glsl: Initialize ir_variable_data::fb_fetch_output earlier for GL(ES) 2.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_FLOAT16:
1112 case GLSL_TYPE_UINT:
1113 case GLSL_TYPE_INT:
1114 case GLSL_TYPE_BOOL:
1115 case GLSL_TYPE_DOUBLE:
1116 case GLSL_TYPE_UINT64:
1117 case GLSL_TYPE_INT64:
1118 case GLSL_TYPE_UINT16:
1119 case GLSL_TYPE_INT16:
1120 return new(mem_ctx) ir_expression(operation, op0, op1);
1121
1122 case GLSL_TYPE_ARRAY: {
1123 for (unsigned int i = 0; i < op0->type->length; i++) {
1124 ir_rvalue *e0, *e1, *result;
1125
1126 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1127 new(mem_ctx) ir_constant(i));
1128 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1129 new(mem_ctx) ir_constant(i));
1130 result = do_comparison(mem_ctx, operation, e0, e1);
1131
1132 if (cmp) {
1133 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1134 } else {
1135 cmp = result;
1136 }
1137 }
1138
1139 mark_whole_array_access(op0);
1140 mark_whole_array_access(op1);
1141 break;
1142 }
1143
1144 case GLSL_TYPE_STRUCT: {
1145 for (unsigned int i = 0; i < op0->type->length; i++) {
1146 ir_rvalue *e0, *e1, *result;
1147 const char *field_name = op0->type->fields.structure[i].name;
1148
1149 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1150 field_name);
1151 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1152 field_name);
1153 result = do_comparison(mem_ctx, operation, e0, e1);
1154
1155 if (cmp) {
1156 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1157 } else {
1158 cmp = result;
1159 }
1160 }
1161 break;
1162 }
1163
1164 case GLSL_TYPE_ERROR:
1165 case GLSL_TYPE_VOID:
1166 case GLSL_TYPE_SAMPLER:
1167 case GLSL_TYPE_IMAGE:
1168 case GLSL_TYPE_INTERFACE:
1169 case GLSL_TYPE_ATOMIC_UINT:
1170 case GLSL_TYPE_SUBROUTINE:
1171 case GLSL_TYPE_FUNCTION:
1172 /* I assume a comparison of a struct containing a sampler just
1173 * ignores the sampler present in the type.
1174 */
1175 break;
1176 }
1177
1178 if (cmp == NULL)
1179 cmp = new(mem_ctx) ir_constant(true);
1180
1181 return cmp;
1182 }
1183
1184 /* For logical operations, we want to ensure that the operands are
1185 * scalar booleans. If it isn't, emit an error and return a constant
1186 * boolean to avoid triggering cascading error messages.
1187 */
1188 static ir_rvalue *
1189 get_scalar_boolean_operand(exec_list *instructions,
1190 struct _mesa_glsl_parse_state *state,
1191 ast_expression *parent_expr,
1192 int operand,
1193 const char *operand_name,
1194 bool *error_emitted)
1195 {
1196 ast_expression *expr = parent_expr->subexpressions[operand];
1197 void *ctx = state;
1198 ir_rvalue *val = expr->hir(instructions, state);
1199
1200 if (val->type->is_boolean() && val->type->is_scalar())
1201 return val;
1202
1203 if (!*error_emitted) {
1204 YYLTYPE loc = expr->get_location();
1205 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1206 operand_name,
1207 parent_expr->operator_string(parent_expr->oper));
1208 *error_emitted = true;
1209 }
1210
1211 return new(ctx) ir_constant(true);
1212 }
1213
1214 /**
1215 * If name refers to a builtin array whose maximum allowed size is less than
1216 * size, report an error and return true. Otherwise return false.
1217 */
1218 void
1219 check_builtin_array_max_size(const char *name, unsigned size,
1220 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1221 {
1222 if ((strcmp("gl_TexCoord", name) == 0)
1223 && (size > state->Const.MaxTextureCoords)) {
1224 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1225 *
1226 * "The size [of gl_TexCoord] can be at most
1227 * gl_MaxTextureCoords."
1228 */
1229 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1230 "be larger than gl_MaxTextureCoords (%u)",
1231 state->Const.MaxTextureCoords);
1232 } else if (strcmp("gl_ClipDistance", name) == 0) {
1233 state->clip_dist_size = size;
1234 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1235 /* From section 7.1 (Vertex Shader Special Variables) of the
1236 * GLSL 1.30 spec:
1237 *
1238 * "The gl_ClipDistance array is predeclared as unsized and
1239 * must be sized by the shader either redeclaring it with a
1240 * size or indexing it only with integral constant
1241 * expressions. ... The size can be at most
1242 * gl_MaxClipDistances."
1243 */
1244 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1245 "be larger than gl_MaxClipDistances (%u)",
1246 state->Const.MaxClipPlanes);
1247 }
1248 } else if (strcmp("gl_CullDistance", name) == 0) {
1249 state->cull_dist_size = size;
1250 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1251 /* From the ARB_cull_distance spec:
1252 *
1253 * "The gl_CullDistance array is predeclared as unsized and
1254 * must be sized by the shader either redeclaring it with
1255 * a size or indexing it only with integral constant
1256 * expressions. The size determines the number and set of
1257 * enabled cull distances and can be at most
1258 * gl_MaxCullDistances."
1259 */
1260 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1261 "be larger than gl_MaxCullDistances (%u)",
1262 state->Const.MaxClipPlanes);
1263 }
1264 }
1265 }
1266
1267 /**
1268 * Create the constant 1, of a which is appropriate for incrementing and
1269 * decrementing values of the given GLSL type. For example, if type is vec4,
1270 * this creates a constant value of 1.0 having type float.
1271 *
1272 * If the given type is invalid for increment and decrement operators, return
1273 * a floating point 1--the error will be detected later.
1274 */
1275 static ir_rvalue *
1276 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1277 {
1278 switch (type->base_type) {
1279 case GLSL_TYPE_UINT:
1280 return new(ctx) ir_constant((unsigned) 1);
1281 case GLSL_TYPE_INT:
1282 return new(ctx) ir_constant(1);
1283 case GLSL_TYPE_UINT64:
1284 return new(ctx) ir_constant((uint64_t) 1);
1285 case GLSL_TYPE_INT64:
1286 return new(ctx) ir_constant((int64_t) 1);
1287 default:
1288 case GLSL_TYPE_FLOAT:
1289 return new(ctx) ir_constant(1.0f);
1290 }
1291 }
1292
1293 ir_rvalue *
1294 ast_expression::hir(exec_list *instructions,
1295 struct _mesa_glsl_parse_state *state)
1296 {
1297 return do_hir(instructions, state, true);
1298 }
1299
1300 void
1301 ast_expression::hir_no_rvalue(exec_list *instructions,
1302 struct _mesa_glsl_parse_state *state)
1303 {
1304 do_hir(instructions, state, false);
1305 }
1306
1307 void
1308 ast_expression::set_is_lhs(bool new_value)
1309 {
1310 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1311 * if we lack an identifier we can just skip it.
1312 */
1313 if (this->primary_expression.identifier == NULL)
1314 return;
1315
1316 this->is_lhs = new_value;
1317
1318 /* We need to go through the subexpressions tree to cover cases like
1319 * ast_field_selection
1320 */
1321 if (this->subexpressions[0] != NULL)
1322 this->subexpressions[0]->set_is_lhs(new_value);
1323 }
1324
1325 ir_rvalue *
1326 ast_expression::do_hir(exec_list *instructions,
1327 struct _mesa_glsl_parse_state *state,
1328 bool needs_rvalue)
1329 {
1330 void *ctx = state;
1331 static const int operations[AST_NUM_OPERATORS] = {
1332 -1, /* ast_assign doesn't convert to ir_expression. */
1333 -1, /* ast_plus doesn't convert to ir_expression. */
1334 ir_unop_neg,
1335 ir_binop_add,
1336 ir_binop_sub,
1337 ir_binop_mul,
1338 ir_binop_div,
1339 ir_binop_mod,
1340 ir_binop_lshift,
1341 ir_binop_rshift,
1342 ir_binop_less,
1343 ir_binop_less, /* This is correct. See the ast_greater case below. */
1344 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1345 ir_binop_gequal,
1346 ir_binop_all_equal,
1347 ir_binop_any_nequal,
1348 ir_binop_bit_and,
1349 ir_binop_bit_xor,
1350 ir_binop_bit_or,
1351 ir_unop_bit_not,
1352 ir_binop_logic_and,
1353 ir_binop_logic_xor,
1354 ir_binop_logic_or,
1355 ir_unop_logic_not,
1356
1357 /* Note: The following block of expression types actually convert
1358 * to multiple IR instructions.
1359 */
1360 ir_binop_mul, /* ast_mul_assign */
1361 ir_binop_div, /* ast_div_assign */
1362 ir_binop_mod, /* ast_mod_assign */
1363 ir_binop_add, /* ast_add_assign */
1364 ir_binop_sub, /* ast_sub_assign */
1365 ir_binop_lshift, /* ast_ls_assign */
1366 ir_binop_rshift, /* ast_rs_assign */
1367 ir_binop_bit_and, /* ast_and_assign */
1368 ir_binop_bit_xor, /* ast_xor_assign */
1369 ir_binop_bit_or, /* ast_or_assign */
1370
1371 -1, /* ast_conditional doesn't convert to ir_expression. */
1372 ir_binop_add, /* ast_pre_inc. */
1373 ir_binop_sub, /* ast_pre_dec. */
1374 ir_binop_add, /* ast_post_inc. */
1375 ir_binop_sub, /* ast_post_dec. */
1376 -1, /* ast_field_selection doesn't conv to ir_expression. */
1377 -1, /* ast_array_index doesn't convert to ir_expression. */
1378 -1, /* ast_function_call doesn't conv to ir_expression. */
1379 -1, /* ast_identifier doesn't convert to ir_expression. */
1380 -1, /* ast_int_constant doesn't convert to ir_expression. */
1381 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1382 -1, /* ast_float_constant doesn't conv to ir_expression. */
1383 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1384 -1, /* ast_sequence doesn't convert to ir_expression. */
1385 -1, /* ast_aggregate shouldn't ever even get here. */
1386 };
1387 ir_rvalue *result = NULL;
1388 ir_rvalue *op[3];
1389 const struct glsl_type *type, *orig_type;
1390 bool error_emitted = false;
1391 YYLTYPE loc;
1392
1393 loc = this->get_location();
1394
1395 switch (this->oper) {
1396 case ast_aggregate:
1397 assert(!"ast_aggregate: Should never get here.");
1398 break;
1399
1400 case ast_assign: {
1401 this->subexpressions[0]->set_is_lhs(true);
1402 op[0] = this->subexpressions[0]->hir(instructions, state);
1403 op[1] = this->subexpressions[1]->hir(instructions, state);
1404
1405 error_emitted =
1406 do_assignment(instructions, state,
1407 this->subexpressions[0]->non_lvalue_description,
1408 op[0], op[1], &result, needs_rvalue, false,
1409 this->subexpressions[0]->get_location());
1410 break;
1411 }
1412
1413 case ast_plus:
1414 op[0] = this->subexpressions[0]->hir(instructions, state);
1415
1416 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1417
1418 error_emitted = type->is_error();
1419
1420 result = op[0];
1421 break;
1422
1423 case ast_neg:
1424 op[0] = this->subexpressions[0]->hir(instructions, state);
1425
1426 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1427
1428 error_emitted = type->is_error();
1429
1430 result = new(ctx) ir_expression(operations[this->oper], type,
1431 op[0], NULL);
1432 break;
1433
1434 case ast_add:
1435 case ast_sub:
1436 case ast_mul:
1437 case ast_div:
1438 op[0] = this->subexpressions[0]->hir(instructions, state);
1439 op[1] = this->subexpressions[1]->hir(instructions, state);
1440
1441 type = arithmetic_result_type(op[0], op[1],
1442 (this->oper == ast_mul),
1443 state, & loc);
1444 error_emitted = type->is_error();
1445
1446 result = new(ctx) ir_expression(operations[this->oper], type,
1447 op[0], op[1]);
1448 break;
1449
1450 case ast_mod:
1451 op[0] = this->subexpressions[0]->hir(instructions, state);
1452 op[1] = this->subexpressions[1]->hir(instructions, state);
1453
1454 type = modulus_result_type(op[0], op[1], state, &loc);
1455
1456 assert(operations[this->oper] == ir_binop_mod);
1457
1458 result = new(ctx) ir_expression(operations[this->oper], type,
1459 op[0], op[1]);
1460 error_emitted = type->is_error();
1461 break;
1462
1463 case ast_lshift:
1464 case ast_rshift:
1465 if (!state->check_bitwise_operations_allowed(&loc)) {
1466 error_emitted = true;
1467 }
1468
1469 op[0] = this->subexpressions[0]->hir(instructions, state);
1470 op[1] = this->subexpressions[1]->hir(instructions, state);
1471 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1472 &loc);
1473 result = new(ctx) ir_expression(operations[this->oper], type,
1474 op[0], op[1]);
1475 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1476 break;
1477
1478 case ast_less:
1479 case ast_greater:
1480 case ast_lequal:
1481 case ast_gequal:
1482 op[0] = this->subexpressions[0]->hir(instructions, state);
1483 op[1] = this->subexpressions[1]->hir(instructions, state);
1484
1485 type = relational_result_type(op[0], op[1], state, & loc);
1486
1487 /* The relational operators must either generate an error or result
1488 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1489 */
1490 assert(type->is_error()
1491 || (type->is_boolean() && type->is_scalar()));
1492
1493 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1494 * the arguments and use < or >=.
1495 */
1496 if (this->oper == ast_greater || this->oper == ast_lequal) {
1497 ir_rvalue *const tmp = op[0];
1498 op[0] = op[1];
1499 op[1] = tmp;
1500 }
1501
1502 result = new(ctx) ir_expression(operations[this->oper], type,
1503 op[0], op[1]);
1504 error_emitted = type->is_error();
1505 break;
1506
1507 case ast_nequal:
1508 case ast_equal:
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = this->subexpressions[1]->hir(instructions, state);
1511
1512 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1513 *
1514 * "The equality operators equal (==), and not equal (!=)
1515 * operate on all types. They result in a scalar Boolean. If
1516 * the operand types do not match, then there must be a
1517 * conversion from Section 4.1.10 "Implicit Conversions"
1518 * applied to one operand that can make them match, in which
1519 * case this conversion is done."
1520 */
1521
1522 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1523 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1524 "no operation `%1$s' exists that takes a left-hand "
1525 "operand of type 'void' or a right operand of type "
1526 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1527 error_emitted = true;
1528 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1529 && !apply_implicit_conversion(op[1]->type, op[0], state))
1530 || (op[0]->type != op[1]->type)) {
1531 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1532 "type", (this->oper == ast_equal) ? "==" : "!=");
1533 error_emitted = true;
1534 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1535 !state->check_version(120, 300, &loc,
1536 "array comparisons forbidden")) {
1537 error_emitted = true;
1538 } else if ((op[0]->type->contains_subroutine() ||
1539 op[1]->type->contains_subroutine())) {
1540 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_opaque() ||
1543 op[1]->type->contains_opaque())) {
1544 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1545 error_emitted = true;
1546 }
1547
1548 if (error_emitted) {
1549 result = new(ctx) ir_constant(false);
1550 } else {
1551 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1552 assert(result->type == glsl_type::bool_type);
1553 }
1554 break;
1555
1556 case ast_bit_and:
1557 case ast_bit_xor:
1558 case ast_bit_or:
1559 op[0] = this->subexpressions[0]->hir(instructions, state);
1560 op[1] = this->subexpressions[1]->hir(instructions, state);
1561 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1562 result = new(ctx) ir_expression(operations[this->oper], type,
1563 op[0], op[1]);
1564 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1565 break;
1566
1567 case ast_bit_not:
1568 op[0] = this->subexpressions[0]->hir(instructions, state);
1569
1570 if (!state->check_bitwise_operations_allowed(&loc)) {
1571 error_emitted = true;
1572 }
1573
1574 if (!op[0]->type->is_integer_32_64()) {
1575 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1576 error_emitted = true;
1577 }
1578
1579 type = error_emitted ? glsl_type::error_type : op[0]->type;
1580 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1581 break;
1582
1583 case ast_logic_and: {
1584 exec_list rhs_instructions;
1585 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1586 "LHS", &error_emitted);
1587 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1588 "RHS", &error_emitted);
1589
1590 if (rhs_instructions.is_empty()) {
1591 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1592 } else {
1593 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1594 "and_tmp",
1595 ir_var_temporary);
1596 instructions->push_tail(tmp);
1597
1598 ir_if *const stmt = new(ctx) ir_if(op[0]);
1599 instructions->push_tail(stmt);
1600
1601 stmt->then_instructions.append_list(&rhs_instructions);
1602 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const then_assign =
1604 new(ctx) ir_assignment(then_deref, op[1]);
1605 stmt->then_instructions.push_tail(then_assign);
1606
1607 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1608 ir_assignment *const else_assign =
1609 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1610 stmt->else_instructions.push_tail(else_assign);
1611
1612 result = new(ctx) ir_dereference_variable(tmp);
1613 }
1614 break;
1615 }
1616
1617 case ast_logic_or: {
1618 exec_list rhs_instructions;
1619 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1620 "LHS", &error_emitted);
1621 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1622 "RHS", &error_emitted);
1623
1624 if (rhs_instructions.is_empty()) {
1625 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1626 } else {
1627 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1628 "or_tmp",
1629 ir_var_temporary);
1630 instructions->push_tail(tmp);
1631
1632 ir_if *const stmt = new(ctx) ir_if(op[0]);
1633 instructions->push_tail(stmt);
1634
1635 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1636 ir_assignment *const then_assign =
1637 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1638 stmt->then_instructions.push_tail(then_assign);
1639
1640 stmt->else_instructions.append_list(&rhs_instructions);
1641 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1642 ir_assignment *const else_assign =
1643 new(ctx) ir_assignment(else_deref, op[1]);
1644 stmt->else_instructions.push_tail(else_assign);
1645
1646 result = new(ctx) ir_dereference_variable(tmp);
1647 }
1648 break;
1649 }
1650
1651 case ast_logic_xor:
1652 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1653 *
1654 * "The logical binary operators and (&&), or ( | | ), and
1655 * exclusive or (^^). They operate only on two Boolean
1656 * expressions and result in a Boolean expression."
1657 */
1658 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1659 &error_emitted);
1660 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1661 &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], op[1]);
1665 break;
1666
1667 case ast_logic_not:
1668 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1669 "operand", &error_emitted);
1670
1671 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1672 op[0], NULL);
1673 break;
1674
1675 case ast_mul_assign:
1676 case ast_div_assign:
1677 case ast_add_assign:
1678 case ast_sub_assign: {
1679 this->subexpressions[0]->set_is_lhs(true);
1680 op[0] = this->subexpressions[0]->hir(instructions, state);
1681 op[1] = this->subexpressions[1]->hir(instructions, state);
1682
1683 orig_type = op[0]->type;
1684 type = arithmetic_result_type(op[0], op[1],
1685 (this->oper == ast_mul_assign),
1686 state, & loc);
1687
1688 if (type != orig_type) {
1689 _mesa_glsl_error(& loc, state,
1690 "could not implicitly convert "
1691 "%s to %s", type->name, orig_type->name);
1692 type = glsl_type::error_type;
1693 }
1694
1695 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1696 op[0], op[1]);
1697
1698 error_emitted =
1699 do_assignment(instructions, state,
1700 this->subexpressions[0]->non_lvalue_description,
1701 op[0]->clone(ctx, NULL), temp_rhs,
1702 &result, needs_rvalue, false,
1703 this->subexpressions[0]->get_location());
1704
1705 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1706 * explicitly test for this because none of the binary expression
1707 * operators allow array operands either.
1708 */
1709
1710 break;
1711 }
1712
1713 case ast_mod_assign: {
1714 this->subexpressions[0]->set_is_lhs(true);
1715 op[0] = this->subexpressions[0]->hir(instructions, state);
1716 op[1] = this->subexpressions[1]->hir(instructions, state);
1717
1718 orig_type = op[0]->type;
1719 type = modulus_result_type(op[0], op[1], state, &loc);
1720
1721 if (type != orig_type) {
1722 _mesa_glsl_error(& loc, state,
1723 "could not implicitly convert "
1724 "%s to %s", type->name, orig_type->name);
1725 type = glsl_type::error_type;
1726 }
1727
1728 assert(operations[this->oper] == ir_binop_mod);
1729
1730 ir_rvalue *temp_rhs;
1731 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1732 op[0], op[1]);
1733
1734 error_emitted =
1735 do_assignment(instructions, state,
1736 this->subexpressions[0]->non_lvalue_description,
1737 op[0]->clone(ctx, NULL), temp_rhs,
1738 &result, needs_rvalue, false,
1739 this->subexpressions[0]->get_location());
1740 break;
1741 }
1742
1743 case ast_ls_assign:
1744 case ast_rs_assign: {
1745 this->subexpressions[0]->set_is_lhs(true);
1746 op[0] = this->subexpressions[0]->hir(instructions, state);
1747 op[1] = this->subexpressions[1]->hir(instructions, state);
1748 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1749 &loc);
1750 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1751 type, op[0], op[1]);
1752 error_emitted =
1753 do_assignment(instructions, state,
1754 this->subexpressions[0]->non_lvalue_description,
1755 op[0]->clone(ctx, NULL), temp_rhs,
1756 &result, needs_rvalue, false,
1757 this->subexpressions[0]->get_location());
1758 break;
1759 }
1760
1761 case ast_and_assign:
1762 case ast_xor_assign:
1763 case ast_or_assign: {
1764 this->subexpressions[0]->set_is_lhs(true);
1765 op[0] = this->subexpressions[0]->hir(instructions, state);
1766 op[1] = this->subexpressions[1]->hir(instructions, state);
1767
1768 orig_type = op[0]->type;
1769 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1770
1771 if (type != orig_type) {
1772 _mesa_glsl_error(& loc, state,
1773 "could not implicitly convert "
1774 "%s to %s", type->name, orig_type->name);
1775 type = glsl_type::error_type;
1776 }
1777
1778 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1779 type, op[0], op[1]);
1780 error_emitted =
1781 do_assignment(instructions, state,
1782 this->subexpressions[0]->non_lvalue_description,
1783 op[0]->clone(ctx, NULL), temp_rhs,
1784 &result, needs_rvalue, false,
1785 this->subexpressions[0]->get_location());
1786 break;
1787 }
1788
1789 case ast_conditional: {
1790 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1791 *
1792 * "The ternary selection operator (?:). It operates on three
1793 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1794 * first expression, which must result in a scalar Boolean."
1795 */
1796 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1797 "condition", &error_emitted);
1798
1799 /* The :? operator is implemented by generating an anonymous temporary
1800 * followed by an if-statement. The last instruction in each branch of
1801 * the if-statement assigns a value to the anonymous temporary. This
1802 * temporary is the r-value of the expression.
1803 */
1804 exec_list then_instructions;
1805 exec_list else_instructions;
1806
1807 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1808 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1809
1810 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1811 *
1812 * "The second and third expressions can be any type, as
1813 * long their types match, or there is a conversion in
1814 * Section 4.1.10 "Implicit Conversions" that can be applied
1815 * to one of the expressions to make their types match. This
1816 * resulting matching type is the type of the entire
1817 * expression."
1818 */
1819 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1820 && !apply_implicit_conversion(op[2]->type, op[1], state))
1821 || (op[1]->type != op[2]->type)) {
1822 YYLTYPE loc = this->subexpressions[1]->get_location();
1823
1824 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1825 "operator must have matching types");
1826 error_emitted = true;
1827 type = glsl_type::error_type;
1828 } else {
1829 type = op[1]->type;
1830 }
1831
1832 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1833 *
1834 * "The second and third expressions must be the same type, but can
1835 * be of any type other than an array."
1836 */
1837 if (type->is_array() &&
1838 !state->check_version(120, 300, &loc,
1839 "second and third operands of ?: operator "
1840 "cannot be arrays")) {
1841 error_emitted = true;
1842 }
1843
1844 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1845 *
1846 * "Except for array indexing, structure member selection, and
1847 * parentheses, opaque variables are not allowed to be operands in
1848 * expressions; such use results in a compile-time error."
1849 */
1850 if (type->contains_opaque()) {
1851 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1852 "of the ?: operator");
1853 error_emitted = true;
1854 }
1855
1856 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1857
1858 if (then_instructions.is_empty()
1859 && else_instructions.is_empty()
1860 && cond_val != NULL) {
1861 result = cond_val->value.b[0] ? op[1] : op[2];
1862 } else {
1863 /* The copy to conditional_tmp reads the whole array. */
1864 if (type->is_array()) {
1865 mark_whole_array_access(op[1]);
1866 mark_whole_array_access(op[2]);
1867 }
1868
1869 ir_variable *const tmp =
1870 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1871 instructions->push_tail(tmp);
1872
1873 ir_if *const stmt = new(ctx) ir_if(op[0]);
1874 instructions->push_tail(stmt);
1875
1876 then_instructions.move_nodes_to(& stmt->then_instructions);
1877 ir_dereference *const then_deref =
1878 new(ctx) ir_dereference_variable(tmp);
1879 ir_assignment *const then_assign =
1880 new(ctx) ir_assignment(then_deref, op[1]);
1881 stmt->then_instructions.push_tail(then_assign);
1882
1883 else_instructions.move_nodes_to(& stmt->else_instructions);
1884 ir_dereference *const else_deref =
1885 new(ctx) ir_dereference_variable(tmp);
1886 ir_assignment *const else_assign =
1887 new(ctx) ir_assignment(else_deref, op[2]);
1888 stmt->else_instructions.push_tail(else_assign);
1889
1890 result = new(ctx) ir_dereference_variable(tmp);
1891 }
1892 break;
1893 }
1894
1895 case ast_pre_inc:
1896 case ast_pre_dec: {
1897 this->non_lvalue_description = (this->oper == ast_pre_inc)
1898 ? "pre-increment operation" : "pre-decrement operation";
1899
1900 op[0] = this->subexpressions[0]->hir(instructions, state);
1901 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1902
1903 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1904
1905 ir_rvalue *temp_rhs;
1906 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1907 op[0], op[1]);
1908
1909 error_emitted =
1910 do_assignment(instructions, state,
1911 this->subexpressions[0]->non_lvalue_description,
1912 op[0]->clone(ctx, NULL), temp_rhs,
1913 &result, needs_rvalue, false,
1914 this->subexpressions[0]->get_location());
1915 break;
1916 }
1917
1918 case ast_post_inc:
1919 case ast_post_dec: {
1920 this->non_lvalue_description = (this->oper == ast_post_inc)
1921 ? "post-increment operation" : "post-decrement operation";
1922 op[0] = this->subexpressions[0]->hir(instructions, state);
1923 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1924
1925 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1926
1927 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1928
1929 ir_rvalue *temp_rhs;
1930 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1931 op[0], op[1]);
1932
1933 /* Get a temporary of a copy of the lvalue before it's modified.
1934 * This may get thrown away later.
1935 */
1936 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1937
1938 ir_rvalue *junk_rvalue;
1939 error_emitted =
1940 do_assignment(instructions, state,
1941 this->subexpressions[0]->non_lvalue_description,
1942 op[0]->clone(ctx, NULL), temp_rhs,
1943 &junk_rvalue, false, false,
1944 this->subexpressions[0]->get_location());
1945
1946 break;
1947 }
1948
1949 case ast_field_selection:
1950 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1951 break;
1952
1953 case ast_array_index: {
1954 YYLTYPE index_loc = subexpressions[1]->get_location();
1955
1956 /* Getting if an array is being used uninitialized is beyond what we get
1957 * from ir_value.data.assigned. Setting is_lhs as true would force to
1958 * not raise a uninitialized warning when using an array
1959 */
1960 subexpressions[0]->set_is_lhs(true);
1961 op[0] = subexpressions[0]->hir(instructions, state);
1962 op[1] = subexpressions[1]->hir(instructions, state);
1963
1964 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1965 loc, index_loc);
1966
1967 if (result->type->is_error())
1968 error_emitted = true;
1969
1970 break;
1971 }
1972
1973 case ast_unsized_array_dim:
1974 assert(!"ast_unsized_array_dim: Should never get here.");
1975 break;
1976
1977 case ast_function_call:
1978 /* Should *NEVER* get here. ast_function_call should always be handled
1979 * by ast_function_expression::hir.
1980 */
1981 assert(0);
1982 break;
1983
1984 case ast_identifier: {
1985 /* ast_identifier can appear several places in a full abstract syntax
1986 * tree. This particular use must be at location specified in the grammar
1987 * as 'variable_identifier'.
1988 */
1989 ir_variable *var =
1990 state->symbols->get_variable(this->primary_expression.identifier);
1991
1992 if (var == NULL) {
1993 /* the identifier might be a subroutine name */
1994 char *sub_name;
1995 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1996 var = state->symbols->get_variable(sub_name);
1997 ralloc_free(sub_name);
1998 }
1999
2000 if (var != NULL) {
2001 var->data.used = true;
2002 result = new(ctx) ir_dereference_variable(var);
2003
2004 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2005 && !this->is_lhs
2006 && result->variable_referenced()->data.assigned != true
2007 && !is_gl_identifier(var->name)) {
2008 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2009 this->primary_expression.identifier);
2010 }
2011 } else {
2012 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2013 this->primary_expression.identifier);
2014
2015 result = ir_rvalue::error_value(ctx);
2016 error_emitted = true;
2017 }
2018 break;
2019 }
2020
2021 case ast_int_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2023 break;
2024
2025 case ast_uint_constant:
2026 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2027 break;
2028
2029 case ast_float_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2031 break;
2032
2033 case ast_bool_constant:
2034 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2035 break;
2036
2037 case ast_double_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2039 break;
2040
2041 case ast_uint64_constant:
2042 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2043 break;
2044
2045 case ast_int64_constant:
2046 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2047 break;
2048
2049 case ast_sequence: {
2050 /* It should not be possible to generate a sequence in the AST without
2051 * any expressions in it.
