glsl: set user defined varyings to smooth by default in ES
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* ESSL does not allow implicit conversions */
295 if (state->es_shader)
296 return false;
297
298 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
299 *
300 * "There are no implicit array or structure conversions. For
301 * example, an array of int cannot be implicitly converted to an
302 * array of float.
303 */
304 if (!to->is_numeric() || !from->type->is_numeric())
305 return false;
306
307 /* We don't actually want the specific type `to`, we want a type
308 * with the same base type as `to`, but the same vector width as
309 * `from`.
310 */
311 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
312 from->type->matrix_columns);
313
314 ir_expression_operation op = get_conversion_operation(to, from->type, state);
315 if (op) {
316 from = new(ctx) ir_expression(op, to, from, NULL);
317 return true;
318 } else {
319 return false;
320 }
321 }
322
323
324 static const struct glsl_type *
325 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
326 bool multiply,
327 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
328 {
329 const glsl_type *type_a = value_a->type;
330 const glsl_type *type_b = value_b->type;
331
332 /* From GLSL 1.50 spec, page 56:
333 *
334 * "The arithmetic binary operators add (+), subtract (-),
335 * multiply (*), and divide (/) operate on integer and
336 * floating-point scalars, vectors, and matrices."
337 */
338 if (!type_a->is_numeric() || !type_b->is_numeric()) {
339 _mesa_glsl_error(loc, state,
340 "operands to arithmetic operators must be numeric");
341 return glsl_type::error_type;
342 }
343
344
345 /* "If one operand is floating-point based and the other is
346 * not, then the conversions from Section 4.1.10 "Implicit
347 * Conversions" are applied to the non-floating-point-based operand."
348 */
349 if (!apply_implicit_conversion(type_a, value_b, state)
350 && !apply_implicit_conversion(type_b, value_a, state)) {
351 _mesa_glsl_error(loc, state,
352 "could not implicitly convert operands to "
353 "arithmetic operator");
354 return glsl_type::error_type;
355 }
356 type_a = value_a->type;
357 type_b = value_b->type;
358
359 /* "If the operands are integer types, they must both be signed or
360 * both be unsigned."
361 *
362 * From this rule and the preceeding conversion it can be inferred that
363 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
364 * The is_numeric check above already filtered out the case where either
365 * type is not one of these, so now the base types need only be tested for
366 * equality.
367 */
368 if (type_a->base_type != type_b->base_type) {
369 _mesa_glsl_error(loc, state,
370 "base type mismatch for arithmetic operator");
371 return glsl_type::error_type;
372 }
373
374 /* "All arithmetic binary operators result in the same fundamental type
375 * (signed integer, unsigned integer, or floating-point) as the
376 * operands they operate on, after operand type conversion. After
377 * conversion, the following cases are valid
378 *
379 * * The two operands are scalars. In this case the operation is
380 * applied, resulting in a scalar."
381 */
382 if (type_a->is_scalar() && type_b->is_scalar())
383 return type_a;
384
385 /* "* One operand is a scalar, and the other is a vector or matrix.
386 * In this case, the scalar operation is applied independently to each
387 * component of the vector or matrix, resulting in the same size
388 * vector or matrix."
389 */
390 if (type_a->is_scalar()) {
391 if (!type_b->is_scalar())
392 return type_b;
393 } else if (type_b->is_scalar()) {
394 return type_a;
395 }
396
397 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
398 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
399 * handled.
400 */
401 assert(!type_a->is_scalar());
402 assert(!type_b->is_scalar());
403
404 /* "* The two operands are vectors of the same size. In this case, the
405 * operation is done component-wise resulting in the same size
406 * vector."
407 */
408 if (type_a->is_vector() && type_b->is_vector()) {
409 if (type_a == type_b) {
410 return type_a;
411 } else {
412 _mesa_glsl_error(loc, state,
413 "vector size mismatch for arithmetic operator");
414 return glsl_type::error_type;
415 }
416 }
417
418 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
419 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
420 * <vector, vector> have been handled. At least one of the operands must
421 * be matrix. Further, since there are no integer matrix types, the base
422 * type of both operands must be float.
423 */
424 assert(type_a->is_matrix() || type_b->is_matrix());
425 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
426 type_a->base_type == GLSL_TYPE_DOUBLE);
427 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
428 type_b->base_type == GLSL_TYPE_DOUBLE);
429
430 /* "* The operator is add (+), subtract (-), or divide (/), and the
431 * operands are matrices with the same number of rows and the same
432 * number of columns. In this case, the operation is done component-
433 * wise resulting in the same size matrix."
434 * * The operator is multiply (*), where both operands are matrices or
435 * one operand is a vector and the other a matrix. A right vector
436 * operand is treated as a column vector and a left vector operand as a
437 * row vector. In all these cases, it is required that the number of
438 * columns of the left operand is equal to the number of rows of the
439 * right operand. Then, the multiply (*) operation does a linear
440 * algebraic multiply, yielding an object that has the same number of
441 * rows as the left operand and the same number of columns as the right
442 * operand. Section 5.10 "Vector and Matrix Operations" explains in
443 * more detail how vectors and matrices are operated on."
444 */
445 if (! multiply) {
446 if (type_a == type_b)
447 return type_a;
448 } else {
449 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
450
451 if (type == glsl_type::error_type) {
452 _mesa_glsl_error(loc, state,
453 "size mismatch for matrix multiplication");
454 }
455
456 return type;
457 }
458
459
460 /* "All other cases are illegal."
461 */
462 _mesa_glsl_error(loc, state, "type mismatch");
463 return glsl_type::error_type;
464 }
465
466
467 static const struct glsl_type *
468 unary_arithmetic_result_type(const struct glsl_type *type,
469 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
470 {
471 /* From GLSL 1.50 spec, page 57:
472 *
473 * "The arithmetic unary operators negate (-), post- and pre-increment
474 * and decrement (-- and ++) operate on integer or floating-point
475 * values (including vectors and matrices). All unary operators work
476 * component-wise on their operands. These result with the same type
477 * they operated on."
478 */
479 if (!type->is_numeric()) {
480 _mesa_glsl_error(loc, state,
481 "operands to arithmetic operators must be numeric");
482 return glsl_type::error_type;
483 }
484
485 return type;
486 }
487
488 /**
489 * \brief Return the result type of a bit-logic operation.
490 *
491 * If the given types to the bit-logic operator are invalid, return
492 * glsl_type::error_type.
493 *
494 * \param value_a LHS of bit-logic op
495 * \param value_b RHS of bit-logic op
496 */
497 static const struct glsl_type *
498 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
499 ast_operators op,
500 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
501 {
502 const glsl_type *type_a = value_a->type;
503 const glsl_type *type_b = value_b->type;
504
505 if (!state->check_bitwise_operations_allowed(loc)) {
506 return glsl_type::error_type;
507 }
508
509 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
510 *
511 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
512 * (|). The operands must be of type signed or unsigned integers or
513 * integer vectors."
514 */
515 if (!type_a->is_integer()) {
516 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
517 ast_expression::operator_string(op));
518 return glsl_type::error_type;
519 }
520 if (!type_b->is_integer()) {
521 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
522 ast_expression::operator_string(op));
523 return glsl_type::error_type;
524 }
525
526 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
527 * make sense for bitwise operations, as they don't operate on floats.
528 *
529 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
530 * here. It wasn't clear whether or not we should apply them to bitwise
531 * operations. However, Khronos has decided that they should in future
532 * language revisions. Applications also rely on this behavior. We opt
533 * to apply them in general, but issue a portability warning.
534 *
535 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
536 */
537 if (type_a->base_type != type_b->base_type) {
538 if (!apply_implicit_conversion(type_a, value_b, state)
539 && !apply_implicit_conversion(type_b, value_a, state)) {
540 _mesa_glsl_error(loc, state,
541 "could not implicitly convert operands to "
542 "`%s` operator",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 } else {
546 _mesa_glsl_warning(loc, state,
547 "some implementations may not support implicit "
548 "int -> uint conversions for `%s' operators; "
549 "consider casting explicitly for portability",
550 ast_expression::operator_string(op));
551 }
552 type_a = value_a->type;
553 type_b = value_b->type;
554 }
555
556 /* "The fundamental types of the operands (signed or unsigned) must
557 * match,"
558 */
559 if (type_a->base_type != type_b->base_type) {
560 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
561 "base type", ast_expression::operator_string(op));
562 return glsl_type::error_type;
563 }
564
565 /* "The operands cannot be vectors of differing size." */
566 if (type_a->is_vector() &&
567 type_b->is_vector() &&
568 type_a->vector_elements != type_b->vector_elements) {
569 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
570 "different sizes", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If one operand is a scalar and the other a vector, the scalar is
575 * applied component-wise to the vector, resulting in the same type as
576 * the vector. The fundamental types of the operands [...] will be the
577 * resulting fundamental type."
578 */
579 if (type_a->is_scalar())
580 return type_b;
581 else
582 return type_a;
583 }
584
585 static const struct glsl_type *
586 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
587 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
588 {
589 const glsl_type *type_a = value_a->type;
590 const glsl_type *type_b = value_b->type;
591
592 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
593 return glsl_type::error_type;
594 }
595
596 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
597 *
598 * "The operator modulus (%) operates on signed or unsigned integers or
599 * integer vectors."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605 if (!type_b->is_integer()) {
606 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
607 return glsl_type::error_type;
608 }
609
610 /* "If the fundamental types in the operands do not match, then the
611 * conversions from section 4.1.10 "Implicit Conversions" are applied
612 * to create matching types."
613 *
614 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
615 * int -> uint conversion rules. Prior to that, there were no implicit
616 * conversions. So it's harmless to apply them universally - no implicit
617 * conversions will exist. If the types don't match, we'll receive false,
618 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
619 *
620 * "The operand types must both be signed or unsigned."
621 */
622 if (!apply_implicit_conversion(type_a, value_b, state) &&
623 !apply_implicit_conversion(type_b, value_a, state)) {
624 _mesa_glsl_error(loc, state,
625 "could not implicitly convert operands to "
626 "modulus (%%) operator");
627 return glsl_type::error_type;
628 }
629 type_a = value_a->type;
630 type_b = value_b->type;
631
632 /* "The operands cannot be vectors of differing size. If one operand is
633 * a scalar and the other vector, then the scalar is applied component-
634 * wise to the vector, resulting in the same type as the vector. If both
635 * are vectors of the same size, the result is computed component-wise."
636 */
637 if (type_a->is_vector()) {
638 if (!type_b->is_vector()
639 || (type_a->vector_elements == type_b->vector_elements))
640 return type_a;
641 } else
642 return type_b;
643
644 /* "The operator modulus (%) is not defined for any other data types
645 * (non-integer types)."
646 */
647 _mesa_glsl_error(loc, state, "type mismatch");
648 return glsl_type::error_type;
649 }
650
651
652 static const struct glsl_type *
653 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
654 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
655 {
656 const glsl_type *type_a = value_a->type;
657 const glsl_type *type_b = value_b->type;
658
659 /* From GLSL 1.50 spec, page 56:
660 * "The relational operators greater than (>), less than (<), greater
661 * than or equal (>=), and less than or equal (<=) operate only on
662 * scalar integer and scalar floating-point expressions."
663 */
664 if (!type_a->is_numeric()
665 || !type_b->is_numeric()
666 || !type_a->is_scalar()
667 || !type_b->is_scalar()) {
668 _mesa_glsl_error(loc, state,
669 "operands to relational operators must be scalar and "
670 "numeric");
671 return glsl_type::error_type;
672 }
673
674 /* "Either the operands' types must match, or the conversions from
675 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
676 * operand, after which the types must match."
677 */
678 if (!apply_implicit_conversion(type_a, value_b, state)
679 && !apply_implicit_conversion(type_b, value_a, state)) {
680 _mesa_glsl_error(loc, state,
681 "could not implicitly convert operands to "
682 "relational operator");
683 return glsl_type::error_type;
684 }
685 type_a = value_a->type;
686 type_b = value_b->type;
687
688 if (type_a->base_type != type_b->base_type) {
689 _mesa_glsl_error(loc, state, "base type mismatch");
690 return glsl_type::error_type;
691 }
692
693 /* "The result is scalar Boolean."
694 */
695 return glsl_type::bool_type;
696 }
697
698 /**
699 * \brief Return the result type of a bit-shift operation.
700 *
701 * If the given types to the bit-shift operator are invalid, return
702 * glsl_type::error_type.
703 *
704 * \param type_a Type of LHS of bit-shift op
705 * \param type_b Type of RHS of bit-shift op
706 */
707 static const struct glsl_type *
708 shift_result_type(const struct glsl_type *type_a,
709 const struct glsl_type *type_b,
710 ast_operators op,
711 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
712 {
713 if (!state->check_bitwise_operations_allowed(loc)) {
714 return glsl_type::error_type;
715 }
716
717 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
718 *
719 * "The shift operators (<<) and (>>). For both operators, the operands
720 * must be signed or unsigned integers or integer vectors. One operand
721 * can be signed while the other is unsigned."
722 */
723 if (!type_a->is_integer()) {
724 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
725 "integer vector", ast_expression::operator_string(op));
726 return glsl_type::error_type;
727
728 }
729 if (!type_b->is_integer()) {
730 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
731 "integer vector", ast_expression::operator_string(op));
732 return glsl_type::error_type;
733 }
734
735 /* "If the first operand is a scalar, the second operand has to be
736 * a scalar as well."
737 */
738 if (type_a->is_scalar() && !type_b->is_scalar()) {
739 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
740 "second must be scalar as well",
741 ast_expression::operator_string(op));
742 return glsl_type::error_type;
743 }
744
745 /* If both operands are vectors, check that they have same number of
746 * elements.
747 */
748 if (type_a->is_vector() &&
749 type_b->is_vector() &&
750 type_a->vector_elements != type_b->vector_elements) {
751 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
752 "have same number of elements",
753 ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "In all cases, the resulting type will be the same type as the left
758 * operand."
759 */
760 return type_a;
761 }
762
763 /**
764 * Returns the innermost array index expression in an rvalue tree.
765 * This is the largest indexing level -- if an array of blocks, then
766 * it is the block index rather than an indexing expression for an
767 * array-typed member of an array of blocks.
768 */
769 static ir_rvalue *
770 find_innermost_array_index(ir_rvalue *rv)
771 {
772 ir_dereference_array *last = NULL;
773 while (rv) {
774 if (rv->as_dereference_array()) {
775 last = rv->as_dereference_array();
776 rv = last->array;
777 } else if (rv->as_dereference_record())
778 rv = rv->as_dereference_record()->record;
779 else if (rv->as_swizzle())
780 rv = rv->as_swizzle()->val;
781 else
782 rv = NULL;
783 }
784
785 if (last)
786 return last->array_index;
787
788 return NULL;
789 }
790
791 /**
792 * Validates that a value can be assigned to a location with a specified type
793 *
794 * Validates that \c rhs can be assigned to some location. If the types are
795 * not an exact match but an automatic conversion is possible, \c rhs will be
796 * converted.
797 *
798 * \return
799 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
800 * Otherwise the actual RHS to be assigned will be returned. This may be
801 * \c rhs, or it may be \c rhs after some type conversion.
802 *
803 * \note
804 * In addition to being used for assignments, this function is used to
805 * type-check return values.
806 */
807 static ir_rvalue *
808 validate_assignment(struct _mesa_glsl_parse_state *state,
809 YYLTYPE loc, ir_rvalue *lhs,
810 ir_rvalue *rhs, bool is_initializer)
811 {
812 /* If there is already some error in the RHS, just return it. Anything
813 * else will lead to an avalanche of error message back to the user.
814 */
815 if (rhs->type->is_error())
816 return rhs;
817
818 /* In the Tessellation Control Shader:
819 * If a per-vertex output variable is used as an l-value, it is an error
820 * if the expression indicating the vertex number is not the identifier
821 * `gl_InvocationID`.
822 */
823 if (state->stage == MESA_SHADER_TESS_CTRL) {
824 ir_variable *var = lhs->variable_referenced();
825 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
826 ir_rvalue *index = find_innermost_array_index(lhs);
827 ir_variable *index_var = index ? index->variable_referenced() : NULL;
828 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
829 _mesa_glsl_error(&loc, state,
830 "Tessellation control shader outputs can only "
831 "be indexed by gl_InvocationID");
832 return NULL;
833 }
834 }
835 }
836
837 /* If the types are identical, the assignment can trivially proceed.
838 */
839 if (rhs->type == lhs->type)
840 return rhs;
841
842 /* If the array element types are the same and the LHS is unsized,
843 * the assignment is okay for initializers embedded in variable
844 * declarations.
845 *
846 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
847 * is handled by ir_dereference::is_lvalue.
848 */
849 const glsl_type *lhs_t = lhs->type;
850 const glsl_type *rhs_t = rhs->type;
851 bool unsized_array = false;
852 while(lhs_t->is_array()) {
853 if (rhs_t == lhs_t)
854 break; /* the rest of the inner arrays match so break out early */
855 if (!rhs_t->is_array()) {
856 unsized_array = false;
857 break; /* number of dimensions mismatch */
858 }
859 if (lhs_t->length == rhs_t->length) {
860 lhs_t = lhs_t->fields.array;
861 rhs_t = rhs_t->fields.array;
862 continue;
863 } else if (lhs_t->is_unsized_array()) {
864 unsized_array = true;
865 } else {
866 unsized_array = false;
867 break; /* sized array mismatch */
868 }
869 lhs_t = lhs_t->fields.array;
870 rhs_t = rhs_t->fields.array;
871 }
872 if (unsized_array) {
873 if (is_initializer) {
874 return rhs;
875 } else {
876 _mesa_glsl_error(&loc, state,
877 "implicitly sized arrays cannot be assigned");
878 return NULL;
879 }
880 }
881
882 /* Check for implicit conversion in GLSL 1.20 */
883 if (apply_implicit_conversion(lhs->type, rhs, state)) {
884 if (rhs->type == lhs->type)
885 return rhs;
886 }
887
888 _mesa_glsl_error(&loc, state,
889 "%s of type %s cannot be assigned to "
890 "variable of type %s",
891 is_initializer ? "initializer" : "value",
892 rhs->type->name, lhs->type->name);
893
894 return NULL;
895 }
896
897 static void
898 mark_whole_array_access(ir_rvalue *access)
899 {
900 ir_dereference_variable *deref = access->as_dereference_variable();
901
902 if (deref && deref->var) {
903 deref->var->data.max_array_access = deref->type->length - 1;
904 }
905 }
906
907 static bool
908 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
909 const char *non_lvalue_description,
910 ir_rvalue *lhs, ir_rvalue *rhs,
911 ir_rvalue **out_rvalue, bool needs_rvalue,
912 bool is_initializer,
913 YYLTYPE lhs_loc)
914 {
915 void *ctx = state;
916 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
917
918 ir_variable *lhs_var = lhs->variable_referenced();
919 if (lhs_var)
920 lhs_var->data.assigned = true;
921
922 if (!error_emitted) {
923 if (non_lvalue_description != NULL) {
924 _mesa_glsl_error(&lhs_loc, state,
925 "assignment to %s",
926 non_lvalue_description);
927 error_emitted = true;
928 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
929 (lhs_var->data.mode == ir_var_shader_storage &&
930 lhs_var->data.image_read_only))) {
931 /* We can have image_read_only set on both images and buffer variables,
932 * but in the former there is a distinction between assignments to
933 * the variable itself (read_only) and to the memory they point to
934 * (image_read_only), while in the case of buffer variables there is
935 * no such distinction, that is why this check here is limited to
936 * buffer variables alone.
937 */
938 _mesa_glsl_error(&lhs_loc, state,
939 "assignment to read-only variable '%s'",
940 lhs_var->name);
941 error_emitted = true;
942 } else if (lhs->type->is_array() &&
943 !state->check_version(120, 300, &lhs_loc,
944 "whole array assignment forbidden")) {
945 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
946 *
947 * "Other binary or unary expressions, non-dereferenced
948 * arrays, function names, swizzles with repeated fields,
949 * and constants cannot be l-values."
950 *
951 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
952 */
953 error_emitted = true;
954 } else if (!lhs->is_lvalue()) {
955 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
956 error_emitted = true;
957 }
958 }
959
960 ir_rvalue *new_rhs =
961 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
962 if (new_rhs != NULL) {
963 rhs = new_rhs;
964
965 /* If the LHS array was not declared with a size, it takes it size from
966 * the RHS. If the LHS is an l-value and a whole array, it must be a
967 * dereference of a variable. Any other case would require that the LHS
968 * is either not an l-value or not a whole array.
969 */
970 if (lhs->type->is_unsized_array()) {
971 ir_dereference *const d = lhs->as_dereference();
972
973 assert(d != NULL);
974
975 ir_variable *const var = d->variable_referenced();
976
977 assert(var != NULL);
978
979 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
980 /* FINISHME: This should actually log the location of the RHS. */
981 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
982 "previous access",
983 var->data.max_array_access);
984 }
985
986 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
987 rhs->type->array_size());
988 d->type = var->type;
989 }
990 if (lhs->type->is_array()) {
991 mark_whole_array_access(rhs);
992 mark_whole_array_access(lhs);
993 }
994 }
995
996 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
997 * but not post_inc) need the converted assigned value as an rvalue
998 * to handle things like:
999 *
1000 * i = j += 1;
1001 */
1002 if (needs_rvalue) {
1003 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1004 ir_var_temporary);
1005 instructions->push_tail(var);
1006 instructions->push_tail(assign(var, rhs));
1007
1008 if (!error_emitted) {
1009 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1010 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1011 }
1012 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1013
1014 *out_rvalue = rvalue;
1015 } else {
1016 if (!error_emitted)
1017 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1018 *out_rvalue = NULL;
1019 }
1020
1021 return error_emitted;
1022 }
1023
1024 static ir_rvalue *
1025 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1026 {
1027 void *ctx = ralloc_parent(lvalue);
1028 ir_variable *var;
1029
1030 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1031 ir_var_temporary);
1032 instructions->push_tail(var);
1033
1034 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1035 lvalue));
1036
1037 return new(ctx) ir_dereference_variable(var);
1038 }
1039
1040
1041 ir_rvalue *
1042 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1043 {
1044 (void) instructions;
1045 (void) state;
1046
1047 return NULL;
1048 }
1049
1050 bool
1051 ast_node::has_sequence_subexpression() const
1052 {
1053 return false;
1054 }
1055
1056 void
1057 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1058 struct _mesa_glsl_parse_state *state)
1059 {
1060 (void)hir(instructions, state);
1061 }
1062
1063 void
1064 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1065 struct _mesa_glsl_parse_state *state)
1066 {
1067 (void)hir(instructions, state);
1068 }
1069
1070 static ir_rvalue *
1071 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1072 {
1073 int join_op;
1074 ir_rvalue *cmp = NULL;
1075
1076 if (operation == ir_binop_all_equal)
1077 join_op = ir_binop_logic_and;
1078 else
1079 join_op = ir_binop_logic_or;
1080
1081 switch (op0->type->base_type) {
1082 case GLSL_TYPE_FLOAT:
1083 case GLSL_TYPE_UINT:
1084 case GLSL_TYPE_INT:
1085 case GLSL_TYPE_BOOL:
1086 case GLSL_TYPE_DOUBLE:
1087 return new(mem_ctx) ir_expression(operation, op0, op1);
1088
1089 case GLSL_TYPE_ARRAY: {
1090 for (unsigned int i = 0; i < op0->type->length; i++) {
1091 ir_rvalue *e0, *e1, *result;
1092
1093 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1094 new(mem_ctx) ir_constant(i));
1095 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1096 new(mem_ctx) ir_constant(i));
1097 result = do_comparison(mem_ctx, operation, e0, e1);
1098
1099 if (cmp) {
1100 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1101 } else {
1102 cmp = result;
1103 }
1104 }
1105
1106 mark_whole_array_access(op0);
1107 mark_whole_array_access(op1);
1108 break;
1109 }
1110
1111 case GLSL_TYPE_STRUCT: {
1112 for (unsigned int i = 0; i < op0->type->length; i++) {
1113 ir_rvalue *e0, *e1, *result;
1114 const char *field_name = op0->type->fields.structure[i].name;
1115
1116 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1117 field_name);
1118 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1119 field_name);
1120 result = do_comparison(mem_ctx, operation, e0, e1);
1121
1122 if (cmp) {
1123 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1124 } else {
1125 cmp = result;
1126 }
1127 }
1128 break;
1129 }
1130
1131 case GLSL_TYPE_ERROR:
1132 case GLSL_TYPE_VOID:
1133 case GLSL_TYPE_SAMPLER:
1134 case GLSL_TYPE_IMAGE:
1135 case GLSL_TYPE_INTERFACE:
1136 case GLSL_TYPE_ATOMIC_UINT:
1137 case GLSL_TYPE_SUBROUTINE:
1138 case GLSL_TYPE_FUNCTION:
1139 /* I assume a comparison of a struct containing a sampler just
1140 * ignores the sampler present in the type.
1141 */
1142 break;
1143 }
1144
1145 if (cmp == NULL)
1146 cmp = new(mem_ctx) ir_constant(true);
1147
1148 return cmp;
1149 }
1150
1151 /* For logical operations, we want to ensure that the operands are
1152 * scalar booleans. If it isn't, emit an error and return a constant
1153 * boolean to avoid triggering cascading error messages.
1154 */
1155 ir_rvalue *
1156 get_scalar_boolean_operand(exec_list *instructions,
1157 struct _mesa_glsl_parse_state *state,
1158 ast_expression *parent_expr,
1159 int operand,
1160 const char *operand_name,
1161 bool *error_emitted)
1162 {
1163 ast_expression *expr = parent_expr->subexpressions[operand];
1164 void *ctx = state;
1165 ir_rvalue *val = expr->hir(instructions, state);
1166
1167 if (val->type->is_boolean() && val->type->is_scalar())
1168 return val;
1169
1170 if (!*error_emitted) {
1171 YYLTYPE loc = expr->get_location();
1172 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1173 operand_name,
1174 parent_expr->operator_string(parent_expr->oper));
1175 *error_emitted = true;
1176 }
1177
1178 return new(ctx) ir_constant(true);
1179 }
1180
1181 /**
1182 * If name refers to a builtin array whose maximum allowed size is less than
1183 * size, report an error and return true. Otherwise return false.
1184 */
1185 void
1186 check_builtin_array_max_size(const char *name, unsigned size,
1187 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1188 {
1189 if ((strcmp("gl_TexCoord", name) == 0)
1190 && (size > state->Const.MaxTextureCoords)) {
1191 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1192 *
1193 * "The size [of gl_TexCoord] can be at most
1194 * gl_MaxTextureCoords."
1195 */
1196 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1197 "be larger than gl_MaxTextureCoords (%u)",
1198 state->Const.MaxTextureCoords);
1199 } else if (strcmp("gl_ClipDistance", name) == 0
1200 && size > state->Const.MaxClipPlanes) {
1201 /* From section 7.1 (Vertex Shader Special Variables) of the
1202 * GLSL 1.30 spec:
1203 *
1204 * "The gl_ClipDistance array is predeclared as unsized and
1205 * must be sized by the shader either redeclaring it with a
1206 * size or indexing it only with integral constant
1207 * expressions. ... The size can be at most
1208 * gl_MaxClipDistances."
1209 */
1210 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1211 "be larger than gl_MaxClipDistances (%u)",
1212 state->Const.MaxClipPlanes);
1213 }
1214 }
1215
1216 /**
1217 * Create the constant 1, of a which is appropriate for incrementing and
1218 * decrementing values of the given GLSL type. For example, if type is vec4,
1219 * this creates a constant value of 1.0 having type float.
1220 *
1221 * If the given type is invalid for increment and decrement operators, return
1222 * a floating point 1--the error will be detected later.
1223 */
1224 static ir_rvalue *
1225 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1226 {
1227 switch (type->base_type) {
1228 case GLSL_TYPE_UINT:
1229 return new(ctx) ir_constant((unsigned) 1);
1230 case GLSL_TYPE_INT:
1231 return new(ctx) ir_constant(1);
1232 default:
1233 case GLSL_TYPE_FLOAT:
1234 return new(ctx) ir_constant(1.0f);
1235 }
1236 }
1237
1238 ir_rvalue *
1239 ast_expression::hir(exec_list *instructions,
1240 struct _mesa_glsl_parse_state *state)
1241 {
1242 return do_hir(instructions, state, true);
1243 }
1244
1245 void
1246 ast_expression::hir_no_rvalue(exec_list *instructions,
1247 struct _mesa_glsl_parse_state *state)
1248 {
1249 do_hir(instructions, state, false);
1250 }
1251
1252 ir_rvalue *
1253 ast_expression::do_hir(exec_list *instructions,
1254 struct _mesa_glsl_parse_state *state,
1255 bool needs_rvalue)
1256 {
1257 void *ctx = state;
1258 static const int operations[AST_NUM_OPERATORS] = {
1259 -1, /* ast_assign doesn't convert to ir_expression. */
1260 -1, /* ast_plus doesn't convert to ir_expression. */
1261 ir_unop_neg,
1262 ir_binop_add,
1263 ir_binop_sub,
1264 ir_binop_mul,
1265 ir_binop_div,
1266 ir_binop_mod,
1267 ir_binop_lshift,
1268 ir_binop_rshift,
1269 ir_binop_less,
1270 ir_binop_greater,
1271 ir_binop_lequal,
1272 ir_binop_gequal,
1273 ir_binop_all_equal,
1274 ir_binop_any_nequal,
1275 ir_binop_bit_and,
1276 ir_binop_bit_xor,
1277 ir_binop_bit_or,
1278 ir_unop_bit_not,
1279 ir_binop_logic_and,
1280 ir_binop_logic_xor,
1281 ir_binop_logic_or,
1282 ir_unop_logic_not,
1283
1284 /* Note: The following block of expression types actually convert
1285 * to multiple IR instructions.
