9ea37f4cf62c10b25254effd4f3cdc188a6800ca
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have image_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (image_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.image_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
448 type_a->base_type == GLSL_TYPE_DOUBLE);
449 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
450 type_b->base_type == GLSL_TYPE_DOUBLE);
451
452 /* "* The operator is add (+), subtract (-), or divide (/), and the
453 * operands are matrices with the same number of rows and the same
454 * number of columns. In this case, the operation is done component-
455 * wise resulting in the same size matrix."
456 * * The operator is multiply (*), where both operands are matrices or
457 * one operand is a vector and the other a matrix. A right vector
458 * operand is treated as a column vector and a left vector operand as a
459 * row vector. In all these cases, it is required that the number of
460 * columns of the left operand is equal to the number of rows of the
461 * right operand. Then, the multiply (*) operation does a linear
462 * algebraic multiply, yielding an object that has the same number of
463 * rows as the left operand and the same number of columns as the right
464 * operand. Section 5.10 "Vector and Matrix Operations" explains in
465 * more detail how vectors and matrices are operated on."
466 */
467 if (! multiply) {
468 if (type_a == type_b)
469 return type_a;
470 } else {
471 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
472
473 if (type == glsl_type::error_type) {
474 _mesa_glsl_error(loc, state,
475 "size mismatch for matrix multiplication");
476 }
477
478 return type;
479 }
480
481
482 /* "All other cases are illegal."
483 */
484 _mesa_glsl_error(loc, state, "type mismatch");
485 return glsl_type::error_type;
486 }
487
488
489 static const struct glsl_type *
490 unary_arithmetic_result_type(const struct glsl_type *type,
491 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
492 {
493 /* From GLSL 1.50 spec, page 57:
494 *
495 * "The arithmetic unary operators negate (-), post- and pre-increment
496 * and decrement (-- and ++) operate on integer or floating-point
497 * values (including vectors and matrices). All unary operators work
498 * component-wise on their operands. These result with the same type
499 * they operated on."
500 */
501 if (!type->is_numeric()) {
502 _mesa_glsl_error(loc, state,
503 "operands to arithmetic operators must be numeric");
504 return glsl_type::error_type;
505 }
506
507 return type;
508 }
509
510 /**
511 * \brief Return the result type of a bit-logic operation.
512 *
513 * If the given types to the bit-logic operator are invalid, return
514 * glsl_type::error_type.
515 *
516 * \param value_a LHS of bit-logic op
517 * \param value_b RHS of bit-logic op
518 */
519 static const struct glsl_type *
520 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
521 ast_operators op,
522 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
523 {
524 const glsl_type *type_a = value_a->type;
525 const glsl_type *type_b = value_b->type;
526
527 if (!state->check_bitwise_operations_allowed(loc)) {
528 return glsl_type::error_type;
529 }
530
531 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
532 *
533 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
534 * (|). The operands must be of type signed or unsigned integers or
535 * integer vectors."
536 */
537 if (!type_a->is_integer_32_64()) {
538 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
539 ast_expression::operator_string(op));
540 return glsl_type::error_type;
541 }
542 if (!type_b->is_integer_32_64()) {
543 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 }
547
548 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
549 * make sense for bitwise operations, as they don't operate on floats.
550 *
551 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
552 * here. It wasn't clear whether or not we should apply them to bitwise
553 * operations. However, Khronos has decided that they should in future
554 * language revisions. Applications also rely on this behavior. We opt
555 * to apply them in general, but issue a portability warning.
556 *
557 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
558 */
559 if (type_a->base_type != type_b->base_type) {
560 if (!apply_implicit_conversion(type_a, value_b, state)
561 && !apply_implicit_conversion(type_b, value_a, state)) {
562 _mesa_glsl_error(loc, state,
563 "could not implicitly convert operands to "
564 "`%s` operator",
565 ast_expression::operator_string(op));
566 return glsl_type::error_type;
567 } else {
568 _mesa_glsl_warning(loc, state,
569 "some implementations may not support implicit "
570 "int -> uint conversions for `%s' operators; "
571 "consider casting explicitly for portability",
572 ast_expression::operator_string(op));
573 }
574 type_a = value_a->type;
575 type_b = value_b->type;
576 }
577
578 /* "The fundamental types of the operands (signed or unsigned) must
579 * match,"
580 */
581 if (type_a->base_type != type_b->base_type) {
582 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
583 "base type", ast_expression::operator_string(op));
584 return glsl_type::error_type;
585 }
586
587 /* "The operands cannot be vectors of differing size." */
588 if (type_a->is_vector() &&
589 type_b->is_vector() &&
590 type_a->vector_elements != type_b->vector_elements) {
591 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
592 "different sizes", ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "If one operand is a scalar and the other a vector, the scalar is
597 * applied component-wise to the vector, resulting in the same type as
598 * the vector. The fundamental types of the operands [...] will be the
599 * resulting fundamental type."
600 */
601 if (type_a->is_scalar())
602 return type_b;
603 else
604 return type_a;
605 }
606
607 static const struct glsl_type *
608 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
615 return glsl_type::error_type;
616 }
617
618 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
619 *
620 * "The operator modulus (%) operates on signed or unsigned integers or
621 * integer vectors."
622 */
623 if (!type_a->is_integer_32_64()) {
624 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
625 return glsl_type::error_type;
626 }
627 if (!type_b->is_integer_32_64()) {
628 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
629 return glsl_type::error_type;
630 }
631
632 /* "If the fundamental types in the operands do not match, then the
633 * conversions from section 4.1.10 "Implicit Conversions" are applied
634 * to create matching types."
635 *
636 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
637 * int -> uint conversion rules. Prior to that, there were no implicit
638 * conversions. So it's harmless to apply them universally - no implicit
639 * conversions will exist. If the types don't match, we'll receive false,
640 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
641 *
642 * "The operand types must both be signed or unsigned."
643 */
644 if (!apply_implicit_conversion(type_a, value_b, state) &&
645 !apply_implicit_conversion(type_b, value_a, state)) {
646 _mesa_glsl_error(loc, state,
647 "could not implicitly convert operands to "
648 "modulus (%%) operator");
649 return glsl_type::error_type;
650 }
651 type_a = value_a->type;
652 type_b = value_b->type;
653
654 /* "The operands cannot be vectors of differing size. If one operand is
655 * a scalar and the other vector, then the scalar is applied component-
656 * wise to the vector, resulting in the same type as the vector. If both
657 * are vectors of the same size, the result is computed component-wise."
658 */
659 if (type_a->is_vector()) {
660 if (!type_b->is_vector()
661 || (type_a->vector_elements == type_b->vector_elements))
662 return type_a;
663 } else
664 return type_b;
665
666 /* "The operator modulus (%) is not defined for any other data types
667 * (non-integer types)."
668 */
669 _mesa_glsl_error(loc, state, "type mismatch");
670 return glsl_type::error_type;
671 }
672
673
674 static const struct glsl_type *
675 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
676 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
677 {
678 const glsl_type *type_a = value_a->type;
679 const glsl_type *type_b = value_b->type;
680
681 /* From GLSL 1.50 spec, page 56:
682 * "The relational operators greater than (>), less than (<), greater
683 * than or equal (>=), and less than or equal (<=) operate only on
684 * scalar integer and scalar floating-point expressions."
685 */
686 if (!type_a->is_numeric()
687 || !type_b->is_numeric()
688 || !type_a->is_scalar()
689 || !type_b->is_scalar()) {
690 _mesa_glsl_error(loc, state,
691 "operands to relational operators must be scalar and "
692 "numeric");
693 return glsl_type::error_type;
694 }
695
696 /* "Either the operands' types must match, or the conversions from
697 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
698 * operand, after which the types must match."
699 */
700 if (!apply_implicit_conversion(type_a, value_b, state)
701 && !apply_implicit_conversion(type_b, value_a, state)) {
702 _mesa_glsl_error(loc, state,
703 "could not implicitly convert operands to "
704 "relational operator");
705 return glsl_type::error_type;
706 }
707 type_a = value_a->type;
708 type_b = value_b->type;
709
710 if (type_a->base_type != type_b->base_type) {
711 _mesa_glsl_error(loc, state, "base type mismatch");
712 return glsl_type::error_type;
713 }
714
715 /* "The result is scalar Boolean."
716 */
717 return glsl_type::bool_type;
718 }
719
720 /**
721 * \brief Return the result type of a bit-shift operation.
722 *
723 * If the given types to the bit-shift operator are invalid, return
724 * glsl_type::error_type.
725 *
726 * \param type_a Type of LHS of bit-shift op
727 * \param type_b Type of RHS of bit-shift op
728 */
729 static const struct glsl_type *
730 shift_result_type(const struct glsl_type *type_a,
731 const struct glsl_type *type_b,
732 ast_operators op,
733 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
734 {
735 if (!state->check_bitwise_operations_allowed(loc)) {
736 return glsl_type::error_type;
737 }
738
739 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
740 *
741 * "The shift operators (<<) and (>>). For both operators, the operands
742 * must be signed or unsigned integers or integer vectors. One operand
743 * can be signed while the other is unsigned."
744 */
745 if (!type_a->is_integer_32_64()) {
746 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
747 "integer vector", ast_expression::operator_string(op));
748 return glsl_type::error_type;
749
750 }
751 if (!type_b->is_integer()) {
752 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
753 "integer vector", ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "If the first operand is a scalar, the second operand has to be
758 * a scalar as well."
759 */
760 if (type_a->is_scalar() && !type_b->is_scalar()) {
761 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
762 "second must be scalar as well",
763 ast_expression::operator_string(op));
764 return glsl_type::error_type;
765 }
766
767 /* If both operands are vectors, check that they have same number of
768 * elements.
769 */
770 if (type_a->is_vector() &&
771 type_b->is_vector() &&
772 type_a->vector_elements != type_b->vector_elements) {
773 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
774 "have same number of elements",
775 ast_expression::operator_string(op));
776 return glsl_type::error_type;
777 }
778
779 /* "In all cases, the resulting type will be the same type as the left
780 * operand."
781 */
782 return type_a;
783 }
784
785 /**
786 * Returns the innermost array index expression in an rvalue tree.
787 * This is the largest indexing level -- if an array of blocks, then
788 * it is the block index rather than an indexing expression for an
789 * array-typed member of an array of blocks.
790 */
791 static ir_rvalue *
792 find_innermost_array_index(ir_rvalue *rv)
793 {
794 ir_dereference_array *last = NULL;
795 while (rv) {
796 if (rv->as_dereference_array()) {
797 last = rv->as_dereference_array();
798 rv = last->array;
799 } else if (rv->as_dereference_record())
800 rv = rv->as_dereference_record()->record;
801 else if (rv->as_swizzle())
802 rv = rv->as_swizzle()->val;
803 else
804 rv = NULL;
805 }
806
807 if (last)
808 return last->array_index;
809
810 return NULL;
811 }
812
813 /**
814 * Validates that a value can be assigned to a location with a specified type
815 *
816 * Validates that \c rhs can be assigned to some location. If the types are
817 * not an exact match but an automatic conversion is possible, \c rhs will be
818 * converted.
819 *
820 * \return
821 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
822 * Otherwise the actual RHS to be assigned will be returned. This may be
823 * \c rhs, or it may be \c rhs after some type conversion.
824 *
825 * \note
826 * In addition to being used for assignments, this function is used to
827 * type-check return values.
828 */
829 static ir_rvalue *
830 validate_assignment(struct _mesa_glsl_parse_state *state,
831 YYLTYPE loc, ir_rvalue *lhs,
832 ir_rvalue *rhs, bool is_initializer)
833 {
834 /* If there is already some error in the RHS, just return it. Anything
835 * else will lead to an avalanche of error message back to the user.
836 */
837 if (rhs->type->is_error())
838 return rhs;
839
840 /* In the Tessellation Control Shader:
841 * If a per-vertex output variable is used as an l-value, it is an error
842 * if the expression indicating the vertex number is not the identifier
843 * `gl_InvocationID`.
844 */
845 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
846 ir_variable *var = lhs->variable_referenced();
847 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
848 ir_rvalue *index = find_innermost_array_index(lhs);
849 ir_variable *index_var = index ? index->variable_referenced() : NULL;
850 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
851 _mesa_glsl_error(&loc, state,
852 "Tessellation control shader outputs can only "
853 "be indexed by gl_InvocationID");
854 return NULL;
855 }
856 }
857 }
858
859 /* If the types are identical, the assignment can trivially proceed.
860 */
861 if (rhs->type == lhs->type)
862 return rhs;
863
864 /* If the array element types are the same and the LHS is unsized,
865 * the assignment is okay for initializers embedded in variable
866 * declarations.
867 *
868 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
869 * is handled by ir_dereference::is_lvalue.
870 */
871 const glsl_type *lhs_t = lhs->type;
872 const glsl_type *rhs_t = rhs->type;
873 bool unsized_array = false;
874 while(lhs_t->is_array()) {
875 if (rhs_t == lhs_t)
876 break; /* the rest of the inner arrays match so break out early */
877 if (!rhs_t->is_array()) {
878 unsized_array = false;
879 break; /* number of dimensions mismatch */
880 }
881 if (lhs_t->length == rhs_t->length) {
882 lhs_t = lhs_t->fields.array;
883 rhs_t = rhs_t->fields.array;
884 continue;
885 } else if (lhs_t->is_unsized_array()) {
886 unsized_array = true;
887 } else {
888 unsized_array = false;
889 break; /* sized array mismatch */
890 }
891 lhs_t = lhs_t->fields.array;
892 rhs_t = rhs_t->fields.array;
893 }
894 if (unsized_array) {
895 if (is_initializer) {
896 return rhs;
897 } else {
898 _mesa_glsl_error(&loc, state,
899 "implicitly sized arrays cannot be assigned");
900 return NULL;
901 }
902 }
903
904 /* Check for implicit conversion in GLSL 1.20 */
905 if (apply_implicit_conversion(lhs->type, rhs, state)) {
906 if (rhs->type == lhs->type)
907 return rhs;
908 }
909
910 _mesa_glsl_error(&loc, state,
911 "%s of type %s cannot be assigned to "
912 "variable of type %s",
913 is_initializer ? "initializer" : "value",
914 rhs->type->name, lhs->type->name);
915
916 return NULL;
917 }
918
919 static void
920 mark_whole_array_access(ir_rvalue *access)
921 {
922 ir_dereference_variable *deref = access->as_dereference_variable();
923
924 if (deref && deref->var) {
925 deref->var->data.max_array_access = deref->type->length - 1;
926 }
927 }
928
929 static bool
930 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931 const char *non_lvalue_description,
932 ir_rvalue *lhs, ir_rvalue *rhs,
933 ir_rvalue **out_rvalue, bool needs_rvalue,
934 bool is_initializer,
935 YYLTYPE lhs_loc)
936 {
937 void *ctx = state;
938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940 ir_variable *lhs_var = lhs->variable_referenced();
941 if (lhs_var)
942 lhs_var->data.assigned = true;
943
944 if (!error_emitted) {
945 if (non_lvalue_description != NULL) {
946 _mesa_glsl_error(&lhs_loc, state,
947 "assignment to %s",
948 non_lvalue_description);
949 error_emitted = true;
950 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
951 (lhs_var->data.mode == ir_var_shader_storage &&
952 lhs_var->data.image_read_only))) {
953 /* We can have image_read_only set on both images and buffer variables,
954 * but in the former there is a distinction between assignments to
955 * the variable itself (read_only) and to the memory they point to
956 * (image_read_only), while in the case of buffer variables there is
957 * no such distinction, that is why this check here is limited to
958 * buffer variables alone.
959 */
960 _mesa_glsl_error(&lhs_loc, state,
961 "assignment to read-only variable '%s'",
962 lhs_var->name);
963 error_emitted = true;
964 } else if (lhs->type->is_array() &&
965 !state->check_version(120, 300, &lhs_loc,
966 "whole array assignment forbidden")) {
967 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
968 *
969 * "Other binary or unary expressions, non-dereferenced
970 * arrays, function names, swizzles with repeated fields,
971 * and constants cannot be l-values."
972 *
973 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
974 */
975 error_emitted = true;
976 } else if (!lhs->is_lvalue()) {
977 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
978 error_emitted = true;
979 }
980 }
981
982 ir_rvalue *new_rhs =
983 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
984 if (new_rhs != NULL) {
985 rhs = new_rhs;
986
987 /* If the LHS array was not declared with a size, it takes it size from
988 * the RHS. If the LHS is an l-value and a whole array, it must be a
989 * dereference of a variable. Any other case would require that the LHS
990 * is either not an l-value or not a whole array.
991 */
992 if (lhs->type->is_unsized_array()) {
993 ir_dereference *const d = lhs->as_dereference();
994
995 assert(d != NULL);
996
997 ir_variable *const var = d->variable_referenced();
998
999 assert(var != NULL);
1000
1001 if (var->data.max_array_access >= rhs->type->array_size()) {
1002 /* FINISHME: This should actually log the location of the RHS. */
1003 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1004 "previous access",
1005 var->data.max_array_access);
1006 }
1007
1008 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1009 rhs->type->array_size());
1010 d->type = var->type;
1011 }
1012 if (lhs->type->is_array()) {
1013 mark_whole_array_access(rhs);
1014 mark_whole_array_access(lhs);
1015 }
1016 }
1017
1018 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1019 * but not post_inc) need the converted assigned value as an rvalue
1020 * to handle things like:
1021 *
1022 * i = j += 1;
1023 */
1024 if (needs_rvalue) {
1025 ir_rvalue *rvalue;
1026 if (!error_emitted) {
1027 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1028 ir_var_temporary);
1029 instructions->push_tail(var);
1030 instructions->push_tail(assign(var, rhs));
1031
1032 ir_dereference_variable *deref_var =
1033 new(ctx) ir_dereference_variable(var);
1034 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1035 rvalue = new(ctx) ir_dereference_variable(var);
1036 } else {
1037 rvalue = ir_rvalue::error_value(ctx);
1038 }
1039 *out_rvalue = rvalue;
1040 } else {
1041 if (!error_emitted)
1042 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1043 *out_rvalue = NULL;
1044 }
1045
1046 return error_emitted;
1047 }
1048
1049 static ir_rvalue *
1050 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1051 {
1052 void *ctx = ralloc_parent(lvalue);
1053 ir_variable *var;
1054
1055 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1056 ir_var_temporary);
1057 instructions->push_tail(var);
1058
1059 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1060 lvalue));
1061
1062 return new(ctx) ir_dereference_variable(var);
1063 }
1064
1065
1066 ir_rvalue *
1067 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1068 {
1069 (void) instructions;
1070 (void) state;
1071
1072 return NULL;
1073 }
1074
1075 bool
1076 ast_node::has_sequence_subexpression() const
1077 {
1078 return false;
1079 }
1080
1081 void
1082 ast_node::set_is_lhs(bool /* new_value */)
1083 {
1084 }
1085
1086 void
1087 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1088 struct _mesa_glsl_parse_state *state)
1089 {
1090 (void)hir(instructions, state);
1091 }
1092
1093 void
1094 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1095 struct _mesa_glsl_parse_state *state)
1096 {
1097 (void)hir(instructions, state);
1098 }
1099
1100 static ir_rvalue *
1101 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1102 {
1103 int join_op;
1104 ir_rvalue *cmp = NULL;
1105
1106 if (operation == ir_binop_all_equal)
1107 join_op = ir_binop_logic_and;
1108 else
1109 join_op = ir_binop_logic_or;
1110
1111 switch (op0->type->base_type) {
1112 case GLSL_TYPE_FLOAT:
1113 case GLSL_TYPE_UINT:
1114 case GLSL_TYPE_INT:
1115 case GLSL_TYPE_BOOL:
1116 case GLSL_TYPE_DOUBLE:
1117 case GLSL_TYPE_UINT64:
1118 case GLSL_TYPE_INT64:
1119 return new(mem_ctx) ir_expression(operation, op0, op1);
1120
1121 case GLSL_TYPE_ARRAY: {
1122 for (unsigned int i = 0; i < op0->type->length; i++) {
1123 ir_rvalue *e0, *e1, *result;
1124
1125 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1128 new(mem_ctx) ir_constant(i));
1129 result = do_comparison(mem_ctx, operation, e0, e1);
1130
1131 if (cmp) {
1132 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133 } else {
1134 cmp = result;
1135 }
1136 }
1137
1138 mark_whole_array_access(op0);
1139 mark_whole_array_access(op1);
1140 break;
1141 }
1142
1143 case GLSL_TYPE_STRUCT: {
1144 for (unsigned int i = 0; i < op0->type->length; i++) {
1145 ir_rvalue *e0, *e1, *result;
1146 const char *field_name = op0->type->fields.structure[i].name;
1147
1148 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1149 field_name);
1150 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1151 field_name);
1152 result = do_comparison(mem_ctx, operation, e0, e1);
1153
1154 if (cmp) {
1155 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1156 } else {
1157 cmp = result;
1158 }
1159 }
1160 break;
1161 }
1162
1163 case GLSL_TYPE_ERROR:
1164 case GLSL_TYPE_VOID:
1165 case GLSL_TYPE_SAMPLER:
1166 case GLSL_TYPE_IMAGE:
1167 case GLSL_TYPE_INTERFACE:
1168 case GLSL_TYPE_ATOMIC_UINT:
1169 case GLSL_TYPE_SUBROUTINE:
1170 case GLSL_TYPE_FUNCTION:
1171 /* I assume a comparison of a struct containing a sampler just
1172 * ignores the sampler present in the type.
1173 */
1174 break;
1175 }
1176
1177 if (cmp == NULL)
1178 cmp = new(mem_ctx) ir_constant(true);
1179
1180 return cmp;
1181 }
1182
1183 /* For logical operations, we want to ensure that the operands are
1184 * scalar booleans. If it isn't, emit an error and return a constant
1185 * boolean to avoid triggering cascading error messages.
1186 */
1187 ir_rvalue *
1188 get_scalar_boolean_operand(exec_list *instructions,
1189 struct _mesa_glsl_parse_state *state,
1190 ast_expression *parent_expr,
1191 int operand,
1192 const char *operand_name,
1193 bool *error_emitted)
1194 {
1195 ast_expression *expr = parent_expr->subexpressions[operand];
1196 void *ctx = state;
1197 ir_rvalue *val = expr->hir(instructions, state);
1198
1199 if (val->type->is_boolean() && val->type->is_scalar())
1200 return val;
1201
1202 if (!*error_emitted) {
1203 YYLTYPE loc = expr->get_location();
1204 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1205 operand_name,
1206 parent_expr->operator_string(parent_expr->oper));
1207 *error_emitted = true;
1208 }
1209
1210 return new(ctx) ir_constant(true);
1211 }
1212
1213 /**
1214 * If name refers to a builtin array whose maximum allowed size is less than
1215 * size, report an error and return true. Otherwise return false.
1216 */
1217 void
1218 check_builtin_array_max_size(const char *name, unsigned size,
1219 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1220 {
1221 if ((strcmp("gl_TexCoord", name) == 0)
1222 && (size > state->Const.MaxTextureCoords)) {
1223 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1224 *
1225 * "The size [of gl_TexCoord] can be at most
1226 * gl_MaxTextureCoords."
1227 */
1228 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1229 "be larger than gl_MaxTextureCoords (%u)",
1230 state->Const.MaxTextureCoords);
1231 } else if (strcmp("gl_ClipDistance", name) == 0) {
1232 state->clip_dist_size = size;
1233 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1234 /* From section 7.1 (Vertex Shader Special Variables) of the
1235 * GLSL 1.30 spec:
1236 *
1237 * "The gl_ClipDistance array is predeclared as unsized and
1238 * must be sized by the shader either redeclaring it with a
1239 * size or indexing it only with integral constant
1240 * expressions. ... The size can be at most
1241 * gl_MaxClipDistances."
1242 */
1243 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1244 "be larger than gl_MaxClipDistances (%u)",
1245 state->Const.MaxClipPlanes);
1246 }
1247 } else if (strcmp("gl_CullDistance", name) == 0) {
1248 state->cull_dist_size = size;
1249 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1250 /* From the ARB_cull_distance spec:
1251 *
1252 * "The gl_CullDistance array is predeclared as unsized and
1253 * must be sized by the shader either redeclaring it with
1254 * a size or indexing it only with integral constant
1255 * expressions. The size determines the number and set of
1256 * enabled cull distances and can be at most
1257 * gl_MaxCullDistances."
1258 */
1259 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1260 "be larger than gl_MaxCullDistances (%u)",
1261 state->Const.MaxClipPlanes);
1262 }
1263 }
1264 }
1265
1266 /**
1267 * Create the constant 1, of a which is appropriate for incrementing and
1268 * decrementing values of the given GLSL type. For example, if type is vec4,
1269 * this creates a constant value of 1.0 having type float.
1270 *
1271 * If the given type is invalid for increment and decrement operators, return
1272 * a floating point 1--the error will be detected later.
1273 */
1274 static ir_rvalue *
1275 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1276 {
1277 switch (type->base_type) {
1278 case GLSL_TYPE_UINT:
1279 return new(ctx) ir_constant((unsigned) 1);
1280 case GLSL_TYPE_INT:
1281 return new(ctx) ir_constant(1);
1282 case GLSL_TYPE_UINT64:
1283 return new(ctx) ir_constant((uint64_t) 1);
1284 case GLSL_TYPE_INT64:
1285 return new(ctx) ir_constant((int64_t) 1);
1286 default:
1287 case GLSL_TYPE_FLOAT:
1288 return new(ctx) ir_constant(1.0f);
1289 }
1290 }
1291
1292 ir_rvalue *
1293 ast_expression::hir(exec_list *instructions,
1294 struct _mesa_glsl_parse_state *state)
1295 {
1296 return do_hir(instructions, state, true);
1297 }
1298
1299 void
1300 ast_expression::hir_no_rvalue(exec_list *instructions,
1301 struct _mesa_glsl_parse_state *state)
1302 {
1303 do_hir(instructions, state, false);
1304 }
1305
1306 void
1307 ast_expression::set_is_lhs(bool new_value)
1308 {
1309 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1310 * if we lack an identifier we can just skip it.
1311 */
1312 if (this->primary_expression.identifier == NULL)
1313 return;
1314
1315 this->is_lhs = new_value;
1316
1317 /* We need to go through the subexpressions tree to cover cases like
1318 * ast_field_selection
1319 */
1320 if (this->subexpressions[0] != NULL)
1321 this->subexpressions[0]->set_is_lhs(new_value);
1322 }
1323
1324 ir_rvalue *
1325 ast_expression::do_hir(exec_list *instructions,
1326 struct _mesa_glsl_parse_state *state,
1327 bool needs_rvalue)
1328 {
1329 void *ctx = state;
1330 static const int operations[AST_NUM_OPERATORS] = {
1331 -1, /* ast_assign doesn't convert to ir_expression. */
1332 -1, /* ast_plus doesn't convert to ir_expression. */
1333 ir_unop_neg,
1334 ir_binop_add,
1335 ir_binop_sub,
1336 ir_binop_mul,
1337 ir_binop_div,
1338 ir_binop_mod,
1339 ir_binop_lshift,
1340 ir_binop_rshift,
1341 ir_binop_less,
1342 ir_binop_greater,
1343 ir_binop_lequal,
1344 ir_binop_gequal,
1345 ir_binop_all_equal,
1346 ir_binop_any_nequal,
1347 ir_binop_bit_and,
1348 ir_binop_bit_xor,
1349 ir_binop_bit_or,
1350 ir_unop_bit_not,
1351 ir_binop_logic_and,
1352 ir_binop_logic_xor,
1353 ir_binop_logic_or,
1354 ir_unop_logic_not,
1355
1356 /* Note: The following block of expression types actually convert
1357 * to multiple IR instructions.
1358 */
1359 ir_binop_mul, /* ast_mul_assign */
1360 ir_binop_div, /* ast_div_assign */
1361 ir_binop_mod, /* ast_mod_assign */
1362 ir_binop_add, /* ast_add_assign */
1363 ir_binop_sub, /* ast_sub_assign */
1364 ir_binop_lshift, /* ast_ls_assign */
1365 ir_binop_rshift, /* ast_rs_assign */
1366 ir_binop_bit_and, /* ast_and_assign */
1367 ir_binop_bit_xor, /* ast_xor_assign */
1368 ir_binop_bit_or, /* ast_or_assign */
1369
1370 -1, /* ast_conditional doesn't convert to ir_expression. */
1371 ir_binop_add, /* ast_pre_inc. */
1372 ir_binop_sub, /* ast_pre_dec. */
1373 ir_binop_add, /* ast_post_inc. */
1374 ir_binop_sub, /* ast_post_dec. */
1375 -1, /* ast_field_selection doesn't conv to ir_expression. */
1376 -1, /* ast_array_index doesn't convert to ir_expression. */
1377 -1, /* ast_function_call doesn't conv to ir_expression. */
1378 -1, /* ast_identifier doesn't convert to ir_expression. */
1379 -1, /* ast_int_constant doesn't convert to ir_expression. */
1380 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1381 -1, /* ast_float_constant doesn't conv to ir_expression. */
1382 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1383 -1, /* ast_sequence doesn't convert to ir_expression. */
1384 -1, /* ast_aggregate shouldn't ever even get here. */
1385 };
1386 ir_rvalue *result = NULL;
1387 ir_rvalue *op[3];
1388 const struct glsl_type *type, *orig_type;
1389 bool error_emitted = false;
1390 YYLTYPE loc;
1391
1392 loc = this->get_location();
1393
1394 switch (this->oper) {
1395 case ast_aggregate:
1396 assert(!"ast_aggregate: Should never get here.");
1397 break;
1398
1399 case ast_assign: {
1400 this->subexpressions[0]->set_is_lhs(true);
1401 op[0] = this->subexpressions[0]->hir(instructions, state);
1402 op[1] = this->subexpressions[1]->hir(instructions, state);
1403
1404 error_emitted =
1405 do_assignment(instructions, state,
1406 this->subexpressions[0]->non_lvalue_description,
1407 op[0], op[1], &result, needs_rvalue, false,
1408 this->subexpressions[0]->get_location());
1409 break;
1410 }
1411
1412 case ast_plus:
1413 op[0] = this->subexpressions[0]->hir(instructions, state);
1414
1415 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1416
1417 error_emitted = type->is_error();
1418
1419 result = op[0];
1420 break;
1421
1422 case ast_neg:
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424
1425 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1426
1427 error_emitted = type->is_error();
1428
1429 result = new(ctx) ir_expression(operations[this->oper], type,
1430 op[0], NULL);
1431 break;
1432
1433 case ast_add:
1434 case ast_sub:
1435 case ast_mul:
1436 case ast_div:
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438 op[1] = this->subexpressions[1]->hir(instructions, state);
1439
1440 type = arithmetic_result_type(op[0], op[1],
1441 (this->oper == ast_mul),
1442 state, & loc);
1443 error_emitted = type->is_error();
1444
1445 result = new(ctx) ir_expression(operations[this->oper], type,
1446 op[0], op[1]);
1447 break;
1448
1449 case ast_mod:
1450 op[0] = this->subexpressions[0]->hir(instructions, state);
1451 op[1] = this->subexpressions[1]->hir(instructions, state);
1452
1453 type = modulus_result_type(op[0], op[1], state, &loc);
1454
1455 assert(operations[this->oper] == ir_binop_mod);
1456
1457 result = new(ctx) ir_expression(operations[this->oper], type,
1458 op[0], op[1]);
1459 error_emitted = type->is_error();
1460 break;
1461
1462 case ast_lshift:
1463 case ast_rshift:
1464 if (!state->check_bitwise_operations_allowed(&loc)) {
1465 error_emitted = true;
1466 }
1467
1468 op[0] = this->subexpressions[0]->hir(instructions, state);
1469 op[1] = this->subexpressions[1]->hir(instructions, state);
1470 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1471 &loc);
1472 result = new(ctx) ir_expression(operations[this->oper], type,
1473 op[0], op[1]);
1474 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1475 break;
1476
1477 case ast_less:
1478 case ast_greater:
1479 case ast_lequal:
1480 case ast_gequal:
1481 op[0] = this->subexpressions[0]->hir(instructions, state);
1482 op[1] = this->subexpressions[1]->hir(instructions, state);
1483
1484 type = relational_result_type(op[0], op[1], state, & loc);
1485
1486 /* The relational operators must either generate an error or result
1487 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1488 */
1489 assert(type->is_error()
1490 || ((type->base_type == GLSL_TYPE_BOOL)
1491 && type->is_scalar()));
1492
1493 result = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495 error_emitted = type->is_error();
1496 break;
1497
1498 case ast_nequal:
1499 case ast_equal:
1500 op[0] = this->subexpressions[0]->hir(instructions, state);
1501 op[1] = this->subexpressions[1]->hir(instructions, state);
1502
1503 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1504 *
1505 * "The equality operators equal (==), and not equal (!=)
1506 * operate on all types. They result in a scalar Boolean. If
1507 * the operand types do not match, then there must be a
1508 * conversion from Section 4.1.10 "Implicit Conversions"
1509 * applied to one operand that can make them match, in which
1510 * case this conversion is done."