2052 */
2053 assert(!this->expressions.is_empty());
2054
2055 /* The r-value of a sequence is the last expression in the sequence. If
2056 * the other expressions in the sequence do not have side-effects (and
2057 * therefore add instructions to the instruction list), they get dropped
2058 * on the floor.
2059 */
2060 exec_node *previous_tail = NULL;
2061 YYLTYPE previous_operand_loc = loc;
2062
2063 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2064 /* If one of the operands of comma operator does not generate any
2065 * code, we want to emit a warning. At each pass through the loop
2066 * previous_tail will point to the last instruction in the stream
2067 * *before* processing the previous operand. Naturally,
2068 * instructions->get_tail_raw() will point to the last instruction in
2069 * the stream *after* processing the previous operand. If the two
2070 * pointers match, then the previous operand had no effect.
2071 *
2072 * The warning behavior here differs slightly from GCC. GCC will
2073 * only emit a warning if none of the left-hand operands have an
2074 * effect. However, it will emit a warning for each. I believe that
2075 * there are some cases in C (especially with GCC extensions) where
2076 * it is useful to have an intermediate step in a sequence have no
2077 * effect, but I don't think these cases exist in GLSL. Either way,
2078 * it would be a giant hassle to replicate that behavior.
2079 */
2080 if (previous_tail == instructions->get_tail_raw()) {
2081 _mesa_glsl_warning(&previous_operand_loc, state,
2082 "left-hand operand of comma expression has "
2083 "no effect");
2084 }
2085
2086 /* The tail is directly accessed instead of using the get_tail()
2087 * method for performance reasons. get_tail() has extra code to
2088 * return NULL when the list is empty. We don't care about that
2089 * here, so using get_tail_raw() is fine.
2090 */
2091 previous_tail = instructions->get_tail_raw();
2092 previous_operand_loc = ast->get_location();
2093
2094 result = ast->hir(instructions, state);
2095 }
2096
2097 /* Any errors should have already been emitted in the loop above.
2098 */
2099 error_emitted = true;
2100 break;
2101 }
2102 }
2103 type = NULL; /* use result->type, not type. */
2104 assert(result != NULL || !needs_rvalue);
2105
2106 if (result && result->type->is_error() && !error_emitted)
2107 _mesa_glsl_error(& loc, state, "type mismatch");
2108
2109 return result;
2110 }
2111
2112 bool
2113 ast_expression::has_sequence_subexpression() const
2114 {
2115 switch (this->oper) {
2116 case ast_plus:
2117 case ast_neg:
2118 case ast_bit_not:
2119 case ast_logic_not:
2120 case ast_pre_inc:
2121 case ast_pre_dec:
2122 case ast_post_inc:
2123 case ast_post_dec:
2124 return this->subexpressions[0]->has_sequence_subexpression();
2125
2126 case ast_assign:
2127 case ast_add:
2128 case ast_sub:
2129 case ast_mul:
2130 case ast_div:
2131 case ast_mod:
2132 case ast_lshift:
2133 case ast_rshift:
2134 case ast_less:
2135 case ast_greater:
2136 case ast_lequal:
2137 case ast_gequal:
2138 case ast_nequal:
2139 case ast_equal:
2140 case ast_bit_and:
2141 case ast_bit_xor:
2142 case ast_bit_or:
2143 case ast_logic_and:
2144 case ast_logic_or:
2145 case ast_logic_xor:
2146 case ast_array_index:
2147 case ast_mul_assign:
2148 case ast_div_assign:
2149 case ast_add_assign:
2150 case ast_sub_assign:
2151 case ast_mod_assign:
2152 case ast_ls_assign:
2153 case ast_rs_assign:
2154 case ast_and_assign:
2155 case ast_xor_assign:
2156 case ast_or_assign:
2157 return this->subexpressions[0]->has_sequence_subexpression() ||
2158 this->subexpressions[1]->has_sequence_subexpression();
2159
2160 case ast_conditional:
2161 return this->subexpressions[0]->has_sequence_subexpression() ||
2162 this->subexpressions[1]->has_sequence_subexpression() ||
2163 this->subexpressions[2]->has_sequence_subexpression();
2164
2165 case ast_sequence:
2166 return true;
2167
2168 case ast_field_selection:
2169 case ast_identifier:
2170 case ast_int_constant:
2171 case ast_uint_constant:
2172 case ast_float_constant:
2173 case ast_bool_constant:
2174 case ast_double_constant:
2175 case ast_int64_constant:
2176 case ast_uint64_constant:
2177 return false;
2178
2179 case ast_aggregate:
2180 return false;
2181
2182 case ast_function_call:
2183 unreachable("should be handled by ast_function_expression::hir");
2184
2185 case ast_unsized_array_dim:
2186 unreachable("ast_unsized_array_dim: Should never get here.");
2187 }
2188
2189 return false;
2190 }
2191
2192 ir_rvalue *
2193 ast_expression_statement::hir(exec_list *instructions,
2194 struct _mesa_glsl_parse_state *state)
2195 {
2196 /* It is possible to have expression statements that don't have an
2197 * expression. This is the solitary semicolon:
2198 *
2199 * for (i = 0; i < 5; i++)
2200 * ;
2201 *
2202 * In this case the expression will be NULL. Test for NULL and don't do
2203 * anything in that case.
2204 */
2205 if (expression != NULL)
2206 expression->hir_no_rvalue(instructions, state);
2207
2208 /* Statements do not have r-values.
2209 */
2210 return NULL;
2211 }
2212
2213
2214 ir_rvalue *
2215 ast_compound_statement::hir(exec_list *instructions,
2216 struct _mesa_glsl_parse_state *state)
2217 {
2218 if (new_scope)
2219 state->symbols->push_scope();
2220
2221 foreach_list_typed (ast_node, ast, link, &this->statements)
2222 ast->hir(instructions, state);
2223
2224 if (new_scope)
2225 state->symbols->pop_scope();
2226
2227 /* Compound statements do not have r-values.
2228 */
2229 return NULL;
2230 }
2231
2232 /**
2233 * Evaluate the given exec_node (which should be an ast_node representing
2234 * a single array dimension) and return its integer value.
2235 */
2236 static unsigned
2237 process_array_size(exec_node *node,
2238 struct _mesa_glsl_parse_state *state)
2239 {
2240 void *mem_ctx = state;
2241
2242 exec_list dummy_instructions;
2243
2244 ast_node *array_size = exec_node_data(ast_node, node, link);
2245
2246 /**
2247 * Dimensions other than the outermost dimension can by unsized if they
2248 * are immediately sized by a constructor or initializer.
2249 */
2250 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2251 return 0;
2252
2253 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2254 YYLTYPE loc = array_size->get_location();
2255
2256 if (ir == NULL) {
2257 _mesa_glsl_error(& loc, state,
2258 "array size could not be resolved");
2259 return 0;
2260 }
2261
2262 if (!ir->type->is_integer()) {
2263 _mesa_glsl_error(& loc, state,
2264 "array size must be integer type");
2265 return 0;
2266 }
2267
2268 if (!ir->type->is_scalar()) {
2269 _mesa_glsl_error(& loc, state,
2270 "array size must be scalar type");
2271 return 0;
2272 }
2273
2274 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2275 if (size == NULL ||
2276 (state->is_version(120, 300) &&
2277 array_size->has_sequence_subexpression())) {
2278 _mesa_glsl_error(& loc, state, "array size must be a "
2279 "constant valued expression");
2280 return 0;
2281 }
2282
2283 if (size->value.i[0] <= 0) {
2284 _mesa_glsl_error(& loc, state, "array size must be > 0");
2285 return 0;
2286 }
2287
2288 assert(size->type == ir->type);
2289
2290 /* If the array size is const (and we've verified that
2291 * it is) then no instructions should have been emitted
2292 * when we converted it to HIR. If they were emitted,
2293 * then either the array size isn't const after all, or
2294 * we are emitting unnecessary instructions.
2295 */
2296 assert(dummy_instructions.is_empty());
2297
2298 return size->value.u[0];
2299 }
2300
2301 static const glsl_type *
2302 process_array_type(YYLTYPE *loc, const glsl_type *base,
2303 ast_array_specifier *array_specifier,
2304 struct _mesa_glsl_parse_state *state)
2305 {
2306 const glsl_type *array_type = base;
2307
2308 if (array_specifier != NULL) {
2309 if (base->is_array()) {
2310
2311 /* From page 19 (page 25) of the GLSL 1.20 spec:
2312 *
2313 * "Only one-dimensional arrays may be declared."
2314 */
2315 if (!state->check_arrays_of_arrays_allowed(loc)) {
2316 return glsl_type::error_type;
2317 }
2318 }
2319
2320 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2321 !node->is_head_sentinel(); node = node->prev) {
2322 unsigned array_size = process_array_size(node, state);
2323 array_type = glsl_type::get_array_instance(array_type, array_size);
2324 }
2325 }
2326
2327 return array_type;
2328 }
2329
2330 static bool
2331 precision_qualifier_allowed(const glsl_type *type)
2332 {
2333 /* Precision qualifiers apply to floating point, integer and opaque
2334 * types.
2335 *
2336 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2337 * "Any floating point or any integer declaration can have the type
2338 * preceded by one of these precision qualifiers [...] Literal
2339 * constants do not have precision qualifiers. Neither do Boolean
2340 * variables.
2341 *
2342 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2343 * spec also says:
2344 *
2345 * "Precision qualifiers are added for code portability with OpenGL
2346 * ES, not for functionality. They have the same syntax as in OpenGL
2347 * ES."
2348 *
2349 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2350 *
2351 * "uniform lowp sampler2D sampler;
2352 * highp vec2 coord;
2353 * ...
2354 * lowp vec4 col = texture2D (sampler, coord);
2355 * // texture2D returns lowp"
2356 *
2357 * From this, we infer that GLSL 1.30 (and later) should allow precision
2358 * qualifiers on sampler types just like float and integer types.
2359 */
2360 const glsl_type *const t = type->without_array();
2361
2362 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2363 !t->is_record();
2364 }
2365
2366 const glsl_type *
2367 ast_type_specifier::glsl_type(const char **name,
2368 struct _mesa_glsl_parse_state *state) const
2369 {
2370 const struct glsl_type *type;
2371
2372 if (this->type != NULL)
2373 type = this->type;
2374 else if (structure)
2375 type = structure->type;
2376 else
2377 type = state->symbols->get_type(this->type_name);
2378 *name = this->type_name;
2379
2380 YYLTYPE loc = this->get_location();
2381 type = process_array_type(&loc, type, this->array_specifier, state);
2382
2383 return type;
2384 }
2385
2386 /**
2387 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2388 *
2389 * "The precision statement
2390 *
2391 * precision precision-qualifier type;
2392 *
2393 * can be used to establish a default precision qualifier. The type field can
2394 * be either int or float or any of the sampler types, (...) If type is float,
2395 * the directive applies to non-precision-qualified floating point type
2396 * (scalar, vector, and matrix) declarations. If type is int, the directive
2397 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2398 * and unsigned) declarations."
2399 *
2400 * We use the symbol table to keep the values of the default precisions for
2401 * each 'type' in each scope and we use the 'type' string from the precision
2402 * statement as key in the symbol table. When we want to retrieve the default
2403 * precision associated with a given glsl_type we need to know the type string
2404 * associated with it. This is what this function returns.
2405 */
2406 static const char *
2407 get_type_name_for_precision_qualifier(const glsl_type *type)
2408 {
2409 switch (type->base_type) {
2410 case GLSL_TYPE_FLOAT:
2411 return "float";
2412 case GLSL_TYPE_UINT:
2413 case GLSL_TYPE_INT:
2414 return "int";
2415 case GLSL_TYPE_ATOMIC_UINT:
2416 return "atomic_uint";
2417 case GLSL_TYPE_IMAGE:
2418 /* fallthrough */
2419 case GLSL_TYPE_SAMPLER: {
2420 const unsigned type_idx =
2421 type->sampler_array + 2 * type->sampler_shadow;
2422 const unsigned offset = type->is_sampler() ? 0 : 4;
2423 assert(type_idx < 4);
2424 switch (type->sampled_type) {
2425 case GLSL_TYPE_FLOAT:
2426 switch (type->sampler_dimensionality) {
2427 case GLSL_SAMPLER_DIM_1D: {
2428 assert(type->is_sampler());
2429 static const char *const names[4] = {
2430 "sampler1D", "sampler1DArray",
2431 "sampler1DShadow", "sampler1DArrayShadow"
2432 };
2433 return names[type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_2D: {
2436 static const char *const names[8] = {
2437 "sampler2D", "sampler2DArray",
2438 "sampler2DShadow", "sampler2DArrayShadow",
2439 "image2D", "image2DArray", NULL, NULL
2440 };
2441 return names[offset + type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_3D: {
2444 static const char *const names[8] = {
2445 "sampler3D", NULL, NULL, NULL,
2446 "image3D", NULL, NULL, NULL
2447 };
2448 return names[offset + type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_CUBE: {
2451 static const char *const names[8] = {
2452 "samplerCube", "samplerCubeArray",
2453 "samplerCubeShadow", "samplerCubeArrayShadow",
2454 "imageCube", NULL, NULL, NULL
2455 };
2456 return names[offset + type_idx];
2457 }
2458 case GLSL_SAMPLER_DIM_MS: {
2459 assert(type->is_sampler());
2460 static const char *const names[4] = {
2461 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2462 };
2463 return names[type_idx];
2464 }
2465 case GLSL_SAMPLER_DIM_RECT: {
2466 assert(type->is_sampler());
2467 static const char *const names[4] = {
2468 "samplerRect", NULL, "samplerRectShadow", NULL
2469 };
2470 return names[type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_BUF: {
2473 static const char *const names[8] = {
2474 "samplerBuffer", NULL, NULL, NULL,
2475 "imageBuffer", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_EXTERNAL: {
2480 assert(type->is_sampler());
2481 static const char *const names[4] = {
2482 "samplerExternalOES", NULL, NULL, NULL
2483 };
2484 return names[type_idx];
2485 }
2486 default:
2487 unreachable("Unsupported sampler/image dimensionality");
2488 } /* sampler/image float dimensionality */
2489 break;
2490 case GLSL_TYPE_INT:
2491 switch (type->sampler_dimensionality) {
2492 case GLSL_SAMPLER_DIM_1D: {
2493 assert(type->is_sampler());
2494 static const char *const names[4] = {
2495 "isampler1D", "isampler1DArray", NULL, NULL
2496 };
2497 return names[type_idx];
2498 }
2499 case GLSL_SAMPLER_DIM_2D: {
2500 static const char *const names[8] = {
2501 "isampler2D", "isampler2DArray", NULL, NULL,
2502 "iimage2D", "iimage2DArray", NULL, NULL
2503 };
2504 return names[offset + type_idx];
2505 }
2506 case GLSL_SAMPLER_DIM_3D: {
2507 static const char *const names[8] = {
2508 "isampler3D", NULL, NULL, NULL,
2509 "iimage3D", NULL, NULL, NULL
2510 };
2511 return names[offset + type_idx];
2512 }
2513 case GLSL_SAMPLER_DIM_CUBE: {
2514 static const char *const names[8] = {
2515 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2516 "iimageCube", NULL, NULL, NULL
2517 };
2518 return names[offset + type_idx];
2519 }
2520 case GLSL_SAMPLER_DIM_MS: {
2521 assert(type->is_sampler());
2522 static const char *const names[4] = {
2523 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2524 };
2525 return names[type_idx];
2526 }
2527 case GLSL_SAMPLER_DIM_RECT: {
2528 assert(type->is_sampler());
2529 static const char *const names[4] = {
2530 "isamplerRect", NULL, "isamplerRectShadow", NULL
2531 };
2532 return names[type_idx];
2533 }
2534 case GLSL_SAMPLER_DIM_BUF: {
2535 static const char *const names[8] = {
2536 "isamplerBuffer", NULL, NULL, NULL,
2537 "iimageBuffer", NULL, NULL, NULL
2538 };
2539 return names[offset + type_idx];
2540 }
2541 default:
2542 unreachable("Unsupported isampler/iimage dimensionality");
2543 } /* sampler/image int dimensionality */
2544 break;
2545 case GLSL_TYPE_UINT:
2546 switch (type->sampler_dimensionality) {
2547 case GLSL_SAMPLER_DIM_1D: {
2548 assert(type->is_sampler());
2549 static const char *const names[4] = {
2550 "usampler1D", "usampler1DArray", NULL, NULL
2551 };
2552 return names[type_idx];
2553 }
2554 case GLSL_SAMPLER_DIM_2D: {
2555 static const char *const names[8] = {
2556 "usampler2D", "usampler2DArray", NULL, NULL,
2557 "uimage2D", "uimage2DArray", NULL, NULL
2558 };
2559 return names[offset + type_idx];
2560 }
2561 case GLSL_SAMPLER_DIM_3D: {
2562 static const char *const names[8] = {
2563 "usampler3D", NULL, NULL, NULL,
2564 "uimage3D", NULL, NULL, NULL
2565 };
2566 return names[offset + type_idx];
2567 }
2568 case GLSL_SAMPLER_DIM_CUBE: {
2569 static const char *const names[8] = {
2570 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2571 "uimageCube", NULL, NULL, NULL
2572 };
2573 return names[offset + type_idx];
2574 }
2575 case GLSL_SAMPLER_DIM_MS: {
2576 assert(type->is_sampler());
2577 static const char *const names[4] = {
2578 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2579 };
2580 return names[type_idx];
2581 }
2582 case GLSL_SAMPLER_DIM_RECT: {
2583 assert(type->is_sampler());
2584 static const char *const names[4] = {
2585 "usamplerRect", NULL, "usamplerRectShadow", NULL
2586 };
2587 return names[type_idx];
2588 }
2589 case GLSL_SAMPLER_DIM_BUF: {
2590 static const char *const names[8] = {
2591 "usamplerBuffer", NULL, NULL, NULL,
2592 "uimageBuffer", NULL, NULL, NULL
2593 };
2594 return names[offset + type_idx];
2595 }
2596 default:
2597 unreachable("Unsupported usampler/uimage dimensionality");
2598 } /* sampler/image uint dimensionality */
2599 break;
2600 default:
2601 unreachable("Unsupported sampler/image type");
2602 } /* sampler/image type */
2603 break;
2604 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2605 break;
2606 default:
2607 unreachable("Unsupported type");
2608 } /* base type */
2609 }
2610
2611 static unsigned
2612 select_gles_precision(unsigned qual_precision,
2613 const glsl_type *type,
2614 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2615 {
2616 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2617 * In GLES we take the precision from the type qualifier if present,
2618 * otherwise, if the type of the variable allows precision qualifiers at
2619 * all, we look for the default precision qualifier for that type in the
2620 * current scope.
2621 */
2622 assert(state->es_shader);
2623
2624 unsigned precision = GLSL_PRECISION_NONE;
2625 if (qual_precision) {
2626 precision = qual_precision;
2627 } else if (precision_qualifier_allowed(type)) {
2628 const char *type_name =
2629 get_type_name_for_precision_qualifier(type->without_array());
2630 assert(type_name != NULL);
2631
2632 precision =
2633 state->symbols->get_default_precision_qualifier(type_name);
2634 if (precision == ast_precision_none) {
2635 _mesa_glsl_error(loc, state,
2636 "No precision specified in this scope for type `%s'",
2637 type->name);
2638 }
2639 }
2640
2641
2642 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2643 *
2644 * "The default precision of all atomic types is highp. It is an error to
2645 * declare an atomic type with a different precision or to specify the
2646 * default precision for an atomic type to be lowp or mediump."
2647 */
2648 if (type->is_atomic_uint() && precision != ast_precision_high) {
2649 _mesa_glsl_error(loc, state,
2650 "atomic_uint can only have highp precision qualifier");
2651 }
2652
2653 return precision;
2654 }
2655
2656 const glsl_type *
2657 ast_fully_specified_type::glsl_type(const char **name,
2658 struct _mesa_glsl_parse_state *state) const
2659 {
2660 return this->specifier->glsl_type(name, state);
2661 }
2662
2663 /**
2664 * Determine whether a toplevel variable declaration declares a varying. This
2665 * function operates by examining the variable's mode and the shader target,
2666 * so it correctly identifies linkage variables regardless of whether they are
2667 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2668 *
2669 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2670 * this function will produce undefined results.
2671 */
2672 static bool
2673 is_varying_var(ir_variable *var, gl_shader_stage target)
2674 {
2675 switch (target) {
2676 case MESA_SHADER_VERTEX:
2677 return var->data.mode == ir_var_shader_out;
2678 case MESA_SHADER_FRAGMENT:
2679 return var->data.mode == ir_var_shader_in;
2680 default:
2681 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2682 }
2683 }
2684
2685 static bool
2686 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2687 {
2688 if (is_varying_var(var, state->stage))
2689 return true;
2690
2691 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2692 * "Only variables output from a vertex shader can be candidates
2693 * for invariance".
2694 */
2695 if (!state->is_version(130, 0))
2696 return false;
2697
2698 /*
2699 * Later specs remove this language - so allowed invariant
2700 * on fragment shader outputs as well.
2701 */
2702 if (state->stage == MESA_SHADER_FRAGMENT &&
2703 var->data.mode == ir_var_shader_out)
2704 return true;
2705 return false;
2706 }
2707
2708 /**
2709 * Matrix layout qualifiers are only allowed on certain types
2710 */
2711 static void
2712 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2713 YYLTYPE *loc,
2714 const glsl_type *type,
2715 ir_variable *var)
2716 {
2717 if (var && !var->is_in_buffer_block()) {
2718 /* Layout qualifiers may only apply to interface blocks and fields in
2719 * them.
2720 */
2721 _mesa_glsl_error(loc, state,
2722 "uniform block layout qualifiers row_major and "
2723 "column_major may not be applied to variables "
2724 "outside of uniform blocks");
2725 } else if (!type->without_array()->is_matrix()) {
2726 /* The OpenGL ES 3.0 conformance tests did not originally allow
2727 * matrix layout qualifiers on non-matrices. However, the OpenGL
2728 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2729 * amended to specifically allow these layouts on all types. Emit
2730 * a warning so that people know their code may not be portable.
2731 */
2732 _mesa_glsl_warning(loc, state,
2733 "uniform block layout qualifiers row_major and "
2734 "column_major applied to non-matrix types may "
2735 "be rejected by older compilers");
2736 }
2737 }
2738
2739 static bool
2740 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2741 struct _mesa_glsl_parse_state *state,
2742 unsigned xfb_buffer) {
2743 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2744 _mesa_glsl_error(loc, state,
2745 "invalid xfb_buffer specified %d is larger than "
2746 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2747 xfb_buffer,
2748 state->Const.MaxTransformFeedbackBuffers - 1);
2749 return false;
2750 }
2751
2752 return true;
2753 }
2754
2755 /* From the ARB_enhanced_layouts spec:
2756 *
2757 * "Variables and block members qualified with *xfb_offset* can be
2758 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2759 * The offset must be a multiple of the size of the first component of
2760 * the first qualified variable or block member, or a compile-time error
2761 * results. Further, if applied to an aggregate containing a double,
2762 * the offset must also be a multiple of 8, and the space taken in the
2763 * buffer will be a multiple of 8.
2764 */
2765 static bool
2766 validate_xfb_offset_qualifier(YYLTYPE *loc,
2767 struct _mesa_glsl_parse_state *state,
2768 int xfb_offset, const glsl_type *type,
2769 unsigned component_size) {
2770 const glsl_type *t_without_array = type->without_array();
2771
2772 if (xfb_offset != -1 && type->is_unsized_array()) {
2773 _mesa_glsl_error(loc, state,
2774 "xfb_offset can't be used with unsized arrays.");
2775 return false;
2776 }
2777
2778 /* Make sure nested structs don't contain unsized arrays, and validate
2779 * any xfb_offsets on interface members.
2780 */
2781 if (t_without_array->is_record() || t_without_array->is_interface())
2782 for (unsigned int i = 0; i < t_without_array->length; i++) {
2783 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2784
2785 /* When the interface block doesn't have an xfb_offset qualifier then
2786 * we apply the component size rules at the member level.
2787 */
2788 if (xfb_offset == -1)
2789 component_size = member_t->contains_double() ? 8 : 4;
2790
2791 int xfb_offset = t_without_array->fields.structure[i].offset;
2792 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2793 component_size);
2794 }
2795
2796 /* Nested structs or interface block without offset may not have had an
2797 * offset applied yet so return.
2798 */
2799 if (xfb_offset == -1) {
2800 return true;
2801 }
2802
2803 if (xfb_offset % component_size) {
2804 _mesa_glsl_error(loc, state,
2805 "invalid qualifier xfb_offset=%d must be a multiple "
2806 "of the first component size of the first qualified "
2807 "variable or block member. Or double if an aggregate "
2808 "that contains a double (%d).",
2809 xfb_offset, component_size);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 static bool
2817 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2818 unsigned stream)
2819 {
2820 if (stream >= state->ctx->Const.MaxVertexStreams) {
2821 _mesa_glsl_error(loc, state,
2822 "invalid stream specified %d is larger than "
2823 "MAX_VERTEX_STREAMS - 1 (%d).",
2824 stream, state->ctx->Const.MaxVertexStreams - 1);
2825 return false;
2826 }
2827
2828 return true;
2829 }
2830
2831 static void
2832 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2833 YYLTYPE *loc,
2834 ir_variable *var,
2835 const glsl_type *type,
2836 const ast_type_qualifier *qual)
2837 {
2838 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2839 _mesa_glsl_error(loc, state,
2840 "the \"binding\" qualifier only applies to uniforms and "
2841 "shader storage buffer objects");
2842 return;
2843 }
2844
2845 unsigned qual_binding;
2846 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2847 &qual_binding)) {
2848 return;
2849 }
2850
2851 const struct gl_context *const ctx = state->ctx;
2852 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2853 unsigned max_index = qual_binding + elements - 1;
2854 const glsl_type *base_type = type->without_array();
2855
2856 if (base_type->is_interface()) {
2857 /* UBOs. From page 60 of the GLSL 4.20 specification:
2858 * "If the binding point for any uniform block instance is less than zero,
2859 * or greater than or equal to the implementation-dependent maximum
2860 * number of uniform buffer bindings, a compilation error will occur.
2861 * When the binding identifier is used with a uniform block instanced as
2862 * an array of size N, all elements of the array from binding through
2863 * binding + N – 1 must be within this range."
2864 *
2865 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2866 */
2867 if (qual->flags.q.uniform &&
2868 max_index >= ctx->Const.MaxUniformBufferBindings) {
2869 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2870 "the maximum number of UBO binding points (%d)",
2871 qual_binding, elements,
2872 ctx->Const.MaxUniformBufferBindings);
2873 return;
2874 }
2875
2876 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2877 * "If the binding point for any uniform or shader storage block instance
2878 * is less than zero, or greater than or equal to the
2879 * implementation-dependent maximum number of uniform buffer bindings, a
2880 * compile-time error will occur. When the binding identifier is used
2881 * with a uniform or shader storage block instanced as an array of size
2882 * N, all elements of the array from binding through binding + N – 1 must
2883 * be within this range."
2884 */
2885 if (qual->flags.q.buffer &&
2886 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2887 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2888 "the maximum number of SSBO binding points (%d)",
2889 qual_binding, elements,
2890 ctx->Const.MaxShaderStorageBufferBindings);
2891 return;
2892 }
2893 } else if (base_type->is_sampler()) {
2894 /* Samplers. From page 63 of the GLSL 4.20 specification:
2895 * "If the binding is less than zero, or greater than or equal to the
2896 * implementation-dependent maximum supported number of units, a
2897 * compilation error will occur. When the binding identifier is used
2898 * with an array of size N, all elements of the array from binding
2899 * through binding + N - 1 must be within this range."
2900 */
2901 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2902
2903 if (max_index >= limit) {
2904 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2905 "exceeds the maximum number of texture image units "
2906 "(%u)", qual_binding, elements, limit);
2907
2908 return;
2909 }
2910 } else if (base_type->contains_atomic()) {
2911 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2912 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2913 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2914 "maximum number of atomic counter buffer bindings "
2915 "(%u)", qual_binding,
2916 ctx->Const.MaxAtomicBufferBindings);
2917
2918 return;
2919 }
2920 } else if ((state->is_version(420, 310) ||
2921 state->ARB_shading_language_420pack_enable) &&
2922 base_type->is_image()) {
2923 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2924 if (max_index >= ctx->Const.MaxImageUnits) {
2925 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2926 "maximum number of image units (%d)", max_index,
2927 ctx->Const.MaxImageUnits);
2928 return;
2929 }
2930
2931 } else {
2932 _mesa_glsl_error(loc, state,
2933 "the \"binding\" qualifier only applies to uniform "
2934 "blocks, storage blocks, opaque variables, or arrays "
2935 "thereof");
2936 return;
2937 }
2938
2939 var->data.explicit_binding = true;
2940 var->data.binding = qual_binding;
2941
2942 return;
2943 }
2944
2945 static void
2946 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2947 YYLTYPE *loc,
2948 const glsl_interp_mode interpolation,
2949 const struct glsl_type *var_type,
2950 ir_variable_mode mode)
2951 {
2952 if (state->stage != MESA_SHADER_FRAGMENT ||
2953 interpolation == INTERP_MODE_FLAT ||
2954 mode != ir_var_shader_in)
2955 return;
2956
2957 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2958 * so must integer vertex outputs.
2959 *
2960 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2961 * "Fragment shader inputs that are signed or unsigned integers or
2962 * integer vectors must be qualified with the interpolation qualifier
2963 * flat."
2964 *
2965 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2966 * "Fragment shader inputs that are, or contain, signed or unsigned
2967 * integers or integer vectors must be qualified with the
2968 * interpolation qualifier flat."
2969 *
2970 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2971 * "Vertex shader outputs that are, or contain, signed or unsigned
2972 * integers or integer vectors must be qualified with the
2973 * interpolation qualifier flat."
2974 *
2975 * Note that prior to GLSL 1.50, this requirement applied to vertex
2976 * outputs rather than fragment inputs. That creates problems in the
2977 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2978 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2979 * apply the restriction to both vertex outputs and fragment inputs.