1286 */
1287 ir_binop_mul, /* ast_mul_assign */
1288 ir_binop_div, /* ast_div_assign */
1289 ir_binop_mod, /* ast_mod_assign */
1290 ir_binop_add, /* ast_add_assign */
1291 ir_binop_sub, /* ast_sub_assign */
1292 ir_binop_lshift, /* ast_ls_assign */
1293 ir_binop_rshift, /* ast_rs_assign */
1294 ir_binop_bit_and, /* ast_and_assign */
1295 ir_binop_bit_xor, /* ast_xor_assign */
1296 ir_binop_bit_or, /* ast_or_assign */
1297
1298 -1, /* ast_conditional doesn't convert to ir_expression. */
1299 ir_binop_add, /* ast_pre_inc. */
1300 ir_binop_sub, /* ast_pre_dec. */
1301 ir_binop_add, /* ast_post_inc. */
1302 ir_binop_sub, /* ast_post_dec. */
1303 -1, /* ast_field_selection doesn't conv to ir_expression. */
1304 -1, /* ast_array_index doesn't convert to ir_expression. */
1305 -1, /* ast_function_call doesn't conv to ir_expression. */
1306 -1, /* ast_identifier doesn't convert to ir_expression. */
1307 -1, /* ast_int_constant doesn't convert to ir_expression. */
1308 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1309 -1, /* ast_float_constant doesn't conv to ir_expression. */
1310 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1311 -1, /* ast_sequence doesn't convert to ir_expression. */
1312 };
1313 ir_rvalue *result = NULL;
1314 ir_rvalue *op[3];
1315 const struct glsl_type *type; /* a temporary variable for switch cases */
1316 bool error_emitted = false;
1317 YYLTYPE loc;
1318
1319 loc = this->get_location();
1320
1321 switch (this->oper) {
1322 case ast_aggregate:
1323 assert(!"ast_aggregate: Should never get here.");
1324 break;
1325
1326 case ast_assign: {
1327 op[0] = this->subexpressions[0]->hir(instructions, state);
1328 op[1] = this->subexpressions[1]->hir(instructions, state);
1329
1330 error_emitted =
1331 do_assignment(instructions, state,
1332 this->subexpressions[0]->non_lvalue_description,
1333 op[0], op[1], &result, needs_rvalue, false,
1334 this->subexpressions[0]->get_location());
1335 break;
1336 }
1337
1338 case ast_plus:
1339 op[0] = this->subexpressions[0]->hir(instructions, state);
1340
1341 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1342
1343 error_emitted = type->is_error();
1344
1345 result = op[0];
1346 break;
1347
1348 case ast_neg:
1349 op[0] = this->subexpressions[0]->hir(instructions, state);
1350
1351 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1352
1353 error_emitted = type->is_error();
1354
1355 result = new(ctx) ir_expression(operations[this->oper], type,
1356 op[0], NULL);
1357 break;
1358
1359 case ast_add:
1360 case ast_sub:
1361 case ast_mul:
1362 case ast_div:
1363 op[0] = this->subexpressions[0]->hir(instructions, state);
1364 op[1] = this->subexpressions[1]->hir(instructions, state);
1365
1366 type = arithmetic_result_type(op[0], op[1],
1367 (this->oper == ast_mul),
1368 state, & loc);
1369 error_emitted = type->is_error();
1370
1371 result = new(ctx) ir_expression(operations[this->oper], type,
1372 op[0], op[1]);
1373 break;
1374
1375 case ast_mod:
1376 op[0] = this->subexpressions[0]->hir(instructions, state);
1377 op[1] = this->subexpressions[1]->hir(instructions, state);
1378
1379 type = modulus_result_type(op[0], op[1], state, &loc);
1380
1381 assert(operations[this->oper] == ir_binop_mod);
1382
1383 result = new(ctx) ir_expression(operations[this->oper], type,
1384 op[0], op[1]);
1385 error_emitted = type->is_error();
1386 break;
1387
1388 case ast_lshift:
1389 case ast_rshift:
1390 if (!state->check_bitwise_operations_allowed(&loc)) {
1391 error_emitted = true;
1392 }
1393
1394 op[0] = this->subexpressions[0]->hir(instructions, state);
1395 op[1] = this->subexpressions[1]->hir(instructions, state);
1396 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1397 &loc);
1398 result = new(ctx) ir_expression(operations[this->oper], type,
1399 op[0], op[1]);
1400 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1401 break;
1402
1403 case ast_less:
1404 case ast_greater:
1405 case ast_lequal:
1406 case ast_gequal:
1407 op[0] = this->subexpressions[0]->hir(instructions, state);
1408 op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410 type = relational_result_type(op[0], op[1], state, & loc);
1411
1412 /* The relational operators must either generate an error or result
1413 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1414 */
1415 assert(type->is_error()
1416 || ((type->base_type == GLSL_TYPE_BOOL)
1417 && type->is_scalar()));
1418
1419 result = new(ctx) ir_expression(operations[this->oper], type,
1420 op[0], op[1]);
1421 error_emitted = type->is_error();
1422 break;
1423
1424 case ast_nequal:
1425 case ast_equal:
1426 op[0] = this->subexpressions[0]->hir(instructions, state);
1427 op[1] = this->subexpressions[1]->hir(instructions, state);
1428
1429 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1430 *
1431 * "The equality operators equal (==), and not equal (!=)
1432 * operate on all types. They result in a scalar Boolean. If
1433 * the operand types do not match, then there must be a
1434 * conversion from Section 4.1.10 "Implicit Conversions"
1435 * applied to one operand that can make them match, in which
1436 * case this conversion is done."
1437 */
1438
1439 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1440 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1441 "no operation `%1$s' exists that takes a left-hand "
1442 "operand of type 'void' or a right operand of type "
1443 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1444 error_emitted = true;
1445 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1446 && !apply_implicit_conversion(op[1]->type, op[0], state))
1447 || (op[0]->type != op[1]->type)) {
1448 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1449 "type", (this->oper == ast_equal) ? "==" : "!=");
1450 error_emitted = true;
1451 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1452 !state->check_version(120, 300, &loc,
1453 "array comparisons forbidden")) {
1454 error_emitted = true;
1455 } else if ((op[0]->type->contains_opaque() ||
1456 op[1]->type->contains_opaque())) {
1457 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1458 error_emitted = true;
1459 }
1460
1461 if (error_emitted) {
1462 result = new(ctx) ir_constant(false);
1463 } else {
1464 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1465 assert(result->type == glsl_type::bool_type);
1466 }
1467 break;
1468
1469 case ast_bit_and:
1470 case ast_bit_xor:
1471 case ast_bit_or:
1472 op[0] = this->subexpressions[0]->hir(instructions, state);
1473 op[1] = this->subexpressions[1]->hir(instructions, state);
1474 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1475 result = new(ctx) ir_expression(operations[this->oper], type,
1476 op[0], op[1]);
1477 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1478 break;
1479
1480 case ast_bit_not:
1481 op[0] = this->subexpressions[0]->hir(instructions, state);
1482
1483 if (!state->check_bitwise_operations_allowed(&loc)) {
1484 error_emitted = true;
1485 }
1486
1487 if (!op[0]->type->is_integer()) {
1488 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1489 error_emitted = true;
1490 }
1491
1492 type = error_emitted ? glsl_type::error_type : op[0]->type;
1493 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1494 break;
1495
1496 case ast_logic_and: {
1497 exec_list rhs_instructions;
1498 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1499 "LHS", &error_emitted);
1500 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1501 "RHS", &error_emitted);
1502
1503 if (rhs_instructions.is_empty()) {
1504 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1505 type = result->type;
1506 } else {
1507 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1508 "and_tmp",
1509 ir_var_temporary);
1510 instructions->push_tail(tmp);
1511
1512 ir_if *const stmt = new(ctx) ir_if(op[0]);
1513 instructions->push_tail(stmt);
1514
1515 stmt->then_instructions.append_list(&rhs_instructions);
1516 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1517 ir_assignment *const then_assign =
1518 new(ctx) ir_assignment(then_deref, op[1]);
1519 stmt->then_instructions.push_tail(then_assign);
1520
1521 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1522 ir_assignment *const else_assign =
1523 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1524 stmt->else_instructions.push_tail(else_assign);
1525
1526 result = new(ctx) ir_dereference_variable(tmp);
1527 type = tmp->type;
1528 }
1529 break;
1530 }
1531
1532 case ast_logic_or: {
1533 exec_list rhs_instructions;
1534 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1535 "LHS", &error_emitted);
1536 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1537 "RHS", &error_emitted);
1538
1539 if (rhs_instructions.is_empty()) {
1540 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1541 type = result->type;
1542 } else {
1543 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1544 "or_tmp",
1545 ir_var_temporary);
1546 instructions->push_tail(tmp);
1547
1548 ir_if *const stmt = new(ctx) ir_if(op[0]);
1549 instructions->push_tail(stmt);
1550
1551 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1552 ir_assignment *const then_assign =
1553 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1554 stmt->then_instructions.push_tail(then_assign);
1555
1556 stmt->else_instructions.append_list(&rhs_instructions);
1557 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1558 ir_assignment *const else_assign =
1559 new(ctx) ir_assignment(else_deref, op[1]);
1560 stmt->else_instructions.push_tail(else_assign);
1561
1562 result = new(ctx) ir_dereference_variable(tmp);
1563 type = tmp->type;
1564 }
1565 break;
1566 }
1567
1568 case ast_logic_xor:
1569 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1570 *
1571 * "The logical binary operators and (&&), or ( | | ), and
1572 * exclusive or (^^). They operate only on two Boolean
1573 * expressions and result in a Boolean expression."
1574 */
1575 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1576 &error_emitted);
1577 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1578 &error_emitted);
1579
1580 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1581 op[0], op[1]);
1582 break;
1583
1584 case ast_logic_not:
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "operand", &error_emitted);
1587
1588 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1589 op[0], NULL);
1590 break;
1591
1592 case ast_mul_assign:
1593 case ast_div_assign:
1594 case ast_add_assign:
1595 case ast_sub_assign: {
1596 op[0] = this->subexpressions[0]->hir(instructions, state);
1597 op[1] = this->subexpressions[1]->hir(instructions, state);
1598
1599 type = arithmetic_result_type(op[0], op[1],
1600 (this->oper == ast_mul_assign),
1601 state, & loc);
1602
1603 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1604 op[0], op[1]);
1605
1606 error_emitted =
1607 do_assignment(instructions, state,
1608 this->subexpressions[0]->non_lvalue_description,
1609 op[0]->clone(ctx, NULL), temp_rhs,
1610 &result, needs_rvalue, false,
1611 this->subexpressions[0]->get_location());
1612
1613 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1614 * explicitly test for this because none of the binary expression
1615 * operators allow array operands either.
1616 */
1617
1618 break;
1619 }
1620
1621 case ast_mod_assign: {
1622 op[0] = this->subexpressions[0]->hir(instructions, state);
1623 op[1] = this->subexpressions[1]->hir(instructions, state);
1624
1625 type = modulus_result_type(op[0], op[1], state, &loc);
1626
1627 assert(operations[this->oper] == ir_binop_mod);
1628
1629 ir_rvalue *temp_rhs;
1630 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1631 op[0], op[1]);
1632
1633 error_emitted =
1634 do_assignment(instructions, state,
1635 this->subexpressions[0]->non_lvalue_description,
1636 op[0]->clone(ctx, NULL), temp_rhs,
1637 &result, needs_rvalue, false,
1638 this->subexpressions[0]->get_location());
1639 break;
1640 }
1641
1642 case ast_ls_assign:
1643 case ast_rs_assign: {
1644 op[0] = this->subexpressions[0]->hir(instructions, state);
1645 op[1] = this->subexpressions[1]->hir(instructions, state);
1646 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1647 &loc);
1648 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1649 type, op[0], op[1]);
1650 error_emitted =
1651 do_assignment(instructions, state,
1652 this->subexpressions[0]->non_lvalue_description,
1653 op[0]->clone(ctx, NULL), temp_rhs,
1654 &result, needs_rvalue, false,
1655 this->subexpressions[0]->get_location());
1656 break;
1657 }
1658
1659 case ast_and_assign:
1660 case ast_xor_assign:
1661 case ast_or_assign: {
1662 op[0] = this->subexpressions[0]->hir(instructions, state);
1663 op[1] = this->subexpressions[1]->hir(instructions, state);
1664 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1665 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1666 type, op[0], op[1]);
1667 error_emitted =
1668 do_assignment(instructions, state,
1669 this->subexpressions[0]->non_lvalue_description,
1670 op[0]->clone(ctx, NULL), temp_rhs,
1671 &result, needs_rvalue, false,
1672 this->subexpressions[0]->get_location());
1673 break;
1674 }
1675
1676 case ast_conditional: {
1677 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1678 *
1679 * "The ternary selection operator (?:). It operates on three
1680 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1681 * first expression, which must result in a scalar Boolean."
1682 */
1683 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1684 "condition", &error_emitted);
1685
1686 /* The :? operator is implemented by generating an anonymous temporary
1687 * followed by an if-statement. The last instruction in each branch of
1688 * the if-statement assigns a value to the anonymous temporary. This
1689 * temporary is the r-value of the expression.
1690 */
1691 exec_list then_instructions;
1692 exec_list else_instructions;
1693
1694 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1695 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1696
1697 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1698 *
1699 * "The second and third expressions can be any type, as
1700 * long their types match, or there is a conversion in
1701 * Section 4.1.10 "Implicit Conversions" that can be applied
1702 * to one of the expressions to make their types match. This
1703 * resulting matching type is the type of the entire
1704 * expression."
1705 */
1706 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1707 && !apply_implicit_conversion(op[2]->type, op[1], state))
1708 || (op[1]->type != op[2]->type)) {
1709 YYLTYPE loc = this->subexpressions[1]->get_location();
1710
1711 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1712 "operator must have matching types");
1713 error_emitted = true;
1714 type = glsl_type::error_type;
1715 } else {
1716 type = op[1]->type;
1717 }
1718
1719 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1720 *
1721 * "The second and third expressions must be the same type, but can
1722 * be of any type other than an array."
1723 */
1724 if (type->is_array() &&
1725 !state->check_version(120, 300, &loc,
1726 "second and third operands of ?: operator "
1727 "cannot be arrays")) {
1728 error_emitted = true;
1729 }
1730
1731 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1732 *
1733 * "Except for array indexing, structure member selection, and
1734 * parentheses, opaque variables are not allowed to be operands in
1735 * expressions; such use results in a compile-time error."
1736 */
1737 if (type->contains_opaque()) {
1738 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1739 "of the ?: operator");
1740 error_emitted = true;
1741 }
1742
1743 ir_constant *cond_val = op[0]->constant_expression_value();
1744
1745 if (then_instructions.is_empty()
1746 && else_instructions.is_empty()
1747 && cond_val != NULL) {
1748 result = cond_val->value.b[0] ? op[1] : op[2];
1749 } else {
1750 /* The copy to conditional_tmp reads the whole array. */
1751 if (type->is_array()) {
1752 mark_whole_array_access(op[1]);
1753 mark_whole_array_access(op[2]);
1754 }
1755
1756 ir_variable *const tmp =
1757 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1758 instructions->push_tail(tmp);
1759
1760 ir_if *const stmt = new(ctx) ir_if(op[0]);
1761 instructions->push_tail(stmt);
1762
1763 then_instructions.move_nodes_to(& stmt->then_instructions);
1764 ir_dereference *const then_deref =
1765 new(ctx) ir_dereference_variable(tmp);
1766 ir_assignment *const then_assign =
1767 new(ctx) ir_assignment(then_deref, op[1]);
1768 stmt->then_instructions.push_tail(then_assign);
1769
1770 else_instructions.move_nodes_to(& stmt->else_instructions);
1771 ir_dereference *const else_deref =
1772 new(ctx) ir_dereference_variable(tmp);
1773 ir_assignment *const else_assign =
1774 new(ctx) ir_assignment(else_deref, op[2]);
1775 stmt->else_instructions.push_tail(else_assign);
1776
1777 result = new(ctx) ir_dereference_variable(tmp);
1778 }
1779 break;
1780 }
1781
1782 case ast_pre_inc:
1783 case ast_pre_dec: {
1784 this->non_lvalue_description = (this->oper == ast_pre_inc)
1785 ? "pre-increment operation" : "pre-decrement operation";
1786
1787 op[0] = this->subexpressions[0]->hir(instructions, state);
1788 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1789
1790 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1791
1792 ir_rvalue *temp_rhs;
1793 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1794 op[0], op[1]);
1795
1796 error_emitted =
1797 do_assignment(instructions, state,
1798 this->subexpressions[0]->non_lvalue_description,
1799 op[0]->clone(ctx, NULL), temp_rhs,
1800 &result, needs_rvalue, false,
1801 this->subexpressions[0]->get_location());
1802 break;
1803 }
1804
1805 case ast_post_inc:
1806 case ast_post_dec: {
1807 this->non_lvalue_description = (this->oper == ast_post_inc)
1808 ? "post-increment operation" : "post-decrement operation";
1809 op[0] = this->subexpressions[0]->hir(instructions, state);
1810 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1811
1812 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1813
1814 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1815
1816 ir_rvalue *temp_rhs;
1817 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1818 op[0], op[1]);
1819
1820 /* Get a temporary of a copy of the lvalue before it's modified.
1821 * This may get thrown away later.
1822 */
1823 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1824
1825 ir_rvalue *junk_rvalue;
1826 error_emitted =
1827 do_assignment(instructions, state,
1828 this->subexpressions[0]->non_lvalue_description,
1829 op[0]->clone(ctx, NULL), temp_rhs,
1830 &junk_rvalue, false, false,
1831 this->subexpressions[0]->get_location());
1832
1833 break;
1834 }
1835
1836 case ast_field_selection:
1837 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1838 break;
1839
1840 case ast_array_index: {
1841 YYLTYPE index_loc = subexpressions[1]->get_location();
1842
1843 op[0] = subexpressions[0]->hir(instructions, state);
1844 op[1] = subexpressions[1]->hir(instructions, state);
1845
1846 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1847 loc, index_loc);
1848
1849 if (result->type->is_error())
1850 error_emitted = true;
1851
1852 break;
1853 }
1854
1855 case ast_unsized_array_dim:
1856 assert(!"ast_unsized_array_dim: Should never get here.");
1857 break;
1858
1859 case ast_function_call:
1860 /* Should *NEVER* get here. ast_function_call should always be handled
1861 * by ast_function_expression::hir.
1862 */
1863 assert(0);
1864 break;
1865
1866 case ast_identifier: {
1867 /* ast_identifier can appear several places in a full abstract syntax
1868 * tree. This particular use must be at location specified in the grammar
1869 * as 'variable_identifier'.
1870 */
1871 ir_variable *var =
1872 state->symbols->get_variable(this->primary_expression.identifier);
1873
1874 if (var != NULL) {
1875 var->data.used = true;
1876 result = new(ctx) ir_dereference_variable(var);
1877 } else {
1878 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1879 this->primary_expression.identifier);
1880
1881 result = ir_rvalue::error_value(ctx);
1882 error_emitted = true;
1883 }
1884 break;
1885 }
1886
1887 case ast_int_constant:
1888 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1889 break;
1890
1891 case ast_uint_constant:
1892 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1893 break;
1894
1895 case ast_float_constant:
1896 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1897 break;
1898
1899 case ast_bool_constant:
1900 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1901 break;
1902
1903 case ast_double_constant:
1904 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1905 break;
1906
1907 case ast_sequence: {
1908 /* It should not be possible to generate a sequence in the AST without
1909 * any expressions in it.
1910 */
1911 assert(!this->expressions.is_empty());
1912
1913 /* The r-value of a sequence is the last expression in the sequence. If
1914 * the other expressions in the sequence do not have side-effects (and
1915 * therefore add instructions to the instruction list), they get dropped
1916 * on the floor.
1917 */
1918 exec_node *previous_tail_pred = NULL;
1919 YYLTYPE previous_operand_loc = loc;
1920
1921 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1922 /* If one of the operands of comma operator does not generate any
1923 * code, we want to emit a warning. At each pass through the loop
1924 * previous_tail_pred will point to the last instruction in the
1925 * stream *before* processing the previous operand. Naturally,
1926 * instructions->tail_pred will point to the last instruction in the
1927 * stream *after* processing the previous operand. If the two
1928 * pointers match, then the previous operand had no effect.
1929 *
1930 * The warning behavior here differs slightly from GCC. GCC will
1931 * only emit a warning if none of the left-hand operands have an
1932 * effect. However, it will emit a warning for each. I believe that
1933 * there are some cases in C (especially with GCC extensions) where
1934 * it is useful to have an intermediate step in a sequence have no
1935 * effect, but I don't think these cases exist in GLSL. Either way,
1936 * it would be a giant hassle to replicate that behavior.
1937 */
1938 if (previous_tail_pred == instructions->tail_pred) {
1939 _mesa_glsl_warning(&previous_operand_loc, state,
1940 "left-hand operand of comma expression has "
1941 "no effect");
1942 }
1943
1944 /* tail_pred is directly accessed instead of using the get_tail()
1945 * method for performance reasons. get_tail() has extra code to
1946 * return NULL when the list is empty. We don't care about that
1947 * here, so using tail_pred directly is fine.
1948 */
1949 previous_tail_pred = instructions->tail_pred;
1950 previous_operand_loc = ast->get_location();
1951
1952 result = ast->hir(instructions, state);
1953 }
1954
1955 /* Any errors should have already been emitted in the loop above.
1956 */
1957 error_emitted = true;
1958 break;
1959 }
1960 }
1961 type = NULL; /* use result->type, not type. */
1962 assert(result != NULL || !needs_rvalue);
1963
1964 if (result && result->type->is_error() && !error_emitted)
1965 _mesa_glsl_error(& loc, state, "type mismatch");
1966
1967 return result;
1968 }
1969
1970 bool
1971 ast_expression::has_sequence_subexpression() const
1972 {
1973 switch (this->oper) {
1974 case ast_plus:
1975 case ast_neg:
1976 case ast_bit_not:
1977 case ast_logic_not:
1978 case ast_pre_inc:
1979 case ast_pre_dec:
1980 case ast_post_inc:
1981 case ast_post_dec:
1982 return this->subexpressions[0]->has_sequence_subexpression();
1983
1984 case ast_assign:
1985 case ast_add:
1986 case ast_sub:
1987 case ast_mul:
1988 case ast_div:
1989 case ast_mod:
1990 case ast_lshift:
1991 case ast_rshift:
1992 case ast_less:
1993 case ast_greater:
1994 case ast_lequal:
1995 case ast_gequal:
1996 case ast_nequal:
1997 case ast_equal:
1998 case ast_bit_and:
1999 case ast_bit_xor:
2000 case ast_bit_or:
2001 case ast_logic_and:
2002 case ast_logic_or:
2003 case ast_logic_xor:
2004 case ast_array_index:
2005 case ast_mul_assign:
2006 case ast_div_assign:
2007 case ast_add_assign:
2008 case ast_sub_assign:
2009 case ast_mod_assign:
2010 case ast_ls_assign:
2011 case ast_rs_assign:
2012 case ast_and_assign:
2013 case ast_xor_assign:
2014 case ast_or_assign:
2015 return this->subexpressions[0]->has_sequence_subexpression() ||
2016 this->subexpressions[1]->has_sequence_subexpression();
2017
2018 case ast_conditional:
2019 return this->subexpressions[0]->has_sequence_subexpression() ||
2020 this->subexpressions[1]->has_sequence_subexpression() ||
2021 this->subexpressions[2]->has_sequence_subexpression();
2022
2023 case ast_sequence:
2024 return true;
2025
2026 case ast_field_selection:
2027 case ast_identifier:
2028 case ast_int_constant:
2029 case ast_uint_constant:
2030 case ast_float_constant:
2031 case ast_bool_constant:
2032 case ast_double_constant:
2033 return false;
2034
2035 case ast_aggregate:
2036 unreachable("ast_aggregate: Should never get here.");
2037
2038 case ast_function_call:
2039 unreachable("should be handled by ast_function_expression::hir");
2040
2041 case ast_unsized_array_dim:
2042 unreachable("ast_unsized_array_dim: Should never get here.");
2043 }
2044
2045 return false;
2046 }
2047
2048 ir_rvalue *
2049 ast_expression_statement::hir(exec_list *instructions,
2050 struct _mesa_glsl_parse_state *state)
2051 {
2052 /* It is possible to have expression statements that don't have an
2053 * expression. This is the solitary semicolon:
2054 *
2055 * for (i = 0; i < 5; i++)
2056 * ;
2057 *
2058 * In this case the expression will be NULL. Test for NULL and don't do
2059 * anything in that case.
2060 */
2061 if (expression != NULL)
2062 expression->hir_no_rvalue(instructions, state);
2063
2064 /* Statements do not have r-values.
2065 */
2066 return NULL;
2067 }
2068
2069
2070 ir_rvalue *
2071 ast_compound_statement::hir(exec_list *instructions,
2072 struct _mesa_glsl_parse_state *state)
2073 {
2074 if (new_scope)
2075 state->symbols->push_scope();
2076
2077 foreach_list_typed (ast_node, ast, link, &this->statements)
2078 ast->hir(instructions, state);
2079
2080 if (new_scope)
2081 state->symbols->pop_scope();
2082
2083 /* Compound statements do not have r-values.
2084 */
2085 return NULL;
2086 }
2087
2088 /**
2089 * Evaluate the given exec_node (which should be an ast_node representing
2090 * a single array dimension) and return its integer value.
2091 */
2092 static unsigned
2093 process_array_size(exec_node *node,
2094 struct _mesa_glsl_parse_state *state)
2095 {
2096 exec_list dummy_instructions;
2097
2098 ast_node *array_size = exec_node_data(ast_node, node, link);
2099
2100 /**
2101 * Dimensions other than the outermost dimension can by unsized if they
2102 * are immediately sized by a constructor or initializer.
2103 */
2104 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2105 return 0;
2106
2107 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2108 YYLTYPE loc = array_size->get_location();
2109
2110 if (ir == NULL) {
2111 _mesa_glsl_error(& loc, state,
2112 "array size could not be resolved");
2113 return 0;
2114 }
2115
2116 if (!ir->type->is_integer()) {
2117 _mesa_glsl_error(& loc, state,
2118 "array size must be integer type");
2119 return 0;
2120 }
2121
2122 if (!ir->type->is_scalar()) {
2123 _mesa_glsl_error(& loc, state,
2124 "array size must be scalar type");
2125 return 0;
2126 }
2127
2128 ir_constant *const size = ir->constant_expression_value();
2129 if (size == NULL || array_size->has_sequence_subexpression()) {
2130 _mesa_glsl_error(& loc, state, "array size must be a "
2131 "constant valued expression");
2132 return 0;
2133 }
2134
2135 if (size->value.i[0] <= 0) {
2136 _mesa_glsl_error(& loc, state, "array size must be > 0");
2137 return 0;
2138 }
2139
2140 assert(size->type == ir->type);
2141
2142 /* If the array size is const (and we've verified that
2143 * it is) then no instructions should have been emitted
2144 * when we converted it to HIR. If they were emitted,
2145 * then either the array size isn't const after all, or
2146 * we are emitting unnecessary instructions.
2147 */
2148 assert(dummy_instructions.is_empty());
2149
2150 return size->value.u[0];
2151 }
2152
2153 static const glsl_type *
2154 process_array_type(YYLTYPE *loc, const glsl_type *base,
2155 ast_array_specifier *array_specifier,
2156 struct _mesa_glsl_parse_state *state)
2157 {
2158 const glsl_type *array_type = base;
2159
2160 if (array_specifier != NULL) {
2161 if (base->is_array()) {
2162
2163 /* From page 19 (page 25) of the GLSL 1.20 spec:
2164 *
2165 * "Only one-dimensional arrays may be declared."
2166 */
2167 if (!state->check_arrays_of_arrays_allowed(loc)) {
2168 return glsl_type::error_type;
2169 }
2170 }
2171
2172 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2173 !node->is_head_sentinel(); node = node->prev) {
2174 unsigned array_size = process_array_size(node, state);
2175 array_type = glsl_type::get_array_instance(array_type, array_size);
2176 }
2177 }
2178
2179 return array_type;
2180 }
2181
2182 static bool
2183 precision_qualifier_allowed(const glsl_type *type)
2184 {
2185 /* Precision qualifiers apply to floating point, integer and opaque
2186 * types.
2187 *
2188 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2189 * "Any floating point or any integer declaration can have the type
2190 * preceded by one of these precision qualifiers [...] Literal
2191 * constants do not have precision qualifiers. Neither do Boolean
2192 * variables.