1511 */
1512
1513 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1514 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1515 "no operation `%1$s' exists that takes a left-hand "
1516 "operand of type 'void' or a right operand of type "
1517 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1518 error_emitted = true;
1519 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1520 && !apply_implicit_conversion(op[1]->type, op[0], state))
1521 || (op[0]->type != op[1]->type)) {
1522 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1523 "type", (this->oper == ast_equal) ? "==" : "!=");
1524 error_emitted = true;
1525 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1526 !state->check_version(120, 300, &loc,
1527 "array comparisons forbidden")) {
1528 error_emitted = true;
1529 } else if ((op[0]->type->contains_subroutine() ||
1530 op[1]->type->contains_subroutine())) {
1531 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1532 error_emitted = true;
1533 } else if ((op[0]->type->contains_opaque() ||
1534 op[1]->type->contains_opaque())) {
1535 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1536 error_emitted = true;
1537 }
1538
1539 if (error_emitted) {
1540 result = new(ctx) ir_constant(false);
1541 } else {
1542 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1543 assert(result->type == glsl_type::bool_type);
1544 }
1545 break;
1546
1547 case ast_bit_and:
1548 case ast_bit_xor:
1549 case ast_bit_or:
1550 op[0] = this->subexpressions[0]->hir(instructions, state);
1551 op[1] = this->subexpressions[1]->hir(instructions, state);
1552 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1553 result = new(ctx) ir_expression(operations[this->oper], type,
1554 op[0], op[1]);
1555 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1556 break;
1557
1558 case ast_bit_not:
1559 op[0] = this->subexpressions[0]->hir(instructions, state);
1560
1561 if (!state->check_bitwise_operations_allowed(&loc)) {
1562 error_emitted = true;
1563 }
1564
1565 if (!op[0]->type->is_integer_32_64()) {
1566 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1567 error_emitted = true;
1568 }
1569
1570 type = error_emitted ? glsl_type::error_type : op[0]->type;
1571 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1572 break;
1573
1574 case ast_logic_and: {
1575 exec_list rhs_instructions;
1576 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1577 "LHS", &error_emitted);
1578 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1579 "RHS", &error_emitted);
1580
1581 if (rhs_instructions.is_empty()) {
1582 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1583 type = result->type;
1584 } else {
1585 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1586 "and_tmp",
1587 ir_var_temporary);
1588 instructions->push_tail(tmp);
1589
1590 ir_if *const stmt = new(ctx) ir_if(op[0]);
1591 instructions->push_tail(stmt);
1592
1593 stmt->then_instructions.append_list(&rhs_instructions);
1594 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1595 ir_assignment *const then_assign =
1596 new(ctx) ir_assignment(then_deref, op[1]);
1597 stmt->then_instructions.push_tail(then_assign);
1598
1599 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1600 ir_assignment *const else_assign =
1601 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1602 stmt->else_instructions.push_tail(else_assign);
1603
1604 result = new(ctx) ir_dereference_variable(tmp);
1605 type = tmp->type;
1606 }
1607 break;
1608 }
1609
1610 case ast_logic_or: {
1611 exec_list rhs_instructions;
1612 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1613 "LHS", &error_emitted);
1614 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1615 "RHS", &error_emitted);
1616
1617 if (rhs_instructions.is_empty()) {
1618 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1619 type = result->type;
1620 } else {
1621 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1622 "or_tmp",
1623 ir_var_temporary);
1624 instructions->push_tail(tmp);
1625
1626 ir_if *const stmt = new(ctx) ir_if(op[0]);
1627 instructions->push_tail(stmt);
1628
1629 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1630 ir_assignment *const then_assign =
1631 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1632 stmt->then_instructions.push_tail(then_assign);
1633
1634 stmt->else_instructions.append_list(&rhs_instructions);
1635 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1636 ir_assignment *const else_assign =
1637 new(ctx) ir_assignment(else_deref, op[1]);
1638 stmt->else_instructions.push_tail(else_assign);
1639
1640 result = new(ctx) ir_dereference_variable(tmp);
1641 type = tmp->type;
1642 }
1643 break;
1644 }
1645
1646 case ast_logic_xor:
1647 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1648 *
1649 * "The logical binary operators and (&&), or ( | | ), and
1650 * exclusive or (^^). They operate only on two Boolean
1651 * expressions and result in a Boolean expression."
1652 */
1653 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1654 &error_emitted);
1655 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1656 &error_emitted);
1657
1658 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1659 op[0], op[1]);
1660 break;
1661
1662 case ast_logic_not:
1663 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1664 "operand", &error_emitted);
1665
1666 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1667 op[0], NULL);
1668 break;
1669
1670 case ast_mul_assign:
1671 case ast_div_assign:
1672 case ast_add_assign:
1673 case ast_sub_assign: {
1674 this->subexpressions[0]->set_is_lhs(true);
1675 op[0] = this->subexpressions[0]->hir(instructions, state);
1676 op[1] = this->subexpressions[1]->hir(instructions, state);
1677
1678 orig_type = op[0]->type;
1679 type = arithmetic_result_type(op[0], op[1],
1680 (this->oper == ast_mul_assign),
1681 state, & loc);
1682
1683 if (type != orig_type) {
1684 _mesa_glsl_error(& loc, state,
1685 "could not implicitly convert "
1686 "%s to %s", type->name, orig_type->name);
1687 type = glsl_type::error_type;
1688 }
1689
1690 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1691 op[0], op[1]);
1692
1693 error_emitted =
1694 do_assignment(instructions, state,
1695 this->subexpressions[0]->non_lvalue_description,
1696 op[0]->clone(ctx, NULL), temp_rhs,
1697 &result, needs_rvalue, false,
1698 this->subexpressions[0]->get_location());
1699
1700 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1701 * explicitly test for this because none of the binary expression
1702 * operators allow array operands either.
1703 */
1704
1705 break;
1706 }
1707
1708 case ast_mod_assign: {
1709 this->subexpressions[0]->set_is_lhs(true);
1710 op[0] = this->subexpressions[0]->hir(instructions, state);
1711 op[1] = this->subexpressions[1]->hir(instructions, state);
1712
1713 orig_type = op[0]->type;
1714 type = modulus_result_type(op[0], op[1], state, &loc);
1715
1716 if (type != orig_type) {
1717 _mesa_glsl_error(& loc, state,
1718 "could not implicitly convert "
1719 "%s to %s", type->name, orig_type->name);
1720 type = glsl_type::error_type;
1721 }
1722
1723 assert(operations[this->oper] == ir_binop_mod);
1724
1725 ir_rvalue *temp_rhs;
1726 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1727 op[0], op[1]);
1728
1729 error_emitted =
1730 do_assignment(instructions, state,
1731 this->subexpressions[0]->non_lvalue_description,
1732 op[0]->clone(ctx, NULL), temp_rhs,
1733 &result, needs_rvalue, false,
1734 this->subexpressions[0]->get_location());
1735 break;
1736 }
1737
1738 case ast_ls_assign:
1739 case ast_rs_assign: {
1740 this->subexpressions[0]->set_is_lhs(true);
1741 op[0] = this->subexpressions[0]->hir(instructions, state);
1742 op[1] = this->subexpressions[1]->hir(instructions, state);
1743 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1744 &loc);
1745 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1746 type, op[0], op[1]);
1747 error_emitted =
1748 do_assignment(instructions, state,
1749 this->subexpressions[0]->non_lvalue_description,
1750 op[0]->clone(ctx, NULL), temp_rhs,
1751 &result, needs_rvalue, false,
1752 this->subexpressions[0]->get_location());
1753 break;
1754 }
1755
1756 case ast_and_assign:
1757 case ast_xor_assign:
1758 case ast_or_assign: {
1759 this->subexpressions[0]->set_is_lhs(true);
1760 op[0] = this->subexpressions[0]->hir(instructions, state);
1761 op[1] = this->subexpressions[1]->hir(instructions, state);
1762
1763 orig_type = op[0]->type;
1764 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1765
1766 if (type != orig_type) {
1767 _mesa_glsl_error(& loc, state,
1768 "could not implicitly convert "
1769 "%s to %s", type->name, orig_type->name);
1770 type = glsl_type::error_type;
1771 }
1772
1773 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1774 type, op[0], op[1]);
1775 error_emitted =
1776 do_assignment(instructions, state,
1777 this->subexpressions[0]->non_lvalue_description,
1778 op[0]->clone(ctx, NULL), temp_rhs,
1779 &result, needs_rvalue, false,
1780 this->subexpressions[0]->get_location());
1781 break;
1782 }
1783
1784 case ast_conditional: {
1785 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1786 *
1787 * "The ternary selection operator (?:). It operates on three
1788 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1789 * first expression, which must result in a scalar Boolean."
1790 */
1791 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1792 "condition", &error_emitted);
1793
1794 /* The :? operator is implemented by generating an anonymous temporary
1795 * followed by an if-statement. The last instruction in each branch of
1796 * the if-statement assigns a value to the anonymous temporary. This
1797 * temporary is the r-value of the expression.
1798 */
1799 exec_list then_instructions;
1800 exec_list else_instructions;
1801
1802 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1803 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1804
1805 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1806 *
1807 * "The second and third expressions can be any type, as
1808 * long their types match, or there is a conversion in
1809 * Section 4.1.10 "Implicit Conversions" that can be applied
1810 * to one of the expressions to make their types match. This
1811 * resulting matching type is the type of the entire
1812 * expression."
1813 */
1814 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1815 && !apply_implicit_conversion(op[2]->type, op[1], state))
1816 || (op[1]->type != op[2]->type)) {
1817 YYLTYPE loc = this->subexpressions[1]->get_location();
1818
1819 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1820 "operator must have matching types");
1821 error_emitted = true;
1822 type = glsl_type::error_type;
1823 } else {
1824 type = op[1]->type;
1825 }
1826
1827 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1828 *
1829 * "The second and third expressions must be the same type, but can
1830 * be of any type other than an array."
1831 */
1832 if (type->is_array() &&
1833 !state->check_version(120, 300, &loc,
1834 "second and third operands of ?: operator "
1835 "cannot be arrays")) {
1836 error_emitted = true;
1837 }
1838
1839 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1840 *
1841 * "Except for array indexing, structure member selection, and
1842 * parentheses, opaque variables are not allowed to be operands in
1843 * expressions; such use results in a compile-time error."
1844 */
1845 if (type->contains_opaque()) {
1846 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1847 "of the ?: operator");
1848 error_emitted = true;
1849 }
1850
1851 ir_constant *cond_val = op[0]->constant_expression_value();
1852
1853 if (then_instructions.is_empty()
1854 && else_instructions.is_empty()
1855 && cond_val != NULL) {
1856 result = cond_val->value.b[0] ? op[1] : op[2];
1857 } else {
1858 /* The copy to conditional_tmp reads the whole array. */
1859 if (type->is_array()) {
1860 mark_whole_array_access(op[1]);
1861 mark_whole_array_access(op[2]);
1862 }
1863
1864 ir_variable *const tmp =
1865 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1866 instructions->push_tail(tmp);
1867
1868 ir_if *const stmt = new(ctx) ir_if(op[0]);
1869 instructions->push_tail(stmt);
1870
1871 then_instructions.move_nodes_to(& stmt->then_instructions);
1872 ir_dereference *const then_deref =
1873 new(ctx) ir_dereference_variable(tmp);
1874 ir_assignment *const then_assign =
1875 new(ctx) ir_assignment(then_deref, op[1]);
1876 stmt->then_instructions.push_tail(then_assign);
1877
1878 else_instructions.move_nodes_to(& stmt->else_instructions);
1879 ir_dereference *const else_deref =
1880 new(ctx) ir_dereference_variable(tmp);
1881 ir_assignment *const else_assign =
1882 new(ctx) ir_assignment(else_deref, op[2]);
1883 stmt->else_instructions.push_tail(else_assign);
1884
1885 result = new(ctx) ir_dereference_variable(tmp);
1886 }
1887 break;
1888 }
1889
1890 case ast_pre_inc:
1891 case ast_pre_dec: {
1892 this->non_lvalue_description = (this->oper == ast_pre_inc)
1893 ? "pre-increment operation" : "pre-decrement operation";
1894
1895 op[0] = this->subexpressions[0]->hir(instructions, state);
1896 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1897
1898 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1899
1900 ir_rvalue *temp_rhs;
1901 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1902 op[0], op[1]);
1903
1904 error_emitted =
1905 do_assignment(instructions, state,
1906 this->subexpressions[0]->non_lvalue_description,
1907 op[0]->clone(ctx, NULL), temp_rhs,
1908 &result, needs_rvalue, false,
1909 this->subexpressions[0]->get_location());
1910 break;
1911 }
1912
1913 case ast_post_inc:
1914 case ast_post_dec: {
1915 this->non_lvalue_description = (this->oper == ast_post_inc)
1916 ? "post-increment operation" : "post-decrement operation";
1917 op[0] = this->subexpressions[0]->hir(instructions, state);
1918 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1919
1920 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1921
1922 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1923
1924 ir_rvalue *temp_rhs;
1925 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1926 op[0], op[1]);
1927
1928 /* Get a temporary of a copy of the lvalue before it's modified.
1929 * This may get thrown away later.
1930 */
1931 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1932
1933 ir_rvalue *junk_rvalue;
1934 error_emitted =
1935 do_assignment(instructions, state,
1936 this->subexpressions[0]->non_lvalue_description,
1937 op[0]->clone(ctx, NULL), temp_rhs,
1938 &junk_rvalue, false, false,
1939 this->subexpressions[0]->get_location());
1940
1941 break;
1942 }
1943
1944 case ast_field_selection:
1945 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1946 break;
1947
1948 case ast_array_index: {
1949 YYLTYPE index_loc = subexpressions[1]->get_location();
1950
1951 /* Getting if an array is being used uninitialized is beyond what we get
1952 * from ir_value.data.assigned. Setting is_lhs as true would force to
1953 * not raise a uninitialized warning when using an array
1954 */
1955 subexpressions[0]->set_is_lhs(true);
1956 op[0] = subexpressions[0]->hir(instructions, state);
1957 op[1] = subexpressions[1]->hir(instructions, state);
1958
1959 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1960 loc, index_loc);
1961
1962 if (result->type->is_error())
1963 error_emitted = true;
1964
1965 break;
1966 }
1967
1968 case ast_unsized_array_dim:
1969 assert(!"ast_unsized_array_dim: Should never get here.");
1970 break;
1971
1972 case ast_function_call:
1973 /* Should *NEVER* get here. ast_function_call should always be handled
1974 * by ast_function_expression::hir.
1975 */
1976 assert(0);
1977 break;
1978
1979 case ast_identifier: {
1980 /* ast_identifier can appear several places in a full abstract syntax
1981 * tree. This particular use must be at location specified in the grammar
1982 * as 'variable_identifier'.
1983 */
1984 ir_variable *var =
1985 state->symbols->get_variable(this->primary_expression.identifier);
1986
1987 if (var == NULL) {
1988 /* the identifier might be a subroutine name */
1989 char *sub_name;
1990 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1991 var = state->symbols->get_variable(sub_name);
1992 ralloc_free(sub_name);
1993 }
1994
1995 if (var != NULL) {
1996 var->data.used = true;
1997 result = new(ctx) ir_dereference_variable(var);
1998
1999 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2000 && !this->is_lhs
2001 && result->variable_referenced()->data.assigned != true
2002 && !is_gl_identifier(var->name)) {
2003 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2004 this->primary_expression.identifier);
2005 }
2006 } else {
2007 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2008 this->primary_expression.identifier);
2009
2010 result = ir_rvalue::error_value(ctx);
2011 error_emitted = true;
2012 }
2013 break;
2014 }
2015
2016 case ast_int_constant:
2017 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2018 break;
2019
2020 case ast_uint_constant:
2021 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2022 break;
2023
2024 case ast_float_constant:
2025 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2026 break;
2027
2028 case ast_bool_constant:
2029 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2030 break;
2031
2032 case ast_double_constant:
2033 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2034 break;
2035
2036 case ast_uint64_constant:
2037 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2038 break;
2039
2040 case ast_int64_constant:
2041 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2042 break;
2043
2044 case ast_sequence: {
2045 /* It should not be possible to generate a sequence in the AST without
2046 * any expressions in it.
2047 */
2048 assert(!this->expressions.is_empty());
2049
2050 /* The r-value of a sequence is the last expression in the sequence. If
2051 * the other expressions in the sequence do not have side-effects (and
2052 * therefore add instructions to the instruction list), they get dropped
2053 * on the floor.
2054 */
2055 exec_node *previous_tail = NULL;
2056 YYLTYPE previous_operand_loc = loc;
2057
2058 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2059 /* If one of the operands of comma operator does not generate any
2060 * code, we want to emit a warning. At each pass through the loop
2061 * previous_tail will point to the last instruction in the stream
2062 * *before* processing the previous operand. Naturally,
2063 * instructions->get_tail_raw() will point to the last instruction in
2064 * the stream *after* processing the previous operand. If the two
2065 * pointers match, then the previous operand had no effect.
2066 *
2067 * The warning behavior here differs slightly from GCC. GCC will
2068 * only emit a warning if none of the left-hand operands have an
2069 * effect. However, it will emit a warning for each. I believe that
2070 * there are some cases in C (especially with GCC extensions) where
2071 * it is useful to have an intermediate step in a sequence have no
2072 * effect, but I don't think these cases exist in GLSL. Either way,
2073 * it would be a giant hassle to replicate that behavior.
2074 */
2075 if (previous_tail == instructions->get_tail_raw()) {
2076 _mesa_glsl_warning(&previous_operand_loc, state,
2077 "left-hand operand of comma expression has "
2078 "no effect");
2079 }
2080
2081 /* The tail is directly accessed instead of using the get_tail()
2082 * method for performance reasons. get_tail() has extra code to
2083 * return NULL when the list is empty. We don't care about that
2084 * here, so using get_tail_raw() is fine.
2085 */
2086 previous_tail = instructions->get_tail_raw();
2087 previous_operand_loc = ast->get_location();
2088
2089 result = ast->hir(instructions, state);
2090 }
2091
2092 /* Any errors should have already been emitted in the loop above.
2093 */
2094 error_emitted = true;
2095 break;
2096 }
2097 }
2098 type = NULL; /* use result->type, not type. */
2099 assert(result != NULL || !needs_rvalue);
2100
2101 if (result && result->type->is_error() && !error_emitted)
2102 _mesa_glsl_error(& loc, state, "type mismatch");
2103
2104 return result;
2105 }
2106
2107 bool
2108 ast_expression::has_sequence_subexpression() const
2109 {
2110 switch (this->oper) {
2111 case ast_plus:
2112 case ast_neg:
2113 case ast_bit_not:
2114 case ast_logic_not:
2115 case ast_pre_inc:
2116 case ast_pre_dec:
2117 case ast_post_inc:
2118 case ast_post_dec:
2119 return this->subexpressions[0]->has_sequence_subexpression();
2120
2121 case ast_assign:
2122 case ast_add:
2123 case ast_sub:
2124 case ast_mul:
2125 case ast_div:
2126 case ast_mod:
2127 case ast_lshift:
2128 case ast_rshift:
2129 case ast_less:
2130 case ast_greater:
2131 case ast_lequal:
2132 case ast_gequal:
2133 case ast_nequal:
2134 case ast_equal:
2135 case ast_bit_and:
2136 case ast_bit_xor:
2137 case ast_bit_or:
2138 case ast_logic_and:
2139 case ast_logic_or:
2140 case ast_logic_xor:
2141 case ast_array_index:
2142 case ast_mul_assign:
2143 case ast_div_assign:
2144 case ast_add_assign:
2145 case ast_sub_assign:
2146 case ast_mod_assign:
2147 case ast_ls_assign:
2148 case ast_rs_assign:
2149 case ast_and_assign:
2150 case ast_xor_assign:
2151 case ast_or_assign:
2152 return this->subexpressions[0]->has_sequence_subexpression() ||
2153 this->subexpressions[1]->has_sequence_subexpression();
2154
2155 case ast_conditional:
2156 return this->subexpressions[0]->has_sequence_subexpression() ||
2157 this->subexpressions[1]->has_sequence_subexpression() ||
2158 this->subexpressions[2]->has_sequence_subexpression();
2159
2160 case ast_sequence:
2161 return true;
2162
2163 case ast_field_selection:
2164 case ast_identifier:
2165 case ast_int_constant:
2166 case ast_uint_constant:
2167 case ast_float_constant:
2168 case ast_bool_constant:
2169 case ast_double_constant:
2170 case ast_int64_constant:
2171 case ast_uint64_constant:
2172 return false;
2173
2174 case ast_aggregate:
2175 return false;
2176
2177 case ast_function_call:
2178 unreachable("should be handled by ast_function_expression::hir");
2179
2180 case ast_unsized_array_dim:
2181 unreachable("ast_unsized_array_dim: Should never get here.");
2182 }
2183
2184 return false;
2185 }
2186
2187 ir_rvalue *
2188 ast_expression_statement::hir(exec_list *instructions,
2189 struct _mesa_glsl_parse_state *state)
2190 {
2191 /* It is possible to have expression statements that don't have an
2192 * expression. This is the solitary semicolon:
2193 *
2194 * for (i = 0; i < 5; i++)
2195 * ;
2196 *
2197 * In this case the expression will be NULL. Test for NULL and don't do
2198 * anything in that case.
2199 */
2200 if (expression != NULL)
2201 expression->hir_no_rvalue(instructions, state);
2202
2203 /* Statements do not have r-values.
2204 */
2205 return NULL;
2206 }
2207
2208
2209 ir_rvalue *
2210 ast_compound_statement::hir(exec_list *instructions,
2211 struct _mesa_glsl_parse_state *state)
2212 {
2213 if (new_scope)
2214 state->symbols->push_scope();
2215
2216 foreach_list_typed (ast_node, ast, link, &this->statements)
2217 ast->hir(instructions, state);
2218
2219 if (new_scope)
2220 state->symbols->pop_scope();
2221
2222 /* Compound statements do not have r-values.
2223 */
2224 return NULL;
2225 }
2226
2227 /**
2228 * Evaluate the given exec_node (which should be an ast_node representing
2229 * a single array dimension) and return its integer value.
2230 */
2231 static unsigned
2232 process_array_size(exec_node *node,
2233 struct _mesa_glsl_parse_state *state)
2234 {
2235 exec_list dummy_instructions;
2236
2237 ast_node *array_size = exec_node_data(ast_node, node, link);
2238
2239 /**
2240 * Dimensions other than the outermost dimension can by unsized if they
2241 * are immediately sized by a constructor or initializer.
2242 */
2243 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2244 return 0;
2245
2246 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2247 YYLTYPE loc = array_size->get_location();
2248
2249 if (ir == NULL) {
2250 _mesa_glsl_error(& loc, state,
2251 "array size could not be resolved");
2252 return 0;
2253 }
2254
2255 if (!ir->type->is_integer()) {
2256 _mesa_glsl_error(& loc, state,
2257 "array size must be integer type");
2258 return 0;
2259 }
2260
2261 if (!ir->type->is_scalar()) {
2262 _mesa_glsl_error(& loc, state,
2263 "array size must be scalar type");
2264 return 0;
2265 }
2266
2267 ir_constant *const size = ir->constant_expression_value();
2268 if (size == NULL ||
2269 (state->is_version(120, 300) &&
2270 array_size->has_sequence_subexpression())) {
2271 _mesa_glsl_error(& loc, state, "array size must be a "
2272 "constant valued expression");
2273 return 0;
2274 }
2275
2276 if (size->value.i[0] <= 0) {
2277 _mesa_glsl_error(& loc, state, "array size must be > 0");
2278 return 0;
2279 }
2280
2281 assert(size->type == ir->type);
2282
2283 /* If the array size is const (and we've verified that
2284 * it is) then no instructions should have been emitted
2285 * when we converted it to HIR. If they were emitted,
2286 * then either the array size isn't const after all, or
2287 * we are emitting unnecessary instructions.
2288 */
2289 assert(dummy_instructions.is_empty());
2290
2291 return size->value.u[0];
2292 }
2293
2294 static const glsl_type *
2295 process_array_type(YYLTYPE *loc, const glsl_type *base,
2296 ast_array_specifier *array_specifier,
2297 struct _mesa_glsl_parse_state *state)
2298 {
2299 const glsl_type *array_type = base;
2300
2301 if (array_specifier != NULL) {
2302 if (base->is_array()) {
2303
2304 /* From page 19 (page 25) of the GLSL 1.20 spec:
2305 *
2306 * "Only one-dimensional arrays may be declared."
2307 */
2308 if (!state->check_arrays_of_arrays_allowed(loc)) {
2309 return glsl_type::error_type;
2310 }
2311 }
2312
2313 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2314 !node->is_head_sentinel(); node = node->prev) {
2315 unsigned array_size = process_array_size(node, state);
2316 array_type = glsl_type::get_array_instance(array_type, array_size);
2317 }
2318 }
2319
2320 return array_type;
2321 }
2322
2323 static bool
2324 precision_qualifier_allowed(const glsl_type *type)
2325 {
2326 /* Precision qualifiers apply to floating point, integer and opaque
2327 * types.
2328 *
2329 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2330 * "Any floating point or any integer declaration can have the type
2331 * preceded by one of these precision qualifiers [...] Literal
2332 * constants do not have precision qualifiers. Neither do Boolean
2333 * variables.
2334 *
2335 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2336 * spec also says:
2337 *
2338 * "Precision qualifiers are added for code portability with OpenGL
2339 * ES, not for functionality. They have the same syntax as in OpenGL
2340 * ES."
2341 *
2342 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2343 *
2344 * "uniform lowp sampler2D sampler;
2345 * highp vec2 coord;
2346 * ...
2347 * lowp vec4 col = texture2D (sampler, coord);
2348 * // texture2D returns lowp"
2349 *
2350 * From this, we infer that GLSL 1.30 (and later) should allow precision
2351 * qualifiers on sampler types just like float and integer types.
2352 */
2353 const glsl_type *const t = type->without_array();
2354
2355 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2356 !t->is_record();
2357 }
2358
2359 const glsl_type *
2360 ast_type_specifier::glsl_type(const char **name,
2361 struct _mesa_glsl_parse_state *state) const
2362 {
2363 const struct glsl_type *type;
2364
2365 type = state->symbols->get_type(this->type_name);
2366 *name = this->type_name;
2367
2368 YYLTYPE loc = this->get_location();
2369 type = process_array_type(&loc, type, this->array_specifier, state);
2370
2371 return type;
2372 }
2373
2374 /**
2375 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2376 *
2377 * "The precision statement
2378 *
2379 * precision precision-qualifier type;
2380 *
2381 * can be used to establish a default precision qualifier. The type field can
2382 * be either int or float or any of the sampler types, (...) If type is float,
2383 * the directive applies to non-precision-qualified floating point type
2384 * (scalar, vector, and matrix) declarations. If type is int, the directive
2385 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2386 * and unsigned) declarations."
2387 *
2388 * We use the symbol table to keep the values of the default precisions for
2389 * each 'type' in each scope and we use the 'type' string from the precision
2390 * statement as key in the symbol table. When we want to retrieve the default
2391 * precision associated with a given glsl_type we need to know the type string
2392 * associated with it. This is what this function returns.
