
4218 ? constant_value : NULL;
4219 }
4220 } else {
4221 if (var->type->is_numeric()) {
4222 /* Reduce cascading errors. */
4223 var->constant_value = type->qualifier.flags.q.constant
4224 ? ir_constant::zero(state, var->type) : NULL;
4225 }
4226 }
4227 }
4228
4229 if (rhs && !rhs->type->is_error()) {
4230 bool temp = var->data.read_only;
4231 if (type->qualifier.flags.q.constant)
4232 var->data.read_only = false;
4233
4234 /* Never emit code to initialize a uniform.
4235 */
4236 const glsl_type *initializer_type;
4237 if (!type->qualifier.flags.q.uniform) {
4238 do_assignment(initializer_instructions, state,
4239 NULL,
4240 lhs, rhs,
4241 &result, true,
4242 true,
4243 type->get_location());
4244 initializer_type = result->type;
4245 } else
4246 initializer_type = rhs->type;
4247
4248 var->constant_initializer = rhs->constant_expression_value();
4249 var->data.has_initializer = true;
4250
4251 /* If the declared variable is an unsized array, it must inherrit
4252 * its full type from the initializer. A declaration such as
4253 *
4254 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4255 *
4256 * becomes
4257 *
4258 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4259 *
4260 * The assignment generated in the if-statement (below) will also
4261 * automatically handle this case for non-uniforms.
4262 *
4263 * If the declared variable is not an array, the types must
4264 * already match exactly. As a result, the type assignment
4265 * here can be done unconditionally. For non-uniforms the call
4266 * to do_assignment can change the type of the initializer (via
4267 * the implicit conversion rules). For uniforms the initializer
4268 * must be a constant expression, and the type of that expression
4269 * was validated above.
4270 */
4271 var->type = initializer_type;
4272
4273 var->data.read_only = temp;
4274 }
4275
4276 return result;
4277 }
4278
4279 static void
4280 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4281 YYLTYPE loc, ir_variable *var,
4282 unsigned num_vertices,
4283 unsigned *size,
4284 const char *var_category)
4285 {
4286 if (var->type->is_unsized_array()) {
4287 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4288 *
4289 * All geometry shader input unsized array declarations will be
4290 * sized by an earlier input layout qualifier, when present, as per
4291 * the following table.
4292 *
4293 * Followed by a table mapping each allowed input layout qualifier to
4294 * the corresponding input length.
4295 *
4296 * Similarly for tessellation control shader outputs.
4297 */
4298 if (num_vertices != 0)
4299 var->type = glsl_type::get_array_instance(var->type->fields.array,
4300 num_vertices);
4301 } else {
4302 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4303 * includes the following examples of compile-time errors:
4304 *
4305 * // code sequence within one shader...
4306 * in vec4 Color1[]; // size unknown
4307 * ...Color1.length()...// illegal, length() unknown
4308 * in vec4 Color2[2]; // size is 2
4309 * ...Color1.length()...// illegal, Color1 still has no size
4310 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4311 * layout(lines) in; // legal, input size is 2, matching
4312 * in vec4 Color4[3]; // illegal, contradicts layout
4313 * ...
4314 *
4315 * To detect the case illustrated by Color3, we verify that the size of
4316 * an explicitly-sized array matches the size of any previously declared
4317 * explicitly-sized array. To detect the case illustrated by Color4, we
4318 * verify that the size of an explicitly-sized array is consistent with
4319 * any previously declared input layout.
4320 */
4321 if (num_vertices != 0 && var->type->length != num_vertices) {
4322 _mesa_glsl_error(&loc, state,
4323 "%s size contradicts previously declared layout "
4324 "(size is %u, but layout requires a size of %u)",
4325 var_category, var->type->length, num_vertices);
4326 } else if (*size != 0 && var->type->length != *size) {
4327 _mesa_glsl_error(&loc, state,
4328 "%s sizes are inconsistent (size is %u, but a "
4329 "previous declaration has size %u)",
4330 var_category, var->type->length, *size);
4331 } else {
4332 *size = var->type->length;
4333 }
4334 }
4335 }
4336
4337 static void
4338 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4339 YYLTYPE loc, ir_variable *var)
4340 {
4341 unsigned num_vertices = 0;
4342
4343 if (state->tcs_output_vertices_specified) {
4344 if (!state->out_qualifier->vertices->
4345 process_qualifier_constant(state, "vertices",
4346 &num_vertices, false)) {
4347 return;
4348 }
4349
4350 if (num_vertices > state->Const.MaxPatchVertices) {
4351 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4352 "GL_MAX_PATCH_VERTICES", num_vertices);
4353 return;
4354 }
4355 }
4356
4357 if (!var->type->is_array() && !var->data.patch) {
4358 _mesa_glsl_error(&loc, state,
4359 "tessellation control shader outputs must be arrays");
4360
4361 /* To avoid cascading failures, short circuit the checks below. */
4362 return;
4363 }
4364
4365 if (var->data.patch)
4366 return;
4367
4368 var->data.tess_varying_implicit_sized_array = var->type->is_unsized_array();
4369
4370 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4371 &state->tcs_output_size,
4372 "tessellation control shader output");
4373 }
4374
4375 /**
4376 * Do additional processing necessary for tessellation control/evaluation shader
4377 * input declarations. This covers both interface block arrays and bare input
4378 * variables.
4379 */
4380 static void
4381 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4382 YYLTYPE loc, ir_variable *var)
4383 {
4384 if (!var->type->is_array() && !var->data.patch) {
4385 _mesa_glsl_error(&loc, state,
4386 "per-vertex tessellation shader inputs must be arrays");
4387 /* Avoid cascading failures. */
4388 return;
4389 }
4390
4391 if (var->data.patch)
4392 return;
4393
4394 /* The ARB_tessellation_shader spec says:
4395 *
4396 * "Declaring an array size is optional. If no size is specified, it
4397 * will be taken from the implementation-dependent maximum patch size
4398 * (gl_MaxPatchVertices). If a size is specified, it must match the
4399 * maximum patch size; otherwise, a compile or link error will occur."
4400 *
4401 * This text appears twice, once for TCS inputs, and again for TES inputs.
4402 */
4403 if (var->type->is_unsized_array()) {
4404 var->type = glsl_type::get_array_instance(var->type->fields.array,
4405 state->Const.MaxPatchVertices);
4406 var->data.tess_varying_implicit_sized_array = true;
4407 } else if (var->type->length != state->Const.MaxPatchVertices) {
4408 _mesa_glsl_error(&loc, state,
4409 "per-vertex tessellation shader input arrays must be "
4410 "sized to gl_MaxPatchVertices (%d).",
4411 state->Const.MaxPatchVertices);
4412 }
4413 }
4414
4415
4416 /**
4417 * Do additional processing necessary for geometry shader input declarations
4418 * (this covers both interface blocks arrays and bare input variables).
4419 */
4420 static void
4421 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4422 YYLTYPE loc, ir_variable *var)
4423 {
4424 unsigned num_vertices = 0;
4425
4426 if (state->gs_input_prim_type_specified) {
4427 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4428 }
4429
4430 /* Geometry shader input variables must be arrays. Caller should have
4431 * reported an error for this.
4432 */
4433 if (!var->type->is_array()) {
4434 assert(state->error);
4435
4436 /* To avoid cascading failures, short circuit the checks below. */
4437 return;
4438 }
4439
4440 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4441 &state->gs_input_size,
4442 "geometry shader input");
4443 }
4444
4445 void
4446 validate_identifier(const char *identifier, YYLTYPE loc,
4447 struct _mesa_glsl_parse_state *state)
4448 {
4449 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4450 *
4451 * "Identifiers starting with "gl_" are reserved for use by
4452 * OpenGL, and may not be declared in a shader as either a
4453 * variable or a function."
4454 */
4455 if (is_gl_identifier(identifier)) {
4456 _mesa_glsl_error(&loc, state,
4457 "identifier `%s' uses reserved `gl_' prefix",
4458 identifier);
4459 } else if (strstr(identifier, "__")) {
4460 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4461 * spec:
4462 *
4463 * "In addition, all identifiers containing two
4464 * consecutive underscores (__) are reserved as
4465 * possible future keywords."
4466 *
4467 * The intention is that names containing __ are reserved for internal
4468 * use by the implementation, and names prefixed with GL_ are reserved
4469 * for use by Khronos. Names simply containing __ are dangerous to use,
4470 * but should be allowed.
4471 *
4472 * A future version of the GLSL specification will clarify this.
4473 */
4474 _mesa_glsl_warning(&loc, state,
4475 "identifier `%s' uses reserved `__' string",
4476 identifier);
4477 }
4478 }
4479
4480 ir_rvalue *
4481 ast_declarator_list::hir(exec_list *instructions,
4482 struct _mesa_glsl_parse_state *state)
4483 {
4484 void *ctx = state;
4485 const struct glsl_type *decl_type;
4486 const char *type_name = NULL;
4487 ir_rvalue *result = NULL;
4488 YYLTYPE loc = this->get_location();
4489
4490 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4491 *
4492 * "To ensure that a particular output variable is invariant, it is
4493 * necessary to use the invariant qualifier. It can either be used to
4494 * qualify a previously declared variable as being invariant
4495 *
4496 * invariant gl_Position; // make existing gl_Position be invariant"
4497 *
4498 * In these cases the parser will set the 'invariant' flag in the declarator
4499 * list, and the type will be NULL.
4500 */
4501 if (this->invariant) {
4502 assert(this->type == NULL);
4503
4504 if (state->current_function != NULL) {
4505 _mesa_glsl_error(& loc, state,
4506 "all uses of `invariant' keyword must be at global "
4507 "scope");
4508 }
4509
4510 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4511 assert(decl->array_specifier == NULL);
4512 assert(decl->initializer == NULL);
4513
4514 ir_variable *const earlier =
4515 state->symbols->get_variable(decl->identifier);
4516 if (earlier == NULL) {
4517 _mesa_glsl_error(& loc, state,
4518 "undeclared variable `%s' cannot be marked "
4519 "invariant", decl->identifier);
4520 } else if (!is_allowed_invariant(earlier, state)) {
4521 _mesa_glsl_error(&loc, state,
4522 "`%s' cannot be marked invariant; interfaces between "
4523 "shader stages only.", decl->identifier);
4524 } else if (earlier->data.used) {
4525 _mesa_glsl_error(& loc, state,
4526 "variable `%s' may not be redeclared "
4527 "`invariant' after being used",
4528 earlier->name);
4529 } else {
4530 earlier->data.invariant = true;
4531 }
4532 }
4533
4534 /* Invariant redeclarations do not have r-values.
4535 */
4536 return NULL;
4537 }
4538
4539 if (this->precise) {
4540 assert(this->type == NULL);
4541
4542 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4543 assert(decl->array_specifier == NULL);
4544 assert(decl->initializer == NULL);
4545
4546 ir_variable *const earlier =
4547 state->symbols->get_variable(decl->identifier);
4548 if (earlier == NULL) {
4549 _mesa_glsl_error(& loc, state,
4550 "undeclared variable `%s' cannot be marked "
4551 "precise", decl->identifier);
4552 } else if (state->current_function != NULL &&
4553 !state->symbols->name_declared_this_scope(decl->identifier)) {
4554 /* Note: we have to check if we're in a function, since
4555 * builtins are treated as having come from another scope.
4556 */
4557 _mesa_glsl_error(& loc, state,
4558 "variable `%s' from an outer scope may not be "
4559 "redeclared `precise' in this scope",
4560 earlier->name);
4561 } else if (earlier->data.used) {
4562 _mesa_glsl_error(& loc, state,
4563 "variable `%s' may not be redeclared "
4564 "`precise' after being used",
4565 earlier->name);
4566 } else {
4567 earlier->data.precise = true;
4568 }
4569 }
4570
4571 /* Precise redeclarations do not have r-values either. */
4572 return NULL;
4573 }
4574
4575 assert(this->type != NULL);
4576 assert(!this->invariant);
4577 assert(!this->precise);
4578
4579 /* The type specifier may contain a structure definition. Process that
4580 * before any of the variable declarations.
4581 */
4582 (void) this->type->specifier->hir(instructions, state);
4583
4584 decl_type = this->type->glsl_type(& type_name, state);
4585
4586 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4587 * "Buffer variables may only be declared inside interface blocks
4588 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4589 * shader storage blocks. It is a compile-time error to declare buffer
4590 * variables at global scope (outside a block)."
4591 */
4592 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4593 _mesa_glsl_error(&loc, state,
4594 "buffer variables cannot be declared outside "
4595 "interface blocks");
4596 }
4597
4598 /* An offset-qualified atomic counter declaration sets the default
4599 * offset for the next declaration within the same atomic counter
4600 * buffer.
4601 */
4602 if (decl_type && decl_type->contains_atomic()) {
4603 if (type->qualifier.flags.q.explicit_binding &&
4604 type->qualifier.flags.q.explicit_offset) {
4605 unsigned qual_binding;
4606 unsigned qual_offset;
4607 if (process_qualifier_constant(state, &loc, "binding",
4608 type->qualifier.binding,
4609 &qual_binding)
4610 && process_qualifier_constant(state, &loc, "offset",
4611 type->qualifier.offset,
4612 &qual_offset)) {
4613 state->atomic_counter_offsets[qual_binding] = qual_offset;
4614 }
4615 }
4616
4617 ast_type_qualifier allowed_atomic_qual_mask;
4618 allowed_atomic_qual_mask.flags.i = 0;
4619 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4620 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4621 allowed_atomic_qual_mask.flags.q.uniform = 1;
4622
4623 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4624 "invalid layout qualifier for",
4625 "atomic_uint");
4626 }
4627
4628 if (this->declarations.is_empty()) {
4629 /* If there is no structure involved in the program text, there are two
4630 * possible scenarios:
4631 *
4632 * - The program text contained something like 'vec4;'. This is an
4633 * empty declaration. It is valid but weird. Emit a warning.
4634 *
4635 * - The program text contained something like 'S;' and 'S' is not the
4636 * name of a known structure type. This is both invalid and weird.
4637 * Emit an error.
4638 *
4639 * - The program text contained something like 'mediump float;'
4640 * when the programmer probably meant 'precision mediump
4641 * float;' Emit a warning with a description of what they
4642 * probably meant to do.
4643 *
4644 * Note that if decl_type is NULL and there is a structure involved,
4645 * there must have been some sort of error with the structure. In this
4646 * case we assume that an error was already generated on this line of
4647 * code for the structure. There is no need to generate an additional,
4648 * confusing error.
4649 */
4650 assert(this->type->specifier->structure == NULL || decl_type != NULL
4651 || state->error);
4652
4653 if (decl_type == NULL) {
4654 _mesa_glsl_error(&loc, state,
4655 "invalid type `%s' in empty declaration",
4656 type_name);
4657 } else {
4658 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4659 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4660 * spec:
4661 *
4662 * "... any declaration that leaves the size undefined is
4663 * disallowed as this would add complexity and there are no
4664 * use-cases."
4665 */
4666 if (state->es_shader && decl_type->is_unsized_array()) {
4667 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4668 "or implicitly defined");
4669 }
4670
4671 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4672 *
4673 * "The combinations of types and qualifiers that cause
4674 * compile-time or link-time errors are the same whether or not
4675 * the declaration is empty."
4676 */
4677 validate_array_dimensions(decl_type, state, &loc);
4678 }
4679
4680 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4681 /* Empty atomic counter declarations are allowed and useful
4682 * to set the default offset qualifier.
4683 */
4684 return NULL;
4685 } else if (this->type->qualifier.precision != ast_precision_none) {
4686 if (this->type->specifier->structure != NULL) {
4687 _mesa_glsl_error(&loc, state,
4688 "precision qualifiers can't be applied "
4689 "to structures");
4690 } else {
4691 static const char *const precision_names[] = {
4692 "highp",
4693 "highp",
4694 "mediump",
4695 "lowp"
4696 };
4697
4698 _mesa_glsl_warning(&loc, state,
4699 "empty declaration with precision "
4700 "qualifier, to set the default precision, "
4701 "use `precision %s %s;'",
4702 precision_names[this->type->
4703 qualifier.precision],
4704 type_name);
4705 }
4706 } else if (this->type->specifier->structure == NULL) {
4707 _mesa_glsl_warning(&loc, state, "empty declaration");
4708 }
4709 }
4710 }
4711
4712 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4713 const struct glsl_type *var_type;
4714 ir_variable *var;
4715 const char *identifier = decl->identifier;
4716 /* FINISHME: Emit a warning if a variable declaration shadows a
4717 * FINISHME: declaration at a higher scope.