2193 *
2194 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2195 * spec also says:
2196 *
2197 * "Precision qualifiers are added for code portability with OpenGL
2198 * ES, not for functionality. They have the same syntax as in OpenGL
2199 * ES."
2200 *
2201 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2202 *
2203 * "uniform lowp sampler2D sampler;
2204 * highp vec2 coord;
2205 * ...
2206 * lowp vec4 col = texture2D (sampler, coord);
2207 * // texture2D returns lowp"
2208 *
2209 * From this, we infer that GLSL 1.30 (and later) should allow precision
2210 * qualifiers on sampler types just like float and integer types.
2211 */
2212 return (type->is_float()
2213 || type->is_integer()
2214 || type->contains_opaque())
2215 && !type->without_array()->is_record();
2216 }
2217
2218 const glsl_type *
2219 ast_type_specifier::glsl_type(const char **name,
2220 struct _mesa_glsl_parse_state *state) const
2221 {
2222 const struct glsl_type *type;
2223
2224 type = state->symbols->get_type(this->type_name);
2225 *name = this->type_name;
2226
2227 YYLTYPE loc = this->get_location();
2228 type = process_array_type(&loc, type, this->array_specifier, state);
2229
2230 return type;
2231 }
2232
2233 /**
2234 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2235 *
2236 * "The precision statement
2237 *
2238 * precision precision-qualifier type;
2239 *
2240 * can be used to establish a default precision qualifier. The type field can
2241 * be either int or float or any of the sampler types, (...) If type is float,
2242 * the directive applies to non-precision-qualified floating point type
2243 * (scalar, vector, and matrix) declarations. If type is int, the directive
2244 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2245 * and unsigned) declarations."
2246 *
2247 * We use the symbol table to keep the values of the default precisions for
2248 * each 'type' in each scope and we use the 'type' string from the precision
2249 * statement as key in the symbol table. When we want to retrieve the default
2250 * precision associated with a given glsl_type we need to know the type string
2251 * associated with it. This is what this function returns.
2252 */
2253 static const char *
2254 get_type_name_for_precision_qualifier(const glsl_type *type)
2255 {
2256 switch (type->base_type) {
2257 case GLSL_TYPE_FLOAT:
2258 return "float";
2259 case GLSL_TYPE_UINT:
2260 case GLSL_TYPE_INT:
2261 return "int";
2262 case GLSL_TYPE_ATOMIC_UINT:
2263 return "atomic_uint";
2264 case GLSL_TYPE_IMAGE:
2265 /* fallthrough */
2266 case GLSL_TYPE_SAMPLER: {
2267 const unsigned type_idx =
2268 type->sampler_array + 2 * type->sampler_shadow;
2269 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2270 assert(type_idx < 4);
2271 switch (type->sampled_type) {
2272 case GLSL_TYPE_FLOAT:
2273 switch (type->sampler_dimensionality) {
2274 case GLSL_SAMPLER_DIM_1D: {
2275 assert(type->base_type == GLSL_TYPE_SAMPLER);
2276 static const char *const names[4] = {
2277 "sampler1D", "sampler1DArray",
2278 "sampler1DShadow", "sampler1DArrayShadow"
2279 };
2280 return names[type_idx];
2281 }
2282 case GLSL_SAMPLER_DIM_2D: {
2283 static const char *const names[8] = {
2284 "sampler2D", "sampler2DArray",
2285 "sampler2DShadow", "sampler2DArrayShadow",
2286 "image2D", "image2DArray", NULL, NULL
2287 };
2288 return names[offset + type_idx];
2289 }
2290 case GLSL_SAMPLER_DIM_3D: {
2291 static const char *const names[8] = {
2292 "sampler3D", NULL, NULL, NULL,
2293 "image3D", NULL, NULL, NULL
2294 };
2295 return names[offset + type_idx];
2296 }
2297 case GLSL_SAMPLER_DIM_CUBE: {
2298 static const char *const names[8] = {
2299 "samplerCube", "samplerCubeArray",
2300 "samplerCubeShadow", "samplerCubeArrayShadow",
2301 "imageCube", NULL, NULL, NULL
2302 };
2303 return names[offset + type_idx];
2304 }
2305 case GLSL_SAMPLER_DIM_MS: {
2306 assert(type->base_type == GLSL_TYPE_SAMPLER);
2307 static const char *const names[4] = {
2308 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2309 };
2310 return names[type_idx];
2311 }
2312 case GLSL_SAMPLER_DIM_RECT: {
2313 assert(type->base_type == GLSL_TYPE_SAMPLER);
2314 static const char *const names[4] = {
2315 "samplerRect", NULL, "samplerRectShadow", NULL
2316 };
2317 return names[type_idx];
2318 }
2319 case GLSL_SAMPLER_DIM_BUF: {
2320 assert(type->base_type == GLSL_TYPE_SAMPLER);
2321 static const char *const names[4] = {
2322 "samplerBuffer", NULL, NULL, NULL
2323 };
2324 return names[type_idx];
2325 }
2326 case GLSL_SAMPLER_DIM_EXTERNAL: {
2327 assert(type->base_type == GLSL_TYPE_SAMPLER);
2328 static const char *const names[4] = {
2329 "samplerExternalOES", NULL, NULL, NULL
2330 };
2331 return names[type_idx];
2332 }
2333 default:
2334 unreachable("Unsupported sampler/image dimensionality");
2335 } /* sampler/image float dimensionality */
2336 break;
2337 case GLSL_TYPE_INT:
2338 switch (type->sampler_dimensionality) {
2339 case GLSL_SAMPLER_DIM_1D: {
2340 assert(type->base_type == GLSL_TYPE_SAMPLER);
2341 static const char *const names[4] = {
2342 "isampler1D", "isampler1DArray", NULL, NULL
2343 };
2344 return names[type_idx];
2345 }
2346 case GLSL_SAMPLER_DIM_2D: {
2347 static const char *const names[8] = {
2348 "isampler2D", "isampler2DArray", NULL, NULL,
2349 "iimage2D", "iimage2DArray", NULL, NULL
2350 };
2351 return names[offset + type_idx];
2352 }
2353 case GLSL_SAMPLER_DIM_3D: {
2354 static const char *const names[8] = {
2355 "isampler3D", NULL, NULL, NULL,
2356 "iimage3D", NULL, NULL, NULL
2357 };
2358 return names[offset + type_idx];
2359 }
2360 case GLSL_SAMPLER_DIM_CUBE: {
2361 static const char *const names[8] = {
2362 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2363 "iimageCube", NULL, NULL, NULL
2364 };
2365 return names[offset + type_idx];
2366 }
2367 case GLSL_SAMPLER_DIM_MS: {
2368 assert(type->base_type == GLSL_TYPE_SAMPLER);
2369 static const char *const names[4] = {
2370 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2371 };
2372 return names[type_idx];
2373 }
2374 case GLSL_SAMPLER_DIM_RECT: {
2375 assert(type->base_type == GLSL_TYPE_SAMPLER);
2376 static const char *const names[4] = {
2377 "isamplerRect", NULL, "isamplerRectShadow", NULL
2378 };
2379 return names[type_idx];
2380 }
2381 case GLSL_SAMPLER_DIM_BUF: {
2382 assert(type->base_type == GLSL_TYPE_SAMPLER);
2383 static const char *const names[4] = {
2384 "isamplerBuffer", NULL, NULL, NULL
2385 };
2386 return names[type_idx];
2387 }
2388 default:
2389 unreachable("Unsupported isampler/iimage dimensionality");
2390 } /* sampler/image int dimensionality */
2391 break;
2392 case GLSL_TYPE_UINT:
2393 switch (type->sampler_dimensionality) {
2394 case GLSL_SAMPLER_DIM_1D: {
2395 assert(type->base_type == GLSL_TYPE_SAMPLER);
2396 static const char *const names[4] = {
2397 "usampler1D", "usampler1DArray", NULL, NULL
2398 };
2399 return names[type_idx];
2400 }
2401 case GLSL_SAMPLER_DIM_2D: {
2402 static const char *const names[8] = {
2403 "usampler2D", "usampler2DArray", NULL, NULL,
2404 "uimage2D", "uimage2DArray", NULL, NULL
2405 };
2406 return names[offset + type_idx];
2407 }
2408 case GLSL_SAMPLER_DIM_3D: {
2409 static const char *const names[8] = {
2410 "usampler3D", NULL, NULL, NULL,
2411 "uimage3D", NULL, NULL, NULL
2412 };
2413 return names[offset + type_idx];
2414 }
2415 case GLSL_SAMPLER_DIM_CUBE: {
2416 static const char *const names[8] = {
2417 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2418 "uimageCube", NULL, NULL, NULL
2419 };
2420 return names[offset + type_idx];
2421 }
2422 case GLSL_SAMPLER_DIM_MS: {
2423 assert(type->base_type == GLSL_TYPE_SAMPLER);
2424 static const char *const names[4] = {
2425 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2426 };
2427 return names[type_idx];
2428 }
2429 case GLSL_SAMPLER_DIM_RECT: {
2430 assert(type->base_type == GLSL_TYPE_SAMPLER);
2431 static const char *const names[4] = {
2432 "usamplerRect", NULL, "usamplerRectShadow", NULL
2433 };
2434 return names[type_idx];
2435 }
2436 case GLSL_SAMPLER_DIM_BUF: {
2437 assert(type->base_type == GLSL_TYPE_SAMPLER);
2438 static const char *const names[4] = {
2439 "usamplerBuffer", NULL, NULL, NULL
2440 };
2441 return names[type_idx];
2442 }
2443 default:
2444 unreachable("Unsupported usampler/uimage dimensionality");
2445 } /* sampler/image uint dimensionality */
2446 break;
2447 default:
2448 unreachable("Unsupported sampler/image type");
2449 } /* sampler/image type */
2450 break;
2451 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2452 break;
2453 default:
2454 unreachable("Unsupported type");
2455 } /* base type */
2456 }
2457
2458 static unsigned
2459 select_gles_precision(unsigned qual_precision,
2460 const glsl_type *type,
2461 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2462 {
2463 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2464 * In GLES we take the precision from the type qualifier if present,
2465 * otherwise, if the type of the variable allows precision qualifiers at
2466 * all, we look for the default precision qualifier for that type in the
2467 * current scope.
2468 */
2469 assert(state->es_shader);
2470
2471 unsigned precision = GLSL_PRECISION_NONE;
2472 if (qual_precision) {
2473 precision = qual_precision;
2474 } else if (precision_qualifier_allowed(type)) {
2475 const char *type_name =
2476 get_type_name_for_precision_qualifier(type->without_array());
2477 assert(type_name != NULL);
2478
2479 precision =
2480 state->symbols->get_default_precision_qualifier(type_name);
2481 if (precision == ast_precision_none) {
2482 _mesa_glsl_error(loc, state,
2483 "No precision specified in this scope for type `%s'",
2484 type->name);
2485 }
2486 }
2487 return precision;
2488 }
2489
2490 const glsl_type *
2491 ast_fully_specified_type::glsl_type(const char **name,
2492 struct _mesa_glsl_parse_state *state) const
2493 {
2494 return this->specifier->glsl_type(name, state);
2495 }
2496
2497 /**
2498 * Determine whether a toplevel variable declaration declares a varying. This
2499 * function operates by examining the variable's mode and the shader target,
2500 * so it correctly identifies linkage variables regardless of whether they are
2501 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2502 *
2503 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2504 * this function will produce undefined results.
2505 */
2506 static bool
2507 is_varying_var(ir_variable *var, gl_shader_stage target)
2508 {
2509 switch (target) {
2510 case MESA_SHADER_VERTEX:
2511 return var->data.mode == ir_var_shader_out;
2512 case MESA_SHADER_FRAGMENT:
2513 return var->data.mode == ir_var_shader_in;
2514 default:
2515 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2516 }
2517 }
2518
2519
2520 /**
2521 * Matrix layout qualifiers are only allowed on certain types
2522 */
2523 static void
2524 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2525 YYLTYPE *loc,
2526 const glsl_type *type,
2527 ir_variable *var)
2528 {
2529 if (var && !var->is_in_buffer_block()) {
2530 /* Layout qualifiers may only apply to interface blocks and fields in
2531 * them.
2532 */
2533 _mesa_glsl_error(loc, state,
2534 "uniform block layout qualifiers row_major and "
2535 "column_major may not be applied to variables "
2536 "outside of uniform blocks");
2537 } else if (!type->without_array()->is_matrix()) {
2538 /* The OpenGL ES 3.0 conformance tests did not originally allow
2539 * matrix layout qualifiers on non-matrices. However, the OpenGL
2540 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2541 * amended to specifically allow these layouts on all types. Emit
2542 * a warning so that people know their code may not be portable.
2543 */
2544 _mesa_glsl_warning(loc, state,
2545 "uniform block layout qualifiers row_major and "
2546 "column_major applied to non-matrix types may "
2547 "be rejected by older compilers");
2548 }
2549 }
2550
2551 static bool
2552 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2553 YYLTYPE *loc,
2554 const char *qual_indentifier,
2555 ast_expression *const_expression,
2556 unsigned *value)
2557 {
2558 exec_list dummy_instructions;
2559
2560 if (const_expression == NULL) {
2561 *value = 0;
2562 return true;
2563 }
2564
2565 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2566
2567 ir_constant *const const_int = ir->constant_expression_value();
2568 if (const_int == NULL || !const_int->type->is_integer()) {
2569 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2570 "expression", qual_indentifier);
2571 return false;
2572 }
2573
2574 if (const_int->value.i[0] < 0) {
2575 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2576 qual_indentifier, const_int->value.u[0]);
2577 return false;
2578 }
2579
2580 /* If the location is const (and we've verified that
2581 * it is) then no instructions should have been emitted
2582 * when we converted it to HIR. If they were emitted,
2583 * then either the location isn't const after all, or
2584 * we are emitting unnecessary instructions.
2585 */
2586 assert(dummy_instructions.is_empty());
2587
2588 *value = const_int->value.u[0];
2589 return true;
2590 }
2591
2592 static bool
2593 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2594 unsigned stream)
2595 {
2596 if (stream >= state->ctx->Const.MaxVertexStreams) {
2597 _mesa_glsl_error(loc, state,
2598 "invalid stream specified %d is larger than "
2599 "MAX_VERTEX_STREAMS - 1 (%d).",
2600 stream, state->ctx->Const.MaxVertexStreams - 1);
2601 return false;
2602 }
2603
2604 return true;
2605 }
2606
2607 static void
2608 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2609 YYLTYPE *loc,
2610 ir_variable *var,
2611 const glsl_type *type,
2612 const ast_type_qualifier *qual)
2613 {
2614 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2615 _mesa_glsl_error(loc, state,
2616 "the \"binding\" qualifier only applies to uniforms and "
2617 "shader storage buffer objects");
2618 return;
2619 }
2620
2621 unsigned qual_binding;
2622 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2623 &qual_binding)) {
2624 return;
2625 }
2626
2627 const struct gl_context *const ctx = state->ctx;
2628 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2629 unsigned max_index = qual_binding + elements - 1;
2630 const glsl_type *base_type = type->without_array();
2631
2632 if (base_type->is_interface()) {
2633 /* UBOs. From page 60 of the GLSL 4.20 specification:
2634 * "If the binding point for any uniform block instance is less than zero,
2635 * or greater than or equal to the implementation-dependent maximum
2636 * number of uniform buffer bindings, a compilation error will occur.
2637 * When the binding identifier is used with a uniform block instanced as
2638 * an array of size N, all elements of the array from binding through
2639 * binding + N – 1 must be within this range."
2640 *
2641 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2642 */
2643 if (qual->flags.q.uniform &&
2644 max_index >= ctx->Const.MaxUniformBufferBindings) {
2645 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2646 "the maximum number of UBO binding points (%d)",
2647 qual_binding, elements,
2648 ctx->Const.MaxUniformBufferBindings);
2649 return;
2650 }
2651
2652 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2653 * "If the binding point for any uniform or shader storage block instance
2654 * is less than zero, or greater than or equal to the
2655 * implementation-dependent maximum number of uniform buffer bindings, a
2656 * compile-time error will occur. When the binding identifier is used
2657 * with a uniform or shader storage block instanced as an array of size
2658 * N, all elements of the array from binding through binding + N – 1 must
2659 * be within this range."
2660 */
2661 if (qual->flags.q.buffer &&
2662 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2663 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2664 "the maximum number of SSBO binding points (%d)",
2665 qual_binding, elements,
2666 ctx->Const.MaxShaderStorageBufferBindings);
2667 return;
2668 }
2669 } else if (base_type->is_sampler()) {
2670 /* Samplers. From page 63 of the GLSL 4.20 specification:
2671 * "If the binding is less than zero, or greater than or equal to the
2672 * implementation-dependent maximum supported number of units, a
2673 * compilation error will occur. When the binding identifier is used
2674 * with an array of size N, all elements of the array from binding
2675 * through binding + N - 1 must be within this range."
2676 */
2677 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2678
2679 if (max_index >= limit) {
2680 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2681 "exceeds the maximum number of texture image units "
2682 "(%u)", qual_binding, elements, limit);
2683
2684 return;
2685 }
2686 } else if (base_type->contains_atomic()) {
2687 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2688 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2689 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2690 " maximum number of atomic counter buffer bindings"
2691 "(%u)", qual_binding,
2692 ctx->Const.MaxAtomicBufferBindings);
2693
2694 return;
2695 }
2696 } else if ((state->is_version(420, 310) ||
2697 state->ARB_shading_language_420pack_enable) &&
2698 base_type->is_image()) {
2699 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2700 if (max_index >= ctx->Const.MaxImageUnits) {
2701 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2702 " maximum number of image units (%d)", max_index,
2703 ctx->Const.MaxImageUnits);
2704 return;
2705 }
2706
2707 } else {
2708 _mesa_glsl_error(loc, state,
2709 "the \"binding\" qualifier only applies to uniform "
2710 "blocks, opaque variables, or arrays thereof");
2711 return;
2712 }
2713
2714 var->data.explicit_binding = true;
2715 var->data.binding = qual_binding;
2716
2717 return;
2718 }
2719
2720
2721 static glsl_interp_qualifier
2722 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2723 ir_variable_mode mode,
2724 struct _mesa_glsl_parse_state *state,
2725 YYLTYPE *loc)
2726 {
2727 glsl_interp_qualifier interpolation;
2728 if (qual->flags.q.flat)
2729 interpolation = INTERP_QUALIFIER_FLAT;
2730 else if (qual->flags.q.noperspective)
2731 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2732 else if (qual->flags.q.smooth)
2733 interpolation = INTERP_QUALIFIER_SMOOTH;
2734 else
2735 interpolation = INTERP_QUALIFIER_NONE;
2736
2737 if (interpolation != INTERP_QUALIFIER_NONE) {
2738 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2739 _mesa_glsl_error(loc, state,
2740 "interpolation qualifier `%s' can only be applied to "
2741 "shader inputs or outputs.",
2742 interpolation_string(interpolation));
2743
2744 }
2745
2746 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2747 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2748 _mesa_glsl_error(loc, state,
2749 "interpolation qualifier `%s' cannot be applied to "
2750 "vertex shader inputs or fragment shader outputs",
2751 interpolation_string(interpolation));
2752 }
2753 } else if (state->es_shader &&
2754 ((mode == ir_var_shader_in &&
2755 state->stage != MESA_SHADER_VERTEX) ||
2756 (mode == ir_var_shader_out &&
2757 state->stage != MESA_SHADER_FRAGMENT))) {
2758 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
2759 *
2760 * "When no interpolation qualifier is present, smooth interpolation
2761 * is used."
2762 */
2763 interpolation = INTERP_QUALIFIER_SMOOTH;
2764 }
2765
2766 return interpolation;
2767 }
2768
2769
2770 static void
2771 apply_explicit_location(const struct ast_type_qualifier *qual,
2772 ir_variable *var,
2773 struct _mesa_glsl_parse_state *state,
2774 YYLTYPE *loc)
2775 {
2776 bool fail = false;
2777
2778 unsigned qual_location;
2779 if (!process_qualifier_constant(state, loc, "location", qual->location,
2780 &qual_location)) {
2781 return;
2782 }
2783
2784 /* Checks for GL_ARB_explicit_uniform_location. */
2785 if (qual->flags.q.uniform) {
2786 if (!state->check_explicit_uniform_location_allowed(loc, var))
2787 return;
2788
2789 const struct gl_context *const ctx = state->ctx;
2790 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2791
2792 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2793 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2794 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2795 ctx->Const.MaxUserAssignableUniformLocations);
2796 return;
2797 }
2798
2799 var->data.explicit_location = true;
2800 var->data.location = qual_location;
2801 return;
2802 }
2803
2804 /* Between GL_ARB_explicit_attrib_location an
2805 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2806 * stage can be assigned explicit locations. The checking here associates
2807 * the correct extension with the correct stage's input / output:
2808 *
2809 * input output
2810 * ----- ------
2811 * vertex explicit_loc sso
2812 * tess control sso sso
2813 * tess eval sso sso
2814 * geometry sso sso
2815 * fragment sso explicit_loc
2816 */
2817 switch (state->stage) {
2818 case MESA_SHADER_VERTEX:
2819 if (var->data.mode == ir_var_shader_in) {
2820 if (!state->check_explicit_attrib_location_allowed(loc, var))
2821 return;
2822
2823 break;
2824 }
2825
2826 if (var->data.mode == ir_var_shader_out) {
2827 if (!state->check_separate_shader_objects_allowed(loc, var))
2828 return;
2829
2830 break;
2831 }
2832
2833 fail = true;
2834 break;
2835
2836 case MESA_SHADER_TESS_CTRL:
2837 case MESA_SHADER_TESS_EVAL:
2838 case MESA_SHADER_GEOMETRY:
2839 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2840 if (!state->check_separate_shader_objects_allowed(loc, var))
2841 return;
2842
2843 break;
2844 }
2845
2846 fail = true;
2847 break;
2848
2849 case MESA_SHADER_FRAGMENT:
2850 if (var->data.mode == ir_var_shader_in) {
2851 if (!state->check_separate_shader_objects_allowed(loc, var))
2852 return;
2853
2854 break;
2855 }
2856
2857 if (var->data.mode == ir_var_shader_out) {
2858 if (!state->check_explicit_attrib_location_allowed(loc, var))
2859 return;
2860
2861 break;
2862 }
2863
2864 fail = true;
2865 break;
2866
2867 case MESA_SHADER_COMPUTE:
2868 _mesa_glsl_error(loc, state,
2869 "compute shader variables cannot be given "
2870 "explicit locations");
2871 return;
2872 };
2873
2874 if (fail) {
2875 _mesa_glsl_error(loc, state,
2876 "%s cannot be given an explicit location in %s shader",
2877 mode_string(var),
2878 _mesa_shader_stage_to_string(state->stage));
2879 } else {
2880 var->data.explicit_location = true;
2881
2882 switch (state->stage) {
2883 case MESA_SHADER_VERTEX:
2884 var->data.location = (var->data.mode == ir_var_shader_in)
2885 ? (qual_location + VERT_ATTRIB_GENERIC0)
2886 : (qual_location + VARYING_SLOT_VAR0);
2887 break;
2888
2889 case MESA_SHADER_TESS_CTRL:
2890 case MESA_SHADER_TESS_EVAL:
2891 case MESA_SHADER_GEOMETRY:
2892 if (var->data.patch)
2893 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2894 else
2895 var->data.location = qual_location + VARYING_SLOT_VAR0;
2896 break;
2897
2898 case MESA_SHADER_FRAGMENT:
2899 var->data.location = (var->data.mode == ir_var_shader_out)
2900 ? (qual_location + FRAG_RESULT_DATA0)
2901 : (qual_location + VARYING_SLOT_VAR0);
2902 break;
2903 case MESA_SHADER_COMPUTE:
2904 assert(!"Unexpected shader type");
2905 break;
2906 }
2907
2908 /* Check if index was set for the uniform instead of the function */
2909 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2910 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2911 "used with subroutine functions");
2912 return;
2913 }
2914
2915 unsigned qual_index;
2916 if (qual->flags.q.explicit_index &&
2917 process_qualifier_constant(state, loc, "index", qual->index,
2918 &qual_index)) {
2919 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2920 * Layout Qualifiers):
2921 *
2922 * "It is also a compile-time error if a fragment shader
2923 * sets a layout index to less than 0 or greater than 1."
2924 *
2925 * Older specifications don't mandate a behavior; we take
2926 * this as a clarification and always generate the error.
2927 */
2928 if (qual_index > 1) {
2929 _mesa_glsl_error(loc, state,
2930 "explicit index may only be 0 or 1");
2931 } else {
2932 var->data.explicit_index = true;
2933 var->data.index = qual_index;
2934 }
2935 }
2936 }
2937 }
2938
2939 static void
2940 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2941 ir_variable *var,
2942 struct _mesa_glsl_parse_state *state,
2943 YYLTYPE *loc)
2944 {
2945 const glsl_type *base_type = var->type->without_array();
2946
2947 if (base_type->is_image()) {
2948 if (var->data.mode != ir_var_uniform &&
2949 var->data.mode != ir_var_function_in) {
2950 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2951 "function parameters or uniform-qualified "
2952 "global variables");
2953 }
2954
2955 var->data.image_read_only |= qual->flags.q.read_only;
2956 var->data.image_write_only |= qual->flags.q.write_only;
2957 var->data.image_coherent |= qual->flags.q.coherent;
2958 var->data.image_volatile |= qual->flags.q._volatile;
2959 var->data.image_restrict |= qual->flags.q.restrict_flag;
2960 var->data.read_only = true;
2961
2962 if (qual->flags.q.explicit_image_format) {
2963 if (var->data.mode == ir_var_function_in) {
2964 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2965 "used on image function parameters");
2966 }
2967
2968 if (qual->image_base_type != base_type->sampled_type) {
2969 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2970 "base data type of the image");
2971 }
2972
2973 var->data.image_format = qual->image_format;
2974 } else {
2975 if (var->data.mode == ir_var_uniform) {
2976 if (state->es_shader) {
2977 _mesa_glsl_error(loc, state, "all image uniforms "
2978 "must have a format layout qualifier");
2979
2980 } else if (!qual->flags.q.write_only) {
2981 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2982 "`writeonly' must have a format layout "
2983 "qualifier");
2984 }
2985 }
2986
2987 var->data.image_format = GL_NONE;
2988 }
2989
2990 /* From page 70 of the GLSL ES 3.1 specification:
2991 *
2992 * "Except for image variables qualified with the format qualifiers
2993 * r32f, r32i, and r32ui, image variables must specify either memory
2994 * qualifier readonly or the memory qualifier writeonly."
2995 */
2996 if (state->es_shader &&
2997 var->data.image_format != GL_R32F &&
2998 var->data.image_format != GL_R32I &&
2999 var->data.image_format != GL_R32UI &&
3000 !var->data.image_read_only &&
3001 !var->data.image_write_only) {
3002 _mesa_glsl_error(loc, state, "image variables of format other than "
3003 "r32f, r32i or r32ui must be qualified `readonly' or "
3004 "`writeonly'");
3005 }
3006
3007 } else if (qual->flags.q.read_only ||
3008 qual->flags.q.write_only ||
3009 qual->flags.q.coherent ||
3010 qual->flags.q._volatile ||
3011 qual->flags.q.restrict_flag ||
3012 qual->flags.q.explicit_image_format) {
3013 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3014 "images");
3015 }
3016 }
3017
3018 static inline const char*
3019 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3020 {
3021 if (origin_upper_left && pixel_center_integer)
3022 return "origin_upper_left, pixel_center_integer";
3023 else if (origin_upper_left)
3024 return "origin_upper_left";
3025 else if (pixel_center_integer)
3026 return "pixel_center_integer";
3027 else
3028 return " ";
3029 }
3030
3031 static inline bool
3032 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3033 const struct ast_type_qualifier *qual)
3034 {
3035 /* If gl_FragCoord was previously declared, and the qualifiers were
3036 * different in any way, return true.
3037 */
3038 if (state->fs_redeclares_gl_fragcoord) {
3039 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3040 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3041 }
3042
3043 return false;
3044 }
3045
3046 static inline void
3047 validate_array_dimensions(const glsl_type *t,
3048 struct _mesa_glsl_parse_state *state,
3049 YYLTYPE *loc) {
3050 if (t->is_array()) {
3051 t = t->fields.array;
3052 while (t->is_array()) {
3053 if (t->is_unsized_array()) {
3054 _mesa_glsl_error(loc, state,
3055 "only the outermost array dimension can "
3056 "be unsized",
3057 t->name);
3058 break;
3059 }
3060 t = t->fields.array;
3061 }
3062 }
3063 }
3064
3065 static void
3066 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3067 ir_variable *var,
3068 struct _mesa_glsl_parse_state *state,
3069 YYLTYPE *loc)
3070 {
3071 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3072
3073 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3074 *
3075 * "Within any shader, the first redeclarations of gl_FragCoord
3076 * must appear before any use of gl_FragCoord."
3077 *
3078 * Generate a compiler error if above condition is not met by the
3079 * fragment shader.