2980 *
2981 * Note also that the desktop GLSL specs are missing the text "or
2982 * contain"; this is presumably an oversight, since there is no
2983 * reasonable way to interpolate a fragment shader input that contains
2984 * an integer. See Khronos bug #15671.
2985 */
2986 if (state->is_version(130, 300)
2987 && var_type->contains_integer()) {
2988 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2989 "an integer, then it must be qualified with 'flat'");
2990 }
2991
2992 /* Double fragment inputs must be qualified with 'flat'.
2993 *
2994 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2995 * "This extension does not support interpolation of double-precision
2996 * values; doubles used as fragment shader inputs must be qualified as
2997 * "flat"."
2998 *
2999 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3000 * "Fragment shader inputs that are signed or unsigned integers, integer
3001 * vectors, or any double-precision floating-point type must be
3002 * qualified with the interpolation qualifier flat."
3003 *
3004 * Note that the GLSL specs are missing the text "or contain"; this is
3005 * presumably an oversight. See Khronos bug #15671.
3006 *
3007 * The 'double' type does not exist in GLSL ES so far.
3008 */
3009 if (state->has_double()
3010 && var_type->contains_double()) {
3011 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3012 "a double, then it must be qualified with 'flat'");
3013 }
3014
3015 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3016 *
3017 * From section 4.3.4 of the ARB_bindless_texture spec:
3018 *
3019 * "(modify last paragraph, p. 35, allowing samplers and images as
3020 * fragment shader inputs) ... Fragment inputs can only be signed and
3021 * unsigned integers and integer vectors, floating point scalars,
3022 * floating-point vectors, matrices, sampler and image types, or arrays
3023 * or structures of these. Fragment shader inputs that are signed or
3024 * unsigned integers, integer vectors, or any double-precision floating-
3025 * point type, or any sampler or image type must be qualified with the
3026 * interpolation qualifier "flat"."
3027 */
3028 if (state->has_bindless()
3029 && (var_type->contains_sampler() || var_type->contains_image())) {
3030 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3031 "a bindless sampler (or image), then it must be "
3032 "qualified with 'flat'");
3033 }
3034 }
3035
3036 static void
3037 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3038 YYLTYPE *loc,
3039 const glsl_interp_mode interpolation,
3040 const struct ast_type_qualifier *qual,
3041 const struct glsl_type *var_type,
3042 ir_variable_mode mode)
3043 {
3044 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3045 * not to vertex shader inputs nor fragment shader outputs.
3046 *
3047 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3048 * "Outputs from a vertex shader (out) and inputs to a fragment
3049 * shader (in) can be further qualified with one or more of these
3050 * interpolation qualifiers"
3051 * ...
3052 * "These interpolation qualifiers may only precede the qualifiers in,
3053 * centroid in, out, or centroid out in a declaration. They do not apply
3054 * to the deprecated storage qualifiers varying or centroid
3055 * varying. They also do not apply to inputs into a vertex shader or
3056 * outputs from a fragment shader."
3057 *
3058 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3059 * "Outputs from a shader (out) and inputs to a shader (in) can be
3060 * further qualified with one of these interpolation qualifiers."
3061 * ...
3062 * "These interpolation qualifiers may only precede the qualifiers
3063 * in, centroid in, out, or centroid out in a declaration. They do
3064 * not apply to inputs into a vertex shader or outputs from a
3065 * fragment shader."
3066 */
3067 if (state->is_version(130, 300)
3068 && interpolation != INTERP_MODE_NONE) {
3069 const char *i = interpolation_string(interpolation);
3070 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3071 _mesa_glsl_error(loc, state,
3072 "interpolation qualifier `%s' can only be applied to "
3073 "shader inputs or outputs.", i);
3074
3075 switch (state->stage) {
3076 case MESA_SHADER_VERTEX:
3077 if (mode == ir_var_shader_in) {
3078 _mesa_glsl_error(loc, state,
3079 "interpolation qualifier '%s' cannot be applied to "
3080 "vertex shader inputs", i);
3081 }
3082 break;
3083 case MESA_SHADER_FRAGMENT:
3084 if (mode == ir_var_shader_out) {
3085 _mesa_glsl_error(loc, state,
3086 "interpolation qualifier '%s' cannot be applied to "
3087 "fragment shader outputs", i);
3088 }
3089 break;
3090 default:
3091 break;
3092 }
3093 }
3094
3095 /* Interpolation qualifiers cannot be applied to 'centroid' and
3096 * 'centroid varying'.
3097 *
3098 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3099 * "interpolation qualifiers may only precede the qualifiers in,
3100 * centroid in, out, or centroid out in a declaration. They do not apply
3101 * to the deprecated storage qualifiers varying or centroid varying."
3102 *
3103 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3104 */
3105 if (state->is_version(130, 0)
3106 && interpolation != INTERP_MODE_NONE
3107 && qual->flags.q.varying) {
3108
3109 const char *i = interpolation_string(interpolation);
3110 const char *s;
3111 if (qual->flags.q.centroid)
3112 s = "centroid varying";
3113 else
3114 s = "varying";
3115
3116 _mesa_glsl_error(loc, state,
3117 "qualifier '%s' cannot be applied to the "
3118 "deprecated storage qualifier '%s'", i, s);
3119 }
3120
3121 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3122 var_type, mode);
3123 }
3124
3125 static glsl_interp_mode
3126 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3127 const struct glsl_type *var_type,
3128 ir_variable_mode mode,
3129 struct _mesa_glsl_parse_state *state,
3130 YYLTYPE *loc)
3131 {
3132 glsl_interp_mode interpolation;
3133 if (qual->flags.q.flat)
3134 interpolation = INTERP_MODE_FLAT;
3135 else if (qual->flags.q.noperspective)
3136 interpolation = INTERP_MODE_NOPERSPECTIVE;
3137 else if (qual->flags.q.smooth)
3138 interpolation = INTERP_MODE_SMOOTH;
3139 else
3140 interpolation = INTERP_MODE_NONE;
3141
3142 validate_interpolation_qualifier(state, loc,
3143 interpolation,
3144 qual, var_type, mode);
3145
3146 return interpolation;
3147 }
3148
3149
3150 static void
3151 apply_explicit_location(const struct ast_type_qualifier *qual,
3152 ir_variable *var,
3153 struct _mesa_glsl_parse_state *state,
3154 YYLTYPE *loc)
3155 {
3156 bool fail = false;
3157
3158 unsigned qual_location;
3159 if (!process_qualifier_constant(state, loc, "location", qual->location,
3160 &qual_location)) {
3161 return;
3162 }
3163
3164 /* Checks for GL_ARB_explicit_uniform_location. */
3165 if (qual->flags.q.uniform) {
3166 if (!state->check_explicit_uniform_location_allowed(loc, var))
3167 return;
3168
3169 const struct gl_context *const ctx = state->ctx;
3170 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3171
3172 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3173 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3174 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3175 ctx->Const.MaxUserAssignableUniformLocations);
3176 return;
3177 }
3178
3179 var->data.explicit_location = true;
3180 var->data.location = qual_location;
3181 return;
3182 }
3183
3184 /* Between GL_ARB_explicit_attrib_location an
3185 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3186 * stage can be assigned explicit locations. The checking here associates
3187 * the correct extension with the correct stage's input / output:
3188 *
3189 * input output
3190 * ----- ------
3191 * vertex explicit_loc sso
3192 * tess control sso sso
3193 * tess eval sso sso
3194 * geometry sso sso
3195 * fragment sso explicit_loc
3196 */
3197 switch (state->stage) {
3198 case MESA_SHADER_VERTEX:
3199 if (var->data.mode == ir_var_shader_in) {
3200 if (!state->check_explicit_attrib_location_allowed(loc, var))
3201 return;
3202
3203 break;
3204 }
3205
3206 if (var->data.mode == ir_var_shader_out) {
3207 if (!state->check_separate_shader_objects_allowed(loc, var))
3208 return;
3209
3210 break;
3211 }
3212
3213 fail = true;
3214 break;
3215
3216 case MESA_SHADER_TESS_CTRL:
3217 case MESA_SHADER_TESS_EVAL:
3218 case MESA_SHADER_GEOMETRY:
3219 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3220 if (!state->check_separate_shader_objects_allowed(loc, var))
3221 return;
3222
3223 break;
3224 }
3225
3226 fail = true;
3227 break;
3228
3229 case MESA_SHADER_FRAGMENT:
3230 if (var->data.mode == ir_var_shader_in) {
3231 if (!state->check_separate_shader_objects_allowed(loc, var))
3232 return;
3233
3234 break;
3235 }
3236
3237 if (var->data.mode == ir_var_shader_out) {
3238 if (!state->check_explicit_attrib_location_allowed(loc, var))
3239 return;
3240
3241 break;
3242 }
3243
3244 fail = true;
3245 break;
3246
3247 case MESA_SHADER_COMPUTE:
3248 _mesa_glsl_error(loc, state,
3249 "compute shader variables cannot be given "
3250 "explicit locations");
3251 return;
3252 default:
3253 fail = true;
3254 break;
3255 };
3256
3257 if (fail) {
3258 _mesa_glsl_error(loc, state,
3259 "%s cannot be given an explicit location in %s shader",
3260 mode_string(var),
3261 _mesa_shader_stage_to_string(state->stage));
3262 } else {
3263 var->data.explicit_location = true;
3264
3265 switch (state->stage) {
3266 case MESA_SHADER_VERTEX:
3267 var->data.location = (var->data.mode == ir_var_shader_in)
3268 ? (qual_location + VERT_ATTRIB_GENERIC0)
3269 : (qual_location + VARYING_SLOT_VAR0);
3270 break;
3271
3272 case MESA_SHADER_TESS_CTRL:
3273 case MESA_SHADER_TESS_EVAL:
3274 case MESA_SHADER_GEOMETRY:
3275 if (var->data.patch)
3276 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3277 else
3278 var->data.location = qual_location + VARYING_SLOT_VAR0;
3279 break;
3280
3281 case MESA_SHADER_FRAGMENT:
3282 var->data.location = (var->data.mode == ir_var_shader_out)
3283 ? (qual_location + FRAG_RESULT_DATA0)
3284 : (qual_location + VARYING_SLOT_VAR0);
3285 break;
3286 default:
3287 assert(!"Unexpected shader type");
3288 break;
3289 }
3290
3291 /* Check if index was set for the uniform instead of the function */
3292 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3293 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3294 "used with subroutine functions");
3295 return;
3296 }
3297
3298 unsigned qual_index;
3299 if (qual->flags.q.explicit_index &&
3300 process_qualifier_constant(state, loc, "index", qual->index,
3301 &qual_index)) {
3302 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3303 * Layout Qualifiers):
3304 *
3305 * "It is also a compile-time error if a fragment shader
3306 * sets a layout index to less than 0 or greater than 1."
3307 *
3308 * Older specifications don't mandate a behavior; we take
3309 * this as a clarification and always generate the error.
3310 */
3311 if (qual_index > 1) {
3312 _mesa_glsl_error(loc, state,
3313 "explicit index may only be 0 or 1");
3314 } else {
3315 var->data.explicit_index = true;
3316 var->data.index = qual_index;
3317 }
3318 }
3319 }
3320 }
3321
3322 static bool
3323 validate_storage_for_sampler_image_types(ir_variable *var,
3324 struct _mesa_glsl_parse_state *state,
3325 YYLTYPE *loc)
3326 {
3327 /* From section 4.1.7 of the GLSL 4.40 spec:
3328 *
3329 * "[Opaque types] can only be declared as function
3330 * parameters or uniform-qualified variables."
3331 *
3332 * From section 4.1.7 of the ARB_bindless_texture spec:
3333 *
3334 * "Samplers may be declared as shader inputs and outputs, as uniform
3335 * variables, as temporary variables, and as function parameters."
3336 *
3337 * From section 4.1.X of the ARB_bindless_texture spec:
3338 *
3339 * "Images may be declared as shader inputs and outputs, as uniform
3340 * variables, as temporary variables, and as function parameters."
3341 */
3342 if (state->has_bindless()) {
3343 if (var->data.mode != ir_var_auto &&
3344 var->data.mode != ir_var_uniform &&
3345 var->data.mode != ir_var_shader_in &&
3346 var->data.mode != ir_var_shader_out &&
3347 var->data.mode != ir_var_function_in &&
3348 var->data.mode != ir_var_function_out &&
3349 var->data.mode != ir_var_function_inout) {
3350 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3351 "only be declared as shader inputs and outputs, as "
3352 "uniform variables, as temporary variables and as "
3353 "function parameters");
3354 return false;
3355 }
3356 } else {
3357 if (var->data.mode != ir_var_uniform &&
3358 var->data.mode != ir_var_function_in) {
3359 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3360 "declared as function parameters or "
3361 "uniform-qualified global variables");
3362 return false;
3363 }
3364 }
3365 return true;
3366 }
3367
3368 static bool
3369 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3370 YYLTYPE *loc,
3371 const struct ast_type_qualifier *qual,
3372 const glsl_type *type)
3373 {
3374 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3375 *
3376 * "Memory qualifiers are only supported in the declarations of image
3377 * variables, buffer variables, and shader storage blocks; it is an error
3378 * to use such qualifiers in any other declarations.
3379 */
3380 if (!type->is_image() && !qual->flags.q.buffer) {
3381 if (qual->flags.q.read_only ||
3382 qual->flags.q.write_only ||
3383 qual->flags.q.coherent ||
3384 qual->flags.q._volatile ||
3385 qual->flags.q.restrict_flag) {
3386 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3387 "in the declarations of image variables, buffer "
3388 "variables, and shader storage blocks");
3389 return false;
3390 }
3391 }
3392 return true;
3393 }
3394
3395 static bool
3396 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3397 YYLTYPE *loc,
3398 const struct ast_type_qualifier *qual,
3399 const glsl_type *type)
3400 {
3401 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3402 *
3403 * "Format layout qualifiers can be used on image variable declarations
3404 * (those declared with a basic type having “image ” in its keyword)."
3405 */
3406 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3407 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3408 "applied to images");
3409 return false;
3410 }
3411 return true;
3412 }
3413
3414 static void
3415 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3416 ir_variable *var,
3417 struct _mesa_glsl_parse_state *state,
3418 YYLTYPE *loc)
3419 {
3420 const glsl_type *base_type = var->type->without_array();
3421
3422 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3423 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3424 return;
3425
3426 if (!base_type->is_image())
3427 return;
3428
3429 if (!validate_storage_for_sampler_image_types(var, state, loc))
3430 return;
3431
3432 var->data.memory_read_only |= qual->flags.q.read_only;
3433 var->data.memory_write_only |= qual->flags.q.write_only;
3434 var->data.memory_coherent |= qual->flags.q.coherent;
3435 var->data.memory_volatile |= qual->flags.q._volatile;
3436 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3437
3438 if (qual->flags.q.explicit_image_format) {
3439 if (var->data.mode == ir_var_function_in) {
3440 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3441 "image function parameters");
3442 }
3443
3444 if (qual->image_base_type != base_type->sampled_type) {
3445 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3446 "data type of the image");
3447 }
3448
3449 var->data.image_format = qual->image_format;
3450 } else {
3451 if (var->data.mode == ir_var_uniform) {
3452 if (state->es_shader) {
3453 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3454 "format layout qualifier");
3455 } else if (!qual->flags.q.write_only) {
3456 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3457 "`writeonly' must have a format layout qualifier");
3458 }
3459 }
3460 var->data.image_format = GL_NONE;
3461 }
3462
3463 /* From page 70 of the GLSL ES 3.1 specification:
3464 *
3465 * "Except for image variables qualified with the format qualifiers r32f,
3466 * r32i, and r32ui, image variables must specify either memory qualifier
3467 * readonly or the memory qualifier writeonly."
3468 */
3469 if (state->es_shader &&
3470 var->data.image_format != GL_R32F &&
3471 var->data.image_format != GL_R32I &&
3472 var->data.image_format != GL_R32UI &&
3473 !var->data.memory_read_only &&
3474 !var->data.memory_write_only) {
3475 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3476 "r32i or r32ui must be qualified `readonly' or "
3477 "`writeonly'");
3478 }
3479 }
3480
3481 static inline const char*
3482 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3483 {
3484 if (origin_upper_left && pixel_center_integer)
3485 return "origin_upper_left, pixel_center_integer";
3486 else if (origin_upper_left)
3487 return "origin_upper_left";
3488 else if (pixel_center_integer)
3489 return "pixel_center_integer";
3490 else
3491 return " ";
3492 }
3493
3494 static inline bool
3495 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3496 const struct ast_type_qualifier *qual)
3497 {
3498 /* If gl_FragCoord was previously declared, and the qualifiers were
3499 * different in any way, return true.
3500 */
3501 if (state->fs_redeclares_gl_fragcoord) {
3502 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3503 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3504 }
3505
3506 return false;
3507 }
3508
3509 static inline void
3510 validate_array_dimensions(const glsl_type *t,
3511 struct _mesa_glsl_parse_state *state,
3512 YYLTYPE *loc) {
3513 if (t->is_array()) {
3514 t = t->fields.array;
3515 while (t->is_array()) {
3516 if (t->is_unsized_array()) {
3517 _mesa_glsl_error(loc, state,
3518 "only the outermost array dimension can "
3519 "be unsized",
3520 t->name);
3521 break;
3522 }
3523 t = t->fields.array;
3524 }
3525 }
3526 }
3527
3528 static void
3529 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3530 ir_variable *var,
3531 struct _mesa_glsl_parse_state *state,
3532 YYLTYPE *loc)
3533 {
3534 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3535 qual->flags.q.bindless_image ||
3536 qual->flags.q.bound_sampler ||
3537 qual->flags.q.bound_image;
3538
3539 /* The ARB_bindless_texture spec says:
3540 *
3541 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3542 * spec"
3543 *
3544 * "If these layout qualifiers are applied to other types of default block
3545 * uniforms, or variables with non-uniform storage, a compile-time error
3546 * will be generated."
3547 */
3548 if (has_local_qualifiers && !qual->flags.q.uniform) {
3549 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3550 "can only be applied to default block uniforms or "
3551 "variables with uniform storage");
3552 return;
3553 }
3554
3555 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3556 * but it makes sense to only allow bindless_sampler/bound_sampler for
3557 * sampler types, and respectively bindless_image/bound_image for image
3558 * types.
3559 */
3560 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3561 !var->type->contains_sampler()) {
3562 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3563 "be applied to sampler types");
3564 return;
3565 }
3566
3567 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3568 !var->type->contains_image()) {
3569 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3570 "applied to image types");
3571 return;
3572 }
3573
3574 /* The bindless_sampler/bindless_image (and respectively
3575 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3576 * local scope.
3577 */
3578 if (var->type->contains_sampler() || var->type->contains_image()) {
3579 var->data.bindless = qual->flags.q.bindless_sampler ||
3580 qual->flags.q.bindless_image ||
3581 state->bindless_sampler_specified ||
3582 state->bindless_image_specified;
3583
3584 var->data.bound = qual->flags.q.bound_sampler ||
3585 qual->flags.q.bound_image ||
3586 state->bound_sampler_specified ||
3587 state->bound_image_specified;
3588 }
3589 }
3590
3591 static void
3592 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3593 ir_variable *var,
3594 struct _mesa_glsl_parse_state *state,
3595 YYLTYPE *loc)
3596 {
3597 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3598
3599 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3600 *
3601 * "Within any shader, the first redeclarations of gl_FragCoord
3602 * must appear before any use of gl_FragCoord."
3603 *
3604 * Generate a compiler error if above condition is not met by the
3605 * fragment shader.
3606 */
3607 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3608 if (earlier != NULL &&
3609 earlier->data.used &&
3610 !state->fs_redeclares_gl_fragcoord) {
3611 _mesa_glsl_error(loc, state,
3612 "gl_FragCoord used before its first redeclaration "
3613 "in fragment shader");
3614 }
3615
3616 /* Make sure all gl_FragCoord redeclarations specify the same layout
3617 * qualifiers.
3618 */
3619 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3620 const char *const qual_string =
3621 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3622 qual->flags.q.pixel_center_integer);
3623
3624 const char *const state_string =
3625 get_layout_qualifier_string(state->fs_origin_upper_left,
3626 state->fs_pixel_center_integer);
3627
3628 _mesa_glsl_error(loc, state,
3629 "gl_FragCoord redeclared with different layout "
3630 "qualifiers (%s) and (%s) ",
3631 state_string,
3632 qual_string);
3633 }
3634 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3635 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3636 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3637 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3638 state->fs_redeclares_gl_fragcoord =
3639 state->fs_origin_upper_left ||
3640 state->fs_pixel_center_integer ||
3641 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3642 }
3643
3644 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3645 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3646 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3647 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3648 const char *const qual_string = (qual->flags.q.origin_upper_left)
3649 ? "origin_upper_left" : "pixel_center_integer";
3650
3651 _mesa_glsl_error(loc, state,
3652 "layout qualifier `%s' can only be applied to "
3653 "fragment shader input `gl_FragCoord'",
3654 qual_string);
3655 }
3656
3657 if (qual->flags.q.explicit_location) {
3658 apply_explicit_location(qual, var, state, loc);
3659
3660 if (qual->flags.q.explicit_component) {
3661 unsigned qual_component;
3662 if (process_qualifier_constant(state, loc, "component",
3663 qual->component, &qual_component)) {
3664 const glsl_type *type = var->type->without_array();
3665 unsigned components = type->component_slots();
3666
3667 if (type->is_matrix() || type->is_record()) {
3668 _mesa_glsl_error(loc, state, "component layout qualifier "
3669 "cannot be applied to a matrix, a structure, "
3670 "a block, or an array containing any of "
3671 "these.");
3672 } else if (qual_component != 0 &&
3673 (qual_component + components - 1) > 3) {
3674 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3675 (qual_component + components - 1));
3676 } else if (qual_component == 1 && type->is_64bit()) {
3677 /* We don't bother checking for 3 as it should be caught by the
3678 * overflow check above.
3679 */
3680 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3681 "component 1 or 3");
3682 } else {
3683 var->data.explicit_component = true;
3684 var->data.location_frac = qual_component;
3685 }
3686 }
3687 }
3688 } else if (qual->flags.q.explicit_index) {
3689 if (!qual->subroutine_list)
3690 _mesa_glsl_error(loc, state,
3691 "explicit index requires explicit location");
3692 } else if (qual->flags.q.explicit_component) {
3693 _mesa_glsl_error(loc, state,
3694 "explicit component requires explicit location");
3695 }
3696
3697 if (qual->flags.q.explicit_binding) {
3698 apply_explicit_binding(state, loc, var, var->type, qual);
3699 }
3700
3701 if (state->stage == MESA_SHADER_GEOMETRY &&
3702 qual->flags.q.out && qual->flags.q.stream) {
3703 unsigned qual_stream;
3704 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3705 &qual_stream) &&
3706 validate_stream_qualifier(loc, state, qual_stream)) {
3707 var->data.stream = qual_stream;
3708 }
3709 }
3710
3711 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3712 unsigned qual_xfb_buffer;
3713 if (process_qualifier_constant(state, loc, "xfb_buffer",
3714 qual->xfb_buffer, &qual_xfb_buffer) &&
3715 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3716 var->data.xfb_buffer = qual_xfb_buffer;
3717 if (qual->flags.q.explicit_xfb_buffer)
3718 var->data.explicit_xfb_buffer = true;
3719 }
3720 }
3721
3722 if (qual->flags.q.explicit_xfb_offset) {
3723 unsigned qual_xfb_offset;
3724 unsigned component_size = var->type->contains_double() ? 8 : 4;
3725
3726 if (process_qualifier_constant(state, loc, "xfb_offset",
3727 qual->offset, &qual_xfb_offset) &&
3728 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3729 var->type, component_size)) {
3730 var->data.offset = qual_xfb_offset;
3731 var->data.explicit_xfb_offset = true;
3732 }
3733 }
3734
3735 if (qual->flags.q.explicit_xfb_stride) {
3736 unsigned qual_xfb_stride;
3737 if (process_qualifier_constant(state, loc, "xfb_stride",
3738 qual->xfb_stride, &qual_xfb_stride)) {
3739 var->data.xfb_stride = qual_xfb_stride;
3740 var->data.explicit_xfb_stride = true;
3741 }
3742 }
3743
3744 if (var->type->contains_atomic()) {
3745 if (var->data.mode == ir_var_uniform) {
3746 if (var->data.explicit_binding) {
3747 unsigned *offset =
3748 &state->atomic_counter_offsets[var->data.binding];
3749
3750 if (*offset % ATOMIC_COUNTER_SIZE)
3751 _mesa_glsl_error(loc, state,
3752 "misaligned atomic counter offset");
3753
3754 var->data.offset = *offset;
3755 *offset += var->type->atomic_size();
3756
3757 } else {
3758 _mesa_glsl_error(loc, state,
3759 "atomic counters require explicit binding point");
3760 }
3761 } else if (var->data.mode != ir_var_function_in) {
3762 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3763 "function parameters or uniform-qualified "
3764 "global variables");
3765 }
3766 }
3767
3768 if (var->type->contains_sampler() &&
3769 !validate_storage_for_sampler_image_types(var, state, loc))
3770 return;
3771
3772 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3773 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3774 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3775 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3776 * These extensions and all following extensions that add the 'layout'
3777 * keyword have been modified to require the use of 'in' or 'out'.
3778 *
3779 * The following extension do not allow the deprecated keywords:
3780 *
3781 * GL_AMD_conservative_depth
3782 * GL_ARB_conservative_depth
3783 * GL_ARB_gpu_shader5
3784 * GL_ARB_separate_shader_objects
3785 * GL_ARB_tessellation_shader
3786 * GL_ARB_transform_feedback3
3787 * GL_ARB_uniform_buffer_object
3788 *
3789 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3790 * allow layout with the deprecated keywords.
3791 */
3792 const bool relaxed_layout_qualifier_checking =
3793 state->ARB_fragment_coord_conventions_enable;
3794
3795 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3796 || qual->flags.q.varying;
3797 if (qual->has_layout() && uses_deprecated_qualifier) {
3798 if (relaxed_layout_qualifier_checking) {
3799 _mesa_glsl_warning(loc, state,
3800 "`layout' qualifier may not be used with "
3801 "`attribute' or `varying'");
3802 } else {
3803 _mesa_glsl_error(loc, state,
3804 "`layout' qualifier may not be used with "
3805 "`attribute' or `varying'");
3806 }
3807 }
3808
3809 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3810 * AMD_conservative_depth.
3811 */
3812 if (qual->flags.q.depth_type
3813 && !state->is_version(420, 0)
3814 && !state->AMD_conservative_depth_enable
3815 && !state->ARB_conservative_depth_enable) {
3816 _mesa_glsl_error(loc, state,
3817 "extension GL_AMD_conservative_depth or "
3818 "GL_ARB_conservative_depth must be enabled "
3819 "to use depth layout qualifiers");
3820 } else if (qual->flags.q.depth_type
3821 && strcmp(var->name, "gl_FragDepth") != 0) {
3822 _mesa_glsl_error(loc, state,
3823 "depth layout qualifiers can be applied only to "
3824 "gl_FragDepth");
3825 }
3826
3827 switch (qual->depth_type) {
3828 case ast_depth_any:
3829 var->data.depth_layout = ir_depth_layout_any;
3830 break;
3831 case ast_depth_greater:
3832 var->data.depth_layout = ir_depth_layout_greater;
3833 break;
3834 case ast_depth_less:
3835 var->data.depth_layout = ir_depth_layout_less;
3836 break;
3837 case ast_depth_unchanged:
3838 var->data.depth_layout = ir_depth_layout_unchanged;
3839 break;
3840 default:
3841 var->data.depth_layout = ir_depth_layout_none;
3842 break;
3843 }
3844
3845 if (qual->flags.q.std140 ||
3846 qual->flags.q.std430 ||
3847 qual->flags.q.packed ||
3848 qual->flags.q.shared) {
3849 _mesa_glsl_error(loc, state,
3850 "uniform and shader storage block layout qualifiers "
3851 "std140, std430, packed, and shared can only be "
3852 "applied to uniform or shader storage blocks, not "
3853 "members");
3854 }
3855
3856 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3857 validate_matrix_layout_for_type(state, loc, var->type, var);
3858 }
3859
3860 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3861 * Inputs):
3862 *
3863 * "Fragment shaders also allow the following layout qualifier on in only
3864 * (not with variable declarations)
3865 * layout-qualifier-id
3866 * early_fragment_tests
3867 * [...]"
3868 */
3869 if (qual->flags.q.early_fragment_tests) {
3870 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3871 "valid in fragment shader input layout declaration.");
3872 }
3873
3874 if (qual->flags.q.inner_coverage) {
3875 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3876 "valid in fragment shader input layout declaration.");
3877 }
3878
3879 if (qual->flags.q.post_depth_coverage) {
3880 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3881 "valid in fragment shader input layout declaration.");
3882 }
3883
3884 if (state->has_bindless())
3885 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3886 }
3887
3888 static void
3889 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3890 ir_variable *var,
3891 struct _mesa_glsl_parse_state *state,
3892 YYLTYPE *loc,
3893 bool is_parameter)
3894 {
3895 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3896
3897 if (qual->flags.q.invariant) {
3898 if (var->data.used) {
3899 _mesa_glsl_error(loc, state,
3900 "variable `%s' may not be redeclared "
3901 "`invariant' after being used",
3902 var->name);
3903 } else {
3904 var->data.invariant = 1;
3905 }
3906 }
3907
3908 if (qual->flags.q.precise) {
3909 if (var->data.used) {
3910 _mesa_glsl_error(loc, state,
3911 "variable `%s' may not be redeclared "
3912 "`precise' after being used",
3913 var->name);
3914 } else {
3915 var->data.precise = 1;
3916 }
3917 }
3918
3919 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3920 _mesa_glsl_error(loc, state,
3921 "`subroutine' may only be applied to uniforms, "
3922 "subroutine type declarations, or function definitions");
3923 }
3924
3925 if (qual->flags.q.constant || qual->flags.q.attribute
3926 || qual->flags.q.uniform
3927 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3928 var->data.read_only = 1;
3929
3930 if (qual->flags.q.centroid)
3931 var->data.centroid = 1;
3932
3933 if (qual->flags.q.sample)
3934 var->data.sample = 1;
3935
3936 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3937 if (state->es_shader) {
3938 var->data.precision =
3939 select_gles_precision(qual->precision, var->type, state, loc);
3940 }
3941
3942 if (qual->flags.q.patch)
3943 var->data.patch = 1;
3944
3945 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3946 var->type = glsl_type::error_type;
3947 _mesa_glsl_error(loc, state,
3948 "`attribute' variables may not be declared in the "
3949 "%s shader",
3950 _mesa_shader_stage_to_string(state->stage));
3951 }
3952
3953 /* Disallow layout qualifiers which may only appear on layout declarations. */
3954 if (qual->flags.q.prim_type) {
3955 _mesa_glsl_error(loc, state,
3956 "Primitive type may only be specified on GS input or output "
3957 "layout declaration, not on variables.");
3958 }
3959
3960 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3961 *
3962 * "However, the const qualifier cannot be used with out or inout."