4718 */
4719
4720 if ((decl_type == NULL) || decl_type->is_void()) {
4721 if (type_name != NULL) {
4722 _mesa_glsl_error(& loc, state,
4723 "invalid type `%s' in declaration of `%s'",
4724 type_name, decl->identifier);
4725 } else {
4726 _mesa_glsl_error(& loc, state,
4727 "invalid type in declaration of `%s'",
4728 decl->identifier);
4729 }
4730 continue;
4731 }
4732
4733 if (this->type->qualifier.flags.q.subroutine) {
4734 const glsl_type *t;
4735 const char *name;
4736
4737 t = state->symbols->get_type(this->type->specifier->type_name);
4738 if (!t)
4739 _mesa_glsl_error(& loc, state,
4740 "invalid type in declaration of `%s'",
4741 decl->identifier);
4742 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4743
4744 identifier = name;
4745
4746 }
4747 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4748 state);
4749
4750 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4751
4752 /* The 'varying in' and 'varying out' qualifiers can only be used with
4753 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4754 * yet.
4755 */
4756 if (this->type->qualifier.flags.q.varying) {
4757 if (this->type->qualifier.flags.q.in) {
4758 _mesa_glsl_error(& loc, state,
4759 "`varying in' qualifier in declaration of "
4760 "`%s' only valid for geometry shaders using "
4761 "ARB_geometry_shader4 or EXT_geometry_shader4",
4762 decl->identifier);
4763 } else if (this->type->qualifier.flags.q.out) {
4764 _mesa_glsl_error(& loc, state,
4765 "`varying out' qualifier in declaration of "
4766 "`%s' only valid for geometry shaders using "
4767 "ARB_geometry_shader4 or EXT_geometry_shader4",
4768 decl->identifier);
4769 }
4770 }
4771
4772 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4773 *
4774 * "Global variables can only use the qualifiers const,
4775 * attribute, uniform, or varying. Only one may be
4776 * specified.
4777 *
4778 * Local variables can only use the qualifier const."
4779 *
4780 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4781 * any extension that adds the 'layout' keyword.
4782 */
4783 if (!state->is_version(130, 300)
4784 && !state->has_explicit_attrib_location()
4785 && !state->has_separate_shader_objects()
4786 && !state->ARB_fragment_coord_conventions_enable) {
4787 if (this->type->qualifier.flags.q.out) {
4788 _mesa_glsl_error(& loc, state,
4789 "`out' qualifier in declaration of `%s' "
4790 "only valid for function parameters in %s",
4791 decl->identifier, state->get_version_string());
4792 }
4793 if (this->type->qualifier.flags.q.in) {
4794 _mesa_glsl_error(& loc, state,
4795 "`in' qualifier in declaration of `%s' "
4796 "only valid for function parameters in %s",
4797 decl->identifier, state->get_version_string());
4798 }
4799 /* FINISHME: Test for other invalid qualifiers. */
4800 }
4801
4802 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4803 & loc, false);
4804 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4805 &loc);
4806
4807 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4808 && (var->type->is_numeric() || var->type->is_boolean())
4809 && state->zero_init) {
4810 const ir_constant_data data = {0};
4811 var->data.has_initializer = true;
4812 var->constant_initializer = new(var) ir_constant(var->type, &data);
4813 }
4814
4815 if (this->type->qualifier.flags.q.invariant) {
4816 if (!is_allowed_invariant(var, state)) {
4817 _mesa_glsl_error(&loc, state,
4818 "`%s' cannot be marked invariant; interfaces between "
4819 "shader stages only", var->name);
4820 }
4821 }
4822
4823 if (state->current_function != NULL) {
4824 const char *mode = NULL;
4825 const char *extra = "";
4826
4827 /* There is no need to check for 'inout' here because the parser will
4828 * only allow that in function parameter lists.
4829 */
4830 if (this->type->qualifier.flags.q.attribute) {
4831 mode = "attribute";
4832 } else if (this->type->qualifier.flags.q.subroutine) {
4833 mode = "subroutine uniform";
4834 } else if (this->type->qualifier.flags.q.uniform) {
4835 mode = "uniform";
4836 } else if (this->type->qualifier.flags.q.varying) {
4837 mode = "varying";
4838 } else if (this->type->qualifier.flags.q.in) {
4839 mode = "in";
4840 extra = " or in function parameter list";
4841 } else if (this->type->qualifier.flags.q.out) {
4842 mode = "out";
4843 extra = " or in function parameter list";
4844 }
4845
4846 if (mode) {
4847 _mesa_glsl_error(& loc, state,
4848 "%s variable `%s' must be declared at "
4849 "global scope%s",
4850 mode, var->name, extra);
4851 }
4852 } else if (var->data.mode == ir_var_shader_in) {
4853 var->data.read_only = true;
4854
4855 if (state->stage == MESA_SHADER_VERTEX) {
4856 bool error_emitted = false;
4857
4858 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4859 *
4860 * "Vertex shader inputs can only be float, floating-point
4861 * vectors, matrices, signed and unsigned integers and integer
4862 * vectors. Vertex shader inputs can also form arrays of these
4863 * types, but not structures."
4864 *
4865 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4866 *
4867 * "Vertex shader inputs can only be float, floating-point
4868 * vectors, matrices, signed and unsigned integers and integer
4869 * vectors. They cannot be arrays or structures."
4870 *
4871 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4872 *
4873 * "The attribute qualifier can be used only with float,
4874 * floating-point vectors, and matrices. Attribute variables
4875 * cannot be declared as arrays or structures."
4876 *
4877 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4878 *
4879 * "Vertex shader inputs can only be float, floating-point
4880 * vectors, matrices, signed and unsigned integers and integer
4881 * vectors. Vertex shader inputs cannot be arrays or
4882 * structures."
4883 */
4884 const glsl_type *check_type = var->type->without_array();
4885
4886 switch (check_type->base_type) {
4887 case GLSL_TYPE_FLOAT:
4888 break;
4889 case GLSL_TYPE_UINT:
4890 case GLSL_TYPE_INT:
4891 if (state->is_version(120, 300))
4892 break;
4893 case GLSL_TYPE_DOUBLE:
4894 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4895 break;
4896 /* FALLTHROUGH */
4897 default:
4898 _mesa_glsl_error(& loc, state,
4899 "vertex shader input / attribute cannot have "
4900 "type %s`%s'",
4901 var->type->is_array() ? "array of " : "",
4902 check_type->name);
4903 error_emitted = true;
4904 }
4905
4906 if (!error_emitted && var->type->is_array() &&
4907 !state->check_version(150, 0, &loc,
4908 "vertex shader input / attribute "
4909 "cannot have array type")) {
4910 error_emitted = true;
4911 }
4912 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4913 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4914 *
4915 * Geometry shader input variables get the per-vertex values
4916 * written out by vertex shader output variables of the same
4917 * names. Since a geometry shader operates on a set of
4918 * vertices, each input varying variable (or input block, see
4919 * interface blocks below) needs to be declared as an array.
4920 */
4921 if (!var->type->is_array()) {
4922 _mesa_glsl_error(&loc, state,
4923 "geometry shader inputs must be arrays");
4924 }
4925
4926 handle_geometry_shader_input_decl(state, loc, var);
4927 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4928 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4929 *
4930 * It is a compile-time error to declare a fragment shader
4931 * input with, or that contains, any of the following types:
4932 *
4933 * * A boolean type
4934 * * An opaque type
4935 * * An array of arrays
4936 * * An array of structures
4937 * * A structure containing an array
4938 * * A structure containing a structure
4939 */
4940 if (state->es_shader) {
4941 const glsl_type *check_type = var->type->without_array();
4942 if (check_type->is_boolean() ||
4943 check_type->contains_opaque()) {
4944 _mesa_glsl_error(&loc, state,
4945 "fragment shader input cannot have type %s",
4946 check_type->name);
4947 }
4948 if (var->type->is_array() &&
4949 var->type->fields.array->is_array()) {
4950 _mesa_glsl_error(&loc, state,
4951 "%s shader output "
4952 "cannot have an array of arrays",
4953 _mesa_shader_stage_to_string(state->stage));
4954 }
4955 if (var->type->is_array() &&
4956 var->type->fields.array->is_record()) {
4957 _mesa_glsl_error(&loc, state,
4958 "fragment shader input "
4959 "cannot have an array of structs");
4960 }
4961 if (var->type->is_record()) {
4962 for (unsigned i = 0; i < var->type->length; i++) {
4963 if (var->type->fields.structure[i].type->is_array() ||
4964 var->type->fields.structure[i].type->is_record())
4965 _mesa_glsl_error(&loc, state,
4966 "fragement shader input cannot have "
4967 "a struct that contains an "
4968 "array or struct");
4969 }
4970 }
4971 }
4972 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4973 state->stage == MESA_SHADER_TESS_EVAL) {
4974 handle_tess_shader_input_decl(state, loc, var);
4975 }
4976 } else if (var->data.mode == ir_var_shader_out) {
4977 const glsl_type *check_type = var->type->without_array();
4978
4979 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4980 *
4981 * It is a compile-time error to declare a vertex, tessellation
4982 * evaluation, tessellation control, or geometry shader output
4983 * that contains any of the following:
4984 *
4985 * * A Boolean type (bool, bvec2 ...)
4986 * * An opaque type
4987 */
4988 if (check_type->is_boolean() || check_type->contains_opaque())
4989 _mesa_glsl_error(&loc, state,
4990 "%s shader output cannot have type %s",
4991 _mesa_shader_stage_to_string(state->stage),
4992 check_type->name);
4993
4994 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4995 *
4996 * It is a compile-time error to declare a fragment shader output
4997 * that contains any of the following:
4998 *
4999 * * A Boolean type (bool, bvec2 ...)
5000 * * A double-precision scalar or vector (double, dvec2 ...)
5001 * * An opaque type
5002 * * Any matrix type
5003 * * A structure
5004 */
5005 if (state->stage == MESA_SHADER_FRAGMENT) {
5006 if (check_type->is_record() || check_type->is_matrix())
5007 _mesa_glsl_error(&loc, state,
5008 "fragment shader output "
5009 "cannot have struct or matrix type");
5010 switch (check_type->base_type) {
5011 case GLSL_TYPE_UINT:
5012 case GLSL_TYPE_INT:
5013 case GLSL_TYPE_FLOAT:
5014 break;
5015 default:
5016 _mesa_glsl_error(&loc, state,
5017 "fragment shader output cannot have "
5018 "type %s", check_type->name);
5019 }
5020 }
5021
5022 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5023 *
5024 * It is a compile-time error to declare a vertex shader output
5025 * with, or that contains, any of the following types:
5026 *
5027 * * A boolean type
5028 * * An opaque type
5029 * * An array of arrays
5030 * * An array of structures
5031 * * A structure containing an array
5032 * * A structure containing a structure
5033 *
5034 * It is a compile-time error to declare a fragment shader output
5035 * with, or that contains, any of the following types:
5036 *
5037 * * A boolean type
5038 * * An opaque type
5039 * * A matrix
5040 * * A structure
5041 * * An array of array
5042 */
5043 if (state->es_shader) {
5044 if (var->type->is_array() &&
5045 var->type->fields.array->is_array()) {
5046 _mesa_glsl_error(&loc, state,
5047 "%s shader output "
5048 "cannot have an array of arrays",
5049 _mesa_shader_stage_to_string(state->stage));
5050 }
5051 if (state->stage == MESA_SHADER_VERTEX) {
5052 if (var->type->is_array() &&
5053 var->type->fields.array->is_record()) {
5054 _mesa_glsl_error(&loc, state,
5055 "vertex shader output "
5056 "cannot have an array of structs");
5057 }
5058 if (var->type->is_record()) {
5059 for (unsigned i = 0; i < var->type->length; i++) {
5060 if (var->type->fields.structure[i].type->is_array() ||
5061 var->type->fields.structure[i].type->is_record())
5062 _mesa_glsl_error(&loc, state,
5063 "vertex shader output cannot have a "
5064 "struct that contains an "
5065 "array or struct");
5066 }
5067 }
5068 }
5069 }
5070
5071 if (state->stage == MESA_SHADER_TESS_CTRL) {
5072 handle_tess_ctrl_shader_output_decl(state, loc, var);
5073 }
5074 } else if (var->type->contains_subroutine()) {
5075 /* declare subroutine uniforms as hidden */
5076 var->data.how_declared = ir_var_hidden;
5077 }
5078
5079 /* From section 4.3.4 of the GLSL 4.00 spec:
5080 * "Input variables may not be declared using the patch in qualifier
5081 * in tessellation control or geometry shaders."
5082 *
5083 * From section 4.3.6 of the GLSL 4.00 spec:
5084 * "It is an error to use patch out in a vertex, tessellation
5085 * evaluation, or geometry shader."
5086 *
5087 * This doesn't explicitly forbid using them in a fragment shader, but
5088 * that's probably just an oversight.
5089 */
5090 if (state->stage != MESA_SHADER_TESS_EVAL
5091 && this->type->qualifier.flags.q.patch
5092 && this->type->qualifier.flags.q.in) {
5093
5094 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5095 "tessellation evaluation shader");
5096 }
5097
5098 if (state->stage != MESA_SHADER_TESS_CTRL
5099 && this->type->qualifier.flags.q.patch
5100 && this->type->qualifier.flags.q.out) {
5101
5102 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5103 "tessellation control shader");
5104 }
5105
5106 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5107 */
5108 if (this->type->qualifier.precision != ast_precision_none) {
5109 state->check_precision_qualifiers_allowed(&loc);
5110 }
5111
5112 if (this->type->qualifier.precision != ast_precision_none &&
5113 !precision_qualifier_allowed(var->type)) {
5114 _mesa_glsl_error(&loc, state,
5115 "precision qualifiers apply only to floating point"
5116 ", integer and opaque types");
5117 }
5118
5119 /* From section 4.1.7 of the GLSL 4.40 spec:
5120 *
5121 * "[Opaque types] can only be declared as function
5122 * parameters or uniform-qualified variables."
5123 */
5124 if (var_type->contains_opaque() &&
5125 !this->type->qualifier.flags.q.uniform) {
5126 _mesa_glsl_error(&loc, state,
5127 "opaque variables must be declared uniform");
5128 }
5129
5130 /* Process the initializer and add its instructions to a temporary
5131 * list. This list will be added to the instruction stream (below) after
5132 * the declaration is added. This is done because in some cases (such as
5133 * redeclarations) the declaration may not actually be added to the
5134 * instruction stream.
5135 */
5136 exec_list initializer_instructions;
5137
5138 /* Examine var name here since var may get deleted in the next call */
5139 bool var_is_gl_id = is_gl_identifier(var->name);
5140
5141 ir_variable *earlier =
5142 get_variable_being_redeclared(var, decl->get_location(), state,
5143 false /* allow_all_redeclarations */);
5144 if (earlier != NULL) {
5145 if (var_is_gl_id &&
5146 earlier->data.how_declared == ir_var_declared_in_block) {
5147 _mesa_glsl_error(&loc, state,
5148 "`%s' has already been redeclared using "
5149 "gl_PerVertex", earlier->name);
5150 }
5151 earlier->data.how_declared = ir_var_declared_normally;
5152 }
5153
5154 if (decl->initializer != NULL) {
5155 result = process_initializer((earlier == NULL) ? var : earlier,
5156 decl, this->type,
5157 &initializer_instructions, state);
5158 } else {
5159 validate_array_dimensions(var_type, state, &loc);
5160 }
5161
5162 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5163 *
5164 * "It is an error to write to a const variable outside of
5165 * its declaration, so they must be initialized when
5166 * declared."
5167 */
5168 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5169 _mesa_glsl_error(& loc, state,
5170 "const declaration of `%s' must be initialized",
5171 decl->identifier);
5172 }
5173
5174 if (state->es_shader) {
5175 const glsl_type *const t = (earlier == NULL)
5176 ? var->type : earlier->type;
5177
5178 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5179 *
5180 * The GL_OES_tessellation_shader spec says about inputs:
5181 *
5182 * "Declaring an array size is optional. If no size is specified,
5183 * it will be taken from the implementation-dependent maximum
5184 * patch size (gl_MaxPatchVertices)."
5185 *
5186 * and about TCS outputs:
5187 *
5188 * "If no size is specified, it will be taken from output patch
5189 * size declared in the shader."