2393 */
2394 static const char *
2395 get_type_name_for_precision_qualifier(const glsl_type *type)
2396 {
2397 switch (type->base_type) {
2398 case GLSL_TYPE_FLOAT:
2399 return "float";
2400 case GLSL_TYPE_UINT:
2401 case GLSL_TYPE_INT:
2402 return "int";
2403 case GLSL_TYPE_ATOMIC_UINT:
2404 return "atomic_uint";
2405 case GLSL_TYPE_IMAGE:
2406 /* fallthrough */
2407 case GLSL_TYPE_SAMPLER: {
2408 const unsigned type_idx =
2409 type->sampler_array + 2 * type->sampler_shadow;
2410 const unsigned offset = type->is_sampler() ? 0 : 4;
2411 assert(type_idx < 4);
2412 switch (type->sampled_type) {
2413 case GLSL_TYPE_FLOAT:
2414 switch (type->sampler_dimensionality) {
2415 case GLSL_SAMPLER_DIM_1D: {
2416 assert(type->is_sampler());
2417 static const char *const names[4] = {
2418 "sampler1D", "sampler1DArray",
2419 "sampler1DShadow", "sampler1DArrayShadow"
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_2D: {
2424 static const char *const names[8] = {
2425 "sampler2D", "sampler2DArray",
2426 "sampler2DShadow", "sampler2DArrayShadow",
2427 "image2D", "image2DArray", NULL, NULL
2428 };
2429 return names[offset + type_idx];
2430 }
2431 case GLSL_SAMPLER_DIM_3D: {
2432 static const char *const names[8] = {
2433 "sampler3D", NULL, NULL, NULL,
2434 "image3D", NULL, NULL, NULL
2435 };
2436 return names[offset + type_idx];
2437 }
2438 case GLSL_SAMPLER_DIM_CUBE: {
2439 static const char *const names[8] = {
2440 "samplerCube", "samplerCubeArray",
2441 "samplerCubeShadow", "samplerCubeArrayShadow",
2442 "imageCube", NULL, NULL, NULL
2443 };
2444 return names[offset + type_idx];
2445 }
2446 case GLSL_SAMPLER_DIM_MS: {
2447 assert(type->is_sampler());
2448 static const char *const names[4] = {
2449 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2450 };
2451 return names[type_idx];
2452 }
2453 case GLSL_SAMPLER_DIM_RECT: {
2454 assert(type->is_sampler());
2455 static const char *const names[4] = {
2456 "samplerRect", NULL, "samplerRectShadow", NULL
2457 };
2458 return names[type_idx];
2459 }
2460 case GLSL_SAMPLER_DIM_BUF: {
2461 static const char *const names[8] = {
2462 "samplerBuffer", NULL, NULL, NULL,
2463 "imageBuffer", NULL, NULL, NULL
2464 };
2465 return names[offset + type_idx];
2466 }
2467 case GLSL_SAMPLER_DIM_EXTERNAL: {
2468 assert(type->is_sampler());
2469 static const char *const names[4] = {
2470 "samplerExternalOES", NULL, NULL, NULL
2471 };
2472 return names[type_idx];
2473 }
2474 default:
2475 unreachable("Unsupported sampler/image dimensionality");
2476 } /* sampler/image float dimensionality */
2477 break;
2478 case GLSL_TYPE_INT:
2479 switch (type->sampler_dimensionality) {
2480 case GLSL_SAMPLER_DIM_1D: {
2481 assert(type->is_sampler());
2482 static const char *const names[4] = {
2483 "isampler1D", "isampler1DArray", NULL, NULL
2484 };
2485 return names[type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_2D: {
2488 static const char *const names[8] = {
2489 "isampler2D", "isampler2DArray", NULL, NULL,
2490 "iimage2D", "iimage2DArray", NULL, NULL
2491 };
2492 return names[offset + type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_3D: {
2495 static const char *const names[8] = {
2496 "isampler3D", NULL, NULL, NULL,
2497 "iimage3D", NULL, NULL, NULL
2498 };
2499 return names[offset + type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_CUBE: {
2502 static const char *const names[8] = {
2503 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2504 "iimageCube", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_MS: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 case GLSL_SAMPLER_DIM_RECT: {
2516 assert(type->is_sampler());
2517 static const char *const names[4] = {
2518 "isamplerRect", NULL, "isamplerRectShadow", NULL
2519 };
2520 return names[type_idx];
2521 }
2522 case GLSL_SAMPLER_DIM_BUF: {
2523 static const char *const names[8] = {
2524 "isamplerBuffer", NULL, NULL, NULL,
2525 "iimageBuffer", NULL, NULL, NULL
2526 };
2527 return names[offset + type_idx];
2528 }
2529 default:
2530 unreachable("Unsupported isampler/iimage dimensionality");
2531 } /* sampler/image int dimensionality */
2532 break;
2533 case GLSL_TYPE_UINT:
2534 switch (type->sampler_dimensionality) {
2535 case GLSL_SAMPLER_DIM_1D: {
2536 assert(type->is_sampler());
2537 static const char *const names[4] = {
2538 "usampler1D", "usampler1DArray", NULL, NULL
2539 };
2540 return names[type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_2D: {
2543 static const char *const names[8] = {
2544 "usampler2D", "usampler2DArray", NULL, NULL,
2545 "uimage2D", "uimage2DArray", NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_3D: {
2550 static const char *const names[8] = {
2551 "usampler3D", NULL, NULL, NULL,
2552 "uimage3D", NULL, NULL, NULL
2553 };
2554 return names[offset + type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_CUBE: {
2557 static const char *const names[8] = {
2558 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2559 "uimageCube", NULL, NULL, NULL
2560 };
2561 return names[offset + type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_MS: {
2564 assert(type->is_sampler());
2565 static const char *const names[4] = {
2566 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2567 };
2568 return names[type_idx];
2569 }
2570 case GLSL_SAMPLER_DIM_RECT: {
2571 assert(type->is_sampler());
2572 static const char *const names[4] = {
2573 "usamplerRect", NULL, "usamplerRectShadow", NULL
2574 };
2575 return names[type_idx];
2576 }
2577 case GLSL_SAMPLER_DIM_BUF: {
2578 static const char *const names[8] = {
2579 "usamplerBuffer", NULL, NULL, NULL,
2580 "uimageBuffer", NULL, NULL, NULL
2581 };
2582 return names[offset + type_idx];
2583 }
2584 default:
2585 unreachable("Unsupported usampler/uimage dimensionality");
2586 } /* sampler/image uint dimensionality */
2587 break;
2588 default:
2589 unreachable("Unsupported sampler/image type");
2590 } /* sampler/image type */
2591 break;
2592 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2593 break;
2594 default:
2595 unreachable("Unsupported type");
2596 } /* base type */
2597 }
2598
2599 static unsigned
2600 select_gles_precision(unsigned qual_precision,
2601 const glsl_type *type,
2602 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2603 {
2604 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2605 * In GLES we take the precision from the type qualifier if present,
2606 * otherwise, if the type of the variable allows precision qualifiers at
2607 * all, we look for the default precision qualifier for that type in the
2608 * current scope.
2609 */
2610 assert(state->es_shader);
2611
2612 unsigned precision = GLSL_PRECISION_NONE;
2613 if (qual_precision) {
2614 precision = qual_precision;
2615 } else if (precision_qualifier_allowed(type)) {
2616 const char *type_name =
2617 get_type_name_for_precision_qualifier(type->without_array());
2618 assert(type_name != NULL);
2619
2620 precision =
2621 state->symbols->get_default_precision_qualifier(type_name);
2622 if (precision == ast_precision_none) {
2623 _mesa_glsl_error(loc, state,
2624 "No precision specified in this scope for type `%s'",
2625 type->name);
2626 }
2627 }
2628
2629
2630 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2631 *
2632 * "The default precision of all atomic types is highp. It is an error to
2633 * declare an atomic type with a different precision or to specify the
2634 * default precision for an atomic type to be lowp or mediump."
2635 */
2636 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2637 precision != ast_precision_high) {
2638 _mesa_glsl_error(loc, state,
2639 "atomic_uint can only have highp precision qualifier");
2640 }
2641
2642 return precision;
2643 }
2644
2645 const glsl_type *
2646 ast_fully_specified_type::glsl_type(const char **name,
2647 struct _mesa_glsl_parse_state *state) const
2648 {
2649 return this->specifier->glsl_type(name, state);
2650 }
2651
2652 /**
2653 * Determine whether a toplevel variable declaration declares a varying. This
2654 * function operates by examining the variable's mode and the shader target,
2655 * so it correctly identifies linkage variables regardless of whether they are
2656 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2657 *
2658 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2659 * this function will produce undefined results.
2660 */
2661 static bool
2662 is_varying_var(ir_variable *var, gl_shader_stage target)
2663 {
2664 switch (target) {
2665 case MESA_SHADER_VERTEX:
2666 return var->data.mode == ir_var_shader_out;
2667 case MESA_SHADER_FRAGMENT:
2668 return var->data.mode == ir_var_shader_in;
2669 default:
2670 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2671 }
2672 }
2673
2674 static bool
2675 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2676 {
2677 if (is_varying_var(var, state->stage))
2678 return true;
2679
2680 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2681 * "Only variables output from a vertex shader can be candidates
2682 * for invariance".
2683 */
2684 if (!state->is_version(130, 0))
2685 return false;
2686
2687 /*
2688 * Later specs remove this language - so allowed invariant
2689 * on fragment shader outputs as well.
2690 */
2691 if (state->stage == MESA_SHADER_FRAGMENT &&
2692 var->data.mode == ir_var_shader_out)
2693 return true;
2694 return false;
2695 }
2696
2697 /**
2698 * Matrix layout qualifiers are only allowed on certain types
2699 */
2700 static void
2701 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2702 YYLTYPE *loc,
2703 const glsl_type *type,
2704 ir_variable *var)
2705 {
2706 if (var && !var->is_in_buffer_block()) {
2707 /* Layout qualifiers may only apply to interface blocks and fields in
2708 * them.
2709 */
2710 _mesa_glsl_error(loc, state,
2711 "uniform block layout qualifiers row_major and "
2712 "column_major may not be applied to variables "
2713 "outside of uniform blocks");
2714 } else if (!type->without_array()->is_matrix()) {
2715 /* The OpenGL ES 3.0 conformance tests did not originally allow
2716 * matrix layout qualifiers on non-matrices. However, the OpenGL
2717 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2718 * amended to specifically allow these layouts on all types. Emit
2719 * a warning so that people know their code may not be portable.
2720 */
2721 _mesa_glsl_warning(loc, state,
2722 "uniform block layout qualifiers row_major and "
2723 "column_major applied to non-matrix types may "
2724 "be rejected by older compilers");
2725 }
2726 }
2727
2728 static bool
2729 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2730 struct _mesa_glsl_parse_state *state,
2731 unsigned xfb_buffer) {
2732 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2733 _mesa_glsl_error(loc, state,
2734 "invalid xfb_buffer specified %d is larger than "
2735 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2736 xfb_buffer,
2737 state->Const.MaxTransformFeedbackBuffers - 1);
2738 return false;
2739 }
2740
2741 return true;
2742 }
2743
2744 /* From the ARB_enhanced_layouts spec:
2745 *
2746 * "Variables and block members qualified with *xfb_offset* can be
2747 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2748 * The offset must be a multiple of the size of the first component of
2749 * the first qualified variable or block member, or a compile-time error
2750 * results. Further, if applied to an aggregate containing a double,
2751 * the offset must also be a multiple of 8, and the space taken in the
2752 * buffer will be a multiple of 8.
2753 */
2754 static bool
2755 validate_xfb_offset_qualifier(YYLTYPE *loc,
2756 struct _mesa_glsl_parse_state *state,
2757 int xfb_offset, const glsl_type *type,
2758 unsigned component_size) {
2759 const glsl_type *t_without_array = type->without_array();
2760
2761 if (xfb_offset != -1 && type->is_unsized_array()) {
2762 _mesa_glsl_error(loc, state,
2763 "xfb_offset can't be used with unsized arrays.");
2764 return false;
2765 }
2766
2767 /* Make sure nested structs don't contain unsized arrays, and validate
2768 * any xfb_offsets on interface members.
2769 */
2770 if (t_without_array->is_record() || t_without_array->is_interface())
2771 for (unsigned int i = 0; i < t_without_array->length; i++) {
2772 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2773
2774 /* When the interface block doesn't have an xfb_offset qualifier then
2775 * we apply the component size rules at the member level.
2776 */
2777 if (xfb_offset == -1)
2778 component_size = member_t->contains_double() ? 8 : 4;
2779
2780 int xfb_offset = t_without_array->fields.structure[i].offset;
2781 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2782 component_size);
2783 }
2784
2785 /* Nested structs or interface block without offset may not have had an
2786 * offset applied yet so return.
2787 */
2788 if (xfb_offset == -1) {
2789 return true;
2790 }
2791
2792 if (xfb_offset % component_size) {
2793 _mesa_glsl_error(loc, state,
2794 "invalid qualifier xfb_offset=%d must be a multiple "
2795 "of the first component size of the first qualified "
2796 "variable or block member. Or double if an aggregate "
2797 "that contains a double (%d).",
2798 xfb_offset, component_size);
2799 return false;
2800 }
2801
2802 return true;
2803 }
2804
2805 static bool
2806 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2807 unsigned stream)
2808 {
2809 if (stream >= state->ctx->Const.MaxVertexStreams) {
2810 _mesa_glsl_error(loc, state,
2811 "invalid stream specified %d is larger than "
2812 "MAX_VERTEX_STREAMS - 1 (%d).",
2813 stream, state->ctx->Const.MaxVertexStreams - 1);
2814 return false;
2815 }
2816
2817 return true;
2818 }
2819
2820 static void
2821 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2822 YYLTYPE *loc,
2823 ir_variable *var,
2824 const glsl_type *type,
2825 const ast_type_qualifier *qual)
2826 {
2827 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2828 _mesa_glsl_error(loc, state,
2829 "the \"binding\" qualifier only applies to uniforms and "
2830 "shader storage buffer objects");
2831 return;
2832 }
2833
2834 unsigned qual_binding;
2835 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2836 &qual_binding)) {
2837 return;
2838 }
2839
2840 const struct gl_context *const ctx = state->ctx;
2841 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2842 unsigned max_index = qual_binding + elements - 1;
2843 const glsl_type *base_type = type->without_array();
2844
2845 if (base_type->is_interface()) {
2846 /* UBOs. From page 60 of the GLSL 4.20 specification:
2847 * "If the binding point for any uniform block instance is less than zero,
2848 * or greater than or equal to the implementation-dependent maximum
2849 * number of uniform buffer bindings, a compilation error will occur.
2850 * When the binding identifier is used with a uniform block instanced as
2851 * an array of size N, all elements of the array from binding through
2852 * binding + N – 1 must be within this range."
2853 *
2854 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2855 */
2856 if (qual->flags.q.uniform &&
2857 max_index >= ctx->Const.MaxUniformBufferBindings) {
2858 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2859 "the maximum number of UBO binding points (%d)",
2860 qual_binding, elements,
2861 ctx->Const.MaxUniformBufferBindings);
2862 return;
2863 }
2864
2865 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2866 * "If the binding point for any uniform or shader storage block instance
2867 * is less than zero, or greater than or equal to the
2868 * implementation-dependent maximum number of uniform buffer bindings, a
2869 * compile-time error will occur. When the binding identifier is used
2870 * with a uniform or shader storage block instanced as an array of size
2871 * N, all elements of the array from binding through binding + N – 1 must
2872 * be within this range."
2873 */
2874 if (qual->flags.q.buffer &&
2875 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2876 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2877 "the maximum number of SSBO binding points (%d)",
2878 qual_binding, elements,
2879 ctx->Const.MaxShaderStorageBufferBindings);
2880 return;
2881 }
2882 } else if (base_type->is_sampler()) {
2883 /* Samplers. From page 63 of the GLSL 4.20 specification:
2884 * "If the binding is less than zero, or greater than or equal to the
2885 * implementation-dependent maximum supported number of units, a
2886 * compilation error will occur. When the binding identifier is used
2887 * with an array of size N, all elements of the array from binding
2888 * through binding + N - 1 must be within this range."
2889 */
2890 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2891
2892 if (max_index >= limit) {
2893 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2894 "exceeds the maximum number of texture image units "
2895 "(%u)", qual_binding, elements, limit);
2896
2897 return;
2898 }
2899 } else if (base_type->contains_atomic()) {
2900 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2901 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2902 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2903 " maximum number of atomic counter buffer bindings"
2904 "(%u)", qual_binding,
2905 ctx->Const.MaxAtomicBufferBindings);
2906
2907 return;
2908 }
2909 } else if ((state->is_version(420, 310) ||
2910 state->ARB_shading_language_420pack_enable) &&
2911 base_type->is_image()) {
2912 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2913 if (max_index >= ctx->Const.MaxImageUnits) {
2914 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2915 " maximum number of image units (%d)", max_index,
2916 ctx->Const.MaxImageUnits);
2917 return;
2918 }
2919
2920 } else {
2921 _mesa_glsl_error(loc, state,
2922 "the \"binding\" qualifier only applies to uniform "
2923 "blocks, opaque variables, or arrays thereof");
2924 return;
2925 }
2926
2927 var->data.explicit_binding = true;
2928 var->data.binding = qual_binding;
2929
2930 return;
2931 }
2932
2933 static void
2934 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2935 YYLTYPE *loc,
2936 const glsl_interp_mode interpolation,
2937 const struct glsl_type *var_type,
2938 ir_variable_mode mode)
2939 {
2940 if (state->stage != MESA_SHADER_FRAGMENT ||
2941 interpolation == INTERP_MODE_FLAT ||
2942 mode != ir_var_shader_in)
2943 return;
2944
2945 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2946 * so must integer vertex outputs.
2947 *
2948 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2949 * "Fragment shader inputs that are signed or unsigned integers or
2950 * integer vectors must be qualified with the interpolation qualifier
2951 * flat."
2952 *
2953 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2954 * "Fragment shader inputs that are, or contain, signed or unsigned
2955 * integers or integer vectors must be qualified with the
2956 * interpolation qualifier flat."
2957 *
2958 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2959 * "Vertex shader outputs that are, or contain, signed or unsigned
2960 * integers or integer vectors must be qualified with the
2961 * interpolation qualifier flat."
2962 *
2963 * Note that prior to GLSL 1.50, this requirement applied to vertex
2964 * outputs rather than fragment inputs. That creates problems in the
2965 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2966 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2967 * apply the restriction to both vertex outputs and fragment inputs.
2968 *
2969 * Note also that the desktop GLSL specs are missing the text "or
2970 * contain"; this is presumably an oversight, since there is no
2971 * reasonable way to interpolate a fragment shader input that contains
2972 * an integer. See Khronos bug #15671.
2973 */
2974 if (state->is_version(130, 300)
2975 && var_type->contains_integer()) {
2976 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2977 "an integer, then it must be qualified with 'flat'");
2978 }
2979
2980 /* Double fragment inputs must be qualified with 'flat'.
2981 *
2982 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2983 * "This extension does not support interpolation of double-precision
2984 * values; doubles used as fragment shader inputs must be qualified as
2985 * "flat"."
2986 *
2987 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2988 * "Fragment shader inputs that are signed or unsigned integers, integer
2989 * vectors, or any double-precision floating-point type must be
2990 * qualified with the interpolation qualifier flat."
2991 *
2992 * Note that the GLSL specs are missing the text "or contain"; this is
2993 * presumably an oversight. See Khronos bug #15671.
2994 *
2995 * The 'double' type does not exist in GLSL ES so far.
2996 */
2997 if (state->has_double()
2998 && var_type->contains_double()) {
2999 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3000 "a double, then it must be qualified with 'flat'");
3001 }
3002 }
3003
3004 static void
3005 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3006 YYLTYPE *loc,
3007 const glsl_interp_mode interpolation,
3008 const struct ast_type_qualifier *qual,
3009 const struct glsl_type *var_type,
3010 ir_variable_mode mode)
3011 {
3012 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3013 * not to vertex shader inputs nor fragment shader outputs.
3014 *
3015 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3016 * "Outputs from a vertex shader (out) and inputs to a fragment
3017 * shader (in) can be further qualified with one or more of these
3018 * interpolation qualifiers"
3019 * ...
3020 * "These interpolation qualifiers may only precede the qualifiers in,
3021 * centroid in, out, or centroid out in a declaration. They do not apply
3022 * to the deprecated storage qualifiers varying or centroid
3023 * varying. They also do not apply to inputs into a vertex shader or
3024 * outputs from a fragment shader."
3025 *
3026 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3027 * "Outputs from a shader (out) and inputs to a shader (in) can be
3028 * further qualified with one of these interpolation qualifiers."
3029 * ...
3030 * "These interpolation qualifiers may only precede the qualifiers
3031 * in, centroid in, out, or centroid out in a declaration. They do
3032 * not apply to inputs into a vertex shader or outputs from a
3033 * fragment shader."
3034 */
3035 if (state->is_version(130, 300)
3036 && interpolation != INTERP_MODE_NONE) {
3037 const char *i = interpolation_string(interpolation);
3038 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3039 _mesa_glsl_error(loc, state,
3040 "interpolation qualifier `%s' can only be applied to "
3041 "shader inputs or outputs.", i);
3042
3043 switch (state->stage) {
3044 case MESA_SHADER_VERTEX:
3045 if (mode == ir_var_shader_in) {
3046 _mesa_glsl_error(loc, state,
3047 "interpolation qualifier '%s' cannot be applied to "
3048 "vertex shader inputs", i);
3049 }
3050 break;
3051 case MESA_SHADER_FRAGMENT:
3052 if (mode == ir_var_shader_out) {
3053 _mesa_glsl_error(loc, state,
3054 "interpolation qualifier '%s' cannot be applied to "
3055 "fragment shader outputs", i);
3056 }
3057 break;
3058 default:
3059 break;
3060 }
3061 }
3062
3063 /* Interpolation qualifiers cannot be applied to 'centroid' and
3064 * 'centroid varying'.
3065 *
3066 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3067 * "interpolation qualifiers may only precede the qualifiers in,
3068 * centroid in, out, or centroid out in a declaration. They do not apply
3069 * to the deprecated storage qualifiers varying or centroid varying."
3070 *
3071 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3072 */
3073 if (state->is_version(130, 0)
3074 && interpolation != INTERP_MODE_NONE
3075 && qual->flags.q.varying) {
3076
3077 const char *i = interpolation_string(interpolation);
3078 const char *s;
3079 if (qual->flags.q.centroid)
3080 s = "centroid varying";
3081 else
3082 s = "varying";
3083
3084 _mesa_glsl_error(loc, state,
3085 "qualifier '%s' cannot be applied to the "
3086 "deprecated storage qualifier '%s'", i, s);
3087 }
3088
3089 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3090 var_type, mode);
3091 }
3092
3093 static glsl_interp_mode
3094 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3095 const struct glsl_type *var_type,
3096 ir_variable_mode mode,
3097 struct _mesa_glsl_parse_state *state,
3098 YYLTYPE *loc)
3099 {
3100 glsl_interp_mode interpolation;
3101 if (qual->flags.q.flat)
3102 interpolation = INTERP_MODE_FLAT;
3103 else if (qual->flags.q.noperspective)
3104 interpolation = INTERP_MODE_NOPERSPECTIVE;
3105 else if (qual->flags.q.smooth)
3106 interpolation = INTERP_MODE_SMOOTH;
3107 else if (state->es_shader &&
3108 ((mode == ir_var_shader_in &&
3109 state->stage != MESA_SHADER_VERTEX) ||
3110 (mode == ir_var_shader_out &&
3111 state->stage != MESA_SHADER_FRAGMENT)))
3112 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3113 *
3114 * "When no interpolation qualifier is present, smooth interpolation
3115 * is used."
3116 */
3117 interpolation = INTERP_MODE_SMOOTH;
3118 else
3119 interpolation = INTERP_MODE_NONE;
3120
3121 validate_interpolation_qualifier(state, loc,
3122 interpolation,
3123 qual, var_type, mode);
3124
3125 return interpolation;
3126 }
3127
3128
3129 static void
3130 apply_explicit_location(const struct ast_type_qualifier *qual,
3131 ir_variable *var,
3132 struct _mesa_glsl_parse_state *state,
3133 YYLTYPE *loc)
3134 {
3135 bool fail = false;
3136
3137 unsigned qual_location;
3138 if (!process_qualifier_constant(state, loc, "location", qual->location,
3139 &qual_location)) {
3140 return;
3141 }
3142
3143 /* Checks for GL_ARB_explicit_uniform_location. */
3144 if (qual->flags.q.uniform) {
3145 if (!state->check_explicit_uniform_location_allowed(loc, var))
3146 return;
3147
3148 const struct gl_context *const ctx = state->ctx;
3149 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3150
3151 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3152 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3153 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3154 ctx->Const.MaxUserAssignableUniformLocations);
3155 return;
3156 }
3157
3158 var->data.explicit_location = true;
3159 var->data.location = qual_location;
3160 return;
3161 }
3162
3163 /* Between GL_ARB_explicit_attrib_location an
3164 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3165 * stage can be assigned explicit locations. The checking here associates
3166 * the correct extension with the correct stage's input / output:
3167 *
3168 * input output
3169 * ----- ------
3170 * vertex explicit_loc sso
3171 * tess control sso sso
3172 * tess eval sso sso
3173 * geometry sso sso
3174 * fragment sso explicit_loc
3175 */
3176 switch (state->stage) {
3177 case MESA_SHADER_VERTEX:
3178 if (var->data.mode == ir_var_shader_in) {
3179 if (!state->check_explicit_attrib_location_allowed(loc, var))
3180 return;
3181
3182 break;
3183 }
3184
3185 if (var->data.mode == ir_var_shader_out) {
3186 if (!state->check_separate_shader_objects_allowed(loc, var))
3187 return;
3188
3189 break;
3190 }
3191
3192 fail = true;
3193 break;
3194
3195 case MESA_SHADER_TESS_CTRL:
3196 case MESA_SHADER_TESS_EVAL:
3197 case MESA_SHADER_GEOMETRY:
3198 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3199 if (!state->check_separate_shader_objects_allowed(loc, var))
3200 return;
3201
3202 break;
3203 }
3204
3205 fail = true;
3206 break;
3207
3208 case MESA_SHADER_FRAGMENT:
3209 if (var->data.mode == ir_var_shader_in) {
3210 if (!state->check_separate_shader_objects_allowed(loc, var))
3211 return;
3212
3213 break;
3214 }
3215
3216 if (var->data.mode == ir_var_shader_out) {
3217 if (!state->check_explicit_attrib_location_allowed(loc, var))
3218 return;
3219
3220 break;
3221 }
3222
3223 fail = true;
3224 break;
3225
3226 case MESA_SHADER_COMPUTE:
3227 _mesa_glsl_error(loc, state,
3228 "compute shader variables cannot be given "
3229 "explicit locations");
3230 return;
3231 };
3232
3233 if (fail) {
3234 _mesa_glsl_error(loc, state,
3235 "%s cannot be given an explicit location in %s shader",
3236 mode_string(var),
3237 _mesa_shader_stage_to_string(state->stage));
3238 } else {
3239 var->data.explicit_location = true;
3240
3241 switch (state->stage) {
3242 case MESA_SHADER_VERTEX:
3243 var->data.location = (var->data.mode == ir_var_shader_in)
3244 ? (qual_location + VERT_ATTRIB_GENERIC0)
3245 : (qual_location + VARYING_SLOT_VAR0);
3246 break;
3247
3248 case MESA_SHADER_TESS_CTRL:
3249 case MESA_SHADER_TESS_EVAL:
3250 case MESA_SHADER_GEOMETRY:
3251 if (var->data.patch)
3252 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3253 else
3254 var->data.location = qual_location + VARYING_SLOT_VAR0;
3255 break;
3256
3257 case MESA_SHADER_FRAGMENT:
3258 var->data.location = (var->data.mode == ir_var_shader_out)
3259 ? (qual_location + FRAG_RESULT_DATA0)
3260 : (qual_location + VARYING_SLOT_VAR0);
3261 break;
3262 case MESA_SHADER_COMPUTE:
3263 assert(!"Unexpected shader type");
3264 break;
3265 }
3266
3267 /* Check if index was set for the uniform instead of the function */
3268 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3269 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3270 "used with subroutine functions");
3271 return;
3272 }
3273
3274 unsigned qual_index;
3275 if (qual->flags.q.explicit_index &&
3276 process_qualifier_constant(state, loc, "index", qual->index,
3277 &qual_index)) {
3278 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3279 * Layout Qualifiers):
3280 *
3281 * "It is also a compile-time error if a fragment shader
3282 * sets a layout index to less than 0 or greater than 1."
3283 *
3284 * Older specifications don't mandate a behavior; we take
3285 * this as a clarification and always generate the error.
3286 */
3287 if (qual_index > 1) {
3288 _mesa_glsl_error(loc, state,
3289 "explicit index may only be 0 or 1");
3290 } else {
3291 var->data.explicit_index = true;
3292 var->data.index = qual_index;
3293 }
3294 }
3295 }
3296 }
3297
3298 static void
3299 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3300 ir_variable *var,
3301 struct _mesa_glsl_parse_state *state,
3302 YYLTYPE *loc)
3303 {
3304 const glsl_type *base_type = var->type->without_array();
3305
3306 if (!base_type->is_image()) {
3307 if (qual->flags.q.read_only ||
3308 qual->flags.q.write_only ||
3309 qual->flags.q.coherent ||
3310 qual->flags.q._volatile ||
3311 qual->flags.q.restrict_flag ||
3312 qual->flags.q.explicit_image_format) {
3313 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3314 "to images");
3315 }
3316 return;
3317 }
3318
3319 if (var->data.mode != ir_var_uniform &&
3320 var->data.mode != ir_var_function_in) {
3321 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3322 "function parameters or uniform-qualified "
3323 "global variables");
3324 }
3325
3326 var->data.image_read_only |= qual->flags.q.read_only;
3327 var->data.image_write_only |= qual->flags.q.write_only;
3328 var->data.image_coherent |= qual->flags.q.coherent;
3329 var->data.image_volatile |= qual->flags.q._volatile;
3330 var->data.image_restrict |= qual->flags.q.restrict_flag;
3331 var->data.read_only = true;
3332
3333 if (qual->flags.q.explicit_image_format) {
3334 if (var->data.mode == ir_var_function_in) {
3335 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3336 "image function parameters");
3337 }
3338
3339 if (qual->image_base_type != base_type->sampled_type) {
3340 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3341 "data type of the image");
3342 }
3343
3344 var->data.image_format = qual->image_format;
3345 } else {
3346 if (var->data.mode == ir_var_uniform) {
3347 if (state->es_shader) {
3348 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3349 "format layout qualifier");
3350 } else if (!qual->flags.q.write_only) {
3351 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3352 "`writeonly' must have a format layout qualifier");
3353 }
3354 }
3355 var->data.image_format = GL_NONE;
3356 }
3357
3358 /* From page 70 of the GLSL ES 3.1 specification:
3359 *
3360 * "Except for image variables qualified with the format qualifiers r32f,
3361 * r32i, and r32ui, image variables must specify either memory qualifier
3362 * readonly or the memory qualifier writeonly."
3363 */
3364 if (state->es_shader &&
3365 var->data.image_format != GL_R32F &&
3366 var->data.image_format != GL_R32I &&
3367 var->data.image_format != GL_R32UI &&
3368 !var->data.image_read_only &&
3369 !var->data.image_write_only) {
3370 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3371 "r32i or r32ui must be qualified `readonly' or "
3372 "`writeonly'");
3373 }
3374 }
3375
3376 static inline const char*
3377 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3378 {
3379 if (origin_upper_left && pixel_center_integer)
3380 return "origin_upper_left, pixel_center_integer";
3381 else if (origin_upper_left)
3382 return "origin_upper_left";
3383 else if (pixel_center_integer)
3384 return "pixel_center_integer";
3385 else
3386 return " ";
3387 }
3388
3389 static inline bool
3390 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3391 const struct ast_type_qualifier *qual)
3392 {
3393 /* If gl_FragCoord was previously declared, and the qualifiers were
3394 * different in any way, return true.
3395 */
3396 if (state->fs_redeclares_gl_fragcoord) {
3397 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3398 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3399 }
3400
3401 return false;
3402 }
3403
3404 static inline void
3405 validate_array_dimensions(const glsl_type *t,
3406 struct _mesa_glsl_parse_state *state,
3407 YYLTYPE *loc) {
3408 if (t->is_array()) {
3409 t = t->fields.array;
3410 while (t->is_array()) {
3411 if (t->is_unsized_array()) {
3412 _mesa_glsl_error(loc, state,
3413 "only the outermost array dimension can "
3414 "be unsized",
3415 t->name);
3416 break;
3417 }
3418 t = t->fields.array;
3419 }
3420 }
3421 }
3422
3423 static void
3424 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3425 ir_variable *var,
3426 struct _mesa_glsl_parse_state *state,
3427 YYLTYPE *loc)
3428 {
3429 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3430
3431 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3432 *
3433 * "Within any shader, the first redeclarations of gl_FragCoord
3434 * must appear before any use of gl_FragCoord."
3435 *
3436 * Generate a compiler error if above condition is not met by the
3437 * fragment shader.
3438 */
3439 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3440 if (earlier != NULL &&
3441 earlier->data.used &&
3442 !state->fs_redeclares_gl_fragcoord) {
3443 _mesa_glsl_error(loc, state,
3444 "gl_FragCoord used before its first redeclaration "
3445 "in fragment shader");
3446 }
3447
3448 /* Make sure all gl_FragCoord redeclarations specify the same layout
3449 * qualifiers.
3450 */
3451 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3452 const char *const qual_string =
3453 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3454 qual->flags.q.pixel_center_integer);
3455
3456 const char *const state_string =
3457 get_layout_qualifier_string(state->fs_origin_upper_left,
3458 state->fs_pixel_center_integer);
3459
3460 _mesa_glsl_error(loc, state,
3461 "gl_FragCoord redeclared with different layout "
3462 "qualifiers (%s) and (%s) ",
3463 state_string,
3464 qual_string);
3465 }
3466 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3467 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3468 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3469 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3470 state->fs_redeclares_gl_fragcoord =
3471 state->fs_origin_upper_left ||
3472 state->fs_pixel_center_integer ||
3473 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3474 }
3475
3476 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3477 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3478 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3479 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3480 const char *const qual_string = (qual->flags.q.origin_upper_left)
3481 ? "origin_upper_left" : "pixel_center_integer";
3482
3483 _mesa_glsl_error(loc, state,
3484 "layout qualifier `%s' can only be applied to "
3485 "fragment shader input `gl_FragCoord'",
3486 qual_string);
3487 }
3488
3489 if (qual->flags.q.explicit_location) {
3490 apply_explicit_location(qual, var, state, loc);
3491
3492 if (qual->flags.q.explicit_component) {
3493 unsigned qual_component;
3494 if (process_qualifier_constant(state, loc, "component",
3495 qual->component, &qual_component)) {
3496 const glsl_type *type = var->type->without_array();
3497 unsigned components = type->component_slots();
3498
3499 if (type->is_matrix() || type->is_record()) {
3500 _mesa_glsl_error(loc, state, "component layout qualifier "
3501 "cannot be applied to a matrix, a structure, "
3502 "a block, or an array containing any of "
3503 "these.");
3504 } else if (qual_component != 0 &&
3505 (qual_component + components - 1) > 3) {
3506 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3507 (qual_component + components - 1));
3508 } else if (qual_component == 1 && type->is_64bit()) {
3509 /* We don't bother checking for 3 as it should be caught by the
3510 * overflow check above.