3963 *
3964 * The same section of the GLSL 4.40 spec further clarifies this saying:
3965 *
3966 * "The const qualifier cannot be used with out or inout, or a
3967 * compile-time error results."
3968 */
3969 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3970 _mesa_glsl_error(loc, state,
3971 "`const' may not be applied to `out' or `inout' "
3972 "function parameters");
3973 }
3974
3975 /* If there is no qualifier that changes the mode of the variable, leave
3976 * the setting alone.
3977 */
3978 assert(var->data.mode != ir_var_temporary);
3979 if (qual->flags.q.in && qual->flags.q.out)
3980 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3981 else if (qual->flags.q.in)
3982 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3983 else if (qual->flags.q.attribute
3984 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3985 var->data.mode = ir_var_shader_in;
3986 else if (qual->flags.q.out)
3987 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3988 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3989 var->data.mode = ir_var_shader_out;
3990 else if (qual->flags.q.uniform)
3991 var->data.mode = ir_var_uniform;
3992 else if (qual->flags.q.buffer)
3993 var->data.mode = ir_var_shader_storage;
3994 else if (qual->flags.q.shared_storage)
3995 var->data.mode = ir_var_shader_shared;
3996
3997 if (!is_parameter && state->has_framebuffer_fetch() &&
3998 state->stage == MESA_SHADER_FRAGMENT) {
3999 if (state->is_version(130, 300))
4000 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4001 else
4002 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4003 }
4004
4005 if (!is_parameter && is_varying_var(var, state->stage)) {
4006 /* User-defined ins/outs are not permitted in compute shaders. */
4007 if (state->stage == MESA_SHADER_COMPUTE) {
4008 _mesa_glsl_error(loc, state,
4009 "user-defined input and output variables are not "
4010 "permitted in compute shaders");
4011 }
4012
4013 /* This variable is being used to link data between shader stages (in
4014 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4015 * that is allowed for such purposes.
4016 *
4017 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4018 *
4019 * "The varying qualifier can be used only with the data types
4020 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4021 * these."
4022 *
4023 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4024 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4025 *
4026 * "Fragment inputs can only be signed and unsigned integers and
4027 * integer vectors, float, floating-point vectors, matrices, or
4028 * arrays of these. Structures cannot be input.
4029 *
4030 * Similar text exists in the section on vertex shader outputs.
4031 *
4032 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4033 * 3.00 spec allows structs as well. Varying structs are also allowed
4034 * in GLSL 1.50.
4035 *
4036 * From section 4.3.4 of the ARB_bindless_texture spec:
4037 *
4038 * "(modify third paragraph of the section to allow sampler and image
4039 * types) ... Vertex shader inputs can only be float,
4040 * single-precision floating-point scalars, single-precision
4041 * floating-point vectors, matrices, signed and unsigned integers
4042 * and integer vectors, sampler and image types."
4043 *
4044 * From section 4.3.6 of the ARB_bindless_texture spec:
4045 *
4046 * "Output variables can only be floating-point scalars,
4047 * floating-point vectors, matrices, signed or unsigned integers or
4048 * integer vectors, sampler or image types, or arrays or structures
4049 * of any these."
4050 */
4051 switch (var->type->without_array()->base_type) {
4052 case GLSL_TYPE_FLOAT:
4053 /* Ok in all GLSL versions */
4054 break;
4055 case GLSL_TYPE_UINT:
4056 case GLSL_TYPE_INT:
4057 if (state->is_version(130, 300))
4058 break;
4059 _mesa_glsl_error(loc, state,
4060 "varying variables must be of base type float in %s",
4061 state->get_version_string());
4062 break;
4063 case GLSL_TYPE_STRUCT:
4064 if (state->is_version(150, 300))
4065 break;
4066 _mesa_glsl_error(loc, state,
4067 "varying variables may not be of type struct");
4068 break;
4069 case GLSL_TYPE_DOUBLE:
4070 case GLSL_TYPE_UINT64:
4071 case GLSL_TYPE_INT64:
4072 break;
4073 case GLSL_TYPE_SAMPLER:
4074 case GLSL_TYPE_IMAGE:
4075 if (state->has_bindless())
4076 break;
4077 /* fallthrough */
4078 default:
4079 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4080 break;
4081 }
4082 }
4083
4084 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4085 var->data.invariant = true;
4086
4087 var->data.interpolation =
4088 interpret_interpolation_qualifier(qual, var->type,
4089 (ir_variable_mode) var->data.mode,
4090 state, loc);
4091
4092 /* Does the declaration use the deprecated 'attribute' or 'varying'
4093 * keywords?
4094 */
4095 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4096 || qual->flags.q.varying;
4097
4098
4099 /* Validate auxiliary storage qualifiers */
4100
4101 /* From section 4.3.4 of the GLSL 1.30 spec:
4102 * "It is an error to use centroid in in a vertex shader."
4103 *
4104 * From section 4.3.4 of the GLSL ES 3.00 spec:
4105 * "It is an error to use centroid in or interpolation qualifiers in
4106 * a vertex shader input."
4107 */
4108
4109 /* Section 4.3.6 of the GLSL 1.30 specification states:
4110 * "It is an error to use centroid out in a fragment shader."
4111 *
4112 * The GL_ARB_shading_language_420pack extension specification states:
4113 * "It is an error to use auxiliary storage qualifiers or interpolation
4114 * qualifiers on an output in a fragment shader."
4115 */
4116 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4117 _mesa_glsl_error(loc, state,
4118 "sample qualifier may only be used on `in` or `out` "
4119 "variables between shader stages");
4120 }
4121 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4122 _mesa_glsl_error(loc, state,
4123 "centroid qualifier may only be used with `in', "
4124 "`out' or `varying' variables between shader stages");
4125 }
4126
4127 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4128 _mesa_glsl_error(loc, state,
4129 "the shared storage qualifiers can only be used with "
4130 "compute shaders");
4131 }
4132
4133 apply_image_qualifier_to_variable(qual, var, state, loc);
4134 }
4135
4136 /**
4137 * Get the variable that is being redeclared by this declaration or if it
4138 * does not exist, the current declared variable.
4139 *
4140 * Semantic checks to verify the validity of the redeclaration are also
4141 * performed. If semantic checks fail, compilation error will be emitted via
4142 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4143 *
4144 * \returns
4145 * A pointer to an existing variable in the current scope if the declaration
4146 * is a redeclaration, current variable otherwise. \c is_declared boolean
4147 * will return \c true if the declaration is a redeclaration, \c false
4148 * otherwise.
4149 */
4150 static ir_variable *
4151 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4152 struct _mesa_glsl_parse_state *state,
4153 bool allow_all_redeclarations,
4154 bool *is_redeclaration)
4155 {
4156 ir_variable *var = *var_ptr;
4157
4158 /* Check if this declaration is actually a re-declaration, either to
4159 * resize an array or add qualifiers to an existing variable.
4160 *
4161 * This is allowed for variables in the current scope, or when at
4162 * global scope (for built-ins in the implicit outer scope).
4163 */
4164 ir_variable *earlier = state->symbols->get_variable(var->name);
4165 if (earlier == NULL ||
4166 (state->current_function != NULL &&
4167 !state->symbols->name_declared_this_scope(var->name))) {
4168 *is_redeclaration = false;
4169 return var;
4170 }
4171
4172 *is_redeclaration = true;
4173
4174 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4175 *
4176 * "It is legal to declare an array without a size and then
4177 * later re-declare the same name as an array of the same
4178 * type and specify a size."
4179 */
4180 if (earlier->type->is_unsized_array() && var->type->is_array()
4181 && (var->type->fields.array == earlier->type->fields.array)) {
4182 /* FINISHME: This doesn't match the qualifiers on the two
4183 * FINISHME: declarations. It's not 100% clear whether this is
4184 * FINISHME: required or not.
4185 */
4186
4187 const int size = var->type->array_size();
4188 check_builtin_array_max_size(var->name, size, loc, state);
4189 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4190 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4191 "previous access",
4192 earlier->data.max_array_access);
4193 }
4194
4195 earlier->type = var->type;
4196 delete var;
4197 var = NULL;
4198 *var_ptr = NULL;
4199 } else if ((state->ARB_fragment_coord_conventions_enable ||
4200 state->is_version(150, 0))
4201 && strcmp(var->name, "gl_FragCoord") == 0
4202 && earlier->type == var->type
4203 && var->data.mode == ir_var_shader_in) {
4204 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4205 * qualifiers.
4206 */
4207 earlier->data.origin_upper_left = var->data.origin_upper_left;
4208 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4209
4210 /* According to section 4.3.7 of the GLSL 1.30 spec,
4211 * the following built-in varaibles can be redeclared with an
4212 * interpolation qualifier:
4213 * * gl_FrontColor
4214 * * gl_BackColor
4215 * * gl_FrontSecondaryColor
4216 * * gl_BackSecondaryColor
4217 * * gl_Color
4218 * * gl_SecondaryColor
4219 */
4220 } else if (state->is_version(130, 0)
4221 && (strcmp(var->name, "gl_FrontColor") == 0
4222 || strcmp(var->name, "gl_BackColor") == 0
4223 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4224 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4225 || strcmp(var->name, "gl_Color") == 0
4226 || strcmp(var->name, "gl_SecondaryColor") == 0)
4227 && earlier->type == var->type
4228 && earlier->data.mode == var->data.mode) {
4229 earlier->data.interpolation = var->data.interpolation;
4230
4231 /* Layout qualifiers for gl_FragDepth. */
4232 } else if ((state->is_version(420, 0) ||
4233 state->AMD_conservative_depth_enable ||
4234 state->ARB_conservative_depth_enable)
4235 && strcmp(var->name, "gl_FragDepth") == 0
4236 && earlier->type == var->type
4237 && earlier->data.mode == var->data.mode) {
4238
4239 /** From the AMD_conservative_depth spec:
4240 * Within any shader, the first redeclarations of gl_FragDepth
4241 * must appear before any use of gl_FragDepth.
4242 */
4243 if (earlier->data.used) {
4244 _mesa_glsl_error(&loc, state,
4245 "the first redeclaration of gl_FragDepth "
4246 "must appear before any use of gl_FragDepth");
4247 }
4248
4249 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4250 if (earlier->data.depth_layout != ir_depth_layout_none
4251 && earlier->data.depth_layout != var->data.depth_layout) {
4252 _mesa_glsl_error(&loc, state,
4253 "gl_FragDepth: depth layout is declared here "
4254 "as '%s, but it was previously declared as "
4255 "'%s'",
4256 depth_layout_string(var->data.depth_layout),
4257 depth_layout_string(earlier->data.depth_layout));
4258 }
4259
4260 earlier->data.depth_layout = var->data.depth_layout;
4261
4262 } else if (state->has_framebuffer_fetch() &&
4263 strcmp(var->name, "gl_LastFragData") == 0 &&
4264 var->type == earlier->type &&
4265 var->data.mode == ir_var_auto) {
4266 /* According to the EXT_shader_framebuffer_fetch spec:
4267 *
4268 * "By default, gl_LastFragData is declared with the mediump precision
4269 * qualifier. This can be changed by redeclaring the corresponding
4270 * variables with the desired precision qualifier."
4271 */
4272 earlier->data.precision = var->data.precision;
4273
4274 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4275 state->allow_builtin_variable_redeclaration) {
4276 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4277 * valid, but some applications do it.
4278 */
4279 if (earlier->data.mode != var->data.mode &&
4280 !(earlier->data.mode == ir_var_system_value &&
4281 var->data.mode == ir_var_shader_in)) {
4282 _mesa_glsl_error(&loc, state,
4283 "redeclaration of `%s' with incorrect qualifiers",
4284 var->name);
4285 } else if (earlier->type != var->type) {
4286 _mesa_glsl_error(&loc, state,
4287 "redeclaration of `%s' has incorrect type",
4288 var->name);
4289 }
4290 } else if (allow_all_redeclarations) {
4291 if (earlier->data.mode != var->data.mode) {
4292 _mesa_glsl_error(&loc, state,
4293 "redeclaration of `%s' with incorrect qualifiers",
4294 var->name);
4295 } else if (earlier->type != var->type) {
4296 _mesa_glsl_error(&loc, state,
4297 "redeclaration of `%s' has incorrect type",
4298 var->name);
4299 }
4300 } else {
4301 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4302 }
4303
4304 return earlier;
4305 }
4306
4307 /**
4308 * Generate the IR for an initializer in a variable declaration
4309 */
4310 static ir_rvalue *
4311 process_initializer(ir_variable *var, ast_declaration *decl,
4312 ast_fully_specified_type *type,
4313 exec_list *initializer_instructions,
4314 struct _mesa_glsl_parse_state *state)
4315 {
4316 void *mem_ctx = state;
4317 ir_rvalue *result = NULL;
4318
4319 YYLTYPE initializer_loc = decl->initializer->get_location();
4320
4321 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4322 *
4323 * "All uniform variables are read-only and are initialized either
4324 * directly by an application via API commands, or indirectly by
4325 * OpenGL."
4326 */
4327 if (var->data.mode == ir_var_uniform) {
4328 state->check_version(120, 0, &initializer_loc,
4329 "cannot initialize uniform %s",
4330 var->name);
4331 }
4332
4333 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4334 *
4335 * "Buffer variables cannot have initializers."
4336 */
4337 if (var->data.mode == ir_var_shader_storage) {
4338 _mesa_glsl_error(&initializer_loc, state,
4339 "cannot initialize buffer variable %s",
4340 var->name);
4341 }
4342
4343 /* From section 4.1.7 of the GLSL 4.40 spec:
4344 *
4345 * "Opaque variables [...] are initialized only through the
4346 * OpenGL API; they cannot be declared with an initializer in a
4347 * shader."
4348 *
4349 * From section 4.1.7 of the ARB_bindless_texture spec:
4350 *
4351 * "Samplers may be declared as shader inputs and outputs, as uniform
4352 * variables, as temporary variables, and as function parameters."
4353 *
4354 * From section 4.1.X of the ARB_bindless_texture spec:
4355 *
4356 * "Images may be declared as shader inputs and outputs, as uniform
4357 * variables, as temporary variables, and as function parameters."
4358 */
4359 if (var->type->contains_atomic() ||
4360 (!state->has_bindless() && var->type->contains_opaque())) {
4361 _mesa_glsl_error(&initializer_loc, state,
4362 "cannot initialize %s variable %s",
4363 var->name, state->has_bindless() ? "atomic" : "opaque");
4364 }
4365
4366 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4367 _mesa_glsl_error(&initializer_loc, state,
4368 "cannot initialize %s shader input / %s %s",
4369 _mesa_shader_stage_to_string(state->stage),
4370 (state->stage == MESA_SHADER_VERTEX)
4371 ? "attribute" : "varying",
4372 var->name);
4373 }
4374
4375 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4376 _mesa_glsl_error(&initializer_loc, state,
4377 "cannot initialize %s shader output %s",
4378 _mesa_shader_stage_to_string(state->stage),
4379 var->name);
4380 }
4381
4382 /* If the initializer is an ast_aggregate_initializer, recursively store
4383 * type information from the LHS into it, so that its hir() function can do
4384 * type checking.
4385 */
4386 if (decl->initializer->oper == ast_aggregate)
4387 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4388
4389 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4390 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4391
4392 /* Calculate the constant value if this is a const or uniform
4393 * declaration.
4394 *
4395 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4396 *
4397 * "Declarations of globals without a storage qualifier, or with
4398 * just the const qualifier, may include initializers, in which case
4399 * they will be initialized before the first line of main() is
4400 * executed. Such initializers must be a constant expression."
4401 *
4402 * The same section of the GLSL ES 3.00.4 spec has similar language.
4403 */
4404 if (type->qualifier.flags.q.constant
4405 || type->qualifier.flags.q.uniform
4406 || (state->es_shader && state->current_function == NULL)) {
4407 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4408 lhs, rhs, true);
4409 if (new_rhs != NULL) {
4410 rhs = new_rhs;
4411
4412 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4413 * says:
4414 *
4415 * "A constant expression is one of
4416 *
4417 * ...
4418 *
4419 * - an expression formed by an operator on operands that are
4420 * all constant expressions, including getting an element of
4421 * a constant array, or a field of a constant structure, or
4422 * components of a constant vector. However, the sequence
4423 * operator ( , ) and the assignment operators ( =, +=, ...)
4424 * are not included in the operators that can create a
4425 * constant expression."
4426 *
4427 * Section 12.43 (Sequence operator and constant expressions) says:
4428 *
4429 * "Should the following construct be allowed?
4430 *
4431 * float a[2,3];
4432 *
4433 * The expression within the brackets uses the sequence operator
4434 * (',') and returns the integer 3 so the construct is declaring
4435 * a single-dimensional array of size 3. In some languages, the
4436 * construct declares a two-dimensional array. It would be
4437 * preferable to make this construct illegal to avoid confusion.
4438 *
4439 * One possibility is to change the definition of the sequence
4440 * operator so that it does not return a constant-expression and
4441 * hence cannot be used to declare an array size.
4442 *
4443 * RESOLUTION: The result of a sequence operator is not a
4444 * constant-expression."
4445 *
4446 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4447 * contains language almost identical to the section 4.3.3 in the
4448 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4449 * versions.
4450 */
4451 ir_constant *constant_value =
4452 rhs->constant_expression_value(mem_ctx);
4453
4454 if (!constant_value ||
4455 (state->is_version(430, 300) &&
4456 decl->initializer->has_sequence_subexpression())) {
4457 const char *const variable_mode =
4458 (type->qualifier.flags.q.constant)
4459 ? "const"
4460 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4461
4462 /* If ARB_shading_language_420pack is enabled, initializers of
4463 * const-qualified local variables do not have to be constant
4464 * expressions. Const-qualified global variables must still be
4465 * initialized with constant expressions.
4466 */
4467 if (!state->has_420pack()
4468 || state->current_function == NULL) {
4469 _mesa_glsl_error(& initializer_loc, state,
4470 "initializer of %s variable `%s' must be a "
4471 "constant expression",
4472 variable_mode,
4473 decl->identifier);
4474 if (var->type->is_numeric()) {
4475 /* Reduce cascading errors. */
4476 var->constant_value = type->qualifier.flags.q.constant
4477 ? ir_constant::zero(state, var->type) : NULL;
4478 }
4479 }
4480 } else {
4481 rhs = constant_value;
4482 var->constant_value = type->qualifier.flags.q.constant
4483 ? constant_value : NULL;
4484 }
4485 } else {
4486 if (var->type->is_numeric()) {
4487 /* Reduce cascading errors. */
4488 rhs = var->constant_value = type->qualifier.flags.q.constant
4489 ? ir_constant::zero(state, var->type) : NULL;
4490 }
4491 }
4492 }
4493
4494 if (rhs && !rhs->type->is_error()) {
4495 bool temp = var->data.read_only;
4496 if (type->qualifier.flags.q.constant)
4497 var->data.read_only = false;
4498
4499 /* Never emit code to initialize a uniform.
4500 */
4501 const glsl_type *initializer_type;
4502 if (!type->qualifier.flags.q.uniform) {
4503 do_assignment(initializer_instructions, state,
4504 NULL,
4505 lhs, rhs,
4506 &result, true,
4507 true,
4508 type->get_location());
4509 initializer_type = result->type;
4510 } else
4511 initializer_type = rhs->type;
4512
4513 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4514 var->data.has_initializer = true;
4515
4516 /* If the declared variable is an unsized array, it must inherrit
4517 * its full type from the initializer. A declaration such as
4518 *
4519 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4520 *
4521 * becomes
4522 *
4523 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4524 *
4525 * The assignment generated in the if-statement (below) will also
4526 * automatically handle this case for non-uniforms.
4527 *
4528 * If the declared variable is not an array, the types must
4529 * already match exactly. As a result, the type assignment
4530 * here can be done unconditionally. For non-uniforms the call
4531 * to do_assignment can change the type of the initializer (via
4532 * the implicit conversion rules). For uniforms the initializer
4533 * must be a constant expression, and the type of that expression
4534 * was validated above.
4535 */
4536 var->type = initializer_type;
4537
4538 var->data.read_only = temp;
4539 }
4540
4541 return result;
4542 }
4543
4544 static void
4545 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4546 YYLTYPE loc, ir_variable *var,
4547 unsigned num_vertices,
4548 unsigned *size,
4549 const char *var_category)
4550 {
4551 if (var->type->is_unsized_array()) {
4552 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4553 *
4554 * All geometry shader input unsized array declarations will be
4555 * sized by an earlier input layout qualifier, when present, as per
4556 * the following table.
4557 *
4558 * Followed by a table mapping each allowed input layout qualifier to
4559 * the corresponding input length.
4560 *
4561 * Similarly for tessellation control shader outputs.
4562 */
4563 if (num_vertices != 0)
4564 var->type = glsl_type::get_array_instance(var->type->fields.array,
4565 num_vertices);
4566 } else {
4567 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4568 * includes the following examples of compile-time errors:
4569 *
4570 * // code sequence within one shader...
4571 * in vec4 Color1[]; // size unknown
4572 * ...Color1.length()...// illegal, length() unknown
4573 * in vec4 Color2[2]; // size is 2
4574 * ...Color1.length()...// illegal, Color1 still has no size
4575 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4576 * layout(lines) in; // legal, input size is 2, matching
4577 * in vec4 Color4[3]; // illegal, contradicts layout
4578 * ...
4579 *
4580 * To detect the case illustrated by Color3, we verify that the size of
4581 * an explicitly-sized array matches the size of any previously declared
4582 * explicitly-sized array. To detect the case illustrated by Color4, we
4583 * verify that the size of an explicitly-sized array is consistent with
4584 * any previously declared input layout.
4585 */
4586 if (num_vertices != 0 && var->type->length != num_vertices) {
4587 _mesa_glsl_error(&loc, state,
4588 "%s size contradicts previously declared layout "
4589 "(size is %u, but layout requires a size of %u)",
4590 var_category, var->type->length, num_vertices);
4591 } else if (*size != 0 && var->type->length != *size) {
4592 _mesa_glsl_error(&loc, state,
4593 "%s sizes are inconsistent (size is %u, but a "
4594 "previous declaration has size %u)",
4595 var_category, var->type->length, *size);
4596 } else {
4597 *size = var->type->length;
4598 }
4599 }
4600 }
4601
4602 static void
4603 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4604 YYLTYPE loc, ir_variable *var)
4605 {
4606 unsigned num_vertices = 0;
4607
4608 if (state->tcs_output_vertices_specified) {
4609 if (!state->out_qualifier->vertices->
4610 process_qualifier_constant(state, "vertices",
4611 &num_vertices, false)) {
4612 return;
4613 }
4614
4615 if (num_vertices > state->Const.MaxPatchVertices) {
4616 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4617 "GL_MAX_PATCH_VERTICES", num_vertices);
4618 return;
4619 }
4620 }
4621
4622 if (!var->type->is_array() && !var->data.patch) {
4623 _mesa_glsl_error(&loc, state,
4624 "tessellation control shader outputs must be arrays");
4625
4626 /* To avoid cascading failures, short circuit the checks below. */
4627 return;
4628 }
4629
4630 if (var->data.patch)
4631 return;
4632
4633 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4634 &state->tcs_output_size,
4635 "tessellation control shader output");
4636 }
4637
4638 /**
4639 * Do additional processing necessary for tessellation control/evaluation shader
4640 * input declarations. This covers both interface block arrays and bare input
4641 * variables.
4642 */
4643 static void
4644 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4645 YYLTYPE loc, ir_variable *var)
4646 {
4647 if (!var->type->is_array() && !var->data.patch) {
4648 _mesa_glsl_error(&loc, state,
4649 "per-vertex tessellation shader inputs must be arrays");
4650 /* Avoid cascading failures. */
4651 return;
4652 }
4653
4654 if (var->data.patch)
4655 return;
4656
4657 /* The ARB_tessellation_shader spec says:
4658 *
4659 * "Declaring an array size is optional. If no size is specified, it
4660 * will be taken from the implementation-dependent maximum patch size
4661 * (gl_MaxPatchVertices). If a size is specified, it must match the
4662 * maximum patch size; otherwise, a compile or link error will occur."
4663 *
4664 * This text appears twice, once for TCS inputs, and again for TES inputs.
4665 */
4666 if (var->type->is_unsized_array()) {
4667 var->type = glsl_type::get_array_instance(var->type->fields.array,
4668 state->Const.MaxPatchVertices);
4669 } else if (var->type->length != state->Const.MaxPatchVertices) {
4670 _mesa_glsl_error(&loc, state,
4671 "per-vertex tessellation shader input arrays must be "
4672 "sized to gl_MaxPatchVertices (%d).",
4673 state->Const.MaxPatchVertices);
4674 }
4675 }
4676
4677
4678 /**
4679 * Do additional processing necessary for geometry shader input declarations
4680 * (this covers both interface blocks arrays and bare input variables).
4681 */
4682 static void
4683 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4684 YYLTYPE loc, ir_variable *var)
4685 {
4686 unsigned num_vertices = 0;
4687
4688 if (state->gs_input_prim_type_specified) {
4689 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4690 }
4691
4692 /* Geometry shader input variables must be arrays. Caller should have
4693 * reported an error for this.
4694 */
4695 if (!var->type->is_array()) {
4696 assert(state->error);
4697
4698 /* To avoid cascading failures, short circuit the checks below. */
4699 return;
4700 }
4701
4702 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4703 &state->gs_input_size,
4704 "geometry shader input");
4705 }
4706
4707 static void
4708 validate_identifier(const char *identifier, YYLTYPE loc,
4709 struct _mesa_glsl_parse_state *state)
4710 {
4711 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4712 *
4713 * "Identifiers starting with "gl_" are reserved for use by
4714 * OpenGL, and may not be declared in a shader as either a
4715 * variable or a function."
4716 */
4717 if (is_gl_identifier(identifier)) {
4718 _mesa_glsl_error(&loc, state,
4719 "identifier `%s' uses reserved `gl_' prefix",
4720 identifier);
4721 } else if (strstr(identifier, "__")) {
4722 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4723 * spec:
4724 *
4725 * "In addition, all identifiers containing two
4726 * consecutive underscores (__) are reserved as
4727 * possible future keywords."
4728 *
4729 * The intention is that names containing __ are reserved for internal
4730 * use by the implementation, and names prefixed with GL_ are reserved
4731 * for use by Khronos. Names simply containing __ are dangerous to use,
4732 * but should be allowed.
4733 *
4734 * A future version of the GLSL specification will clarify this.
4735 */
4736 _mesa_glsl_warning(&loc, state,
4737 "identifier `%s' uses reserved `__' string",
4738 identifier);
4739 }
4740 }
4741
4742 ir_rvalue *
4743 ast_declarator_list::hir(exec_list *instructions,
4744 struct _mesa_glsl_parse_state *state)
4745 {
4746 void *ctx = state;
4747 const struct glsl_type *decl_type;
4748 const char *type_name = NULL;
4749 ir_rvalue *result = NULL;
4750 YYLTYPE loc = this->get_location();
4751
4752 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4753 *
4754 * "To ensure that a particular output variable is invariant, it is
4755 * necessary to use the invariant qualifier. It can either be used to
4756 * qualify a previously declared variable as being invariant
4757 *
4758 * invariant gl_Position; // make existing gl_Position be invariant"
4759 *
4760 * In these cases the parser will set the 'invariant' flag in the declarator
4761 * list, and the type will be NULL.
4762 */
4763 if (this->invariant) {
4764 assert(this->type == NULL);
4765
4766 if (state->current_function != NULL) {
4767 _mesa_glsl_error(& loc, state,
4768 "all uses of `invariant' keyword must be at global "
4769 "scope");
4770 }
4771
4772 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4773 assert(decl->array_specifier == NULL);
4774 assert(decl->initializer == NULL);
4775
4776 ir_variable *const earlier =
4777 state->symbols->get_variable(decl->identifier);
4778 if (earlier == NULL) {
4779 _mesa_glsl_error(& loc, state,
4780 "undeclared variable `%s' cannot be marked "
4781 "invariant", decl->identifier);
4782 } else if (!is_allowed_invariant(earlier, state)) {
4783 _mesa_glsl_error(&loc, state,
4784 "`%s' cannot be marked invariant; interfaces between "
4785 "shader stages only.", decl->identifier);
4786 } else if (earlier->data.used) {
4787 _mesa_glsl_error(& loc, state,
4788 "variable `%s' may not be redeclared "
4789 "`invariant' after being used",
4790 earlier->name);
4791 } else {
4792 earlier->data.invariant = true;
4793 }
4794 }
4795
4796 /* Invariant redeclarations do not have r-values.
4797 */
4798 return NULL;
4799 }
4800
4801 if (this->precise) {
4802 assert(this->type == NULL);
4803
4804 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4805 assert(decl->array_specifier == NULL);
4806 assert(decl->initializer == NULL);
4807
4808 ir_variable *const earlier =
4809 state->symbols->get_variable(decl->identifier);
4810 if (earlier == NULL) {
4811 _mesa_glsl_error(& loc, state,
4812 "undeclared variable `%s' cannot be marked "
4813 "precise", decl->identifier);
4814 } else if (state->current_function != NULL &&
4815 !state->symbols->name_declared_this_scope(decl->identifier)) {
4816 /* Note: we have to check if we're in a function, since
4817 * builtins are treated as having come from another scope.