5190 *
5191 * The GL_OES_geometry_shader spec says:
5192 *
5193 * "All geometry shader input unsized array declarations will be
5194 * sized by an earlier input primitive layout qualifier, when
5195 * present, as per the following table."
5196 */
5197 const bool implicitly_sized =
5198 (var->data.mode == ir_var_shader_in &&
5199 state->stage >= MESA_SHADER_TESS_CTRL &&
5200 state->stage <= MESA_SHADER_GEOMETRY) ||
5201 (var->data.mode == ir_var_shader_out &&
5202 state->stage == MESA_SHADER_TESS_CTRL);
5203
5204 if (t->is_unsized_array() && !implicitly_sized)
5205 /* Section 10.17 of the GLSL ES 1.00 specification states that
5206 * unsized array declarations have been removed from the language.
5207 * Arrays that are sized using an initializer are still explicitly
5208 * sized. However, GLSL ES 1.00 does not allow array
5209 * initializers. That is only allowed in GLSL ES 3.00.
5210 *
5211 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5212 *
5213 * "An array type can also be formed without specifying a size
5214 * if the definition includes an initializer:
5215 *
5216 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5217 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5218 *
5219 * float a[5];
5220 * float b[] = a;"
5221 */
5222 _mesa_glsl_error(& loc, state,
5223 "unsized array declarations are not allowed in "
5224 "GLSL ES");
5225 }
5226
5227 /* If the declaration is not a redeclaration, there are a few additional
5228 * semantic checks that must be applied. In addition, variable that was
5229 * created for the declaration should be added to the IR stream.
5230 */
5231 if (earlier == NULL) {
5232 validate_identifier(decl->identifier, loc, state);
5233
5234 /* Add the variable to the symbol table. Note that the initializer's
5235 * IR was already processed earlier (though it hasn't been emitted
5236 * yet), without the variable in scope.
5237 *
5238 * This differs from most C-like languages, but it follows the GLSL
5239 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5240 * spec:
5241 *
5242 * "Within a declaration, the scope of a name starts immediately
5243 * after the initializer if present or immediately after the name
5244 * being declared if not."
5245 */
5246 if (!state->symbols->add_variable(var)) {
5247 YYLTYPE loc = this->get_location();
5248 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5249 "current scope", decl->identifier);
5250 continue;
5251 }
5252
5253 /* Push the variable declaration to the top. It means that all the
5254 * variable declarations will appear in a funny last-to-first order,
5255 * but otherwise we run into trouble if a function is prototyped, a
5256 * global var is decled, then the function is defined with usage of
5257 * the global var. See glslparsertest's CorrectModule.frag.
5258 */
5259 instructions->push_head(var);
5260 }
5261
5262 instructions->append_list(&initializer_instructions);
5263 }
5264
5265
5266 /* Generally, variable declarations do not have r-values. However,
5267 * one is used for the declaration in
5268 *
5269 * while (bool b = some_condition()) {
5270 * ...
5271 * }
5272 *
5273 * so we return the rvalue from the last seen declaration here.
5274 */
5275 return result;
5276 }
5277
5278
5279 ir_rvalue *
5280 ast_parameter_declarator::hir(exec_list *instructions,
5281 struct _mesa_glsl_parse_state *state)
5282 {
5283 void *ctx = state;
5284 const struct glsl_type *type;
5285 const char *name = NULL;
5286 YYLTYPE loc = this->get_location();
5287
5288 type = this->type->glsl_type(& name, state);
5289
5290 if (type == NULL) {
5291 if (name != NULL) {
5292 _mesa_glsl_error(& loc, state,
5293 "invalid type `%s' in declaration of `%s'",
5294 name, this->identifier);
5295 } else {
5296 _mesa_glsl_error(& loc, state,
5297 "invalid type in declaration of `%s'",
5298 this->identifier);
5299 }
5300
5301 type = glsl_type::error_type;
5302 }
5303
5304 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5305 *
5306 * "Functions that accept no input arguments need not use void in the
5307 * argument list because prototypes (or definitions) are required and
5308 * therefore there is no ambiguity when an empty argument list "( )" is
5309 * declared. The idiom "(void)" as a parameter list is provided for
5310 * convenience."
5311 *
5312 * Placing this check here prevents a void parameter being set up
5313 * for a function, which avoids tripping up checks for main taking
5314 * parameters and lookups of an unnamed symbol.
5315 */
5316 if (type->is_void()) {
5317 if (this->identifier != NULL)
5318 _mesa_glsl_error(& loc, state,
5319 "named parameter cannot have type `void'");
5320
5321 is_void = true;
5322 return NULL;
5323 }
5324
5325 if (formal_parameter && (this->identifier == NULL)) {
5326 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5327 return NULL;
5328 }
5329
5330 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5331 * call already handled the "vec4[..] foo" case.
5332 */
5333 type = process_array_type(&loc, type, this->array_specifier, state);
5334
5335 if (!type->is_error() && type->is_unsized_array()) {
5336 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5337 "a declared size");
5338 type = glsl_type::error_type;
5339 }
5340
5341 is_void = false;
5342 ir_variable *var = new(ctx)
5343 ir_variable(type, this->identifier, ir_var_function_in);
5344
5345 /* Apply any specified qualifiers to the parameter declaration. Note that
5346 * for function parameters the default mode is 'in'.
5347 */
5348 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5349 true);
5350
5351 /* From section 4.1.7 of the GLSL 4.40 spec:
5352 *
5353 * "Opaque variables cannot be treated as l-values; hence cannot
5354 * be used as out or inout function parameters, nor can they be
5355 * assigned into."
5356 */
5357 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5358 && type->contains_opaque()) {
5359 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5360 "contain opaque variables");
5361 type = glsl_type::error_type;
5362 }
5363
5364 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5365 *
5366 * "When calling a function, expressions that do not evaluate to
5367 * l-values cannot be passed to parameters declared as out or inout."
5368 *
5369 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5370 *
5371 * "Other binary or unary expressions, non-dereferenced arrays,
5372 * function names, swizzles with repeated fields, and constants
5373 * cannot be l-values."
5374 *
5375 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5376 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5377 */
5378 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5379 && type->is_array()
5380 && !state->check_version(120, 100, &loc,
5381 "arrays cannot be out or inout parameters")) {
5382 type = glsl_type::error_type;
5383 }
5384
5385 instructions->push_tail(var);
5386
5387 /* Parameter declarations do not have r-values.
5388 */
5389 return NULL;
5390 }
5391
5392
5393 void
5394 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5395 bool formal,
5396 exec_list *ir_parameters,
5397 _mesa_glsl_parse_state *state)
5398 {
5399 ast_parameter_declarator *void_param = NULL;
5400 unsigned count = 0;
5401
5402 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5403 param->formal_parameter = formal;
5404 param->hir(ir_parameters, state);
5405
5406 if (param->is_void)
5407 void_param = param;
5408
5409 count++;
5410 }
5411
5412 if ((void_param != NULL) && (count > 1)) {
5413 YYLTYPE loc = void_param->get_location();
5414
5415 _mesa_glsl_error(& loc, state,
5416 "`void' parameter must be only parameter");
5417 }
5418 }
5419
5420
5421 void
5422 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5423 {
5424 /* IR invariants disallow function declarations or definitions
5425 * nested within other function definitions. But there is no
5426 * requirement about the relative order of function declarations
5427 * and definitions with respect to one another. So simply insert
5428 * the new ir_function block at the end of the toplevel instruction
5429 * list.
5430 */
5431 state->toplevel_ir->push_tail(f);
5432 }
5433
5434
5435 ir_rvalue *
5436 ast_function::hir(exec_list *instructions,
5437 struct _mesa_glsl_parse_state *state)
5438 {
5439 void *ctx = state;
5440 ir_function *f = NULL;
5441 ir_function_signature *sig = NULL;
5442 exec_list hir_parameters;
5443 YYLTYPE loc = this->get_location();
5444
5445 const char *const name = identifier;
5446
5447 /* New functions are always added to the top-level IR instruction stream,
5448 * so this instruction list pointer is ignored. See also emit_function
5449 * (called below).
5450 */
5451 (void) instructions;
5452
5453 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5454 *
5455 * "Function declarations (prototypes) cannot occur inside of functions;
5456 * they must be at global scope, or for the built-in functions, outside
5457 * the global scope."
5458 *
5459 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5460 *
5461 * "User defined functions may only be defined within the global scope."
5462 *
5463 * Note that this language does not appear in GLSL 1.10.
5464 */
5465 if ((state->current_function != NULL) &&
5466 state->is_version(120, 100)) {
5467 YYLTYPE loc = this->get_location();
5468 _mesa_glsl_error(&loc, state,
5469 "declaration of function `%s' not allowed within "
5470 "function body", name);
5471 }
5472
5473 validate_identifier(name, this->get_location(), state);
5474
5475 /* Convert the list of function parameters to HIR now so that they can be
5476 * used below to compare this function's signature with previously seen
5477 * signatures for functions with the same name.
5478 */
5479 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5480 is_definition,
5481 & hir_parameters, state);
5482
5483 const char *return_type_name;
5484 const glsl_type *return_type =
5485 this->return_type->glsl_type(& return_type_name, state);
5486
5487 if (!return_type) {
5488 YYLTYPE loc = this->get_location();
5489 _mesa_glsl_error(&loc, state,
5490 "function `%s' has undeclared return type `%s'",
5491 name, return_type_name);
5492 return_type = glsl_type::error_type;
5493 }
5494
5495 /* ARB_shader_subroutine states:
5496 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5497 * subroutine(...) to a function declaration."
5498 */
5499 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5500 YYLTYPE loc = this->get_location();
5501 _mesa_glsl_error(&loc, state,
5502 "function declaration `%s' cannot have subroutine prepended",
5503 name);
5504 }
5505
5506 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5507 * "No qualifier is allowed on the return type of a function."
5508 */
5509 if (this->return_type->has_qualifiers(state)) {
5510 YYLTYPE loc = this->get_location();
5511 _mesa_glsl_error(& loc, state,
5512 "function `%s' return type has qualifiers", name);
5513 }
5514
5515 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5516 *
5517 * "Arrays are allowed as arguments and as the return type. In both
5518 * cases, the array must be explicitly sized."
5519 */
5520 if (return_type->is_unsized_array()) {
5521 YYLTYPE loc = this->get_location();
5522 _mesa_glsl_error(& loc, state,
5523 "function `%s' return type array must be explicitly "
5524 "sized", name);
5525 }
5526
5527 /* From section 4.1.7 of the GLSL 4.40 spec:
5528 *
5529 * "[Opaque types] can only be declared as function parameters
5530 * or uniform-qualified variables."
5531 */
5532 if (return_type->contains_opaque()) {
5533 YYLTYPE loc = this->get_location();
5534 _mesa_glsl_error(&loc, state,
5535 "function `%s' return type can't contain an opaque type",
5536 name);
5537 }
5538
5539 /**/
5540 if (return_type->is_subroutine()) {
5541 YYLTYPE loc = this->get_location();
5542 _mesa_glsl_error(&loc, state,
5543 "function `%s' return type can't be a subroutine type",
5544 name);
5545 }
5546
5547
5548 /* Create an ir_function if one doesn't already exist. */
5549 f = state->symbols->get_function(name);
5550 if (f == NULL) {
5551 f = new(ctx) ir_function(name);
5552 if (!this->return_type->qualifier.flags.q.subroutine) {
5553 if (!state->symbols->add_function(f)) {
5554 /* This function name shadows a non-function use of the same name. */
5555 YYLTYPE loc = this->get_location();
5556 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5557 "non-function", name);
5558 return NULL;
5559 }
5560 }
5561 emit_function(state, f);
5562 }
5563
5564 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5565 *
5566 * "A shader cannot redefine or overload built-in functions."
5567 *
5568 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5569 *
5570 * "User code can overload the built-in functions but cannot redefine
5571 * them."
5572 */
5573 if (state->es_shader && state->language_version >= 300) {
5574 /* Local shader has no exact candidates; check the built-ins. */
5575 _mesa_glsl_initialize_builtin_functions();
5576 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5577 YYLTYPE loc = this->get_location();
5578 _mesa_glsl_error(& loc, state,
5579 "A shader cannot redefine or overload built-in "
5580 "function `%s' in GLSL ES 3.00", name);
5581 return NULL;
5582 }
5583 }
5584
5585 /* Verify that this function's signature either doesn't match a previously
5586 * seen signature for a function with the same name, or, if a match is found,
5587 * that the previously seen signature does not have an associated definition.
5588 */
5589 if (state->es_shader || f->has_user_signature()) {
5590 sig = f->exact_matching_signature(state, &hir_parameters);
5591 if (sig != NULL) {
5592 const char *badvar = sig->qualifiers_match(&hir_parameters);
5593 if (badvar != NULL) {
5594 YYLTYPE loc = this->get_location();
5595
5596 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5597 "qualifiers don't match prototype", name, badvar);
5598 }
5599
5600 if (sig->return_type != return_type) {
5601 YYLTYPE loc = this->get_location();
5602
5603 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5604 "match prototype", name);
5605 }
5606
5607 if (sig->is_defined) {
5608 if (is_definition) {
5609 YYLTYPE loc = this->get_location();
5610 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5611 } else {
5612 /* We just encountered a prototype that exactly matches a
5613 * function that's already been defined. This is redundant,
5614 * and we should ignore it.
5615 */
5616 return NULL;
5617 }
5618 }
5619 }
5620 }
5621
5622 /* Verify the return type of main() */
5623 if (strcmp(name, "main") == 0) {
5624 if (! return_type->is_void()) {
5625 YYLTYPE loc = this->get_location();
5626
5627 _mesa_glsl_error(& loc, state, "main() must return void");
5628 }
5629
5630 if (!hir_parameters.is_empty()) {
5631 YYLTYPE loc = this->get_location();
5632
5633 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5634 }
5635 }
5636
5637 /* Finish storing the information about this new function in its signature.
5638 */
5639 if (sig == NULL) {
5640 sig = new(ctx) ir_function_signature(return_type);
5641 f->add_signature(sig);
5642 }
5643
5644 sig->replace_parameters(&hir_parameters);
5645 signature = sig;
5646
5647 if (this->return_type->qualifier.flags.q.subroutine_def) {
5648 int idx;
5649
5650 if (this->return_type->qualifier.flags.q.explicit_index) {
5651 unsigned qual_index;
5652 if (process_qualifier_constant(state, &loc, "index",
5653 this->return_type->qualifier.index,
5654 &qual_index)) {
5655 if (!state->has_explicit_uniform_location()) {
5656 _mesa_glsl_error(&loc, state, "subroutine index requires "
5657 "GL_ARB_explicit_uniform_location or "
5658 "GLSL 4.30");
5659 } else if (qual_index >= MAX_SUBROUTINES) {
5660 _mesa_glsl_error(&loc, state,
5661 "invalid subroutine index (%d) index must "
5662 "be a number between 0 and "
5663 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5664 MAX_SUBROUTINES - 1);
5665 } else {
5666 f->subroutine_index = qual_index;
5667 }
5668 }
5669 }
5670
5671 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5672 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5673 f->num_subroutine_types);
5674 idx = 0;
5675 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5676 const struct glsl_type *type;
5677 /* the subroutine type must be already declared */
5678 type = state->symbols->get_type(decl->identifier);
5679 if (!type) {
5680 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5681 }
5682
5683 for (int i = 0; i < state->num_subroutine_types; i++) {
5684 ir_function *fn = state->subroutine_types[i];
5685 ir_function_signature *tsig = NULL;
5686
5687 if (strcmp(fn->name, decl->identifier))
5688 continue;
5689
5690 tsig = fn->matching_signature(state, &sig->parameters,
5691 false);
5692 if (!tsig) {
5693 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5694 } else {
5695 if (tsig->return_type != sig->return_type) {
5696 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5697 }
5698 }
5699 }
5700 f->subroutine_types[idx++] = type;
5701 }
5702 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5703 ir_function *,
5704 state->num_subroutines + 1);
5705 state->subroutines[state->num_subroutines] = f;
5706 state->num_subroutines++;
5707
5708 }
5709
5710 if (this->return_type->qualifier.flags.q.subroutine) {
5711 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5712 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5713 return NULL;
5714 }
5715 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5716 ir_function *,
5717 state->num_subroutine_types + 1);
5718 state->subroutine_types[state->num_subroutine_types] = f;
5719 state->num_subroutine_types++;
5720
5721 f->is_subroutine = true;
5722 }
5723
5724 /* Function declarations (prototypes) do not have r-values.