3511 */
3512 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3513 "component 1 or 3");
3514 } else {
3515 var->data.explicit_component = true;
3516 var->data.location_frac = qual_component;
3517 }
3518 }
3519 }
3520 } else if (qual->flags.q.explicit_index) {
3521 if (!qual->subroutine_list)
3522 _mesa_glsl_error(loc, state,
3523 "explicit index requires explicit location");
3524 } else if (qual->flags.q.explicit_component) {
3525 _mesa_glsl_error(loc, state,
3526 "explicit component requires explicit location");
3527 }
3528
3529 if (qual->flags.q.explicit_binding) {
3530 apply_explicit_binding(state, loc, var, var->type, qual);
3531 }
3532
3533 if (state->stage == MESA_SHADER_GEOMETRY &&
3534 qual->flags.q.out && qual->flags.q.stream) {
3535 unsigned qual_stream;
3536 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3537 &qual_stream) &&
3538 validate_stream_qualifier(loc, state, qual_stream)) {
3539 var->data.stream = qual_stream;
3540 }
3541 }
3542
3543 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3544 unsigned qual_xfb_buffer;
3545 if (process_qualifier_constant(state, loc, "xfb_buffer",
3546 qual->xfb_buffer, &qual_xfb_buffer) &&
3547 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3548 var->data.xfb_buffer = qual_xfb_buffer;
3549 if (qual->flags.q.explicit_xfb_buffer)
3550 var->data.explicit_xfb_buffer = true;
3551 }
3552 }
3553
3554 if (qual->flags.q.explicit_xfb_offset) {
3555 unsigned qual_xfb_offset;
3556 unsigned component_size = var->type->contains_double() ? 8 : 4;
3557
3558 if (process_qualifier_constant(state, loc, "xfb_offset",
3559 qual->offset, &qual_xfb_offset) &&
3560 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3561 var->type, component_size)) {
3562 var->data.offset = qual_xfb_offset;
3563 var->data.explicit_xfb_offset = true;
3564 }
3565 }
3566
3567 if (qual->flags.q.explicit_xfb_stride) {
3568 unsigned qual_xfb_stride;
3569 if (process_qualifier_constant(state, loc, "xfb_stride",
3570 qual->xfb_stride, &qual_xfb_stride)) {
3571 var->data.xfb_stride = qual_xfb_stride;
3572 var->data.explicit_xfb_stride = true;
3573 }
3574 }
3575
3576 if (var->type->contains_atomic()) {
3577 if (var->data.mode == ir_var_uniform) {
3578 if (var->data.explicit_binding) {
3579 unsigned *offset =
3580 &state->atomic_counter_offsets[var->data.binding];
3581
3582 if (*offset % ATOMIC_COUNTER_SIZE)
3583 _mesa_glsl_error(loc, state,
3584 "misaligned atomic counter offset");
3585
3586 var->data.offset = *offset;
3587 *offset += var->type->atomic_size();
3588
3589 } else {
3590 _mesa_glsl_error(loc, state,
3591 "atomic counters require explicit binding point");
3592 }
3593 } else if (var->data.mode != ir_var_function_in) {
3594 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3595 "function parameters or uniform-qualified "
3596 "global variables");
3597 }
3598 }
3599
3600 if (var->type->contains_sampler()) {
3601 if (var->data.mode != ir_var_uniform &&
3602 var->data.mode != ir_var_function_in) {
3603 _mesa_glsl_error(loc, state, "sampler variables may only be declared "
3604 "as function parameters or uniform-qualified "
3605 "global variables");
3606 }
3607 }
3608
3609 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3610 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3611 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3612 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3613 * These extensions and all following extensions that add the 'layout'
3614 * keyword have been modified to require the use of 'in' or 'out'.
3615 *
3616 * The following extension do not allow the deprecated keywords:
3617 *
3618 * GL_AMD_conservative_depth
3619 * GL_ARB_conservative_depth
3620 * GL_ARB_gpu_shader5
3621 * GL_ARB_separate_shader_objects
3622 * GL_ARB_tessellation_shader
3623 * GL_ARB_transform_feedback3
3624 * GL_ARB_uniform_buffer_object
3625 *
3626 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3627 * allow layout with the deprecated keywords.
3628 */
3629 const bool relaxed_layout_qualifier_checking =
3630 state->ARB_fragment_coord_conventions_enable;
3631
3632 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3633 || qual->flags.q.varying;
3634 if (qual->has_layout() && uses_deprecated_qualifier) {
3635 if (relaxed_layout_qualifier_checking) {
3636 _mesa_glsl_warning(loc, state,
3637 "`layout' qualifier may not be used with "
3638 "`attribute' or `varying'");
3639 } else {
3640 _mesa_glsl_error(loc, state,
3641 "`layout' qualifier may not be used with "
3642 "`attribute' or `varying'");
3643 }
3644 }
3645
3646 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3647 * AMD_conservative_depth.
3648 */
3649 if (qual->flags.q.depth_type
3650 && !state->is_version(420, 0)
3651 && !state->AMD_conservative_depth_enable
3652 && !state->ARB_conservative_depth_enable) {
3653 _mesa_glsl_error(loc, state,
3654 "extension GL_AMD_conservative_depth or "
3655 "GL_ARB_conservative_depth must be enabled "
3656 "to use depth layout qualifiers");
3657 } else if (qual->flags.q.depth_type
3658 && strcmp(var->name, "gl_FragDepth") != 0) {
3659 _mesa_glsl_error(loc, state,
3660 "depth layout qualifiers can be applied only to "
3661 "gl_FragDepth");
3662 }
3663
3664 switch (qual->depth_type) {
3665 case ast_depth_any:
3666 var->data.depth_layout = ir_depth_layout_any;
3667 break;
3668 case ast_depth_greater:
3669 var->data.depth_layout = ir_depth_layout_greater;
3670 break;
3671 case ast_depth_less:
3672 var->data.depth_layout = ir_depth_layout_less;
3673 break;
3674 case ast_depth_unchanged:
3675 var->data.depth_layout = ir_depth_layout_unchanged;
3676 break;
3677 default:
3678 var->data.depth_layout = ir_depth_layout_none;
3679 break;
3680 }
3681
3682 if (qual->flags.q.std140 ||
3683 qual->flags.q.std430 ||
3684 qual->flags.q.packed ||
3685 qual->flags.q.shared) {
3686 _mesa_glsl_error(loc, state,
3687 "uniform and shader storage block layout qualifiers "
3688 "std140, std430, packed, and shared can only be "
3689 "applied to uniform or shader storage blocks, not "
3690 "members");
3691 }
3692
3693 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3694 validate_matrix_layout_for_type(state, loc, var->type, var);
3695 }
3696
3697 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3698 * Inputs):
3699 *
3700 * "Fragment shaders also allow the following layout qualifier on in only
3701 * (not with variable declarations)
3702 * layout-qualifier-id
3703 * early_fragment_tests
3704 * [...]"
3705 */
3706 if (qual->flags.q.early_fragment_tests) {
3707 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3708 "valid in fragment shader input layout declaration.");
3709 }
3710
3711 if (qual->flags.q.inner_coverage) {
3712 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3713 "valid in fragment shader input layout declaration.");
3714 }
3715
3716 if (qual->flags.q.post_depth_coverage) {
3717 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3718 "valid in fragment shader input layout declaration.");
3719 }
3720 }
3721
3722 static void
3723 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3724 ir_variable *var,
3725 struct _mesa_glsl_parse_state *state,
3726 YYLTYPE *loc,
3727 bool is_parameter)
3728 {
3729 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3730
3731 if (qual->flags.q.invariant) {
3732 if (var->data.used) {
3733 _mesa_glsl_error(loc, state,
3734 "variable `%s' may not be redeclared "
3735 "`invariant' after being used",
3736 var->name);
3737 } else {
3738 var->data.invariant = 1;
3739 }
3740 }
3741
3742 if (qual->flags.q.precise) {
3743 if (var->data.used) {
3744 _mesa_glsl_error(loc, state,
3745 "variable `%s' may not be redeclared "
3746 "`precise' after being used",
3747 var->name);
3748 } else {
3749 var->data.precise = 1;
3750 }
3751 }
3752
3753 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3754 _mesa_glsl_error(loc, state,
3755 "`subroutine' may only be applied to uniforms, "
3756 "subroutine type declarations, or function definitions");
3757 }
3758
3759 if (qual->flags.q.constant || qual->flags.q.attribute
3760 || qual->flags.q.uniform
3761 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3762 var->data.read_only = 1;
3763
3764 if (qual->flags.q.centroid)
3765 var->data.centroid = 1;
3766
3767 if (qual->flags.q.sample)
3768 var->data.sample = 1;
3769
3770 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3771 if (state->es_shader) {
3772 var->data.precision =
3773 select_gles_precision(qual->precision, var->type, state, loc);
3774 }
3775
3776 if (qual->flags.q.patch)
3777 var->data.patch = 1;
3778
3779 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3780 var->type = glsl_type::error_type;
3781 _mesa_glsl_error(loc, state,
3782 "`attribute' variables may not be declared in the "
3783 "%s shader",
3784 _mesa_shader_stage_to_string(state->stage));
3785 }
3786
3787 /* Disallow layout qualifiers which may only appear on layout declarations. */
3788 if (qual->flags.q.prim_type) {
3789 _mesa_glsl_error(loc, state,
3790 "Primitive type may only be specified on GS input or output "
3791 "layout declaration, not on variables.");
3792 }
3793
3794 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3795 *
3796 * "However, the const qualifier cannot be used with out or inout."
3797 *
3798 * The same section of the GLSL 4.40 spec further clarifies this saying:
3799 *
3800 * "The const qualifier cannot be used with out or inout, or a
3801 * compile-time error results."
3802 */
3803 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3804 _mesa_glsl_error(loc, state,
3805 "`const' may not be applied to `out' or `inout' "
3806 "function parameters");
3807 }
3808
3809 /* If there is no qualifier that changes the mode of the variable, leave
3810 * the setting alone.
3811 */
3812 assert(var->data.mode != ir_var_temporary);
3813 if (qual->flags.q.in && qual->flags.q.out)
3814 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3815 else if (qual->flags.q.in)
3816 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3817 else if (qual->flags.q.attribute
3818 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3819 var->data.mode = ir_var_shader_in;
3820 else if (qual->flags.q.out)
3821 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3822 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3823 var->data.mode = ir_var_shader_out;
3824 else if (qual->flags.q.uniform)
3825 var->data.mode = ir_var_uniform;
3826 else if (qual->flags.q.buffer)
3827 var->data.mode = ir_var_shader_storage;
3828 else if (qual->flags.q.shared_storage)
3829 var->data.mode = ir_var_shader_shared;
3830
3831 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3832 qual->flags.q.in && qual->flags.q.out;
3833
3834 if (!is_parameter && is_varying_var(var, state->stage)) {
3835 /* User-defined ins/outs are not permitted in compute shaders. */
3836 if (state->stage == MESA_SHADER_COMPUTE) {
3837 _mesa_glsl_error(loc, state,
3838 "user-defined input and output variables are not "
3839 "permitted in compute shaders");
3840 }
3841
3842 /* This variable is being used to link data between shader stages (in
3843 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3844 * that is allowed for such purposes.
3845 *
3846 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3847 *
3848 * "The varying qualifier can be used only with the data types
3849 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3850 * these."
3851 *
3852 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3853 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3854 *
3855 * "Fragment inputs can only be signed and unsigned integers and
3856 * integer vectors, float, floating-point vectors, matrices, or
3857 * arrays of these. Structures cannot be input.
3858 *
3859 * Similar text exists in the section on vertex shader outputs.
3860 *
3861 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3862 * 3.00 spec allows structs as well. Varying structs are also allowed
3863 * in GLSL 1.50.
3864 */
3865 switch (var->type->get_scalar_type()->base_type) {
3866 case GLSL_TYPE_FLOAT:
3867 /* Ok in all GLSL versions */
3868 break;
3869 case GLSL_TYPE_UINT:
3870 case GLSL_TYPE_INT:
3871 if (state->is_version(130, 300))
3872 break;
3873 _mesa_glsl_error(loc, state,
3874 "varying variables must be of base type float in %s",
3875 state->get_version_string());
3876 break;
3877 case GLSL_TYPE_STRUCT:
3878 if (state->is_version(150, 300))
3879 break;
3880 _mesa_glsl_error(loc, state,
3881 "varying variables may not be of type struct");
3882 break;
3883 case GLSL_TYPE_DOUBLE:
3884 case GLSL_TYPE_UINT64:
3885 case GLSL_TYPE_INT64:
3886 break;
3887 default:
3888 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3889 break;
3890 }
3891 }
3892
3893 if (state->all_invariant && (state->current_function == NULL)) {
3894 switch (state->stage) {
3895 case MESA_SHADER_VERTEX:
3896 if (var->data.mode == ir_var_shader_out)
3897 var->data.invariant = true;
3898 break;
3899 case MESA_SHADER_TESS_CTRL:
3900 case MESA_SHADER_TESS_EVAL:
3901 case MESA_SHADER_GEOMETRY:
3902 if ((var->data.mode == ir_var_shader_in)
3903 || (var->data.mode == ir_var_shader_out))
3904 var->data.invariant = true;
3905 break;
3906 case MESA_SHADER_FRAGMENT:
3907 if (var->data.mode == ir_var_shader_in)
3908 var->data.invariant = true;
3909 break;
3910 case MESA_SHADER_COMPUTE:
3911 /* Invariance isn't meaningful in compute shaders. */
3912 break;
3913 }
3914 }
3915
3916 var->data.interpolation =
3917 interpret_interpolation_qualifier(qual, var->type,
3918 (ir_variable_mode) var->data.mode,
3919 state, loc);
3920
3921 /* Does the declaration use the deprecated 'attribute' or 'varying'
3922 * keywords?
3923 */
3924 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3925 || qual->flags.q.varying;
3926
3927
3928 /* Validate auxiliary storage qualifiers */
3929
3930 /* From section 4.3.4 of the GLSL 1.30 spec:
3931 * "It is an error to use centroid in in a vertex shader."
3932 *
3933 * From section 4.3.4 of the GLSL ES 3.00 spec:
3934 * "It is an error to use centroid in or interpolation qualifiers in
3935 * a vertex shader input."
3936 */
3937
3938 /* Section 4.3.6 of the GLSL 1.30 specification states:
3939 * "It is an error to use centroid out in a fragment shader."
3940 *
3941 * The GL_ARB_shading_language_420pack extension specification states:
3942 * "It is an error to use auxiliary storage qualifiers or interpolation
3943 * qualifiers on an output in a fragment shader."
3944 */
3945 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3946 _mesa_glsl_error(loc, state,
3947 "sample qualifier may only be used on `in` or `out` "
3948 "variables between shader stages");
3949 }
3950 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3951 _mesa_glsl_error(loc, state,
3952 "centroid qualifier may only be used with `in', "
3953 "`out' or `varying' variables between shader stages");
3954 }
3955
3956 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3957 _mesa_glsl_error(loc, state,
3958 "the shared storage qualifiers can only be used with "
3959 "compute shaders");
3960 }
3961
3962 apply_image_qualifier_to_variable(qual, var, state, loc);
3963 }
3964
3965 /**
3966 * Get the variable that is being redeclared by this declaration or if it
3967 * does not exist, the current declared variable.
3968 *
3969 * Semantic checks to verify the validity of the redeclaration are also
3970 * performed. If semantic checks fail, compilation error will be emitted via
3971 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3972 *
3973 * \returns
3974 * A pointer to an existing variable in the current scope if the declaration
3975 * is a redeclaration, current variable otherwise. \c is_declared boolean
3976 * will return \c true if the declaration is a redeclaration, \c false
3977 * otherwise.
3978 */
3979 static ir_variable *
3980 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3981 struct _mesa_glsl_parse_state *state,
3982 bool allow_all_redeclarations,
3983 bool *is_redeclaration)
3984 {
3985 /* Check if this declaration is actually a re-declaration, either to
3986 * resize an array or add qualifiers to an existing variable.
3987 *
3988 * This is allowed for variables in the current scope, or when at
3989 * global scope (for built-ins in the implicit outer scope).
3990 */
3991 ir_variable *earlier = state->symbols->get_variable(var->name);
3992 if (earlier == NULL ||
3993 (state->current_function != NULL &&
3994 !state->symbols->name_declared_this_scope(var->name))) {
3995 *is_redeclaration = false;
3996 return var;
3997 }
3998
3999 *is_redeclaration = true;
4000
4001 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4002 *
4003 * "It is legal to declare an array without a size and then
4004 * later re-declare the same name as an array of the same
4005 * type and specify a size."
4006 */
4007 if (earlier->type->is_unsized_array() && var->type->is_array()
4008 && (var->type->fields.array == earlier->type->fields.array)) {
4009 /* FINISHME: This doesn't match the qualifiers on the two
4010 * FINISHME: declarations. It's not 100% clear whether this is
4011 * FINISHME: required or not.
4012 */
4013
4014 const int size = var->type->array_size();
4015 check_builtin_array_max_size(var->name, size, loc, state);
4016 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4017 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4018 "previous access",
4019 earlier->data.max_array_access);
4020 }
4021
4022 earlier->type = var->type;
4023 delete var;
4024 var = NULL;
4025 } else if ((state->ARB_fragment_coord_conventions_enable ||
4026 state->is_version(150, 0))
4027 && strcmp(var->name, "gl_FragCoord") == 0
4028 && earlier->type == var->type
4029 && var->data.mode == ir_var_shader_in) {
4030 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4031 * qualifiers.
4032 */
4033 earlier->data.origin_upper_left = var->data.origin_upper_left;
4034 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4035
4036 /* According to section 4.3.7 of the GLSL 1.30 spec,
4037 * the following built-in varaibles can be redeclared with an
4038 * interpolation qualifier:
4039 * * gl_FrontColor
4040 * * gl_BackColor
4041 * * gl_FrontSecondaryColor
4042 * * gl_BackSecondaryColor
4043 * * gl_Color
4044 * * gl_SecondaryColor
4045 */
4046 } else if (state->is_version(130, 0)
4047 && (strcmp(var->name, "gl_FrontColor") == 0
4048 || strcmp(var->name, "gl_BackColor") == 0
4049 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4050 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4051 || strcmp(var->name, "gl_Color") == 0
4052 || strcmp(var->name, "gl_SecondaryColor") == 0)
4053 && earlier->type == var->type
4054 && earlier->data.mode == var->data.mode) {
4055 earlier->data.interpolation = var->data.interpolation;
4056
4057 /* Layout qualifiers for gl_FragDepth. */
4058 } else if ((state->is_version(420, 0) ||
4059 state->AMD_conservative_depth_enable ||
4060 state->ARB_conservative_depth_enable)
4061 && strcmp(var->name, "gl_FragDepth") == 0
4062 && earlier->type == var->type
4063 && earlier->data.mode == var->data.mode) {
4064
4065 /** From the AMD_conservative_depth spec:
4066 * Within any shader, the first redeclarations of gl_FragDepth
4067 * must appear before any use of gl_FragDepth.
4068 */
4069 if (earlier->data.used) {
4070 _mesa_glsl_error(&loc, state,
4071 "the first redeclaration of gl_FragDepth "
4072 "must appear before any use of gl_FragDepth");
4073 }
4074
4075 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4076 if (earlier->data.depth_layout != ir_depth_layout_none
4077 && earlier->data.depth_layout != var->data.depth_layout) {
4078 _mesa_glsl_error(&loc, state,
4079 "gl_FragDepth: depth layout is declared here "
4080 "as '%s, but it was previously declared as "
4081 "'%s'",
4082 depth_layout_string(var->data.depth_layout),
4083 depth_layout_string(earlier->data.depth_layout));
4084 }
4085
4086 earlier->data.depth_layout = var->data.depth_layout;
4087
4088 } else if (state->has_framebuffer_fetch() &&
4089 strcmp(var->name, "gl_LastFragData") == 0 &&
4090 var->type == earlier->type &&
4091 var->data.mode == ir_var_auto) {
4092 /* According to the EXT_shader_framebuffer_fetch spec:
4093 *
4094 * "By default, gl_LastFragData is declared with the mediump precision
4095 * qualifier. This can be changed by redeclaring the corresponding
4096 * variables with the desired precision qualifier."
4097 */
4098 earlier->data.precision = var->data.precision;
4099
4100 } else if (allow_all_redeclarations) {
4101 if (earlier->data.mode != var->data.mode) {
4102 _mesa_glsl_error(&loc, state,
4103 "redeclaration of `%s' with incorrect qualifiers",
4104 var->name);
4105 } else if (earlier->type != var->type) {
4106 _mesa_glsl_error(&loc, state,
4107 "redeclaration of `%s' has incorrect type",
4108 var->name);
4109 }
4110 } else {
4111 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4112 }
4113
4114 return earlier;
4115 }
4116
4117 /**
4118 * Generate the IR for an initializer in a variable declaration
4119 */
4120 ir_rvalue *
4121 process_initializer(ir_variable *var, ast_declaration *decl,
4122 ast_fully_specified_type *type,
4123 exec_list *initializer_instructions,
4124 struct _mesa_glsl_parse_state *state)
4125 {
4126 ir_rvalue *result = NULL;
4127
4128 YYLTYPE initializer_loc = decl->initializer->get_location();
4129
4130 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4131 *
4132 * "All uniform variables are read-only and are initialized either
4133 * directly by an application via API commands, or indirectly by
4134 * OpenGL."
4135 */
4136 if (var->data.mode == ir_var_uniform) {
4137 state->check_version(120, 0, &initializer_loc,
4138 "cannot initialize uniform %s",
4139 var->name);
4140 }
4141
4142 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4143 *
4144 * "Buffer variables cannot have initializers."
4145 */
4146 if (var->data.mode == ir_var_shader_storage) {
4147 _mesa_glsl_error(&initializer_loc, state,
4148 "cannot initialize buffer variable %s",
4149 var->name);
4150 }
4151
4152 /* From section 4.1.7 of the GLSL 4.40 spec:
4153 *
4154 * "Opaque variables [...] are initialized only through the
4155 * OpenGL API; they cannot be declared with an initializer in a
4156 * shader."
4157 */
4158 if (var->type->contains_opaque()) {
4159 _mesa_glsl_error(&initializer_loc, state,
4160 "cannot initialize opaque variable %s",
4161 var->name);
4162 }
4163
4164 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4165 _mesa_glsl_error(&initializer_loc, state,
4166 "cannot initialize %s shader input / %s %s",
4167 _mesa_shader_stage_to_string(state->stage),
4168 (state->stage == MESA_SHADER_VERTEX)
4169 ? "attribute" : "varying",
4170 var->name);
4171 }
4172
4173 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4174 _mesa_glsl_error(&initializer_loc, state,
4175 "cannot initialize %s shader output %s",
4176 _mesa_shader_stage_to_string(state->stage),
4177 var->name);
4178 }
4179
4180 /* If the initializer is an ast_aggregate_initializer, recursively store
4181 * type information from the LHS into it, so that its hir() function can do
4182 * type checking.
4183 */
4184 if (decl->initializer->oper == ast_aggregate)
4185 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4186
4187 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4188 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4189
4190 /* Calculate the constant value if this is a const or uniform
4191 * declaration.
4192 *
4193 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4194 *
4195 * "Declarations of globals without a storage qualifier, or with
4196 * just the const qualifier, may include initializers, in which case
4197 * they will be initialized before the first line of main() is
4198 * executed. Such initializers must be a constant expression."
4199 *
4200 * The same section of the GLSL ES 3.00.4 spec has similar language.
4201 */
4202 if (type->qualifier.flags.q.constant
4203 || type->qualifier.flags.q.uniform
4204 || (state->es_shader && state->current_function == NULL)) {
4205 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4206 lhs, rhs, true);
4207 if (new_rhs != NULL) {
4208 rhs = new_rhs;
4209
4210 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4211 * says:
4212 *
4213 * "A constant expression is one of
4214 *
4215 * ...
4216 *
4217 * - an expression formed by an operator on operands that are
4218 * all constant expressions, including getting an element of
4219 * a constant array, or a field of a constant structure, or
4220 * components of a constant vector. However, the sequence
4221 * operator ( , ) and the assignment operators ( =, +=, ...)
4222 * are not included in the operators that can create a
4223 * constant expression."
4224 *
4225 * Section 12.43 (Sequence operator and constant expressions) says:
4226 *
4227 * "Should the following construct be allowed?
4228 *
4229 * float a[2,3];
4230 *
4231 * The expression within the brackets uses the sequence operator
4232 * (',') and returns the integer 3 so the construct is declaring
4233 * a single-dimensional array of size 3. In some languages, the
4234 * construct declares a two-dimensional array. It would be
4235 * preferable to make this construct illegal to avoid confusion.
4236 *
4237 * One possibility is to change the definition of the sequence
4238 * operator so that it does not return a constant-expression and
4239 * hence cannot be used to declare an array size.
4240 *
4241 * RESOLUTION: The result of a sequence operator is not a
4242 * constant-expression."
4243 *
4244 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4245 * contains language almost identical to the section 4.3.3 in the
4246 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4247 * versions.
4248 */
4249 ir_constant *constant_value = rhs->constant_expression_value();
4250 if (!constant_value ||
4251 (state->is_version(430, 300) &&
4252 decl->initializer->has_sequence_subexpression())) {
4253 const char *const variable_mode =
4254 (type->qualifier.flags.q.constant)
4255 ? "const"
4256 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4257
4258 /* If ARB_shading_language_420pack is enabled, initializers of
4259 * const-qualified local variables do not have to be constant
4260 * expressions. Const-qualified global variables must still be
4261 * initialized with constant expressions.
4262 */
4263 if (!state->has_420pack()
4264 || state->current_function == NULL) {
4265 _mesa_glsl_error(& initializer_loc, state,
4266 "initializer of %s variable `%s' must be a "
4267 "constant expression",
4268 variable_mode,
4269 decl->identifier);
4270 if (var->type->is_numeric()) {
4271 /* Reduce cascading errors. */
4272 var->constant_value = type->qualifier.flags.q.constant
4273 ? ir_constant::zero(state, var->type) : NULL;
4274 }
4275 }
4276 } else {
4277 rhs = constant_value;
4278 var->constant_value = type->qualifier.flags.q.constant
4279 ? constant_value : NULL;
4280 }
4281 } else {
4282 if (var->type->is_numeric()) {
4283 /* Reduce cascading errors. */
4284 var->constant_value = type->qualifier.flags.q.constant
4285 ? ir_constant::zero(state, var->type) : NULL;
4286 }
4287 }
4288 }
4289
4290 if (rhs && !rhs->type->is_error()) {
4291 bool temp = var->data.read_only;
4292 if (type->qualifier.flags.q.constant)
4293 var->data.read_only = false;
4294
4295 /* Never emit code to initialize a uniform.
4296 */
4297 const glsl_type *initializer_type;
4298 if (!type->qualifier.flags.q.uniform) {
4299 do_assignment(initializer_instructions, state,
4300 NULL,
4301 lhs, rhs,
4302 &result, true,
4303 true,
4304 type->get_location());
4305 initializer_type = result->type;
4306 } else
4307 initializer_type = rhs->type;
4308
4309 var->constant_initializer = rhs->constant_expression_value();
4310 var->data.has_initializer = true;
4311
4312 /* If the declared variable is an unsized array, it must inherrit
4313 * its full type from the initializer. A declaration such as
4314 *
4315 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4316 *
4317 * becomes
4318 *
4319 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4320 *
4321 * The assignment generated in the if-statement (below) will also
4322 * automatically handle this case for non-uniforms.
4323 *
4324 * If the declared variable is not an array, the types must
4325 * already match exactly. As a result, the type assignment
4326 * here can be done unconditionally. For non-uniforms the call
4327 * to do_assignment can change the type of the initializer (via
4328 * the implicit conversion rules). For uniforms the initializer
4329 * must be a constant expression, and the type of that expression
4330 * was validated above.
4331 */
4332 var->type = initializer_type;
4333
4334 var->data.read_only = temp;
4335 }
4336
4337 return result;
4338 }
4339
4340 static void
4341 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4342 YYLTYPE loc, ir_variable *var,
4343 unsigned num_vertices,
4344 unsigned *size,
4345 const char *var_category)
4346 {
4347 if (var->type->is_unsized_array()) {
4348 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4349 *
4350 * All geometry shader input unsized array declarations will be
4351 * sized by an earlier input layout qualifier, when present, as per
4352 * the following table.
4353 *
4354 * Followed by a table mapping each allowed input layout qualifier to
4355 * the corresponding input length.
4356 *
4357 * Similarly for tessellation control shader outputs.
4358 */
4359 if (num_vertices != 0)
4360 var->type = glsl_type::get_array_instance(var->type->fields.array,
4361 num_vertices);
4362 } else {
4363 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4364 * includes the following examples of compile-time errors:
4365 *
4366 * // code sequence within one shader...
4367 * in vec4 Color1[]; // size unknown
4368 * ...Color1.length()...// illegal, length() unknown
4369 * in vec4 Color2[2]; // size is 2
4370 * ...Color1.length()...// illegal, Color1 still has no size
4371 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4372 * layout(lines) in; // legal, input size is 2, matching
4373 * in vec4 Color4[3]; // illegal, contradicts layout
4374 * ...
4375 *
4376 * To detect the case illustrated by Color3, we verify that the size of
4377 * an explicitly-sized array matches the size of any previously declared
4378 * explicitly-sized array. To detect the case illustrated by Color4, we
4379 * verify that the size of an explicitly-sized array is consistent with
4380 * any previously declared input layout.
4381 */
4382 if (num_vertices != 0 && var->type->length != num_vertices) {
4383 _mesa_glsl_error(&loc, state,
4384 "%s size contradicts previously declared layout "
4385 "(size is %u, but layout requires a size of %u)",
4386 var_category, var->type->length, num_vertices);
4387 } else if (*size != 0 && var->type->length != *size) {
4388 _mesa_glsl_error(&loc, state,
4389 "%s sizes are inconsistent (size is %u, but a "
4390 "previous declaration has size %u)",
4391 var_category, var->type->length, *size);
4392 } else {
4393 *size = var->type->length;
4394 }
4395 }
4396 }
4397
4398 static void
4399 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4400 YYLTYPE loc, ir_variable *var)
4401 {
4402 unsigned num_vertices = 0;
4403
4404 if (state->tcs_output_vertices_specified) {
4405 if (!state->out_qualifier->vertices->
4406 process_qualifier_constant(state, "vertices",
4407 &num_vertices, false)) {
4408 return;
4409 }
4410
4411 if (num_vertices > state->Const.MaxPatchVertices) {
4412 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4413 "GL_MAX_PATCH_VERTICES", num_vertices);
4414 return;
4415 }
4416 }
4417
4418 if (!var->type->is_array() && !var->data.patch) {
4419 _mesa_glsl_error(&loc, state,
4420 "tessellation control shader outputs must be arrays");
4421
4422 /* To avoid cascading failures, short circuit the checks below. */
4423 return;
4424 }
4425
4426 if (var->data.patch)
4427 return;
4428
4429 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4430 &state->tcs_output_size,
4431 "tessellation control shader output");
4432 }
4433
4434 /**
4435 * Do additional processing necessary for tessellation control/evaluation shader
4436 * input declarations. This covers both interface block arrays and bare input
4437 * variables.