4818 */
4819 _mesa_glsl_error(& loc, state,
4820 "variable `%s' from an outer scope may not be "
4821 "redeclared `precise' in this scope",
4822 earlier->name);
4823 } else if (earlier->data.used) {
4824 _mesa_glsl_error(& loc, state,
4825 "variable `%s' may not be redeclared "
4826 "`precise' after being used",
4827 earlier->name);
4828 } else {
4829 earlier->data.precise = true;
4830 }
4831 }
4832
4833 /* Precise redeclarations do not have r-values either. */
4834 return NULL;
4835 }
4836
4837 assert(this->type != NULL);
4838 assert(!this->invariant);
4839 assert(!this->precise);
4840
4841 /* The type specifier may contain a structure definition. Process that
4842 * before any of the variable declarations.
4843 */
4844 (void) this->type->specifier->hir(instructions, state);
4845
4846 decl_type = this->type->glsl_type(& type_name, state);
4847
4848 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4849 * "Buffer variables may only be declared inside interface blocks
4850 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4851 * shader storage blocks. It is a compile-time error to declare buffer
4852 * variables at global scope (outside a block)."
4853 */
4854 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4855 _mesa_glsl_error(&loc, state,
4856 "buffer variables cannot be declared outside "
4857 "interface blocks");
4858 }
4859
4860 /* An offset-qualified atomic counter declaration sets the default
4861 * offset for the next declaration within the same atomic counter
4862 * buffer.
4863 */
4864 if (decl_type && decl_type->contains_atomic()) {
4865 if (type->qualifier.flags.q.explicit_binding &&
4866 type->qualifier.flags.q.explicit_offset) {
4867 unsigned qual_binding;
4868 unsigned qual_offset;
4869 if (process_qualifier_constant(state, &loc, "binding",
4870 type->qualifier.binding,
4871 &qual_binding)
4872 && process_qualifier_constant(state, &loc, "offset",
4873 type->qualifier.offset,
4874 &qual_offset)) {
4875 state->atomic_counter_offsets[qual_binding] = qual_offset;
4876 }
4877 }
4878
4879 ast_type_qualifier allowed_atomic_qual_mask;
4880 allowed_atomic_qual_mask.flags.i = 0;
4881 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4882 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4883 allowed_atomic_qual_mask.flags.q.uniform = 1;
4884
4885 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4886 "invalid layout qualifier for",
4887 "atomic_uint");
4888 }
4889
4890 if (this->declarations.is_empty()) {
4891 /* If there is no structure involved in the program text, there are two
4892 * possible scenarios:
4893 *
4894 * - The program text contained something like 'vec4;'. This is an
4895 * empty declaration. It is valid but weird. Emit a warning.
4896 *
4897 * - The program text contained something like 'S;' and 'S' is not the
4898 * name of a known structure type. This is both invalid and weird.
4899 * Emit an error.
4900 *
4901 * - The program text contained something like 'mediump float;'
4902 * when the programmer probably meant 'precision mediump
4903 * float;' Emit a warning with a description of what they
4904 * probably meant to do.
4905 *
4906 * Note that if decl_type is NULL and there is a structure involved,
4907 * there must have been some sort of error with the structure. In this
4908 * case we assume that an error was already generated on this line of
4909 * code for the structure. There is no need to generate an additional,
4910 * confusing error.
4911 */
4912 assert(this->type->specifier->structure == NULL || decl_type != NULL
4913 || state->error);
4914
4915 if (decl_type == NULL) {
4916 _mesa_glsl_error(&loc, state,
4917 "invalid type `%s' in empty declaration",
4918 type_name);
4919 } else {
4920 if (decl_type->is_array()) {
4921 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4922 * spec:
4923 *
4924 * "... any declaration that leaves the size undefined is
4925 * disallowed as this would add complexity and there are no
4926 * use-cases."
4927 */
4928 if (state->es_shader && decl_type->is_unsized_array()) {
4929 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4930 "or implicitly defined");
4931 }
4932
4933 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4934 *
4935 * "The combinations of types and qualifiers that cause
4936 * compile-time or link-time errors are the same whether or not
4937 * the declaration is empty."
4938 */
4939 validate_array_dimensions(decl_type, state, &loc);
4940 }
4941
4942 if (decl_type->is_atomic_uint()) {
4943 /* Empty atomic counter declarations are allowed and useful
4944 * to set the default offset qualifier.
4945 */
4946 return NULL;
4947 } else if (this->type->qualifier.precision != ast_precision_none) {
4948 if (this->type->specifier->structure != NULL) {
4949 _mesa_glsl_error(&loc, state,
4950 "precision qualifiers can't be applied "
4951 "to structures");
4952 } else {
4953 static const char *const precision_names[] = {
4954 "highp",
4955 "highp",
4956 "mediump",
4957 "lowp"
4958 };
4959
4960 _mesa_glsl_warning(&loc, state,
4961 "empty declaration with precision "
4962 "qualifier, to set the default precision, "
4963 "use `precision %s %s;'",
4964 precision_names[this->type->
4965 qualifier.precision],
4966 type_name);
4967 }
4968 } else if (this->type->specifier->structure == NULL) {
4969 _mesa_glsl_warning(&loc, state, "empty declaration");
4970 }
4971 }
4972 }
4973
4974 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4975 const struct glsl_type *var_type;
4976 ir_variable *var;
4977 const char *identifier = decl->identifier;
4978 /* FINISHME: Emit a warning if a variable declaration shadows a
4979 * FINISHME: declaration at a higher scope.
4980 */
4981
4982 if ((decl_type == NULL) || decl_type->is_void()) {
4983 if (type_name != NULL) {
4984 _mesa_glsl_error(& loc, state,
4985 "invalid type `%s' in declaration of `%s'",
4986 type_name, decl->identifier);
4987 } else {
4988 _mesa_glsl_error(& loc, state,
4989 "invalid type in declaration of `%s'",
4990 decl->identifier);
4991 }
4992 continue;
4993 }
4994
4995 if (this->type->qualifier.is_subroutine_decl()) {
4996 const glsl_type *t;
4997 const char *name;
4998
4999 t = state->symbols->get_type(this->type->specifier->type_name);
5000 if (!t)
5001 _mesa_glsl_error(& loc, state,
5002 "invalid type in declaration of `%s'",
5003 decl->identifier);
5004 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5005
5006 identifier = name;
5007
5008 }
5009 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5010 state);
5011
5012 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5013
5014 /* The 'varying in' and 'varying out' qualifiers can only be used with
5015 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5016 * yet.
5017 */
5018 if (this->type->qualifier.flags.q.varying) {
5019 if (this->type->qualifier.flags.q.in) {
5020 _mesa_glsl_error(& loc, state,
5021 "`varying in' qualifier in declaration of "
5022 "`%s' only valid for geometry shaders using "
5023 "ARB_geometry_shader4 or EXT_geometry_shader4",
5024 decl->identifier);
5025 } else if (this->type->qualifier.flags.q.out) {
5026 _mesa_glsl_error(& loc, state,
5027 "`varying out' qualifier in declaration of "
5028 "`%s' only valid for geometry shaders using "
5029 "ARB_geometry_shader4 or EXT_geometry_shader4",
5030 decl->identifier);
5031 }
5032 }
5033
5034 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5035 *
5036 * "Global variables can only use the qualifiers const,
5037 * attribute, uniform, or varying. Only one may be
5038 * specified.
5039 *
5040 * Local variables can only use the qualifier const."
5041 *
5042 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5043 * any extension that adds the 'layout' keyword.
5044 */
5045 if (!state->is_version(130, 300)
5046 && !state->has_explicit_attrib_location()
5047 && !state->has_separate_shader_objects()
5048 && !state->ARB_fragment_coord_conventions_enable) {
5049 if (this->type->qualifier.flags.q.out) {
5050 _mesa_glsl_error(& loc, state,
5051 "`out' qualifier in declaration of `%s' "
5052 "only valid for function parameters in %s",
5053 decl->identifier, state->get_version_string());
5054 }
5055 if (this->type->qualifier.flags.q.in) {
5056 _mesa_glsl_error(& loc, state,
5057 "`in' qualifier in declaration of `%s' "
5058 "only valid for function parameters in %s",
5059 decl->identifier, state->get_version_string());
5060 }
5061 /* FINISHME: Test for other invalid qualifiers. */
5062 }
5063
5064 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5065 & loc, false);
5066 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5067 &loc);
5068
5069 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5070 && (var->type->is_numeric() || var->type->is_boolean())
5071 && state->zero_init) {
5072 const ir_constant_data data = { { 0 } };
5073 var->data.has_initializer = true;
5074 var->constant_initializer = new(var) ir_constant(var->type, &data);
5075 }
5076
5077 if (this->type->qualifier.flags.q.invariant) {
5078 if (!is_allowed_invariant(var, state)) {
5079 _mesa_glsl_error(&loc, state,
5080 "`%s' cannot be marked invariant; interfaces between "
5081 "shader stages only", var->name);
5082 }
5083 }
5084
5085 if (state->current_function != NULL) {
5086 const char *mode = NULL;
5087 const char *extra = "";
5088
5089 /* There is no need to check for 'inout' here because the parser will
5090 * only allow that in function parameter lists.
5091 */
5092 if (this->type->qualifier.flags.q.attribute) {
5093 mode = "attribute";
5094 } else if (this->type->qualifier.is_subroutine_decl()) {
5095 mode = "subroutine uniform";
5096 } else if (this->type->qualifier.flags.q.uniform) {
5097 mode = "uniform";
5098 } else if (this->type->qualifier.flags.q.varying) {
5099 mode = "varying";
5100 } else if (this->type->qualifier.flags.q.in) {
5101 mode = "in";
5102 extra = " or in function parameter list";
5103 } else if (this->type->qualifier.flags.q.out) {
5104 mode = "out";
5105 extra = " or in function parameter list";
5106 }
5107
5108 if (mode) {
5109 _mesa_glsl_error(& loc, state,
5110 "%s variable `%s' must be declared at "
5111 "global scope%s",
5112 mode, var->name, extra);
5113 }
5114 } else if (var->data.mode == ir_var_shader_in) {
5115 var->data.read_only = true;
5116
5117 if (state->stage == MESA_SHADER_VERTEX) {
5118 bool error_emitted = false;
5119
5120 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5121 *
5122 * "Vertex shader inputs can only be float, floating-point
5123 * vectors, matrices, signed and unsigned integers and integer
5124 * vectors. Vertex shader inputs can also form arrays of these
5125 * types, but not structures."
5126 *
5127 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5128 *
5129 * "Vertex shader inputs can only be float, floating-point
5130 * vectors, matrices, signed and unsigned integers and integer
5131 * vectors. They cannot be arrays or structures."
5132 *
5133 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5134 *
5135 * "The attribute qualifier can be used only with float,
5136 * floating-point vectors, and matrices. Attribute variables
5137 * cannot be declared as arrays or structures."
5138 *
5139 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5140 *
5141 * "Vertex shader inputs can only be float, floating-point
5142 * vectors, matrices, signed and unsigned integers and integer
5143 * vectors. Vertex shader inputs cannot be arrays or
5144 * structures."
5145 *
5146 * From section 4.3.4 of the ARB_bindless_texture spec:
5147 *
5148 * "(modify third paragraph of the section to allow sampler and
5149 * image types) ... Vertex shader inputs can only be float,
5150 * single-precision floating-point scalars, single-precision
5151 * floating-point vectors, matrices, signed and unsigned
5152 * integers and integer vectors, sampler and image types."
5153 */
5154 const glsl_type *check_type = var->type->without_array();
5155
5156 switch (check_type->base_type) {
5157 case GLSL_TYPE_FLOAT:
5158 break;
5159 case GLSL_TYPE_UINT64:
5160 case GLSL_TYPE_INT64:
5161 break;
5162 case GLSL_TYPE_UINT:
5163 case GLSL_TYPE_INT:
5164 if (state->is_version(120, 300))
5165 break;
5166 case GLSL_TYPE_DOUBLE:
5167 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5168 break;
5169 case GLSL_TYPE_SAMPLER:
5170 if (check_type->is_sampler() && state->has_bindless())
5171 break;
5172 case GLSL_TYPE_IMAGE:
5173 if (check_type->is_image() && state->has_bindless())
5174 break;
5175 /* FALLTHROUGH */
5176 default:
5177 _mesa_glsl_error(& loc, state,
5178 "vertex shader input / attribute cannot have "
5179 "type %s`%s'",
5180 var->type->is_array() ? "array of " : "",
5181 check_type->name);
5182 error_emitted = true;
5183 }
5184
5185 if (!error_emitted && var->type->is_array() &&
5186 !state->check_version(150, 0, &loc,
5187 "vertex shader input / attribute "
5188 "cannot have array type")) {
5189 error_emitted = true;
5190 }
5191 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5192 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5193 *
5194 * Geometry shader input variables get the per-vertex values
5195 * written out by vertex shader output variables of the same
5196 * names. Since a geometry shader operates on a set of
5197 * vertices, each input varying variable (or input block, see
5198 * interface blocks below) needs to be declared as an array.
5199 */
5200 if (!var->type->is_array()) {
5201 _mesa_glsl_error(&loc, state,
5202 "geometry shader inputs must be arrays");
5203 }
5204
5205 handle_geometry_shader_input_decl(state, loc, var);
5206 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5207 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5208 *
5209 * It is a compile-time error to declare a fragment shader
5210 * input with, or that contains, any of the following types:
5211 *
5212 * * A boolean type
5213 * * An opaque type
5214 * * An array of arrays
5215 * * An array of structures
5216 * * A structure containing an array
5217 * * A structure containing a structure
5218 */
5219 if (state->es_shader) {
5220 const glsl_type *check_type = var->type->without_array();
5221 if (check_type->is_boolean() ||
5222 check_type->contains_opaque()) {
5223 _mesa_glsl_error(&loc, state,
5224 "fragment shader input cannot have type %s",
5225 check_type->name);
5226 }
5227 if (var->type->is_array() &&
5228 var->type->fields.array->is_array()) {
5229 _mesa_glsl_error(&loc, state,
5230 "%s shader output "
5231 "cannot have an array of arrays",
5232 _mesa_shader_stage_to_string(state->stage));
5233 }
5234 if (var->type->is_array() &&
5235 var->type->fields.array->is_record()) {
5236 _mesa_glsl_error(&loc, state,
5237 "fragment shader input "
5238 "cannot have an array of structs");
5239 }
5240 if (var->type->is_record()) {
5241 for (unsigned i = 0; i < var->type->length; i++) {
5242 if (var->type->fields.structure[i].type->is_array() ||
5243 var->type->fields.structure[i].type->is_record())
5244 _mesa_glsl_error(&loc, state,
5245 "fragment shader input cannot have "
5246 "a struct that contains an "
5247 "array or struct");
5248 }
5249 }
5250 }
5251 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5252 state->stage == MESA_SHADER_TESS_EVAL) {
5253 handle_tess_shader_input_decl(state, loc, var);
5254 }
5255 } else if (var->data.mode == ir_var_shader_out) {
5256 const glsl_type *check_type = var->type->without_array();
5257
5258 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5259 *
5260 * It is a compile-time error to declare a fragment shader output
5261 * that contains any of the following:
5262 *
5263 * * A Boolean type (bool, bvec2 ...)
5264 * * A double-precision scalar or vector (double, dvec2 ...)
5265 * * An opaque type
5266 * * Any matrix type
5267 * * A structure
5268 */
5269 if (state->stage == MESA_SHADER_FRAGMENT) {
5270 if (check_type->is_record() || check_type->is_matrix())
5271 _mesa_glsl_error(&loc, state,
5272 "fragment shader output "
5273 "cannot have struct or matrix type");
5274 switch (check_type->base_type) {
5275 case GLSL_TYPE_UINT:
5276 case GLSL_TYPE_INT:
5277 case GLSL_TYPE_FLOAT:
5278 break;
5279 default:
5280 _mesa_glsl_error(&loc, state,
5281 "fragment shader output cannot have "
5282 "type %s", check_type->name);
5283 }
5284 }
5285
5286 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5287 *
5288 * It is a compile-time error to declare a vertex shader output
5289 * with, or that contains, any of the following types:
5290 *
5291 * * A boolean type
5292 * * An opaque type
5293 * * An array of arrays
5294 * * An array of structures
5295 * * A structure containing an array
5296 * * A structure containing a structure
5297 *
5298 * It is a compile-time error to declare a fragment shader output
5299 * with, or that contains, any of the following types:
5300 *
5301 * * A boolean type
5302 * * An opaque type
5303 * * A matrix
5304 * * A structure
5305 * * An array of array
5306 *
5307 * ES 3.20 updates this to apply to tessellation and geometry shaders
5308 * as well. Because there are per-vertex arrays in the new stages,
5309 * it strikes the "array of..." rules and replaces them with these:
5310 *
5311 * * For per-vertex-arrayed variables (applies to tessellation
5312 * control, tessellation evaluation and geometry shaders):
5313 *
5314 * * Per-vertex-arrayed arrays of arrays
5315 * * Per-vertex-arrayed arrays of structures
5316 *
5317 * * For non-per-vertex-arrayed variables:
5318 *
5319 * * An array of arrays
5320 * * An array of structures
5321 *
5322 * which basically says to unwrap the per-vertex aspect and apply
5323 * the old rules.
5324 */
5325 if (state->es_shader) {
5326 if (var->type->is_array() &&
5327 var->type->fields.array->is_array()) {
5328 _mesa_glsl_error(&loc, state,
5329 "%s shader output "
5330 "cannot have an array of arrays",
5331 _mesa_shader_stage_to_string(state->stage));
5332 }
5333 if (state->stage <= MESA_SHADER_GEOMETRY) {
5334 const glsl_type *type = var->type;
5335
5336 if (state->stage == MESA_SHADER_TESS_CTRL &&
5337 !var->data.patch && var->type->is_array()) {
5338 type = var->type->fields.array;
5339 }
5340
5341 if (type->is_array() && type->fields.array->is_record()) {
5342 _mesa_glsl_error(&loc, state,
5343 "%s shader output cannot have "
5344 "an array of structs",
5345 _mesa_shader_stage_to_string(state->stage));
5346 }
5347 if (type->is_record()) {
5348 for (unsigned i = 0; i < type->length; i++) {
5349 if (type->fields.structure[i].type->is_array() ||
5350 type->fields.structure[i].type->is_record())
5351 _mesa_glsl_error(&loc, state,
5352 "%s shader output cannot have a "
5353 "struct that contains an "
5354 "array or struct",
5355 _mesa_shader_stage_to_string(state->stage));
5356 }
5357 }
5358 }
5359 }
5360
5361 if (state->stage == MESA_SHADER_TESS_CTRL) {
5362 handle_tess_ctrl_shader_output_decl(state, loc, var);
5363 }
5364 } else if (var->type->contains_subroutine()) {
5365 /* declare subroutine uniforms as hidden */
5366 var->data.how_declared = ir_var_hidden;
5367 }
5368
5369 /* From section 4.3.4 of the GLSL 4.00 spec:
5370 * "Input variables may not be declared using the patch in qualifier
5371 * in tessellation control or geometry shaders."
5372 *
5373 * From section 4.3.6 of the GLSL 4.00 spec:
5374 * "It is an error to use patch out in a vertex, tessellation
5375 * evaluation, or geometry shader."
5376 *
5377 * This doesn't explicitly forbid using them in a fragment shader, but
5378 * that's probably just an oversight.
5379 */
5380 if (state->stage != MESA_SHADER_TESS_EVAL
5381 && this->type->qualifier.flags.q.patch
5382 && this->type->qualifier.flags.q.in) {
5383
5384 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5385 "tessellation evaluation shader");
5386 }
5387
5388 if (state->stage != MESA_SHADER_TESS_CTRL
5389 && this->type->qualifier.flags.q.patch
5390 && this->type->qualifier.flags.q.out) {
5391
5392 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5393 "tessellation control shader");
5394 }
5395
5396 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5397 */
5398 if (this->type->qualifier.precision != ast_precision_none) {
5399 state->check_precision_qualifiers_allowed(&loc);
5400 }
5401
5402 if (this->type->qualifier.precision != ast_precision_none &&
5403 !precision_qualifier_allowed(var->type)) {
5404 _mesa_glsl_error(&loc, state,
5405 "precision qualifiers apply only to floating point"
5406 ", integer and opaque types");
5407 }
5408
5409 /* From section 4.1.7 of the GLSL 4.40 spec:
5410 *
5411 * "[Opaque types] can only be declared as function
5412 * parameters or uniform-qualified variables."
5413 *
5414 * From section 4.1.7 of the ARB_bindless_texture spec:
5415 *
5416 * "Samplers may be declared as shader inputs and outputs, as uniform
5417 * variables, as temporary variables, and as function parameters."
5418 *
5419 * From section 4.1.X of the ARB_bindless_texture spec:
5420 *
5421 * "Images may be declared as shader inputs and outputs, as uniform
5422 * variables, as temporary variables, and as function parameters."
5423 */
5424 if (!this->type->qualifier.flags.q.uniform &&
5425 (var_type->contains_atomic() ||
5426 (!state->has_bindless() && var_type->contains_opaque()))) {
5427 _mesa_glsl_error(&loc, state,
5428 "%s variables must be declared uniform",
5429 state->has_bindless() ? "atomic" : "opaque");
5430 }
5431
5432 /* Process the initializer and add its instructions to a temporary
5433 * list. This list will be added to the instruction stream (below) after
5434 * the declaration is added. This is done because in some cases (such as
5435 * redeclarations) the declaration may not actually be added to the
5436 * instruction stream.
5437 */
5438 exec_list initializer_instructions;
5439
5440 /* Examine var name here since var may get deleted in the next call */
5441 bool var_is_gl_id = is_gl_identifier(var->name);
5442
5443 bool is_redeclaration;
5444 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5445 false /* allow_all_redeclarations */,
5446 &is_redeclaration);
5447 if (is_redeclaration) {
5448 if (var_is_gl_id &&
5449 var->data.how_declared == ir_var_declared_in_block) {
5450 _mesa_glsl_error(&loc, state,
5451 "`%s' has already been redeclared using "
5452 "gl_PerVertex", var->name);
5453 }
5454 var->data.how_declared = ir_var_declared_normally;
5455 }
5456
5457 if (decl->initializer != NULL) {
5458 result = process_initializer(var,
5459 decl, this->type,
5460 &initializer_instructions, state);
5461 } else {
5462 validate_array_dimensions(var_type, state, &loc);
5463 }
5464
5465 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5466 *
5467 * "It is an error to write to a const variable outside of
5468 * its declaration, so they must be initialized when
5469 * declared."
5470 */
5471 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5472 _mesa_glsl_error(& loc, state,
5473 "const declaration of `%s' must be initialized",
5474 decl->identifier);
5475 }
5476
5477 if (state->es_shader) {
5478 const glsl_type *const t = var->type;
5479
5480 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5481 *
5482 * The GL_OES_tessellation_shader spec says about inputs:
5483 *
5484 * "Declaring an array size is optional. If no size is specified,
5485 * it will be taken from the implementation-dependent maximum
5486 * patch size (gl_MaxPatchVertices)."
5487 *
5488 * and about TCS outputs:
5489 *
5490 * "If no size is specified, it will be taken from output patch
5491 * size declared in the shader."
5492 *
5493 * The GL_OES_geometry_shader spec says:
5494 *
5495 * "All geometry shader input unsized array declarations will be
5496 * sized by an earlier input primitive layout qualifier, when
5497 * present, as per the following table."
5498 */
5499 const bool implicitly_sized =
5500 (var->data.mode == ir_var_shader_in &&
5501 state->stage >= MESA_SHADER_TESS_CTRL &&
5502 state->stage <= MESA_SHADER_GEOMETRY) ||
5503 (var->data.mode == ir_var_shader_out &&
5504 state->stage == MESA_SHADER_TESS_CTRL);
5505
5506 if (t->is_unsized_array() && !implicitly_sized)
5507 /* Section 10.17 of the GLSL ES 1.00 specification states that
5508 * unsized array declarations have been removed from the language.
5509 * Arrays that are sized using an initializer are still explicitly
5510 * sized. However, GLSL ES 1.00 does not allow array
5511 * initializers. That is only allowed in GLSL ES 3.00.
5512 *
5513 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5514 *
5515 * "An array type can also be formed without specifying a size
5516 * if the definition includes an initializer:
5517 *
5518 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5519 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5520 *
5521 * float a[5];
5522 * float b[] = a;"
5523 */
5524 _mesa_glsl_error(& loc, state,
5525 "unsized array declarations are not allowed in "
5526 "GLSL ES");
5527 }
5528
5529 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5530 *
5531 * "It is a compile-time error to declare an unsized array of
5532 * atomic_uint"
5533 */
5534 if (var->type->is_unsized_array() &&
5535 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5536 _mesa_glsl_error(& loc, state,
5537 "Unsized array of atomic_uint is not allowed");
5538 }
5539
5540 /* If the declaration is not a redeclaration, there are a few additional
5541 * semantic checks that must be applied. In addition, variable that was
5542 * created for the declaration should be added to the IR stream.
5543 */
5544 if (!is_redeclaration) {
5545 validate_identifier(decl->identifier, loc, state);
5546
5547 /* Add the variable to the symbol table. Note that the initializer's
5548 * IR was already processed earlier (though it hasn't been emitted
5549 * yet), without the variable in scope.
5550 *
5551 * This differs from most C-like languages, but it follows the GLSL
5552 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5553 * spec:
5554 *
5555 * "Within a declaration, the scope of a name starts immediately
5556 * after the initializer if present or immediately after the name
5557 * being declared if not."
5558 */
5559 if (!state->symbols->add_variable(var)) {
5560 YYLTYPE loc = this->get_location();
5561 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5562 "current scope", decl->identifier);
5563 continue;
5564 }
5565
5566 /* Push the variable declaration to the top. It means that all the
5567 * variable declarations will appear in a funny last-to-first order,
5568 * but otherwise we run into trouble if a function is prototyped, a
5569 * global var is decled, then the function is defined with usage of
5570 * the global var. See glslparsertest's CorrectModule.frag.
5571 */
5572 instructions->push_head(var);
5573 }
5574
5575 instructions->append_list(&initializer_instructions);
5576 }
5577
5578
5579 /* Generally, variable declarations do not have r-values. However,
5580 * one is used for the declaration in
5581 *
5582 * while (bool b = some_condition()) {
5583 * ...
5584 * }
5585 *
5586 * so we return the rvalue from the last seen declaration here.
5587 */
5588 return result;
5589 }
5590
5591
5592 ir_rvalue *
5593 ast_parameter_declarator::hir(exec_list *instructions,
5594 struct _mesa_glsl_parse_state *state)
5595 {
5596 void *ctx = state;
5597 const struct glsl_type *type;
5598 const char *name = NULL;
5599 YYLTYPE loc = this->get_location();
5600
5601 type = this->type->glsl_type(& name, state);
5602
5603 if (type == NULL) {
5604 if (name != NULL) {
5605 _mesa_glsl_error(& loc, state,
5606 "invalid type `%s' in declaration of `%s'",
5607 name, this->identifier);
5608 } else {
5609 _mesa_glsl_error(& loc, state,
5610 "invalid type in declaration of `%s'",
5611 this->identifier);
5612 }
5613
5614 type = glsl_type::error_type;
5615 }
5616
5617 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5618 *
5619 * "Functions that accept no input arguments need not use void in the
5620 * argument list because prototypes (or definitions) are required and
5621 * therefore there is no ambiguity when an empty argument list "( )" is
5622 * declared. The idiom "(void)" as a parameter list is provided for
5623 * convenience."
5624 *
5625 * Placing this check here prevents a void parameter being set up
5626 * for a function, which avoids tripping up checks for main taking
5627 * parameters and lookups of an unnamed symbol.
5628 */
5629 if (type->is_void()) {
5630 if (this->identifier != NULL)
5631 _mesa_glsl_error(& loc, state,
5632 "named parameter cannot have type `void'");
5633
5634 is_void = true;
5635 return NULL;
5636 }
5637
5638 if (formal_parameter && (this->identifier == NULL)) {
5639 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5640 return NULL;
5641 }
5642
5643 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5644 * call already handled the "vec4[..] foo" case.
5645 */
5646 type = process_array_type(&loc, type, this->array_specifier, state);
5647
5648 if (!type->is_error() && type->is_unsized_array()) {
5649 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5650 "a declared size");
5651 type = glsl_type::error_type;
5652 }
5653
5654 is_void = false;
5655 ir_variable *var = new(ctx)
5656 ir_variable(type, this->identifier, ir_var_function_in);
5657
5658 /* Apply any specified qualifiers to the parameter declaration. Note that
5659 * for function parameters the default mode is 'in'.
5660 */
5661 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5662 true);
5663
5664 /* From section 4.1.7 of the GLSL 4.40 spec:
5665 *
5666 * "Opaque variables cannot be treated as l-values; hence cannot
5667 * be used as out or inout function parameters, nor can they be
5668 * assigned into."
5669 *
5670 * From section 4.1.7 of the ARB_bindless_texture spec:
5671 *
5672 * "Samplers can be used as l-values, so can be assigned into and used
5673 * as "out" and "inout" function parameters."
5674 *
5675 * From section 4.1.X of the ARB_bindless_texture spec:
5676 *
5677 * "Images can be used as l-values, so can be assigned into and used as
5678 * "out" and "inout" function parameters."
5679 */
5680 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5681 && (type->contains_atomic() ||
5682 (!state->has_bindless() && type->contains_opaque()))) {
5683 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5684 "contain %s variables",
5685 state->has_bindless() ? "atomic" : "opaque");
5686 type = glsl_type::error_type;
5687 }
5688
5689 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5690 *
5691 * "When calling a function, expressions that do not evaluate to
5692 * l-values cannot be passed to parameters declared as out or inout."
5693 *
5694 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5695 *
5696 * "Other binary or unary expressions, non-dereferenced arrays,
5697 * function names, swizzles with repeated fields, and constants
5698 * cannot be l-values."