5725 */
5726 return NULL;
5727 }
5728
5729
5730 ir_rvalue *
5731 ast_function_definition::hir(exec_list *instructions,
5732 struct _mesa_glsl_parse_state *state)
5733 {
5734 prototype->is_definition = true;
5735 prototype->hir(instructions, state);
5736
5737 ir_function_signature *signature = prototype->signature;
5738 if (signature == NULL)
5739 return NULL;
5740
5741 assert(state->current_function == NULL);
5742 state->current_function = signature;
5743 state->found_return = false;
5744
5745 /* Duplicate parameters declared in the prototype as concrete variables.
5746 * Add these to the symbol table.
5747 */
5748 state->symbols->push_scope();
5749 foreach_in_list(ir_variable, var, &signature->parameters) {
5750 assert(var->as_variable() != NULL);
5751
5752 /* The only way a parameter would "exist" is if two parameters have
5753 * the same name.
5754 */
5755 if (state->symbols->name_declared_this_scope(var->name)) {
5756 YYLTYPE loc = this->get_location();
5757
5758 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5759 } else {
5760 state->symbols->add_variable(var);
5761 }
5762 }
5763
5764 /* Convert the body of the function to HIR. */
5765 this->body->hir(&signature->body, state);
5766 signature->is_defined = true;
5767
5768 state->symbols->pop_scope();
5769
5770 assert(state->current_function == signature);
5771 state->current_function = NULL;
5772
5773 if (!signature->return_type->is_void() && !state->found_return) {
5774 YYLTYPE loc = this->get_location();
5775 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5776 "%s, but no return statement",
5777 signature->function_name(),
5778 signature->return_type->name);
5779 }
5780
5781 /* Function definitions do not have r-values.
5782 */
5783 return NULL;
5784 }
5785
5786
5787 ir_rvalue *
5788 ast_jump_statement::hir(exec_list *instructions,
5789 struct _mesa_glsl_parse_state *state)
5790 {
5791 void *ctx = state;
5792
5793 switch (mode) {
5794 case ast_return: {
5795 ir_return *inst;
5796 assert(state->current_function);
5797
5798 if (opt_return_value) {
5799 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5800
5801 /* The value of the return type can be NULL if the shader says
5802 * 'return foo();' and foo() is a function that returns void.
5803 *
5804 * NOTE: The GLSL spec doesn't say that this is an error. The type
5805 * of the return value is void. If the return type of the function is
5806 * also void, then this should compile without error. Seriously.
5807 */
5808 const glsl_type *const ret_type =
5809 (ret == NULL) ? glsl_type::void_type : ret->type;
5810
5811 /* Implicit conversions are not allowed for return values prior to
5812 * ARB_shading_language_420pack.
5813 */
5814 if (state->current_function->return_type != ret_type) {
5815 YYLTYPE loc = this->get_location();
5816
5817 if (state->has_420pack()) {
5818 if (!apply_implicit_conversion(state->current_function->return_type,
5819 ret, state)) {
5820 _mesa_glsl_error(& loc, state,
5821 "could not implicitly convert return value "
5822 "to %s, in function `%s'",
5823 state->current_function->return_type->name,
5824 state->current_function->function_name());
5825 }
5826 } else {
5827 _mesa_glsl_error(& loc, state,
5828 "`return' with wrong type %s, in function `%s' "
5829 "returning %s",
5830 ret_type->name,
5831 state->current_function->function_name(),
5832 state->current_function->return_type->name);
5833 }
5834 } else if (state->current_function->return_type->base_type ==
5835 GLSL_TYPE_VOID) {
5836 YYLTYPE loc = this->get_location();
5837
5838 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5839 * specs add a clarification:
5840 *
5841 * "A void function can only use return without a return argument, even if
5842 * the return argument has void type. Return statements only accept values:
5843 *
5844 * void func1() { }
5845 * void func2() { return func1(); } // illegal return statement"
5846 */
5847 _mesa_glsl_error(& loc, state,
5848 "void functions can only use `return' without a "
5849 "return argument");
5850 }
5851
5852 inst = new(ctx) ir_return(ret);
5853 } else {
5854 if (state->current_function->return_type->base_type !=
5855 GLSL_TYPE_VOID) {
5856 YYLTYPE loc = this->get_location();
5857
5858 _mesa_glsl_error(& loc, state,
5859 "`return' with no value, in function %s returning "
5860 "non-void",
5861 state->current_function->function_name());
5862 }
5863 inst = new(ctx) ir_return;
5864 }
5865
5866 state->found_return = true;
5867 instructions->push_tail(inst);
5868 break;
5869 }
5870
5871 case ast_discard:
5872 if (state->stage != MESA_SHADER_FRAGMENT) {
5873 YYLTYPE loc = this->get_location();
5874
5875 _mesa_glsl_error(& loc, state,
5876 "`discard' may only appear in a fragment shader");
5877 }
5878 instructions->push_tail(new(ctx) ir_discard);
5879 break;
5880
5881 case ast_break:
5882 case ast_continue:
5883 if (mode == ast_continue &&
5884 state->loop_nesting_ast == NULL) {
5885 YYLTYPE loc = this->get_location();
5886
5887 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5888 } else if (mode == ast_break &&
5889 state->loop_nesting_ast == NULL &&
5890 state->switch_state.switch_nesting_ast == NULL) {
5891 YYLTYPE loc = this->get_location();
5892
5893 _mesa_glsl_error(& loc, state,
5894 "break may only appear in a loop or a switch");
5895 } else {
5896 /* For a loop, inline the for loop expression again, since we don't
5897 * know where near the end of the loop body the normal copy of it is
5898 * going to be placed. Same goes for the condition for a do-while
5899 * loop.
5900 */
5901 if (state->loop_nesting_ast != NULL &&
5902 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5903 if (state->loop_nesting_ast->rest_expression) {
5904 state->loop_nesting_ast->rest_expression->hir(instructions,
5905 state);
5906 }
5907 if (state->loop_nesting_ast->mode ==
5908 ast_iteration_statement::ast_do_while) {
5909 state->loop_nesting_ast->condition_to_hir(instructions, state);
5910 }
5911 }
5912
5913 if (state->switch_state.is_switch_innermost &&
5914 mode == ast_continue) {
5915 /* Set 'continue_inside' to true. */
5916 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5917 ir_dereference_variable *deref_continue_inside_var =
5918 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5919 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5920 true_val));
5921
5922 /* Break out from the switch, continue for the loop will
5923 * be called right after switch. */
5924 ir_loop_jump *const jump =
5925 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5926 instructions->push_tail(jump);
5927
5928 } else if (state->switch_state.is_switch_innermost &&
5929 mode == ast_break) {
5930 /* Force break out of switch by inserting a break. */
5931 ir_loop_jump *const jump =
5932 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5933 instructions->push_tail(jump);
5934 } else {
5935 ir_loop_jump *const jump =
5936 new(ctx) ir_loop_jump((mode == ast_break)
5937 ? ir_loop_jump::jump_break
5938 : ir_loop_jump::jump_continue);
5939 instructions->push_tail(jump);
5940 }
5941 }
5942
5943 break;
5944 }
5945
5946 /* Jump instructions do not have r-values.
5947 */
5948 return NULL;
5949 }
5950
5951
5952 ir_rvalue *
5953 ast_selection_statement::hir(exec_list *instructions,
5954 struct _mesa_glsl_parse_state *state)
5955 {
5956 void *ctx = state;
5957
5958 ir_rvalue *const condition = this->condition->hir(instructions, state);
5959
5960 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5961 *
5962 * "Any expression whose type evaluates to a Boolean can be used as the
5963 * conditional expression bool-expression. Vector types are not accepted
5964 * as the expression to if."
5965 *
5966 * The checks are separated so that higher quality diagnostics can be
5967 * generated for cases where both rules are violated.
5968 */
5969 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5970 YYLTYPE loc = this->condition->get_location();
5971
5972 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5973 "boolean");
5974 }
5975
5976 ir_if *const stmt = new(ctx) ir_if(condition);
5977
5978 if (then_statement != NULL) {
5979 state->symbols->push_scope();
5980 then_statement->hir(& stmt->then_instructions, state);
5981 state->symbols->pop_scope();
5982 }
5983
5984 if (else_statement != NULL) {
5985 state->symbols->push_scope();
5986 else_statement->hir(& stmt->else_instructions, state);
5987 state->symbols->pop_scope();
5988 }
5989
5990 instructions->push_tail(stmt);
5991
5992 /* if-statements do not have r-values.
5993 */
5994 return NULL;
5995 }
5996
5997
5998 /* Used for detection of duplicate case values, compare
5999 * given contents directly.
6000 */
6001 static bool
6002 compare_case_value(const void *a, const void *b)
6003 {
6004 return *(unsigned *) a == *(unsigned *) b;
6005 }
6006
6007
6008 /* Used for detection of duplicate case values, just
6009 * returns key contents as is.
6010 */
6011 static unsigned
6012 key_contents(const void *key)
6013 {
6014 return *(unsigned *) key;
6015 }
6016
6017
6018 ir_rvalue *
6019 ast_switch_statement::hir(exec_list *instructions,
6020 struct _mesa_glsl_parse_state *state)
6021 {
6022 void *ctx = state;
6023
6024 ir_rvalue *const test_expression =
6025 this->test_expression->hir(instructions, state);
6026
6027 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6028 *
6029 * "The type of init-expression in a switch statement must be a
6030 * scalar integer."
6031 */
6032 if (!test_expression->type->is_scalar() ||
6033 !test_expression->type->is_integer()) {
6034 YYLTYPE loc = this->test_expression->get_location();
6035
6036 _mesa_glsl_error(& loc,
6037 state,
6038 "switch-statement expression must be scalar "
6039 "integer");
6040 }
6041
6042 /* Track the switch-statement nesting in a stack-like manner.
6043 */
6044 struct glsl_switch_state saved = state->switch_state;
6045
6046 state->switch_state.is_switch_innermost = true;
6047 state->switch_state.switch_nesting_ast = this;
6048 state->switch_state.labels_ht =
6049 _mesa_hash_table_create(NULL, key_contents,
6050 compare_case_value);
6051 state->switch_state.previous_default = NULL;
6052
6053 /* Initalize is_fallthru state to false.
6054 */
6055 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6056 state->switch_state.is_fallthru_var =
6057 new(ctx) ir_variable(glsl_type::bool_type,
6058 "switch_is_fallthru_tmp",
6059 ir_var_temporary);
6060 instructions->push_tail(state->switch_state.is_fallthru_var);
6061
6062 ir_dereference_variable *deref_is_fallthru_var =
6063 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6064 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6065 is_fallthru_val));
6066
6067 /* Initialize continue_inside state to false.
6068 */
6069 state->switch_state.continue_inside =
6070 new(ctx) ir_variable(glsl_type::bool_type,
6071 "continue_inside_tmp",
6072 ir_var_temporary);
6073 instructions->push_tail(state->switch_state.continue_inside);
6074
6075 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6076 ir_dereference_variable *deref_continue_inside_var =
6077 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6078 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6079 false_val));
6080
6081 state->switch_state.run_default =
6082 new(ctx) ir_variable(glsl_type::bool_type,
6083 "run_default_tmp",
6084 ir_var_temporary);
6085 instructions->push_tail(state->switch_state.run_default);
6086
6087 /* Loop around the switch is used for flow control. */
6088 ir_loop * loop = new(ctx) ir_loop();
6089 instructions->push_tail(loop);
6090
6091 /* Cache test expression.
6092 */
6093 test_to_hir(&loop->body_instructions, state);
6094
6095 /* Emit code for body of switch stmt.
6096 */
6097 body->hir(&loop->body_instructions, state);
6098
6099 /* Insert a break at the end to exit loop. */
6100 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6101 loop->body_instructions.push_tail(jump);
6102
6103 /* If we are inside loop, check if continue got called inside switch. */
6104 if (state->loop_nesting_ast != NULL) {
6105 ir_dereference_variable *deref_continue_inside =
6106 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6107 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6108 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6109
6110 if (state->loop_nesting_ast != NULL) {
6111 if (state->loop_nesting_ast->rest_expression) {
6112 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6113 state);
6114 }
6115 if (state->loop_nesting_ast->mode ==
6116 ast_iteration_statement::ast_do_while) {
6117 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6118 }
6119 }
6120 irif->then_instructions.push_tail(jump);
6121 instructions->push_tail(irif);
6122 }
6123
6124 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6125
6126 state->switch_state = saved;
6127
6128 /* Switch statements do not have r-values. */
6129 return NULL;
6130 }
6131
6132
6133 void
6134 ast_switch_statement::test_to_hir(exec_list *instructions,
6135 struct _mesa_glsl_parse_state *state)
6136 {
6137 void *ctx = state;
6138
6139 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6140 * on the switch test case. The first one would be already raised when
6141 * getting the test_expression at ast_switch_statement::hir
6142 */
6143 test_expression->set_is_lhs(true);
6144 /* Cache value of test expression. */
6145 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6146
6147 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6148 "switch_test_tmp",
6149 ir_var_temporary);
6150 ir_dereference_variable *deref_test_var =
6151 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6152
6153 instructions->push_tail(state->switch_state.test_var);
6154 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6155 }
6156
6157
6158 ir_rvalue *
6159 ast_switch_body::hir(exec_list *instructions,
6160 struct _mesa_glsl_parse_state *state)
6161 {
6162 if (stmts != NULL)
6163 stmts->hir(instructions, state);
6164
6165 /* Switch bodies do not have r-values. */
6166 return NULL;
6167 }
6168
6169 ir_rvalue *
6170 ast_case_statement_list::hir(exec_list *instructions,
6171 struct _mesa_glsl_parse_state *state)
6172 {
6173 exec_list default_case, after_default, tmp;
6174
6175 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6176 case_stmt->hir(&tmp, state);
6177
6178 /* Default case. */
6179 if (state->switch_state.previous_default && default_case.is_empty()) {
6180 default_case.append_list(&tmp);
6181 continue;
6182 }
6183
6184 /* If default case found, append 'after_default' list. */
6185 if (!default_case.is_empty())
6186 after_default.append_list(&tmp);
6187 else
6188 instructions->append_list(&tmp);
6189 }
6190
6191 /* Handle the default case. This is done here because default might not be
6192 * the last case. We need to add checks against following cases first to see
6193 * if default should be chosen or not.
6194 */
6195 if (!default_case.is_empty()) {
6196
6197 ir_rvalue *const true_val = new (state) ir_constant(true);
6198 ir_dereference_variable *deref_run_default_var =
6199 new(state) ir_dereference_variable(state->switch_state.run_default);
6200
6201 /* Choose to run default case initially, following conditional
6202 * assignments might change this.
6203 */
6204 ir_assignment *const init_var =
6205 new(state) ir_assignment(deref_run_default_var, true_val);
6206 instructions->push_tail(init_var);
6207
6208 /* Default case was the last one, no checks required. */
6209 if (after_default.is_empty()) {
6210 instructions->append_list(&default_case);
6211 return NULL;
6212 }
6213
6214 foreach_in_list(ir_instruction, ir, &after_default) {
6215 ir_assignment *assign = ir->as_assignment();
6216
6217 if (!assign)
6218 continue;
6219
6220 /* Clone the check between case label and init expression. */
6221 ir_expression *exp = (ir_expression*) assign->condition;
6222 ir_expression *clone = exp->clone(state, NULL);
6223
6224 ir_dereference_variable *deref_var =
6225 new(state) ir_dereference_variable(state->switch_state.run_default);
6226 ir_rvalue *const false_val = new (state) ir_constant(false);
6227
6228 ir_assignment *const set_false =
6229 new(state) ir_assignment(deref_var, false_val, clone);
6230
6231 instructions->push_tail(set_false);
6232 }
6233
6234 /* Append default case and all cases after it. */
6235 instructions->append_list(&default_case);
6236 instructions->append_list(&after_default);
6237 }
6238
6239 /* Case statements do not have r-values. */
6240 return NULL;
6241 }
6242
6243 ir_rvalue *
6244 ast_case_statement::hir(exec_list *instructions,
6245 struct _mesa_glsl_parse_state *state)
6246 {
6247 labels->hir(instructions, state);
6248
6249 /* Guard case statements depending on fallthru state. */
6250 ir_dereference_variable *const deref_fallthru_guard =
6251 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6252 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6253
6254 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6255 stmt->hir(& test_fallthru->then_instructions, state);
6256
6257 instructions->push_tail(test_fallthru);
6258
6259 /* Case statements do not have r-values. */
6260 return NULL;
6261 }
6262
6263
6264 ir_rvalue *
6265 ast_case_label_list::hir(exec_list *instructions,
6266 struct _mesa_glsl_parse_state *state)
6267 {
6268 foreach_list_typed (ast_case_label, label, link, & this->labels)
6269 label->hir(instructions, state);
6270
6271 /* Case labels do not have r-values. */
6272 return NULL;
6273 }
6274
6275 ir_rvalue *
6276 ast_case_label::hir(exec_list *instructions,
6277 struct _mesa_glsl_parse_state *state)
6278 {
6279 void *ctx = state;
6280
6281 ir_dereference_variable *deref_fallthru_var =
6282 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6283
6284 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6285
6286 /* If not default case, ... */
6287 if (this->test_value != NULL) {
6288 /* Conditionally set fallthru state based on
6289 * comparison of cached test expression value to case label.