4438 */
4439 static void
4440 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4441 YYLTYPE loc, ir_variable *var)
4442 {
4443 if (!var->type->is_array() && !var->data.patch) {
4444 _mesa_glsl_error(&loc, state,
4445 "per-vertex tessellation shader inputs must be arrays");
4446 /* Avoid cascading failures. */
4447 return;
4448 }
4449
4450 if (var->data.patch)
4451 return;
4452
4453 /* The ARB_tessellation_shader spec says:
4454 *
4455 * "Declaring an array size is optional. If no size is specified, it
4456 * will be taken from the implementation-dependent maximum patch size
4457 * (gl_MaxPatchVertices). If a size is specified, it must match the
4458 * maximum patch size; otherwise, a compile or link error will occur."
4459 *
4460 * This text appears twice, once for TCS inputs, and again for TES inputs.
4461 */
4462 if (var->type->is_unsized_array()) {
4463 var->type = glsl_type::get_array_instance(var->type->fields.array,
4464 state->Const.MaxPatchVertices);
4465 } else if (var->type->length != state->Const.MaxPatchVertices) {
4466 _mesa_glsl_error(&loc, state,
4467 "per-vertex tessellation shader input arrays must be "
4468 "sized to gl_MaxPatchVertices (%d).",
4469 state->Const.MaxPatchVertices);
4470 }
4471 }
4472
4473
4474 /**
4475 * Do additional processing necessary for geometry shader input declarations
4476 * (this covers both interface blocks arrays and bare input variables).
4477 */
4478 static void
4479 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4480 YYLTYPE loc, ir_variable *var)
4481 {
4482 unsigned num_vertices = 0;
4483
4484 if (state->gs_input_prim_type_specified) {
4485 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4486 }
4487
4488 /* Geometry shader input variables must be arrays. Caller should have
4489 * reported an error for this.
4490 */
4491 if (!var->type->is_array()) {
4492 assert(state->error);
4493
4494 /* To avoid cascading failures, short circuit the checks below. */
4495 return;
4496 }
4497
4498 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4499 &state->gs_input_size,
4500 "geometry shader input");
4501 }
4502
4503 void
4504 validate_identifier(const char *identifier, YYLTYPE loc,
4505 struct _mesa_glsl_parse_state *state)
4506 {
4507 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4508 *
4509 * "Identifiers starting with "gl_" are reserved for use by
4510 * OpenGL, and may not be declared in a shader as either a
4511 * variable or a function."
4512 */
4513 if (is_gl_identifier(identifier)) {
4514 _mesa_glsl_error(&loc, state,
4515 "identifier `%s' uses reserved `gl_' prefix",
4516 identifier);
4517 } else if (strstr(identifier, "__")) {
4518 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4519 * spec:
4520 *
4521 * "In addition, all identifiers containing two
4522 * consecutive underscores (__) are reserved as
4523 * possible future keywords."
4524 *
4525 * The intention is that names containing __ are reserved for internal
4526 * use by the implementation, and names prefixed with GL_ are reserved
4527 * for use by Khronos. Names simply containing __ are dangerous to use,
4528 * but should be allowed.
4529 *
4530 * A future version of the GLSL specification will clarify this.
4531 */
4532 _mesa_glsl_warning(&loc, state,
4533 "identifier `%s' uses reserved `__' string",
4534 identifier);
4535 }
4536 }
4537
4538 ir_rvalue *
4539 ast_declarator_list::hir(exec_list *instructions,
4540 struct _mesa_glsl_parse_state *state)
4541 {
4542 void *ctx = state;
4543 const struct glsl_type *decl_type;
4544 const char *type_name = NULL;
4545 ir_rvalue *result = NULL;
4546 YYLTYPE loc = this->get_location();
4547
4548 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4549 *
4550 * "To ensure that a particular output variable is invariant, it is
4551 * necessary to use the invariant qualifier. It can either be used to
4552 * qualify a previously declared variable as being invariant
4553 *
4554 * invariant gl_Position; // make existing gl_Position be invariant"
4555 *
4556 * In these cases the parser will set the 'invariant' flag in the declarator
4557 * list, and the type will be NULL.
4558 */
4559 if (this->invariant) {
4560 assert(this->type == NULL);
4561
4562 if (state->current_function != NULL) {
4563 _mesa_glsl_error(& loc, state,
4564 "all uses of `invariant' keyword must be at global "
4565 "scope");
4566 }
4567
4568 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4569 assert(decl->array_specifier == NULL);
4570 assert(decl->initializer == NULL);
4571
4572 ir_variable *const earlier =
4573 state->symbols->get_variable(decl->identifier);
4574 if (earlier == NULL) {
4575 _mesa_glsl_error(& loc, state,
4576 "undeclared variable `%s' cannot be marked "
4577 "invariant", decl->identifier);
4578 } else if (!is_allowed_invariant(earlier, state)) {
4579 _mesa_glsl_error(&loc, state,
4580 "`%s' cannot be marked invariant; interfaces between "
4581 "shader stages only.", decl->identifier);
4582 } else if (earlier->data.used) {
4583 _mesa_glsl_error(& loc, state,
4584 "variable `%s' may not be redeclared "
4585 "`invariant' after being used",
4586 earlier->name);
4587 } else {
4588 earlier->data.invariant = true;
4589 }
4590 }
4591
4592 /* Invariant redeclarations do not have r-values.
4593 */
4594 return NULL;
4595 }
4596
4597 if (this->precise) {
4598 assert(this->type == NULL);
4599
4600 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4601 assert(decl->array_specifier == NULL);
4602 assert(decl->initializer == NULL);
4603
4604 ir_variable *const earlier =
4605 state->symbols->get_variable(decl->identifier);
4606 if (earlier == NULL) {
4607 _mesa_glsl_error(& loc, state,
4608 "undeclared variable `%s' cannot be marked "
4609 "precise", decl->identifier);
4610 } else if (state->current_function != NULL &&
4611 !state->symbols->name_declared_this_scope(decl->identifier)) {
4612 /* Note: we have to check if we're in a function, since
4613 * builtins are treated as having come from another scope.
4614 */
4615 _mesa_glsl_error(& loc, state,
4616 "variable `%s' from an outer scope may not be "
4617 "redeclared `precise' in this scope",
4618 earlier->name);
4619 } else if (earlier->data.used) {
4620 _mesa_glsl_error(& loc, state,
4621 "variable `%s' may not be redeclared "
4622 "`precise' after being used",
4623 earlier->name);
4624 } else {
4625 earlier->data.precise = true;
4626 }
4627 }
4628
4629 /* Precise redeclarations do not have r-values either. */
4630 return NULL;
4631 }
4632
4633 assert(this->type != NULL);
4634 assert(!this->invariant);
4635 assert(!this->precise);
4636
4637 /* The type specifier may contain a structure definition. Process that
4638 * before any of the variable declarations.
4639 */
4640 (void) this->type->specifier->hir(instructions, state);
4641
4642 decl_type = this->type->glsl_type(& type_name, state);
4643
4644 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4645 * "Buffer variables may only be declared inside interface blocks
4646 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4647 * shader storage blocks. It is a compile-time error to declare buffer
4648 * variables at global scope (outside a block)."
4649 */
4650 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4651 _mesa_glsl_error(&loc, state,
4652 "buffer variables cannot be declared outside "
4653 "interface blocks");
4654 }
4655
4656 /* An offset-qualified atomic counter declaration sets the default
4657 * offset for the next declaration within the same atomic counter
4658 * buffer.
4659 */
4660 if (decl_type && decl_type->contains_atomic()) {
4661 if (type->qualifier.flags.q.explicit_binding &&
4662 type->qualifier.flags.q.explicit_offset) {
4663 unsigned qual_binding;
4664 unsigned qual_offset;
4665 if (process_qualifier_constant(state, &loc, "binding",
4666 type->qualifier.binding,
4667 &qual_binding)
4668 && process_qualifier_constant(state, &loc, "offset",
4669 type->qualifier.offset,
4670 &qual_offset)) {
4671 state->atomic_counter_offsets[qual_binding] = qual_offset;
4672 }
4673 }
4674
4675 ast_type_qualifier allowed_atomic_qual_mask;
4676 allowed_atomic_qual_mask.flags.i = 0;
4677 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4678 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4679 allowed_atomic_qual_mask.flags.q.uniform = 1;
4680
4681 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4682 "invalid layout qualifier for",
4683 "atomic_uint");
4684 }
4685
4686 if (this->declarations.is_empty()) {
4687 /* If there is no structure involved in the program text, there are two
4688 * possible scenarios:
4689 *
4690 * - The program text contained something like 'vec4;'. This is an
4691 * empty declaration. It is valid but weird. Emit a warning.
4692 *
4693 * - The program text contained something like 'S;' and 'S' is not the
4694 * name of a known structure type. This is both invalid and weird.
4695 * Emit an error.
4696 *
4697 * - The program text contained something like 'mediump float;'
4698 * when the programmer probably meant 'precision mediump
4699 * float;' Emit a warning with a description of what they
4700 * probably meant to do.
4701 *
4702 * Note that if decl_type is NULL and there is a structure involved,
4703 * there must have been some sort of error with the structure. In this
4704 * case we assume that an error was already generated on this line of
4705 * code for the structure. There is no need to generate an additional,
4706 * confusing error.
4707 */
4708 assert(this->type->specifier->structure == NULL || decl_type != NULL
4709 || state->error);
4710
4711 if (decl_type == NULL) {
4712 _mesa_glsl_error(&loc, state,
4713 "invalid type `%s' in empty declaration",
4714 type_name);
4715 } else {
4716 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4717 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4718 * spec:
4719 *
4720 * "... any declaration that leaves the size undefined is
4721 * disallowed as this would add complexity and there are no
4722 * use-cases."
4723 */
4724 if (state->es_shader && decl_type->is_unsized_array()) {
4725 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4726 "or implicitly defined");
4727 }
4728
4729 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4730 *
4731 * "The combinations of types and qualifiers that cause
4732 * compile-time or link-time errors are the same whether or not
4733 * the declaration is empty."
4734 */
4735 validate_array_dimensions(decl_type, state, &loc);
4736 }
4737
4738 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4739 /* Empty atomic counter declarations are allowed and useful
4740 * to set the default offset qualifier.
4741 */
4742 return NULL;
4743 } else if (this->type->qualifier.precision != ast_precision_none) {
4744 if (this->type->specifier->structure != NULL) {
4745 _mesa_glsl_error(&loc, state,
4746 "precision qualifiers can't be applied "
4747 "to structures");
4748 } else {
4749 static const char *const precision_names[] = {
4750 "highp",
4751 "highp",
4752 "mediump",
4753 "lowp"
4754 };
4755
4756 _mesa_glsl_warning(&loc, state,
4757 "empty declaration with precision "
4758 "qualifier, to set the default precision, "
4759 "use `precision %s %s;'",
4760 precision_names[this->type->
4761 qualifier.precision],
4762 type_name);
4763 }
4764 } else if (this->type->specifier->structure == NULL) {
4765 _mesa_glsl_warning(&loc, state, "empty declaration");
4766 }
4767 }
4768 }
4769
4770 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4771 const struct glsl_type *var_type;
4772 ir_variable *var;
4773 const char *identifier = decl->identifier;
4774 /* FINISHME: Emit a warning if a variable declaration shadows a
4775 * FINISHME: declaration at a higher scope.
4776 */
4777
4778 if ((decl_type == NULL) || decl_type->is_void()) {
4779 if (type_name != NULL) {
4780 _mesa_glsl_error(& loc, state,
4781 "invalid type `%s' in declaration of `%s'",
4782 type_name, decl->identifier);
4783 } else {
4784 _mesa_glsl_error(& loc, state,
4785 "invalid type in declaration of `%s'",
4786 decl->identifier);
4787 }
4788 continue;
4789 }
4790
4791 if (this->type->qualifier.is_subroutine_decl()) {
4792 const glsl_type *t;
4793 const char *name;
4794
4795 t = state->symbols->get_type(this->type->specifier->type_name);
4796 if (!t)
4797 _mesa_glsl_error(& loc, state,
4798 "invalid type in declaration of `%s'",
4799 decl->identifier);
4800 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4801
4802 identifier = name;
4803
4804 }
4805 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4806 state);
4807
4808 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4809
4810 /* The 'varying in' and 'varying out' qualifiers can only be used with
4811 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4812 * yet.
4813 */
4814 if (this->type->qualifier.flags.q.varying) {
4815 if (this->type->qualifier.flags.q.in) {
4816 _mesa_glsl_error(& loc, state,
4817 "`varying in' qualifier in declaration of "
4818 "`%s' only valid for geometry shaders using "
4819 "ARB_geometry_shader4 or EXT_geometry_shader4",
4820 decl->identifier);
4821 } else if (this->type->qualifier.flags.q.out) {
4822 _mesa_glsl_error(& loc, state,
4823 "`varying out' qualifier in declaration of "
4824 "`%s' only valid for geometry shaders using "
4825 "ARB_geometry_shader4 or EXT_geometry_shader4",
4826 decl->identifier);
4827 }
4828 }
4829
4830 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4831 *
4832 * "Global variables can only use the qualifiers const,
4833 * attribute, uniform, or varying. Only one may be
4834 * specified.
4835 *
4836 * Local variables can only use the qualifier const."
4837 *
4838 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4839 * any extension that adds the 'layout' keyword.
4840 */
4841 if (!state->is_version(130, 300)
4842 && !state->has_explicit_attrib_location()
4843 && !state->has_separate_shader_objects()
4844 && !state->ARB_fragment_coord_conventions_enable) {
4845 if (this->type->qualifier.flags.q.out) {
4846 _mesa_glsl_error(& loc, state,
4847 "`out' qualifier in declaration of `%s' "
4848 "only valid for function parameters in %s",
4849 decl->identifier, state->get_version_string());
4850 }
4851 if (this->type->qualifier.flags.q.in) {
4852 _mesa_glsl_error(& loc, state,
4853 "`in' qualifier in declaration of `%s' "
4854 "only valid for function parameters in %s",
4855 decl->identifier, state->get_version_string());
4856 }
4857 /* FINISHME: Test for other invalid qualifiers. */
4858 }
4859
4860 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4861 & loc, false);
4862 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4863 &loc);
4864
4865 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4866 && (var->type->is_numeric() || var->type->is_boolean())
4867 && state->zero_init) {
4868 const ir_constant_data data = { { 0 } };
4869 var->data.has_initializer = true;
4870 var->constant_initializer = new(var) ir_constant(var->type, &data);
4871 }
4872
4873 if (this->type->qualifier.flags.q.invariant) {
4874 if (!is_allowed_invariant(var, state)) {
4875 _mesa_glsl_error(&loc, state,
4876 "`%s' cannot be marked invariant; interfaces between "
4877 "shader stages only", var->name);
4878 }
4879 }
4880
4881 if (state->current_function != NULL) {
4882 const char *mode = NULL;
4883 const char *extra = "";
4884
4885 /* There is no need to check for 'inout' here because the parser will
4886 * only allow that in function parameter lists.
4887 */
4888 if (this->type->qualifier.flags.q.attribute) {
4889 mode = "attribute";
4890 } else if (this->type->qualifier.is_subroutine_decl()) {
4891 mode = "subroutine uniform";
4892 } else if (this->type->qualifier.flags.q.uniform) {
4893 mode = "uniform";
4894 } else if (this->type->qualifier.flags.q.varying) {
4895 mode = "varying";
4896 } else if (this->type->qualifier.flags.q.in) {
4897 mode = "in";
4898 extra = " or in function parameter list";
4899 } else if (this->type->qualifier.flags.q.out) {
4900 mode = "out";
4901 extra = " or in function parameter list";
4902 }
4903
4904 if (mode) {
4905 _mesa_glsl_error(& loc, state,
4906 "%s variable `%s' must be declared at "
4907 "global scope%s",
4908 mode, var->name, extra);
4909 }
4910 } else if (var->data.mode == ir_var_shader_in) {
4911 var->data.read_only = true;
4912
4913 if (state->stage == MESA_SHADER_VERTEX) {
4914 bool error_emitted = false;
4915
4916 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4917 *
4918 * "Vertex shader inputs can only be float, floating-point
4919 * vectors, matrices, signed and unsigned integers and integer
4920 * vectors. Vertex shader inputs can also form arrays of these
4921 * types, but not structures."
4922 *
4923 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4924 *
4925 * "Vertex shader inputs can only be float, floating-point
4926 * vectors, matrices, signed and unsigned integers and integer
4927 * vectors. They cannot be arrays or structures."
4928 *
4929 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4930 *
4931 * "The attribute qualifier can be used only with float,
4932 * floating-point vectors, and matrices. Attribute variables
4933 * cannot be declared as arrays or structures."
4934 *
4935 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4936 *
4937 * "Vertex shader inputs can only be float, floating-point
4938 * vectors, matrices, signed and unsigned integers and integer
4939 * vectors. Vertex shader inputs cannot be arrays or
4940 * structures."
4941 */
4942 const glsl_type *check_type = var->type->without_array();
4943
4944 switch (check_type->base_type) {
4945 case GLSL_TYPE_FLOAT:
4946 break;
4947 case GLSL_TYPE_UINT64:
4948 case GLSL_TYPE_INT64:
4949 break;
4950 case GLSL_TYPE_UINT:
4951 case GLSL_TYPE_INT:
4952 if (state->is_version(120, 300))
4953 break;
4954 case GLSL_TYPE_DOUBLE:
4955 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4956 break;
4957 /* FALLTHROUGH */
4958 default:
4959 _mesa_glsl_error(& loc, state,
4960 "vertex shader input / attribute cannot have "
4961 "type %s`%s'",
4962 var->type->is_array() ? "array of " : "",
4963 check_type->name);
4964 error_emitted = true;
4965 }
4966
4967 if (!error_emitted && var->type->is_array() &&
4968 !state->check_version(150, 0, &loc,
4969 "vertex shader input / attribute "
4970 "cannot have array type")) {
4971 error_emitted = true;
4972 }
4973 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4974 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4975 *
4976 * Geometry shader input variables get the per-vertex values
4977 * written out by vertex shader output variables of the same
4978 * names. Since a geometry shader operates on a set of
4979 * vertices, each input varying variable (or input block, see
4980 * interface blocks below) needs to be declared as an array.
4981 */
4982 if (!var->type->is_array()) {
4983 _mesa_glsl_error(&loc, state,
4984 "geometry shader inputs must be arrays");
4985 }
4986
4987 handle_geometry_shader_input_decl(state, loc, var);
4988 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4989 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4990 *
4991 * It is a compile-time error to declare a fragment shader
4992 * input with, or that contains, any of the following types:
4993 *
4994 * * A boolean type
4995 * * An opaque type
4996 * * An array of arrays
4997 * * An array of structures
4998 * * A structure containing an array
4999 * * A structure containing a structure
5000 */
5001 if (state->es_shader) {
5002 const glsl_type *check_type = var->type->without_array();
5003 if (check_type->is_boolean() ||
5004 check_type->contains_opaque()) {
5005 _mesa_glsl_error(&loc, state,
5006 "fragment shader input cannot have type %s",
5007 check_type->name);
5008 }
5009 if (var->type->is_array() &&
5010 var->type->fields.array->is_array()) {
5011 _mesa_glsl_error(&loc, state,
5012 "%s shader output "
5013 "cannot have an array of arrays",
5014 _mesa_shader_stage_to_string(state->stage));
5015 }
5016 if (var->type->is_array() &&
5017 var->type->fields.array->is_record()) {
5018 _mesa_glsl_error(&loc, state,
5019 "fragment shader input "
5020 "cannot have an array of structs");
5021 }
5022 if (var->type->is_record()) {
5023 for (unsigned i = 0; i < var->type->length; i++) {
5024 if (var->type->fields.structure[i].type->is_array() ||
5025 var->type->fields.structure[i].type->is_record())
5026 _mesa_glsl_error(&loc, state,
5027 "fragement shader input cannot have "
5028 "a struct that contains an "
5029 "array or struct");
5030 }
5031 }
5032 }
5033 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5034 state->stage == MESA_SHADER_TESS_EVAL) {
5035 handle_tess_shader_input_decl(state, loc, var);
5036 }
5037 } else if (var->data.mode == ir_var_shader_out) {
5038 const glsl_type *check_type = var->type->without_array();
5039
5040 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5041 *
5042 * It is a compile-time error to declare a vertex, tessellation
5043 * evaluation, tessellation control, or geometry shader output
5044 * that contains any of the following:
5045 *
5046 * * A Boolean type (bool, bvec2 ...)
5047 * * An opaque type
5048 */
5049 if (check_type->is_boolean() || check_type->contains_opaque())
5050 _mesa_glsl_error(&loc, state,
5051 "%s shader output cannot have type %s",
5052 _mesa_shader_stage_to_string(state->stage),
5053 check_type->name);
5054
5055 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5056 *
5057 * It is a compile-time error to declare a fragment shader output
5058 * that contains any of the following:
5059 *
5060 * * A Boolean type (bool, bvec2 ...)
5061 * * A double-precision scalar or vector (double, dvec2 ...)
5062 * * An opaque type
5063 * * Any matrix type
5064 * * A structure
5065 */
5066 if (state->stage == MESA_SHADER_FRAGMENT) {
5067 if (check_type->is_record() || check_type->is_matrix())
5068 _mesa_glsl_error(&loc, state,
5069 "fragment shader output "
5070 "cannot have struct or matrix type");
5071 switch (check_type->base_type) {
5072 case GLSL_TYPE_UINT:
5073 case GLSL_TYPE_INT:
5074 case GLSL_TYPE_FLOAT:
5075 break;
5076 default:
5077 _mesa_glsl_error(&loc, state,
5078 "fragment shader output cannot have "
5079 "type %s", check_type->name);
5080 }
5081 }
5082
5083 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5084 *
5085 * It is a compile-time error to declare a vertex shader output
5086 * with, or that contains, any of the following types:
5087 *
5088 * * A boolean type
5089 * * An opaque type
5090 * * An array of arrays
5091 * * An array of structures
5092 * * A structure containing an array
5093 * * A structure containing a structure
5094 *
5095 * It is a compile-time error to declare a fragment shader output
5096 * with, or that contains, any of the following types:
5097 *
5098 * * A boolean type
5099 * * An opaque type
5100 * * A matrix
5101 * * A structure
5102 * * An array of array
5103 *
5104 * ES 3.20 updates this to apply to tessellation and geometry shaders
5105 * as well. Because there are per-vertex arrays in the new stages,
5106 * it strikes the "array of..." rules and replaces them with these:
5107 *
5108 * * For per-vertex-arrayed variables (applies to tessellation
5109 * control, tessellation evaluation and geometry shaders):
5110 *
5111 * * Per-vertex-arrayed arrays of arrays
5112 * * Per-vertex-arrayed arrays of structures
5113 *
5114 * * For non-per-vertex-arrayed variables:
5115 *
5116 * * An array of arrays
5117 * * An array of structures
5118 *
5119 * which basically says to unwrap the per-vertex aspect and apply
5120 * the old rules.
5121 */
5122 if (state->es_shader) {
5123 if (var->type->is_array() &&
5124 var->type->fields.array->is_array()) {
5125 _mesa_glsl_error(&loc, state,
5126 "%s shader output "
5127 "cannot have an array of arrays",
5128 _mesa_shader_stage_to_string(state->stage));
5129 }
5130 if (state->stage <= MESA_SHADER_GEOMETRY) {
5131 const glsl_type *type = var->type;
5132
5133 if (state->stage == MESA_SHADER_TESS_CTRL &&
5134 !var->data.patch && var->type->is_array()) {
5135 type = var->type->fields.array;
5136 }
5137
5138 if (type->is_array() && type->fields.array->is_record()) {
5139 _mesa_glsl_error(&loc, state,
5140 "%s shader output cannot have "
5141 "an array of structs",
5142 _mesa_shader_stage_to_string(state->stage));
5143 }
5144 if (type->is_record()) {
5145 for (unsigned i = 0; i < type->length; i++) {
5146 if (type->fields.structure[i].type->is_array() ||
5147 type->fields.structure[i].type->is_record())
5148 _mesa_glsl_error(&loc, state,
5149 "%s shader output cannot have a "
5150 "struct that contains an "
5151 "array or struct",
5152 _mesa_shader_stage_to_string(state->stage));
5153 }
5154 }
5155 }
5156 }
5157
5158 if (state->stage == MESA_SHADER_TESS_CTRL) {
5159 handle_tess_ctrl_shader_output_decl(state, loc, var);
5160 }
5161 } else if (var->type->contains_subroutine()) {
5162 /* declare subroutine uniforms as hidden */
5163 var->data.how_declared = ir_var_hidden;
5164 }
5165
5166 /* From section 4.3.4 of the GLSL 4.00 spec:
5167 * "Input variables may not be declared using the patch in qualifier
5168 * in tessellation control or geometry shaders."
5169 *
5170 * From section 4.3.6 of the GLSL 4.00 spec:
5171 * "It is an error to use patch out in a vertex, tessellation
5172 * evaluation, or geometry shader."
5173 *
5174 * This doesn't explicitly forbid using them in a fragment shader, but
5175 * that's probably just an oversight.
5176 */
5177 if (state->stage != MESA_SHADER_TESS_EVAL
5178 && this->type->qualifier.flags.q.patch
5179 && this->type->qualifier.flags.q.in) {
5180
5181 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5182 "tessellation evaluation shader");
5183 }
5184
5185 if (state->stage != MESA_SHADER_TESS_CTRL
5186 && this->type->qualifier.flags.q.patch
5187 && this->type->qualifier.flags.q.out) {
5188
5189 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5190 "tessellation control shader");
5191 }
5192
5193 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5194 */
5195 if (this->type->qualifier.precision != ast_precision_none) {
5196 state->check_precision_qualifiers_allowed(&loc);
5197 }
5198
5199 if (this->type->qualifier.precision != ast_precision_none &&
5200 !precision_qualifier_allowed(var->type)) {
5201 _mesa_glsl_error(&loc, state,
5202 "precision qualifiers apply only to floating point"
5203 ", integer and opaque types");
5204 }
5205
5206 /* From section 4.1.7 of the GLSL 4.40 spec:
5207 *
5208 * "[Opaque types] can only be declared as function
5209 * parameters or uniform-qualified variables."
5210 */
5211 if (var_type->contains_opaque() &&
5212 !this->type->qualifier.flags.q.uniform) {
5213 _mesa_glsl_error(&loc, state,
5214 "opaque variables must be declared uniform");
5215 }
5216
5217 /* Process the initializer and add its instructions to a temporary
5218 * list. This list will be added to the instruction stream (below) after
5219 * the declaration is added. This is done because in some cases (such as
5220 * redeclarations) the declaration may not actually be added to the
5221 * instruction stream.
5222 */
5223 exec_list initializer_instructions;
5224
5225 /* Examine var name here since var may get deleted in the next call */
5226 bool var_is_gl_id = is_gl_identifier(var->name);
5227
5228 bool is_redeclaration;
5229 ir_variable *declared_var =
5230 get_variable_being_redeclared(var, decl->get_location(), state,
5231 false /* allow_all_redeclarations */,
5232 &is_redeclaration);
5233 if (is_redeclaration) {
5234 if (var_is_gl_id &&
5235 declared_var->data.how_declared == ir_var_declared_in_block) {
5236 _mesa_glsl_error(&loc, state,
5237 "`%s' has already been redeclared using "
5238 "gl_PerVertex", declared_var->name);
5239 }
5240 declared_var->data.how_declared = ir_var_declared_normally;
5241 }
5242
5243 if (decl->initializer != NULL) {
5244 result = process_initializer(declared_var,
5245 decl, this->type,
5246 &initializer_instructions, state);
5247 } else {
5248 validate_array_dimensions(var_type, state, &loc);
5249 }
5250
5251 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5252 *
5253 * "It is an error to write to a const variable outside of
5254 * its declaration, so they must be initialized when
5255 * declared."
5256 */
5257 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5258 _mesa_glsl_error(& loc, state,
5259 "const declaration of `%s' must be initialized",
5260 decl->identifier);
5261 }
5262
5263 if (state->es_shader) {
5264 const glsl_type *const t = declared_var->type;
5265
5266 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5267 *
5268 * The GL_OES_tessellation_shader spec says about inputs:
5269 *
5270 * "Declaring an array size is optional. If no size is specified,
5271 * it will be taken from the implementation-dependent maximum
5272 * patch size (gl_MaxPatchVertices)."
5273 *
5274 * and about TCS outputs:
5275 *
5276 * "If no size is specified, it will be taken from output patch
5277 * size declared in the shader."
5278 *
5279 * The GL_OES_geometry_shader spec says:
5280 *
5281 * "All geometry shader input unsized array declarations will be
5282 * sized by an earlier input primitive layout qualifier, when
5283 * present, as per the following table."
5284 */
5285 const bool implicitly_sized =
5286 (declared_var->data.mode == ir_var_shader_in &&
5287 state->stage >= MESA_SHADER_TESS_CTRL &&
5288 state->stage <= MESA_SHADER_GEOMETRY) ||
5289 (declared_var->data.mode == ir_var_shader_out &&
5290 state->stage == MESA_SHADER_TESS_CTRL);
5291
5292 if (t->is_unsized_array() && !implicitly_sized)
5293 /* Section 10.17 of the GLSL ES 1.00 specification states that
5294 * unsized array declarations have been removed from the language.
5295 * Arrays that are sized using an initializer are still explicitly
5296 * sized. However, GLSL ES 1.00 does not allow array
5297 * initializers. That is only allowed in GLSL ES 3.00.
5298 *
5299 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5300 *
5301 * "An array type can also be formed without specifying a size
5302 * if the definition includes an initializer:
5303 *
5304 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5305 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5306 *
5307 * float a[5];
5308 * float b[] = a;"
5309 */
5310 _mesa_glsl_error(& loc, state,
5311 "unsized array declarations are not allowed in "
5312 "GLSL ES");
5313 }
5314
5315 /* If the declaration is not a redeclaration, there are a few additional
5316 * semantic checks that must be applied. In addition, variable that was
5317 * created for the declaration should be added to the IR stream.
5318 */
5319 if (!is_redeclaration) {
5320 validate_identifier(decl->identifier, loc, state);
5321
5322 /* Add the variable to the symbol table. Note that the initializer's
5323 * IR was already processed earlier (though it hasn't been emitted
5324 * yet), without the variable in scope.
5325 *
5326 * This differs from most C-like languages, but it follows the GLSL
5327 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5328 * spec:
5329 *
5330 * "Within a declaration, the scope of a name starts immediately
5331 * after the initializer if present or immediately after the name
5332 * being declared if not."
5333 */
5334 if (!state->symbols->add_variable(declared_var)) {
5335 YYLTYPE loc = this->get_location();
5336 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5337 "current scope", decl->identifier);
5338 continue;
5339 }
5340
5341 /* Push the variable declaration to the top. It means that all the
5342 * variable declarations will appear in a funny last-to-first order,
5343 * but otherwise we run into trouble if a function is prototyped, a
5344 * global var is decled, then the function is defined with usage of
5345 * the global var. See glslparsertest's CorrectModule.frag.
5346 */
5347 instructions->push_head(declared_var);
5348 }
5349
5350 instructions->append_list(&initializer_instructions);
5351 }
5352
5353
5354 /* Generally, variable declarations do not have r-values. However,
5355 * one is used for the declaration in
5356 *
5357 * while (bool b = some_condition()) {
5358 * ...
5359 * }
5360 *
5361 * so we return the rvalue from the last seen declaration here.