5699 *
5700 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5701 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5702 */
5703 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5704 && type->is_array()
5705 && !state->check_version(120, 100, &loc,
5706 "arrays cannot be out or inout parameters")) {
5707 type = glsl_type::error_type;
5708 }
5709
5710 instructions->push_tail(var);
5711
5712 /* Parameter declarations do not have r-values.
5713 */
5714 return NULL;
5715 }
5716
5717
5718 void
5719 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5720 bool formal,
5721 exec_list *ir_parameters,
5722 _mesa_glsl_parse_state *state)
5723 {
5724 ast_parameter_declarator *void_param = NULL;
5725 unsigned count = 0;
5726
5727 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5728 param->formal_parameter = formal;
5729 param->hir(ir_parameters, state);
5730
5731 if (param->is_void)
5732 void_param = param;
5733
5734 count++;
5735 }
5736
5737 if ((void_param != NULL) && (count > 1)) {
5738 YYLTYPE loc = void_param->get_location();
5739
5740 _mesa_glsl_error(& loc, state,
5741 "`void' parameter must be only parameter");
5742 }
5743 }
5744
5745
5746 void
5747 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5748 {
5749 /* IR invariants disallow function declarations or definitions
5750 * nested within other function definitions. But there is no
5751 * requirement about the relative order of function declarations
5752 * and definitions with respect to one another. So simply insert
5753 * the new ir_function block at the end of the toplevel instruction
5754 * list.
5755 */
5756 state->toplevel_ir->push_tail(f);
5757 }
5758
5759
5760 ir_rvalue *
5761 ast_function::hir(exec_list *instructions,
5762 struct _mesa_glsl_parse_state *state)
5763 {
5764 void *ctx = state;
5765 ir_function *f = NULL;
5766 ir_function_signature *sig = NULL;
5767 exec_list hir_parameters;
5768 YYLTYPE loc = this->get_location();
5769
5770 const char *const name = identifier;
5771
5772 /* New functions are always added to the top-level IR instruction stream,
5773 * so this instruction list pointer is ignored. See also emit_function
5774 * (called below).
5775 */
5776 (void) instructions;
5777
5778 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5779 *
5780 * "Function declarations (prototypes) cannot occur inside of functions;
5781 * they must be at global scope, or for the built-in functions, outside
5782 * the global scope."
5783 *
5784 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5785 *
5786 * "User defined functions may only be defined within the global scope."
5787 *
5788 * Note that this language does not appear in GLSL 1.10.
5789 */
5790 if ((state->current_function != NULL) &&
5791 state->is_version(120, 100)) {
5792 YYLTYPE loc = this->get_location();
5793 _mesa_glsl_error(&loc, state,
5794 "declaration of function `%s' not allowed within "
5795 "function body", name);
5796 }
5797
5798 validate_identifier(name, this->get_location(), state);
5799
5800 /* Convert the list of function parameters to HIR now so that they can be
5801 * used below to compare this function's signature with previously seen
5802 * signatures for functions with the same name.
5803 */
5804 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5805 is_definition,
5806 & hir_parameters, state);
5807
5808 const char *return_type_name;
5809 const glsl_type *return_type =
5810 this->return_type->glsl_type(& return_type_name, state);
5811
5812 if (!return_type) {
5813 YYLTYPE loc = this->get_location();
5814 _mesa_glsl_error(&loc, state,
5815 "function `%s' has undeclared return type `%s'",
5816 name, return_type_name);
5817 return_type = glsl_type::error_type;
5818 }
5819
5820 /* ARB_shader_subroutine states:
5821 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5822 * subroutine(...) to a function declaration."
5823 */
5824 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5825 YYLTYPE loc = this->get_location();
5826 _mesa_glsl_error(&loc, state,
5827 "function declaration `%s' cannot have subroutine prepended",
5828 name);
5829 }
5830
5831 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5832 * "No qualifier is allowed on the return type of a function."
5833 */
5834 if (this->return_type->has_qualifiers(state)) {
5835 YYLTYPE loc = this->get_location();
5836 _mesa_glsl_error(& loc, state,
5837 "function `%s' return type has qualifiers", name);
5838 }
5839
5840 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5841 *
5842 * "Arrays are allowed as arguments and as the return type. In both
5843 * cases, the array must be explicitly sized."
5844 */
5845 if (return_type->is_unsized_array()) {
5846 YYLTYPE loc = this->get_location();
5847 _mesa_glsl_error(& loc, state,
5848 "function `%s' return type array must be explicitly "
5849 "sized", name);
5850 }
5851
5852 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5853 *
5854 * "Arrays are allowed as arguments, but not as the return type. [...]
5855 * The return type can also be a structure if the structure does not
5856 * contain an array."
5857 */
5858 if (state->language_version == 100 && return_type->contains_array()) {
5859 YYLTYPE loc = this->get_location();
5860 _mesa_glsl_error(& loc, state,
5861 "function `%s' return type contains an array", name);
5862 }
5863
5864 /* From section 4.1.7 of the GLSL 4.40 spec:
5865 *
5866 * "[Opaque types] can only be declared as function parameters
5867 * or uniform-qualified variables."
5868 *
5869 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5870 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5871 * (Images)", this should be allowed.
5872 */
5873 if (return_type->contains_atomic() ||
5874 (!state->has_bindless() && return_type->contains_opaque())) {
5875 YYLTYPE loc = this->get_location();
5876 _mesa_glsl_error(&loc, state,
5877 "function `%s' return type can't contain an %s type",
5878 name, state->has_bindless() ? "atomic" : "opaque");
5879 }
5880
5881 /**/
5882 if (return_type->is_subroutine()) {
5883 YYLTYPE loc = this->get_location();
5884 _mesa_glsl_error(&loc, state,
5885 "function `%s' return type can't be a subroutine type",
5886 name);
5887 }
5888
5889
5890 /* Create an ir_function if one doesn't already exist. */
5891 f = state->symbols->get_function(name);
5892 if (f == NULL) {
5893 f = new(ctx) ir_function(name);
5894 if (!this->return_type->qualifier.is_subroutine_decl()) {
5895 if (!state->symbols->add_function(f)) {
5896 /* This function name shadows a non-function use of the same name. */
5897 YYLTYPE loc = this->get_location();
5898 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5899 "non-function", name);
5900 return NULL;
5901 }
5902 }
5903 emit_function(state, f);
5904 }
5905
5906 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5907 *
5908 * "A shader cannot redefine or overload built-in functions."
5909 *
5910 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5911 *
5912 * "User code can overload the built-in functions but cannot redefine
5913 * them."
5914 */
5915 if (state->es_shader) {
5916 /* Local shader has no exact candidates; check the built-ins. */
5917 _mesa_glsl_initialize_builtin_functions();
5918 if (state->language_version >= 300 &&
5919 _mesa_glsl_has_builtin_function(state, name)) {
5920 YYLTYPE loc = this->get_location();
5921 _mesa_glsl_error(& loc, state,
5922 "A shader cannot redefine or overload built-in "
5923 "function `%s' in GLSL ES 3.00", name);
5924 return NULL;
5925 }
5926
5927 if (state->language_version == 100) {
5928 ir_function_signature *sig =
5929 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5930 if (sig && sig->is_builtin()) {
5931 _mesa_glsl_error(& loc, state,
5932 "A shader cannot redefine built-in "
5933 "function `%s' in GLSL ES 1.00", name);
5934 }
5935 }
5936 }
5937
5938 /* Verify that this function's signature either doesn't match a previously
5939 * seen signature for a function with the same name, or, if a match is found,
5940 * that the previously seen signature does not have an associated definition.
5941 */
5942 if (state->es_shader || f->has_user_signature()) {
5943 sig = f->exact_matching_signature(state, &hir_parameters);
5944 if (sig != NULL) {
5945 const char *badvar = sig->qualifiers_match(&hir_parameters);
5946 if (badvar != NULL) {
5947 YYLTYPE loc = this->get_location();
5948
5949 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5950 "qualifiers don't match prototype", name, badvar);
5951 }
5952
5953 if (sig->return_type != return_type) {
5954 YYLTYPE loc = this->get_location();
5955
5956 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5957 "match prototype", name);
5958 }
5959
5960 if (sig->is_defined) {
5961 if (is_definition) {
5962 YYLTYPE loc = this->get_location();
5963 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5964 } else {
5965 /* We just encountered a prototype that exactly matches a
5966 * function that's already been defined. This is redundant,
5967 * and we should ignore it.
5968 */
5969 return NULL;
5970 }
5971 } else if (state->language_version == 100 && !is_definition) {
5972 /* From the GLSL 1.00 spec, section 4.2.7:
5973 *
5974 * "A particular variable, structure or function declaration
5975 * may occur at most once within a scope with the exception
5976 * that a single function prototype plus the corresponding
5977 * function definition are allowed."
5978 */
5979 YYLTYPE loc = this->get_location();
5980 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5981 }
5982 }
5983 }
5984
5985 /* Verify the return type of main() */
5986 if (strcmp(name, "main") == 0) {
5987 if (! return_type->is_void()) {
5988 YYLTYPE loc = this->get_location();
5989
5990 _mesa_glsl_error(& loc, state, "main() must return void");
5991 }
5992
5993 if (!hir_parameters.is_empty()) {
5994 YYLTYPE loc = this->get_location();
5995
5996 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5997 }
5998 }
5999
6000 /* Finish storing the information about this new function in its signature.
6001 */
6002 if (sig == NULL) {
6003 sig = new(ctx) ir_function_signature(return_type);
6004 f->add_signature(sig);
6005 }
6006
6007 sig->replace_parameters(&hir_parameters);
6008 signature = sig;
6009
6010 if (this->return_type->qualifier.subroutine_list) {
6011 int idx;
6012
6013 if (this->return_type->qualifier.flags.q.explicit_index) {
6014 unsigned qual_index;
6015 if (process_qualifier_constant(state, &loc, "index",
6016 this->return_type->qualifier.index,
6017 &qual_index)) {
6018 if (!state->has_explicit_uniform_location()) {
6019 _mesa_glsl_error(&loc, state, "subroutine index requires "
6020 "GL_ARB_explicit_uniform_location or "
6021 "GLSL 4.30");
6022 } else if (qual_index >= MAX_SUBROUTINES) {
6023 _mesa_glsl_error(&loc, state,
6024 "invalid subroutine index (%d) index must "
6025 "be a number between 0 and "
6026 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6027 MAX_SUBROUTINES - 1);
6028 } else {
6029 f->subroutine_index = qual_index;
6030 }
6031 }
6032 }
6033
6034 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6035 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6036 f->num_subroutine_types);
6037 idx = 0;
6038 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6039 const struct glsl_type *type;
6040 /* the subroutine type must be already declared */
6041 type = state->symbols->get_type(decl->identifier);
6042 if (!type) {
6043 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6044 }
6045
6046 for (int i = 0; i < state->num_subroutine_types; i++) {
6047 ir_function *fn = state->subroutine_types[i];
6048 ir_function_signature *tsig = NULL;
6049
6050 if (strcmp(fn->name, decl->identifier))
6051 continue;
6052
6053 tsig = fn->matching_signature(state, &sig->parameters,
6054 false);
6055 if (!tsig) {
6056 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6057 } else {
6058 if (tsig->return_type != sig->return_type) {
6059 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6060 }
6061 }
6062 }
6063 f->subroutine_types[idx++] = type;
6064 }
6065 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6066 ir_function *,
6067 state->num_subroutines + 1);
6068 state->subroutines[state->num_subroutines] = f;
6069 state->num_subroutines++;
6070
6071 }
6072
6073 if (this->return_type->qualifier.is_subroutine_decl()) {
6074 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6075 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6076 return NULL;
6077 }
6078 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6079 ir_function *,
6080 state->num_subroutine_types + 1);
6081 state->subroutine_types[state->num_subroutine_types] = f;
6082 state->num_subroutine_types++;
6083
6084 f->is_subroutine = true;
6085 }
6086
6087 /* Function declarations (prototypes) do not have r-values.
6088 */
6089 return NULL;
6090 }
6091
6092
6093 ir_rvalue *
6094 ast_function_definition::hir(exec_list *instructions,
6095 struct _mesa_glsl_parse_state *state)
6096 {
6097 prototype->is_definition = true;
6098 prototype->hir(instructions, state);
6099
6100 ir_function_signature *signature = prototype->signature;
6101 if (signature == NULL)
6102 return NULL;
6103
6104 assert(state->current_function == NULL);
6105 state->current_function = signature;
6106 state->found_return = false;
6107
6108 /* Duplicate parameters declared in the prototype as concrete variables.
6109 * Add these to the symbol table.
6110 */
6111 state->symbols->push_scope();
6112 foreach_in_list(ir_variable, var, &signature->parameters) {
6113 assert(var->as_variable() != NULL);
6114
6115 /* The only way a parameter would "exist" is if two parameters have
6116 * the same name.
6117 */
6118 if (state->symbols->name_declared_this_scope(var->name)) {
6119 YYLTYPE loc = this->get_location();
6120
6121 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6122 } else {
6123 state->symbols->add_variable(var);
6124 }
6125 }
6126
6127 /* Convert the body of the function to HIR. */
6128 this->body->hir(&signature->body, state);
6129 signature->is_defined = true;
6130
6131 state->symbols->pop_scope();
6132
6133 assert(state->current_function == signature);
6134 state->current_function = NULL;
6135
6136 if (!signature->return_type->is_void() && !state->found_return) {
6137 YYLTYPE loc = this->get_location();
6138 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6139 "%s, but no return statement",
6140 signature->function_name(),
6141 signature->return_type->name);
6142 }
6143
6144 /* Function definitions do not have r-values.
6145 */
6146 return NULL;
6147 }
6148
6149
6150 ir_rvalue *
6151 ast_jump_statement::hir(exec_list *instructions,
6152 struct _mesa_glsl_parse_state *state)
6153 {
6154 void *ctx = state;
6155
6156 switch (mode) {
6157 case ast_return: {
6158 ir_return *inst;
6159 assert(state->current_function);
6160
6161 if (opt_return_value) {
6162 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6163
6164 /* The value of the return type can be NULL if the shader says
6165 * 'return foo();' and foo() is a function that returns void.
6166 *
6167 * NOTE: The GLSL spec doesn't say that this is an error. The type
6168 * of the return value is void. If the return type of the function is
6169 * also void, then this should compile without error. Seriously.
6170 */
6171 const glsl_type *const ret_type =
6172 (ret == NULL) ? glsl_type::void_type : ret->type;
6173
6174 /* Implicit conversions are not allowed for return values prior to
6175 * ARB_shading_language_420pack.
6176 */
6177 if (state->current_function->return_type != ret_type) {
6178 YYLTYPE loc = this->get_location();
6179
6180 if (state->has_420pack()) {
6181 if (!apply_implicit_conversion(state->current_function->return_type,
6182 ret, state)) {
6183 _mesa_glsl_error(& loc, state,
6184 "could not implicitly convert return value "
6185 "to %s, in function `%s'",
6186 state->current_function->return_type->name,
6187 state->current_function->function_name());
6188 }
6189 } else {
6190 _mesa_glsl_error(& loc, state,
6191 "`return' with wrong type %s, in function `%s' "
6192 "returning %s",
6193 ret_type->name,
6194 state->current_function->function_name(),
6195 state->current_function->return_type->name);
6196 }
6197 } else if (state->current_function->return_type->base_type ==
6198 GLSL_TYPE_VOID) {
6199 YYLTYPE loc = this->get_location();
6200
6201 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6202 * specs add a clarification:
6203 *
6204 * "A void function can only use return without a return argument, even if
6205 * the return argument has void type. Return statements only accept values:
6206 *
6207 * void func1() { }
6208 * void func2() { return func1(); } // illegal return statement"
6209 */
6210 _mesa_glsl_error(& loc, state,
6211 "void functions can only use `return' without a "
6212 "return argument");
6213 }
6214
6215 inst = new(ctx) ir_return(ret);
6216 } else {
6217 if (state->current_function->return_type->base_type !=
6218 GLSL_TYPE_VOID) {
6219 YYLTYPE loc = this->get_location();
6220
6221 _mesa_glsl_error(& loc, state,
6222 "`return' with no value, in function %s returning "
6223 "non-void",
6224 state->current_function->function_name());
6225 }
6226 inst = new(ctx) ir_return;
6227 }
6228
6229 state->found_return = true;
6230 instructions->push_tail(inst);
6231 break;
6232 }
6233
6234 case ast_discard:
6235 if (state->stage != MESA_SHADER_FRAGMENT) {
6236 YYLTYPE loc = this->get_location();
6237
6238 _mesa_glsl_error(& loc, state,
6239 "`discard' may only appear in a fragment shader");
6240 }
6241 instructions->push_tail(new(ctx) ir_discard);
6242 break;
6243
6244 case ast_break:
6245 case ast_continue:
6246 if (mode == ast_continue &&
6247 state->loop_nesting_ast == NULL) {
6248 YYLTYPE loc = this->get_location();
6249
6250 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6251 } else if (mode == ast_break &&
6252 state->loop_nesting_ast == NULL &&
6253 state->switch_state.switch_nesting_ast == NULL) {
6254 YYLTYPE loc = this->get_location();
6255
6256 _mesa_glsl_error(& loc, state,
6257 "break may only appear in a loop or a switch");
6258 } else {
6259 /* For a loop, inline the for loop expression again, since we don't
6260 * know where near the end of the loop body the normal copy of it is
6261 * going to be placed. Same goes for the condition for a do-while
6262 * loop.
6263 */
6264 if (state->loop_nesting_ast != NULL &&
6265 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6266 if (state->loop_nesting_ast->rest_expression) {
6267 state->loop_nesting_ast->rest_expression->hir(instructions,
6268 state);
6269 }
6270 if (state->loop_nesting_ast->mode ==
6271 ast_iteration_statement::ast_do_while) {
6272 state->loop_nesting_ast->condition_to_hir(instructions, state);
6273 }
6274 }
6275
6276 if (state->switch_state.is_switch_innermost &&
6277 mode == ast_continue) {
6278 /* Set 'continue_inside' to true. */
6279 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6280 ir_dereference_variable *deref_continue_inside_var =
6281 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6282 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6283 true_val));
6284
6285 /* Break out from the switch, continue for the loop will
6286 * be called right after switch. */
6287 ir_loop_jump *const jump =
6288 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6289 instructions->push_tail(jump);
6290
6291 } else if (state->switch_state.is_switch_innermost &&
6292 mode == ast_break) {
6293 /* Force break out of switch by inserting a break. */
6294 ir_loop_jump *const jump =
6295 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6296 instructions->push_tail(jump);
6297 } else {
6298 ir_loop_jump *const jump =
6299 new(ctx) ir_loop_jump((mode == ast_break)
6300 ? ir_loop_jump::jump_break
6301 : ir_loop_jump::jump_continue);
6302 instructions->push_tail(jump);
6303 }
6304 }
6305
6306 break;
6307 }
6308
6309 /* Jump instructions do not have r-values.
6310 */
6311 return NULL;
6312 }
6313
6314
6315 ir_rvalue *
6316 ast_selection_statement::hir(exec_list *instructions,
6317 struct _mesa_glsl_parse_state *state)
6318 {
6319 void *ctx = state;
6320
6321 ir_rvalue *const condition = this->condition->hir(instructions, state);
6322
6323 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6324 *
6325 * "Any expression whose type evaluates to a Boolean can be used as the
6326 * conditional expression bool-expression. Vector types are not accepted
6327 * as the expression to if."
6328 *
6329 * The checks are separated so that higher quality diagnostics can be
6330 * generated for cases where both rules are violated.
6331 */
6332 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6333 YYLTYPE loc = this->condition->get_location();
6334
6335 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6336 "boolean");
6337 }
6338
6339 ir_if *const stmt = new(ctx) ir_if(condition);
6340
6341 if (then_statement != NULL) {
6342 state->symbols->push_scope();
6343 then_statement->hir(& stmt->then_instructions, state);
6344 state->symbols->pop_scope();
6345 }
6346
6347 if (else_statement != NULL) {
6348 state->symbols->push_scope();
6349 else_statement->hir(& stmt->else_instructions, state);
6350 state->symbols->pop_scope();
6351 }
6352
6353 instructions->push_tail(stmt);
6354
6355 /* if-statements do not have r-values.
6356 */
6357 return NULL;
6358 }
6359
6360
6361 struct case_label {
6362 /** Value of the case label. */
6363 unsigned value;
6364
6365 /** Does this label occur after the default? */
6366 bool after_default;
6367
6368 /**
6369 * AST for the case label.
6370 *
6371 * This is only used to generate error messages for duplicate labels.
6372 */
6373 ast_expression *ast;
6374 };
6375
6376 /* Used for detection of duplicate case values, compare
6377 * given contents directly.
6378 */
6379 static bool
6380 compare_case_value(const void *a, const void *b)
6381 {
6382 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6383 }
6384
6385
6386 /* Used for detection of duplicate case values, just
6387 * returns key contents as is.
6388 */
6389 static unsigned
6390 key_contents(const void *key)
6391 {
6392 return ((struct case_label *) key)->value;
6393 }
6394
6395
6396 ir_rvalue *
6397 ast_switch_statement::hir(exec_list *instructions,
6398 struct _mesa_glsl_parse_state *state)
6399 {
6400 void *ctx = state;
6401
6402 ir_rvalue *const test_expression =
6403 this->test_expression->hir(instructions, state);
6404
6405 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6406 *
6407 * "The type of init-expression in a switch statement must be a
6408 * scalar integer."
6409 */
6410 if (!test_expression->type->is_scalar() ||
6411 !test_expression->type->is_integer()) {
6412 YYLTYPE loc = this->test_expression->get_location();
6413
6414 _mesa_glsl_error(& loc,
6415 state,
6416 "switch-statement expression must be scalar "
6417 "integer");
6418 return NULL;
6419 }
6420
6421 /* Track the switch-statement nesting in a stack-like manner.
6422 */
6423 struct glsl_switch_state saved = state->switch_state;
6424
6425 state->switch_state.is_switch_innermost = true;
6426 state->switch_state.switch_nesting_ast = this;
6427 state->switch_state.labels_ht =
6428 _mesa_hash_table_create(NULL, key_contents,
6429 compare_case_value);
6430 state->switch_state.previous_default = NULL;
6431
6432 /* Initalize is_fallthru state to false.
6433 */
6434 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6435 state->switch_state.is_fallthru_var =
6436 new(ctx) ir_variable(glsl_type::bool_type,
6437 "switch_is_fallthru_tmp",
6438 ir_var_temporary);
6439 instructions->push_tail(state->switch_state.is_fallthru_var);
6440
6441 ir_dereference_variable *deref_is_fallthru_var =
6442 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6443 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6444 is_fallthru_val));
6445
6446 /* Initialize continue_inside state to false.
6447 */
6448 state->switch_state.continue_inside =
6449 new(ctx) ir_variable(glsl_type::bool_type,
6450 "continue_inside_tmp",
6451 ir_var_temporary);
6452 instructions->push_tail(state->switch_state.continue_inside);
6453
6454 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6455 ir_dereference_variable *deref_continue_inside_var =
6456 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6457 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6458 false_val));
6459
6460 state->switch_state.run_default =
6461 new(ctx) ir_variable(glsl_type::bool_type,
6462 "run_default_tmp",
6463 ir_var_temporary);
6464 instructions->push_tail(state->switch_state.run_default);
6465
6466 /* Loop around the switch is used for flow control. */
6467 ir_loop * loop = new(ctx) ir_loop();
6468 instructions->push_tail(loop);
6469
6470 /* Cache test expression.
6471 */
6472 test_to_hir(&loop->body_instructions, state);
6473
6474 /* Emit code for body of switch stmt.
6475 */
6476 body->hir(&loop->body_instructions, state);
6477
6478 /* Insert a break at the end to exit loop. */
6479 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6480 loop->body_instructions.push_tail(jump);
6481
6482 /* If we are inside loop, check if continue got called inside switch. */
6483 if (state->loop_nesting_ast != NULL) {
6484 ir_dereference_variable *deref_continue_inside =
6485 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6486 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6487 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6488
6489 if (state->loop_nesting_ast != NULL) {
6490 if (state->loop_nesting_ast->rest_expression) {
6491 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6492 state);
6493 }
6494 if (state->loop_nesting_ast->mode ==
6495 ast_iteration_statement::ast_do_while) {
6496 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6497 }
6498 }
6499 irif->then_instructions.push_tail(jump);
6500 instructions->push_tail(irif);
6501 }
6502
6503 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6504
6505 state->switch_state = saved;
6506
6507 /* Switch statements do not have r-values. */
6508 return NULL;
6509 }
6510
6511
6512 void
6513 ast_switch_statement::test_to_hir(exec_list *instructions,
6514 struct _mesa_glsl_parse_state *state)
6515 {
6516 void *ctx = state;
6517
6518 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6519 * on the switch test case. The first one would be already raised when
6520 * getting the test_expression at ast_switch_statement::hir
6521 */
6522 test_expression->set_is_lhs(true);
6523 /* Cache value of test expression. */
6524 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6525
6526 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6527 "switch_test_tmp",
6528 ir_var_temporary);
6529 ir_dereference_variable *deref_test_var =
6530 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6531
6532 instructions->push_tail(state->switch_state.test_var);
6533 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6534 }
6535
6536
6537 ir_rvalue *
6538 ast_switch_body::hir(exec_list *instructions,
6539 struct _mesa_glsl_parse_state *state)
6540 {
6541 if (stmts != NULL)
6542 stmts->hir(instructions, state);
6543
6544 /* Switch bodies do not have r-values. */
6545 return NULL;
6546 }
6547
6548 ir_rvalue *
6549 ast_case_statement_list::hir(exec_list *instructions,
6550 struct _mesa_glsl_parse_state *state)
6551 {
6552 exec_list default_case, after_default, tmp;
6553
6554 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6555 case_stmt->hir(&tmp, state);
6556
6557 /* Default case. */
6558 if (state->switch_state.previous_default && default_case.is_empty()) {
6559 default_case.append_list(&tmp);
6560 continue;
6561 }
6562
6563 /* If default case found, append 'after_default' list. */
6564 if (!default_case.is_empty())
6565 after_default.append_list(&tmp);
6566 else
6567 instructions->append_list(&tmp);
6568 }
6569
6570 /* Handle the default case. This is done here because default might not be
6571 * the last case. We need to add checks against following cases first to see
6572 * if default should be chosen or not.
6573 */
6574 if (!default_case.is_empty()) {
6575 struct hash_entry *entry;
6576 ir_factory body(instructions, state);
6577
6578 ir_expression *cmp = NULL;
6579
6580 hash_table_foreach(state->switch_state.labels_ht, entry) {
6581 const struct case_label *const l = (struct case_label *) entry->data;
6582
6583 /* If the switch init-value is the value of one of the labels that
6584 * occurs after the default case, disable execution of the default
6585 * case.
6586 */
6587 if (l->after_default) {
6588 ir_constant *const cnst =
6589 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6590 ? body.constant(unsigned(l->value))
6591 : body.constant(int(l->value));
6592
6593 cmp = cmp == NULL
6594 ? equal(cnst, state->switch_state.test_var)
6595 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6596 }
6597 }
6598
6599 if (cmp != NULL)
6600 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6601 else
6602 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6603
6604 /* Append default case and all cases after it. */
6605 instructions->append_list(&default_case);
6606 instructions->append_list(&after_default);
6607 }
6608
6609 /* Case statements do not have r-values. */
6610 return NULL;
6611 }
6612
6613 ir_rvalue *
6614 ast_case_statement::hir(exec_list *instructions,
6615 struct _mesa_glsl_parse_state *state)
6616 {
6617 labels->hir(instructions, state);
6618
6619 /* Guard case statements depending on fallthru state. */
6620 ir_dereference_variable *const deref_fallthru_guard =
6621 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6622 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6623
6624 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6625 stmt->hir(& test_fallthru->then_instructions, state);
6626
6627 instructions->push_tail(test_fallthru);
6628
6629 /* Case statements do not have r-values. */
6630 return NULL;
6631 }
6632
6633
6634 ir_rvalue *
6635 ast_case_label_list::hir(exec_list *instructions,
6636 struct _mesa_glsl_parse_state *state)
6637 {
6638 foreach_list_typed (ast_case_label, label, link, & this->labels)
6639 label->hir(instructions, state);
6640
6641 /* Case labels do not have r-values. */
6642 return NULL;
6643 }
6644
6645 ir_rvalue *
6646 ast_case_label::hir(exec_list *instructions,
6647 struct _mesa_glsl_parse_state *state)
6648 {
6649 ir_factory body(instructions, state);
6650
6651 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6652
6653 /* If not default case, ... */
6654 if (this->test_value != NULL) {
6655 /* Conditionally set fallthru state based on
6656 * comparison of cached test expression value to case label.
6657 */
6658 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6659 ir_constant *label_const =
6660 label_rval->constant_expression_value(body.mem_ctx);
6661
6662 if (!label_const) {
6663 YYLTYPE loc = this->test_value->get_location();
6664
6665 _mesa_glsl_error(& loc, state,
6666 "switch statement case label must be a "
6667 "constant expression");
6668
6669 /* Stuff a dummy value in to allow processing to continue. */
6670 label_const = body.constant(0);
6671 } else {
6672 hash_entry *entry =
6673 _mesa_hash_table_search(state->switch_state.labels_ht,
6674 &label_const->value.u[0]);
6675
6676 if (entry) {
6677 const struct case_label *const l =
6678 (struct case_label *) entry->data;
6679 const ast_expression *const previous_label = l->ast;
6680 YYLTYPE loc = this->test_value->get_location();
6681
6682 _mesa_glsl_error(& loc, state, "duplicate case value");
6683
6684 loc = previous_label->get_location();
6685 _mesa_glsl_error(& loc, state, "this is the previous case label");
6686 } else {
6687 struct case_label *l = ralloc(state->switch_state.labels_ht,
6688 struct case_label);
6689
6690 l->value = label_const->value.u[0];
6691 l->after_default = state->switch_state.previous_default != NULL;
6692 l->ast = this->test_value;
6693
6694 _mesa_hash_table_insert(state->switch_state.labels_ht,
6695 &label_const->value.u[0],
6696 l);
6697 }
6698 }
6699
6700 /* Create an r-value version of the ir_constant label here (after we may
6701 * have created a fake one in error cases) that can be passed to
6702 * apply_implicit_conversion below.