3080 */
3081 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3082 if (earlier != NULL &&
3083 earlier->data.used &&
3084 !state->fs_redeclares_gl_fragcoord) {
3085 _mesa_glsl_error(loc, state,
3086 "gl_FragCoord used before its first redeclaration "
3087 "in fragment shader");
3088 }
3089
3090 /* Make sure all gl_FragCoord redeclarations specify the same layout
3091 * qualifiers.
3092 */
3093 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3094 const char *const qual_string =
3095 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3096 qual->flags.q.pixel_center_integer);
3097
3098 const char *const state_string =
3099 get_layout_qualifier_string(state->fs_origin_upper_left,
3100 state->fs_pixel_center_integer);
3101
3102 _mesa_glsl_error(loc, state,
3103 "gl_FragCoord redeclared with different layout "
3104 "qualifiers (%s) and (%s) ",
3105 state_string,
3106 qual_string);
3107 }
3108 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3109 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3110 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3111 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3112 state->fs_redeclares_gl_fragcoord =
3113 state->fs_origin_upper_left ||
3114 state->fs_pixel_center_integer ||
3115 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3116 }
3117
3118 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3119 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3120 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3121 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3122 const char *const qual_string = (qual->flags.q.origin_upper_left)
3123 ? "origin_upper_left" : "pixel_center_integer";
3124
3125 _mesa_glsl_error(loc, state,
3126 "layout qualifier `%s' can only be applied to "
3127 "fragment shader input `gl_FragCoord'",
3128 qual_string);
3129 }
3130
3131 if (qual->flags.q.explicit_location) {
3132 apply_explicit_location(qual, var, state, loc);
3133 } else if (qual->flags.q.explicit_index) {
3134 if (!qual->flags.q.subroutine_def)
3135 _mesa_glsl_error(loc, state,
3136 "explicit index requires explicit location");
3137 }
3138
3139 if (qual->flags.q.explicit_binding) {
3140 apply_explicit_binding(state, loc, var, var->type, qual);
3141 }
3142
3143 if (state->stage == MESA_SHADER_GEOMETRY &&
3144 qual->flags.q.out && qual->flags.q.stream) {
3145 unsigned qual_stream;
3146 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3147 &qual_stream) &&
3148 validate_stream_qualifier(loc, state, qual_stream)) {
3149 var->data.stream = qual_stream;
3150 }
3151 }
3152
3153 if (var->type->contains_atomic()) {
3154 if (var->data.mode == ir_var_uniform) {
3155 if (var->data.explicit_binding) {
3156 unsigned *offset =
3157 &state->atomic_counter_offsets[var->data.binding];
3158
3159 if (*offset % ATOMIC_COUNTER_SIZE)
3160 _mesa_glsl_error(loc, state,
3161 "misaligned atomic counter offset");
3162
3163 var->data.offset = *offset;
3164 *offset += var->type->atomic_size();
3165
3166 } else {
3167 _mesa_glsl_error(loc, state,
3168 "atomic counters require explicit binding point");
3169 }
3170 } else if (var->data.mode != ir_var_function_in) {
3171 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3172 "function parameters or uniform-qualified "
3173 "global variables");
3174 }
3175 }
3176
3177 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3178 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3179 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3180 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3181 * These extensions and all following extensions that add the 'layout'
3182 * keyword have been modified to require the use of 'in' or 'out'.
3183 *
3184 * The following extension do not allow the deprecated keywords:
3185 *
3186 * GL_AMD_conservative_depth
3187 * GL_ARB_conservative_depth
3188 * GL_ARB_gpu_shader5
3189 * GL_ARB_separate_shader_objects
3190 * GL_ARB_tessellation_shader
3191 * GL_ARB_transform_feedback3
3192 * GL_ARB_uniform_buffer_object
3193 *
3194 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3195 * allow layout with the deprecated keywords.
3196 */
3197 const bool relaxed_layout_qualifier_checking =
3198 state->ARB_fragment_coord_conventions_enable;
3199
3200 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3201 || qual->flags.q.varying;
3202 if (qual->has_layout() && uses_deprecated_qualifier) {
3203 if (relaxed_layout_qualifier_checking) {
3204 _mesa_glsl_warning(loc, state,
3205 "`layout' qualifier may not be used with "
3206 "`attribute' or `varying'");
3207 } else {
3208 _mesa_glsl_error(loc, state,
3209 "`layout' qualifier may not be used with "
3210 "`attribute' or `varying'");
3211 }
3212 }
3213
3214 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3215 * AMD_conservative_depth.
3216 */
3217 int depth_layout_count = qual->flags.q.depth_any
3218 + qual->flags.q.depth_greater
3219 + qual->flags.q.depth_less
3220 + qual->flags.q.depth_unchanged;
3221 if (depth_layout_count > 0
3222 && !state->AMD_conservative_depth_enable
3223 && !state->ARB_conservative_depth_enable) {
3224 _mesa_glsl_error(loc, state,
3225 "extension GL_AMD_conservative_depth or "
3226 "GL_ARB_conservative_depth must be enabled "
3227 "to use depth layout qualifiers");
3228 } else if (depth_layout_count > 0
3229 && strcmp(var->name, "gl_FragDepth") != 0) {
3230 _mesa_glsl_error(loc, state,
3231 "depth layout qualifiers can be applied only to "
3232 "gl_FragDepth");
3233 } else if (depth_layout_count > 1
3234 && strcmp(var->name, "gl_FragDepth") == 0) {
3235 _mesa_glsl_error(loc, state,
3236 "at most one depth layout qualifier can be applied to "
3237 "gl_FragDepth");
3238 }
3239 if (qual->flags.q.depth_any)
3240 var->data.depth_layout = ir_depth_layout_any;
3241 else if (qual->flags.q.depth_greater)
3242 var->data.depth_layout = ir_depth_layout_greater;
3243 else if (qual->flags.q.depth_less)
3244 var->data.depth_layout = ir_depth_layout_less;
3245 else if (qual->flags.q.depth_unchanged)
3246 var->data.depth_layout = ir_depth_layout_unchanged;
3247 else
3248 var->data.depth_layout = ir_depth_layout_none;
3249
3250 if (qual->flags.q.std140 ||
3251 qual->flags.q.std430 ||
3252 qual->flags.q.packed ||
3253 qual->flags.q.shared) {
3254 _mesa_glsl_error(loc, state,
3255 "uniform and shader storage block layout qualifiers "
3256 "std140, std430, packed, and shared can only be "
3257 "applied to uniform or shader storage blocks, not "
3258 "members");
3259 }
3260
3261 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3262 validate_matrix_layout_for_type(state, loc, var->type, var);
3263 }
3264
3265 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3266 * Inputs):
3267 *
3268 * "Fragment shaders also allow the following layout qualifier on in only
3269 * (not with variable declarations)
3270 * layout-qualifier-id
3271 * early_fragment_tests
3272 * [...]"
3273 */
3274 if (qual->flags.q.early_fragment_tests) {
3275 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3276 "valid in fragment shader input layout declaration.");
3277 }
3278 }
3279
3280 static void
3281 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3282 ir_variable *var,
3283 struct _mesa_glsl_parse_state *state,
3284 YYLTYPE *loc,
3285 bool is_parameter)
3286 {
3287 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3288
3289 if (qual->flags.q.invariant) {
3290 if (var->data.used) {
3291 _mesa_glsl_error(loc, state,
3292 "variable `%s' may not be redeclared "
3293 "`invariant' after being used",
3294 var->name);
3295 } else {
3296 var->data.invariant = 1;
3297 }
3298 }
3299
3300 if (qual->flags.q.precise) {
3301 if (var->data.used) {
3302 _mesa_glsl_error(loc, state,
3303 "variable `%s' may not be redeclared "
3304 "`precise' after being used",
3305 var->name);
3306 } else {
3307 var->data.precise = 1;
3308 }
3309 }
3310
3311 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3312 _mesa_glsl_error(loc, state,
3313 "`subroutine' may only be applied to uniforms, "
3314 "subroutine type declarations, or function definitions");
3315 }
3316
3317 if (qual->flags.q.constant || qual->flags.q.attribute
3318 || qual->flags.q.uniform
3319 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3320 var->data.read_only = 1;
3321
3322 if (qual->flags.q.centroid)
3323 var->data.centroid = 1;
3324
3325 if (qual->flags.q.sample)
3326 var->data.sample = 1;
3327
3328 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3329 if (state->es_shader) {
3330 var->data.precision =
3331 select_gles_precision(qual->precision, var->type, state, loc);
3332 }
3333
3334 if (qual->flags.q.patch)
3335 var->data.patch = 1;
3336
3337 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3338 var->type = glsl_type::error_type;
3339 _mesa_glsl_error(loc, state,
3340 "`attribute' variables may not be declared in the "
3341 "%s shader",
3342 _mesa_shader_stage_to_string(state->stage));
3343 }
3344
3345 /* Disallow layout qualifiers which may only appear on layout declarations. */
3346 if (qual->flags.q.prim_type) {
3347 _mesa_glsl_error(loc, state,
3348 "Primitive type may only be specified on GS input or output "
3349 "layout declaration, not on variables.");
3350 }
3351
3352 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3353 *
3354 * "However, the const qualifier cannot be used with out or inout."
3355 *
3356 * The same section of the GLSL 4.40 spec further clarifies this saying:
3357 *
3358 * "The const qualifier cannot be used with out or inout, or a
3359 * compile-time error results."
3360 */
3361 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3362 _mesa_glsl_error(loc, state,
3363 "`const' may not be applied to `out' or `inout' "
3364 "function parameters");
3365 }
3366
3367 /* If there is no qualifier that changes the mode of the variable, leave
3368 * the setting alone.
3369 */
3370 assert(var->data.mode != ir_var_temporary);
3371 if (qual->flags.q.in && qual->flags.q.out)
3372 var->data.mode = ir_var_function_inout;
3373 else if (qual->flags.q.in)
3374 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3375 else if (qual->flags.q.attribute
3376 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3377 var->data.mode = ir_var_shader_in;
3378 else if (qual->flags.q.out)
3379 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3380 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3381 var->data.mode = ir_var_shader_out;
3382 else if (qual->flags.q.uniform)
3383 var->data.mode = ir_var_uniform;
3384 else if (qual->flags.q.buffer)
3385 var->data.mode = ir_var_shader_storage;
3386 else if (qual->flags.q.shared_storage)
3387 var->data.mode = ir_var_shader_shared;
3388
3389 if (!is_parameter && is_varying_var(var, state->stage)) {
3390 /* User-defined ins/outs are not permitted in compute shaders. */
3391 if (state->stage == MESA_SHADER_COMPUTE) {
3392 _mesa_glsl_error(loc, state,
3393 "user-defined input and output variables are not "
3394 "permitted in compute shaders");
3395 }
3396
3397 /* This variable is being used to link data between shader stages (in
3398 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3399 * that is allowed for such purposes.
3400 *
3401 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3402 *
3403 * "The varying qualifier can be used only with the data types
3404 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3405 * these."
3406 *
3407 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3408 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3409 *
3410 * "Fragment inputs can only be signed and unsigned integers and
3411 * integer vectors, float, floating-point vectors, matrices, or
3412 * arrays of these. Structures cannot be input.
3413 *
3414 * Similar text exists in the section on vertex shader outputs.
3415 *
3416 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3417 * 3.00 spec allows structs as well. Varying structs are also allowed
3418 * in GLSL 1.50.
3419 */
3420 switch (var->type->get_scalar_type()->base_type) {
3421 case GLSL_TYPE_FLOAT:
3422 /* Ok in all GLSL versions */
3423 break;
3424 case GLSL_TYPE_UINT:
3425 case GLSL_TYPE_INT:
3426 if (state->is_version(130, 300))
3427 break;
3428 _mesa_glsl_error(loc, state,
3429 "varying variables must be of base type float in %s",
3430 state->get_version_string());
3431 break;
3432 case GLSL_TYPE_STRUCT:
3433 if (state->is_version(150, 300))
3434 break;
3435 _mesa_glsl_error(loc, state,
3436 "varying variables may not be of type struct");
3437 break;
3438 case GLSL_TYPE_DOUBLE:
3439 break;
3440 default:
3441 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3442 break;
3443 }
3444 }
3445
3446 if (state->all_invariant && (state->current_function == NULL)) {
3447 switch (state->stage) {
3448 case MESA_SHADER_VERTEX:
3449 if (var->data.mode == ir_var_shader_out)
3450 var->data.invariant = true;
3451 break;
3452 case MESA_SHADER_TESS_CTRL:
3453 case MESA_SHADER_TESS_EVAL:
3454 case MESA_SHADER_GEOMETRY:
3455 if ((var->data.mode == ir_var_shader_in)
3456 || (var->data.mode == ir_var_shader_out))
3457 var->data.invariant = true;
3458 break;
3459 case MESA_SHADER_FRAGMENT:
3460 if (var->data.mode == ir_var_shader_in)
3461 var->data.invariant = true;
3462 break;
3463 case MESA_SHADER_COMPUTE:
3464 /* Invariance isn't meaningful in compute shaders. */
3465 break;
3466 }
3467 }
3468
3469 var->data.interpolation =
3470 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3471 state, loc);
3472
3473 /* Does the declaration use the deprecated 'attribute' or 'varying'
3474 * keywords?
3475 */
3476 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3477 || qual->flags.q.varying;
3478
3479
3480 /* Validate auxiliary storage qualifiers */
3481
3482 /* From section 4.3.4 of the GLSL 1.30 spec:
3483 * "It is an error to use centroid in in a vertex shader."
3484 *
3485 * From section 4.3.4 of the GLSL ES 3.00 spec:
3486 * "It is an error to use centroid in or interpolation qualifiers in
3487 * a vertex shader input."
3488 */
3489
3490 /* Section 4.3.6 of the GLSL 1.30 specification states:
3491 * "It is an error to use centroid out in a fragment shader."
3492 *
3493 * The GL_ARB_shading_language_420pack extension specification states:
3494 * "It is an error to use auxiliary storage qualifiers or interpolation
3495 * qualifiers on an output in a fragment shader."
3496 */
3497 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3498 _mesa_glsl_error(loc, state,
3499 "sample qualifier may only be used on `in` or `out` "
3500 "variables between shader stages");
3501 }
3502 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3503 _mesa_glsl_error(loc, state,
3504 "centroid qualifier may only be used with `in', "
3505 "`out' or `varying' variables between shader stages");
3506 }
3507
3508 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3509 _mesa_glsl_error(loc, state,
3510 "the shared storage qualifiers can only be used with "
3511 "compute shaders");
3512 }
3513
3514 apply_image_qualifier_to_variable(qual, var, state, loc);
3515 }
3516
3517 /**
3518 * Get the variable that is being redeclared by this declaration
3519 *
3520 * Semantic checks to verify the validity of the redeclaration are also
3521 * performed. If semantic checks fail, compilation error will be emitted via
3522 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3523 *
3524 * \returns
3525 * A pointer to an existing variable in the current scope if the declaration
3526 * is a redeclaration, \c NULL otherwise.
3527 */
3528 static ir_variable *
3529 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3530 struct _mesa_glsl_parse_state *state,
3531 bool allow_all_redeclarations)
3532 {
3533 /* Check if this declaration is actually a re-declaration, either to
3534 * resize an array or add qualifiers to an existing variable.
3535 *
3536 * This is allowed for variables in the current scope, or when at
3537 * global scope (for built-ins in the implicit outer scope).
3538 */
3539 ir_variable *earlier = state->symbols->get_variable(var->name);
3540 if (earlier == NULL ||
3541 (state->current_function != NULL &&
3542 !state->symbols->name_declared_this_scope(var->name))) {
3543 return NULL;
3544 }
3545
3546
3547 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3548 *
3549 * "It is legal to declare an array without a size and then
3550 * later re-declare the same name as an array of the same
3551 * type and specify a size."
3552 */
3553 if (earlier->type->is_unsized_array() && var->type->is_array()
3554 && (var->type->fields.array == earlier->type->fields.array)) {
3555 /* FINISHME: This doesn't match the qualifiers on the two
3556 * FINISHME: declarations. It's not 100% clear whether this is
3557 * FINISHME: required or not.
3558 */
3559
3560 const unsigned size = unsigned(var->type->array_size());
3561 check_builtin_array_max_size(var->name, size, loc, state);
3562 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3563 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3564 "previous access",
3565 earlier->data.max_array_access);
3566 }
3567
3568 earlier->type = var->type;
3569 delete var;
3570 var = NULL;
3571 } else if ((state->ARB_fragment_coord_conventions_enable ||
3572 state->is_version(150, 0))
3573 && strcmp(var->name, "gl_FragCoord") == 0
3574 && earlier->type == var->type
3575 && var->data.mode == ir_var_shader_in) {
3576 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3577 * qualifiers.
3578 */
3579 earlier->data.origin_upper_left = var->data.origin_upper_left;
3580 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3581
3582 /* According to section 4.3.7 of the GLSL 1.30 spec,
3583 * the following built-in varaibles can be redeclared with an
3584 * interpolation qualifier:
3585 * * gl_FrontColor
3586 * * gl_BackColor
3587 * * gl_FrontSecondaryColor
3588 * * gl_BackSecondaryColor
3589 * * gl_Color
3590 * * gl_SecondaryColor
3591 */
3592 } else if (state->is_version(130, 0)
3593 && (strcmp(var->name, "gl_FrontColor") == 0
3594 || strcmp(var->name, "gl_BackColor") == 0
3595 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3596 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3597 || strcmp(var->name, "gl_Color") == 0
3598 || strcmp(var->name, "gl_SecondaryColor") == 0)
3599 && earlier->type == var->type
3600 && earlier->data.mode == var->data.mode) {
3601 earlier->data.interpolation = var->data.interpolation;
3602
3603 /* Layout qualifiers for gl_FragDepth. */
3604 } else if ((state->AMD_conservative_depth_enable ||
3605 state->ARB_conservative_depth_enable)
3606 && strcmp(var->name, "gl_FragDepth") == 0
3607 && earlier->type == var->type
3608 && earlier->data.mode == var->data.mode) {
3609
3610 /** From the AMD_conservative_depth spec:
3611 * Within any shader, the first redeclarations of gl_FragDepth
3612 * must appear before any use of gl_FragDepth.
3613 */
3614 if (earlier->data.used) {
3615 _mesa_glsl_error(&loc, state,
3616 "the first redeclaration of gl_FragDepth "
3617 "must appear before any use of gl_FragDepth");
3618 }
3619
3620 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3621 if (earlier->data.depth_layout != ir_depth_layout_none
3622 && earlier->data.depth_layout != var->data.depth_layout) {
3623 _mesa_glsl_error(&loc, state,
3624 "gl_FragDepth: depth layout is declared here "
3625 "as '%s, but it was previously declared as "
3626 "'%s'",
3627 depth_layout_string(var->data.depth_layout),
3628 depth_layout_string(earlier->data.depth_layout));
3629 }
3630
3631 earlier->data.depth_layout = var->data.depth_layout;
3632
3633 } else if (allow_all_redeclarations) {
3634 if (earlier->data.mode != var->data.mode) {
3635 _mesa_glsl_error(&loc, state,
3636 "redeclaration of `%s' with incorrect qualifiers",
3637 var->name);
3638 } else if (earlier->type != var->type) {
3639 _mesa_glsl_error(&loc, state,
3640 "redeclaration of `%s' has incorrect type",
3641 var->name);
3642 }
3643 } else {
3644 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3645 }
3646
3647 return earlier;
3648 }
3649
3650 /**
3651 * Generate the IR for an initializer in a variable declaration
3652 */
3653 ir_rvalue *
3654 process_initializer(ir_variable *var, ast_declaration *decl,
3655 ast_fully_specified_type *type,
3656 exec_list *initializer_instructions,
3657 struct _mesa_glsl_parse_state *state)
3658 {
3659 ir_rvalue *result = NULL;
3660
3661 YYLTYPE initializer_loc = decl->initializer->get_location();
3662
3663 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3664 *
3665 * "All uniform variables are read-only and are initialized either
3666 * directly by an application via API commands, or indirectly by
3667 * OpenGL."
3668 */
3669 if (var->data.mode == ir_var_uniform) {
3670 state->check_version(120, 0, &initializer_loc,
3671 "cannot initialize uniform %s",
3672 var->name);
3673 }
3674
3675 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3676 *
3677 * "Buffer variables cannot have initializers."
3678 */
3679 if (var->data.mode == ir_var_shader_storage) {
3680 _mesa_glsl_error(&initializer_loc, state,
3681 "cannot initialize buffer variable %s",
3682 var->name);
3683 }
3684
3685 /* From section 4.1.7 of the GLSL 4.40 spec:
3686 *
3687 * "Opaque variables [...] are initialized only through the
3688 * OpenGL API; they cannot be declared with an initializer in a
3689 * shader."
3690 */
3691 if (var->type->contains_opaque()) {
3692 _mesa_glsl_error(&initializer_loc, state,
3693 "cannot initialize opaque variable %s",
3694 var->name);
3695 }
3696
3697 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3698 _mesa_glsl_error(&initializer_loc, state,
3699 "cannot initialize %s shader input / %s %s",
3700 _mesa_shader_stage_to_string(state->stage),
3701 (state->stage == MESA_SHADER_VERTEX)
3702 ? "attribute" : "varying",
3703 var->name);
3704 }
3705
3706 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3707 _mesa_glsl_error(&initializer_loc, state,
3708 "cannot initialize %s shader output %s",
3709 _mesa_shader_stage_to_string(state->stage),
3710 var->name);
3711 }
3712
3713 /* If the initializer is an ast_aggregate_initializer, recursively store
3714 * type information from the LHS into it, so that its hir() function can do
3715 * type checking.
3716 */
3717 if (decl->initializer->oper == ast_aggregate)
3718 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3719
3720 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3721 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3722
3723 /* Calculate the constant value if this is a const or uniform
3724 * declaration.
3725 *
3726 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3727 *
3728 * "Declarations of globals without a storage qualifier, or with
3729 * just the const qualifier, may include initializers, in which case
3730 * they will be initialized before the first line of main() is
3731 * executed. Such initializers must be a constant expression."
3732 *
3733 * The same section of the GLSL ES 3.00.4 spec has similar language.
3734 */
3735 if (type->qualifier.flags.q.constant
3736 || type->qualifier.flags.q.uniform
3737 || (state->es_shader && state->current_function == NULL)) {
3738 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3739 lhs, rhs, true);
3740 if (new_rhs != NULL) {
3741 rhs = new_rhs;
3742
3743 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3744 * says:
3745 *
3746 * "A constant expression is one of
3747 *
3748 * ...
3749 *
3750 * - an expression formed by an operator on operands that are
3751 * all constant expressions, including getting an element of
3752 * a constant array, or a field of a constant structure, or
3753 * components of a constant vector. However, the sequence
3754 * operator ( , ) and the assignment operators ( =, +=, ...)
3755 * are not included in the operators that can create a
3756 * constant expression."
3757 *
3758 * Section 12.43 (Sequence operator and constant expressions) says:
3759 *
3760 * "Should the following construct be allowed?
3761 *
3762 * float a[2,3];
3763 *
3764 * The expression within the brackets uses the sequence operator
3765 * (',') and returns the integer 3 so the construct is declaring
3766 * a single-dimensional array of size 3. In some languages, the
3767 * construct declares a two-dimensional array. It would be
3768 * preferable to make this construct illegal to avoid confusion.
3769 *
3770 * One possibility is to change the definition of the sequence
3771 * operator so that it does not return a constant-expression and
3772 * hence cannot be used to declare an array size.
3773 *
3774 * RESOLUTION: The result of a sequence operator is not a
3775 * constant-expression."
3776 *
3777 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3778 * contains language almost identical to the section 4.3.3 in the
3779 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3780 * versions.
3781 */
3782 ir_constant *constant_value = rhs->constant_expression_value();
3783 if (!constant_value ||
3784 (state->is_version(430, 300) &&
3785 decl->initializer->has_sequence_subexpression())) {
3786 const char *const variable_mode =
3787 (type->qualifier.flags.q.constant)
3788 ? "const"
3789 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3790
3791 /* If ARB_shading_language_420pack is enabled, initializers of
3792 * const-qualified local variables do not have to be constant
3793 * expressions. Const-qualified global variables must still be
3794 * initialized with constant expressions.
3795 */
3796 if (!state->has_420pack()
3797 || state->current_function == NULL) {
3798 _mesa_glsl_error(& initializer_loc, state,
3799 "initializer of %s variable `%s' must be a "
3800 "constant expression",
3801 variable_mode,
3802 decl->identifier);
3803 if (var->type->is_numeric()) {
3804 /* Reduce cascading errors. */
3805 var->constant_value = type->qualifier.flags.q.constant
3806 ? ir_constant::zero(state, var->type) : NULL;
3807 }
3808 }
3809 } else {
3810 rhs = constant_value;
3811 var->constant_value = type->qualifier.flags.q.constant
3812 ? constant_value : NULL;
3813 }
3814 } else {
3815 if (var->type->is_numeric()) {
3816 /* Reduce cascading errors. */
3817 var->constant_value = type->qualifier.flags.q.constant
3818 ? ir_constant::zero(state, var->type) : NULL;
3819 }
3820 }
3821 }
3822
3823 if (rhs && !rhs->type->is_error()) {
3824 bool temp = var->data.read_only;
3825 if (type->qualifier.flags.q.constant)
3826 var->data.read_only = false;
3827
3828 /* Never emit code to initialize a uniform.
3829 */
3830 const glsl_type *initializer_type;
3831 if (!type->qualifier.flags.q.uniform) {
3832 do_assignment(initializer_instructions, state,
3833 NULL,
3834 lhs, rhs,
3835 &result, true,
3836 true,
3837 type->get_location());
3838 initializer_type = result->type;
3839 } else
3840 initializer_type = rhs->type;
3841
3842 var->constant_initializer = rhs->constant_expression_value();
3843 var->data.has_initializer = true;
3844
3845 /* If the declared variable is an unsized array, it must inherrit
3846 * its full type from the initializer. A declaration such as
3847 *
3848 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3849 *
3850 * becomes
3851 *
3852 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3853 *
3854 * The assignment generated in the if-statement (below) will also
3855 * automatically handle this case for non-uniforms.
3856 *
3857 * If the declared variable is not an array, the types must
3858 * already match exactly. As a result, the type assignment
3859 * here can be done unconditionally. For non-uniforms the call
3860 * to do_assignment can change the type of the initializer (via
3861 * the implicit conversion rules). For uniforms the initializer
3862 * must be a constant expression, and the type of that expression
3863 * was validated above.
3864 */
3865 var->type = initializer_type;
3866
3867 var->data.read_only = temp;
3868 }
3869
3870 return result;
3871 }
3872
3873 static void
3874 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3875 YYLTYPE loc, ir_variable *var,
3876 unsigned num_vertices,
3877 unsigned *size,
3878 const char *var_category)
3879 {
3880 if (var->type->is_unsized_array()) {
3881 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3882 *
3883 * All geometry shader input unsized array declarations will be
3884 * sized by an earlier input layout qualifier, when present, as per
3885 * the following table.
3886 *
3887 * Followed by a table mapping each allowed input layout qualifier to
3888 * the corresponding input length.
3889 *
3890 * Similarly for tessellation control shader outputs.
3891 */
3892 if (num_vertices != 0)
3893 var->type = glsl_type::get_array_instance(var->type->fields.array,
3894 num_vertices);
3895 } else {
3896 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3897 * includes the following examples of compile-time errors:
3898 *
3899 * // code sequence within one shader...
3900 * in vec4 Color1[]; // size unknown
3901 * ...Color1.length()...// illegal, length() unknown
3902 * in vec4 Color2[2]; // size is 2
3903 * ...Color1.length()...// illegal, Color1 still has no size
3904 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3905 * layout(lines) in; // legal, input size is 2, matching
3906 * in vec4 Color4[3]; // illegal, contradicts layout
3907 * ...
3908 *
3909 * To detect the case illustrated by Color3, we verify that the size of
3910 * an explicitly-sized array matches the size of any previously declared
3911 * explicitly-sized array. To detect the case illustrated by Color4, we
3912 * verify that the size of an explicitly-sized array is consistent with
3913 * any previously declared input layout.
3914 */
3915 if (num_vertices != 0 && var->type->length != num_vertices) {
3916 _mesa_glsl_error(&loc, state,
3917 "%s size contradicts previously declared layout "
3918 "(size is %u, but layout requires a size of %u)",
3919 var_category, var->type->length, num_vertices);
3920 } else if (*size != 0 && var->type->length != *size) {
3921 _mesa_glsl_error(&loc, state,
3922 "%s sizes are inconsistent (size is %u, but a "
3923 "previous declaration has size %u)",
3924 var_category, var->type->length, *size);
3925 } else {
3926 *size = var->type->length;
3927 }
3928 }
3929 }
3930
3931 static void
3932 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3933 YYLTYPE loc, ir_variable *var)
3934 {
3935 unsigned num_vertices = 0;
3936
3937 if (state->tcs_output_vertices_specified) {
3938 if (!state->out_qualifier->vertices->
3939 process_qualifier_constant(state, "vertices",
3940 &num_vertices, false)) {
3941 return;
3942 }
3943
3944 if (num_vertices > state->Const.MaxPatchVertices) {
3945 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3946 "GL_MAX_PATCH_VERTICES", num_vertices);
3947 return;
3948 }
3949 }
3950
3951 if (!var->type->is_array() && !var->data.patch) {
3952 _mesa_glsl_error(&loc, state,
3953 "tessellation control shader outputs must be arrays");
3954
3955 /* To avoid cascading failures, short circuit the checks below. */
3956 return;
3957 }
3958
3959 if (var->data.patch)
3960 return;
3961
3962 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3963 &state->tcs_output_size,
3964 "tessellation control shader output");
3965 }
3966
3967 /**
3968 * Do additional processing necessary for tessellation control/evaluation shader
3969 * input declarations. This covers both interface block arrays and bare input
3970 * variables.