6290 */
6291 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6292 ir_constant *label_const = label_rval->constant_expression_value();
6293
6294 if (!label_const) {
6295 YYLTYPE loc = this->test_value->get_location();
6296
6297 _mesa_glsl_error(& loc, state,
6298 "switch statement case label must be a "
6299 "constant expression");
6300
6301 /* Stuff a dummy value in to allow processing to continue. */
6302 label_const = new(ctx) ir_constant(0);
6303 } else {
6304 hash_entry *entry =
6305 _mesa_hash_table_search(state->switch_state.labels_ht,
6306 (void *)(uintptr_t)&label_const->value.u[0]);
6307
6308 if (entry) {
6309 ast_expression *previous_label = (ast_expression *) entry->data;
6310 YYLTYPE loc = this->test_value->get_location();
6311 _mesa_glsl_error(& loc, state, "duplicate case value");
6312
6313 loc = previous_label->get_location();
6314 _mesa_glsl_error(& loc, state, "this is the previous case label");
6315 } else {
6316 _mesa_hash_table_insert(state->switch_state.labels_ht,
6317 (void *)(uintptr_t)&label_const->value.u[0],
6318 this->test_value);
6319 }
6320 }
6321
6322 ir_dereference_variable *deref_test_var =
6323 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6324
6325 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6326 label_const,
6327 deref_test_var);
6328
6329 /*
6330 * From GLSL 4.40 specification section 6.2 ("Selection"):
6331 *
6332 * "The type of the init-expression value in a switch statement must
6333 * be a scalar int or uint. The type of the constant-expression value
6334 * in a case label also must be a scalar int or uint. When any pair
6335 * of these values is tested for "equal value" and the types do not
6336 * match, an implicit conversion will be done to convert the int to a
6337 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6338 * is done."
6339 */
6340 if (label_const->type != state->switch_state.test_var->type) {
6341 YYLTYPE loc = this->test_value->get_location();
6342
6343 const glsl_type *type_a = label_const->type;
6344 const glsl_type *type_b = state->switch_state.test_var->type;
6345
6346 /* Check if int->uint implicit conversion is supported. */
6347 bool integer_conversion_supported =
6348 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6349 state);
6350
6351 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6352 !integer_conversion_supported) {
6353 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6354 "init-expression and case label (%s != %s)",
6355 type_a->name, type_b->name);
6356 } else {
6357 /* Conversion of the case label. */
6358 if (type_a->base_type == GLSL_TYPE_INT) {
6359 if (!apply_implicit_conversion(glsl_type::uint_type,
6360 test_cond->operands[0], state))
6361 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6362 } else {
6363 /* Conversion of the init-expression value. */
6364 if (!apply_implicit_conversion(glsl_type::uint_type,
6365 test_cond->operands[1], state))
6366 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6367 }
6368 }
6369 }
6370
6371 ir_assignment *set_fallthru_on_test =
6372 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6373
6374 instructions->push_tail(set_fallthru_on_test);
6375 } else { /* default case */
6376 if (state->switch_state.previous_default) {
6377 YYLTYPE loc = this->get_location();
6378 _mesa_glsl_error(& loc, state,
6379 "multiple default labels in one switch");
6380
6381 loc = state->switch_state.previous_default->get_location();
6382 _mesa_glsl_error(& loc, state, "this is the first default label");
6383 }
6384 state->switch_state.previous_default = this;
6385
6386 /* Set fallthru condition on 'run_default' bool. */
6387 ir_dereference_variable *deref_run_default =
6388 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6389 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6390 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6391 cond_true,
6392 deref_run_default);
6393
6394 /* Set falltrhu state. */
6395 ir_assignment *set_fallthru =
6396 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6397
6398 instructions->push_tail(set_fallthru);
6399 }
6400
6401 /* Case statements do not have r-values. */
6402 return NULL;
6403 }
6404
6405 void
6406 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6407 struct _mesa_glsl_parse_state *state)
6408 {
6409 void *ctx = state;
6410
6411 if (condition != NULL) {
6412 ir_rvalue *const cond =
6413 condition->hir(instructions, state);
6414
6415 if ((cond == NULL)
6416 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6417 YYLTYPE loc = condition->get_location();
6418
6419 _mesa_glsl_error(& loc, state,
6420 "loop condition must be scalar boolean");
6421 } else {
6422 /* As the first code in the loop body, generate a block that looks
6423 * like 'if (!condition) break;' as the loop termination condition.
6424 */
6425 ir_rvalue *const not_cond =
6426 new(ctx) ir_expression(ir_unop_logic_not, cond);
6427
6428 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6429
6430 ir_jump *const break_stmt =
6431 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6432
6433 if_stmt->then_instructions.push_tail(break_stmt);
6434 instructions->push_tail(if_stmt);
6435 }
6436 }
6437 }
6438
6439
6440 ir_rvalue *
6441 ast_iteration_statement::hir(exec_list *instructions,
6442 struct _mesa_glsl_parse_state *state)
6443 {
6444 void *ctx = state;
6445
6446 /* For-loops and while-loops start a new scope, but do-while loops do not.
6447 */
6448 if (mode != ast_do_while)
6449 state->symbols->push_scope();
6450
6451 if (init_statement != NULL)
6452 init_statement->hir(instructions, state);
6453
6454 ir_loop *const stmt = new(ctx) ir_loop();
6455 instructions->push_tail(stmt);
6456
6457 /* Track the current loop nesting. */
6458 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6459
6460 state->loop_nesting_ast = this;
6461
6462 /* Likewise, indicate that following code is closest to a loop,
6463 * NOT closest to a switch.
6464 */
6465 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6466 state->switch_state.is_switch_innermost = false;
6467
6468 if (mode != ast_do_while)
6469 condition_to_hir(&stmt->body_instructions, state);
6470
6471 if (body != NULL)
6472 body->hir(& stmt->body_instructions, state);
6473
6474 if (rest_expression != NULL)
6475 rest_expression->hir(& stmt->body_instructions, state);
6476
6477 if (mode == ast_do_while)
6478 condition_to_hir(&stmt->body_instructions, state);
6479
6480 if (mode != ast_do_while)
6481 state->symbols->pop_scope();
6482
6483 /* Restore previous nesting before returning. */
6484 state->loop_nesting_ast = nesting_ast;
6485 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6486
6487 /* Loops do not have r-values.
6488 */
6489 return NULL;
6490 }
6491
6492
6493 /**
6494 * Determine if the given type is valid for establishing a default precision
6495 * qualifier.
6496 *
6497 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6498 *
6499 * "The precision statement
6500 *
6501 * precision precision-qualifier type;
6502 *
6503 * can be used to establish a default precision qualifier. The type field
6504 * can be either int or float or any of the sampler types, and the
6505 * precision-qualifier can be lowp, mediump, or highp."
6506 *
6507 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6508 * qualifiers on sampler types, but this seems like an oversight (since the
6509 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6510 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6511 * version.
6512 */
6513 static bool
6514 is_valid_default_precision_type(const struct glsl_type *const type)
6515 {
6516 if (type == NULL)
6517 return false;
6518
6519 switch (type->base_type) {
6520 case GLSL_TYPE_INT:
6521 case GLSL_TYPE_FLOAT:
6522 /* "int" and "float" are valid, but vectors and matrices are not. */
6523 return type->vector_elements == 1 && type->matrix_columns == 1;
6524 case GLSL_TYPE_SAMPLER:
6525 case GLSL_TYPE_IMAGE:
6526 case GLSL_TYPE_ATOMIC_UINT:
6527 return true;
6528 default:
6529 return false;
6530 }
6531 }
6532
6533
6534 ir_rvalue *
6535 ast_type_specifier::hir(exec_list *instructions,
6536 struct _mesa_glsl_parse_state *state)
6537 {
6538 if (this->default_precision == ast_precision_none && this->structure == NULL)
6539 return NULL;
6540
6541 YYLTYPE loc = this->get_location();
6542
6543 /* If this is a precision statement, check that the type to which it is
6544 * applied is either float or int.
6545 *
6546 * From section 4.5.3 of the GLSL 1.30 spec:
6547 * "The precision statement
6548 * precision precision-qualifier type;
6549 * can be used to establish a default precision qualifier. The type
6550 * field can be either int or float [...]. Any other types or
6551 * qualifiers will result in an error.
6552 */
6553 if (this->default_precision != ast_precision_none) {
6554 if (!state->check_precision_qualifiers_allowed(&loc))
6555 return NULL;
6556
6557 if (this->structure != NULL) {
6558 _mesa_glsl_error(&loc, state,
6559 "precision qualifiers do not apply to structures");
6560 return NULL;
6561 }
6562
6563 if (this->array_specifier != NULL) {
6564 _mesa_glsl_error(&loc, state,
6565 "default precision statements do not apply to "
6566 "arrays");
6567 return NULL;
6568 }
6569
6570 const struct glsl_type *const type =
6571 state->symbols->get_type(this->type_name);
6572 if (!is_valid_default_precision_type(type)) {
6573 _mesa_glsl_error(&loc, state,
6574 "default precision statements apply only to "
6575 "float, int, and opaque types");
6576 return NULL;
6577 }
6578
6579 if (state->es_shader) {
6580 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6581 * spec says:
6582 *
6583 * "Non-precision qualified declarations will use the precision
6584 * qualifier specified in the most recent precision statement
6585 * that is still in scope. The precision statement has the same
6586 * scoping rules as variable declarations. If it is declared
6587 * inside a compound statement, its effect stops at the end of
6588 * the innermost statement it was declared in. Precision
6589 * statements in nested scopes override precision statements in
6590 * outer scopes. Multiple precision statements for the same basic
6591 * type can appear inside the same scope, with later statements
6592 * overriding earlier statements within that scope."
6593 *
6594 * Default precision specifications follow the same scope rules as
6595 * variables. So, we can track the state of the default precision
6596 * qualifiers in the symbol table, and the rules will just work. This
6597 * is a slight abuse of the symbol table, but it has the semantics
6598 * that we want.
6599 */
6600 state->symbols->add_default_precision_qualifier(this->type_name,
6601 this->default_precision);
6602 }
6603
6604 /* FINISHME: Translate precision statements into IR. */
6605 return NULL;
6606 }
6607
6608 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6609 * process_record_constructor() can do type-checking on C-style initializer
6610 * expressions of structs, but ast_struct_specifier should only be translated
6611 * to HIR if it is declaring the type of a structure.
6612 *
6613 * The ->is_declaration field is false for initializers of variables
6614 * declared separately from the struct's type definition.
6615 *
6616 * struct S { ... }; (is_declaration = true)
6617 * struct T { ... } t = { ... }; (is_declaration = true)
6618 * S s = { ... }; (is_declaration = false)
6619 */
6620 if (this->structure != NULL && this->structure->is_declaration)
6621 return this->structure->hir(instructions, state);
6622
6623 return NULL;
6624 }
6625
6626
6627 /**
6628 * Process a structure or interface block tree into an array of structure fields
6629 *
6630 * After parsing, where there are some syntax differnces, structures and
6631 * interface blocks are almost identical. They are similar enough that the
6632 * AST for each can be processed the same way into a set of
6633 * \c glsl_struct_field to describe the members.
6634 *
6635 * If we're processing an interface block, var_mode should be the type of the
6636 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6637 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6638 * ir_var_auto.
6639 *
6640 * \return
6641 * The number of fields processed. A pointer to the array structure fields is
6642 * stored in \c *fields_ret.
6643 */
6644 static unsigned
6645 ast_process_struct_or_iface_block_members(exec_list *instructions,
6646 struct _mesa_glsl_parse_state *state,
6647 exec_list *declarations,
6648 glsl_struct_field **fields_ret,
6649 bool is_interface,
6650 enum glsl_matrix_layout matrix_layout,
6651 bool allow_reserved_names,
6652 ir_variable_mode var_mode,
6653 ast_type_qualifier *layout,
6654 unsigned block_stream,
6655 unsigned block_xfb_buffer,
6656 unsigned block_xfb_offset,
6657 unsigned expl_location,
6658 unsigned expl_align)
6659 {
6660 unsigned decl_count = 0;
6661 unsigned next_offset = 0;
6662
6663 /* Make an initial pass over the list of fields to determine how
6664 * many there are. Each element in this list is an ast_declarator_list.
6665 * This means that we actually need to count the number of elements in the
6666 * 'declarations' list in each of the elements.
6667 */
6668 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6669 decl_count += decl_list->declarations.length();
6670 }
6671
6672 /* Allocate storage for the fields and process the field
6673 * declarations. As the declarations are processed, try to also convert
6674 * the types to HIR. This ensures that structure definitions embedded in
6675 * other structure definitions or in interface blocks are processed.
6676 */
6677 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6678 decl_count);
6679
6680 bool first_member = true;
6681 bool first_member_has_explicit_location = false;
6682
6683 unsigned i = 0;
6684 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6685 const char *type_name;
6686 YYLTYPE loc = decl_list->get_location();
6687
6688 decl_list->type->specifier->hir(instructions, state);
6689
6690 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6691 *
6692 * "Anonymous structures are not supported; so embedded structures
6693 * must have a declarator. A name given to an embedded struct is
6694 * scoped at the same level as the struct it is embedded in."
6695 *
6696 * The same section of the GLSL 1.20 spec says:
6697 *
6698 * "Anonymous structures are not supported. Embedded structures are
6699 * not supported."
6700 *
6701 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6702 * embedded structures in 1.10 only.
6703 */
6704 if (state->language_version != 110 &&
6705 decl_list->type->specifier->structure != NULL)
6706 _mesa_glsl_error(&loc, state,
6707 "embedded structure declarations are not allowed");
6708
6709 const glsl_type *decl_type =
6710 decl_list->type->glsl_type(& type_name, state);
6711
6712 const struct ast_type_qualifier *const qual =
6713 &decl_list->type->qualifier;
6714
6715 /* From section 4.3.9 of the GLSL 4.40 spec:
6716 *
6717 * "[In interface blocks] opaque types are not allowed."
6718 *
6719 * It should be impossible for decl_type to be NULL here. Cases that
6720 * might naturally lead to decl_type being NULL, especially for the
6721 * is_interface case, will have resulted in compilation having
6722 * already halted due to a syntax error.
6723 */
6724 assert(decl_type);
6725
6726 if (is_interface) {
6727 if (decl_type->contains_opaque()) {
6728 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6729 "interface block contains opaque variable");
6730 }
6731 } else {
6732 if (decl_type->contains_atomic()) {
6733 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6734 *
6735 * "Members of structures cannot be declared as atomic counter
6736 * types."
6737 */
6738 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6739 }
6740
6741 if (decl_type->contains_image()) {
6742 /* FINISHME: Same problem as with atomic counters.
6743 * FINISHME: Request clarification from Khronos and add
6744 * FINISHME: spec quotation here.
6745 */
6746 _mesa_glsl_error(&loc, state, "image in structure");
6747 }
6748 }
6749
6750 if (qual->flags.q.explicit_binding) {
6751 _mesa_glsl_error(&loc, state,
6752 "binding layout qualifier cannot be applied "
6753 "to struct or interface block members");
6754 }
6755
6756 if (is_interface) {
6757 if (!first_member) {
6758 if (!layout->flags.q.explicit_location &&
6759 ((first_member_has_explicit_location &&
6760 !qual->flags.q.explicit_location) ||
6761 (!first_member_has_explicit_location &&
6762 qual->flags.q.explicit_location))) {
6763 _mesa_glsl_error(&loc, state,
6764 "when block-level location layout qualifier "
6765 "is not supplied either all members must "
6766 "have a location layout qualifier or all "
6767 "members must not have a location layout "
6768 "qualifier");
6769 }
6770 } else {
6771 first_member = false;
6772 first_member_has_explicit_location =
6773 qual->flags.q.explicit_location;
6774 }
6775 }
6776
6777 if (qual->flags.q.std140 ||
6778 qual->flags.q.std430 ||
6779 qual->flags.q.packed ||
6780 qual->flags.q.shared) {
6781 _mesa_glsl_error(&loc, state,
6782 "uniform/shader storage block layout qualifiers "
6783 "std140, std430, packed, and shared can only be "
6784 "applied to uniform/shader storage blocks, not "
6785 "members");
6786 }
6787
6788 if (qual->flags.q.constant) {
6789 _mesa_glsl_error(&loc, state,
6790 "const storage qualifier cannot be applied "
6791 "to struct or interface block members");
6792 }
6793
6794 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6795 *
6796 * "A block member may be declared with a stream identifier, but
6797 * the specified stream must match the stream associated with the
6798 * containing block."