6703 */
6704 ir_rvalue *label = label_const;
6705
6706 ir_rvalue *deref_test_var =
6707 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6708
6709 /*
6710 * From GLSL 4.40 specification section 6.2 ("Selection"):
6711 *
6712 * "The type of the init-expression value in a switch statement must
6713 * be a scalar int or uint. The type of the constant-expression value
6714 * in a case label also must be a scalar int or uint. When any pair
6715 * of these values is tested for "equal value" and the types do not
6716 * match, an implicit conversion will be done to convert the int to a
6717 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6718 * is done."
6719 */
6720 if (label->type != state->switch_state.test_var->type) {
6721 YYLTYPE loc = this->test_value->get_location();
6722
6723 const glsl_type *type_a = label->type;
6724 const glsl_type *type_b = state->switch_state.test_var->type;
6725
6726 /* Check if int->uint implicit conversion is supported. */
6727 bool integer_conversion_supported =
6728 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6729 state);
6730
6731 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6732 !integer_conversion_supported) {
6733 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6734 "init-expression and case label (%s != %s)",
6735 type_a->name, type_b->name);
6736 } else {
6737 /* Conversion of the case label. */
6738 if (type_a->base_type == GLSL_TYPE_INT) {
6739 if (!apply_implicit_conversion(glsl_type::uint_type,
6740 label, state))
6741 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6742 } else {
6743 /* Conversion of the init-expression value. */
6744 if (!apply_implicit_conversion(glsl_type::uint_type,
6745 deref_test_var, state))
6746 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6747 }
6748 }
6749
6750 /* If the implicit conversion was allowed, the types will already be
6751 * the same. If the implicit conversion wasn't allowed, smash the
6752 * type of the label anyway. This will prevent the expression
6753 * constructor (below) from failing an assertion.
6754 */
6755 label->type = deref_test_var->type;
6756 }
6757
6758 body.emit(assign(fallthru_var,
6759 logic_or(fallthru_var, equal(label, deref_test_var))));
6760 } else { /* default case */
6761 if (state->switch_state.previous_default) {
6762 YYLTYPE loc = this->get_location();
6763 _mesa_glsl_error(& loc, state,
6764 "multiple default labels in one switch");
6765
6766 loc = state->switch_state.previous_default->get_location();
6767 _mesa_glsl_error(& loc, state, "this is the first default label");
6768 }
6769 state->switch_state.previous_default = this;
6770
6771 /* Set fallthru condition on 'run_default' bool. */
6772 body.emit(assign(fallthru_var,
6773 logic_or(fallthru_var,
6774 state->switch_state.run_default)));
6775 }
6776
6777 /* Case statements do not have r-values. */
6778 return NULL;
6779 }
6780
6781 void
6782 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6783 struct _mesa_glsl_parse_state *state)
6784 {
6785 void *ctx = state;
6786
6787 if (condition != NULL) {
6788 ir_rvalue *const cond =
6789 condition->hir(instructions, state);
6790
6791 if ((cond == NULL)
6792 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6793 YYLTYPE loc = condition->get_location();
6794
6795 _mesa_glsl_error(& loc, state,
6796 "loop condition must be scalar boolean");
6797 } else {
6798 /* As the first code in the loop body, generate a block that looks
6799 * like 'if (!condition) break;' as the loop termination condition.
6800 */
6801 ir_rvalue *const not_cond =
6802 new(ctx) ir_expression(ir_unop_logic_not, cond);
6803
6804 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6805
6806 ir_jump *const break_stmt =
6807 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6808
6809 if_stmt->then_instructions.push_tail(break_stmt);
6810 instructions->push_tail(if_stmt);
6811 }
6812 }
6813 }
6814
6815
6816 ir_rvalue *
6817 ast_iteration_statement::hir(exec_list *instructions,
6818 struct _mesa_glsl_parse_state *state)
6819 {
6820 void *ctx = state;
6821
6822 /* For-loops and while-loops start a new scope, but do-while loops do not.
6823 */
6824 if (mode != ast_do_while)
6825 state->symbols->push_scope();
6826
6827 if (init_statement != NULL)
6828 init_statement->hir(instructions, state);
6829
6830 ir_loop *const stmt = new(ctx) ir_loop();
6831 instructions->push_tail(stmt);
6832
6833 /* Track the current loop nesting. */
6834 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6835
6836 state->loop_nesting_ast = this;
6837
6838 /* Likewise, indicate that following code is closest to a loop,
6839 * NOT closest to a switch.
6840 */
6841 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6842 state->switch_state.is_switch_innermost = false;
6843
6844 if (mode != ast_do_while)
6845 condition_to_hir(&stmt->body_instructions, state);
6846
6847 if (body != NULL)
6848 body->hir(& stmt->body_instructions, state);
6849
6850 if (rest_expression != NULL)
6851 rest_expression->hir(& stmt->body_instructions, state);
6852
6853 if (mode == ast_do_while)
6854 condition_to_hir(&stmt->body_instructions, state);
6855
6856 if (mode != ast_do_while)
6857 state->symbols->pop_scope();
6858
6859 /* Restore previous nesting before returning. */
6860 state->loop_nesting_ast = nesting_ast;
6861 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6862
6863 /* Loops do not have r-values.
6864 */
6865 return NULL;
6866 }
6867
6868
6869 /**
6870 * Determine if the given type is valid for establishing a default precision
6871 * qualifier.
6872 *
6873 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6874 *
6875 * "The precision statement
6876 *
6877 * precision precision-qualifier type;
6878 *
6879 * can be used to establish a default precision qualifier. The type field
6880 * can be either int or float or any of the sampler types, and the
6881 * precision-qualifier can be lowp, mediump, or highp."
6882 *
6883 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6884 * qualifiers on sampler types, but this seems like an oversight (since the
6885 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6886 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6887 * version.
6888 */
6889 static bool
6890 is_valid_default_precision_type(const struct glsl_type *const type)
6891 {
6892 if (type == NULL)
6893 return false;
6894
6895 switch (type->base_type) {
6896 case GLSL_TYPE_INT:
6897 case GLSL_TYPE_FLOAT:
6898 /* "int" and "float" are valid, but vectors and matrices are not. */
6899 return type->vector_elements == 1 && type->matrix_columns == 1;
6900 case GLSL_TYPE_SAMPLER:
6901 case GLSL_TYPE_IMAGE:
6902 case GLSL_TYPE_ATOMIC_UINT:
6903 return true;
6904 default:
6905 return false;
6906 }
6907 }
6908
6909
6910 ir_rvalue *
6911 ast_type_specifier::hir(exec_list *instructions,
6912 struct _mesa_glsl_parse_state *state)
6913 {
6914 if (this->default_precision == ast_precision_none && this->structure == NULL)
6915 return NULL;
6916
6917 YYLTYPE loc = this->get_location();
6918
6919 /* If this is a precision statement, check that the type to which it is
6920 * applied is either float or int.
6921 *
6922 * From section 4.5.3 of the GLSL 1.30 spec:
6923 * "The precision statement
6924 * precision precision-qualifier type;
6925 * can be used to establish a default precision qualifier. The type
6926 * field can be either int or float [...]. Any other types or
6927 * qualifiers will result in an error.
6928 */
6929 if (this->default_precision != ast_precision_none) {
6930 if (!state->check_precision_qualifiers_allowed(&loc))
6931 return NULL;
6932
6933 if (this->structure != NULL) {
6934 _mesa_glsl_error(&loc, state,
6935 "precision qualifiers do not apply to structures");
6936 return NULL;
6937 }
6938
6939 if (this->array_specifier != NULL) {
6940 _mesa_glsl_error(&loc, state,
6941 "default precision statements do not apply to "
6942 "arrays");
6943 return NULL;
6944 }
6945
6946 const struct glsl_type *const type =
6947 state->symbols->get_type(this->type_name);
6948 if (!is_valid_default_precision_type(type)) {
6949 _mesa_glsl_error(&loc, state,
6950 "default precision statements apply only to "
6951 "float, int, and opaque types");
6952 return NULL;
6953 }
6954
6955 if (state->es_shader) {
6956 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6957 * spec says:
6958 *
6959 * "Non-precision qualified declarations will use the precision
6960 * qualifier specified in the most recent precision statement
6961 * that is still in scope. The precision statement has the same
6962 * scoping rules as variable declarations. If it is declared
6963 * inside a compound statement, its effect stops at the end of
6964 * the innermost statement it was declared in. Precision
6965 * statements in nested scopes override precision statements in
6966 * outer scopes. Multiple precision statements for the same basic
6967 * type can appear inside the same scope, with later statements
6968 * overriding earlier statements within that scope."
6969 *
6970 * Default precision specifications follow the same scope rules as
6971 * variables. So, we can track the state of the default precision
6972 * qualifiers in the symbol table, and the rules will just work. This
6973 * is a slight abuse of the symbol table, but it has the semantics
6974 * that we want.
6975 */
6976 state->symbols->add_default_precision_qualifier(this->type_name,
6977 this->default_precision);
6978 }
6979
6980 /* FINISHME: Translate precision statements into IR. */
6981 return NULL;
6982 }
6983
6984 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6985 * process_record_constructor() can do type-checking on C-style initializer
6986 * expressions of structs, but ast_struct_specifier should only be translated
6987 * to HIR if it is declaring the type of a structure.
6988 *
6989 * The ->is_declaration field is false for initializers of variables
6990 * declared separately from the struct's type definition.
6991 *
6992 * struct S { ... }; (is_declaration = true)
6993 * struct T { ... } t = { ... }; (is_declaration = true)
6994 * S s = { ... }; (is_declaration = false)
6995 */
6996 if (this->structure != NULL && this->structure->is_declaration)
6997 return this->structure->hir(instructions, state);
6998
6999 return NULL;
7000 }
7001
7002
7003 /**
7004 * Process a structure or interface block tree into an array of structure fields
7005 *
7006 * After parsing, where there are some syntax differnces, structures and
7007 * interface blocks are almost identical. They are similar enough that the
7008 * AST for each can be processed the same way into a set of
7009 * \c glsl_struct_field to describe the members.
7010 *
7011 * If we're processing an interface block, var_mode should be the type of the
7012 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7013 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7014 * ir_var_auto.
7015 *
7016 * \return
7017 * The number of fields processed. A pointer to the array structure fields is
7018 * stored in \c *fields_ret.
7019 */
7020 static unsigned
7021 ast_process_struct_or_iface_block_members(exec_list *instructions,
7022 struct _mesa_glsl_parse_state *state,
7023 exec_list *declarations,
7024 glsl_struct_field **fields_ret,
7025 bool is_interface,
7026 enum glsl_matrix_layout matrix_layout,
7027 bool allow_reserved_names,
7028 ir_variable_mode var_mode,
7029 ast_type_qualifier *layout,
7030 unsigned block_stream,
7031 unsigned block_xfb_buffer,
7032 unsigned block_xfb_offset,
7033 unsigned expl_location,
7034 unsigned expl_align)
7035 {
7036 unsigned decl_count = 0;
7037 unsigned next_offset = 0;
7038
7039 /* Make an initial pass over the list of fields to determine how
7040 * many there are. Each element in this list is an ast_declarator_list.
7041 * This means that we actually need to count the number of elements in the
7042 * 'declarations' list in each of the elements.
7043 */
7044 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7045 decl_count += decl_list->declarations.length();
7046 }
7047
7048 /* Allocate storage for the fields and process the field
7049 * declarations. As the declarations are processed, try to also convert
7050 * the types to HIR. This ensures that structure definitions embedded in
7051 * other structure definitions or in interface blocks are processed.
7052 */
7053 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7054 decl_count);
7055
7056 bool first_member = true;
7057 bool first_member_has_explicit_location = false;
7058
7059 unsigned i = 0;
7060 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7061 const char *type_name;
7062 YYLTYPE loc = decl_list->get_location();
7063
7064 decl_list->type->specifier->hir(instructions, state);
7065
7066 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7067 *
7068 * "Anonymous structures are not supported; so embedded structures
7069 * must have a declarator. A name given to an embedded struct is
7070 * scoped at the same level as the struct it is embedded in."
7071 *
7072 * The same section of the GLSL 1.20 spec says:
7073 *
7074 * "Anonymous structures are not supported. Embedded structures are
7075 * not supported."
7076 *
7077 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7078 * embedded structures in 1.10 only.
7079 */
7080 if (state->language_version != 110 &&
7081 decl_list->type->specifier->structure != NULL)
7082 _mesa_glsl_error(&loc, state,
7083 "embedded structure declarations are not allowed");
7084
7085 const glsl_type *decl_type =
7086 decl_list->type->glsl_type(& type_name, state);
7087
7088 const struct ast_type_qualifier *const qual =
7089 &decl_list->type->qualifier;
7090
7091 /* From section 4.3.9 of the GLSL 4.40 spec:
7092 *
7093 * "[In interface blocks] opaque types are not allowed."
7094 *
7095 * It should be impossible for decl_type to be NULL here. Cases that
7096 * might naturally lead to decl_type being NULL, especially for the
7097 * is_interface case, will have resulted in compilation having
7098 * already halted due to a syntax error.
7099 */
7100 assert(decl_type);
7101
7102 if (is_interface) {
7103 /* From section 4.3.7 of the ARB_bindless_texture spec:
7104 *
7105 * "(remove the following bullet from the last list on p. 39,
7106 * thereby permitting sampler types in interface blocks; image
7107 * types are also permitted in blocks by this extension)"
7108 *
7109 * * sampler types are not allowed
7110 */
7111 if (decl_type->contains_atomic() ||
7112 (!state->has_bindless() && decl_type->contains_opaque())) {
7113 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7114 "interface block contains %s variable",
7115 state->has_bindless() ? "atomic" : "opaque");
7116 }
7117 } else {
7118 if (decl_type->contains_atomic()) {
7119 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7120 *
7121 * "Members of structures cannot be declared as atomic counter
7122 * types."
7123 */
7124 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7125 }
7126
7127 if (!state->has_bindless() && decl_type->contains_image()) {
7128 /* FINISHME: Same problem as with atomic counters.
7129 * FINISHME: Request clarification from Khronos and add
7130 * FINISHME: spec quotation here.
7131 */
7132 _mesa_glsl_error(&loc, state, "image in structure");
7133 }
7134 }
7135
7136 if (qual->flags.q.explicit_binding) {
7137 _mesa_glsl_error(&loc, state,
7138 "binding layout qualifier cannot be applied "
7139 "to struct or interface block members");
7140 }
7141
7142 if (is_interface) {
7143 if (!first_member) {
7144 if (!layout->flags.q.explicit_location &&
7145 ((first_member_has_explicit_location &&
7146 !qual->flags.q.explicit_location) ||
7147 (!first_member_has_explicit_location &&
7148 qual->flags.q.explicit_location))) {
7149 _mesa_glsl_error(&loc, state,
7150 "when block-level location layout qualifier "
7151 "is not supplied either all members must "
7152 "have a location layout qualifier or all "
7153 "members must not have a location layout "
7154 "qualifier");
7155 }
7156 } else {
7157 first_member = false;
7158 first_member_has_explicit_location =
7159 qual->flags.q.explicit_location;
7160 }
7161 }
7162
7163 if (qual->flags.q.std140 ||
7164 qual->flags.q.std430 ||
7165 qual->flags.q.packed ||
7166 qual->flags.q.shared) {
7167 _mesa_glsl_error(&loc, state,
7168 "uniform/shader storage block layout qualifiers "
7169 "std140, std430, packed, and shared can only be "
7170 "applied to uniform/shader storage blocks, not "
7171 "members");
7172 }
7173
7174 if (qual->flags.q.constant) {
7175 _mesa_glsl_error(&loc, state,
7176 "const storage qualifier cannot be applied "
7177 "to struct or interface block members");
7178 }
7179
7180 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7181 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7182
7183 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7184 *
7185 * "A block member may be declared with a stream identifier, but
7186 * the specified stream must match the stream associated with the
7187 * containing block."
7188 */
7189 if (qual->flags.q.explicit_stream) {
7190 unsigned qual_stream;
7191 if (process_qualifier_constant(state, &loc, "stream",
7192 qual->stream, &qual_stream) &&
7193 qual_stream != block_stream) {
7194 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7195 "interface block member does not match "
7196 "the interface block (%u vs %u)", qual_stream,
7197 block_stream);
7198 }
7199 }
7200
7201 int xfb_buffer;
7202 unsigned explicit_xfb_buffer = 0;
7203 if (qual->flags.q.explicit_xfb_buffer) {
7204 unsigned qual_xfb_buffer;
7205 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7206 qual->xfb_buffer, &qual_xfb_buffer)) {
7207 explicit_xfb_buffer = 1;
7208 if (qual_xfb_buffer != block_xfb_buffer)
7209 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7210 "interface block member does not match "
7211 "the interface block (%u vs %u)",
7212 qual_xfb_buffer, block_xfb_buffer);
7213 }
7214 xfb_buffer = (int) qual_xfb_buffer;
7215 } else {
7216 if (layout)
7217 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7218 xfb_buffer = (int) block_xfb_buffer;
7219 }
7220
7221 int xfb_stride = -1;
7222 if (qual->flags.q.explicit_xfb_stride) {
7223 unsigned qual_xfb_stride;
7224 if (process_qualifier_constant(state, &loc, "xfb_stride",
7225 qual->xfb_stride, &qual_xfb_stride)) {
7226 xfb_stride = (int) qual_xfb_stride;
7227 }
7228 }
7229
7230 if (qual->flags.q.uniform && qual->has_interpolation()) {
7231 _mesa_glsl_error(&loc, state,
7232 "interpolation qualifiers cannot be used "
7233 "with uniform interface blocks");
7234 }
7235
7236 if ((qual->flags.q.uniform || !is_interface) &&
7237 qual->has_auxiliary_storage()) {
7238 _mesa_glsl_error(&loc, state,
7239 "auxiliary storage qualifiers cannot be used "
7240 "in uniform blocks or structures.");
7241 }
7242
7243 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7244 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7245 _mesa_glsl_error(&loc, state,
7246 "row_major and column_major can only be "
7247 "applied to interface blocks");
7248 } else
7249 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7250 }
7251
7252 foreach_list_typed (ast_declaration, decl, link,
7253 &decl_list->declarations) {
7254 YYLTYPE loc = decl->get_location();
7255
7256 if (!allow_reserved_names)
7257 validate_identifier(decl->identifier, loc, state);
7258
7259 const struct glsl_type *field_type =
7260 process_array_type(&loc, decl_type, decl->array_specifier, state);
7261 validate_array_dimensions(field_type, state, &loc);
7262 fields[i].type = field_type;
7263 fields[i].name = decl->identifier;
7264 fields[i].interpolation =
7265 interpret_interpolation_qualifier(qual, field_type,
7266 var_mode, state, &loc);
7267 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7268 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7269 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7270 fields[i].precision = qual->precision;
7271 fields[i].offset = -1;
7272 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7273 fields[i].xfb_buffer = xfb_buffer;
7274 fields[i].xfb_stride = xfb_stride;
7275
7276 if (qual->flags.q.explicit_location) {
7277 unsigned qual_location;
7278 if (process_qualifier_constant(state, &loc, "location",
7279 qual->location, &qual_location)) {
7280 fields[i].location = qual_location +
7281 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7282 expl_location = fields[i].location +
7283 fields[i].type->count_attribute_slots(false);
7284 }
7285 } else {
7286 if (layout && layout->flags.q.explicit_location) {
7287 fields[i].location = expl_location;
7288 expl_location += fields[i].type->count_attribute_slots(false);
7289 } else {
7290 fields[i].location = -1;
7291 }
7292 }
7293
7294 /* Offset can only be used with std430 and std140 layouts an initial
7295 * value of 0 is used for error detection.
7296 */
7297 unsigned align = 0;
7298 unsigned size = 0;
7299 if (layout) {
7300 bool row_major;
7301 if (qual->flags.q.row_major ||
7302 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7303 row_major = true;
7304 } else {
7305 row_major = false;
7306 }
7307
7308 if(layout->flags.q.std140) {
7309 align = field_type->std140_base_alignment(row_major);
7310 size = field_type->std140_size(row_major);
7311 } else if (layout->flags.q.std430) {
7312 align = field_type->std430_base_alignment(row_major);
7313 size = field_type->std430_size(row_major);
7314 }
7315 }
7316
7317 if (qual->flags.q.explicit_offset) {
7318 unsigned qual_offset;
7319 if (process_qualifier_constant(state, &loc, "offset",
7320 qual->offset, &qual_offset)) {
7321 if (align != 0 && size != 0) {
7322 if (next_offset > qual_offset)
7323 _mesa_glsl_error(&loc, state, "layout qualifier "
7324 "offset overlaps previous member");
7325
7326 if (qual_offset % align) {
7327 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7328 "must be a multiple of the base "
7329 "alignment of %s", field_type->name);
7330 }
7331 fields[i].offset = qual_offset;
7332 next_offset = glsl_align(qual_offset + size, align);
7333 } else {
7334 _mesa_glsl_error(&loc, state, "offset can only be used "
7335 "with std430 and std140 layouts");
7336 }
7337 }
7338 }
7339
7340 if (qual->flags.q.explicit_align || expl_align != 0) {
7341 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7342 next_offset;
7343 if (align == 0 || size == 0) {
7344 _mesa_glsl_error(&loc, state, "align can only be used with "
7345 "std430 and std140 layouts");
7346 } else if (qual->flags.q.explicit_align) {
7347 unsigned member_align;
7348 if (process_qualifier_constant(state, &loc, "align",
7349 qual->align, &member_align)) {
7350 if (member_align == 0 ||
7351 member_align & (member_align - 1)) {
7352 _mesa_glsl_error(&loc, state, "align layout qualifier "
7353 "in not a power of 2");
7354 } else {
7355 fields[i].offset = glsl_align(offset, member_align);
7356 next_offset = glsl_align(fields[i].offset + size, align);
7357 }
7358 }
7359 } else {
7360 fields[i].offset = glsl_align(offset, expl_align);
7361 next_offset = glsl_align(fields[i].offset + size, align);
7362 }
7363 } else if (!qual->flags.q.explicit_offset) {
7364 if (align != 0 && size != 0)
7365 next_offset = glsl_align(next_offset + size, align);
7366 }
7367
7368 /* From the ARB_enhanced_layouts spec:
7369 *
7370 * "The given offset applies to the first component of the first
7371 * member of the qualified entity. Then, within the qualified
7372 * entity, subsequent components are each assigned, in order, to
7373 * the next available offset aligned to a multiple of that
7374 * component's size. Aggregate types are flattened down to the
7375 * component level to get this sequence of components."
7376 */
7377 if (qual->flags.q.explicit_xfb_offset) {
7378 unsigned xfb_offset;
7379 if (process_qualifier_constant(state, &loc, "xfb_offset",
7380 qual->offset, &xfb_offset)) {
7381 fields[i].offset = xfb_offset;
7382 block_xfb_offset = fields[i].offset +
7383 4 * field_type->component_slots();
7384 }
7385 } else {
7386 if (layout && layout->flags.q.explicit_xfb_offset) {
7387 unsigned align = field_type->is_64bit() ? 8 : 4;
7388 fields[i].offset = glsl_align(block_xfb_offset, align);
7389 block_xfb_offset += 4 * field_type->component_slots();
7390 }
7391 }
7392
7393 /* Propogate row- / column-major information down the fields of the
7394 * structure or interface block. Structures need this data because
7395 * the structure may contain a structure that contains ... a matrix
7396 * that need the proper layout.
7397 */
7398 if (is_interface && layout &&
7399 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7400 (field_type->without_array()->is_matrix()
7401 || field_type->without_array()->is_record())) {
7402 /* If no layout is specified for the field, inherit the layout
7403 * from the block.
7404 */
7405 fields[i].matrix_layout = matrix_layout;
7406
7407 if (qual->flags.q.row_major)
7408 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7409 else if (qual->flags.q.column_major)
7410 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7411
7412 /* If we're processing an uniform or buffer block, the matrix
7413 * layout must be decided by this point.
7414 */
7415 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7416 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7417 }
7418
7419 /* Memory qualifiers are allowed on buffer and image variables, while
7420 * the format qualifier is only accepted for images.
7421 */
7422 if (var_mode == ir_var_shader_storage ||
7423 field_type->without_array()->is_image()) {
7424 /* For readonly and writeonly qualifiers the field definition,
7425 * if set, overwrites the layout qualifier.
7426 */
7427 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7428 fields[i].memory_read_only = qual->flags.q.read_only;
7429 fields[i].memory_write_only = qual->flags.q.write_only;
7430 } else {
7431 fields[i].memory_read_only =
7432 layout ? layout->flags.q.read_only : 0;
7433 fields[i].memory_write_only =
7434 layout ? layout->flags.q.write_only : 0;
7435 }
7436
7437 /* For other qualifiers, we set the flag if either the layout
7438 * qualifier or the field qualifier are set
7439 */
7440 fields[i].memory_coherent = qual->flags.q.coherent ||
7441 (layout && layout->flags.q.coherent);
7442 fields[i].memory_volatile = qual->flags.q._volatile ||
7443 (layout && layout->flags.q._volatile);
7444 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7445 (layout && layout->flags.q.restrict_flag);
7446
7447 if (field_type->without_array()->is_image()) {
7448 if (qual->flags.q.explicit_image_format) {
7449 if (qual->image_base_type !=
7450 field_type->without_array()->sampled_type) {
7451 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7452 "match the base data type of the image");
7453 }
7454
7455 fields[i].image_format = qual->image_format;
7456 } else {
7457 if (!qual->flags.q.write_only) {
7458 _mesa_glsl_error(&loc, state, "image not qualified with "
7459 "`writeonly' must have a format layout "
7460 "qualifier");
7461 }
7462
7463 fields[i].image_format = GL_NONE;
7464 }
7465 }
7466 }
7467
7468 i++;
7469 }
7470 }
7471
7472 assert(i == decl_count);
7473
7474 *fields_ret = fields;
7475 return decl_count;
7476 }
7477
7478
7479 ir_rvalue *
7480 ast_struct_specifier::hir(exec_list *instructions,
7481 struct _mesa_glsl_parse_state *state)
7482 {
7483 YYLTYPE loc = this->get_location();
7484
7485 unsigned expl_location = 0;
7486 if (layout && layout->flags.q.explicit_location) {
7487 if (!process_qualifier_constant(state, &loc, "location",
7488 layout->location, &expl_location)) {
7489 return NULL;
7490 } else {
7491 expl_location = VARYING_SLOT_VAR0 + expl_location;
7492 }
7493 }
7494
7495 glsl_struct_field *fields;
7496 unsigned decl_count =
7497 ast_process_struct_or_iface_block_members(instructions,
7498 state,
7499 &this->declarations,
7500 &fields,
7501 false,
7502 GLSL_MATRIX_LAYOUT_INHERITED,
7503 false /* allow_reserved_names */,
7504 ir_var_auto,
7505 layout,
7506 0, /* for interface only */
7507 0, /* for interface only */
7508 0, /* for interface only */
7509 expl_location,
7510 0 /* for interface only */);
7511
7512 validate_identifier(this->name, loc, state);
7513
7514 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7515
7516 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7517 const glsl_type *match = state->symbols->get_type(name);
7518 /* allow struct matching for desktop GL - older UE4 does this */
7519 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7520 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7521 else
7522 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7523 } else {
7524 const glsl_type **s = reralloc(state, state->user_structures,
7525 const glsl_type *,
7526 state->num_user_structures + 1);
7527 if (s != NULL) {
7528 s[state->num_user_structures] = type;
7529 state->user_structures = s;
7530 state->num_user_structures++;
7531 }
7532 }
7533
7534 /* Structure type definitions do not have r-values.
7535 */
7536 return NULL;
7537 }
7538
7539
7540 /**
7541 * Visitor class which detects whether a given interface block has been used.
7542 */
7543 class interface_block_usage_visitor : public ir_hierarchical_visitor
7544 {
7545 public:
7546 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7547 : mode(mode), block(block), found(false)
7548 {
7549 }
7550
7551 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7552 {
7553 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7554 found = true;
7555 return visit_stop;
7556 }
7557 return visit_continue;
7558 }
7559
7560 bool usage_found() const
7561 {
7562 return this->found;
7563 }
7564
7565 private:
7566 ir_variable_mode mode;
7567 const glsl_type *block;
7568 bool found;
7569 };
7570
7571 static bool
7572 is_unsized_array_last_element(ir_variable *v)
7573 {
7574 const glsl_type *interface_type = v->get_interface_type();
7575 int length = interface_type->length;
7576
7577 assert(v->type->is_unsized_array());
7578
7579 /* Check if it is the last element of the interface */
7580 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7581 return true;
7582 return false;
7583 }
7584
7585 static void
7586 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7587 {
7588 var->data.memory_read_only = field.memory_read_only;
7589 var->data.memory_write_only = field.memory_write_only;
7590 var->data.memory_coherent = field.memory_coherent;
7591 var->data.memory_volatile = field.memory_volatile;
7592 var->data.memory_restrict = field.memory_restrict;
7593 }
7594
7595 ir_rvalue *
7596 ast_interface_block::hir(exec_list *instructions,
7597 struct _mesa_glsl_parse_state *state)
7598 {
7599 YYLTYPE loc = this->get_location();
7600
7601 /* Interface blocks must be declared at global scope */
7602 if (state->current_function != NULL) {
7603 _mesa_glsl_error(&loc, state,
7604 "Interface block `%s' must be declared "
7605 "at global scope",
7606 this->block_name);
7607 }
7608
7609 /* Validate qualifiers:
7610 *
7611 * - Layout Qualifiers as per the table in Section 4.4
7612 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7613 *
7614 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7615 * GLSL 4.50 spec:
7616 *
7617 * "Additionally, memory qualifiers may also be used in the declaration
7618 * of shader storage blocks"
7619 *
7620 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7621 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7622 * Layout Qualifiers) of the GLSL 4.50 spec says:
7623 *
7624 * "The std430 qualifier is supported only for shader storage blocks;
7625 * using std430 on a uniform block will result in a compile-time error."