3971 */
3972 static void
3973 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3974 YYLTYPE loc, ir_variable *var)
3975 {
3976 if (!var->type->is_array() && !var->data.patch) {
3977 _mesa_glsl_error(&loc, state,
3978 "per-vertex tessellation shader inputs must be arrays");
3979 /* Avoid cascading failures. */
3980 return;
3981 }
3982
3983 if (var->data.patch)
3984 return;
3985
3986 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3987 if (var->type->is_unsized_array()) {
3988 var->type = glsl_type::get_array_instance(var->type->fields.array,
3989 state->Const.MaxPatchVertices);
3990 }
3991 }
3992
3993
3994 /**
3995 * Do additional processing necessary for geometry shader input declarations
3996 * (this covers both interface blocks arrays and bare input variables).
3997 */
3998 static void
3999 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4000 YYLTYPE loc, ir_variable *var)
4001 {
4002 unsigned num_vertices = 0;
4003
4004 if (state->gs_input_prim_type_specified) {
4005 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4006 }
4007
4008 /* Geometry shader input variables must be arrays. Caller should have
4009 * reported an error for this.
4010 */
4011 if (!var->type->is_array()) {
4012 assert(state->error);
4013
4014 /* To avoid cascading failures, short circuit the checks below. */
4015 return;
4016 }
4017
4018 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4019 &state->gs_input_size,
4020 "geometry shader input");
4021 }
4022
4023 void
4024 validate_identifier(const char *identifier, YYLTYPE loc,
4025 struct _mesa_glsl_parse_state *state)
4026 {
4027 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4028 *
4029 * "Identifiers starting with "gl_" are reserved for use by
4030 * OpenGL, and may not be declared in a shader as either a
4031 * variable or a function."
4032 */
4033 if (is_gl_identifier(identifier)) {
4034 _mesa_glsl_error(&loc, state,
4035 "identifier `%s' uses reserved `gl_' prefix",
4036 identifier);
4037 } else if (strstr(identifier, "__")) {
4038 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4039 * spec:
4040 *
4041 * "In addition, all identifiers containing two
4042 * consecutive underscores (__) are reserved as
4043 * possible future keywords."
4044 *
4045 * The intention is that names containing __ are reserved for internal
4046 * use by the implementation, and names prefixed with GL_ are reserved
4047 * for use by Khronos. Names simply containing __ are dangerous to use,
4048 * but should be allowed.
4049 *
4050 * A future version of the GLSL specification will clarify this.
4051 */
4052 _mesa_glsl_warning(&loc, state,
4053 "identifier `%s' uses reserved `__' string",
4054 identifier);
4055 }
4056 }
4057
4058 ir_rvalue *
4059 ast_declarator_list::hir(exec_list *instructions,
4060 struct _mesa_glsl_parse_state *state)
4061 {
4062 void *ctx = state;
4063 const struct glsl_type *decl_type;
4064 const char *type_name = NULL;
4065 ir_rvalue *result = NULL;
4066 YYLTYPE loc = this->get_location();
4067
4068 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4069 *
4070 * "To ensure that a particular output variable is invariant, it is
4071 * necessary to use the invariant qualifier. It can either be used to
4072 * qualify a previously declared variable as being invariant
4073 *
4074 * invariant gl_Position; // make existing gl_Position be invariant"
4075 *
4076 * In these cases the parser will set the 'invariant' flag in the declarator
4077 * list, and the type will be NULL.
4078 */
4079 if (this->invariant) {
4080 assert(this->type == NULL);
4081
4082 if (state->current_function != NULL) {
4083 _mesa_glsl_error(& loc, state,
4084 "all uses of `invariant' keyword must be at global "
4085 "scope");
4086 }
4087
4088 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4089 assert(decl->array_specifier == NULL);
4090 assert(decl->initializer == NULL);
4091
4092 ir_variable *const earlier =
4093 state->symbols->get_variable(decl->identifier);
4094 if (earlier == NULL) {
4095 _mesa_glsl_error(& loc, state,
4096 "undeclared variable `%s' cannot be marked "
4097 "invariant", decl->identifier);
4098 } else if (!is_varying_var(earlier, state->stage)) {
4099 _mesa_glsl_error(&loc, state,
4100 "`%s' cannot be marked invariant; interfaces between "
4101 "shader stages only.", decl->identifier);
4102 } else if (earlier->data.used) {
4103 _mesa_glsl_error(& loc, state,
4104 "variable `%s' may not be redeclared "
4105 "`invariant' after being used",
4106 earlier->name);
4107 } else {
4108 earlier->data.invariant = true;
4109 }
4110 }
4111
4112 /* Invariant redeclarations do not have r-values.
4113 */
4114 return NULL;
4115 }
4116
4117 if (this->precise) {
4118 assert(this->type == NULL);
4119
4120 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4121 assert(decl->array_specifier == NULL);
4122 assert(decl->initializer == NULL);
4123
4124 ir_variable *const earlier =
4125 state->symbols->get_variable(decl->identifier);
4126 if (earlier == NULL) {
4127 _mesa_glsl_error(& loc, state,
4128 "undeclared variable `%s' cannot be marked "
4129 "precise", decl->identifier);
4130 } else if (state->current_function != NULL &&
4131 !state->symbols->name_declared_this_scope(decl->identifier)) {
4132 /* Note: we have to check if we're in a function, since
4133 * builtins are treated as having come from another scope.
4134 */
4135 _mesa_glsl_error(& loc, state,
4136 "variable `%s' from an outer scope may not be "
4137 "redeclared `precise' in this scope",
4138 earlier->name);
4139 } else if (earlier->data.used) {
4140 _mesa_glsl_error(& loc, state,
4141 "variable `%s' may not be redeclared "
4142 "`precise' after being used",
4143 earlier->name);
4144 } else {
4145 earlier->data.precise = true;
4146 }
4147 }
4148
4149 /* Precise redeclarations do not have r-values either. */
4150 return NULL;
4151 }
4152
4153 assert(this->type != NULL);
4154 assert(!this->invariant);
4155 assert(!this->precise);
4156
4157 /* The type specifier may contain a structure definition. Process that
4158 * before any of the variable declarations.
4159 */
4160 (void) this->type->specifier->hir(instructions, state);
4161
4162 decl_type = this->type->glsl_type(& type_name, state);
4163
4164 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4165 * "Buffer variables may only be declared inside interface blocks
4166 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4167 * shader storage blocks. It is a compile-time error to declare buffer
4168 * variables at global scope (outside a block)."
4169 */
4170 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4171 _mesa_glsl_error(&loc, state,
4172 "buffer variables cannot be declared outside "
4173 "interface blocks");
4174 }
4175
4176 /* An offset-qualified atomic counter declaration sets the default
4177 * offset for the next declaration within the same atomic counter
4178 * buffer.
4179 */
4180 if (decl_type && decl_type->contains_atomic()) {
4181 if (type->qualifier.flags.q.explicit_binding &&
4182 type->qualifier.flags.q.explicit_offset) {
4183 unsigned qual_binding;
4184 unsigned qual_offset;
4185 if (process_qualifier_constant(state, &loc, "binding",
4186 type->qualifier.binding,
4187 &qual_binding)
4188 && process_qualifier_constant(state, &loc, "offset",
4189 type->qualifier.offset,
4190 &qual_offset)) {
4191 state->atomic_counter_offsets[qual_binding] = qual_offset;
4192 }
4193 }
4194 }
4195
4196 if (this->declarations.is_empty()) {
4197 /* If there is no structure involved in the program text, there are two
4198 * possible scenarios:
4199 *
4200 * - The program text contained something like 'vec4;'. This is an
4201 * empty declaration. It is valid but weird. Emit a warning.
4202 *
4203 * - The program text contained something like 'S;' and 'S' is not the
4204 * name of a known structure type. This is both invalid and weird.
4205 * Emit an error.
4206 *
4207 * - The program text contained something like 'mediump float;'
4208 * when the programmer probably meant 'precision mediump
4209 * float;' Emit a warning with a description of what they
4210 * probably meant to do.
4211 *
4212 * Note that if decl_type is NULL and there is a structure involved,
4213 * there must have been some sort of error with the structure. In this
4214 * case we assume that an error was already generated on this line of
4215 * code for the structure. There is no need to generate an additional,
4216 * confusing error.
4217 */
4218 assert(this->type->specifier->structure == NULL || decl_type != NULL
4219 || state->error);
4220
4221 if (decl_type == NULL) {
4222 _mesa_glsl_error(&loc, state,
4223 "invalid type `%s' in empty declaration",
4224 type_name);
4225 } else {
4226 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4227 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4228 *
4229 * "The combinations of types and qualifiers that cause
4230 * compile-time or link-time errors are the same whether or not
4231 * the declaration is empty."
4232 */
4233 validate_array_dimensions(decl_type, state, &loc);
4234 }
4235
4236 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4237 /* Empty atomic counter declarations are allowed and useful
4238 * to set the default offset qualifier.
4239 */
4240 return NULL;
4241 } else if (this->type->qualifier.precision != ast_precision_none) {
4242 if (this->type->specifier->structure != NULL) {
4243 _mesa_glsl_error(&loc, state,
4244 "precision qualifiers can't be applied "
4245 "to structures");
4246 } else {
4247 static const char *const precision_names[] = {
4248 "highp",
4249 "highp",
4250 "mediump",
4251 "lowp"
4252 };
4253
4254 _mesa_glsl_warning(&loc, state,
4255 "empty declaration with precision "
4256 "qualifier, to set the default precision, "
4257 "use `precision %s %s;'",
4258 precision_names[this->type->
4259 qualifier.precision],
4260 type_name);
4261 }
4262 } else if (this->type->specifier->structure == NULL) {
4263 _mesa_glsl_warning(&loc, state, "empty declaration");
4264 }
4265 }
4266 }
4267
4268 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4269 const struct glsl_type *var_type;
4270 ir_variable *var;
4271 const char *identifier = decl->identifier;
4272 /* FINISHME: Emit a warning if a variable declaration shadows a
4273 * FINISHME: declaration at a higher scope.
4274 */
4275
4276 if ((decl_type == NULL) || decl_type->is_void()) {
4277 if (type_name != NULL) {
4278 _mesa_glsl_error(& loc, state,
4279 "invalid type `%s' in declaration of `%s'",
4280 type_name, decl->identifier);
4281 } else {
4282 _mesa_glsl_error(& loc, state,
4283 "invalid type in declaration of `%s'",
4284 decl->identifier);
4285 }
4286 continue;
4287 }
4288
4289 if (this->type->qualifier.flags.q.subroutine) {
4290 const glsl_type *t;
4291 const char *name;
4292
4293 t = state->symbols->get_type(this->type->specifier->type_name);
4294 if (!t)
4295 _mesa_glsl_error(& loc, state,
4296 "invalid type in declaration of `%s'",
4297 decl->identifier);
4298 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4299
4300 identifier = name;
4301
4302 }
4303 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4304 state);
4305
4306 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4307
4308 /* The 'varying in' and 'varying out' qualifiers can only be used with
4309 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4310 * yet.
4311 */
4312 if (this->type->qualifier.flags.q.varying) {
4313 if (this->type->qualifier.flags.q.in) {
4314 _mesa_glsl_error(& loc, state,
4315 "`varying in' qualifier in declaration of "
4316 "`%s' only valid for geometry shaders using "
4317 "ARB_geometry_shader4 or EXT_geometry_shader4",
4318 decl->identifier);
4319 } else if (this->type->qualifier.flags.q.out) {
4320 _mesa_glsl_error(& loc, state,
4321 "`varying out' qualifier in declaration of "
4322 "`%s' only valid for geometry shaders using "
4323 "ARB_geometry_shader4 or EXT_geometry_shader4",
4324 decl->identifier);
4325 }
4326 }
4327
4328 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4329 *
4330 * "Global variables can only use the qualifiers const,
4331 * attribute, uniform, or varying. Only one may be
4332 * specified.
4333 *
4334 * Local variables can only use the qualifier const."
4335 *
4336 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4337 * any extension that adds the 'layout' keyword.
4338 */
4339 if (!state->is_version(130, 300)
4340 && !state->has_explicit_attrib_location()
4341 && !state->has_separate_shader_objects()
4342 && !state->ARB_fragment_coord_conventions_enable) {
4343 if (this->type->qualifier.flags.q.out) {
4344 _mesa_glsl_error(& loc, state,
4345 "`out' qualifier in declaration of `%s' "
4346 "only valid for function parameters in %s",
4347 decl->identifier, state->get_version_string());
4348 }
4349 if (this->type->qualifier.flags.q.in) {
4350 _mesa_glsl_error(& loc, state,
4351 "`in' qualifier in declaration of `%s' "
4352 "only valid for function parameters in %s",
4353 decl->identifier, state->get_version_string());
4354 }
4355 /* FINISHME: Test for other invalid qualifiers. */
4356 }
4357
4358 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4359 & loc, false);
4360 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4361 &loc);
4362
4363 if (this->type->qualifier.flags.q.invariant) {
4364 if (!is_varying_var(var, state->stage)) {
4365 _mesa_glsl_error(&loc, state,
4366 "`%s' cannot be marked invariant; interfaces between "
4367 "shader stages only", var->name);
4368 }
4369 }
4370
4371 if (state->current_function != NULL) {
4372 const char *mode = NULL;
4373 const char *extra = "";
4374
4375 /* There is no need to check for 'inout' here because the parser will
4376 * only allow that in function parameter lists.
4377 */
4378 if (this->type->qualifier.flags.q.attribute) {
4379 mode = "attribute";
4380 } else if (this->type->qualifier.flags.q.subroutine) {
4381 mode = "subroutine uniform";
4382 } else if (this->type->qualifier.flags.q.uniform) {
4383 mode = "uniform";
4384 } else if (this->type->qualifier.flags.q.varying) {
4385 mode = "varying";
4386 } else if (this->type->qualifier.flags.q.in) {
4387 mode = "in";
4388 extra = " or in function parameter list";
4389 } else if (this->type->qualifier.flags.q.out) {
4390 mode = "out";
4391 extra = " or in function parameter list";
4392 }
4393
4394 if (mode) {
4395 _mesa_glsl_error(& loc, state,
4396 "%s variable `%s' must be declared at "
4397 "global scope%s",
4398 mode, var->name, extra);
4399 }
4400 } else if (var->data.mode == ir_var_shader_in) {
4401 var->data.read_only = true;
4402
4403 if (state->stage == MESA_SHADER_VERTEX) {
4404 bool error_emitted = false;
4405
4406 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4407 *
4408 * "Vertex shader inputs can only be float, floating-point
4409 * vectors, matrices, signed and unsigned integers and integer
4410 * vectors. Vertex shader inputs can also form arrays of these
4411 * types, but not structures."
4412 *
4413 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4414 *
4415 * "Vertex shader inputs can only be float, floating-point
4416 * vectors, matrices, signed and unsigned integers and integer
4417 * vectors. They cannot be arrays or structures."
4418 *
4419 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4420 *
4421 * "The attribute qualifier can be used only with float,
4422 * floating-point vectors, and matrices. Attribute variables
4423 * cannot be declared as arrays or structures."
4424 *
4425 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4426 *
4427 * "Vertex shader inputs can only be float, floating-point
4428 * vectors, matrices, signed and unsigned integers and integer
4429 * vectors. Vertex shader inputs cannot be arrays or
4430 * structures."
4431 */
4432 const glsl_type *check_type = var->type->without_array();
4433
4434 switch (check_type->base_type) {
4435 case GLSL_TYPE_FLOAT:
4436 break;
4437 case GLSL_TYPE_UINT:
4438 case GLSL_TYPE_INT:
4439 if (state->is_version(120, 300))
4440 break;
4441 case GLSL_TYPE_DOUBLE:
4442 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4443 break;
4444 /* FALLTHROUGH */
4445 default:
4446 _mesa_glsl_error(& loc, state,
4447 "vertex shader input / attribute cannot have "
4448 "type %s`%s'",
4449 var->type->is_array() ? "array of " : "",
4450 check_type->name);
4451 error_emitted = true;
4452 }
4453
4454 if (!error_emitted && var->type->is_array() &&
4455 !state->check_version(150, 0, &loc,
4456 "vertex shader input / attribute "
4457 "cannot have array type")) {
4458 error_emitted = true;
4459 }
4460 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4461 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4462 *
4463 * Geometry shader input variables get the per-vertex values
4464 * written out by vertex shader output variables of the same
4465 * names. Since a geometry shader operates on a set of
4466 * vertices, each input varying variable (or input block, see
4467 * interface blocks below) needs to be declared as an array.
4468 */
4469 if (!var->type->is_array()) {
4470 _mesa_glsl_error(&loc, state,
4471 "geometry shader inputs must be arrays");
4472 }
4473
4474 handle_geometry_shader_input_decl(state, loc, var);
4475 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4476 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4477 *
4478 * It is a compile-time error to declare a fragment shader
4479 * input with, or that contains, any of the following types:
4480 *
4481 * * A boolean type
4482 * * An opaque type
4483 * * An array of arrays
4484 * * An array of structures
4485 * * A structure containing an array
4486 * * A structure containing a structure
4487 */
4488 if (state->es_shader) {
4489 const glsl_type *check_type = var->type->without_array();
4490 if (check_type->is_boolean() ||
4491 check_type->contains_opaque()) {
4492 _mesa_glsl_error(&loc, state,
4493 "fragment shader input cannot have type %s",
4494 check_type->name);
4495 }
4496 if (var->type->is_array() &&
4497 var->type->fields.array->is_array()) {
4498 _mesa_glsl_error(&loc, state,
4499 "%s shader output "
4500 "cannot have an array of arrays",
4501 _mesa_shader_stage_to_string(state->stage));
4502 }
4503 if (var->type->is_array() &&
4504 var->type->fields.array->is_record()) {
4505 _mesa_glsl_error(&loc, state,
4506 "fragment shader input "
4507 "cannot have an array of structs");
4508 }
4509 if (var->type->is_record()) {
4510 for (unsigned i = 0; i < var->type->length; i++) {
4511 if (var->type->fields.structure[i].type->is_array() ||
4512 var->type->fields.structure[i].type->is_record())
4513 _mesa_glsl_error(&loc, state,
4514 "fragement shader input cannot have "
4515 "a struct that contains an "
4516 "array or struct");
4517 }
4518 }
4519 }
4520 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4521 state->stage == MESA_SHADER_TESS_EVAL) {
4522 handle_tess_shader_input_decl(state, loc, var);
4523 }
4524 } else if (var->data.mode == ir_var_shader_out) {
4525 const glsl_type *check_type = var->type->without_array();
4526
4527 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4528 *
4529 * It is a compile-time error to declare a vertex, tessellation
4530 * evaluation, tessellation control, or geometry shader output
4531 * that contains any of the following:
4532 *
4533 * * A Boolean type (bool, bvec2 ...)
4534 * * An opaque type
4535 */
4536 if (check_type->is_boolean() || check_type->contains_opaque())
4537 _mesa_glsl_error(&loc, state,
4538 "%s shader output cannot have type %s",
4539 _mesa_shader_stage_to_string(state->stage),
4540 check_type->name);
4541
4542 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4543 *
4544 * It is a compile-time error to declare a fragment shader output
4545 * that contains any of the following:
4546 *
4547 * * A Boolean type (bool, bvec2 ...)
4548 * * A double-precision scalar or vector (double, dvec2 ...)
4549 * * An opaque type
4550 * * Any matrix type
4551 * * A structure
4552 */
4553 if (state->stage == MESA_SHADER_FRAGMENT) {
4554 if (check_type->is_record() || check_type->is_matrix())
4555 _mesa_glsl_error(&loc, state,
4556 "fragment shader output "
4557 "cannot have struct or matrix type");
4558 switch (check_type->base_type) {
4559 case GLSL_TYPE_UINT:
4560 case GLSL_TYPE_INT:
4561 case GLSL_TYPE_FLOAT:
4562 break;
4563 default:
4564 _mesa_glsl_error(&loc, state,
4565 "fragment shader output cannot have "
4566 "type %s", check_type->name);
4567 }
4568 }
4569
4570 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4571 *
4572 * It is a compile-time error to declare a vertex shader output
4573 * with, or that contains, any of the following types:
4574 *
4575 * * A boolean type
4576 * * An opaque type
4577 * * An array of arrays
4578 * * An array of structures
4579 * * A structure containing an array
4580 * * A structure containing a structure
4581 *
4582 * It is a compile-time error to declare a fragment shader output
4583 * with, or that contains, any of the following types:
4584 *
4585 * * A boolean type
4586 * * An opaque type
4587 * * A matrix
4588 * * A structure
4589 * * An array of array
4590 */
4591 if (state->es_shader) {
4592 if (var->type->is_array() &&
4593 var->type->fields.array->is_array()) {
4594 _mesa_glsl_error(&loc, state,
4595 "%s shader output "
4596 "cannot have an array of arrays",
4597 _mesa_shader_stage_to_string(state->stage));
4598 }
4599 if (state->stage == MESA_SHADER_VERTEX) {
4600 if (var->type->is_array() &&
4601 var->type->fields.array->is_record()) {
4602 _mesa_glsl_error(&loc, state,
4603 "vertex shader output "
4604 "cannot have an array of structs");
4605 }
4606 if (var->type->is_record()) {
4607 for (unsigned i = 0; i < var->type->length; i++) {
4608 if (var->type->fields.structure[i].type->is_array() ||
4609 var->type->fields.structure[i].type->is_record())
4610 _mesa_glsl_error(&loc, state,
4611 "vertex shader output cannot have a "
4612 "struct that contains an "
4613 "array or struct");
4614 }
4615 }
4616 }
4617 }
4618
4619 if (state->stage == MESA_SHADER_TESS_CTRL) {
4620 handle_tess_ctrl_shader_output_decl(state, loc, var);
4621 }
4622 } else if (var->type->contains_subroutine()) {
4623 /* declare subroutine uniforms as hidden */
4624 var->data.how_declared = ir_var_hidden;
4625 }
4626
4627 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4628 * so must integer vertex outputs.
4629 *
4630 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4631 * "Fragment shader inputs that are signed or unsigned integers or
4632 * integer vectors must be qualified with the interpolation qualifier
4633 * flat."
4634 *
4635 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4636 * "Fragment shader inputs that are, or contain, signed or unsigned
4637 * integers or integer vectors must be qualified with the
4638 * interpolation qualifier flat."
4639 *
4640 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4641 * "Vertex shader outputs that are, or contain, signed or unsigned
4642 * integers or integer vectors must be qualified with the
4643 * interpolation qualifier flat."
4644 *
4645 * Note that prior to GLSL 1.50, this requirement applied to vertex
4646 * outputs rather than fragment inputs. That creates problems in the
4647 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4648 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4649 * apply the restriction to both vertex outputs and fragment inputs.
4650 *
4651 * Note also that the desktop GLSL specs are missing the text "or
4652 * contain"; this is presumably an oversight, since there is no
4653 * reasonable way to interpolate a fragment shader input that contains
4654 * an integer.
4655 */
4656 if (state->is_version(130, 300) &&
4657 var->type->contains_integer() &&
4658 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4659 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4660 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4661 && state->es_shader))) {
4662 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4663 "vertex output" : "fragment input";
4664 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4665 "an integer, then it must be qualified with 'flat'",
4666 var_type);
4667 }
4668
4669 /* Double fragment inputs must be qualified with 'flat'. */
4670 if (var->type->contains_double() &&
4671 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4672 state->stage == MESA_SHADER_FRAGMENT &&
4673 var->data.mode == ir_var_shader_in) {
4674 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4675 "a double, then it must be qualified with 'flat'",
4676 var_type);
4677 }
4678
4679 /* Interpolation qualifiers cannot be applied to 'centroid' and
4680 * 'centroid varying'.
4681 *
4682 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4683 * "interpolation qualifiers may only precede the qualifiers in,
4684 * centroid in, out, or centroid out in a declaration. They do not apply
4685 * to the deprecated storage qualifiers varying or centroid varying."
4686 *
4687 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4688 */
4689 if (state->is_version(130, 0)
4690 && this->type->qualifier.has_interpolation()
4691 && this->type->qualifier.flags.q.varying) {
4692
4693 const char *i = this->type->qualifier.interpolation_string();
4694 assert(i != NULL);
4695 const char *s;
4696 if (this->type->qualifier.flags.q.centroid)
4697 s = "centroid varying";
4698 else
4699 s = "varying";
4700
4701 _mesa_glsl_error(&loc, state,
4702 "qualifier '%s' cannot be applied to the "
4703 "deprecated storage qualifier '%s'", i, s);
4704 }
4705
4706
4707 /* Interpolation qualifiers can only apply to vertex shader outputs and
4708 * fragment shader inputs.
4709 *
4710 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4711 * "Outputs from a vertex shader (out) and inputs to a fragment
4712 * shader (in) can be further qualified with one or more of these
4713 * interpolation qualifiers"
4714 *
4715 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4716 * "These interpolation qualifiers may only precede the qualifiers
4717 * in, centroid in, out, or centroid out in a declaration. They do
4718 * not apply to inputs into a vertex shader or outputs from a
4719 * fragment shader."
4720 */
4721 if (state->is_version(130, 300)
4722 && this->type->qualifier.has_interpolation()) {
4723
4724 const char *i = this->type->qualifier.interpolation_string();
4725 assert(i != NULL);
4726
4727 switch (state->stage) {
4728 case MESA_SHADER_VERTEX:
4729 if (this->type->qualifier.flags.q.in) {
4730 _mesa_glsl_error(&loc, state,
4731 "qualifier '%s' cannot be applied to vertex "
4732 "shader inputs", i);
4733 }
4734 break;
4735 case MESA_SHADER_FRAGMENT:
4736 if (this->type->qualifier.flags.q.out) {
4737 _mesa_glsl_error(&loc, state,
4738 "qualifier '%s' cannot be applied to fragment "
4739 "shader outputs", i);
4740 }
4741 break;
4742 default:
4743 break;
4744 }
4745 }
4746
4747
4748 /* From section 4.3.4 of the GLSL 4.00 spec:
4749 * "Input variables may not be declared using the patch in qualifier
4750 * in tessellation control or geometry shaders."
4751 *
4752 * From section 4.3.6 of the GLSL 4.00 spec:
4753 * "It is an error to use patch out in a vertex, tessellation
4754 * evaluation, or geometry shader."
4755 *
4756 * This doesn't explicitly forbid using them in a fragment shader, but
4757 * that's probably just an oversight.
4758 */
4759 if (state->stage != MESA_SHADER_TESS_EVAL
4760 && this->type->qualifier.flags.q.patch
4761 && this->type->qualifier.flags.q.in) {
4762
4763 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4764 "tessellation evaluation shader");
4765 }
4766
4767 if (state->stage != MESA_SHADER_TESS_CTRL
4768 && this->type->qualifier.flags.q.patch
4769 && this->type->qualifier.flags.q.out) {
4770
4771 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4772 "tessellation control shader");
4773 }
4774
4775 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4776 */
4777 if (this->type->qualifier.precision != ast_precision_none) {
4778 state->check_precision_qualifiers_allowed(&loc);
4779 }
4780
4781
4782 /* If a precision qualifier is allowed on a type, it is allowed on
4783 * an array of that type.
4784 */
4785 if (!(this->type->qualifier.precision == ast_precision_none
4786 || precision_qualifier_allowed(var->type->without_array()))) {
4787
4788 _mesa_glsl_error(&loc, state,
4789 "precision qualifiers apply only to floating point"
4790 ", integer and opaque types");
4791 }
4792
4793 /* From section 4.1.7 of the GLSL 4.40 spec:
4794 *
4795 * "[Opaque types] can only be declared as function
4796 * parameters or uniform-qualified variables."
4797 */
4798 if (var_type->contains_opaque() &&
4799 !this->type->qualifier.flags.q.uniform) {
4800 _mesa_glsl_error(&loc, state,
4801 "opaque variables must be declared uniform");
4802 }
4803
4804 /* Process the initializer and add its instructions to a temporary
4805 * list. This list will be added to the instruction stream (below) after
4806 * the declaration is added. This is done because in some cases (such as
4807 * redeclarations) the declaration may not actually be added to the
4808 * instruction stream.