5362 */
5363 return result;
5364 }
5365
5366
5367 ir_rvalue *
5368 ast_parameter_declarator::hir(exec_list *instructions,
5369 struct _mesa_glsl_parse_state *state)
5370 {
5371 void *ctx = state;
5372 const struct glsl_type *type;
5373 const char *name = NULL;
5374 YYLTYPE loc = this->get_location();
5375
5376 type = this->type->glsl_type(& name, state);
5377
5378 if (type == NULL) {
5379 if (name != NULL) {
5380 _mesa_glsl_error(& loc, state,
5381 "invalid type `%s' in declaration of `%s'",
5382 name, this->identifier);
5383 } else {
5384 _mesa_glsl_error(& loc, state,
5385 "invalid type in declaration of `%s'",
5386 this->identifier);
5387 }
5388
5389 type = glsl_type::error_type;
5390 }
5391
5392 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5393 *
5394 * "Functions that accept no input arguments need not use void in the
5395 * argument list because prototypes (or definitions) are required and
5396 * therefore there is no ambiguity when an empty argument list "( )" is
5397 * declared. The idiom "(void)" as a parameter list is provided for
5398 * convenience."
5399 *
5400 * Placing this check here prevents a void parameter being set up
5401 * for a function, which avoids tripping up checks for main taking
5402 * parameters and lookups of an unnamed symbol.
5403 */
5404 if (type->is_void()) {
5405 if (this->identifier != NULL)
5406 _mesa_glsl_error(& loc, state,
5407 "named parameter cannot have type `void'");
5408
5409 is_void = true;
5410 return NULL;
5411 }
5412
5413 if (formal_parameter && (this->identifier == NULL)) {
5414 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5415 return NULL;
5416 }
5417
5418 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5419 * call already handled the "vec4[..] foo" case.
5420 */
5421 type = process_array_type(&loc, type, this->array_specifier, state);
5422
5423 if (!type->is_error() && type->is_unsized_array()) {
5424 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5425 "a declared size");
5426 type = glsl_type::error_type;
5427 }
5428
5429 is_void = false;
5430 ir_variable *var = new(ctx)
5431 ir_variable(type, this->identifier, ir_var_function_in);
5432
5433 /* Apply any specified qualifiers to the parameter declaration. Note that
5434 * for function parameters the default mode is 'in'.
5435 */
5436 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5437 true);
5438
5439 /* From section 4.1.7 of the GLSL 4.40 spec:
5440 *
5441 * "Opaque variables cannot be treated as l-values; hence cannot
5442 * be used as out or inout function parameters, nor can they be
5443 * assigned into."
5444 */
5445 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5446 && type->contains_opaque()) {
5447 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5448 "contain opaque variables");
5449 type = glsl_type::error_type;
5450 }
5451
5452 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5453 *
5454 * "When calling a function, expressions that do not evaluate to
5455 * l-values cannot be passed to parameters declared as out or inout."
5456 *
5457 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5458 *
5459 * "Other binary or unary expressions, non-dereferenced arrays,
5460 * function names, swizzles with repeated fields, and constants
5461 * cannot be l-values."
5462 *
5463 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5464 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5465 */
5466 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5467 && type->is_array()
5468 && !state->check_version(120, 100, &loc,
5469 "arrays cannot be out or inout parameters")) {
5470 type = glsl_type::error_type;
5471 }
5472
5473 instructions->push_tail(var);
5474
5475 /* Parameter declarations do not have r-values.
5476 */
5477 return NULL;
5478 }
5479
5480
5481 void
5482 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5483 bool formal,
5484 exec_list *ir_parameters,
5485 _mesa_glsl_parse_state *state)
5486 {
5487 ast_parameter_declarator *void_param = NULL;
5488 unsigned count = 0;
5489
5490 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5491 param->formal_parameter = formal;
5492 param->hir(ir_parameters, state);
5493
5494 if (param->is_void)
5495 void_param = param;
5496
5497 count++;
5498 }
5499
5500 if ((void_param != NULL) && (count > 1)) {
5501 YYLTYPE loc = void_param->get_location();
5502
5503 _mesa_glsl_error(& loc, state,
5504 "`void' parameter must be only parameter");
5505 }
5506 }
5507
5508
5509 void
5510 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5511 {
5512 /* IR invariants disallow function declarations or definitions
5513 * nested within other function definitions. But there is no
5514 * requirement about the relative order of function declarations
5515 * and definitions with respect to one another. So simply insert
5516 * the new ir_function block at the end of the toplevel instruction
5517 * list.
5518 */
5519 state->toplevel_ir->push_tail(f);
5520 }
5521
5522
5523 ir_rvalue *
5524 ast_function::hir(exec_list *instructions,
5525 struct _mesa_glsl_parse_state *state)
5526 {
5527 void *ctx = state;
5528 ir_function *f = NULL;
5529 ir_function_signature *sig = NULL;
5530 exec_list hir_parameters;
5531 YYLTYPE loc = this->get_location();
5532
5533 const char *const name = identifier;
5534
5535 /* New functions are always added to the top-level IR instruction stream,
5536 * so this instruction list pointer is ignored. See also emit_function
5537 * (called below).
5538 */
5539 (void) instructions;
5540
5541 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5542 *
5543 * "Function declarations (prototypes) cannot occur inside of functions;
5544 * they must be at global scope, or for the built-in functions, outside
5545 * the global scope."
5546 *
5547 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5548 *
5549 * "User defined functions may only be defined within the global scope."
5550 *
5551 * Note that this language does not appear in GLSL 1.10.
5552 */
5553 if ((state->current_function != NULL) &&
5554 state->is_version(120, 100)) {
5555 YYLTYPE loc = this->get_location();
5556 _mesa_glsl_error(&loc, state,
5557 "declaration of function `%s' not allowed within "
5558 "function body", name);
5559 }
5560
5561 validate_identifier(name, this->get_location(), state);
5562
5563 /* Convert the list of function parameters to HIR now so that they can be
5564 * used below to compare this function's signature with previously seen
5565 * signatures for functions with the same name.
5566 */
5567 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5568 is_definition,
5569 & hir_parameters, state);
5570
5571 const char *return_type_name;
5572 const glsl_type *return_type =
5573 this->return_type->glsl_type(& return_type_name, state);
5574
5575 if (!return_type) {
5576 YYLTYPE loc = this->get_location();
5577 _mesa_glsl_error(&loc, state,
5578 "function `%s' has undeclared return type `%s'",
5579 name, return_type_name);
5580 return_type = glsl_type::error_type;
5581 }
5582
5583 /* ARB_shader_subroutine states:
5584 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5585 * subroutine(...) to a function declaration."
5586 */
5587 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5588 YYLTYPE loc = this->get_location();
5589 _mesa_glsl_error(&loc, state,
5590 "function declaration `%s' cannot have subroutine prepended",
5591 name);
5592 }
5593
5594 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5595 * "No qualifier is allowed on the return type of a function."
5596 */
5597 if (this->return_type->has_qualifiers(state)) {
5598 YYLTYPE loc = this->get_location();
5599 _mesa_glsl_error(& loc, state,
5600 "function `%s' return type has qualifiers", name);
5601 }
5602
5603 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5604 *
5605 * "Arrays are allowed as arguments and as the return type. In both
5606 * cases, the array must be explicitly sized."
5607 */
5608 if (return_type->is_unsized_array()) {
5609 YYLTYPE loc = this->get_location();
5610 _mesa_glsl_error(& loc, state,
5611 "function `%s' return type array must be explicitly "
5612 "sized", name);
5613 }
5614
5615 /* From section 4.1.7 of the GLSL 4.40 spec:
5616 *
5617 * "[Opaque types] can only be declared as function parameters
5618 * or uniform-qualified variables."
5619 */
5620 if (return_type->contains_opaque()) {
5621 YYLTYPE loc = this->get_location();
5622 _mesa_glsl_error(&loc, state,
5623 "function `%s' return type can't contain an opaque type",
5624 name);
5625 }
5626
5627 /**/
5628 if (return_type->is_subroutine()) {
5629 YYLTYPE loc = this->get_location();
5630 _mesa_glsl_error(&loc, state,
5631 "function `%s' return type can't be a subroutine type",
5632 name);
5633 }
5634
5635
5636 /* Create an ir_function if one doesn't already exist. */
5637 f = state->symbols->get_function(name);
5638 if (f == NULL) {
5639 f = new(ctx) ir_function(name);
5640 if (!this->return_type->qualifier.is_subroutine_decl()) {
5641 if (!state->symbols->add_function(f)) {
5642 /* This function name shadows a non-function use of the same name. */
5643 YYLTYPE loc = this->get_location();
5644 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5645 "non-function", name);
5646 return NULL;
5647 }
5648 }
5649 emit_function(state, f);
5650 }
5651
5652 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5653 *
5654 * "A shader cannot redefine or overload built-in functions."
5655 *
5656 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5657 *
5658 * "User code can overload the built-in functions but cannot redefine
5659 * them."
5660 */
5661 if (state->es_shader && state->language_version >= 300) {
5662 /* Local shader has no exact candidates; check the built-ins. */
5663 _mesa_glsl_initialize_builtin_functions();
5664 if (_mesa_glsl_has_builtin_function(name)) {
5665 YYLTYPE loc = this->get_location();
5666 _mesa_glsl_error(& loc, state,
5667 "A shader cannot redefine or overload built-in "
5668 "function `%s' in GLSL ES 3.00", name);
5669 return NULL;
5670 }
5671 }
5672
5673 /* Verify that this function's signature either doesn't match a previously
5674 * seen signature for a function with the same name, or, if a match is found,
5675 * that the previously seen signature does not have an associated definition.
5676 */
5677 if (state->es_shader || f->has_user_signature()) {
5678 sig = f->exact_matching_signature(state, &hir_parameters);
5679 if (sig != NULL) {
5680 const char *badvar = sig->qualifiers_match(&hir_parameters);
5681 if (badvar != NULL) {
5682 YYLTYPE loc = this->get_location();
5683
5684 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5685 "qualifiers don't match prototype", name, badvar);
5686 }
5687
5688 if (sig->return_type != return_type) {
5689 YYLTYPE loc = this->get_location();
5690
5691 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5692 "match prototype", name);
5693 }
5694
5695 if (sig->is_defined) {
5696 if (is_definition) {
5697 YYLTYPE loc = this->get_location();
5698 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5699 } else {
5700 /* We just encountered a prototype that exactly matches a
5701 * function that's already been defined. This is redundant,
5702 * and we should ignore it.
5703 */
5704 return NULL;
5705 }
5706 }
5707 }
5708 }
5709
5710 /* Verify the return type of main() */
5711 if (strcmp(name, "main") == 0) {
5712 if (! return_type->is_void()) {
5713 YYLTYPE loc = this->get_location();
5714
5715 _mesa_glsl_error(& loc, state, "main() must return void");
5716 }
5717
5718 if (!hir_parameters.is_empty()) {
5719 YYLTYPE loc = this->get_location();
5720
5721 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5722 }
5723 }
5724
5725 /* Finish storing the information about this new function in its signature.
5726 */
5727 if (sig == NULL) {
5728 sig = new(ctx) ir_function_signature(return_type);
5729 f->add_signature(sig);
5730 }
5731
5732 sig->replace_parameters(&hir_parameters);
5733 signature = sig;
5734
5735 if (this->return_type->qualifier.subroutine_list) {
5736 int idx;
5737
5738 if (this->return_type->qualifier.flags.q.explicit_index) {
5739 unsigned qual_index;
5740 if (process_qualifier_constant(state, &loc, "index",
5741 this->return_type->qualifier.index,
5742 &qual_index)) {
5743 if (!state->has_explicit_uniform_location()) {
5744 _mesa_glsl_error(&loc, state, "subroutine index requires "
5745 "GL_ARB_explicit_uniform_location or "
5746 "GLSL 4.30");
5747 } else if (qual_index >= MAX_SUBROUTINES) {
5748 _mesa_glsl_error(&loc, state,
5749 "invalid subroutine index (%d) index must "
5750 "be a number between 0 and "
5751 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5752 MAX_SUBROUTINES - 1);
5753 } else {
5754 f->subroutine_index = qual_index;
5755 }
5756 }
5757 }
5758
5759 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5760 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5761 f->num_subroutine_types);
5762 idx = 0;
5763 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5764 const struct glsl_type *type;
5765 /* the subroutine type must be already declared */
5766 type = state->symbols->get_type(decl->identifier);
5767 if (!type) {
5768 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5769 }
5770
5771 for (int i = 0; i < state->num_subroutine_types; i++) {
5772 ir_function *fn = state->subroutine_types[i];
5773 ir_function_signature *tsig = NULL;
5774
5775 if (strcmp(fn->name, decl->identifier))
5776 continue;
5777
5778 tsig = fn->matching_signature(state, &sig->parameters,
5779 false);
5780 if (!tsig) {
5781 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5782 } else {
5783 if (tsig->return_type != sig->return_type) {
5784 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5785 }
5786 }
5787 }
5788 f->subroutine_types[idx++] = type;
5789 }
5790 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5791 ir_function *,
5792 state->num_subroutines + 1);
5793 state->subroutines[state->num_subroutines] = f;
5794 state->num_subroutines++;
5795
5796 }
5797
5798 if (this->return_type->qualifier.is_subroutine_decl()) {
5799 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5800 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5801 return NULL;
5802 }
5803 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5804 ir_function *,
5805 state->num_subroutine_types + 1);
5806 state->subroutine_types[state->num_subroutine_types] = f;
5807 state->num_subroutine_types++;
5808
5809 f->is_subroutine = true;
5810 }
5811
5812 /* Function declarations (prototypes) do not have r-values.
5813 */
5814 return NULL;
5815 }
5816
5817
5818 ir_rvalue *
5819 ast_function_definition::hir(exec_list *instructions,
5820 struct _mesa_glsl_parse_state *state)
5821 {
5822 prototype->is_definition = true;
5823 prototype->hir(instructions, state);
5824
5825 ir_function_signature *signature = prototype->signature;
5826 if (signature == NULL)
5827 return NULL;
5828
5829 assert(state->current_function == NULL);
5830 state->current_function = signature;
5831 state->found_return = false;
5832
5833 /* Duplicate parameters declared in the prototype as concrete variables.
5834 * Add these to the symbol table.
5835 */
5836 state->symbols->push_scope();
5837 foreach_in_list(ir_variable, var, &signature->parameters) {
5838 assert(var->as_variable() != NULL);
5839
5840 /* The only way a parameter would "exist" is if two parameters have
5841 * the same name.
5842 */
5843 if (state->symbols->name_declared_this_scope(var->name)) {
5844 YYLTYPE loc = this->get_location();
5845
5846 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5847 } else {
5848 state->symbols->add_variable(var);
5849 }
5850 }
5851
5852 /* Convert the body of the function to HIR. */
5853 this->body->hir(&signature->body, state);
5854 signature->is_defined = true;
5855
5856 state->symbols->pop_scope();
5857
5858 assert(state->current_function == signature);
5859 state->current_function = NULL;
5860
5861 if (!signature->return_type->is_void() && !state->found_return) {
5862 YYLTYPE loc = this->get_location();
5863 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5864 "%s, but no return statement",
5865 signature->function_name(),
5866 signature->return_type->name);
5867 }
5868
5869 /* Function definitions do not have r-values.
5870 */
5871 return NULL;
5872 }
5873
5874
5875 ir_rvalue *
5876 ast_jump_statement::hir(exec_list *instructions,
5877 struct _mesa_glsl_parse_state *state)
5878 {
5879 void *ctx = state;
5880
5881 switch (mode) {
5882 case ast_return: {
5883 ir_return *inst;
5884 assert(state->current_function);
5885
5886 if (opt_return_value) {
5887 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5888
5889 /* The value of the return type can be NULL if the shader says
5890 * 'return foo();' and foo() is a function that returns void.
5891 *
5892 * NOTE: The GLSL spec doesn't say that this is an error. The type
5893 * of the return value is void. If the return type of the function is
5894 * also void, then this should compile without error. Seriously.
5895 */
5896 const glsl_type *const ret_type =
5897 (ret == NULL) ? glsl_type::void_type : ret->type;
5898
5899 /* Implicit conversions are not allowed for return values prior to
5900 * ARB_shading_language_420pack.
5901 */
5902 if (state->current_function->return_type != ret_type) {
5903 YYLTYPE loc = this->get_location();
5904
5905 if (state->has_420pack()) {
5906 if (!apply_implicit_conversion(state->current_function->return_type,
5907 ret, state)) {
5908 _mesa_glsl_error(& loc, state,
5909 "could not implicitly convert return value "
5910 "to %s, in function `%s'",
5911 state->current_function->return_type->name,
5912 state->current_function->function_name());
5913 }
5914 } else {
5915 _mesa_glsl_error(& loc, state,
5916 "`return' with wrong type %s, in function `%s' "
5917 "returning %s",
5918 ret_type->name,
5919 state->current_function->function_name(),
5920 state->current_function->return_type->name);
5921 }
5922 } else if (state->current_function->return_type->base_type ==
5923 GLSL_TYPE_VOID) {
5924 YYLTYPE loc = this->get_location();
5925
5926 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5927 * specs add a clarification:
5928 *
5929 * "A void function can only use return without a return argument, even if
5930 * the return argument has void type. Return statements only accept values:
5931 *
5932 * void func1() { }
5933 * void func2() { return func1(); } // illegal return statement"
5934 */
5935 _mesa_glsl_error(& loc, state,
5936 "void functions can only use `return' without a "
5937 "return argument");
5938 }
5939
5940 inst = new(ctx) ir_return(ret);
5941 } else {
5942 if (state->current_function->return_type->base_type !=
5943 GLSL_TYPE_VOID) {
5944 YYLTYPE loc = this->get_location();
5945
5946 _mesa_glsl_error(& loc, state,
5947 "`return' with no value, in function %s returning "
5948 "non-void",
5949 state->current_function->function_name());
5950 }
5951 inst = new(ctx) ir_return;
5952 }
5953
5954 state->found_return = true;
5955 instructions->push_tail(inst);
5956 break;
5957 }
5958
5959 case ast_discard:
5960 if (state->stage != MESA_SHADER_FRAGMENT) {
5961 YYLTYPE loc = this->get_location();
5962
5963 _mesa_glsl_error(& loc, state,
5964 "`discard' may only appear in a fragment shader");
5965 }
5966 instructions->push_tail(new(ctx) ir_discard);
5967 break;
5968
5969 case ast_break:
5970 case ast_continue:
5971 if (mode == ast_continue &&
5972 state->loop_nesting_ast == NULL) {
5973 YYLTYPE loc = this->get_location();
5974
5975 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5976 } else if (mode == ast_break &&
5977 state->loop_nesting_ast == NULL &&
5978 state->switch_state.switch_nesting_ast == NULL) {
5979 YYLTYPE loc = this->get_location();
5980
5981 _mesa_glsl_error(& loc, state,
5982 "break may only appear in a loop or a switch");
5983 } else {
5984 /* For a loop, inline the for loop expression again, since we don't
5985 * know where near the end of the loop body the normal copy of it is
5986 * going to be placed. Same goes for the condition for a do-while
5987 * loop.
5988 */
5989 if (state->loop_nesting_ast != NULL &&
5990 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5991 if (state->loop_nesting_ast->rest_expression) {
5992 state->loop_nesting_ast->rest_expression->hir(instructions,
5993 state);
5994 }
5995 if (state->loop_nesting_ast->mode ==
5996 ast_iteration_statement::ast_do_while) {
5997 state->loop_nesting_ast->condition_to_hir(instructions, state);
5998 }
5999 }
6000
6001 if (state->switch_state.is_switch_innermost &&
6002 mode == ast_continue) {
6003 /* Set 'continue_inside' to true. */
6004 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6005 ir_dereference_variable *deref_continue_inside_var =
6006 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6007 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6008 true_val));
6009
6010 /* Break out from the switch, continue for the loop will
6011 * be called right after switch. */
6012 ir_loop_jump *const jump =
6013 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6014 instructions->push_tail(jump);
6015
6016 } else if (state->switch_state.is_switch_innermost &&
6017 mode == ast_break) {
6018 /* Force break out of switch by inserting a break. */
6019 ir_loop_jump *const jump =
6020 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6021 instructions->push_tail(jump);
6022 } else {
6023 ir_loop_jump *const jump =
6024 new(ctx) ir_loop_jump((mode == ast_break)
6025 ? ir_loop_jump::jump_break
6026 : ir_loop_jump::jump_continue);
6027 instructions->push_tail(jump);
6028 }
6029 }
6030
6031 break;
6032 }
6033
6034 /* Jump instructions do not have r-values.
6035 */
6036 return NULL;
6037 }
6038
6039
6040 ir_rvalue *
6041 ast_selection_statement::hir(exec_list *instructions,
6042 struct _mesa_glsl_parse_state *state)
6043 {
6044 void *ctx = state;
6045
6046 ir_rvalue *const condition = this->condition->hir(instructions, state);
6047
6048 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6049 *
6050 * "Any expression whose type evaluates to a Boolean can be used as the
6051 * conditional expression bool-expression. Vector types are not accepted
6052 * as the expression to if."
6053 *
6054 * The checks are separated so that higher quality diagnostics can be
6055 * generated for cases where both rules are violated.
6056 */
6057 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6058 YYLTYPE loc = this->condition->get_location();
6059
6060 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6061 "boolean");
6062 }
6063
6064 ir_if *const stmt = new(ctx) ir_if(condition);
6065
6066 if (then_statement != NULL) {
6067 state->symbols->push_scope();
6068 then_statement->hir(& stmt->then_instructions, state);
6069 state->symbols->pop_scope();
6070 }
6071
6072 if (else_statement != NULL) {
6073 state->symbols->push_scope();
6074 else_statement->hir(& stmt->else_instructions, state);
6075 state->symbols->pop_scope();
6076 }
6077
6078 instructions->push_tail(stmt);
6079
6080 /* if-statements do not have r-values.
6081 */
6082 return NULL;
6083 }
6084
6085
6086 /* Used for detection of duplicate case values, compare
6087 * given contents directly.
6088 */
6089 static bool
6090 compare_case_value(const void *a, const void *b)
6091 {
6092 return *(unsigned *) a == *(unsigned *) b;
6093 }
6094
6095
6096 /* Used for detection of duplicate case values, just
6097 * returns key contents as is.
6098 */
6099 static unsigned
6100 key_contents(const void *key)
6101 {
6102 return *(unsigned *) key;
6103 }
6104
6105
6106 ir_rvalue *
6107 ast_switch_statement::hir(exec_list *instructions,
6108 struct _mesa_glsl_parse_state *state)
6109 {
6110 void *ctx = state;
6111
6112 ir_rvalue *const test_expression =
6113 this->test_expression->hir(instructions, state);
6114
6115 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6116 *
6117 * "The type of init-expression in a switch statement must be a
6118 * scalar integer."
6119 */
6120 if (!test_expression->type->is_scalar() ||
6121 !test_expression->type->is_integer()) {
6122 YYLTYPE loc = this->test_expression->get_location();
6123
6124 _mesa_glsl_error(& loc,
6125 state,
6126 "switch-statement expression must be scalar "
6127 "integer");
6128 }
6129
6130 /* Track the switch-statement nesting in a stack-like manner.
6131 */
6132 struct glsl_switch_state saved = state->switch_state;
6133
6134 state->switch_state.is_switch_innermost = true;
6135 state->switch_state.switch_nesting_ast = this;
6136 state->switch_state.labels_ht =
6137 _mesa_hash_table_create(NULL, key_contents,
6138 compare_case_value);
6139 state->switch_state.previous_default = NULL;
6140
6141 /* Initalize is_fallthru state to false.
6142 */
6143 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6144 state->switch_state.is_fallthru_var =
6145 new(ctx) ir_variable(glsl_type::bool_type,
6146 "switch_is_fallthru_tmp",
6147 ir_var_temporary);
6148 instructions->push_tail(state->switch_state.is_fallthru_var);
6149
6150 ir_dereference_variable *deref_is_fallthru_var =
6151 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6152 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6153 is_fallthru_val));
6154
6155 /* Initialize continue_inside state to false.
6156 */
6157 state->switch_state.continue_inside =
6158 new(ctx) ir_variable(glsl_type::bool_type,
6159 "continue_inside_tmp",
6160 ir_var_temporary);
6161 instructions->push_tail(state->switch_state.continue_inside);
6162
6163 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6164 ir_dereference_variable *deref_continue_inside_var =
6165 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6166 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6167 false_val));
6168
6169 state->switch_state.run_default =
6170 new(ctx) ir_variable(glsl_type::bool_type,
6171 "run_default_tmp",
6172 ir_var_temporary);
6173 instructions->push_tail(state->switch_state.run_default);
6174
6175 /* Loop around the switch is used for flow control. */
6176 ir_loop * loop = new(ctx) ir_loop();
6177 instructions->push_tail(loop);
6178
6179 /* Cache test expression.
6180 */
6181 test_to_hir(&loop->body_instructions, state);
6182
6183 /* Emit code for body of switch stmt.
6184 */
6185 body->hir(&loop->body_instructions, state);
6186
6187 /* Insert a break at the end to exit loop. */
6188 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6189 loop->body_instructions.push_tail(jump);
6190
6191 /* If we are inside loop, check if continue got called inside switch. */
6192 if (state->loop_nesting_ast != NULL) {
6193 ir_dereference_variable *deref_continue_inside =
6194 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6195 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6196 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6197
6198 if (state->loop_nesting_ast != NULL) {
6199 if (state->loop_nesting_ast->rest_expression) {
6200 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6201 state);
6202 }
6203 if (state->loop_nesting_ast->mode ==
6204 ast_iteration_statement::ast_do_while) {
6205 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6206 }
6207 }
6208 irif->then_instructions.push_tail(jump);
6209 instructions->push_tail(irif);
6210 }
6211
6212 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6213
6214 state->switch_state = saved;
6215
6216 /* Switch statements do not have r-values. */
6217 return NULL;
6218 }
6219
6220
6221 void
6222 ast_switch_statement::test_to_hir(exec_list *instructions,
6223 struct _mesa_glsl_parse_state *state)
6224 {
6225 void *ctx = state;
6226
6227 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6228 * on the switch test case. The first one would be already raised when
6229 * getting the test_expression at ast_switch_statement::hir
6230 */
6231 test_expression->set_is_lhs(true);
6232 /* Cache value of test expression. */
6233 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6234
6235 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6236 "switch_test_tmp",
6237 ir_var_temporary);
6238 ir_dereference_variable *deref_test_var =
6239 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6240
6241 instructions->push_tail(state->switch_state.test_var);
6242 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6243 }
6244
6245
6246 ir_rvalue *
6247 ast_switch_body::hir(exec_list *instructions,
6248 struct _mesa_glsl_parse_state *state)
6249 {
6250 if (stmts != NULL)
6251 stmts->hir(instructions, state);
6252
6253 /* Switch bodies do not have r-values. */
6254 return NULL;
6255 }
6256
6257 ir_rvalue *
6258 ast_case_statement_list::hir(exec_list *instructions,
6259 struct _mesa_glsl_parse_state *state)
6260 {
6261 exec_list default_case, after_default, tmp;
6262
6263 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6264 case_stmt->hir(&tmp, state);
6265
6266 /* Default case. */
6267 if (state->switch_state.previous_default && default_case.is_empty()) {
6268 default_case.append_list(&tmp);
6269 continue;
6270 }
6271
6272 /* If default case found, append 'after_default' list. */
6273 if (!default_case.is_empty())
6274 after_default.append_list(&tmp);
6275 else
6276 instructions->append_list(&tmp);
6277 }
6278
6279 /* Handle the default case. This is done here because default might not be
6280 * the last case. We need to add checks against following cases first to see
6281 * if default should be chosen or not.
6282 */
6283 if (!default_case.is_empty()) {
6284
6285 ir_rvalue *const true_val = new (state) ir_constant(true);
6286 ir_dereference_variable *deref_run_default_var =
6287 new(state) ir_dereference_variable(state->switch_state.run_default);
6288
6289 /* Choose to run default case initially, following conditional
6290 * assignments might change this.
6291 */
6292 ir_assignment *const init_var =
6293 new(state) ir_assignment(deref_run_default_var, true_val);
6294 instructions->push_tail(init_var);
6295
6296 /* Default case was the last one, no checks required. */
6297 if (after_default.is_empty()) {
6298 instructions->append_list(&default_case);
6299 return NULL;
6300 }
6301
6302 foreach_in_list(ir_instruction, ir, &after_default) {
6303 ir_assignment *assign = ir->as_assignment();
6304
6305 if (!assign)
6306 continue;
6307
6308 /* Clone the check between case label and init expression. */
6309 ir_expression *exp = (ir_expression*) assign->condition;
6310 ir_expression *clone = exp->clone(state, NULL);
6311
6312 ir_dereference_variable *deref_var =
6313 new(state) ir_dereference_variable(state->switch_state.run_default);
6314 ir_rvalue *const false_val = new (state) ir_constant(false);
6315
6316 ir_assignment *const set_false =
6317 new(state) ir_assignment(deref_var, false_val, clone);
6318
6319 instructions->push_tail(set_false);
6320 }
6321
6322 /* Append default case and all cases after it. */
6323 instructions->append_list(&default_case);
6324 instructions->append_list(&after_default);
6325 }
6326
6327 /* Case statements do not have r-values. */
6328 return NULL;
6329 }
6330
6331 ir_rvalue *
6332 ast_case_statement::hir(exec_list *instructions,
6333 struct _mesa_glsl_parse_state *state)
6334 {
6335 labels->hir(instructions, state);
6336
6337 /* Guard case statements depending on fallthru state. */
6338 ir_dereference_variable *const deref_fallthru_guard =
6339 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6340 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6341
6342 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6343 stmt->hir(& test_fallthru->then_instructions, state);
6344
6345 instructions->push_tail(test_fallthru);
6346
6347 /* Case statements do not have r-values. */
6348 return NULL;
6349 }
6350
6351
6352 ir_rvalue *
6353 ast_case_label_list::hir(exec_list *instructions,
6354 struct _mesa_glsl_parse_state *state)
6355 {
6356 foreach_list_typed (ast_case_label, label, link, & this->labels)
6357 label->hir(instructions, state);
6358
6359 /* Case labels do not have r-values. */
6360 return NULL;
6361 }
6362
6363 ir_rvalue *
6364 ast_case_label::hir(exec_list *instructions,
6365 struct _mesa_glsl_parse_state *state)
6366 {
6367 void *ctx = state;
6368
6369 ir_dereference_variable *deref_fallthru_var =
6370 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6371
6372 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6373
6374 /* If not default case, ... */
6375 if (this->test_value != NULL) {
6376 /* Conditionally set fallthru state based on
6377 * comparison of cached test expression value to case label.
6378 */
6379 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6380 ir_constant *label_const = label_rval->constant_expression_value();
6381
6382 if (!label_const) {
6383 YYLTYPE loc = this->test_value->get_location();
6384
6385 _mesa_glsl_error(& loc, state,
6386 "switch statement case label must be a "
6387 "constant expression");
6388
6389 /* Stuff a dummy value in to allow processing to continue. */
6390 label_const = new(ctx) ir_constant(0);
6391 } else {
6392 hash_entry *entry =
6393 _mesa_hash_table_search(state->switch_state.labels_ht,
6394 (void *)(uintptr_t)&label_const->value.u[0]);
6395
6396 if (entry) {
6397 ast_expression *previous_label = (ast_expression *) entry->data;
6398 YYLTYPE loc = this->test_value->get_location();
6399 _mesa_glsl_error(& loc, state, "duplicate case value");
6400
6401 loc = previous_label->get_location();
6402 _mesa_glsl_error(& loc, state, "this is the previous case label");
6403 } else {
6404 _mesa_hash_table_insert(state->switch_state.labels_ht,
6405 (void *)(uintptr_t)&label_const->value.u[0],
6406 this->test_value);
6407 }
6408 }
6409
6410 ir_dereference_variable *deref_test_var =
6411 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6412
6413 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6414 label_const,
6415 deref_test_var);
6416
6417 /*
6418 * From GLSL 4.40 specification section 6.2 ("Selection"):
6419 *
6420 * "The type of the init-expression value in a switch statement must
6421 * be a scalar int or uint. The type of the constant-expression value
6422 * in a case label also must be a scalar int or uint. When any pair
6423 * of these values is tested for "equal value" and the types do not
6424 * match, an implicit conversion will be done to convert the int to a
6425 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6426 * is done."