6799 */
6800 if (qual->flags.q.explicit_stream) {
6801 unsigned qual_stream;
6802 if (process_qualifier_constant(state, &loc, "stream",
6803 qual->stream, &qual_stream) &&
6804 qual_stream != block_stream) {
6805 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6806 "interface block member does not match "
6807 "the interface block (%u vs %u)", qual_stream,
6808 block_stream);
6809 }
6810 }
6811
6812 int xfb_buffer;
6813 unsigned explicit_xfb_buffer = 0;
6814 if (qual->flags.q.explicit_xfb_buffer) {
6815 unsigned qual_xfb_buffer;
6816 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6817 qual->xfb_buffer, &qual_xfb_buffer)) {
6818 explicit_xfb_buffer = 1;
6819 if (qual_xfb_buffer != block_xfb_buffer)
6820 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6821 "interface block member does not match "
6822 "the interface block (%u vs %u)",
6823 qual_xfb_buffer, block_xfb_buffer);
6824 }
6825 xfb_buffer = (int) qual_xfb_buffer;
6826 } else {
6827 if (layout)
6828 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6829 xfb_buffer = (int) block_xfb_buffer;
6830 }
6831
6832 int xfb_stride = -1;
6833 if (qual->flags.q.explicit_xfb_stride) {
6834 unsigned qual_xfb_stride;
6835 if (process_qualifier_constant(state, &loc, "xfb_stride",
6836 qual->xfb_stride, &qual_xfb_stride)) {
6837 xfb_stride = (int) qual_xfb_stride;
6838 }
6839 }
6840
6841 if (qual->flags.q.uniform && qual->has_interpolation()) {
6842 _mesa_glsl_error(&loc, state,
6843 "interpolation qualifiers cannot be used "
6844 "with uniform interface blocks");
6845 }
6846
6847 if ((qual->flags.q.uniform || !is_interface) &&
6848 qual->has_auxiliary_storage()) {
6849 _mesa_glsl_error(&loc, state,
6850 "auxiliary storage qualifiers cannot be used "
6851 "in uniform blocks or structures.");
6852 }
6853
6854 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6855 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6856 _mesa_glsl_error(&loc, state,
6857 "row_major and column_major can only be "
6858 "applied to interface blocks");
6859 } else
6860 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6861 }
6862
6863 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6864 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6865 "readonly and writeonly.");
6866 }
6867
6868 foreach_list_typed (ast_declaration, decl, link,
6869 &decl_list->declarations) {
6870 YYLTYPE loc = decl->get_location();
6871
6872 if (!allow_reserved_names)
6873 validate_identifier(decl->identifier, loc, state);
6874
6875 const struct glsl_type *field_type =
6876 process_array_type(&loc, decl_type, decl->array_specifier, state);
6877 validate_array_dimensions(field_type, state, &loc);
6878 fields[i].type = field_type;
6879 fields[i].name = decl->identifier;
6880 fields[i].interpolation =
6881 interpret_interpolation_qualifier(qual, field_type,
6882 var_mode, state, &loc);
6883 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6884 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6885 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6886 fields[i].precision = qual->precision;
6887 fields[i].offset = -1;
6888 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6889 fields[i].xfb_buffer = xfb_buffer;
6890 fields[i].xfb_stride = xfb_stride;
6891
6892 if (qual->flags.q.explicit_location) {
6893 unsigned qual_location;
6894 if (process_qualifier_constant(state, &loc, "location",
6895 qual->location, &qual_location)) {
6896 fields[i].location = qual_location +
6897 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6898 expl_location = fields[i].location +
6899 fields[i].type->count_attribute_slots(false);
6900 }
6901 } else {
6902 if (layout && layout->flags.q.explicit_location) {
6903 fields[i].location = expl_location;
6904 expl_location += fields[i].type->count_attribute_slots(false);
6905 } else {
6906 fields[i].location = -1;
6907 }
6908 }
6909
6910 /* Offset can only be used with std430 and std140 layouts an initial
6911 * value of 0 is used for error detection.
6912 */
6913 unsigned align = 0;
6914 unsigned size = 0;
6915 if (layout) {
6916 bool row_major;
6917 if (qual->flags.q.row_major ||
6918 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6919 row_major = true;
6920 } else {
6921 row_major = false;
6922 }
6923
6924 if(layout->flags.q.std140) {
6925 align = field_type->std140_base_alignment(row_major);
6926 size = field_type->std140_size(row_major);
6927 } else if (layout->flags.q.std430) {
6928 align = field_type->std430_base_alignment(row_major);
6929 size = field_type->std430_size(row_major);
6930 }
6931 }
6932
6933 if (qual->flags.q.explicit_offset) {
6934 unsigned qual_offset;
6935 if (process_qualifier_constant(state, &loc, "offset",
6936 qual->offset, &qual_offset)) {
6937 if (align != 0 && size != 0) {
6938 if (next_offset > qual_offset)
6939 _mesa_glsl_error(&loc, state, "layout qualifier "
6940 "offset overlaps previous member");
6941
6942 if (qual_offset % align) {
6943 _mesa_glsl_error(&loc, state, "layout qualifier offset "
6944 "must be a multiple of the base "
6945 "alignment of %s", field_type->name);
6946 }
6947 fields[i].offset = qual_offset;
6948 next_offset = glsl_align(qual_offset + size, align);
6949 } else {
6950 _mesa_glsl_error(&loc, state, "offset can only be used "
6951 "with std430 and std140 layouts");
6952 }
6953 }
6954 }
6955
6956 if (qual->flags.q.explicit_align || expl_align != 0) {
6957 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
6958 next_offset;
6959 if (align == 0 || size == 0) {
6960 _mesa_glsl_error(&loc, state, "align can only be used with "
6961 "std430 and std140 layouts");
6962 } else if (qual->flags.q.explicit_align) {
6963 unsigned member_align;
6964 if (process_qualifier_constant(state, &loc, "align",
6965 qual->align, &member_align)) {
6966 if (member_align == 0 ||
6967 member_align & (member_align - 1)) {
6968 _mesa_glsl_error(&loc, state, "align layout qualifier "
6969 "in not a power of 2");
6970 } else {
6971 fields[i].offset = glsl_align(offset, member_align);
6972 next_offset = glsl_align(fields[i].offset + size, align);
6973 }
6974 }
6975 } else {
6976 fields[i].offset = glsl_align(offset, expl_align);
6977 next_offset = glsl_align(fields[i].offset + size, align);
6978 }
6979 } else if (!qual->flags.q.explicit_offset) {
6980 if (align != 0 && size != 0)
6981 next_offset = glsl_align(next_offset + size, align);
6982 }
6983
6984 /* From the ARB_enhanced_layouts spec:
6985 *
6986 * "The given offset applies to the first component of the first
6987 * member of the qualified entity. Then, within the qualified
6988 * entity, subsequent components are each assigned, in order, to
6989 * the next available offset aligned to a multiple of that
6990 * component's size. Aggregate types are flattened down to the
6991 * component level to get this sequence of components."
6992 */
6993 if (qual->flags.q.explicit_xfb_offset) {
6994 unsigned xfb_offset;
6995 if (process_qualifier_constant(state, &loc, "xfb_offset",
6996 qual->offset, &xfb_offset)) {
6997 fields[i].offset = xfb_offset;
6998 block_xfb_offset = fields[i].offset +
6999 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7000 }
7001 } else {
7002 if (layout && layout->flags.q.explicit_xfb_offset) {
7003 unsigned align = field_type->is_64bit() ? 8 : 4;
7004 fields[i].offset = glsl_align(block_xfb_offset, align);
7005 block_xfb_offset +=
7006 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7007 }
7008 }
7009
7010 /* Propogate row- / column-major information down the fields of the
7011 * structure or interface block. Structures need this data because
7012 * the structure may contain a structure that contains ... a matrix
7013 * that need the proper layout.
7014 */
7015 if (is_interface && layout &&
7016 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7017 (field_type->without_array()->is_matrix()
7018 || field_type->without_array()->is_record())) {
7019 /* If no layout is specified for the field, inherit the layout
7020 * from the block.
7021 */
7022 fields[i].matrix_layout = matrix_layout;
7023
7024 if (qual->flags.q.row_major)
7025 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7026 else if (qual->flags.q.column_major)
7027 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7028
7029 /* If we're processing an uniform or buffer block, the matrix
7030 * layout must be decided by this point.
7031 */
7032 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7033 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7034 }
7035
7036 /* Image qualifiers are allowed on buffer variables, which can only
7037 * be defined inside shader storage buffer objects
7038 */
7039 if (layout && var_mode == ir_var_shader_storage) {
7040 /* For readonly and writeonly qualifiers the field definition,
7041 * if set, overwrites the layout qualifier.
7042 */
7043 if (qual->flags.q.read_only) {
7044 fields[i].image_read_only = true;
7045 fields[i].image_write_only = false;
7046 } else if (qual->flags.q.write_only) {
7047 fields[i].image_read_only = false;
7048 fields[i].image_write_only = true;
7049 } else {
7050 fields[i].image_read_only = layout->flags.q.read_only;
7051 fields[i].image_write_only = layout->flags.q.write_only;
7052 }
7053
7054 /* For other qualifiers, we set the flag if either the layout
7055 * qualifier or the field qualifier are set
7056 */
7057 fields[i].image_coherent = qual->flags.q.coherent ||
7058 layout->flags.q.coherent;
7059 fields[i].image_volatile = qual->flags.q._volatile ||
7060 layout->flags.q._volatile;
7061 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7062 layout->flags.q.restrict_flag;
7063 }
7064
7065 i++;
7066 }
7067 }
7068
7069 assert(i == decl_count);
7070
7071 *fields_ret = fields;
7072 return decl_count;
7073 }
7074
7075
7076 ir_rvalue *
7077 ast_struct_specifier::hir(exec_list *instructions,
7078 struct _mesa_glsl_parse_state *state)
7079 {
7080 YYLTYPE loc = this->get_location();
7081
7082 unsigned expl_location = 0;
7083 if (layout && layout->flags.q.explicit_location) {
7084 if (!process_qualifier_constant(state, &loc, "location",
7085 layout->location, &expl_location)) {
7086 return NULL;
7087 } else {
7088 expl_location = VARYING_SLOT_VAR0 + expl_location;
7089 }
7090 }
7091
7092 glsl_struct_field *fields;
7093 unsigned decl_count =
7094 ast_process_struct_or_iface_block_members(instructions,
7095 state,
7096 &this->declarations,
7097 &fields,
7098 false,
7099 GLSL_MATRIX_LAYOUT_INHERITED,
7100 false /* allow_reserved_names */,
7101 ir_var_auto,
7102 layout,
7103 0, /* for interface only */
7104 0, /* for interface only */
7105 0, /* for interface only */
7106 expl_location,
7107 0 /* for interface only */);
7108
7109 validate_identifier(this->name, loc, state);
7110
7111 const glsl_type *t =
7112 glsl_type::get_record_instance(fields, decl_count, this->name);
7113
7114 if (!state->symbols->add_type(name, t)) {
7115 const glsl_type *match = state->symbols->get_type(name);
7116 /* allow struct matching for desktop GL - older UE4 does this */
7117 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7118 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7119 else
7120 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7121 } else {
7122 const glsl_type **s = reralloc(state, state->user_structures,
7123 const glsl_type *,
7124 state->num_user_structures + 1);
7125 if (s != NULL) {
7126 s[state->num_user_structures] = t;
7127 state->user_structures = s;
7128 state->num_user_structures++;
7129 }
7130 }
7131
7132 /* Structure type definitions do not have r-values.
7133 */
7134 return NULL;
7135 }
7136
7137
7138 /**
7139 * Visitor class which detects whether a given interface block has been used.
7140 */
7141 class interface_block_usage_visitor : public ir_hierarchical_visitor
7142 {
7143 public:
7144 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7145 : mode(mode), block(block), found(false)
7146 {
7147 }
7148
7149 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7150 {
7151 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7152 found = true;
7153 return visit_stop;
7154 }
7155 return visit_continue;
7156 }
7157
7158 bool usage_found() const
7159 {
7160 return this->found;
7161 }
7162
7163 private:
7164 ir_variable_mode mode;
7165 const glsl_type *block;
7166 bool found;
7167 };
7168
7169 static bool
7170 is_unsized_array_last_element(ir_variable *v)
7171 {
7172 const glsl_type *interface_type = v->get_interface_type();
7173 int length = interface_type->length;
7174
7175 assert(v->type->is_unsized_array());
7176
7177 /* Check if it is the last element of the interface */
7178 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7179 return true;
7180 return false;
7181 }
7182
7183 static void
7184 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7185 {
7186 var->data.image_read_only = field.image_read_only;
7187 var->data.image_write_only = field.image_write_only;
7188 var->data.image_coherent = field.image_coherent;
7189 var->data.image_volatile = field.image_volatile;
7190 var->data.image_restrict = field.image_restrict;
7191 }
7192
7193 ir_rvalue *
7194 ast_interface_block::hir(exec_list *instructions,
7195 struct _mesa_glsl_parse_state *state)
7196 {
7197 YYLTYPE loc = this->get_location();
7198
7199 /* Interface blocks must be declared at global scope */
7200 if (state->current_function != NULL) {
7201 _mesa_glsl_error(&loc, state,
7202 "Interface block `%s' must be declared "
7203 "at global scope",
7204 this->block_name);
7205 }
7206
7207 /* Validate qualifiers:
7208 *
7209 * - Layout Qualifiers as per the table in Section 4.4
7210 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7211 *
7212 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7213 * GLSL 4.50 spec:
7214 *
7215 * "Additionally, memory qualifiers may also be used in the declaration
7216 * of shader storage blocks"
7217 *
7218 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7219 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7220 * Layout Qualifiers) of the GLSL 4.50 spec says:
7221 *
7222 * "The std430 qualifier is supported only for shader storage blocks;
7223 * using std430 on a uniform block will result in a compile-time error."
7224 */
7225 ast_type_qualifier allowed_blk_qualifiers;
7226 allowed_blk_qualifiers.flags.i = 0;
7227 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7228 allowed_blk_qualifiers.flags.q.shared = 1;
7229 allowed_blk_qualifiers.flags.q.packed = 1;
7230 allowed_blk_qualifiers.flags.q.std140 = 1;
7231 allowed_blk_qualifiers.flags.q.row_major = 1;
7232 allowed_blk_qualifiers.flags.q.column_major = 1;
7233 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7234 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7235 if (this->layout.flags.q.buffer) {
7236 allowed_blk_qualifiers.flags.q.buffer = 1;
7237 allowed_blk_qualifiers.flags.q.std430 = 1;
7238 allowed_blk_qualifiers.flags.q.coherent = 1;
7239 allowed_blk_qualifiers.flags.q._volatile = 1;
7240 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7241 allowed_blk_qualifiers.flags.q.read_only = 1;
7242 allowed_blk_qualifiers.flags.q.write_only = 1;
7243 } else {
7244 allowed_blk_qualifiers.flags.q.uniform = 1;
7245 }
7246 } else {
7247 /* Interface block */
7248 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7249
7250 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7251 if (this->layout.flags.q.out) {
7252 allowed_blk_qualifiers.flags.q.out = 1;
7253 if (state->stage == MESA_SHADER_GEOMETRY ||
7254 state->stage == MESA_SHADER_TESS_CTRL ||
7255 state->stage == MESA_SHADER_TESS_EVAL ||
7256 state->stage == MESA_SHADER_VERTEX ) {
7257 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7258 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7259 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7260 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7261 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7262 if (state->stage == MESA_SHADER_GEOMETRY) {
7263 allowed_blk_qualifiers.flags.q.stream = 1;
7264 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7265 }
7266 if (state->stage == MESA_SHADER_TESS_CTRL) {
7267 allowed_blk_qualifiers.flags.q.patch = 1;
7268 }
7269 }
7270 } else {
7271 allowed_blk_qualifiers.flags.q.in = 1;
7272 if (state->stage == MESA_SHADER_TESS_EVAL) {
7273 allowed_blk_qualifiers.flags.q.patch = 1;
7274 }
7275 }
7276 }
7277
7278 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7279 "invalid qualifier for block",
7280 this->block_name);
7281
7282 /* The ast_interface_block has a list of ast_declarator_lists. We
7283 * need to turn those into ir_variables with an association
7284 * with this uniform block.