4809 */
4810 exec_list initializer_instructions;
4811
4812 /* Examine var name here since var may get deleted in the next call */
4813 bool var_is_gl_id = is_gl_identifier(var->name);
4814
4815 ir_variable *earlier =
4816 get_variable_being_redeclared(var, decl->get_location(), state,
4817 false /* allow_all_redeclarations */);
4818 if (earlier != NULL) {
4819 if (var_is_gl_id &&
4820 earlier->data.how_declared == ir_var_declared_in_block) {
4821 _mesa_glsl_error(&loc, state,
4822 "`%s' has already been redeclared using "
4823 "gl_PerVertex", earlier->name);
4824 }
4825 earlier->data.how_declared = ir_var_declared_normally;
4826 }
4827
4828 if (decl->initializer != NULL) {
4829 result = process_initializer((earlier == NULL) ? var : earlier,
4830 decl, this->type,
4831 &initializer_instructions, state);
4832 } else {
4833 validate_array_dimensions(var_type, state, &loc);
4834 }
4835
4836 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4837 *
4838 * "It is an error to write to a const variable outside of
4839 * its declaration, so they must be initialized when
4840 * declared."
4841 */
4842 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4843 _mesa_glsl_error(& loc, state,
4844 "const declaration of `%s' must be initialized",
4845 decl->identifier);
4846 }
4847
4848 if (state->es_shader) {
4849 const glsl_type *const t = (earlier == NULL)
4850 ? var->type : earlier->type;
4851
4852 if (t->is_unsized_array())
4853 /* Section 10.17 of the GLSL ES 1.00 specification states that
4854 * unsized array declarations have been removed from the language.
4855 * Arrays that are sized using an initializer are still explicitly
4856 * sized. However, GLSL ES 1.00 does not allow array
4857 * initializers. That is only allowed in GLSL ES 3.00.
4858 *
4859 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4860 *
4861 * "An array type can also be formed without specifying a size
4862 * if the definition includes an initializer:
4863 *
4864 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4865 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4866 *
4867 * float a[5];
4868 * float b[] = a;"
4869 */
4870 _mesa_glsl_error(& loc, state,
4871 "unsized array declarations are not allowed in "
4872 "GLSL ES");
4873 }
4874
4875 /* If the declaration is not a redeclaration, there are a few additional
4876 * semantic checks that must be applied. In addition, variable that was
4877 * created for the declaration should be added to the IR stream.
4878 */
4879 if (earlier == NULL) {
4880 validate_identifier(decl->identifier, loc, state);
4881
4882 /* Add the variable to the symbol table. Note that the initializer's
4883 * IR was already processed earlier (though it hasn't been emitted
4884 * yet), without the variable in scope.
4885 *
4886 * This differs from most C-like languages, but it follows the GLSL
4887 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4888 * spec:
4889 *
4890 * "Within a declaration, the scope of a name starts immediately
4891 * after the initializer if present or immediately after the name
4892 * being declared if not."
4893 */
4894 if (!state->symbols->add_variable(var)) {
4895 YYLTYPE loc = this->get_location();
4896 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4897 "current scope", decl->identifier);
4898 continue;
4899 }
4900
4901 /* Push the variable declaration to the top. It means that all the
4902 * variable declarations will appear in a funny last-to-first order,
4903 * but otherwise we run into trouble if a function is prototyped, a
4904 * global var is decled, then the function is defined with usage of
4905 * the global var. See glslparsertest's CorrectModule.frag.
4906 */
4907 instructions->push_head(var);
4908 }
4909
4910 instructions->append_list(&initializer_instructions);
4911 }
4912
4913
4914 /* Generally, variable declarations do not have r-values. However,
4915 * one is used for the declaration in
4916 *
4917 * while (bool b = some_condition()) {
4918 * ...
4919 * }
4920 *
4921 * so we return the rvalue from the last seen declaration here.
4922 */
4923 return result;
4924 }
4925
4926
4927 ir_rvalue *
4928 ast_parameter_declarator::hir(exec_list *instructions,
4929 struct _mesa_glsl_parse_state *state)
4930 {
4931 void *ctx = state;
4932 const struct glsl_type *type;
4933 const char *name = NULL;
4934 YYLTYPE loc = this->get_location();
4935
4936 type = this->type->glsl_type(& name, state);
4937
4938 if (type == NULL) {
4939 if (name != NULL) {
4940 _mesa_glsl_error(& loc, state,
4941 "invalid type `%s' in declaration of `%s'",
4942 name, this->identifier);
4943 } else {
4944 _mesa_glsl_error(& loc, state,
4945 "invalid type in declaration of `%s'",
4946 this->identifier);
4947 }
4948
4949 type = glsl_type::error_type;
4950 }
4951
4952 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4953 *
4954 * "Functions that accept no input arguments need not use void in the
4955 * argument list because prototypes (or definitions) are required and
4956 * therefore there is no ambiguity when an empty argument list "( )" is
4957 * declared. The idiom "(void)" as a parameter list is provided for
4958 * convenience."
4959 *
4960 * Placing this check here prevents a void parameter being set up
4961 * for a function, which avoids tripping up checks for main taking
4962 * parameters and lookups of an unnamed symbol.
4963 */
4964 if (type->is_void()) {
4965 if (this->identifier != NULL)
4966 _mesa_glsl_error(& loc, state,
4967 "named parameter cannot have type `void'");
4968
4969 is_void = true;
4970 return NULL;
4971 }
4972
4973 if (formal_parameter && (this->identifier == NULL)) {
4974 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4975 return NULL;
4976 }
4977
4978 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4979 * call already handled the "vec4[..] foo" case.
4980 */
4981 type = process_array_type(&loc, type, this->array_specifier, state);
4982
4983 if (!type->is_error() && type->is_unsized_array()) {
4984 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4985 "a declared size");
4986 type = glsl_type::error_type;
4987 }
4988
4989 is_void = false;
4990 ir_variable *var = new(ctx)
4991 ir_variable(type, this->identifier, ir_var_function_in);
4992
4993 /* Apply any specified qualifiers to the parameter declaration. Note that
4994 * for function parameters the default mode is 'in'.
4995 */
4996 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4997 true);
4998
4999 /* From section 4.1.7 of the GLSL 4.40 spec:
5000 *
5001 * "Opaque variables cannot be treated as l-values; hence cannot
5002 * be used as out or inout function parameters, nor can they be
5003 * assigned into."
5004 */
5005 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5006 && type->contains_opaque()) {
5007 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5008 "contain opaque variables");
5009 type = glsl_type::error_type;
5010 }
5011
5012 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5013 *
5014 * "When calling a function, expressions that do not evaluate to
5015 * l-values cannot be passed to parameters declared as out or inout."
5016 *
5017 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5018 *
5019 * "Other binary or unary expressions, non-dereferenced arrays,
5020 * function names, swizzles with repeated fields, and constants
5021 * cannot be l-values."
5022 *
5023 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5024 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5025 */
5026 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5027 && type->is_array()
5028 && !state->check_version(120, 100, &loc,
5029 "arrays cannot be out or inout parameters")) {
5030 type = glsl_type::error_type;
5031 }
5032
5033 instructions->push_tail(var);
5034
5035 /* Parameter declarations do not have r-values.
5036 */
5037 return NULL;
5038 }
5039
5040
5041 void
5042 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5043 bool formal,
5044 exec_list *ir_parameters,
5045 _mesa_glsl_parse_state *state)
5046 {
5047 ast_parameter_declarator *void_param = NULL;
5048 unsigned count = 0;
5049
5050 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5051 param->formal_parameter = formal;
5052 param->hir(ir_parameters, state);
5053
5054 if (param->is_void)
5055 void_param = param;
5056
5057 count++;
5058 }
5059
5060 if ((void_param != NULL) && (count > 1)) {
5061 YYLTYPE loc = void_param->get_location();
5062
5063 _mesa_glsl_error(& loc, state,
5064 "`void' parameter must be only parameter");
5065 }
5066 }
5067
5068
5069 void
5070 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5071 {
5072 /* IR invariants disallow function declarations or definitions
5073 * nested within other function definitions. But there is no
5074 * requirement about the relative order of function declarations
5075 * and definitions with respect to one another. So simply insert
5076 * the new ir_function block at the end of the toplevel instruction
5077 * list.
5078 */
5079 state->toplevel_ir->push_tail(f);
5080 }
5081
5082
5083 ir_rvalue *
5084 ast_function::hir(exec_list *instructions,
5085 struct _mesa_glsl_parse_state *state)
5086 {
5087 void *ctx = state;
5088 ir_function *f = NULL;
5089 ir_function_signature *sig = NULL;
5090 exec_list hir_parameters;
5091 YYLTYPE loc = this->get_location();
5092
5093 const char *const name = identifier;
5094
5095 /* New functions are always added to the top-level IR instruction stream,
5096 * so this instruction list pointer is ignored. See also emit_function
5097 * (called below).
5098 */
5099 (void) instructions;
5100
5101 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5102 *
5103 * "Function declarations (prototypes) cannot occur inside of functions;
5104 * they must be at global scope, or for the built-in functions, outside
5105 * the global scope."
5106 *
5107 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5108 *
5109 * "User defined functions may only be defined within the global scope."
5110 *
5111 * Note that this language does not appear in GLSL 1.10.
5112 */
5113 if ((state->current_function != NULL) &&
5114 state->is_version(120, 100)) {
5115 YYLTYPE loc = this->get_location();
5116 _mesa_glsl_error(&loc, state,
5117 "declaration of function `%s' not allowed within "
5118 "function body", name);
5119 }
5120
5121 validate_identifier(name, this->get_location(), state);
5122
5123 /* Convert the list of function parameters to HIR now so that they can be
5124 * used below to compare this function's signature with previously seen
5125 * signatures for functions with the same name.
5126 */
5127 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5128 is_definition,
5129 & hir_parameters, state);
5130
5131 const char *return_type_name;
5132 const glsl_type *return_type =
5133 this->return_type->glsl_type(& return_type_name, state);
5134
5135 if (!return_type) {
5136 YYLTYPE loc = this->get_location();
5137 _mesa_glsl_error(&loc, state,
5138 "function `%s' has undeclared return type `%s'",
5139 name, return_type_name);
5140 return_type = glsl_type::error_type;
5141 }
5142
5143 /* ARB_shader_subroutine states:
5144 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5145 * subroutine(...) to a function declaration."
5146 */
5147 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5148 YYLTYPE loc = this->get_location();
5149 _mesa_glsl_error(&loc, state,
5150 "function declaration `%s' cannot have subroutine prepended",
5151 name);
5152 }
5153
5154 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5155 * "No qualifier is allowed on the return type of a function."
5156 */
5157 if (this->return_type->has_qualifiers(state)) {
5158 YYLTYPE loc = this->get_location();
5159 _mesa_glsl_error(& loc, state,
5160 "function `%s' return type has qualifiers", name);
5161 }
5162
5163 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5164 *
5165 * "Arrays are allowed as arguments and as the return type. In both
5166 * cases, the array must be explicitly sized."
5167 */
5168 if (return_type->is_unsized_array()) {
5169 YYLTYPE loc = this->get_location();
5170 _mesa_glsl_error(& loc, state,
5171 "function `%s' return type array must be explicitly "
5172 "sized", name);
5173 }
5174
5175 /* From section 4.1.7 of the GLSL 4.40 spec:
5176 *
5177 * "[Opaque types] can only be declared as function parameters
5178 * or uniform-qualified variables."
5179 */
5180 if (return_type->contains_opaque()) {
5181 YYLTYPE loc = this->get_location();
5182 _mesa_glsl_error(&loc, state,
5183 "function `%s' return type can't contain an opaque type",
5184 name);
5185 }
5186
5187 /* Create an ir_function if one doesn't already exist. */
5188 f = state->symbols->get_function(name);
5189 if (f == NULL) {
5190 f = new(ctx) ir_function(name);
5191 if (!this->return_type->qualifier.flags.q.subroutine) {
5192 if (!state->symbols->add_function(f)) {
5193 /* This function name shadows a non-function use of the same name. */
5194 YYLTYPE loc = this->get_location();
5195 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5196 "non-function", name);
5197 return NULL;
5198 }
5199 }
5200 emit_function(state, f);
5201 }
5202
5203 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5204 *
5205 * "A shader cannot redefine or overload built-in functions."
5206 *
5207 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5208 *
5209 * "User code can overload the built-in functions but cannot redefine
5210 * them."
5211 */
5212 if (state->es_shader && state->language_version >= 300) {
5213 /* Local shader has no exact candidates; check the built-ins. */
5214 _mesa_glsl_initialize_builtin_functions();
5215 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5216 YYLTYPE loc = this->get_location();
5217 _mesa_glsl_error(& loc, state,
5218 "A shader cannot redefine or overload built-in "
5219 "function `%s' in GLSL ES 3.00", name);
5220 return NULL;
5221 }
5222 }
5223
5224 /* Verify that this function's signature either doesn't match a previously
5225 * seen signature for a function with the same name, or, if a match is found,
5226 * that the previously seen signature does not have an associated definition.
5227 */
5228 if (state->es_shader || f->has_user_signature()) {
5229 sig = f->exact_matching_signature(state, &hir_parameters);
5230 if (sig != NULL) {
5231 const char *badvar = sig->qualifiers_match(&hir_parameters);
5232 if (badvar != NULL) {
5233 YYLTYPE loc = this->get_location();
5234
5235 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5236 "qualifiers don't match prototype", name, badvar);
5237 }
5238
5239 if (sig->return_type != return_type) {
5240 YYLTYPE loc = this->get_location();
5241
5242 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5243 "match prototype", name);
5244 }
5245
5246 if (sig->is_defined) {
5247 if (is_definition) {
5248 YYLTYPE loc = this->get_location();
5249 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5250 } else {
5251 /* We just encountered a prototype that exactly matches a
5252 * function that's already been defined. This is redundant,
5253 * and we should ignore it.
5254 */
5255 return NULL;
5256 }
5257 }
5258 }
5259 }
5260
5261 /* Verify the return type of main() */
5262 if (strcmp(name, "main") == 0) {
5263 if (! return_type->is_void()) {
5264 YYLTYPE loc = this->get_location();
5265
5266 _mesa_glsl_error(& loc, state, "main() must return void");
5267 }
5268
5269 if (!hir_parameters.is_empty()) {
5270 YYLTYPE loc = this->get_location();
5271
5272 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5273 }
5274 }
5275
5276 /* Finish storing the information about this new function in its signature.
5277 */
5278 if (sig == NULL) {
5279 sig = new(ctx) ir_function_signature(return_type);
5280 f->add_signature(sig);
5281 }
5282
5283 sig->replace_parameters(&hir_parameters);
5284 signature = sig;
5285
5286 if (this->return_type->qualifier.flags.q.subroutine_def) {
5287 int idx;
5288
5289 if (this->return_type->qualifier.flags.q.explicit_index) {
5290 unsigned qual_index;
5291 if (process_qualifier_constant(state, &loc, "index",
5292 this->return_type->qualifier.index,
5293 &qual_index)) {
5294 if (!state->has_explicit_uniform_location()) {
5295 _mesa_glsl_error(&loc, state, "subroutine index requires "
5296 "GL_ARB_explicit_uniform_location or "
5297 "GLSL 4.30");
5298 } else if (qual_index >= MAX_SUBROUTINES) {
5299 _mesa_glsl_error(&loc, state,
5300 "invalid subroutine index (%d) index must "
5301 "be a number between 0 and "
5302 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5303 MAX_SUBROUTINES - 1);
5304 } else {
5305 f->subroutine_index = qual_index;
5306 }
5307 }
5308 }
5309
5310 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5311 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5312 f->num_subroutine_types);
5313 idx = 0;
5314 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5315 const struct glsl_type *type;
5316 /* the subroutine type must be already declared */
5317 type = state->symbols->get_type(decl->identifier);
5318 if (!type) {
5319 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5320 }
5321 f->subroutine_types[idx++] = type;
5322 }
5323 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5324 ir_function *,
5325 state->num_subroutines + 1);
5326 state->subroutines[state->num_subroutines] = f;
5327 state->num_subroutines++;
5328
5329 }
5330
5331 if (this->return_type->qualifier.flags.q.subroutine) {
5332 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5333 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5334 return NULL;
5335 }
5336 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5337 ir_function *,
5338 state->num_subroutine_types + 1);
5339 state->subroutine_types[state->num_subroutine_types] = f;
5340 state->num_subroutine_types++;
5341
5342 f->is_subroutine = true;
5343 }
5344
5345 /* Function declarations (prototypes) do not have r-values.
5346 */
5347 return NULL;
5348 }
5349
5350
5351 ir_rvalue *
5352 ast_function_definition::hir(exec_list *instructions,
5353 struct _mesa_glsl_parse_state *state)
5354 {
5355 prototype->is_definition = true;
5356 prototype->hir(instructions, state);
5357
5358 ir_function_signature *signature = prototype->signature;
5359 if (signature == NULL)
5360 return NULL;
5361
5362 assert(state->current_function == NULL);
5363 state->current_function = signature;
5364 state->found_return = false;
5365
5366 /* Duplicate parameters declared in the prototype as concrete variables.
5367 * Add these to the symbol table.
5368 */
5369 state->symbols->push_scope();
5370 foreach_in_list(ir_variable, var, &signature->parameters) {
5371 assert(var->as_variable() != NULL);
5372
5373 /* The only way a parameter would "exist" is if two parameters have
5374 * the same name.
5375 */
5376 if (state->symbols->name_declared_this_scope(var->name)) {
5377 YYLTYPE loc = this->get_location();
5378
5379 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5380 } else {
5381 state->symbols->add_variable(var);
5382 }
5383 }
5384
5385 /* Convert the body of the function to HIR. */
5386 this->body->hir(&signature->body, state);
5387 signature->is_defined = true;
5388
5389 state->symbols->pop_scope();
5390
5391 assert(state->current_function == signature);
5392 state->current_function = NULL;
5393
5394 if (!signature->return_type->is_void() && !state->found_return) {
5395 YYLTYPE loc = this->get_location();
5396 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5397 "%s, but no return statement",
5398 signature->function_name(),
5399 signature->return_type->name);
5400 }
5401
5402 /* Function definitions do not have r-values.
5403 */
5404 return NULL;
5405 }
5406
5407
5408 ir_rvalue *
5409 ast_jump_statement::hir(exec_list *instructions,
5410 struct _mesa_glsl_parse_state *state)
5411 {
5412 void *ctx = state;
5413
5414 switch (mode) {
5415 case ast_return: {
5416 ir_return *inst;
5417 assert(state->current_function);
5418
5419 if (opt_return_value) {
5420 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5421
5422 /* The value of the return type can be NULL if the shader says
5423 * 'return foo();' and foo() is a function that returns void.
5424 *
5425 * NOTE: The GLSL spec doesn't say that this is an error. The type
5426 * of the return value is void. If the return type of the function is
5427 * also void, then this should compile without error. Seriously.
5428 */
5429 const glsl_type *const ret_type =
5430 (ret == NULL) ? glsl_type::void_type : ret->type;
5431
5432 /* Implicit conversions are not allowed for return values prior to
5433 * ARB_shading_language_420pack.
5434 */
5435 if (state->current_function->return_type != ret_type) {
5436 YYLTYPE loc = this->get_location();
5437
5438 if (state->has_420pack()) {
5439 if (!apply_implicit_conversion(state->current_function->return_type,
5440 ret, state)) {
5441 _mesa_glsl_error(& loc, state,
5442 "could not implicitly convert return value "
5443 "to %s, in function `%s'",
5444 state->current_function->return_type->name,
5445 state->current_function->function_name());
5446 }
5447 } else {
5448 _mesa_glsl_error(& loc, state,
5449 "`return' with wrong type %s, in function `%s' "
5450 "returning %s",
5451 ret_type->name,
5452 state->current_function->function_name(),
5453 state->current_function->return_type->name);
5454 }
5455 } else if (state->current_function->return_type->base_type ==
5456 GLSL_TYPE_VOID) {
5457 YYLTYPE loc = this->get_location();
5458
5459 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5460 * specs add a clarification:
5461 *
5462 * "A void function can only use return without a return argument, even if
5463 * the return argument has void type. Return statements only accept values:
5464 *
5465 * void func1() { }
5466 * void func2() { return func1(); } // illegal return statement"
5467 */
5468 _mesa_glsl_error(& loc, state,
5469 "void functions can only use `return' without a "
5470 "return argument");
5471 }
5472
5473 inst = new(ctx) ir_return(ret);
5474 } else {
5475 if (state->current_function->return_type->base_type !=
5476 GLSL_TYPE_VOID) {
5477 YYLTYPE loc = this->get_location();
5478
5479 _mesa_glsl_error(& loc, state,
5480 "`return' with no value, in function %s returning "
5481 "non-void",
5482 state->current_function->function_name());
5483 }
5484 inst = new(ctx) ir_return;
5485 }
5486
5487 state->found_return = true;
5488 instructions->push_tail(inst);
5489 break;
5490 }
5491
5492 case ast_discard:
5493 if (state->stage != MESA_SHADER_FRAGMENT) {
5494 YYLTYPE loc = this->get_location();
5495
5496 _mesa_glsl_error(& loc, state,
5497 "`discard' may only appear in a fragment shader");
5498 }
5499 instructions->push_tail(new(ctx) ir_discard);
5500 break;
5501
5502 case ast_break:
5503 case ast_continue:
5504 if (mode == ast_continue &&
5505 state->loop_nesting_ast == NULL) {
5506 YYLTYPE loc = this->get_location();
5507
5508 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5509 } else if (mode == ast_break &&
5510 state->loop_nesting_ast == NULL &&
5511 state->switch_state.switch_nesting_ast == NULL) {
5512 YYLTYPE loc = this->get_location();
5513
5514 _mesa_glsl_error(& loc, state,
5515 "break may only appear in a loop or a switch");
5516 } else {
5517 /* For a loop, inline the for loop expression again, since we don't
5518 * know where near the end of the loop body the normal copy of it is
5519 * going to be placed. Same goes for the condition for a do-while
5520 * loop.
5521 */
5522 if (state->loop_nesting_ast != NULL &&
5523 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5524 if (state->loop_nesting_ast->rest_expression) {
5525 state->loop_nesting_ast->rest_expression->hir(instructions,
5526 state);
5527 }
5528 if (state->loop_nesting_ast->mode ==
5529 ast_iteration_statement::ast_do_while) {
5530 state->loop_nesting_ast->condition_to_hir(instructions, state);
5531 }
5532 }
5533
5534 if (state->switch_state.is_switch_innermost &&
5535 mode == ast_continue) {
5536 /* Set 'continue_inside' to true. */
5537 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5538 ir_dereference_variable *deref_continue_inside_var =
5539 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5540 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5541 true_val));
5542
5543 /* Break out from the switch, continue for the loop will
5544 * be called right after switch. */
5545 ir_loop_jump *const jump =
5546 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5547 instructions->push_tail(jump);
5548
5549 } else if (state->switch_state.is_switch_innermost &&
5550 mode == ast_break) {
5551 /* Force break out of switch by inserting a break. */
5552 ir_loop_jump *const jump =
5553 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5554 instructions->push_tail(jump);
5555 } else {
5556 ir_loop_jump *const jump =
5557 new(ctx) ir_loop_jump((mode == ast_break)
5558 ? ir_loop_jump::jump_break
5559 : ir_loop_jump::jump_continue);
5560 instructions->push_tail(jump);
5561 }
5562 }
5563
5564 break;
5565 }
5566
5567 /* Jump instructions do not have r-values.
5568 */
5569 return NULL;
5570 }
5571
5572
5573 ir_rvalue *
5574 ast_selection_statement::hir(exec_list *instructions,
5575 struct _mesa_glsl_parse_state *state)
5576 {
5577 void *ctx = state;
5578
5579 ir_rvalue *const condition = this->condition->hir(instructions, state);
5580
5581 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5582 *
5583 * "Any expression whose type evaluates to a Boolean can be used as the
5584 * conditional expression bool-expression. Vector types are not accepted
5585 * as the expression to if."
5586 *
5587 * The checks are separated so that higher quality diagnostics can be
5588 * generated for cases where both rules are violated.
5589 */
5590 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5591 YYLTYPE loc = this->condition->get_location();
5592
5593 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5594 "boolean");
5595 }
5596
5597 ir_if *const stmt = new(ctx) ir_if(condition);
5598
5599 if (then_statement != NULL) {
5600 state->symbols->push_scope();
5601 then_statement->hir(& stmt->then_instructions, state);
5602 state->symbols->pop_scope();
5603 }
5604
5605 if (else_statement != NULL) {
5606 state->symbols->push_scope();
5607 else_statement->hir(& stmt->else_instructions, state);
5608 state->symbols->pop_scope();
5609 }
5610
5611 instructions->push_tail(stmt);
5612
5613 /* if-statements do not have r-values.
5614 */
5615 return NULL;
5616 }
5617
5618
5619 ir_rvalue *
5620 ast_switch_statement::hir(exec_list *instructions,
5621 struct _mesa_glsl_parse_state *state)
5622 {
5623 void *ctx = state;
5624
5625 ir_rvalue *const test_expression =
5626 this->test_expression->hir(instructions, state);
5627
5628 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5629 *
5630 * "The type of init-expression in a switch statement must be a
5631 * scalar integer."
5632 */
5633 if (!test_expression->type->is_scalar() ||
5634 !test_expression->type->is_integer()) {
5635 YYLTYPE loc = this->test_expression->get_location();
5636
5637 _mesa_glsl_error(& loc,
5638 state,
5639 "switch-statement expression must be scalar "
5640 "integer");
5641 }
5642
5643 /* Track the switch-statement nesting in a stack-like manner.
5644 */
5645 struct glsl_switch_state saved = state->switch_state;
5646
5647 state->switch_state.is_switch_innermost = true;
5648 state->switch_state.switch_nesting_ast = this;
5649 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5650 hash_table_pointer_compare);
5651 state->switch_state.previous_default = NULL;
5652
5653 /* Initalize is_fallthru state to false.
5654 */
5655 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5656 state->switch_state.is_fallthru_var =
5657 new(ctx) ir_variable(glsl_type::bool_type,
5658 "switch_is_fallthru_tmp",
5659 ir_var_temporary);
5660 instructions->push_tail(state->switch_state.is_fallthru_var);
5661
5662 ir_dereference_variable *deref_is_fallthru_var =
5663 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5664 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5665 is_fallthru_val));
5666
5667 /* Initialize continue_inside state to false.
5668 */
5669 state->switch_state.continue_inside =
5670 new(ctx) ir_variable(glsl_type::bool_type,
5671 "continue_inside_tmp",
5672 ir_var_temporary);
5673 instructions->push_tail(state->switch_state.continue_inside);
5674
5675 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5676 ir_dereference_variable *deref_continue_inside_var =
5677 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5678 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5679 false_val));
5680
5681 state->switch_state.run_default =
5682 new(ctx) ir_variable(glsl_type::bool_type,
5683 "run_default_tmp",
5684 ir_var_temporary);
5685 instructions->push_tail(state->switch_state.run_default);
5686
5687 /* Loop around the switch is used for flow control. */
5688 ir_loop * loop = new(ctx) ir_loop();
5689 instructions->push_tail(loop);
5690
5691 /* Cache test expression.
5692 */
5693 test_to_hir(&loop->body_instructions, state);
5694
5695 /* Emit code for body of switch stmt.
5696 */
5697 body->hir(&loop->body_instructions, state);
5698
5699 /* Insert a break at the end to exit loop. */
5700 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5701 loop->body_instructions.push_tail(jump);
5702
5703 /* If we are inside loop, check if continue got called inside switch. */
5704 if (state->loop_nesting_ast != NULL) {
5705 ir_dereference_variable *deref_continue_inside =
5706 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5707 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5708 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5709
5710 if (state->loop_nesting_ast != NULL) {
5711 if (state->loop_nesting_ast->rest_expression) {
5712 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5713 state);
5714 }
5715 if (state->loop_nesting_ast->mode ==
5716 ast_iteration_statement::ast_do_while) {
5717 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5718 }
5719 }
5720 irif->then_instructions.push_tail(jump);
5721 instructions->push_tail(irif);
5722 }
5723
5724 hash_table_dtor(state->switch_state.labels_ht);
5725
5726 state->switch_state = saved;
5727
5728 /* Switch statements do not have r-values. */
5729 return NULL;
5730 }
5731
5732
5733 void
5734 ast_switch_statement::test_to_hir(exec_list *instructions,
5735 struct _mesa_glsl_parse_state *state)
5736 {
5737 void *ctx = state;
5738
5739 /* Cache value of test expression. */
5740 ir_rvalue *const test_val =
5741 test_expression->hir(instructions,
5742 state);
5743
5744 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5745 "switch_test_tmp",
5746 ir_var_temporary);
5747 ir_dereference_variable *deref_test_var =
5748 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5749
5750 instructions->push_tail(state->switch_state.test_var);
5751 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5752 }
5753
5754
5755 ir_rvalue *
5756 ast_switch_body::hir(exec_list *instructions,
5757 struct _mesa_glsl_parse_state *state)
5758 {
5759 if (stmts != NULL)
5760 stmts->hir(instructions, state);
5761
5762 /* Switch bodies do not have r-values. */
5763 return NULL;
5764 }
5765
5766 ir_rvalue *
5767 ast_case_statement_list::hir(exec_list *instructions,
5768 struct _mesa_glsl_parse_state *state)
5769 {
5770 exec_list default_case, after_default, tmp;
5771
5772 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5773 case_stmt->hir(&tmp, state);
5774
5775 /* Default case. */
5776 if (state->switch_state.previous_default && default_case.is_empty()) {
5777 default_case.append_list(&tmp);
5778 continue;
5779 }
5780
5781 /* If default case found, append 'after_default' list. */
5782 if (!default_case.is_empty())
5783 after_default.append_list(&tmp);
5784 else
5785 instructions->append_list(&tmp);
5786 }
5787
5788 /* Handle the default case. This is done here because default might not be
5789 * the last case. We need to add checks against following cases first to see
5790 * if default should be chosen or not.