6427 */
6428 if (label_const->type != state->switch_state.test_var->type) {
6429 YYLTYPE loc = this->test_value->get_location();
6430
6431 const glsl_type *type_a = label_const->type;
6432 const glsl_type *type_b = state->switch_state.test_var->type;
6433
6434 /* Check if int->uint implicit conversion is supported. */
6435 bool integer_conversion_supported =
6436 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6437 state);
6438
6439 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6440 !integer_conversion_supported) {
6441 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6442 "init-expression and case label (%s != %s)",
6443 type_a->name, type_b->name);
6444 } else {
6445 /* Conversion of the case label. */
6446 if (type_a->base_type == GLSL_TYPE_INT) {
6447 if (!apply_implicit_conversion(glsl_type::uint_type,
6448 test_cond->operands[0], state))
6449 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6450 } else {
6451 /* Conversion of the init-expression value. */
6452 if (!apply_implicit_conversion(glsl_type::uint_type,
6453 test_cond->operands[1], state))
6454 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6455 }
6456 }
6457 }
6458
6459 ir_assignment *set_fallthru_on_test =
6460 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6461
6462 instructions->push_tail(set_fallthru_on_test);
6463 } else { /* default case */
6464 if (state->switch_state.previous_default) {
6465 YYLTYPE loc = this->get_location();
6466 _mesa_glsl_error(& loc, state,
6467 "multiple default labels in one switch");
6468
6469 loc = state->switch_state.previous_default->get_location();
6470 _mesa_glsl_error(& loc, state, "this is the first default label");
6471 }
6472 state->switch_state.previous_default = this;
6473
6474 /* Set fallthru condition on 'run_default' bool. */
6475 ir_dereference_variable *deref_run_default =
6476 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6477 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6478 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6479 cond_true,
6480 deref_run_default);
6481
6482 /* Set falltrhu state. */
6483 ir_assignment *set_fallthru =
6484 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6485
6486 instructions->push_tail(set_fallthru);
6487 }
6488
6489 /* Case statements do not have r-values. */
6490 return NULL;
6491 }
6492
6493 void
6494 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6495 struct _mesa_glsl_parse_state *state)
6496 {
6497 void *ctx = state;
6498
6499 if (condition != NULL) {
6500 ir_rvalue *const cond =
6501 condition->hir(instructions, state);
6502
6503 if ((cond == NULL)
6504 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6505 YYLTYPE loc = condition->get_location();
6506
6507 _mesa_glsl_error(& loc, state,
6508 "loop condition must be scalar boolean");
6509 } else {
6510 /* As the first code in the loop body, generate a block that looks
6511 * like 'if (!condition) break;' as the loop termination condition.
6512 */
6513 ir_rvalue *const not_cond =
6514 new(ctx) ir_expression(ir_unop_logic_not, cond);
6515
6516 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6517
6518 ir_jump *const break_stmt =
6519 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6520
6521 if_stmt->then_instructions.push_tail(break_stmt);
6522 instructions->push_tail(if_stmt);
6523 }
6524 }
6525 }
6526
6527
6528 ir_rvalue *
6529 ast_iteration_statement::hir(exec_list *instructions,
6530 struct _mesa_glsl_parse_state *state)
6531 {
6532 void *ctx = state;
6533
6534 /* For-loops and while-loops start a new scope, but do-while loops do not.
6535 */
6536 if (mode != ast_do_while)
6537 state->symbols->push_scope();
6538
6539 if (init_statement != NULL)
6540 init_statement->hir(instructions, state);
6541
6542 ir_loop *const stmt = new(ctx) ir_loop();
6543 instructions->push_tail(stmt);
6544
6545 /* Track the current loop nesting. */
6546 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6547
6548 state->loop_nesting_ast = this;
6549
6550 /* Likewise, indicate that following code is closest to a loop,
6551 * NOT closest to a switch.
6552 */
6553 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6554 state->switch_state.is_switch_innermost = false;
6555
6556 if (mode != ast_do_while)
6557 condition_to_hir(&stmt->body_instructions, state);
6558
6559 if (body != NULL)
6560 body->hir(& stmt->body_instructions, state);
6561
6562 if (rest_expression != NULL)
6563 rest_expression->hir(& stmt->body_instructions, state);
6564
6565 if (mode == ast_do_while)
6566 condition_to_hir(&stmt->body_instructions, state);
6567
6568 if (mode != ast_do_while)
6569 state->symbols->pop_scope();
6570
6571 /* Restore previous nesting before returning. */
6572 state->loop_nesting_ast = nesting_ast;
6573 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6574
6575 /* Loops do not have r-values.
6576 */
6577 return NULL;
6578 }
6579
6580
6581 /**
6582 * Determine if the given type is valid for establishing a default precision
6583 * qualifier.
6584 *
6585 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6586 *
6587 * "The precision statement
6588 *
6589 * precision precision-qualifier type;
6590 *
6591 * can be used to establish a default precision qualifier. The type field
6592 * can be either int or float or any of the sampler types, and the
6593 * precision-qualifier can be lowp, mediump, or highp."
6594 *
6595 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6596 * qualifiers on sampler types, but this seems like an oversight (since the
6597 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6598 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6599 * version.
6600 */
6601 static bool
6602 is_valid_default_precision_type(const struct glsl_type *const type)
6603 {
6604 if (type == NULL)
6605 return false;
6606
6607 switch (type->base_type) {
6608 case GLSL_TYPE_INT:
6609 case GLSL_TYPE_FLOAT:
6610 /* "int" and "float" are valid, but vectors and matrices are not. */
6611 return type->vector_elements == 1 && type->matrix_columns == 1;
6612 case GLSL_TYPE_SAMPLER:
6613 case GLSL_TYPE_IMAGE:
6614 case GLSL_TYPE_ATOMIC_UINT:
6615 return true;
6616 default:
6617 return false;
6618 }
6619 }
6620
6621
6622 ir_rvalue *
6623 ast_type_specifier::hir(exec_list *instructions,
6624 struct _mesa_glsl_parse_state *state)
6625 {
6626 if (this->default_precision == ast_precision_none && this->structure == NULL)
6627 return NULL;
6628
6629 YYLTYPE loc = this->get_location();
6630
6631 /* If this is a precision statement, check that the type to which it is
6632 * applied is either float or int.
6633 *
6634 * From section 4.5.3 of the GLSL 1.30 spec:
6635 * "The precision statement
6636 * precision precision-qualifier type;
6637 * can be used to establish a default precision qualifier. The type
6638 * field can be either int or float [...]. Any other types or
6639 * qualifiers will result in an error.
6640 */
6641 if (this->default_precision != ast_precision_none) {
6642 if (!state->check_precision_qualifiers_allowed(&loc))
6643 return NULL;
6644
6645 if (this->structure != NULL) {
6646 _mesa_glsl_error(&loc, state,
6647 "precision qualifiers do not apply to structures");
6648 return NULL;
6649 }
6650
6651 if (this->array_specifier != NULL) {
6652 _mesa_glsl_error(&loc, state,
6653 "default precision statements do not apply to "
6654 "arrays");
6655 return NULL;
6656 }
6657
6658 const struct glsl_type *const type =
6659 state->symbols->get_type(this->type_name);
6660 if (!is_valid_default_precision_type(type)) {
6661 _mesa_glsl_error(&loc, state,
6662 "default precision statements apply only to "
6663 "float, int, and opaque types");
6664 return NULL;
6665 }
6666
6667 if (state->es_shader) {
6668 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6669 * spec says:
6670 *
6671 * "Non-precision qualified declarations will use the precision
6672 * qualifier specified in the most recent precision statement
6673 * that is still in scope. The precision statement has the same
6674 * scoping rules as variable declarations. If it is declared
6675 * inside a compound statement, its effect stops at the end of
6676 * the innermost statement it was declared in. Precision
6677 * statements in nested scopes override precision statements in
6678 * outer scopes. Multiple precision statements for the same basic
6679 * type can appear inside the same scope, with later statements
6680 * overriding earlier statements within that scope."
6681 *
6682 * Default precision specifications follow the same scope rules as
6683 * variables. So, we can track the state of the default precision
6684 * qualifiers in the symbol table, and the rules will just work. This
6685 * is a slight abuse of the symbol table, but it has the semantics
6686 * that we want.
6687 */
6688 state->symbols->add_default_precision_qualifier(this->type_name,
6689 this->default_precision);
6690 }
6691
6692 /* FINISHME: Translate precision statements into IR. */
6693 return NULL;
6694 }
6695
6696 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6697 * process_record_constructor() can do type-checking on C-style initializer
6698 * expressions of structs, but ast_struct_specifier should only be translated
6699 * to HIR if it is declaring the type of a structure.
6700 *
6701 * The ->is_declaration field is false for initializers of variables
6702 * declared separately from the struct's type definition.
6703 *
6704 * struct S { ... }; (is_declaration = true)
6705 * struct T { ... } t = { ... }; (is_declaration = true)
6706 * S s = { ... }; (is_declaration = false)
6707 */
6708 if (this->structure != NULL && this->structure->is_declaration)
6709 return this->structure->hir(instructions, state);
6710
6711 return NULL;
6712 }
6713
6714
6715 /**
6716 * Process a structure or interface block tree into an array of structure fields
6717 *
6718 * After parsing, where there are some syntax differnces, structures and
6719 * interface blocks are almost identical. They are similar enough that the
6720 * AST for each can be processed the same way into a set of
6721 * \c glsl_struct_field to describe the members.
6722 *
6723 * If we're processing an interface block, var_mode should be the type of the
6724 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6725 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6726 * ir_var_auto.
6727 *
6728 * \return
6729 * The number of fields processed. A pointer to the array structure fields is
6730 * stored in \c *fields_ret.
6731 */
6732 static unsigned
6733 ast_process_struct_or_iface_block_members(exec_list *instructions,
6734 struct _mesa_glsl_parse_state *state,
6735 exec_list *declarations,
6736 glsl_struct_field **fields_ret,
6737 bool is_interface,
6738 enum glsl_matrix_layout matrix_layout,
6739 bool allow_reserved_names,
6740 ir_variable_mode var_mode,
6741 ast_type_qualifier *layout,
6742 unsigned block_stream,
6743 unsigned block_xfb_buffer,
6744 unsigned block_xfb_offset,
6745 unsigned expl_location,
6746 unsigned expl_align)
6747 {
6748 unsigned decl_count = 0;
6749 unsigned next_offset = 0;
6750
6751 /* Make an initial pass over the list of fields to determine how
6752 * many there are. Each element in this list is an ast_declarator_list.
6753 * This means that we actually need to count the number of elements in the
6754 * 'declarations' list in each of the elements.
6755 */
6756 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6757 decl_count += decl_list->declarations.length();
6758 }
6759
6760 /* Allocate storage for the fields and process the field
6761 * declarations. As the declarations are processed, try to also convert
6762 * the types to HIR. This ensures that structure definitions embedded in
6763 * other structure definitions or in interface blocks are processed.
6764 */
6765 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6766 decl_count);
6767
6768 bool first_member = true;
6769 bool first_member_has_explicit_location = false;
6770
6771 unsigned i = 0;
6772 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6773 const char *type_name;
6774 YYLTYPE loc = decl_list->get_location();
6775
6776 decl_list->type->specifier->hir(instructions, state);
6777
6778 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6779 *
6780 * "Anonymous structures are not supported; so embedded structures
6781 * must have a declarator. A name given to an embedded struct is
6782 * scoped at the same level as the struct it is embedded in."
6783 *
6784 * The same section of the GLSL 1.20 spec says:
6785 *
6786 * "Anonymous structures are not supported. Embedded structures are
6787 * not supported."
6788 *
6789 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6790 * embedded structures in 1.10 only.
6791 */
6792 if (state->language_version != 110 &&
6793 decl_list->type->specifier->structure != NULL)
6794 _mesa_glsl_error(&loc, state,
6795 "embedded structure declarations are not allowed");
6796
6797 const glsl_type *decl_type =
6798 decl_list->type->glsl_type(& type_name, state);
6799
6800 const struct ast_type_qualifier *const qual =
6801 &decl_list->type->qualifier;
6802
6803 /* From section 4.3.9 of the GLSL 4.40 spec:
6804 *
6805 * "[In interface blocks] opaque types are not allowed."
6806 *
6807 * It should be impossible for decl_type to be NULL here. Cases that
6808 * might naturally lead to decl_type being NULL, especially for the
6809 * is_interface case, will have resulted in compilation having
6810 * already halted due to a syntax error.
6811 */
6812 assert(decl_type);
6813
6814 if (is_interface) {
6815 if (decl_type->contains_opaque()) {
6816 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6817 "interface block contains opaque variable");
6818 }
6819 } else {
6820 if (decl_type->contains_atomic()) {
6821 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6822 *
6823 * "Members of structures cannot be declared as atomic counter
6824 * types."
6825 */
6826 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6827 }
6828
6829 if (decl_type->contains_image()) {
6830 /* FINISHME: Same problem as with atomic counters.
6831 * FINISHME: Request clarification from Khronos and add
6832 * FINISHME: spec quotation here.
6833 */
6834 _mesa_glsl_error(&loc, state, "image in structure");
6835 }
6836 }
6837
6838 if (qual->flags.q.explicit_binding) {
6839 _mesa_glsl_error(&loc, state,
6840 "binding layout qualifier cannot be applied "
6841 "to struct or interface block members");
6842 }
6843
6844 if (is_interface) {
6845 if (!first_member) {
6846 if (!layout->flags.q.explicit_location &&
6847 ((first_member_has_explicit_location &&
6848 !qual->flags.q.explicit_location) ||
6849 (!first_member_has_explicit_location &&
6850 qual->flags.q.explicit_location))) {
6851 _mesa_glsl_error(&loc, state,
6852 "when block-level location layout qualifier "
6853 "is not supplied either all members must "
6854 "have a location layout qualifier or all "
6855 "members must not have a location layout "
6856 "qualifier");
6857 }
6858 } else {
6859 first_member = false;
6860 first_member_has_explicit_location =
6861 qual->flags.q.explicit_location;
6862 }
6863 }
6864
6865 if (qual->flags.q.std140 ||
6866 qual->flags.q.std430 ||
6867 qual->flags.q.packed ||
6868 qual->flags.q.shared) {
6869 _mesa_glsl_error(&loc, state,
6870 "uniform/shader storage block layout qualifiers "
6871 "std140, std430, packed, and shared can only be "
6872 "applied to uniform/shader storage blocks, not "
6873 "members");
6874 }
6875
6876 if (qual->flags.q.constant) {
6877 _mesa_glsl_error(&loc, state,
6878 "const storage qualifier cannot be applied "
6879 "to struct or interface block members");
6880 }
6881
6882 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6883 *
6884 * "A block member may be declared with a stream identifier, but
6885 * the specified stream must match the stream associated with the
6886 * containing block."
6887 */
6888 if (qual->flags.q.explicit_stream) {
6889 unsigned qual_stream;
6890 if (process_qualifier_constant(state, &loc, "stream",
6891 qual->stream, &qual_stream) &&
6892 qual_stream != block_stream) {
6893 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6894 "interface block member does not match "
6895 "the interface block (%u vs %u)", qual_stream,
6896 block_stream);
6897 }
6898 }
6899
6900 int xfb_buffer;
6901 unsigned explicit_xfb_buffer = 0;
6902 if (qual->flags.q.explicit_xfb_buffer) {
6903 unsigned qual_xfb_buffer;
6904 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6905 qual->xfb_buffer, &qual_xfb_buffer)) {
6906 explicit_xfb_buffer = 1;
6907 if (qual_xfb_buffer != block_xfb_buffer)
6908 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6909 "interface block member does not match "
6910 "the interface block (%u vs %u)",
6911 qual_xfb_buffer, block_xfb_buffer);
6912 }
6913 xfb_buffer = (int) qual_xfb_buffer;
6914 } else {
6915 if (layout)
6916 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6917 xfb_buffer = (int) block_xfb_buffer;
6918 }
6919
6920 int xfb_stride = -1;
6921 if (qual->flags.q.explicit_xfb_stride) {
6922 unsigned qual_xfb_stride;
6923 if (process_qualifier_constant(state, &loc, "xfb_stride",
6924 qual->xfb_stride, &qual_xfb_stride)) {
6925 xfb_stride = (int) qual_xfb_stride;
6926 }
6927 }
6928
6929 if (qual->flags.q.uniform && qual->has_interpolation()) {
6930 _mesa_glsl_error(&loc, state,
6931 "interpolation qualifiers cannot be used "
6932 "with uniform interface blocks");
6933 }
6934
6935 if ((qual->flags.q.uniform || !is_interface) &&
6936 qual->has_auxiliary_storage()) {
6937 _mesa_glsl_error(&loc, state,
6938 "auxiliary storage qualifiers cannot be used "
6939 "in uniform blocks or structures.");
6940 }
6941
6942 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6943 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6944 _mesa_glsl_error(&loc, state,
6945 "row_major and column_major can only be "
6946 "applied to interface blocks");
6947 } else
6948 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6949 }
6950
6951 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6952 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6953 "readonly and writeonly.");
6954 }
6955
6956 foreach_list_typed (ast_declaration, decl, link,
6957 &decl_list->declarations) {
6958 YYLTYPE loc = decl->get_location();
6959
6960 if (!allow_reserved_names)
6961 validate_identifier(decl->identifier, loc, state);
6962
6963 const struct glsl_type *field_type =
6964 process_array_type(&loc, decl_type, decl->array_specifier, state);
6965 validate_array_dimensions(field_type, state, &loc);
6966 fields[i].type = field_type;
6967 fields[i].name = decl->identifier;
6968 fields[i].interpolation =
6969 interpret_interpolation_qualifier(qual, field_type,
6970 var_mode, state, &loc);
6971 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6972 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6973 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6974 fields[i].precision = qual->precision;
6975 fields[i].offset = -1;
6976 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6977 fields[i].xfb_buffer = xfb_buffer;
6978 fields[i].xfb_stride = xfb_stride;
6979
6980 if (qual->flags.q.explicit_location) {
6981 unsigned qual_location;
6982 if (process_qualifier_constant(state, &loc, "location",
6983 qual->location, &qual_location)) {
6984 fields[i].location = qual_location +
6985 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6986 expl_location = fields[i].location +
6987 fields[i].type->count_attribute_slots(false);
6988 }
6989 } else {
6990 if (layout && layout->flags.q.explicit_location) {
6991 fields[i].location = expl_location;
6992 expl_location += fields[i].type->count_attribute_slots(false);
6993 } else {
6994 fields[i].location = -1;
6995 }
6996 }
6997
6998 /* Offset can only be used with std430 and std140 layouts an initial
6999 * value of 0 is used for error detection.
7000 */
7001 unsigned align = 0;
7002 unsigned size = 0;
7003 if (layout) {
7004 bool row_major;
7005 if (qual->flags.q.row_major ||
7006 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7007 row_major = true;
7008 } else {
7009 row_major = false;
7010 }
7011
7012 if(layout->flags.q.std140) {
7013 align = field_type->std140_base_alignment(row_major);
7014 size = field_type->std140_size(row_major);
7015 } else if (layout->flags.q.std430) {
7016 align = field_type->std430_base_alignment(row_major);
7017 size = field_type->std430_size(row_major);
7018 }
7019 }
7020
7021 if (qual->flags.q.explicit_offset) {
7022 unsigned qual_offset;
7023 if (process_qualifier_constant(state, &loc, "offset",
7024 qual->offset, &qual_offset)) {
7025 if (align != 0 && size != 0) {
7026 if (next_offset > qual_offset)
7027 _mesa_glsl_error(&loc, state, "layout qualifier "
7028 "offset overlaps previous member");
7029
7030 if (qual_offset % align) {
7031 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7032 "must be a multiple of the base "
7033 "alignment of %s", field_type->name);
7034 }
7035 fields[i].offset = qual_offset;
7036 next_offset = glsl_align(qual_offset + size, align);
7037 } else {
7038 _mesa_glsl_error(&loc, state, "offset can only be used "
7039 "with std430 and std140 layouts");
7040 }
7041 }
7042 }
7043
7044 if (qual->flags.q.explicit_align || expl_align != 0) {
7045 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7046 next_offset;
7047 if (align == 0 || size == 0) {
7048 _mesa_glsl_error(&loc, state, "align can only be used with "
7049 "std430 and std140 layouts");
7050 } else if (qual->flags.q.explicit_align) {
7051 unsigned member_align;
7052 if (process_qualifier_constant(state, &loc, "align",
7053 qual->align, &member_align)) {
7054 if (member_align == 0 ||
7055 member_align & (member_align - 1)) {
7056 _mesa_glsl_error(&loc, state, "align layout qualifier "
7057 "in not a power of 2");
7058 } else {
7059 fields[i].offset = glsl_align(offset, member_align);
7060 next_offset = glsl_align(fields[i].offset + size, align);
7061 }
7062 }
7063 } else {
7064 fields[i].offset = glsl_align(offset, expl_align);
7065 next_offset = glsl_align(fields[i].offset + size, align);
7066 }
7067 } else if (!qual->flags.q.explicit_offset) {
7068 if (align != 0 && size != 0)
7069 next_offset = glsl_align(next_offset + size, align);
7070 }
7071
7072 /* From the ARB_enhanced_layouts spec:
7073 *
7074 * "The given offset applies to the first component of the first
7075 * member of the qualified entity. Then, within the qualified
7076 * entity, subsequent components are each assigned, in order, to
7077 * the next available offset aligned to a multiple of that
7078 * component's size. Aggregate types are flattened down to the
7079 * component level to get this sequence of components."
7080 */
7081 if (qual->flags.q.explicit_xfb_offset) {
7082 unsigned xfb_offset;
7083 if (process_qualifier_constant(state, &loc, "xfb_offset",
7084 qual->offset, &xfb_offset)) {
7085 fields[i].offset = xfb_offset;
7086 block_xfb_offset = fields[i].offset +
7087 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7088 }
7089 } else {
7090 if (layout && layout->flags.q.explicit_xfb_offset) {
7091 unsigned align = field_type->is_64bit() ? 8 : 4;
7092 fields[i].offset = glsl_align(block_xfb_offset, align);
7093 block_xfb_offset +=
7094 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7095 }
7096 }
7097
7098 /* Propogate row- / column-major information down the fields of the
7099 * structure or interface block. Structures need this data because
7100 * the structure may contain a structure that contains ... a matrix
7101 * that need the proper layout.
7102 */
7103 if (is_interface && layout &&
7104 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7105 (field_type->without_array()->is_matrix()
7106 || field_type->without_array()->is_record())) {
7107 /* If no layout is specified for the field, inherit the layout
7108 * from the block.
7109 */
7110 fields[i].matrix_layout = matrix_layout;
7111
7112 if (qual->flags.q.row_major)
7113 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7114 else if (qual->flags.q.column_major)
7115 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7116
7117 /* If we're processing an uniform or buffer block, the matrix
7118 * layout must be decided by this point.
7119 */
7120 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7121 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7122 }
7123
7124 /* Image qualifiers are allowed on buffer variables, which can only
7125 * be defined inside shader storage buffer objects
7126 */
7127 if (layout && var_mode == ir_var_shader_storage) {
7128 /* For readonly and writeonly qualifiers the field definition,
7129 * if set, overwrites the layout qualifier.
7130 */
7131 if (qual->flags.q.read_only) {
7132 fields[i].image_read_only = true;
7133 fields[i].image_write_only = false;
7134 } else if (qual->flags.q.write_only) {
7135 fields[i].image_read_only = false;
7136 fields[i].image_write_only = true;
7137 } else {
7138 fields[i].image_read_only = layout->flags.q.read_only;
7139 fields[i].image_write_only = layout->flags.q.write_only;
7140 }
7141
7142 /* For other qualifiers, we set the flag if either the layout
7143 * qualifier or the field qualifier are set
7144 */
7145 fields[i].image_coherent = qual->flags.q.coherent ||
7146 layout->flags.q.coherent;
7147 fields[i].image_volatile = qual->flags.q._volatile ||
7148 layout->flags.q._volatile;
7149 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7150 layout->flags.q.restrict_flag;
7151 }
7152
7153 i++;
7154 }
7155 }
7156
7157 assert(i == decl_count);
7158
7159 *fields_ret = fields;
7160 return decl_count;
7161 }
7162
7163
7164 ir_rvalue *
7165 ast_struct_specifier::hir(exec_list *instructions,
7166 struct _mesa_glsl_parse_state *state)
7167 {
7168 YYLTYPE loc = this->get_location();
7169
7170 unsigned expl_location = 0;
7171 if (layout && layout->flags.q.explicit_location) {
7172 if (!process_qualifier_constant(state, &loc, "location",
7173 layout->location, &expl_location)) {
7174 return NULL;
7175 } else {
7176 expl_location = VARYING_SLOT_VAR0 + expl_location;
7177 }
7178 }
7179
7180 glsl_struct_field *fields;
7181 unsigned decl_count =
7182 ast_process_struct_or_iface_block_members(instructions,
7183 state,
7184 &this->declarations,
7185 &fields,
7186 false,
7187 GLSL_MATRIX_LAYOUT_INHERITED,
7188 false /* allow_reserved_names */,
7189 ir_var_auto,
7190 layout,
7191 0, /* for interface only */
7192 0, /* for interface only */
7193 0, /* for interface only */
7194 expl_location,
7195 0 /* for interface only */);
7196
7197 validate_identifier(this->name, loc, state);
7198
7199 const glsl_type *t =
7200 glsl_type::get_record_instance(fields, decl_count, this->name);
7201
7202 if (!state->symbols->add_type(name, t)) {
7203 const glsl_type *match = state->symbols->get_type(name);
7204 /* allow struct matching for desktop GL - older UE4 does this */
7205 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7206 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7207 else
7208 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7209 } else {
7210 const glsl_type **s = reralloc(state, state->user_structures,
7211 const glsl_type *,
7212 state->num_user_structures + 1);
7213 if (s != NULL) {
7214 s[state->num_user_structures] = t;
7215 state->user_structures = s;
7216 state->num_user_structures++;
7217 }
7218 }
7219
7220 /* Structure type definitions do not have r-values.
7221 */
7222 return NULL;
7223 }
7224
7225
7226 /**
7227 * Visitor class which detects whether a given interface block has been used.
7228 */
7229 class interface_block_usage_visitor : public ir_hierarchical_visitor
7230 {
7231 public:
7232 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7233 : mode(mode), block(block), found(false)
7234 {
7235 }
7236
7237 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7238 {
7239 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7240 found = true;
7241 return visit_stop;
7242 }
7243 return visit_continue;
7244 }
7245
7246 bool usage_found() const
7247 {
7248 return this->found;
7249 }
7250
7251 private:
7252 ir_variable_mode mode;
7253 const glsl_type *block;
7254 bool found;
7255 };
7256
7257 static bool
7258 is_unsized_array_last_element(ir_variable *v)
7259 {
7260 const glsl_type *interface_type = v->get_interface_type();
7261 int length = interface_type->length;
7262
7263 assert(v->type->is_unsized_array());
7264
7265 /* Check if it is the last element of the interface */
7266 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7267 return true;
7268 return false;
7269 }
7270
7271 static void
7272 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7273 {
7274 var->data.image_read_only = field.image_read_only;
7275 var->data.image_write_only = field.image_write_only;
7276 var->data.image_coherent = field.image_coherent;
7277 var->data.image_volatile = field.image_volatile;
7278 var->data.image_restrict = field.image_restrict;
7279 }
7280
7281 ir_rvalue *
7282 ast_interface_block::hir(exec_list *instructions,
7283 struct _mesa_glsl_parse_state *state)
7284 {
7285 YYLTYPE loc = this->get_location();
7286
7287 /* Interface blocks must be declared at global scope */
7288 if (state->current_function != NULL) {
7289 _mesa_glsl_error(&loc, state,
7290 "Interface block `%s' must be declared "
7291 "at global scope",
7292 this->block_name);
7293 }
7294
7295 /* Validate qualifiers:
7296 *
7297 * - Layout Qualifiers as per the table in Section 4.4
7298 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7299 *
7300 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7301 * GLSL 4.50 spec:
7302 *
7303 * "Additionally, memory qualifiers may also be used in the declaration
7304 * of shader storage blocks"
7305 *
7306 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7307 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7308 * Layout Qualifiers) of the GLSL 4.50 spec says:
7309 *
7310 * "The std430 qualifier is supported only for shader storage blocks;
7311 * using std430 on a uniform block will result in a compile-time error."
7312 */
7313 ast_type_qualifier allowed_blk_qualifiers;
7314 allowed_blk_qualifiers.flags.i = 0;
7315 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7316 allowed_blk_qualifiers.flags.q.shared = 1;
7317 allowed_blk_qualifiers.flags.q.packed = 1;
7318 allowed_blk_qualifiers.flags.q.std140 = 1;
7319 allowed_blk_qualifiers.flags.q.row_major = 1;
7320 allowed_blk_qualifiers.flags.q.column_major = 1;
7321 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7322 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7323 if (this->layout.flags.q.buffer) {
7324 allowed_blk_qualifiers.flags.q.buffer = 1;
7325 allowed_blk_qualifiers.flags.q.std430 = 1;
7326 allowed_blk_qualifiers.flags.q.coherent = 1;
7327 allowed_blk_qualifiers.flags.q._volatile = 1;
7328 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7329 allowed_blk_qualifiers.flags.q.read_only = 1;
7330 allowed_blk_qualifiers.flags.q.write_only = 1;
7331 } else {
7332 allowed_blk_qualifiers.flags.q.uniform = 1;
7333 }
7334 } else {
7335 /* Interface block */
7336 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7337
7338 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7339 if (this->layout.flags.q.out) {
7340 allowed_blk_qualifiers.flags.q.out = 1;
7341 if (state->stage == MESA_SHADER_GEOMETRY ||
7342 state->stage == MESA_SHADER_TESS_CTRL ||
7343 state->stage == MESA_SHADER_TESS_EVAL ||
7344 state->stage == MESA_SHADER_VERTEX ) {
7345 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7346 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7347 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7348 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7349 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7350 if (state->stage == MESA_SHADER_GEOMETRY) {
7351 allowed_blk_qualifiers.flags.q.stream = 1;
7352 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7353 }
7354 if (state->stage == MESA_SHADER_TESS_CTRL) {
7355 allowed_blk_qualifiers.flags.q.patch = 1;
7356 }
7357 }
7358 } else {
7359 allowed_blk_qualifiers.flags.q.in = 1;
7360 if (state->stage == MESA_SHADER_TESS_EVAL) {
7361 allowed_blk_qualifiers.flags.q.patch = 1;
7362 }
7363 }
7364 }
7365
7366 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7367 "invalid qualifier for block",
7368 this->block_name);
7369
7370 /* The ast_interface_block has a list of ast_declarator_lists. We
7371 * need to turn those into ir_variables with an association
7372 * with this uniform block.
7373 */
7374 enum glsl_interface_packing packing;
7375 if (this->layout.flags.q.shared) {
7376 packing = GLSL_INTERFACE_PACKING_SHARED;
7377 } else if (this->layout.flags.q.packed) {
7378 packing = GLSL_INTERFACE_PACKING_PACKED;
7379 } else if (this->layout.flags.q.std430) {
7380 packing = GLSL_INTERFACE_PACKING_STD430;
7381 } else {
7382 /* The default layout is std140.