7285 */
7286 enum glsl_interface_packing packing;
7287 if (this->layout.flags.q.shared) {
7288 packing = GLSL_INTERFACE_PACKING_SHARED;
7289 } else if (this->layout.flags.q.packed) {
7290 packing = GLSL_INTERFACE_PACKING_PACKED;
7291 } else if (this->layout.flags.q.std430) {
7292 packing = GLSL_INTERFACE_PACKING_STD430;
7293 } else {
7294 /* The default layout is std140.
7295 */
7296 packing = GLSL_INTERFACE_PACKING_STD140;
7297 }
7298
7299 ir_variable_mode var_mode;
7300 const char *iface_type_name;
7301 if (this->layout.flags.q.in) {
7302 var_mode = ir_var_shader_in;
7303 iface_type_name = "in";
7304 } else if (this->layout.flags.q.out) {
7305 var_mode = ir_var_shader_out;
7306 iface_type_name = "out";
7307 } else if (this->layout.flags.q.uniform) {
7308 var_mode = ir_var_uniform;
7309 iface_type_name = "uniform";
7310 } else if (this->layout.flags.q.buffer) {
7311 var_mode = ir_var_shader_storage;
7312 iface_type_name = "buffer";
7313 } else {
7314 var_mode = ir_var_auto;
7315 iface_type_name = "UNKNOWN";
7316 assert(!"interface block layout qualifier not found!");
7317 }
7318
7319 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7320 if (this->layout.flags.q.row_major)
7321 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7322 else if (this->layout.flags.q.column_major)
7323 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7324
7325 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7326 exec_list declared_variables;
7327 glsl_struct_field *fields;
7328
7329 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7330 * that we don't have incompatible qualifiers
7331 */
7332 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7333 _mesa_glsl_error(&loc, state,
7334 "Interface block sets both readonly and writeonly");
7335 }
7336
7337 unsigned qual_stream;
7338 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7339 &qual_stream) ||
7340 !validate_stream_qualifier(&loc, state, qual_stream)) {
7341 /* If the stream qualifier is invalid it doesn't make sense to continue
7342 * on and try to compare stream layouts on member variables against it
7343 * so just return early.
7344 */
7345 return NULL;
7346 }
7347
7348 unsigned qual_xfb_buffer;
7349 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7350 layout.xfb_buffer, &qual_xfb_buffer) ||
7351 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7352 return NULL;
7353 }
7354
7355 unsigned qual_xfb_offset;
7356 if (layout.flags.q.explicit_xfb_offset) {
7357 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7358 layout.offset, &qual_xfb_offset)) {
7359 return NULL;
7360 }
7361 }
7362
7363 unsigned qual_xfb_stride;
7364 if (layout.flags.q.explicit_xfb_stride) {
7365 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7366 layout.xfb_stride, &qual_xfb_stride)) {
7367 return NULL;
7368 }
7369 }
7370
7371 unsigned expl_location = 0;
7372 if (layout.flags.q.explicit_location) {
7373 if (!process_qualifier_constant(state, &loc, "location",
7374 layout.location, &expl_location)) {
7375 return NULL;
7376 } else {
7377 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7378 : VARYING_SLOT_VAR0;
7379 }
7380 }
7381
7382 unsigned expl_align = 0;
7383 if (layout.flags.q.explicit_align) {
7384 if (!process_qualifier_constant(state, &loc, "align",
7385 layout.align, &expl_align)) {
7386 return NULL;
7387 } else {
7388 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7389 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7390 "power of 2.");
7391 return NULL;
7392 }
7393 }
7394 }
7395
7396 unsigned int num_variables =
7397 ast_process_struct_or_iface_block_members(&declared_variables,
7398 state,
7399 &this->declarations,
7400 &fields,
7401 true,
7402 matrix_layout,
7403 redeclaring_per_vertex,
7404 var_mode,
7405 &this->layout,
7406 qual_stream,
7407 qual_xfb_buffer,
7408 qual_xfb_offset,
7409 expl_location,
7410 expl_align);
7411
7412 if (!redeclaring_per_vertex) {
7413 validate_identifier(this->block_name, loc, state);
7414
7415 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7416 *
7417 * "Block names have no other use within a shader beyond interface
7418 * matching; it is a compile-time error to use a block name at global
7419 * scope for anything other than as a block name."
7420 */
7421 ir_variable *var = state->symbols->get_variable(this->block_name);
7422 if (var && !var->type->is_interface()) {
7423 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7424 "already used in the scope.",
7425 this->block_name);
7426 }
7427 }
7428
7429 const glsl_type *earlier_per_vertex = NULL;
7430 if (redeclaring_per_vertex) {
7431 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7432 * the named interface block gl_in, we can find it by looking at the
7433 * previous declaration of gl_in. Otherwise we can find it by looking
7434 * at the previous decalartion of any of the built-in outputs,
7435 * e.g. gl_Position.
7436 *
7437 * Also check that the instance name and array-ness of the redeclaration
7438 * are correct.
7439 */
7440 switch (var_mode) {
7441 case ir_var_shader_in:
7442 if (ir_variable *earlier_gl_in =
7443 state->symbols->get_variable("gl_in")) {
7444 earlier_per_vertex = earlier_gl_in->get_interface_type();
7445 } else {
7446 _mesa_glsl_error(&loc, state,
7447 "redeclaration of gl_PerVertex input not allowed "
7448 "in the %s shader",
7449 _mesa_shader_stage_to_string(state->stage));
7450 }
7451 if (this->instance_name == NULL ||
7452 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7453 !this->array_specifier->is_single_dimension()) {
7454 _mesa_glsl_error(&loc, state,
7455 "gl_PerVertex input must be redeclared as "
7456 "gl_in[]");
7457 }
7458 break;
7459 case ir_var_shader_out:
7460 if (ir_variable *earlier_gl_Position =
7461 state->symbols->get_variable("gl_Position")) {
7462 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7463 } else if (ir_variable *earlier_gl_out =
7464 state->symbols->get_variable("gl_out")) {
7465 earlier_per_vertex = earlier_gl_out->get_interface_type();
7466 } else {
7467 _mesa_glsl_error(&loc, state,
7468 "redeclaration of gl_PerVertex output not "
7469 "allowed in the %s shader",
7470 _mesa_shader_stage_to_string(state->stage));
7471 }
7472 if (state->stage == MESA_SHADER_TESS_CTRL) {
7473 if (this->instance_name == NULL ||
7474 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7475 _mesa_glsl_error(&loc, state,
7476 "gl_PerVertex output must be redeclared as "
7477 "gl_out[]");
7478 }
7479 } else {
7480 if (this->instance_name != NULL) {
7481 _mesa_glsl_error(&loc, state,
7482 "gl_PerVertex output may not be redeclared with "
7483 "an instance name");
7484 }
7485 }
7486 break;
7487 default:
7488 _mesa_glsl_error(&loc, state,
7489 "gl_PerVertex must be declared as an input or an "
7490 "output");
7491 break;
7492 }
7493
7494 if (earlier_per_vertex == NULL) {
7495 /* An error has already been reported. Bail out to avoid null
7496 * dereferences later in this function.
7497 */
7498 return NULL;
7499 }
7500
7501 /* Copy locations from the old gl_PerVertex interface block. */
7502 for (unsigned i = 0; i < num_variables; i++) {
7503 int j = earlier_per_vertex->field_index(fields[i].name);
7504 if (j == -1) {
7505 _mesa_glsl_error(&loc, state,
7506 "redeclaration of gl_PerVertex must be a subset "
7507 "of the built-in members of gl_PerVertex");
7508 } else {
7509 fields[i].location =
7510 earlier_per_vertex->fields.structure[j].location;
7511 fields[i].offset =
7512 earlier_per_vertex->fields.structure[j].offset;
7513 fields[i].interpolation =
7514 earlier_per_vertex->fields.structure[j].interpolation;
7515 fields[i].centroid =
7516 earlier_per_vertex->fields.structure[j].centroid;
7517 fields[i].sample =
7518 earlier_per_vertex->fields.structure[j].sample;
7519 fields[i].patch =
7520 earlier_per_vertex->fields.structure[j].patch;
7521 fields[i].precision =
7522 earlier_per_vertex->fields.structure[j].precision;
7523 fields[i].explicit_xfb_buffer =
7524 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7525 fields[i].xfb_buffer =
7526 earlier_per_vertex->fields.structure[j].xfb_buffer;
7527 fields[i].xfb_stride =
7528 earlier_per_vertex->fields.structure[j].xfb_stride;
7529 }
7530 }
7531
7532 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7533 * spec:
7534 *
7535 * If a built-in interface block is redeclared, it must appear in
7536 * the shader before any use of any member included in the built-in
7537 * declaration, or a compilation error will result.
7538 *
7539 * This appears to be a clarification to the behaviour established for
7540 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7541 * regardless of GLSL version.
7542 */
7543 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7544 v.run(instructions);
7545 if (v.usage_found()) {
7546 _mesa_glsl_error(&loc, state,
7547 "redeclaration of a built-in interface block must "
7548 "appear before any use of any member of the "
7549 "interface block");
7550 }
7551 }
7552
7553 const glsl_type *block_type =
7554 glsl_type::get_interface_instance(fields,
7555 num_variables,
7556 packing,
7557 matrix_layout ==
7558 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7559 this->block_name);
7560
7561 unsigned component_size = block_type->contains_double() ? 8 : 4;
7562 int xfb_offset =
7563 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7564 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7565 component_size);
7566
7567 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7568 YYLTYPE loc = this->get_location();
7569 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7570 "already taken in the current scope",
7571 this->block_name, iface_type_name);
7572 }
7573
7574 /* Since interface blocks cannot contain statements, it should be
7575 * impossible for the block to generate any instructions.
7576 */
7577 assert(declared_variables.is_empty());
7578
7579 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7580 *
7581 * Geometry shader input variables get the per-vertex values written
7582 * out by vertex shader output variables of the same names. Since a
7583 * geometry shader operates on a set of vertices, each input varying
7584 * variable (or input block, see interface blocks below) needs to be
7585 * declared as an array.
7586 */
7587 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7588 var_mode == ir_var_shader_in) {
7589 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7590 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7591 state->stage == MESA_SHADER_TESS_EVAL) &&
7592 !this->layout.flags.q.patch &&
7593 this->array_specifier == NULL &&
7594 var_mode == ir_var_shader_in) {
7595 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7596 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7597 !this->layout.flags.q.patch &&
7598 this->array_specifier == NULL &&
7599 var_mode == ir_var_shader_out) {
7600 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7601 }
7602
7603
7604 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7605 * says:
7606 *
7607 * "If an instance name (instance-name) is used, then it puts all the
7608 * members inside a scope within its own name space, accessed with the
7609 * field selector ( . ) operator (analogously to structures)."
7610 */
7611 if (this->instance_name) {
7612 if (redeclaring_per_vertex) {
7613 /* When a built-in in an unnamed interface block is redeclared,
7614 * get_variable_being_redeclared() calls
7615 * check_builtin_array_max_size() to make sure that built-in array
7616 * variables aren't redeclared to illegal sizes. But we're looking
7617 * at a redeclaration of a named built-in interface block. So we
7618 * have to manually call check_builtin_array_max_size() for all parts
7619 * of the interface that are arrays.
7620 */
7621 for (unsigned i = 0; i < num_variables; i++) {
7622 if (fields[i].type->is_array()) {
7623 const unsigned size = fields[i].type->array_size();
7624 check_builtin_array_max_size(fields[i].name, size, loc, state);
7625 }
7626 }
7627 } else {
7628 validate_identifier(this->instance_name, loc, state);
7629 }
7630
7631 ir_variable *var;
7632
7633 if (this->array_specifier != NULL) {
7634 const glsl_type *block_array_type =
7635 process_array_type(&loc, block_type, this->array_specifier, state);
7636
7637 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7638 *
7639 * For uniform blocks declared an array, each individual array
7640 * element corresponds to a separate buffer object backing one
7641 * instance of the block. As the array size indicates the number
7642 * of buffer objects needed, uniform block array declarations
7643 * must specify an array size.
7644 *
7645 * And a few paragraphs later:
7646 *
7647 * Geometry shader input blocks must be declared as arrays and
7648 * follow the array declaration and linking rules for all
7649 * geometry shader inputs. All other input and output block
7650 * arrays must specify an array size.
7651 *
7652 * The same applies to tessellation shaders.
7653 *
7654 * The upshot of this is that the only circumstance where an
7655 * interface array size *doesn't* need to be specified is on a
7656 * geometry shader input, tessellation control shader input,
7657 * tessellation control shader output, and tessellation evaluation
7658 * shader input.
7659 */
7660 if (block_array_type->is_unsized_array()) {
7661 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7662 state->stage == MESA_SHADER_TESS_CTRL ||
7663 state->stage == MESA_SHADER_TESS_EVAL;
7664 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7665
7666 if (this->layout.flags.q.in) {
7667 if (!allow_inputs)
7668 _mesa_glsl_error(&loc, state,
7669 "unsized input block arrays not allowed in "
7670 "%s shader",
7671 _mesa_shader_stage_to_string(state->stage));
7672 } else if (this->layout.flags.q.out) {
7673 if (!allow_outputs)
7674 _mesa_glsl_error(&loc, state,
7675 "unsized output block arrays not allowed in "
7676 "%s shader",
7677 _mesa_shader_stage_to_string(state->stage));
7678 } else {
7679 /* by elimination, this is a uniform block array */
7680 _mesa_glsl_error(&loc, state,
7681 "unsized uniform block arrays not allowed in "
7682 "%s shader",
7683 _mesa_shader_stage_to_string(state->stage));
7684 }
7685 }
7686
7687 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7688 *
7689 * * Arrays of arrays of blocks are not allowed
7690 */
7691 if (state->es_shader && block_array_type->is_array() &&
7692 block_array_type->fields.array->is_array()) {
7693 _mesa_glsl_error(&loc, state,
7694 "arrays of arrays interface blocks are "
7695 "not allowed");
7696 }
7697
7698 var = new(state) ir_variable(block_array_type,
7699 this->instance_name,
7700 var_mode);
7701 } else {
7702 var = new(state) ir_variable(block_type,
7703 this->instance_name,
7704 var_mode);
7705 }
7706
7707 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7708 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7709
7710 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7711 var->data.read_only = true;
7712
7713 var->data.patch = this->layout.flags.q.patch;
7714
7715 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7716 handle_geometry_shader_input_decl(state, loc, var);
7717 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7718 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7719 handle_tess_shader_input_decl(state, loc, var);
7720 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7721 handle_tess_ctrl_shader_output_decl(state, loc, var);
7722
7723 for (unsigned i = 0; i < num_variables; i++) {
7724 if (var->data.mode == ir_var_shader_storage)
7725 apply_memory_qualifiers(var, fields[i]);
7726 }
7727
7728 if (ir_variable *earlier =
7729 state->symbols->get_variable(this->instance_name)) {
7730 if (!redeclaring_per_vertex) {
7731 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7732 this->instance_name);
7733 }
7734 earlier->data.how_declared = ir_var_declared_normally;
7735 earlier->type = var->type;
7736 earlier->reinit_interface_type(block_type);
7737 delete var;
7738 } else {
7739 if (this->layout.flags.q.explicit_binding) {
7740 apply_explicit_binding(state, &loc, var, var->type,
7741 &this->layout);
7742 }
7743
7744 var->data.stream = qual_stream;
7745 if (layout.flags.q.explicit_location) {
7746 var->data.location = expl_location;
7747 var->data.explicit_location = true;
7748 }
7749
7750 state->symbols->add_variable(var);
7751 instructions->push_tail(var);
7752 }
7753 } else {
7754 /* In order to have an array size, the block must also be declared with
7755 * an instance name.