5791 */
5792 if (!default_case.is_empty()) {
5793
5794 ir_rvalue *const true_val = new (state) ir_constant(true);
5795 ir_dereference_variable *deref_run_default_var =
5796 new(state) ir_dereference_variable(state->switch_state.run_default);
5797
5798 /* Choose to run default case initially, following conditional
5799 * assignments might change this.
5800 */
5801 ir_assignment *const init_var =
5802 new(state) ir_assignment(deref_run_default_var, true_val);
5803 instructions->push_tail(init_var);
5804
5805 /* Default case was the last one, no checks required. */
5806 if (after_default.is_empty()) {
5807 instructions->append_list(&default_case);
5808 return NULL;
5809 }
5810
5811 foreach_in_list(ir_instruction, ir, &after_default) {
5812 ir_assignment *assign = ir->as_assignment();
5813
5814 if (!assign)
5815 continue;
5816
5817 /* Clone the check between case label and init expression. */
5818 ir_expression *exp = (ir_expression*) assign->condition;
5819 ir_expression *clone = exp->clone(state, NULL);
5820
5821 ir_dereference_variable *deref_var =
5822 new(state) ir_dereference_variable(state->switch_state.run_default);
5823 ir_rvalue *const false_val = new (state) ir_constant(false);
5824
5825 ir_assignment *const set_false =
5826 new(state) ir_assignment(deref_var, false_val, clone);
5827
5828 instructions->push_tail(set_false);
5829 }
5830
5831 /* Append default case and all cases after it. */
5832 instructions->append_list(&default_case);
5833 instructions->append_list(&after_default);
5834 }
5835
5836 /* Case statements do not have r-values. */
5837 return NULL;
5838 }
5839
5840 ir_rvalue *
5841 ast_case_statement::hir(exec_list *instructions,
5842 struct _mesa_glsl_parse_state *state)
5843 {
5844 labels->hir(instructions, state);
5845
5846 /* Guard case statements depending on fallthru state. */
5847 ir_dereference_variable *const deref_fallthru_guard =
5848 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5849 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5850
5851 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5852 stmt->hir(& test_fallthru->then_instructions, state);
5853
5854 instructions->push_tail(test_fallthru);
5855
5856 /* Case statements do not have r-values. */
5857 return NULL;
5858 }
5859
5860
5861 ir_rvalue *
5862 ast_case_label_list::hir(exec_list *instructions,
5863 struct _mesa_glsl_parse_state *state)
5864 {
5865 foreach_list_typed (ast_case_label, label, link, & this->labels)
5866 label->hir(instructions, state);
5867
5868 /* Case labels do not have r-values. */
5869 return NULL;
5870 }
5871
5872 ir_rvalue *
5873 ast_case_label::hir(exec_list *instructions,
5874 struct _mesa_glsl_parse_state *state)
5875 {
5876 void *ctx = state;
5877
5878 ir_dereference_variable *deref_fallthru_var =
5879 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5880
5881 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5882
5883 /* If not default case, ... */
5884 if (this->test_value != NULL) {
5885 /* Conditionally set fallthru state based on
5886 * comparison of cached test expression value to case label.
5887 */
5888 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5889 ir_constant *label_const = label_rval->constant_expression_value();
5890
5891 if (!label_const) {
5892 YYLTYPE loc = this->test_value->get_location();
5893
5894 _mesa_glsl_error(& loc, state,
5895 "switch statement case label must be a "
5896 "constant expression");
5897
5898 /* Stuff a dummy value in to allow processing to continue. */
5899 label_const = new(ctx) ir_constant(0);
5900 } else {
5901 ast_expression *previous_label = (ast_expression *)
5902 hash_table_find(state->switch_state.labels_ht,
5903 (void *)(uintptr_t)label_const->value.u[0]);
5904
5905 if (previous_label) {
5906 YYLTYPE loc = this->test_value->get_location();
5907 _mesa_glsl_error(& loc, state, "duplicate case value");
5908
5909 loc = previous_label->get_location();
5910 _mesa_glsl_error(& loc, state, "this is the previous case label");
5911 } else {
5912 hash_table_insert(state->switch_state.labels_ht,
5913 this->test_value,
5914 (void *)(uintptr_t)label_const->value.u[0]);
5915 }
5916 }
5917
5918 ir_dereference_variable *deref_test_var =
5919 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5920
5921 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5922 label_const,
5923 deref_test_var);
5924
5925 /*
5926 * From GLSL 4.40 specification section 6.2 ("Selection"):
5927 *
5928 * "The type of the init-expression value in a switch statement must
5929 * be a scalar int or uint. The type of the constant-expression value
5930 * in a case label also must be a scalar int or uint. When any pair
5931 * of these values is tested for "equal value" and the types do not
5932 * match, an implicit conversion will be done to convert the int to a
5933 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5934 * is done."
5935 */
5936 if (label_const->type != state->switch_state.test_var->type) {
5937 YYLTYPE loc = this->test_value->get_location();
5938
5939 const glsl_type *type_a = label_const->type;
5940 const glsl_type *type_b = state->switch_state.test_var->type;
5941
5942 /* Check if int->uint implicit conversion is supported. */
5943 bool integer_conversion_supported =
5944 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5945 state);
5946
5947 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5948 !integer_conversion_supported) {
5949 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5950 "init-expression and case label (%s != %s)",
5951 type_a->name, type_b->name);
5952 } else {
5953 /* Conversion of the case label. */
5954 if (type_a->base_type == GLSL_TYPE_INT) {
5955 if (!apply_implicit_conversion(glsl_type::uint_type,
5956 test_cond->operands[0], state))
5957 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5958 } else {
5959 /* Conversion of the init-expression value. */
5960 if (!apply_implicit_conversion(glsl_type::uint_type,
5961 test_cond->operands[1], state))
5962 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5963 }
5964 }
5965 }
5966
5967 ir_assignment *set_fallthru_on_test =
5968 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5969
5970 instructions->push_tail(set_fallthru_on_test);
5971 } else { /* default case */
5972 if (state->switch_state.previous_default) {
5973 YYLTYPE loc = this->get_location();
5974 _mesa_glsl_error(& loc, state,
5975 "multiple default labels in one switch");
5976
5977 loc = state->switch_state.previous_default->get_location();
5978 _mesa_glsl_error(& loc, state, "this is the first default label");
5979 }
5980 state->switch_state.previous_default = this;
5981
5982 /* Set fallthru condition on 'run_default' bool. */
5983 ir_dereference_variable *deref_run_default =
5984 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5985 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5986 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5987 cond_true,
5988 deref_run_default);
5989
5990 /* Set falltrhu state. */
5991 ir_assignment *set_fallthru =
5992 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5993
5994 instructions->push_tail(set_fallthru);
5995 }
5996
5997 /* Case statements do not have r-values. */
5998 return NULL;
5999 }
6000
6001 void
6002 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6003 struct _mesa_glsl_parse_state *state)
6004 {
6005 void *ctx = state;
6006
6007 if (condition != NULL) {
6008 ir_rvalue *const cond =
6009 condition->hir(instructions, state);
6010
6011 if ((cond == NULL)
6012 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6013 YYLTYPE loc = condition->get_location();
6014
6015 _mesa_glsl_error(& loc, state,
6016 "loop condition must be scalar boolean");
6017 } else {
6018 /* As the first code in the loop body, generate a block that looks
6019 * like 'if (!condition) break;' as the loop termination condition.
6020 */
6021 ir_rvalue *const not_cond =
6022 new(ctx) ir_expression(ir_unop_logic_not, cond);
6023
6024 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6025
6026 ir_jump *const break_stmt =
6027 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6028
6029 if_stmt->then_instructions.push_tail(break_stmt);
6030 instructions->push_tail(if_stmt);
6031 }
6032 }
6033 }
6034
6035
6036 ir_rvalue *
6037 ast_iteration_statement::hir(exec_list *instructions,
6038 struct _mesa_glsl_parse_state *state)
6039 {
6040 void *ctx = state;
6041
6042 /* For-loops and while-loops start a new scope, but do-while loops do not.
6043 */
6044 if (mode != ast_do_while)
6045 state->symbols->push_scope();
6046
6047 if (init_statement != NULL)
6048 init_statement->hir(instructions, state);
6049
6050 ir_loop *const stmt = new(ctx) ir_loop();
6051 instructions->push_tail(stmt);
6052
6053 /* Track the current loop nesting. */
6054 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6055
6056 state->loop_nesting_ast = this;
6057
6058 /* Likewise, indicate that following code is closest to a loop,
6059 * NOT closest to a switch.
6060 */
6061 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6062 state->switch_state.is_switch_innermost = false;
6063
6064 if (mode != ast_do_while)
6065 condition_to_hir(&stmt->body_instructions, state);
6066
6067 if (body != NULL)
6068 body->hir(& stmt->body_instructions, state);
6069
6070 if (rest_expression != NULL)
6071 rest_expression->hir(& stmt->body_instructions, state);
6072
6073 if (mode == ast_do_while)
6074 condition_to_hir(&stmt->body_instructions, state);
6075
6076 if (mode != ast_do_while)
6077 state->symbols->pop_scope();
6078
6079 /* Restore previous nesting before returning. */
6080 state->loop_nesting_ast = nesting_ast;
6081 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6082
6083 /* Loops do not have r-values.
6084 */
6085 return NULL;
6086 }
6087
6088
6089 /**
6090 * Determine if the given type is valid for establishing a default precision
6091 * qualifier.
6092 *
6093 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6094 *
6095 * "The precision statement
6096 *
6097 * precision precision-qualifier type;
6098 *
6099 * can be used to establish a default precision qualifier. The type field
6100 * can be either int or float or any of the sampler types, and the
6101 * precision-qualifier can be lowp, mediump, or highp."
6102 *
6103 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6104 * qualifiers on sampler types, but this seems like an oversight (since the
6105 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6106 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6107 * version.
6108 */
6109 static bool
6110 is_valid_default_precision_type(const struct glsl_type *const type)
6111 {
6112 if (type == NULL)
6113 return false;
6114
6115 switch (type->base_type) {
6116 case GLSL_TYPE_INT:
6117 case GLSL_TYPE_FLOAT:
6118 /* "int" and "float" are valid, but vectors and matrices are not. */
6119 return type->vector_elements == 1 && type->matrix_columns == 1;
6120 case GLSL_TYPE_SAMPLER:
6121 case GLSL_TYPE_IMAGE:
6122 case GLSL_TYPE_ATOMIC_UINT:
6123 return true;
6124 default:
6125 return false;
6126 }
6127 }
6128
6129
6130 ir_rvalue *
6131 ast_type_specifier::hir(exec_list *instructions,
6132 struct _mesa_glsl_parse_state *state)
6133 {
6134 if (this->default_precision == ast_precision_none && this->structure == NULL)
6135 return NULL;
6136
6137 YYLTYPE loc = this->get_location();
6138
6139 /* If this is a precision statement, check that the type to which it is
6140 * applied is either float or int.
6141 *
6142 * From section 4.5.3 of the GLSL 1.30 spec:
6143 * "The precision statement
6144 * precision precision-qualifier type;
6145 * can be used to establish a default precision qualifier. The type
6146 * field can be either int or float [...]. Any other types or
6147 * qualifiers will result in an error.
6148 */
6149 if (this->default_precision != ast_precision_none) {
6150 if (!state->check_precision_qualifiers_allowed(&loc))
6151 return NULL;
6152
6153 if (this->structure != NULL) {
6154 _mesa_glsl_error(&loc, state,
6155 "precision qualifiers do not apply to structures");
6156 return NULL;
6157 }
6158
6159 if (this->array_specifier != NULL) {
6160 _mesa_glsl_error(&loc, state,
6161 "default precision statements do not apply to "
6162 "arrays");
6163 return NULL;
6164 }
6165
6166 const struct glsl_type *const type =
6167 state->symbols->get_type(this->type_name);
6168 if (!is_valid_default_precision_type(type)) {
6169 _mesa_glsl_error(&loc, state,
6170 "default precision statements apply only to "
6171 "float, int, and opaque types");
6172 return NULL;
6173 }
6174
6175 if (state->es_shader) {
6176 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6177 * spec says:
6178 *
6179 * "Non-precision qualified declarations will use the precision
6180 * qualifier specified in the most recent precision statement
6181 * that is still in scope. The precision statement has the same
6182 * scoping rules as variable declarations. If it is declared
6183 * inside a compound statement, its effect stops at the end of
6184 * the innermost statement it was declared in. Precision
6185 * statements in nested scopes override precision statements in
6186 * outer scopes. Multiple precision statements for the same basic
6187 * type can appear inside the same scope, with later statements
6188 * overriding earlier statements within that scope."
6189 *
6190 * Default precision specifications follow the same scope rules as
6191 * variables. So, we can track the state of the default precision
6192 * qualifiers in the symbol table, and the rules will just work. This
6193 * is a slight abuse of the symbol table, but it has the semantics
6194 * that we want.
6195 */
6196 state->symbols->add_default_precision_qualifier(this->type_name,
6197 this->default_precision);
6198 }
6199
6200 /* FINISHME: Translate precision statements into IR. */
6201 return NULL;
6202 }
6203
6204 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6205 * process_record_constructor() can do type-checking on C-style initializer
6206 * expressions of structs, but ast_struct_specifier should only be translated
6207 * to HIR if it is declaring the type of a structure.
6208 *
6209 * The ->is_declaration field is false for initializers of variables
6210 * declared separately from the struct's type definition.
6211 *
6212 * struct S { ... }; (is_declaration = true)
6213 * struct T { ... } t = { ... }; (is_declaration = true)
6214 * S s = { ... }; (is_declaration = false)
6215 */
6216 if (this->structure != NULL && this->structure->is_declaration)
6217 return this->structure->hir(instructions, state);
6218
6219 return NULL;
6220 }
6221
6222
6223 /**
6224 * Process a structure or interface block tree into an array of structure fields
6225 *
6226 * After parsing, where there are some syntax differnces, structures and
6227 * interface blocks are almost identical. They are similar enough that the
6228 * AST for each can be processed the same way into a set of
6229 * \c glsl_struct_field to describe the members.
6230 *
6231 * If we're processing an interface block, var_mode should be the type of the
6232 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6233 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6234 * ir_var_auto.
6235 *
6236 * \return
6237 * The number of fields processed. A pointer to the array structure fields is
6238 * stored in \c *fields_ret.
6239 */
6240 static unsigned
6241 ast_process_struct_or_iface_block_members(exec_list *instructions,
6242 struct _mesa_glsl_parse_state *state,
6243 exec_list *declarations,
6244 glsl_struct_field **fields_ret,
6245 bool is_interface,
6246 enum glsl_matrix_layout matrix_layout,
6247 bool allow_reserved_names,
6248 ir_variable_mode var_mode,
6249 ast_type_qualifier *layout,
6250 unsigned block_stream,
6251 unsigned expl_location)
6252 {
6253 unsigned decl_count = 0;
6254
6255 /* Make an initial pass over the list of fields to determine how
6256 * many there are. Each element in this list is an ast_declarator_list.
6257 * This means that we actually need to count the number of elements in the
6258 * 'declarations' list in each of the elements.
6259 */
6260 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6261 decl_count += decl_list->declarations.length();
6262 }
6263
6264 /* Allocate storage for the fields and process the field
6265 * declarations. As the declarations are processed, try to also convert
6266 * the types to HIR. This ensures that structure definitions embedded in
6267 * other structure definitions or in interface blocks are processed.
6268 */
6269 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6270 decl_count);
6271
6272 bool first_member = true;
6273 bool first_member_has_explicit_location;
6274
6275 unsigned i = 0;
6276 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6277 const char *type_name;
6278 YYLTYPE loc = decl_list->get_location();
6279
6280 decl_list->type->specifier->hir(instructions, state);
6281
6282 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6283 *
6284 * "Anonymous structures are not supported; so embedded structures
6285 * must have a declarator. A name given to an embedded struct is
6286 * scoped at the same level as the struct it is embedded in."
6287 *
6288 * The same section of the GLSL 1.20 spec says:
6289 *
6290 * "Anonymous structures are not supported. Embedded structures are
6291 * not supported."
6292 *
6293 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6294 * embedded structures in 1.10 only.
6295 */
6296 if (state->language_version != 110 &&
6297 decl_list->type->specifier->structure != NULL)
6298 _mesa_glsl_error(&loc, state,
6299 "embedded structure declarations are not allowed");
6300
6301 const glsl_type *decl_type =
6302 decl_list->type->glsl_type(& type_name, state);
6303
6304 const struct ast_type_qualifier *const qual =
6305 &decl_list->type->qualifier;
6306
6307 /* From section 4.3.9 of the GLSL 4.40 spec:
6308 *
6309 * "[In interface blocks] opaque types are not allowed."
6310 *
6311 * It should be impossible for decl_type to be NULL here. Cases that
6312 * might naturally lead to decl_type being NULL, especially for the
6313 * is_interface case, will have resulted in compilation having
6314 * already halted due to a syntax error.
6315 */
6316 assert(decl_type);
6317
6318 if (is_interface) {
6319 if (decl_type->contains_opaque()) {
6320 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6321 "interface block contains opaque variable");
6322 }
6323 } else {
6324 if (decl_type->contains_atomic()) {
6325 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6326 *
6327 * "Members of structures cannot be declared as atomic counter
6328 * types."
6329 */
6330 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6331 }
6332
6333 if (decl_type->contains_image()) {
6334 /* FINISHME: Same problem as with atomic counters.
6335 * FINISHME: Request clarification from Khronos and add
6336 * FINISHME: spec quotation here.
6337 */
6338 _mesa_glsl_error(&loc, state, "image in structure");
6339 }
6340 }
6341
6342 if (qual->flags.q.explicit_binding) {
6343 _mesa_glsl_error(&loc, state,
6344 "binding layout qualifier cannot be applied "
6345 "to struct or interface block members");
6346 }
6347
6348 if (is_interface) {
6349 if (!first_member) {
6350 if (!layout->flags.q.explicit_location &&
6351 ((first_member_has_explicit_location &&
6352 !qual->flags.q.explicit_location) ||
6353 (!first_member_has_explicit_location &&
6354 qual->flags.q.explicit_location))) {
6355 _mesa_glsl_error(&loc, state,
6356 "when block-level location layout qualifier "
6357 "is not supplied either all members must "
6358 "have a location layout qualifier or all "
6359 "members must not have a location layout "
6360 "qualifier");
6361 }
6362 } else {
6363 first_member = false;
6364 first_member_has_explicit_location =
6365 qual->flags.q.explicit_location;
6366 }
6367 }
6368
6369 if (qual->flags.q.std140 ||
6370 qual->flags.q.std430 ||
6371 qual->flags.q.packed ||
6372 qual->flags.q.shared) {
6373 _mesa_glsl_error(&loc, state,
6374 "uniform/shader storage block layout qualifiers "
6375 "std140, std430, packed, and shared can only be "
6376 "applied to uniform/shader storage blocks, not "
6377 "members");
6378 }
6379
6380 if (qual->flags.q.constant) {
6381 _mesa_glsl_error(&loc, state,
6382 "const storage qualifier cannot be applied "
6383 "to struct or interface block members");
6384 }
6385
6386 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6387 *
6388 * "A block member may be declared with a stream identifier, but
6389 * the specified stream must match the stream associated with the
6390 * containing block."
6391 */
6392 if (qual->flags.q.explicit_stream) {
6393 unsigned qual_stream;
6394 if (process_qualifier_constant(state, &loc, "stream",
6395 qual->stream, &qual_stream) &&
6396 qual_stream != block_stream) {
6397 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6398 "interface block member does not match "
6399 "the interface block (%u vs %u)", qual_stream,
6400 block_stream);
6401 }
6402 }
6403
6404 if (qual->flags.q.uniform && qual->has_interpolation()) {
6405 _mesa_glsl_error(&loc, state,
6406 "interpolation qualifiers cannot be used "
6407 "with uniform interface blocks");
6408 }
6409
6410 if ((qual->flags.q.uniform || !is_interface) &&
6411 qual->has_auxiliary_storage()) {
6412 _mesa_glsl_error(&loc, state,
6413 "auxiliary storage qualifiers cannot be used "
6414 "in uniform blocks or structures.");
6415 }
6416
6417 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6418 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6419 _mesa_glsl_error(&loc, state,
6420 "row_major and column_major can only be "
6421 "applied to interface blocks");
6422 } else
6423 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6424 }
6425
6426 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6427 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6428 "readonly and writeonly.");
6429 }
6430
6431 foreach_list_typed (ast_declaration, decl, link,
6432 &decl_list->declarations) {
6433 YYLTYPE loc = decl->get_location();
6434
6435 if (!allow_reserved_names)
6436 validate_identifier(decl->identifier, loc, state);
6437
6438 const struct glsl_type *field_type =
6439 process_array_type(&loc, decl_type, decl->array_specifier, state);
6440 validate_array_dimensions(field_type, state, &loc);
6441 fields[i].type = field_type;
6442 fields[i].name = decl->identifier;
6443 fields[i].interpolation =
6444 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6445 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6446 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6447 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6448 fields[i].precision = qual->precision;
6449
6450 if (qual->flags.q.explicit_location) {
6451 unsigned qual_location;
6452 if (process_qualifier_constant(state, &loc, "location",
6453 qual->location, &qual_location)) {
6454 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6455 expl_location = fields[i].location +
6456 fields[i].type->count_attribute_slots(false);
6457 }
6458 } else {
6459 if (layout && layout->flags.q.explicit_location) {
6460 fields[i].location = expl_location;
6461 expl_location += fields[i].type->count_attribute_slots(false);
6462 } else {
6463 fields[i].location = -1;
6464 }
6465 }
6466
6467 /* Propogate row- / column-major information down the fields of the
6468 * structure or interface block. Structures need this data because
6469 * the structure may contain a structure that contains ... a matrix
6470 * that need the proper layout.
6471 */
6472 if (field_type->without_array()->is_matrix()
6473 || field_type->without_array()->is_record()) {
6474 /* If no layout is specified for the field, inherit the layout
6475 * from the block.
6476 */
6477 fields[i].matrix_layout = matrix_layout;
6478
6479 if (qual->flags.q.row_major)
6480 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6481 else if (qual->flags.q.column_major)
6482 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6483
6484 /* If we're processing an interface block, the matrix layout must
6485 * be decided by this point.
6486 */
6487 assert(!is_interface
6488 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6489 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6490 }
6491
6492 /* Image qualifiers are allowed on buffer variables, which can only
6493 * be defined inside shader storage buffer objects
6494 */
6495 if (layout && var_mode == ir_var_shader_storage) {
6496 /* For readonly and writeonly qualifiers the field definition,
6497 * if set, overwrites the layout qualifier.
6498 */
6499 if (qual->flags.q.read_only) {
6500 fields[i].image_read_only = true;
6501 fields[i].image_write_only = false;
6502 } else if (qual->flags.q.write_only) {
6503 fields[i].image_read_only = false;
6504 fields[i].image_write_only = true;
6505 } else {
6506 fields[i].image_read_only = layout->flags.q.read_only;
6507 fields[i].image_write_only = layout->flags.q.write_only;
6508 }
6509
6510 /* For other qualifiers, we set the flag if either the layout
6511 * qualifier or the field qualifier are set
6512 */
6513 fields[i].image_coherent = qual->flags.q.coherent ||
6514 layout->flags.q.coherent;
6515 fields[i].image_volatile = qual->flags.q._volatile ||
6516 layout->flags.q._volatile;
6517 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6518 layout->flags.q.restrict_flag;
6519 }
6520
6521 i++;
6522 }
6523 }
6524
6525 assert(i == decl_count);
6526
6527 *fields_ret = fields;
6528 return decl_count;
6529 }
6530
6531
6532 ir_rvalue *
6533 ast_struct_specifier::hir(exec_list *instructions,
6534 struct _mesa_glsl_parse_state *state)
6535 {
6536 YYLTYPE loc = this->get_location();
6537
6538 unsigned expl_location = 0;
6539 if (layout && layout->flags.q.explicit_location) {
6540 if (!process_qualifier_constant(state, &loc, "location",
6541 layout->location, &expl_location)) {
6542 return NULL;
6543 } else {
6544 expl_location = VARYING_SLOT_VAR0 + expl_location;
6545 }
6546 }
6547
6548 glsl_struct_field *fields;
6549 unsigned decl_count =
6550 ast_process_struct_or_iface_block_members(instructions,
6551 state,
6552 &this->declarations,
6553 &fields,
6554 false,
6555 GLSL_MATRIX_LAYOUT_INHERITED,
6556 false /* allow_reserved_names */,
6557 ir_var_auto,
6558 layout,
6559 0, /* for interface only */
6560 expl_location);
6561
6562 validate_identifier(this->name, loc, state);
6563
6564 const glsl_type *t =
6565 glsl_type::get_record_instance(fields, decl_count, this->name);
6566
6567 if (!state->symbols->add_type(name, t)) {
6568 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6569 } else {
6570 const glsl_type **s = reralloc(state, state->user_structures,
6571 const glsl_type *,
6572 state->num_user_structures + 1);
6573 if (s != NULL) {
6574 s[state->num_user_structures] = t;
6575 state->user_structures = s;
6576 state->num_user_structures++;
6577 }
6578 }
6579
6580 /* Structure type definitions do not have r-values.
6581 */
6582 return NULL;
6583 }
6584
6585
6586 /**
6587 * Visitor class which detects whether a given interface block has been used.
6588 */
6589 class interface_block_usage_visitor : public ir_hierarchical_visitor
6590 {
6591 public:
6592 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6593 : mode(mode), block(block), found(false)
6594 {
6595 }
6596
6597 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6598 {
6599 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6600 found = true;
6601 return visit_stop;
6602 }
6603 return visit_continue;
6604 }
6605
6606 bool usage_found() const
6607 {
6608 return this->found;
6609 }
6610
6611 private:
6612 ir_variable_mode mode;
6613 const glsl_type *block;
6614 bool found;
6615 };
6616
6617 static bool
6618 is_unsized_array_last_element(ir_variable *v)
6619 {
6620 const glsl_type *interface_type = v->get_interface_type();
6621 int length = interface_type->length;
6622
6623 assert(v->type->is_unsized_array());
6624
6625 /* Check if it is the last element of the interface */
6626 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6627 return true;
6628 return false;
6629 }
6630
6631 ir_rvalue *
6632 ast_interface_block::hir(exec_list *instructions,
6633 struct _mesa_glsl_parse_state *state)
6634 {
6635 YYLTYPE loc = this->get_location();
6636
6637 /* Interface blocks must be declared at global scope */
6638 if (state->current_function != NULL) {
6639 _mesa_glsl_error(&loc, state,
6640 "Interface block `%s' must be declared "
6641 "at global scope",
6642 this->block_name);
6643 }
6644
6645 if (!this->layout.flags.q.buffer &&
6646 this->layout.flags.q.std430) {
6647 _mesa_glsl_error(&loc, state,
6648 "std430 storage block layout qualifier is supported "
6649 "only for shader storage blocks");
6650 }
6651
6652 /* The ast_interface_block has a list of ast_declarator_lists. We
6653 * need to turn those into ir_variables with an association
6654 * with this uniform block.
6655 */
6656 enum glsl_interface_packing packing;
6657 if (this->layout.flags.q.shared) {
6658 packing = GLSL_INTERFACE_PACKING_SHARED;
6659 } else if (this->layout.flags.q.packed) {
6660 packing = GLSL_INTERFACE_PACKING_PACKED;
6661 } else if (this->layout.flags.q.std430) {
6662 packing = GLSL_INTERFACE_PACKING_STD430;
6663 } else {
6664 /* The default layout is std140.
6665 */
6666 packing = GLSL_INTERFACE_PACKING_STD140;
6667 }
6668
6669 ir_variable_mode var_mode;
6670 const char *iface_type_name;
6671 if (this->layout.flags.q.in) {
6672 var_mode = ir_var_shader_in;
6673 iface_type_name = "in";
6674 } else if (this->layout.flags.q.out) {
6675 var_mode = ir_var_shader_out;
6676 iface_type_name = "out";
6677 } else if (this->layout.flags.q.uniform) {
6678 var_mode = ir_var_uniform;
6679 iface_type_name = "uniform";
6680 } else if (this->layout.flags.q.buffer) {
6681 var_mode = ir_var_shader_storage;
6682 iface_type_name = "buffer";
6683 } else {
6684 var_mode = ir_var_auto;
6685 iface_type_name = "UNKNOWN";
6686 assert(!"interface block layout qualifier not found!");
6687 }
6688
6689 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6690 if (this->layout.flags.q.row_major)
6691 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6692 else if (this->layout.flags.q.column_major)
6693 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6694
6695 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6696 exec_list declared_variables;
6697 glsl_struct_field *fields;
6698
6699 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6700 * that we don't have incompatible qualifiers
6701 */
6702 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6703 _mesa_glsl_error(&loc, state,
6704 "Interface block sets both readonly and writeonly");
6705 }
6706
6707 unsigned qual_stream;
6708 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6709 &qual_stream) ||
6710 !validate_stream_qualifier(&loc, state, qual_stream)) {
6711 /* If the stream qualifier is invalid it doesn't make sense to continue
6712 * on and try to compare stream layouts on member variables against it
6713 * so just return early.