7383 */
7384 packing = GLSL_INTERFACE_PACKING_STD140;
7385 }
7386
7387 ir_variable_mode var_mode;
7388 const char *iface_type_name;
7389 if (this->layout.flags.q.in) {
7390 var_mode = ir_var_shader_in;
7391 iface_type_name = "in";
7392 } else if (this->layout.flags.q.out) {
7393 var_mode = ir_var_shader_out;
7394 iface_type_name = "out";
7395 } else if (this->layout.flags.q.uniform) {
7396 var_mode = ir_var_uniform;
7397 iface_type_name = "uniform";
7398 } else if (this->layout.flags.q.buffer) {
7399 var_mode = ir_var_shader_storage;
7400 iface_type_name = "buffer";
7401 } else {
7402 var_mode = ir_var_auto;
7403 iface_type_name = "UNKNOWN";
7404 assert(!"interface block layout qualifier not found!");
7405 }
7406
7407 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7408 if (this->layout.flags.q.row_major)
7409 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7410 else if (this->layout.flags.q.column_major)
7411 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7412
7413 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7414 exec_list declared_variables;
7415 glsl_struct_field *fields;
7416
7417 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7418 * that we don't have incompatible qualifiers
7419 */
7420 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7421 _mesa_glsl_error(&loc, state,
7422 "Interface block sets both readonly and writeonly");
7423 }
7424
7425 unsigned qual_stream;
7426 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7427 &qual_stream) ||
7428 !validate_stream_qualifier(&loc, state, qual_stream)) {
7429 /* If the stream qualifier is invalid it doesn't make sense to continue
7430 * on and try to compare stream layouts on member variables against it
7431 * so just return early.
7432 */
7433 return NULL;
7434 }
7435
7436 unsigned qual_xfb_buffer;
7437 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7438 layout.xfb_buffer, &qual_xfb_buffer) ||
7439 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7440 return NULL;
7441 }
7442
7443 unsigned qual_xfb_offset;
7444 if (layout.flags.q.explicit_xfb_offset) {
7445 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7446 layout.offset, &qual_xfb_offset)) {
7447 return NULL;
7448 }
7449 }
7450
7451 unsigned qual_xfb_stride;
7452 if (layout.flags.q.explicit_xfb_stride) {
7453 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7454 layout.xfb_stride, &qual_xfb_stride)) {
7455 return NULL;
7456 }
7457 }
7458
7459 unsigned expl_location = 0;
7460 if (layout.flags.q.explicit_location) {
7461 if (!process_qualifier_constant(state, &loc, "location",
7462 layout.location, &expl_location)) {
7463 return NULL;
7464 } else {
7465 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7466 : VARYING_SLOT_VAR0;
7467 }
7468 }
7469
7470 unsigned expl_align = 0;
7471 if (layout.flags.q.explicit_align) {
7472 if (!process_qualifier_constant(state, &loc, "align",
7473 layout.align, &expl_align)) {
7474 return NULL;
7475 } else {
7476 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7477 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7478 "power of 2.");
7479 return NULL;
7480 }
7481 }
7482 }
7483
7484 unsigned int num_variables =
7485 ast_process_struct_or_iface_block_members(&declared_variables,
7486 state,
7487 &this->declarations,
7488 &fields,
7489 true,
7490 matrix_layout,
7491 redeclaring_per_vertex,
7492 var_mode,
7493 &this->layout,
7494 qual_stream,
7495 qual_xfb_buffer,
7496 qual_xfb_offset,
7497 expl_location,
7498 expl_align);
7499
7500 if (!redeclaring_per_vertex) {
7501 validate_identifier(this->block_name, loc, state);
7502
7503 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7504 *
7505 * "Block names have no other use within a shader beyond interface
7506 * matching; it is a compile-time error to use a block name at global
7507 * scope for anything other than as a block name."
7508 */
7509 ir_variable *var = state->symbols->get_variable(this->block_name);
7510 if (var && !var->type->is_interface()) {
7511 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7512 "already used in the scope.",
7513 this->block_name);
7514 }
7515 }
7516
7517 const glsl_type *earlier_per_vertex = NULL;
7518 if (redeclaring_per_vertex) {
7519 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7520 * the named interface block gl_in, we can find it by looking at the
7521 * previous declaration of gl_in. Otherwise we can find it by looking
7522 * at the previous decalartion of any of the built-in outputs,
7523 * e.g. gl_Position.
7524 *
7525 * Also check that the instance name and array-ness of the redeclaration
7526 * are correct.
7527 */
7528 switch (var_mode) {
7529 case ir_var_shader_in:
7530 if (ir_variable *earlier_gl_in =
7531 state->symbols->get_variable("gl_in")) {
7532 earlier_per_vertex = earlier_gl_in->get_interface_type();
7533 } else {
7534 _mesa_glsl_error(&loc, state,
7535 "redeclaration of gl_PerVertex input not allowed "
7536 "in the %s shader",
7537 _mesa_shader_stage_to_string(state->stage));
7538 }
7539 if (this->instance_name == NULL ||
7540 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7541 !this->array_specifier->is_single_dimension()) {
7542 _mesa_glsl_error(&loc, state,
7543 "gl_PerVertex input must be redeclared as "
7544 "gl_in[]");
7545 }
7546 break;
7547 case ir_var_shader_out:
7548 if (ir_variable *earlier_gl_Position =
7549 state->symbols->get_variable("gl_Position")) {
7550 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7551 } else if (ir_variable *earlier_gl_out =
7552 state->symbols->get_variable("gl_out")) {
7553 earlier_per_vertex = earlier_gl_out->get_interface_type();
7554 } else {
7555 _mesa_glsl_error(&loc, state,
7556 "redeclaration of gl_PerVertex output not "
7557 "allowed in the %s shader",
7558 _mesa_shader_stage_to_string(state->stage));
7559 }
7560 if (state->stage == MESA_SHADER_TESS_CTRL) {
7561 if (this->instance_name == NULL ||
7562 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7563 _mesa_glsl_error(&loc, state,
7564 "gl_PerVertex output must be redeclared as "
7565 "gl_out[]");
7566 }
7567 } else {
7568 if (this->instance_name != NULL) {
7569 _mesa_glsl_error(&loc, state,
7570 "gl_PerVertex output may not be redeclared with "
7571 "an instance name");
7572 }
7573 }
7574 break;
7575 default:
7576 _mesa_glsl_error(&loc, state,
7577 "gl_PerVertex must be declared as an input or an "
7578 "output");
7579 break;
7580 }
7581
7582 if (earlier_per_vertex == NULL) {
7583 /* An error has already been reported. Bail out to avoid null
7584 * dereferences later in this function.
7585 */
7586 return NULL;
7587 }
7588
7589 /* Copy locations from the old gl_PerVertex interface block. */
7590 for (unsigned i = 0; i < num_variables; i++) {
7591 int j = earlier_per_vertex->field_index(fields[i].name);
7592 if (j == -1) {
7593 _mesa_glsl_error(&loc, state,
7594 "redeclaration of gl_PerVertex must be a subset "
7595 "of the built-in members of gl_PerVertex");
7596 } else {
7597 fields[i].location =
7598 earlier_per_vertex->fields.structure[j].location;
7599 fields[i].offset =
7600 earlier_per_vertex->fields.structure[j].offset;
7601 fields[i].interpolation =
7602 earlier_per_vertex->fields.structure[j].interpolation;
7603 fields[i].centroid =
7604 earlier_per_vertex->fields.structure[j].centroid;
7605 fields[i].sample =
7606 earlier_per_vertex->fields.structure[j].sample;
7607 fields[i].patch =
7608 earlier_per_vertex->fields.structure[j].patch;
7609 fields[i].precision =
7610 earlier_per_vertex->fields.structure[j].precision;
7611 fields[i].explicit_xfb_buffer =
7612 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7613 fields[i].xfb_buffer =
7614 earlier_per_vertex->fields.structure[j].xfb_buffer;
7615 fields[i].xfb_stride =
7616 earlier_per_vertex->fields.structure[j].xfb_stride;
7617 }
7618 }
7619
7620 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7621 * spec:
7622 *
7623 * If a built-in interface block is redeclared, it must appear in
7624 * the shader before any use of any member included in the built-in
7625 * declaration, or a compilation error will result.
7626 *
7627 * This appears to be a clarification to the behaviour established for
7628 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7629 * regardless of GLSL version.
7630 */
7631 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7632 v.run(instructions);
7633 if (v.usage_found()) {
7634 _mesa_glsl_error(&loc, state,
7635 "redeclaration of a built-in interface block must "
7636 "appear before any use of any member of the "
7637 "interface block");
7638 }
7639 }
7640
7641 const glsl_type *block_type =
7642 glsl_type::get_interface_instance(fields,
7643 num_variables,
7644 packing,
7645 matrix_layout ==
7646 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7647 this->block_name);
7648
7649 unsigned component_size = block_type->contains_double() ? 8 : 4;
7650 int xfb_offset =
7651 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7652 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7653 component_size);
7654
7655 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7656 YYLTYPE loc = this->get_location();
7657 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7658 "already taken in the current scope",
7659 this->block_name, iface_type_name);
7660 }
7661
7662 /* Since interface blocks cannot contain statements, it should be
7663 * impossible for the block to generate any instructions.
7664 */
7665 assert(declared_variables.is_empty());
7666
7667 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7668 *
7669 * Geometry shader input variables get the per-vertex values written
7670 * out by vertex shader output variables of the same names. Since a
7671 * geometry shader operates on a set of vertices, each input varying
7672 * variable (or input block, see interface blocks below) needs to be
7673 * declared as an array.
7674 */
7675 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7676 var_mode == ir_var_shader_in) {
7677 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7678 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7679 state->stage == MESA_SHADER_TESS_EVAL) &&
7680 !this->layout.flags.q.patch &&
7681 this->array_specifier == NULL &&
7682 var_mode == ir_var_shader_in) {
7683 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7684 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7685 !this->layout.flags.q.patch &&
7686 this->array_specifier == NULL &&
7687 var_mode == ir_var_shader_out) {
7688 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7689 }
7690
7691
7692 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7693 * says:
7694 *
7695 * "If an instance name (instance-name) is used, then it puts all the
7696 * members inside a scope within its own name space, accessed with the
7697 * field selector ( . ) operator (analogously to structures)."
7698 */
7699 if (this->instance_name) {
7700 if (redeclaring_per_vertex) {
7701 /* When a built-in in an unnamed interface block is redeclared,
7702 * get_variable_being_redeclared() calls
7703 * check_builtin_array_max_size() to make sure that built-in array
7704 * variables aren't redeclared to illegal sizes. But we're looking
7705 * at a redeclaration of a named built-in interface block. So we
7706 * have to manually call check_builtin_array_max_size() for all parts
7707 * of the interface that are arrays.
7708 */
7709 for (unsigned i = 0; i < num_variables; i++) {
7710 if (fields[i].type->is_array()) {
7711 const unsigned size = fields[i].type->array_size();
7712 check_builtin_array_max_size(fields[i].name, size, loc, state);
7713 }
7714 }
7715 } else {
7716 validate_identifier(this->instance_name, loc, state);
7717 }
7718
7719 ir_variable *var;
7720
7721 if (this->array_specifier != NULL) {
7722 const glsl_type *block_array_type =
7723 process_array_type(&loc, block_type, this->array_specifier, state);
7724
7725 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7726 *
7727 * For uniform blocks declared an array, each individual array
7728 * element corresponds to a separate buffer object backing one
7729 * instance of the block. As the array size indicates the number
7730 * of buffer objects needed, uniform block array declarations
7731 * must specify an array size.
7732 *
7733 * And a few paragraphs later:
7734 *
7735 * Geometry shader input blocks must be declared as arrays and
7736 * follow the array declaration and linking rules for all
7737 * geometry shader inputs. All other input and output block
7738 * arrays must specify an array size.
7739 *
7740 * The same applies to tessellation shaders.
7741 *
7742 * The upshot of this is that the only circumstance where an
7743 * interface array size *doesn't* need to be specified is on a
7744 * geometry shader input, tessellation control shader input,
7745 * tessellation control shader output, and tessellation evaluation
7746 * shader input.
7747 */
7748 if (block_array_type->is_unsized_array()) {
7749 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7750 state->stage == MESA_SHADER_TESS_CTRL ||
7751 state->stage == MESA_SHADER_TESS_EVAL;
7752 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7753
7754 if (this->layout.flags.q.in) {
7755 if (!allow_inputs)
7756 _mesa_glsl_error(&loc, state,
7757 "unsized input block arrays not allowed in "
7758 "%s shader",
7759 _mesa_shader_stage_to_string(state->stage));
7760 } else if (this->layout.flags.q.out) {
7761 if (!allow_outputs)
7762 _mesa_glsl_error(&loc, state,
7763 "unsized output block arrays not allowed in "
7764 "%s shader",
7765 _mesa_shader_stage_to_string(state->stage));
7766 } else {
7767 /* by elimination, this is a uniform block array */
7768 _mesa_glsl_error(&loc, state,
7769 "unsized uniform block arrays not allowed in "
7770 "%s shader",
7771 _mesa_shader_stage_to_string(state->stage));
7772 }
7773 }
7774
7775 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7776 *
7777 * * Arrays of arrays of blocks are not allowed
7778 */
7779 if (state->es_shader && block_array_type->is_array() &&
7780 block_array_type->fields.array->is_array()) {
7781 _mesa_glsl_error(&loc, state,
7782 "arrays of arrays interface blocks are "
7783 "not allowed");
7784 }
7785
7786 var = new(state) ir_variable(block_array_type,
7787 this->instance_name,
7788 var_mode);
7789 } else {
7790 var = new(state) ir_variable(block_type,
7791 this->instance_name,
7792 var_mode);
7793 }
7794
7795 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7796 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7797
7798 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7799 var->data.read_only = true;
7800
7801 var->data.patch = this->layout.flags.q.patch;
7802
7803 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7804 handle_geometry_shader_input_decl(state, loc, var);
7805 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7806 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7807 handle_tess_shader_input_decl(state, loc, var);
7808 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7809 handle_tess_ctrl_shader_output_decl(state, loc, var);
7810
7811 for (unsigned i = 0; i < num_variables; i++) {
7812 if (var->data.mode == ir_var_shader_storage)
7813 apply_memory_qualifiers(var, fields[i]);
7814 }
7815
7816 if (ir_variable *earlier =
7817 state->symbols->get_variable(this->instance_name)) {
7818 if (!redeclaring_per_vertex) {
7819 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7820 this->instance_name);
7821 }
7822 earlier->data.how_declared = ir_var_declared_normally;
7823 earlier->type = var->type;
7824 earlier->reinit_interface_type(block_type);
7825 delete var;
7826 } else {
7827 if (this->layout.flags.q.explicit_binding) {
7828 apply_explicit_binding(state, &loc, var, var->type,
7829 &this->layout);
7830 }
7831
7832 var->data.stream = qual_stream;
7833 if (layout.flags.q.explicit_location) {
7834 var->data.location = expl_location;
7835 var->data.explicit_location = true;
7836 }
7837
7838 state->symbols->add_variable(var);
7839 instructions->push_tail(var);
7840 }
7841 } else {
7842 /* In order to have an array size, the block must also be declared with
7843 * an instance name.
7844 */
7845 assert(this->array_specifier == NULL);
7846
7847 for (unsigned i = 0; i < num_variables; i++) {
7848 ir_variable *var =
7849 new(state) ir_variable(fields[i].type,
7850 ralloc_strdup(state, fields[i].name),
7851 var_mode);
7852 var->data.interpolation = fields[i].interpolation;
7853 var->data.centroid = fields[i].centroid;
7854 var->data.sample = fields[i].sample;
7855 var->data.patch = fields[i].patch;
7856 var->data.stream = qual_stream;
7857 var->data.location = fields[i].location;
7858
7859 if (fields[i].location != -1)
7860 var->data.explicit_location = true;
7861
7862 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7863 var->data.xfb_buffer = fields[i].xfb_buffer;
7864
7865 if (fields[i].offset != -1)
7866 var->data.explicit_xfb_offset = true;
7867 var->data.offset = fields[i].offset;
7868
7869 var->init_interface_type(block_type);
7870
7871 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7872 var->data.read_only = true;
7873
7874 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7875 if (state->es_shader) {
7876 var->data.precision =
7877 select_gles_precision(fields[i].precision, fields[i].type,
7878 state, &loc);
7879 }
7880
7881 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7882 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7883 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7884 } else {
7885 var->data.matrix_layout = fields[i].matrix_layout;
7886 }
7887
7888 if (var->data.mode == ir_var_shader_storage)
7889 apply_memory_qualifiers(var, fields[i]);
7890
7891 /* Examine var name here since var may get deleted in the next call */
7892 bool var_is_gl_id = is_gl_identifier(var->name);
7893
7894 if (redeclaring_per_vertex) {
7895 bool is_redeclaration;
7896 ir_variable *declared_var =
7897 get_variable_being_redeclared(var, loc, state,
7898 true /* allow_all_redeclarations */,
7899 &is_redeclaration);
7900 if (!var_is_gl_id || !is_redeclaration) {
7901 _mesa_glsl_error(&loc, state,
7902 "redeclaration of gl_PerVertex can only "
7903 "include built-in variables");
7904 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
7905 _mesa_glsl_error(&loc, state,
7906 "`%s' has already been redeclared",
7907 declared_var->name);
7908 } else {
7909 declared_var->data.how_declared = ir_var_declared_in_block;
7910 declared_var->reinit_interface_type(block_type);
7911 }
7912 continue;
7913 }
7914
7915 if (state->symbols->get_variable(var->name) != NULL)
7916 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7917
7918 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7919 * The UBO declaration itself doesn't get an ir_variable unless it
7920 * has an instance name. This is ugly.
7921 */
7922 if (this->layout.flags.q.explicit_binding) {
7923 apply_explicit_binding(state, &loc, var,
7924 var->get_interface_type(), &this->layout);
7925 }
7926
7927 if (var->type->is_unsized_array()) {
7928 if (var->is_in_shader_storage_block() &&
7929 is_unsized_array_last_element(var)) {
7930 var->data.from_ssbo_unsized_array = true;
7931 } else {
7932 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7933 *
7934 * "If an array is declared as the last member of a shader storage
7935 * block and the size is not specified at compile-time, it is
7936 * sized at run-time. In all other cases, arrays are sized only
7937 * at compile-time."
7938 *
7939 * In desktop GLSL it is allowed to have unsized-arrays that are
7940 * not last, as long as we can determine that they are implicitly
7941 * sized.
7942 */
7943 if (state->es_shader) {
7944 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7945 "definition: only last member of a shader "
7946 "storage block can be defined as unsized "
7947 "array", fields[i].name);
7948 }
7949 }
7950 }
7951
7952 state->symbols->add_variable(var);
7953 instructions->push_tail(var);
7954 }
7955
7956 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7957 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7958 *
7959 * It is also a compilation error ... to redeclare a built-in
7960 * block and then use a member from that built-in block that was
7961 * not included in the redeclaration.
7962 *
7963 * This appears to be a clarification to the behaviour established
7964 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7965 * behaviour regardless of GLSL version.
7966 *
7967 * To prevent the shader from using a member that was not included in
7968 * the redeclaration, we disable any ir_variables that are still
7969 * associated with the old declaration of gl_PerVertex (since we've
7970 * already updated all of the variables contained in the new
7971 * gl_PerVertex to point to it).
7972 *
7973 * As a side effect this will prevent
7974 * validate_intrastage_interface_blocks() from getting confused and
7975 * thinking there are conflicting definitions of gl_PerVertex in the
7976 * shader.
7977 */
7978 foreach_in_list_safe(ir_instruction, node, instructions) {
7979 ir_variable *const var = node->as_variable();
7980 if (var != NULL &&
7981 var->get_interface_type() == earlier_per_vertex &&
7982 var->data.mode == var_mode) {
7983 if (var->data.how_declared == ir_var_declared_normally) {
7984 _mesa_glsl_error(&loc, state,
7985 "redeclaration of gl_PerVertex cannot "
7986 "follow a redeclaration of `%s'",
7987 var->name);
7988 }
7989 state->symbols->disable_variable(var->name);
7990 var->remove();
7991 }
7992 }
7993 }
7994 }
7995
7996 return NULL;
7997 }
7998
7999
8000 ir_rvalue *
8001 ast_tcs_output_layout::hir(exec_list *instructions,
8002 struct _mesa_glsl_parse_state *state)
8003 {
8004 YYLTYPE loc = this->get_location();
8005
8006 unsigned num_vertices;
8007 if (!state->out_qualifier->vertices->
8008 process_qualifier_constant(state, "vertices", &num_vertices,
8009 false)) {
8010 /* return here to stop cascading incorrect error messages */
8011 return NULL;
8012 }
8013
8014 /* If any shader outputs occurred before this declaration and specified an
8015 * array size, make sure the size they specified is consistent with the
8016 * primitive type.
8017 */
8018 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8019 _mesa_glsl_error(&loc, state,
8020 "this tessellation control shader output layout "
8021 "specifies %u vertices, but a previous output "
8022 "is declared with size %u",
8023 num_vertices, state->tcs_output_size);
8024 return NULL;
8025 }
8026
8027 state->tcs_output_vertices_specified = true;
8028
8029 /* If any shader outputs occurred before this declaration and did not
8030 * specify an array size, their size is determined now.
8031 */
8032 foreach_in_list (ir_instruction, node, instructions) {
8033 ir_variable *var = node->as_variable();
8034 if (var == NULL || var->data.mode != ir_var_shader_out)
8035 continue;
8036
8037 /* Note: Not all tessellation control shader output are arrays. */
8038 if (!var->type->is_unsized_array() || var->data.patch)
8039 continue;
8040
8041 if (var->data.max_array_access >= (int)num_vertices) {
8042 _mesa_glsl_error(&loc, state,
8043 "this tessellation control shader output layout "
8044 "specifies %u vertices, but an access to element "
8045 "%u of output `%s' already exists", num_vertices,
8046 var->data.max_array_access, var->name);
8047 } else {
8048 var->type = glsl_type::get_array_instance(var->type->fields.array,
8049 num_vertices);
8050 }
8051 }
8052
8053 return NULL;
8054 }
8055
8056
8057 ir_rvalue *
8058 ast_gs_input_layout::hir(exec_list *instructions,
8059 struct _mesa_glsl_parse_state *state)
8060 {
8061 YYLTYPE loc = this->get_location();
8062
8063 /* Should have been prevented by the parser. */
8064 assert(!state->gs_input_prim_type_specified
8065 || state->in_qualifier->prim_type == this->prim_type);
8066
8067 /* If any shader inputs occurred before this declaration and specified an
8068 * array size, make sure the size they specified is consistent with the
8069 * primitive type.
8070 */
8071 unsigned num_vertices = vertices_per_prim(this->prim_type);
8072 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8073 _mesa_glsl_error(&loc, state,
8074 "this geometry shader input layout implies %u vertices"
8075 " per primitive, but a previous input is declared"
8076 " with size %u", num_vertices, state->gs_input_size);
8077 return NULL;
8078 }
8079
8080 state->gs_input_prim_type_specified = true;
8081
8082 /* If any shader inputs occurred before this declaration and did not
8083 * specify an array size, their size is determined now.
8084 */
8085 foreach_in_list(ir_instruction, node, instructions) {
8086 ir_variable *var = node->as_variable();
8087 if (var == NULL || var->data.mode != ir_var_shader_in)
8088 continue;
8089
8090 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8091 * array; skip it.
8092 */
8093
8094 if (var->type->is_unsized_array()) {
8095 if (var->data.max_array_access >= (int)num_vertices) {
8096 _mesa_glsl_error(&loc, state,
8097 "this geometry shader input layout implies %u"
8098 " vertices, but an access to element %u of input"
8099 " `%s' already exists", num_vertices,
8100 var->data.max_array_access, var->name);
8101 } else {
8102 var->type = glsl_type::get_array_instance(var->type->fields.array,
8103 num_vertices);
8104 }
8105 }
8106 }
8107
8108 return NULL;
8109 }
8110
8111
8112 ir_rvalue *
8113 ast_cs_input_layout::hir(exec_list *instructions,
8114 struct _mesa_glsl_parse_state *state)
8115 {
8116 YYLTYPE loc = this->get_location();
8117
8118 /* From the ARB_compute_shader specification:
8119 *
8120 * If the local size of the shader in any dimension is greater
8121 * than the maximum size supported by the implementation for that
8122 * dimension, a compile-time error results.
8123 *
8124 * It is not clear from the spec how the error should be reported if
8125 * the total size of the work group exceeds
8126 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8127 * report it at compile time as well.
8128 */
8129 GLuint64 total_invocations = 1;
8130 unsigned qual_local_size[3];
8131 for (int i = 0; i < 3; i++) {
8132
8133 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8134 'x' + i);
8135 /* Infer a local_size of 1 for unspecified dimensions */
8136 if (this->local_size[i] == NULL) {
8137 qual_local_size[i] = 1;
8138 } else if (!this->local_size[i]->
8139 process_qualifier_constant(state, local_size_str,
8140 &qual_local_size[i], false)) {
8141 ralloc_free(local_size_str);
8142 return NULL;
8143 }
8144 ralloc_free(local_size_str);
8145
8146 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8147 _mesa_glsl_error(&loc, state,
8148 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8149 " (%d)", 'x' + i,
8150 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8151 break;
8152 }
8153 total_invocations *= qual_local_size[i];
8154 if (total_invocations >
8155 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8156 _mesa_glsl_error(&loc, state,
8157 "product of local_sizes exceeds "
8158 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8159 state->ctx->Const.MaxComputeWorkGroupInvocations);
8160 break;
8161 }
8162 }
8163
8164 /* If any compute input layout declaration preceded this one, make sure it
8165 * was consistent with this one.
8166 */
8167 if (state->cs_input_local_size_specified) {
8168 for (int i = 0; i < 3; i++) {
8169 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8170 _mesa_glsl_error(&loc, state,
8171 "compute shader input layout does not match"
8172 " previous declaration");
8173 return NULL;
8174 }
8175 }
8176 }
8177
8178 /* The ARB_compute_variable_group_size spec says:
8179 *
8180 * If a compute shader including a *local_size_variable* qualifier also
8181 * declares a fixed local group size using the *local_size_x*,
8182 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8183 * results
8184 */
8185 if (state->cs_input_local_size_variable_specified) {
8186 _mesa_glsl_error(&loc, state,
8187 "compute shader can't include both a variable and a "
8188 "fixed local group size");
8189 return NULL;
8190 }
8191
8192 state->cs_input_local_size_specified = true;
8193 for (int i = 0; i < 3; i++)
8194 state->cs_input_local_size[i] = qual_local_size[i];
8195
8196 /* We may now declare the built-in constant gl_WorkGroupSize (see
8197 * builtin_variable_generator::generate_constants() for why we didn't
8198 * declare it earlier).
8199 */
8200 ir_variable *var = new(state->symbols)
8201 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8202 var->data.how_declared = ir_var_declared_implicitly;
8203 var->data.read_only = true;
8204 instructions->push_tail(var);
8205 state->symbols->add_variable(var);
8206 ir_constant_data data;
8207 memset(&data, 0, sizeof(data));
8208 for (int i = 0; i < 3; i++)
8209 data.u[i] = qual_local_size[i];
8210 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8211 var->constant_initializer =
8212 new(var) ir_constant(glsl_type::uvec3_type, &data);
8213 var->data.has_initializer = true;
8214
8215 return NULL;
8216 }
8217
8218
8219 static void
8220 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8221 exec_list *instructions)
8222 {
8223 bool gl_FragColor_assigned = false;
8224 bool gl_FragData_assigned = false;
8225 bool gl_FragSecondaryColor_assigned = false;
8226 bool gl_FragSecondaryData_assigned = false;
8227 bool user_defined_fs_output_assigned = false;
8228 ir_variable *user_defined_fs_output = NULL;
8229
8230 /* It would be nice to have proper location information. */
8231 YYLTYPE loc;
8232 memset(&loc, 0, sizeof(loc));
8233
8234 foreach_in_list(ir_instruction, node, instructions) {
8235 ir_variable *var = node->as_variable();
8236
8237 if (!var || !var->data.assigned)
8238 continue;
8239
8240 if (strcmp(var->name, "gl_FragColor") == 0)
8241 gl_FragColor_assigned = true;
8242 else if (strcmp(var->name, "gl_FragData") == 0)
8243 gl_FragData_assigned = true;
8244 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8245 gl_FragSecondaryColor_assigned = true;
8246 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8247 gl_FragSecondaryData_assigned = true;
8248 else if (!is_gl_identifier(var->name)) {
8249 if (state->stage == MESA_SHADER_FRAGMENT &&
8250 var->data.mode == ir_var_shader_out) {
8251 user_defined_fs_output_assigned = true;
8252 user_defined_fs_output = var;
8253 }
8254 }
8255 }
8256
8257 /* From the GLSL 1.30 spec:
8258 *
8259 * "If a shader statically assigns a value to gl_FragColor, it
8260 * may not assign a value to any element of gl_FragData. If a
8261 * shader statically writes a value to any element of
8262 * gl_FragData, it may not assign a value to
8263 * gl_FragColor. That is, a shader may assign values to either
8264 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8265 * linked together must also consistently write just one of
8266 * these variables. Similarly, if user declared output
8267 * variables are in use (statically assigned to), then the
8268 * built-in variables gl_FragColor and gl_FragData may not be
8269 * assigned to. These incorrect usages all generate compile
8270 * time errors."
8271 */
8272 if (gl_FragColor_assigned && gl_FragData_assigned) {
8273 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8274 "`gl_FragColor' and `gl_FragData'");
8275 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8276 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8277 "`gl_FragColor' and `%s'",
8278 user_defined_fs_output->name);
8279 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8280 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8281 "`gl_FragSecondaryColorEXT' and"
8282 " `gl_FragSecondaryDataEXT'");
8283 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8284 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8285 "`gl_FragColor' and"
8286 " `gl_FragSecondaryDataEXT'");
8287 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8288 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8289 "`gl_FragData' and"
8290 " `gl_FragSecondaryColorEXT'");
8291 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8292 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8293 "`gl_FragData' and `%s'",
8294 user_defined_fs_output->name);
8295 }
8296
8297 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8298 !state->EXT_blend_func_extended_enable) {
8299 _mesa_glsl_error(&loc, state,
8300 "Dual source blending requires EXT_blend_func_extended");
8301 }
8302 }
8303
8304
8305 static void
8306 remove_per_vertex_blocks(exec_list *instructions,
8307 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8308 {
8309 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8310 * if it exists in this shader type.
8311 */
8312 const glsl_type *per_vertex = NULL;
8313 switch (mode) {
8314 case ir_var_shader_in:
8315 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8316 per_vertex = gl_in->get_interface_type();
8317 break;
8318 case ir_var_shader_out:
8319 if (ir_variable *gl_Position =
8320 state->symbols->get_variable("gl_Position")) {
8321 per_vertex = gl_Position->get_interface_type();
8322 }
8323 break;
8324 default:
8325 assert(!"Unexpected mode");
8326 break;
8327 }
8328
8329 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8330 * need to do anything.
8331 */
8332 if (per_vertex == NULL)
8333 return;
8334
8335 /* If the interface block is used by the shader, then we don't need to do
8336 * anything.
8337 */
8338 interface_block_usage_visitor v(mode, per_vertex);
8339 v.run(instructions);
8340 if (v.usage_found())
8341 return;
8342
8343 /* Remove any ir_variable declarations that refer to the interface block
8344 * we're removing.
8345 */
8346 foreach_in_list_safe(ir_instruction, node, instructions) {
8347 ir_variable *const var = node->as_variable();
8348 if (var != NULL && var->get_interface_type() == per_vertex &&
8349 var->data.mode == mode) {
8350 state->symbols->disable_variable(var->name);
8351 var->remove();
8352 }
8353 }
8354 }