7756 */
7757 assert(this->array_specifier == NULL);
7758
7759 for (unsigned i = 0; i < num_variables; i++) {
7760 ir_variable *var =
7761 new(state) ir_variable(fields[i].type,
7762 ralloc_strdup(state, fields[i].name),
7763 var_mode);
7764 var->data.interpolation = fields[i].interpolation;
7765 var->data.centroid = fields[i].centroid;
7766 var->data.sample = fields[i].sample;
7767 var->data.patch = fields[i].patch;
7768 var->data.stream = qual_stream;
7769 var->data.location = fields[i].location;
7770
7771 if (fields[i].location != -1)
7772 var->data.explicit_location = true;
7773
7774 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7775 var->data.xfb_buffer = fields[i].xfb_buffer;
7776
7777 if (fields[i].offset != -1)
7778 var->data.explicit_xfb_offset = true;
7779 var->data.offset = fields[i].offset;
7780
7781 var->init_interface_type(block_type);
7782
7783 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7784 var->data.read_only = true;
7785
7786 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7787 if (state->es_shader) {
7788 var->data.precision =
7789 select_gles_precision(fields[i].precision, fields[i].type,
7790 state, &loc);
7791 }
7792
7793 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7794 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7795 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7796 } else {
7797 var->data.matrix_layout = fields[i].matrix_layout;
7798 }
7799
7800 if (var->data.mode == ir_var_shader_storage)
7801 apply_memory_qualifiers(var, fields[i]);
7802
7803 /* Examine var name here since var may get deleted in the next call */
7804 bool var_is_gl_id = is_gl_identifier(var->name);
7805
7806 if (redeclaring_per_vertex) {
7807 ir_variable *earlier =
7808 get_variable_being_redeclared(var, loc, state,
7809 true /* allow_all_redeclarations */);
7810 if (!var_is_gl_id || earlier == NULL) {
7811 _mesa_glsl_error(&loc, state,
7812 "redeclaration of gl_PerVertex can only "
7813 "include built-in variables");
7814 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7815 _mesa_glsl_error(&loc, state,
7816 "`%s' has already been redeclared",
7817 earlier->name);
7818 } else {
7819 earlier->data.how_declared = ir_var_declared_in_block;
7820 earlier->reinit_interface_type(block_type);
7821 }
7822 continue;
7823 }
7824
7825 if (state->symbols->get_variable(var->name) != NULL)
7826 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7827
7828 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7829 * The UBO declaration itself doesn't get an ir_variable unless it
7830 * has an instance name. This is ugly.
7831 */
7832 if (this->layout.flags.q.explicit_binding) {
7833 apply_explicit_binding(state, &loc, var,
7834 var->get_interface_type(), &this->layout);
7835 }
7836
7837 if (var->type->is_unsized_array()) {
7838 if (var->is_in_shader_storage_block()) {
7839 if (is_unsized_array_last_element(var)) {
7840 var->data.from_ssbo_unsized_array = true;
7841 }
7842 } else {
7843 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7844 *
7845 * "If an array is declared as the last member of a shader storage
7846 * block and the size is not specified at compile-time, it is
7847 * sized at run-time. In all other cases, arrays are sized only
7848 * at compile-time."
7849 */
7850 if (state->es_shader) {
7851 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7852 "definition: only last member of a shader "
7853 "storage block can be defined as unsized "
7854 "array", fields[i].name);
7855 }
7856 }
7857 }
7858
7859 state->symbols->add_variable(var);
7860 instructions->push_tail(var);
7861 }
7862
7863 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7864 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7865 *
7866 * It is also a compilation error ... to redeclare a built-in
7867 * block and then use a member from that built-in block that was
7868 * not included in the redeclaration.
7869 *
7870 * This appears to be a clarification to the behaviour established
7871 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7872 * behaviour regardless of GLSL version.
7873 *
7874 * To prevent the shader from using a member that was not included in
7875 * the redeclaration, we disable any ir_variables that are still
7876 * associated with the old declaration of gl_PerVertex (since we've
7877 * already updated all of the variables contained in the new
7878 * gl_PerVertex to point to it).
7879 *
7880 * As a side effect this will prevent
7881 * validate_intrastage_interface_blocks() from getting confused and
7882 * thinking there are conflicting definitions of gl_PerVertex in the
7883 * shader.
7884 */
7885 foreach_in_list_safe(ir_instruction, node, instructions) {
7886 ir_variable *const var = node->as_variable();
7887 if (var != NULL &&
7888 var->get_interface_type() == earlier_per_vertex &&
7889 var->data.mode == var_mode) {
7890 if (var->data.how_declared == ir_var_declared_normally) {
7891 _mesa_glsl_error(&loc, state,
7892 "redeclaration of gl_PerVertex cannot "
7893 "follow a redeclaration of `%s'",
7894 var->name);
7895 }
7896 state->symbols->disable_variable(var->name);
7897 var->remove();
7898 }
7899 }
7900 }
7901 }
7902
7903 return NULL;
7904 }
7905
7906
7907 ir_rvalue *
7908 ast_tcs_output_layout::hir(exec_list *instructions,
7909 struct _mesa_glsl_parse_state *state)
7910 {
7911 YYLTYPE loc = this->get_location();
7912
7913 unsigned num_vertices;
7914 if (!state->out_qualifier->vertices->
7915 process_qualifier_constant(state, "vertices", &num_vertices,
7916 false)) {
7917 /* return here to stop cascading incorrect error messages */
7918 return NULL;
7919 }
7920
7921 /* If any shader outputs occurred before this declaration and specified an
7922 * array size, make sure the size they specified is consistent with the
7923 * primitive type.
7924 */
7925 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7926 _mesa_glsl_error(&loc, state,
7927 "this tessellation control shader output layout "
7928 "specifies %u vertices, but a previous output "
7929 "is declared with size %u",
7930 num_vertices, state->tcs_output_size);
7931 return NULL;
7932 }
7933
7934 state->tcs_output_vertices_specified = true;
7935
7936 /* If any shader outputs occurred before this declaration and did not
7937 * specify an array size, their size is determined now.
7938 */
7939 foreach_in_list (ir_instruction, node, instructions) {
7940 ir_variable *var = node->as_variable();
7941 if (var == NULL || var->data.mode != ir_var_shader_out)
7942 continue;
7943
7944 /* Note: Not all tessellation control shader output are arrays. */
7945 if (!var->type->is_unsized_array() || var->data.patch)
7946 continue;
7947
7948 if (var->data.max_array_access >= (int)num_vertices) {
7949 _mesa_glsl_error(&loc, state,
7950 "this tessellation control shader output layout "
7951 "specifies %u vertices, but an access to element "
7952 "%u of output `%s' already exists", num_vertices,
7953 var->data.max_array_access, var->name);
7954 } else {
7955 var->type = glsl_type::get_array_instance(var->type->fields.array,
7956 num_vertices);
7957 }
7958 }
7959
7960 return NULL;
7961 }
7962
7963
7964 ir_rvalue *
7965 ast_gs_input_layout::hir(exec_list *instructions,
7966 struct _mesa_glsl_parse_state *state)
7967 {
7968 YYLTYPE loc = this->get_location();
7969
7970 /* Should have been prevented by the parser. */
7971 assert(!state->gs_input_prim_type_specified
7972 || state->in_qualifier->prim_type == this->prim_type);
7973
7974 /* If any shader inputs occurred before this declaration and specified an
7975 * array size, make sure the size they specified is consistent with the
7976 * primitive type.
7977 */
7978 unsigned num_vertices = vertices_per_prim(this->prim_type);
7979 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7980 _mesa_glsl_error(&loc, state,
7981 "this geometry shader input layout implies %u vertices"
7982 " per primitive, but a previous input is declared"
7983 " with size %u", num_vertices, state->gs_input_size);
7984 return NULL;
7985 }
7986
7987 state->gs_input_prim_type_specified = true;
7988
7989 /* If any shader inputs occurred before this declaration and did not
7990 * specify an array size, their size is determined now.
7991 */
7992 foreach_in_list(ir_instruction, node, instructions) {
7993 ir_variable *var = node->as_variable();
7994 if (var == NULL || var->data.mode != ir_var_shader_in)
7995 continue;
7996
7997 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7998 * array; skip it.
7999 */
8000
8001 if (var->type->is_unsized_array()) {
8002 if (var->data.max_array_access >= (int)num_vertices) {
8003 _mesa_glsl_error(&loc, state,
8004 "this geometry shader input layout implies %u"
8005 " vertices, but an access to element %u of input"
8006 " `%s' already exists", num_vertices,
8007 var->data.max_array_access, var->name);
8008 } else {
8009 var->type = glsl_type::get_array_instance(var->type->fields.array,
8010 num_vertices);
8011 }
8012 }
8013 }
8014
8015 return NULL;
8016 }
8017
8018
8019 ir_rvalue *
8020 ast_cs_input_layout::hir(exec_list *instructions,
8021 struct _mesa_glsl_parse_state *state)
8022 {
8023 YYLTYPE loc = this->get_location();
8024
8025 /* From the ARB_compute_shader specification:
8026 *
8027 * If the local size of the shader in any dimension is greater
8028 * than the maximum size supported by the implementation for that
8029 * dimension, a compile-time error results.
8030 *
8031 * It is not clear from the spec how the error should be reported if
8032 * the total size of the work group exceeds
8033 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8034 * report it at compile time as well.
8035 */
8036 GLuint64 total_invocations = 1;
8037 unsigned qual_local_size[3];
8038 for (int i = 0; i < 3; i++) {
8039
8040 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8041 'x' + i);
8042 /* Infer a local_size of 1 for unspecified dimensions */
8043 if (this->local_size[i] == NULL) {
8044 qual_local_size[i] = 1;
8045 } else if (!this->local_size[i]->
8046 process_qualifier_constant(state, local_size_str,
8047 &qual_local_size[i], false)) {
8048 ralloc_free(local_size_str);
8049 return NULL;
8050 }
8051 ralloc_free(local_size_str);
8052
8053 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8054 _mesa_glsl_error(&loc, state,
8055 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8056 " (%d)", 'x' + i,
8057 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8058 break;
8059 }
8060 total_invocations *= qual_local_size[i];
8061 if (total_invocations >
8062 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8063 _mesa_glsl_error(&loc, state,
8064 "product of local_sizes exceeds "
8065 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8066 state->ctx->Const.MaxComputeWorkGroupInvocations);
8067 break;
8068 }
8069 }
8070
8071 /* If any compute input layout declaration preceded this one, make sure it
8072 * was consistent with this one.
8073 */
8074 if (state->cs_input_local_size_specified) {
8075 for (int i = 0; i < 3; i++) {
8076 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8077 _mesa_glsl_error(&loc, state,
8078 "compute shader input layout does not match"
8079 " previous declaration");
8080 return NULL;
8081 }
8082 }
8083 }
8084
8085 /* The ARB_compute_variable_group_size spec says:
8086 *
8087 * If a compute shader including a *local_size_variable* qualifier also
8088 * declares a fixed local group size using the *local_size_x*,
8089 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8090 * results
8091 */
8092 if (state->cs_input_local_size_variable_specified) {
8093 _mesa_glsl_error(&loc, state,
8094 "compute shader can't include both a variable and a "
8095 "fixed local group size");
8096 return NULL;
8097 }
8098
8099 state->cs_input_local_size_specified = true;
8100 for (int i = 0; i < 3; i++)
8101 state->cs_input_local_size[i] = qual_local_size[i];
8102
8103 /* We may now declare the built-in constant gl_WorkGroupSize (see
8104 * builtin_variable_generator::generate_constants() for why we didn't
8105 * declare it earlier).
8106 */
8107 ir_variable *var = new(state->symbols)
8108 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8109 var->data.how_declared = ir_var_declared_implicitly;
8110 var->data.read_only = true;
8111 instructions->push_tail(var);
8112 state->symbols->add_variable(var);
8113 ir_constant_data data;
8114 memset(&data, 0, sizeof(data));
8115 for (int i = 0; i < 3; i++)
8116 data.u[i] = qual_local_size[i];
8117 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8118 var->constant_initializer =
8119 new(var) ir_constant(glsl_type::uvec3_type, &data);
8120 var->data.has_initializer = true;
8121
8122 return NULL;
8123 }
8124
8125
8126 static void
8127 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8128 exec_list *instructions)
8129 {
8130 bool gl_FragColor_assigned = false;
8131 bool gl_FragData_assigned = false;
8132 bool gl_FragSecondaryColor_assigned = false;
8133 bool gl_FragSecondaryData_assigned = false;
8134 bool user_defined_fs_output_assigned = false;
8135 ir_variable *user_defined_fs_output = NULL;
8136
8137 /* It would be nice to have proper location information. */
8138 YYLTYPE loc;
8139 memset(&loc, 0, sizeof(loc));
8140
8141 foreach_in_list(ir_instruction, node, instructions) {
8142 ir_variable *var = node->as_variable();
8143
8144 if (!var || !var->data.assigned)
8145 continue;
8146
8147 if (strcmp(var->name, "gl_FragColor") == 0)
8148 gl_FragColor_assigned = true;
8149 else if (strcmp(var->name, "gl_FragData") == 0)
8150 gl_FragData_assigned = true;
8151 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8152 gl_FragSecondaryColor_assigned = true;
8153 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8154 gl_FragSecondaryData_assigned = true;
8155 else if (!is_gl_identifier(var->name)) {
8156 if (state->stage == MESA_SHADER_FRAGMENT &&
8157 var->data.mode == ir_var_shader_out) {
8158 user_defined_fs_output_assigned = true;
8159 user_defined_fs_output = var;
8160 }
8161 }
8162 }
8163
8164 /* From the GLSL 1.30 spec:
8165 *
8166 * "If a shader statically assigns a value to gl_FragColor, it
8167 * may not assign a value to any element of gl_FragData. If a
8168 * shader statically writes a value to any element of
8169 * gl_FragData, it may not assign a value to
8170 * gl_FragColor. That is, a shader may assign values to either
8171 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8172 * linked together must also consistently write just one of
8173 * these variables. Similarly, if user declared output
8174 * variables are in use (statically assigned to), then the
8175 * built-in variables gl_FragColor and gl_FragData may not be
8176 * assigned to. These incorrect usages all generate compile
8177 * time errors."
8178 */
8179 if (gl_FragColor_assigned && gl_FragData_assigned) {
8180 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8181 "`gl_FragColor' and `gl_FragData'");
8182 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8183 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8184 "`gl_FragColor' and `%s'",
8185 user_defined_fs_output->name);
8186 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8187 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8188 "`gl_FragSecondaryColorEXT' and"
8189 " `gl_FragSecondaryDataEXT'");
8190 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8191 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8192 "`gl_FragColor' and"
8193 " `gl_FragSecondaryDataEXT'");
8194 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8195 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8196 "`gl_FragData' and"
8197 " `gl_FragSecondaryColorEXT'");
8198 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8199 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8200 "`gl_FragData' and `%s'",
8201 user_defined_fs_output->name);
8202 }
8203
8204 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8205 !state->EXT_blend_func_extended_enable) {
8206 _mesa_glsl_error(&loc, state,
8207 "Dual source blending requires EXT_blend_func_extended");
8208 }
8209 }
8210
8211
8212 static void
8213 remove_per_vertex_blocks(exec_list *instructions,
8214 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8215 {
8216 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8217 * if it exists in this shader type.
8218 */
8219 const glsl_type *per_vertex = NULL;
8220 switch (mode) {
8221 case ir_var_shader_in:
8222 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8223 per_vertex = gl_in->get_interface_type();
8224 break;
8225 case ir_var_shader_out:
8226 if (ir_variable *gl_Position =
8227 state->symbols->get_variable("gl_Position")) {
8228 per_vertex = gl_Position->get_interface_type();
8229 }
8230 break;
8231 default:
8232 assert(!"Unexpected mode");
8233 break;
8234 }
8235
8236 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8237 * need to do anything.
8238 */
8239 if (per_vertex == NULL)
8240 return;
8241
8242 /* If the interface block is used by the shader, then we don't need to do
8243 * anything.
8244 */
8245 interface_block_usage_visitor v(mode, per_vertex);
8246 v.run(instructions);
8247 if (v.usage_found())
8248 return;
8249
8250 /* Remove any ir_variable declarations that refer to the interface block
8251 * we're removing.
8252 */
8253 foreach_in_list_safe(ir_instruction, node, instructions) {
8254 ir_variable *const var = node->as_variable();
8255 if (var != NULL && var->get_interface_type() == per_vertex &&
8256 var->data.mode == mode) {
8257 state->symbols->disable_variable(var->name);
8258 var->remove();
8259 }
8260 }
8261 }