6714 */
6715 return NULL;
6716 }
6717
6718 unsigned expl_location = 0;
6719 if (layout.flags.q.explicit_location) {
6720 if (!process_qualifier_constant(state, &loc, "location",
6721 layout.location, &expl_location)) {
6722 return NULL;
6723 } else {
6724 expl_location = VARYING_SLOT_VAR0 + expl_location;
6725 }
6726 }
6727
6728 unsigned int num_variables =
6729 ast_process_struct_or_iface_block_members(&declared_variables,
6730 state,
6731 &this->declarations,
6732 &fields,
6733 true,
6734 matrix_layout,
6735 redeclaring_per_vertex,
6736 var_mode,
6737 &this->layout,
6738 qual_stream,
6739 expl_location);
6740
6741 if (!redeclaring_per_vertex) {
6742 validate_identifier(this->block_name, loc, state);
6743
6744 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6745 *
6746 * "Block names have no other use within a shader beyond interface
6747 * matching; it is a compile-time error to use a block name at global
6748 * scope for anything other than as a block name."
6749 */
6750 ir_variable *var = state->symbols->get_variable(this->block_name);
6751 if (var && !var->type->is_interface()) {
6752 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6753 "already used in the scope.",
6754 this->block_name);
6755 }
6756 }
6757
6758 const glsl_type *earlier_per_vertex = NULL;
6759 if (redeclaring_per_vertex) {
6760 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6761 * the named interface block gl_in, we can find it by looking at the
6762 * previous declaration of gl_in. Otherwise we can find it by looking
6763 * at the previous decalartion of any of the built-in outputs,
6764 * e.g. gl_Position.
6765 *
6766 * Also check that the instance name and array-ness of the redeclaration
6767 * are correct.
6768 */
6769 switch (var_mode) {
6770 case ir_var_shader_in:
6771 if (ir_variable *earlier_gl_in =
6772 state->symbols->get_variable("gl_in")) {
6773 earlier_per_vertex = earlier_gl_in->get_interface_type();
6774 } else {
6775 _mesa_glsl_error(&loc, state,
6776 "redeclaration of gl_PerVertex input not allowed "
6777 "in the %s shader",
6778 _mesa_shader_stage_to_string(state->stage));
6779 }
6780 if (this->instance_name == NULL ||
6781 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6782 !this->array_specifier->is_single_dimension()) {
6783 _mesa_glsl_error(&loc, state,
6784 "gl_PerVertex input must be redeclared as "
6785 "gl_in[]");
6786 }
6787 break;
6788 case ir_var_shader_out:
6789 if (ir_variable *earlier_gl_Position =
6790 state->symbols->get_variable("gl_Position")) {
6791 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6792 } else if (ir_variable *earlier_gl_out =
6793 state->symbols->get_variable("gl_out")) {
6794 earlier_per_vertex = earlier_gl_out->get_interface_type();
6795 } else {
6796 _mesa_glsl_error(&loc, state,
6797 "redeclaration of gl_PerVertex output not "
6798 "allowed in the %s shader",
6799 _mesa_shader_stage_to_string(state->stage));
6800 }
6801 if (state->stage == MESA_SHADER_TESS_CTRL) {
6802 if (this->instance_name == NULL ||
6803 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6804 _mesa_glsl_error(&loc, state,
6805 "gl_PerVertex output must be redeclared as "
6806 "gl_out[]");
6807 }
6808 } else {
6809 if (this->instance_name != NULL) {
6810 _mesa_glsl_error(&loc, state,
6811 "gl_PerVertex output may not be redeclared with "
6812 "an instance name");
6813 }
6814 }
6815 break;
6816 default:
6817 _mesa_glsl_error(&loc, state,
6818 "gl_PerVertex must be declared as an input or an "
6819 "output");
6820 break;
6821 }
6822
6823 if (earlier_per_vertex == NULL) {
6824 /* An error has already been reported. Bail out to avoid null
6825 * dereferences later in this function.
6826 */
6827 return NULL;
6828 }
6829
6830 /* Copy locations from the old gl_PerVertex interface block. */
6831 for (unsigned i = 0; i < num_variables; i++) {
6832 int j = earlier_per_vertex->field_index(fields[i].name);
6833 if (j == -1) {
6834 _mesa_glsl_error(&loc, state,
6835 "redeclaration of gl_PerVertex must be a subset "
6836 "of the built-in members of gl_PerVertex");
6837 } else {
6838 fields[i].location =
6839 earlier_per_vertex->fields.structure[j].location;
6840 fields[i].interpolation =
6841 earlier_per_vertex->fields.structure[j].interpolation;
6842 fields[i].centroid =
6843 earlier_per_vertex->fields.structure[j].centroid;
6844 fields[i].sample =
6845 earlier_per_vertex->fields.structure[j].sample;
6846 fields[i].patch =
6847 earlier_per_vertex->fields.structure[j].patch;
6848 fields[i].precision =
6849 earlier_per_vertex->fields.structure[j].precision;
6850 }
6851 }
6852
6853 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6854 * spec:
6855 *
6856 * If a built-in interface block is redeclared, it must appear in
6857 * the shader before any use of any member included in the built-in
6858 * declaration, or a compilation error will result.
6859 *
6860 * This appears to be a clarification to the behaviour established for
6861 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6862 * regardless of GLSL version.
6863 */
6864 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6865 v.run(instructions);
6866 if (v.usage_found()) {
6867 _mesa_glsl_error(&loc, state,
6868 "redeclaration of a built-in interface block must "
6869 "appear before any use of any member of the "
6870 "interface block");
6871 }
6872 }
6873
6874 const glsl_type *block_type =
6875 glsl_type::get_interface_instance(fields,
6876 num_variables,
6877 packing,
6878 this->block_name);
6879
6880 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6881 YYLTYPE loc = this->get_location();
6882 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6883 "already taken in the current scope",
6884 this->block_name, iface_type_name);
6885 }
6886
6887 /* Since interface blocks cannot contain statements, it should be
6888 * impossible for the block to generate any instructions.
6889 */
6890 assert(declared_variables.is_empty());
6891
6892 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6893 *
6894 * Geometry shader input variables get the per-vertex values written
6895 * out by vertex shader output variables of the same names. Since a
6896 * geometry shader operates on a set of vertices, each input varying
6897 * variable (or input block, see interface blocks below) needs to be
6898 * declared as an array.
6899 */
6900 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6901 var_mode == ir_var_shader_in) {
6902 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6903 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6904 state->stage == MESA_SHADER_TESS_EVAL) &&
6905 this->array_specifier == NULL &&
6906 var_mode == ir_var_shader_in) {
6907 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6908 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6909 this->array_specifier == NULL &&
6910 var_mode == ir_var_shader_out) {
6911 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6912 }
6913
6914
6915 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6916 * says:
6917 *
6918 * "If an instance name (instance-name) is used, then it puts all the
6919 * members inside a scope within its own name space, accessed with the
6920 * field selector ( . ) operator (analogously to structures)."
6921 */
6922 if (this->instance_name) {
6923 if (redeclaring_per_vertex) {
6924 /* When a built-in in an unnamed interface block is redeclared,
6925 * get_variable_being_redeclared() calls
6926 * check_builtin_array_max_size() to make sure that built-in array
6927 * variables aren't redeclared to illegal sizes. But we're looking
6928 * at a redeclaration of a named built-in interface block. So we
6929 * have to manually call check_builtin_array_max_size() for all parts
6930 * of the interface that are arrays.
6931 */
6932 for (unsigned i = 0; i < num_variables; i++) {
6933 if (fields[i].type->is_array()) {
6934 const unsigned size = fields[i].type->array_size();
6935 check_builtin_array_max_size(fields[i].name, size, loc, state);
6936 }
6937 }
6938 } else {
6939 validate_identifier(this->instance_name, loc, state);
6940 }
6941
6942 ir_variable *var;
6943
6944 if (this->array_specifier != NULL) {
6945 const glsl_type *block_array_type =
6946 process_array_type(&loc, block_type, this->array_specifier, state);
6947
6948 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6949 *
6950 * For uniform blocks declared an array, each individual array
6951 * element corresponds to a separate buffer object backing one
6952 * instance of the block. As the array size indicates the number
6953 * of buffer objects needed, uniform block array declarations
6954 * must specify an array size.
6955 *
6956 * And a few paragraphs later:
6957 *
6958 * Geometry shader input blocks must be declared as arrays and
6959 * follow the array declaration and linking rules for all
6960 * geometry shader inputs. All other input and output block
6961 * arrays must specify an array size.
6962 *
6963 * The same applies to tessellation shaders.
6964 *
6965 * The upshot of this is that the only circumstance where an
6966 * interface array size *doesn't* need to be specified is on a
6967 * geometry shader input, tessellation control shader input,
6968 * tessellation control shader output, and tessellation evaluation
6969 * shader input.
6970 */
6971 if (block_array_type->is_unsized_array()) {
6972 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6973 state->stage == MESA_SHADER_TESS_CTRL ||
6974 state->stage == MESA_SHADER_TESS_EVAL;
6975 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6976
6977 if (this->layout.flags.q.in) {
6978 if (!allow_inputs)
6979 _mesa_glsl_error(&loc, state,
6980 "unsized input block arrays not allowed in "
6981 "%s shader",
6982 _mesa_shader_stage_to_string(state->stage));
6983 } else if (this->layout.flags.q.out) {
6984 if (!allow_outputs)
6985 _mesa_glsl_error(&loc, state,
6986 "unsized output block arrays not allowed in "
6987 "%s shader",
6988 _mesa_shader_stage_to_string(state->stage));
6989 } else {
6990 /* by elimination, this is a uniform block array */
6991 _mesa_glsl_error(&loc, state,
6992 "unsized uniform block arrays not allowed in "
6993 "%s shader",
6994 _mesa_shader_stage_to_string(state->stage));
6995 }
6996 }
6997
6998 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6999 *
7000 * * Arrays of arrays of blocks are not allowed
7001 */
7002 if (state->es_shader && block_array_type->is_array() &&
7003 block_array_type->fields.array->is_array()) {
7004 _mesa_glsl_error(&loc, state,
7005 "arrays of arrays interface blocks are "
7006 "not allowed");
7007 }
7008
7009 var = new(state) ir_variable(block_array_type,
7010 this->instance_name,
7011 var_mode);
7012 } else {
7013 var = new(state) ir_variable(block_type,
7014 this->instance_name,
7015 var_mode);
7016 }
7017
7018 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7019 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7020
7021 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7022 var->data.read_only = true;
7023
7024 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7025 handle_geometry_shader_input_decl(state, loc, var);
7026 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7027 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7028 handle_tess_shader_input_decl(state, loc, var);
7029 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7030 handle_tess_ctrl_shader_output_decl(state, loc, var);
7031
7032 for (unsigned i = 0; i < num_variables; i++) {
7033 if (fields[i].type->is_unsized_array()) {
7034 if (var_mode == ir_var_shader_storage) {
7035 if (i != (num_variables - 1)) {
7036 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7037 "only last member of a shader storage block "
7038 "can be defined as unsized array",
7039 fields[i].name);
7040 }
7041 } else {
7042 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7043 *
7044 * "If an array is declared as the last member of a shader storage
7045 * block and the size is not specified at compile-time, it is
7046 * sized at run-time. In all other cases, arrays are sized only
7047 * at compile-time."
7048 */
7049 if (state->es_shader) {
7050 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7051 "only last member of a shader storage block "
7052 "can be defined as unsized array",
7053 fields[i].name);
7054 }
7055 }
7056 }
7057 }
7058
7059 if (ir_variable *earlier =
7060 state->symbols->get_variable(this->instance_name)) {
7061 if (!redeclaring_per_vertex) {
7062 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7063 this->instance_name);
7064 }
7065 earlier->data.how_declared = ir_var_declared_normally;
7066 earlier->type = var->type;
7067 earlier->reinit_interface_type(block_type);
7068 delete var;
7069 } else {
7070 if (this->layout.flags.q.explicit_binding) {
7071 apply_explicit_binding(state, &loc, var, var->type,
7072 &this->layout);
7073 }
7074
7075 var->data.stream = qual_stream;
7076 if (layout.flags.q.explicit_location) {
7077 var->data.location = expl_location;
7078 var->data.explicit_location = true;
7079 }
7080
7081 state->symbols->add_variable(var);
7082 instructions->push_tail(var);
7083 }
7084 } else {
7085 /* In order to have an array size, the block must also be declared with
7086 * an instance name.
7087 */
7088 assert(this->array_specifier == NULL);
7089
7090 for (unsigned i = 0; i < num_variables; i++) {
7091 ir_variable *var =
7092 new(state) ir_variable(fields[i].type,
7093 ralloc_strdup(state, fields[i].name),
7094 var_mode);
7095 var->data.interpolation = fields[i].interpolation;
7096 var->data.centroid = fields[i].centroid;
7097 var->data.sample = fields[i].sample;
7098 var->data.patch = fields[i].patch;
7099 var->data.stream = qual_stream;
7100 var->data.location = fields[i].location;
7101 if (fields[i].location != -1)
7102 var->data.explicit_location = true;
7103 var->init_interface_type(block_type);
7104
7105 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7106 var->data.read_only = true;
7107
7108 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7109 if (state->es_shader) {
7110 var->data.precision =
7111 select_gles_precision(fields[i].precision, fields[i].type,
7112 state, &loc);
7113 }
7114
7115 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7116 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7117 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7118 } else {
7119 var->data.matrix_layout = fields[i].matrix_layout;
7120 }
7121
7122 if (var->data.mode == ir_var_shader_storage) {
7123 var->data.image_read_only = fields[i].image_read_only;
7124 var->data.image_write_only = fields[i].image_write_only;
7125 var->data.image_coherent = fields[i].image_coherent;
7126 var->data.image_volatile = fields[i].image_volatile;
7127 var->data.image_restrict = fields[i].image_restrict;
7128 }
7129
7130 /* Examine var name here since var may get deleted in the next call */
7131 bool var_is_gl_id = is_gl_identifier(var->name);
7132
7133 if (redeclaring_per_vertex) {
7134 ir_variable *earlier =
7135 get_variable_being_redeclared(var, loc, state,
7136 true /* allow_all_redeclarations */);
7137 if (!var_is_gl_id || earlier == NULL) {
7138 _mesa_glsl_error(&loc, state,
7139 "redeclaration of gl_PerVertex can only "
7140 "include built-in variables");
7141 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7142 _mesa_glsl_error(&loc, state,
7143 "`%s' has already been redeclared",
7144 earlier->name);
7145 } else {
7146 earlier->data.how_declared = ir_var_declared_in_block;
7147 earlier->reinit_interface_type(block_type);
7148 }
7149 continue;
7150 }
7151
7152 if (state->symbols->get_variable(var->name) != NULL)
7153 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7154
7155 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7156 * The UBO declaration itself doesn't get an ir_variable unless it
7157 * has an instance name. This is ugly.
7158 */
7159 if (this->layout.flags.q.explicit_binding) {
7160 apply_explicit_binding(state, &loc, var,
7161 var->get_interface_type(), &this->layout);
7162 }
7163
7164 if (var->type->is_unsized_array()) {
7165 if (var->is_in_shader_storage_block()) {
7166 if (!is_unsized_array_last_element(var)) {
7167 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7168 "only last member of a shader storage block "
7169 "can be defined as unsized array",
7170 var->name);
7171 }
7172 var->data.from_ssbo_unsized_array = true;
7173 } else {
7174 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7175 *
7176 * "If an array is declared as the last member of a shader storage
7177 * block and the size is not specified at compile-time, it is
7178 * sized at run-time. In all other cases, arrays are sized only
7179 * at compile-time."
7180 */
7181 if (state->es_shader) {
7182 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7183 "only last member of a shader storage block "
7184 "can be defined as unsized array",
7185 var->name);
7186 }
7187 }
7188 }
7189
7190 state->symbols->add_variable(var);
7191 instructions->push_tail(var);
7192 }
7193
7194 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7195 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7196 *
7197 * It is also a compilation error ... to redeclare a built-in
7198 * block and then use a member from that built-in block that was
7199 * not included in the redeclaration.
7200 *
7201 * This appears to be a clarification to the behaviour established
7202 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7203 * behaviour regardless of GLSL version.
7204 *
7205 * To prevent the shader from using a member that was not included in
7206 * the redeclaration, we disable any ir_variables that are still
7207 * associated with the old declaration of gl_PerVertex (since we've
7208 * already updated all of the variables contained in the new
7209 * gl_PerVertex to point to it).
7210 *
7211 * As a side effect this will prevent
7212 * validate_intrastage_interface_blocks() from getting confused and
7213 * thinking there are conflicting definitions of gl_PerVertex in the
7214 * shader.
7215 */
7216 foreach_in_list_safe(ir_instruction, node, instructions) {
7217 ir_variable *const var = node->as_variable();
7218 if (var != NULL &&
7219 var->get_interface_type() == earlier_per_vertex &&
7220 var->data.mode == var_mode) {
7221 if (var->data.how_declared == ir_var_declared_normally) {
7222 _mesa_glsl_error(&loc, state,
7223 "redeclaration of gl_PerVertex cannot "
7224 "follow a redeclaration of `%s'",
7225 var->name);
7226 }
7227 state->symbols->disable_variable(var->name);
7228 var->remove();
7229 }
7230 }
7231 }
7232 }
7233
7234 return NULL;
7235 }
7236
7237
7238 ir_rvalue *
7239 ast_tcs_output_layout::hir(exec_list *instructions,
7240 struct _mesa_glsl_parse_state *state)
7241 {
7242 YYLTYPE loc = this->get_location();
7243
7244 unsigned num_vertices;
7245 if (!state->out_qualifier->vertices->
7246 process_qualifier_constant(state, "vertices", &num_vertices,
7247 false)) {
7248 /* return here to stop cascading incorrect error messages */
7249 return NULL;
7250 }
7251
7252 /* If any shader outputs occurred before this declaration and specified an
7253 * array size, make sure the size they specified is consistent with the
7254 * primitive type.
7255 */
7256 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7257 _mesa_glsl_error(&loc, state,
7258 "this tessellation control shader output layout "
7259 "specifies %u vertices, but a previous output "
7260 "is declared with size %u",
7261 num_vertices, state->tcs_output_size);
7262 return NULL;
7263 }
7264
7265 state->tcs_output_vertices_specified = true;
7266
7267 /* If any shader outputs occurred before this declaration and did not
7268 * specify an array size, their size is determined now.
7269 */
7270 foreach_in_list (ir_instruction, node, instructions) {
7271 ir_variable *var = node->as_variable();
7272 if (var == NULL || var->data.mode != ir_var_shader_out)
7273 continue;
7274
7275 /* Note: Not all tessellation control shader output are arrays. */
7276 if (!var->type->is_unsized_array() || var->data.patch)
7277 continue;
7278
7279 if (var->data.max_array_access >= num_vertices) {
7280 _mesa_glsl_error(&loc, state,
7281 "this tessellation control shader output layout "
7282 "specifies %u vertices, but an access to element "
7283 "%u of output `%s' already exists", num_vertices,
7284 var->data.max_array_access, var->name);
7285 } else {
7286 var->type = glsl_type::get_array_instance(var->type->fields.array,
7287 num_vertices);
7288 }
7289 }
7290
7291 return NULL;
7292 }
7293
7294
7295 ir_rvalue *
7296 ast_gs_input_layout::hir(exec_list *instructions,
7297 struct _mesa_glsl_parse_state *state)
7298 {
7299 YYLTYPE loc = this->get_location();
7300
7301 /* If any geometry input layout declaration preceded this one, make sure it
7302 * was consistent with this one.
7303 */
7304 if (state->gs_input_prim_type_specified &&
7305 state->in_qualifier->prim_type != this->prim_type) {
7306 _mesa_glsl_error(&loc, state,
7307 "geometry shader input layout does not match"
7308 " previous declaration");
7309 return NULL;
7310 }
7311
7312 /* If any shader inputs occurred before this declaration and specified an
7313 * array size, make sure the size they specified is consistent with the
7314 * primitive type.
7315 */
7316 unsigned num_vertices = vertices_per_prim(this->prim_type);
7317 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7318 _mesa_glsl_error(&loc, state,
7319 "this geometry shader input layout implies %u vertices"
7320 " per primitive, but a previous input is declared"
7321 " with size %u", num_vertices, state->gs_input_size);
7322 return NULL;
7323 }
7324
7325 state->gs_input_prim_type_specified = true;
7326
7327 /* If any shader inputs occurred before this declaration and did not
7328 * specify an array size, their size is determined now.
7329 */
7330 foreach_in_list(ir_instruction, node, instructions) {
7331 ir_variable *var = node->as_variable();
7332 if (var == NULL || var->data.mode != ir_var_shader_in)
7333 continue;
7334
7335 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7336 * array; skip it.
7337 */
7338
7339 if (var->type->is_unsized_array()) {
7340 if (var->data.max_array_access >= num_vertices) {
7341 _mesa_glsl_error(&loc, state,
7342 "this geometry shader input layout implies %u"
7343 " vertices, but an access to element %u of input"
7344 " `%s' already exists", num_vertices,
7345 var->data.max_array_access, var->name);
7346 } else {
7347 var->type = glsl_type::get_array_instance(var->type->fields.array,
7348 num_vertices);
7349 }
7350 }
7351 }
7352
7353 return NULL;
7354 }
7355
7356
7357 ir_rvalue *
7358 ast_cs_input_layout::hir(exec_list *instructions,
7359 struct _mesa_glsl_parse_state *state)
7360 {
7361 YYLTYPE loc = this->get_location();
7362
7363 /* From the ARB_compute_shader specification:
7364 *
7365 * If the local size of the shader in any dimension is greater
7366 * than the maximum size supported by the implementation for that
7367 * dimension, a compile-time error results.
7368 *
7369 * It is not clear from the spec how the error should be reported if
7370 * the total size of the work group exceeds
7371 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7372 * report it at compile time as well.
7373 */
7374 GLuint64 total_invocations = 1;
7375 unsigned qual_local_size[3];
7376 for (int i = 0; i < 3; i++) {
7377
7378 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7379 'x' + i);
7380 /* Infer a local_size of 1 for unspecified dimensions */
7381 if (this->local_size[i] == NULL) {
7382 qual_local_size[i] = 1;
7383 } else if (!this->local_size[i]->
7384 process_qualifier_constant(state, local_size_str,
7385 &qual_local_size[i], false)) {
7386 ralloc_free(local_size_str);
7387 return NULL;
7388 }
7389 ralloc_free(local_size_str);
7390
7391 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7392 _mesa_glsl_error(&loc, state,
7393 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7394 " (%d)", 'x' + i,
7395 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7396 break;
7397 }
7398 total_invocations *= qual_local_size[i];
7399 if (total_invocations >
7400 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7401 _mesa_glsl_error(&loc, state,
7402 "product of local_sizes exceeds "
7403 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7404 state->ctx->Const.MaxComputeWorkGroupInvocations);
7405 break;
7406 }
7407 }
7408
7409 /* If any compute input layout declaration preceded this one, make sure it
7410 * was consistent with this one.
7411 */
7412 if (state->cs_input_local_size_specified) {
7413 for (int i = 0; i < 3; i++) {
7414 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7415 _mesa_glsl_error(&loc, state,
7416 "compute shader input layout does not match"
7417 " previous declaration");
7418 return NULL;
7419 }
7420 }
7421 }
7422
7423 state->cs_input_local_size_specified = true;
7424 for (int i = 0; i < 3; i++)
7425 state->cs_input_local_size[i] = qual_local_size[i];
7426
7427 /* We may now declare the built-in constant gl_WorkGroupSize (see
7428 * builtin_variable_generator::generate_constants() for why we didn't
7429 * declare it earlier).
7430 */
7431 ir_variable *var = new(state->symbols)
7432 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7433 var->data.how_declared = ir_var_declared_implicitly;
7434 var->data.read_only = true;
7435 instructions->push_tail(var);
7436 state->symbols->add_variable(var);
7437 ir_constant_data data;
7438 memset(&data, 0, sizeof(data));
7439 for (int i = 0; i < 3; i++)
7440 data.u[i] = qual_local_size[i];
7441 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7442 var->constant_initializer =
7443 new(var) ir_constant(glsl_type::uvec3_type, &data);
7444 var->data.has_initializer = true;
7445
7446 return NULL;
7447 }
7448
7449
7450 static void
7451 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7452 exec_list *instructions)
7453 {
7454 bool gl_FragColor_assigned = false;
7455 bool gl_FragData_assigned = false;
7456 bool gl_FragSecondaryColor_assigned = false;
7457 bool gl_FragSecondaryData_assigned = false;
7458 bool user_defined_fs_output_assigned = false;
7459 ir_variable *user_defined_fs_output = NULL;
7460
7461 /* It would be nice to have proper location information. */
7462 YYLTYPE loc;
7463 memset(&loc, 0, sizeof(loc));
7464
7465 foreach_in_list(ir_instruction, node, instructions) {
7466 ir_variable *var = node->as_variable();
7467
7468 if (!var || !var->data.assigned)
7469 continue;
7470
7471 if (strcmp(var->name, "gl_FragColor") == 0)
7472 gl_FragColor_assigned = true;
7473 else if (strcmp(var->name, "gl_FragData") == 0)
7474 gl_FragData_assigned = true;
7475 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7476 gl_FragSecondaryColor_assigned = true;
7477 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7478 gl_FragSecondaryData_assigned = true;
7479 else if (!is_gl_identifier(var->name)) {
7480 if (state->stage == MESA_SHADER_FRAGMENT &&
7481 var->data.mode == ir_var_shader_out) {
7482 user_defined_fs_output_assigned = true;
7483 user_defined_fs_output = var;
7484 }
7485 }
7486 }
7487
7488 /* From the GLSL 1.30 spec:
7489 *
7490 * "If a shader statically assigns a value to gl_FragColor, it
7491 * may not assign a value to any element of gl_FragData. If a
7492 * shader statically writes a value to any element of
7493 * gl_FragData, it may not assign a value to
7494 * gl_FragColor. That is, a shader may assign values to either
7495 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7496 * linked together must also consistently write just one of
7497 * these variables. Similarly, if user declared output
7498 * variables are in use (statically assigned to), then the
7499 * built-in variables gl_FragColor and gl_FragData may not be
7500 * assigned to. These incorrect usages all generate compile
7501 * time errors."
7502 */
7503 if (gl_FragColor_assigned && gl_FragData_assigned) {
7504 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7505 "`gl_FragColor' and `gl_FragData'");
7506 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7507 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7508 "`gl_FragColor' and `%s'",
7509 user_defined_fs_output->name);
7510 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7511 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7512 "`gl_FragSecondaryColorEXT' and"
7513 " `gl_FragSecondaryDataEXT'");
7514 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7515 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7516 "`gl_FragColor' and"
7517 " `gl_FragSecondaryDataEXT'");
7518 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7519 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7520 "`gl_FragData' and"
7521 " `gl_FragSecondaryColorEXT'");
7522 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7523 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7524 "`gl_FragData' and `%s'",
7525 user_defined_fs_output->name);
7526 }
7527
7528 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7529 !state->EXT_blend_func_extended_enable) {
7530 _mesa_glsl_error(&loc, state,
7531 "Dual source blending requires EXT_blend_func_extended");
7532 }
7533 }
7534
7535
7536 static void
7537 remove_per_vertex_blocks(exec_list *instructions,
7538 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7539 {
7540 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7541 * if it exists in this shader type.
7542 */
7543 const glsl_type *per_vertex = NULL;
7544 switch (mode) {
7545 case ir_var_shader_in:
7546 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7547 per_vertex = gl_in->get_interface_type();
7548 break;
7549 case ir_var_shader_out:
7550 if (ir_variable *gl_Position =
7551 state->symbols->get_variable("gl_Position")) {
7552 per_vertex = gl_Position->get_interface_type();
7553 }
7554 break;
7555 default:
7556 assert(!"Unexpected mode");
7557 break;
7558 }
7559
7560 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7561 * need to do anything.
7562 */
7563 if (per_vertex == NULL)
7564 return;
7565
7566 /* If the interface block is used by the shader, then we don't need to do
7567 * anything.
7568 */
7569 interface_block_usage_visitor v(mode, per_vertex);
7570 v.run(instructions);
7571 if (v.usage_found())
7572 return;
7573
7574 /* Remove any ir_variable declarations that refer to the interface block
7575 * we're removing.
7576 */
7577 foreach_in_list_safe(ir_instruction, node, instructions) {
7578 ir_variable *const var = node->as_variable();
7579 if (var != NULL && var->get_interface_type() == per_vertex &&
7580 var->data.mode == mode) {
7581 state->symbols->disable_variable(var->name);
7582 var->remove();
7583 }
7584 }
7585 }