7626 */
7627 ast_type_qualifier allowed_blk_qualifiers;
7628 allowed_blk_qualifiers.flags.i = 0;
7629 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7630 allowed_blk_qualifiers.flags.q.shared = 1;
7631 allowed_blk_qualifiers.flags.q.packed = 1;
7632 allowed_blk_qualifiers.flags.q.std140 = 1;
7633 allowed_blk_qualifiers.flags.q.row_major = 1;
7634 allowed_blk_qualifiers.flags.q.column_major = 1;
7635 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7636 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7637 if (this->layout.flags.q.buffer) {
7638 allowed_blk_qualifiers.flags.q.buffer = 1;
7639 allowed_blk_qualifiers.flags.q.std430 = 1;
7640 allowed_blk_qualifiers.flags.q.coherent = 1;
7641 allowed_blk_qualifiers.flags.q._volatile = 1;
7642 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7643 allowed_blk_qualifiers.flags.q.read_only = 1;
7644 allowed_blk_qualifiers.flags.q.write_only = 1;
7645 } else {
7646 allowed_blk_qualifiers.flags.q.uniform = 1;
7647 }
7648 } else {
7649 /* Interface block */
7650 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7651
7652 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7653 if (this->layout.flags.q.out) {
7654 allowed_blk_qualifiers.flags.q.out = 1;
7655 if (state->stage == MESA_SHADER_GEOMETRY ||
7656 state->stage == MESA_SHADER_TESS_CTRL ||
7657 state->stage == MESA_SHADER_TESS_EVAL ||
7658 state->stage == MESA_SHADER_VERTEX ) {
7659 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7660 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7661 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7662 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7663 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7664 if (state->stage == MESA_SHADER_GEOMETRY) {
7665 allowed_blk_qualifiers.flags.q.stream = 1;
7666 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7667 }
7668 if (state->stage == MESA_SHADER_TESS_CTRL) {
7669 allowed_blk_qualifiers.flags.q.patch = 1;
7670 }
7671 }
7672 } else {
7673 allowed_blk_qualifiers.flags.q.in = 1;
7674 if (state->stage == MESA_SHADER_TESS_EVAL) {
7675 allowed_blk_qualifiers.flags.q.patch = 1;
7676 }
7677 }
7678 }
7679
7680 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7681 "invalid qualifier for block",
7682 this->block_name);
7683
7684 enum glsl_interface_packing packing;
7685 if (this->layout.flags.q.std140) {
7686 packing = GLSL_INTERFACE_PACKING_STD140;
7687 } else if (this->layout.flags.q.packed) {
7688 packing = GLSL_INTERFACE_PACKING_PACKED;
7689 } else if (this->layout.flags.q.std430) {
7690 packing = GLSL_INTERFACE_PACKING_STD430;
7691 } else {
7692 /* The default layout is shared.
7693 */
7694 packing = GLSL_INTERFACE_PACKING_SHARED;
7695 }
7696
7697 ir_variable_mode var_mode;
7698 const char *iface_type_name;
7699 if (this->layout.flags.q.in) {
7700 var_mode = ir_var_shader_in;
7701 iface_type_name = "in";
7702 } else if (this->layout.flags.q.out) {
7703 var_mode = ir_var_shader_out;
7704 iface_type_name = "out";
7705 } else if (this->layout.flags.q.uniform) {
7706 var_mode = ir_var_uniform;
7707 iface_type_name = "uniform";
7708 } else if (this->layout.flags.q.buffer) {
7709 var_mode = ir_var_shader_storage;
7710 iface_type_name = "buffer";
7711 } else {
7712 var_mode = ir_var_auto;
7713 iface_type_name = "UNKNOWN";
7714 assert(!"interface block layout qualifier not found!");
7715 }
7716
7717 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7718 if (this->layout.flags.q.row_major)
7719 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7720 else if (this->layout.flags.q.column_major)
7721 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7722
7723 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7724 exec_list declared_variables;
7725 glsl_struct_field *fields;
7726
7727 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7728 * that we don't have incompatible qualifiers
7729 */
7730 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7731 _mesa_glsl_error(&loc, state,
7732 "Interface block sets both readonly and writeonly");
7733 }
7734
7735 unsigned qual_stream;
7736 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7737 &qual_stream) ||
7738 !validate_stream_qualifier(&loc, state, qual_stream)) {
7739 /* If the stream qualifier is invalid it doesn't make sense to continue
7740 * on and try to compare stream layouts on member variables against it
7741 * so just return early.
7742 */
7743 return NULL;
7744 }
7745
7746 unsigned qual_xfb_buffer;
7747 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7748 layout.xfb_buffer, &qual_xfb_buffer) ||
7749 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7750 return NULL;
7751 }
7752
7753 unsigned qual_xfb_offset;
7754 if (layout.flags.q.explicit_xfb_offset) {
7755 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7756 layout.offset, &qual_xfb_offset)) {
7757 return NULL;
7758 }
7759 }
7760
7761 unsigned qual_xfb_stride;
7762 if (layout.flags.q.explicit_xfb_stride) {
7763 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7764 layout.xfb_stride, &qual_xfb_stride)) {
7765 return NULL;
7766 }
7767 }
7768
7769 unsigned expl_location = 0;
7770 if (layout.flags.q.explicit_location) {
7771 if (!process_qualifier_constant(state, &loc, "location",
7772 layout.location, &expl_location)) {
7773 return NULL;
7774 } else {
7775 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7776 : VARYING_SLOT_VAR0;
7777 }
7778 }
7779
7780 unsigned expl_align = 0;
7781 if (layout.flags.q.explicit_align) {
7782 if (!process_qualifier_constant(state, &loc, "align",
7783 layout.align, &expl_align)) {
7784 return NULL;
7785 } else {
7786 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7787 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7788 "power of 2.");
7789 return NULL;
7790 }
7791 }
7792 }
7793
7794 unsigned int num_variables =
7795 ast_process_struct_or_iface_block_members(&declared_variables,
7796 state,
7797 &this->declarations,
7798 &fields,
7799 true,
7800 matrix_layout,
7801 redeclaring_per_vertex,
7802 var_mode,
7803 &this->layout,
7804 qual_stream,
7805 qual_xfb_buffer,
7806 qual_xfb_offset,
7807 expl_location,
7808 expl_align);
7809
7810 if (!redeclaring_per_vertex) {
7811 validate_identifier(this->block_name, loc, state);
7812
7813 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7814 *
7815 * "Block names have no other use within a shader beyond interface
7816 * matching; it is a compile-time error to use a block name at global
7817 * scope for anything other than as a block name."
7818 */
7819 ir_variable *var = state->symbols->get_variable(this->block_name);
7820 if (var && !var->type->is_interface()) {
7821 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7822 "already used in the scope.",
7823 this->block_name);
7824 }
7825 }
7826
7827 const glsl_type *earlier_per_vertex = NULL;
7828 if (redeclaring_per_vertex) {
7829 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7830 * the named interface block gl_in, we can find it by looking at the
7831 * previous declaration of gl_in. Otherwise we can find it by looking
7832 * at the previous decalartion of any of the built-in outputs,
7833 * e.g. gl_Position.
7834 *
7835 * Also check that the instance name and array-ness of the redeclaration
7836 * are correct.
7837 */
7838 switch (var_mode) {
7839 case ir_var_shader_in:
7840 if (ir_variable *earlier_gl_in =
7841 state->symbols->get_variable("gl_in")) {
7842 earlier_per_vertex = earlier_gl_in->get_interface_type();
7843 } else {
7844 _mesa_glsl_error(&loc, state,
7845 "redeclaration of gl_PerVertex input not allowed "
7846 "in the %s shader",
7847 _mesa_shader_stage_to_string(state->stage));
7848 }
7849 if (this->instance_name == NULL ||
7850 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7851 !this->array_specifier->is_single_dimension()) {
7852 _mesa_glsl_error(&loc, state,
7853 "gl_PerVertex input must be redeclared as "
7854 "gl_in[]");
7855 }
7856 break;
7857 case ir_var_shader_out:
7858 if (ir_variable *earlier_gl_Position =
7859 state->symbols->get_variable("gl_Position")) {
7860 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7861 } else if (ir_variable *earlier_gl_out =
7862 state->symbols->get_variable("gl_out")) {
7863 earlier_per_vertex = earlier_gl_out->get_interface_type();
7864 } else {
7865 _mesa_glsl_error(&loc, state,
7866 "redeclaration of gl_PerVertex output not "
7867 "allowed in the %s shader",
7868 _mesa_shader_stage_to_string(state->stage));
7869 }
7870 if (state->stage == MESA_SHADER_TESS_CTRL) {
7871 if (this->instance_name == NULL ||
7872 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7873 _mesa_glsl_error(&loc, state,
7874 "gl_PerVertex output must be redeclared as "
7875 "gl_out[]");
7876 }
7877 } else {
7878 if (this->instance_name != NULL) {
7879 _mesa_glsl_error(&loc, state,
7880 "gl_PerVertex output may not be redeclared with "
7881 "an instance name");
7882 }
7883 }
7884 break;
7885 default:
7886 _mesa_glsl_error(&loc, state,
7887 "gl_PerVertex must be declared as an input or an "
7888 "output");
7889 break;
7890 }
7891
7892 if (earlier_per_vertex == NULL) {
7893 /* An error has already been reported. Bail out to avoid null
7894 * dereferences later in this function.
7895 */
7896 return NULL;
7897 }
7898
7899 /* Copy locations from the old gl_PerVertex interface block. */
7900 for (unsigned i = 0; i < num_variables; i++) {
7901 int j = earlier_per_vertex->field_index(fields[i].name);
7902 if (j == -1) {
7903 _mesa_glsl_error(&loc, state,
7904 "redeclaration of gl_PerVertex must be a subset "
7905 "of the built-in members of gl_PerVertex");
7906 } else {
7907 fields[i].location =
7908 earlier_per_vertex->fields.structure[j].location;
7909 fields[i].offset =
7910 earlier_per_vertex->fields.structure[j].offset;
7911 fields[i].interpolation =
7912 earlier_per_vertex->fields.structure[j].interpolation;
7913 fields[i].centroid =
7914 earlier_per_vertex->fields.structure[j].centroid;
7915 fields[i].sample =
7916 earlier_per_vertex->fields.structure[j].sample;
7917 fields[i].patch =
7918 earlier_per_vertex->fields.structure[j].patch;
7919 fields[i].precision =
7920 earlier_per_vertex->fields.structure[j].precision;
7921 fields[i].explicit_xfb_buffer =
7922 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7923 fields[i].xfb_buffer =
7924 earlier_per_vertex->fields.structure[j].xfb_buffer;
7925 fields[i].xfb_stride =
7926 earlier_per_vertex->fields.structure[j].xfb_stride;
7927 }
7928 }
7929
7930 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7931 * spec:
7932 *
7933 * If a built-in interface block is redeclared, it must appear in
7934 * the shader before any use of any member included in the built-in
7935 * declaration, or a compilation error will result.
7936 *
7937 * This appears to be a clarification to the behaviour established for
7938 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7939 * regardless of GLSL version.
7940 */
7941 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7942 v.run(instructions);
7943 if (v.usage_found()) {
7944 _mesa_glsl_error(&loc, state,
7945 "redeclaration of a built-in interface block must "
7946 "appear before any use of any member of the "
7947 "interface block");
7948 }
7949 }
7950
7951 const glsl_type *block_type =
7952 glsl_type::get_interface_instance(fields,
7953 num_variables,
7954 packing,
7955 matrix_layout ==
7956 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7957 this->block_name);
7958
7959 unsigned component_size = block_type->contains_double() ? 8 : 4;
7960 int xfb_offset =
7961 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7962 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7963 component_size);
7964
7965 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7966 YYLTYPE loc = this->get_location();
7967 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7968 "already taken in the current scope",
7969 this->block_name, iface_type_name);
7970 }
7971
7972 /* Since interface blocks cannot contain statements, it should be
7973 * impossible for the block to generate any instructions.
7974 */
7975 assert(declared_variables.is_empty());
7976
7977 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7978 *
7979 * Geometry shader input variables get the per-vertex values written
7980 * out by vertex shader output variables of the same names. Since a
7981 * geometry shader operates on a set of vertices, each input varying
7982 * variable (or input block, see interface blocks below) needs to be
7983 * declared as an array.
7984 */
7985 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7986 var_mode == ir_var_shader_in) {
7987 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7988 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7989 state->stage == MESA_SHADER_TESS_EVAL) &&
7990 !this->layout.flags.q.patch &&
7991 this->array_specifier == NULL &&
7992 var_mode == ir_var_shader_in) {
7993 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7994 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7995 !this->layout.flags.q.patch &&
7996 this->array_specifier == NULL &&
7997 var_mode == ir_var_shader_out) {
7998 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7999 }
8000
8001
8002 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8003 * says:
8004 *
8005 * "If an instance name (instance-name) is used, then it puts all the
8006 * members inside a scope within its own name space, accessed with the
8007 * field selector ( . ) operator (analogously to structures)."
8008 */
8009 if (this->instance_name) {
8010 if (redeclaring_per_vertex) {
8011 /* When a built-in in an unnamed interface block is redeclared,
8012 * get_variable_being_redeclared() calls
8013 * check_builtin_array_max_size() to make sure that built-in array
8014 * variables aren't redeclared to illegal sizes. But we're looking
8015 * at a redeclaration of a named built-in interface block. So we
8016 * have to manually call check_builtin_array_max_size() for all parts
8017 * of the interface that are arrays.
8018 */
8019 for (unsigned i = 0; i < num_variables; i++) {
8020 if (fields[i].type->is_array()) {
8021 const unsigned size = fields[i].type->array_size();
8022 check_builtin_array_max_size(fields[i].name, size, loc, state);
8023 }
8024 }
8025 } else {
8026 validate_identifier(this->instance_name, loc, state);
8027 }
8028
8029 ir_variable *var;
8030
8031 if (this->array_specifier != NULL) {
8032 const glsl_type *block_array_type =
8033 process_array_type(&loc, block_type, this->array_specifier, state);
8034
8035 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8036 *
8037 * For uniform blocks declared an array, each individual array
8038 * element corresponds to a separate buffer object backing one
8039 * instance of the block. As the array size indicates the number
8040 * of buffer objects needed, uniform block array declarations
8041 * must specify an array size.
8042 *
8043 * And a few paragraphs later:
8044 *
8045 * Geometry shader input blocks must be declared as arrays and
8046 * follow the array declaration and linking rules for all
8047 * geometry shader inputs. All other input and output block
8048 * arrays must specify an array size.
8049 *
8050 * The same applies to tessellation shaders.
8051 *
8052 * The upshot of this is that the only circumstance where an
8053 * interface array size *doesn't* need to be specified is on a
8054 * geometry shader input, tessellation control shader input,
8055 * tessellation control shader output, and tessellation evaluation
8056 * shader input.
8057 */
8058 if (block_array_type->is_unsized_array()) {
8059 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8060 state->stage == MESA_SHADER_TESS_CTRL ||
8061 state->stage == MESA_SHADER_TESS_EVAL;
8062 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8063
8064 if (this->layout.flags.q.in) {
8065 if (!allow_inputs)
8066 _mesa_glsl_error(&loc, state,
8067 "unsized input block arrays not allowed in "
8068 "%s shader",
8069 _mesa_shader_stage_to_string(state->stage));
8070 } else if (this->layout.flags.q.out) {
8071 if (!allow_outputs)
8072 _mesa_glsl_error(&loc, state,
8073 "unsized output block arrays not allowed in "
8074 "%s shader",
8075 _mesa_shader_stage_to_string(state->stage));
8076 } else {
8077 /* by elimination, this is a uniform block array */
8078 _mesa_glsl_error(&loc, state,
8079 "unsized uniform block arrays not allowed in "
8080 "%s shader",
8081 _mesa_shader_stage_to_string(state->stage));
8082 }
8083 }
8084
8085 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8086 *
8087 * * Arrays of arrays of blocks are not allowed
8088 */
8089 if (state->es_shader && block_array_type->is_array() &&
8090 block_array_type->fields.array->is_array()) {
8091 _mesa_glsl_error(&loc, state,
8092 "arrays of arrays interface blocks are "
8093 "not allowed");
8094 }
8095
8096 var = new(state) ir_variable(block_array_type,
8097 this->instance_name,
8098 var_mode);
8099 } else {
8100 var = new(state) ir_variable(block_type,
8101 this->instance_name,
8102 var_mode);
8103 }
8104
8105 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8106 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8107
8108 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8109 var->data.read_only = true;
8110
8111 var->data.patch = this->layout.flags.q.patch;
8112
8113 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8114 handle_geometry_shader_input_decl(state, loc, var);
8115 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8116 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8117 handle_tess_shader_input_decl(state, loc, var);
8118 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8119 handle_tess_ctrl_shader_output_decl(state, loc, var);
8120
8121 for (unsigned i = 0; i < num_variables; i++) {
8122 if (var->data.mode == ir_var_shader_storage)
8123 apply_memory_qualifiers(var, fields[i]);
8124 }
8125
8126 if (ir_variable *earlier =
8127 state->symbols->get_variable(this->instance_name)) {
8128 if (!redeclaring_per_vertex) {
8129 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8130 this->instance_name);
8131 }
8132 earlier->data.how_declared = ir_var_declared_normally;
8133 earlier->type = var->type;
8134 earlier->reinit_interface_type(block_type);
8135 delete var;
8136 } else {
8137 if (this->layout.flags.q.explicit_binding) {
8138 apply_explicit_binding(state, &loc, var, var->type,
8139 &this->layout);
8140 }
8141
8142 var->data.stream = qual_stream;
8143 if (layout.flags.q.explicit_location) {
8144 var->data.location = expl_location;
8145 var->data.explicit_location = true;
8146 }
8147
8148 state->symbols->add_variable(var);
8149 instructions->push_tail(var);
8150 }
8151 } else {
8152 /* In order to have an array size, the block must also be declared with
8153 * an instance name.
8154 */
8155 assert(this->array_specifier == NULL);
8156
8157 for (unsigned i = 0; i < num_variables; i++) {
8158 ir_variable *var =
8159 new(state) ir_variable(fields[i].type,
8160 ralloc_strdup(state, fields[i].name),
8161 var_mode);
8162 var->data.interpolation = fields[i].interpolation;
8163 var->data.centroid = fields[i].centroid;
8164 var->data.sample = fields[i].sample;
8165 var->data.patch = fields[i].patch;
8166 var->data.stream = qual_stream;
8167 var->data.location = fields[i].location;
8168
8169 if (fields[i].location != -1)
8170 var->data.explicit_location = true;
8171
8172 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8173 var->data.xfb_buffer = fields[i].xfb_buffer;
8174
8175 if (fields[i].offset != -1)
8176 var->data.explicit_xfb_offset = true;
8177 var->data.offset = fields[i].offset;
8178
8179 var->init_interface_type(block_type);
8180
8181 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8182 var->data.read_only = true;
8183
8184 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8185 if (state->es_shader) {
8186 var->data.precision =
8187 select_gles_precision(fields[i].precision, fields[i].type,
8188 state, &loc);
8189 }
8190
8191 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8192 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8193 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8194 } else {
8195 var->data.matrix_layout = fields[i].matrix_layout;
8196 }
8197
8198 if (var->data.mode == ir_var_shader_storage)
8199 apply_memory_qualifiers(var, fields[i]);
8200
8201 /* Examine var name here since var may get deleted in the next call */
8202 bool var_is_gl_id = is_gl_identifier(var->name);
8203
8204 if (redeclaring_per_vertex) {
8205 bool is_redeclaration;
8206 var =
8207 get_variable_being_redeclared(&var, loc, state,
8208 true /* allow_all_redeclarations */,
8209 &is_redeclaration);
8210 if (!var_is_gl_id || !is_redeclaration) {
8211 _mesa_glsl_error(&loc, state,
8212 "redeclaration of gl_PerVertex can only "
8213 "include built-in variables");
8214 } else if (var->data.how_declared == ir_var_declared_normally) {
8215 _mesa_glsl_error(&loc, state,
8216 "`%s' has already been redeclared",
8217 var->name);
8218 } else {
8219 var->data.how_declared = ir_var_declared_in_block;
8220 var->reinit_interface_type(block_type);
8221 }
8222 continue;
8223 }
8224
8225 if (state->symbols->get_variable(var->name) != NULL)
8226 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8227
8228 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8229 * The UBO declaration itself doesn't get an ir_variable unless it
8230 * has an instance name. This is ugly.
8231 */
8232 if (this->layout.flags.q.explicit_binding) {
8233 apply_explicit_binding(state, &loc, var,
8234 var->get_interface_type(), &this->layout);
8235 }
8236
8237 if (var->type->is_unsized_array()) {
8238 if (var->is_in_shader_storage_block() &&
8239 is_unsized_array_last_element(var)) {
8240 var->data.from_ssbo_unsized_array = true;
8241 } else {
8242 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8243 *
8244 * "If an array is declared as the last member of a shader storage
8245 * block and the size is not specified at compile-time, it is
8246 * sized at run-time. In all other cases, arrays are sized only
8247 * at compile-time."
8248 *
8249 * In desktop GLSL it is allowed to have unsized-arrays that are
8250 * not last, as long as we can determine that they are implicitly
8251 * sized.
8252 */
8253 if (state->es_shader) {
8254 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8255 "definition: only last member of a shader "
8256 "storage block can be defined as unsized "
8257 "array", fields[i].name);
8258 }
8259 }
8260 }
8261
8262 state->symbols->add_variable(var);
8263 instructions->push_tail(var);
8264 }
8265
8266 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8267 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8268 *
8269 * It is also a compilation error ... to redeclare a built-in
8270 * block and then use a member from that built-in block that was
8271 * not included in the redeclaration.
8272 *
8273 * This appears to be a clarification to the behaviour established
8274 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8275 * behaviour regardless of GLSL version.
8276 *
8277 * To prevent the shader from using a member that was not included in
8278 * the redeclaration, we disable any ir_variables that are still
8279 * associated with the old declaration of gl_PerVertex (since we've
8280 * already updated all of the variables contained in the new
8281 * gl_PerVertex to point to it).
8282 *
8283 * As a side effect this will prevent
8284 * validate_intrastage_interface_blocks() from getting confused and
8285 * thinking there are conflicting definitions of gl_PerVertex in the
8286 * shader.
8287 */
8288 foreach_in_list_safe(ir_instruction, node, instructions) {
8289 ir_variable *const var = node->as_variable();
8290 if (var != NULL &&
8291 var->get_interface_type() == earlier_per_vertex &&
8292 var->data.mode == var_mode) {
8293 if (var->data.how_declared == ir_var_declared_normally) {
8294 _mesa_glsl_error(&loc, state,
8295 "redeclaration of gl_PerVertex cannot "
8296 "follow a redeclaration of `%s'",
8297 var->name);
8298 }
8299 state->symbols->disable_variable(var->name);
8300 var->remove();
8301 }
8302 }
8303 }
8304 }
8305
8306 return NULL;
8307 }
8308
8309
8310 ir_rvalue *
8311 ast_tcs_output_layout::hir(exec_list *instructions,
8312 struct _mesa_glsl_parse_state *state)
8313 {
8314 YYLTYPE loc = this->get_location();
8315
8316 unsigned num_vertices;
8317 if (!state->out_qualifier->vertices->
8318 process_qualifier_constant(state, "vertices", &num_vertices,
8319 false)) {
8320 /* return here to stop cascading incorrect error messages */
8321 return NULL;
8322 }
8323
8324 /* If any shader outputs occurred before this declaration and specified an
8325 * array size, make sure the size they specified is consistent with the
8326 * primitive type.
8327 */
8328 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8329 _mesa_glsl_error(&loc, state,
8330 "this tessellation control shader output layout "
8331 "specifies %u vertices, but a previous output "
8332 "is declared with size %u",
8333 num_vertices, state->tcs_output_size);
8334 return NULL;
8335 }
8336
8337 state->tcs_output_vertices_specified = true;
8338
8339 /* If any shader outputs occurred before this declaration and did not
8340 * specify an array size, their size is determined now.
8341 */
8342 foreach_in_list (ir_instruction, node, instructions) {
8343 ir_variable *var = node->as_variable();
8344 if (var == NULL || var->data.mode != ir_var_shader_out)
8345 continue;
8346
8347 /* Note: Not all tessellation control shader output are arrays. */
8348 if (!var->type->is_unsized_array() || var->data.patch)
8349 continue;
8350
8351 if (var->data.max_array_access >= (int)num_vertices) {
8352 _mesa_glsl_error(&loc, state,
8353 "this tessellation control shader output layout "
8354 "specifies %u vertices, but an access to element "
8355 "%u of output `%s' already exists", num_vertices,
8356 var->data.max_array_access, var->name);
8357 } else {
8358 var->type = glsl_type::get_array_instance(var->type->fields.array,
8359 num_vertices);
8360 }
8361 }
8362
8363 return NULL;
8364 }
8365
8366
8367 ir_rvalue *
8368 ast_gs_input_layout::hir(exec_list *instructions,
8369 struct _mesa_glsl_parse_state *state)
8370 {
8371 YYLTYPE loc = this->get_location();
8372
8373 /* Should have been prevented by the parser. */
8374 assert(!state->gs_input_prim_type_specified
8375 || state->in_qualifier->prim_type == this->prim_type);
8376
8377 /* If any shader inputs occurred before this declaration and specified an
8378 * array size, make sure the size they specified is consistent with the
8379 * primitive type.
8380 */
8381 unsigned num_vertices = vertices_per_prim(this->prim_type);
8382 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8383 _mesa_glsl_error(&loc, state,
8384 "this geometry shader input layout implies %u vertices"
8385 " per primitive, but a previous input is declared"
8386 " with size %u", num_vertices, state->gs_input_size);
8387 return NULL;
8388 }
8389
8390 state->gs_input_prim_type_specified = true;
8391
8392 /* If any shader inputs occurred before this declaration and did not
8393 * specify an array size, their size is determined now.
8394 */
8395 foreach_in_list(ir_instruction, node, instructions) {
8396 ir_variable *var = node->as_variable();
8397 if (var == NULL || var->data.mode != ir_var_shader_in)
8398 continue;
8399
8400 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8401 * array; skip it.
8402 */
8403
8404 if (var->type->is_unsized_array()) {
8405 if (var->data.max_array_access >= (int)num_vertices) {
8406 _mesa_glsl_error(&loc, state,
8407 "this geometry shader input layout implies %u"
8408 " vertices, but an access to element %u of input"
8409 " `%s' already exists", num_vertices,
8410 var->data.max_array_access, var->name);
8411 } else {
8412 var->type = glsl_type::get_array_instance(var->type->fields.array,
8413 num_vertices);
8414 }
8415 }
8416 }
8417
8418 return NULL;
8419 }
8420
8421
8422 ir_rvalue *
8423 ast_cs_input_layout::hir(exec_list *instructions,
8424 struct _mesa_glsl_parse_state *state)
8425 {
8426 YYLTYPE loc = this->get_location();
8427
8428 /* From the ARB_compute_shader specification:
8429 *
8430 * If the local size of the shader in any dimension is greater
8431 * than the maximum size supported by the implementation for that
8432 * dimension, a compile-time error results.
8433 *
8434 * It is not clear from the spec how the error should be reported if
8435 * the total size of the work group exceeds
8436 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8437 * report it at compile time as well.
8438 */
8439 GLuint64 total_invocations = 1;
8440 unsigned qual_local_size[3];
8441 for (int i = 0; i < 3; i++) {
8442
8443 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8444 'x' + i);
8445 /* Infer a local_size of 1 for unspecified dimensions */
8446 if (this->local_size[i] == NULL) {
8447 qual_local_size[i] = 1;
8448 } else if (!this->local_size[i]->
8449 process_qualifier_constant(state, local_size_str,
8450 &qual_local_size[i], false)) {
8451 ralloc_free(local_size_str);
8452 return NULL;
8453 }
8454 ralloc_free(local_size_str);
8455
8456 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8457 _mesa_glsl_error(&loc, state,
8458 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8459 " (%d)", 'x' + i,
8460 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8461 break;
8462 }
8463 total_invocations *= qual_local_size[i];
8464 if (total_invocations >
8465 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8466 _mesa_glsl_error(&loc, state,
8467 "product of local_sizes exceeds "
8468 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8469 state->ctx->Const.MaxComputeWorkGroupInvocations);
8470 break;
8471 }
8472 }
8473
8474 /* If any compute input layout declaration preceded this one, make sure it
8475 * was consistent with this one.
8476 */
8477 if (state->cs_input_local_size_specified) {
8478 for (int i = 0; i < 3; i++) {
8479 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8480 _mesa_glsl_error(&loc, state,
8481 "compute shader input layout does not match"
8482 " previous declaration");
8483 return NULL;
8484 }
8485 }
8486 }
8487
8488 /* The ARB_compute_variable_group_size spec says:
8489 *
8490 * If a compute shader including a *local_size_variable* qualifier also
8491 * declares a fixed local group size using the *local_size_x*,
8492 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8493 * results
8494 */
8495 if (state->cs_input_local_size_variable_specified) {
8496 _mesa_glsl_error(&loc, state,
8497 "compute shader can't include both a variable and a "
8498 "fixed local group size");
8499 return NULL;
8500 }
8501
8502 state->cs_input_local_size_specified = true;
8503 for (int i = 0; i < 3; i++)
8504 state->cs_input_local_size[i] = qual_local_size[i];
8505
8506 /* We may now declare the built-in constant gl_WorkGroupSize (see
8507 * builtin_variable_generator::generate_constants() for why we didn't
8508 * declare it earlier).
8509 */
8510 ir_variable *var = new(state->symbols)
8511 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8512 var->data.how_declared = ir_var_declared_implicitly;
8513 var->data.read_only = true;
8514 instructions->push_tail(var);
8515 state->symbols->add_variable(var);
8516 ir_constant_data data;
8517 memset(&data, 0, sizeof(data));
8518 for (int i = 0; i < 3; i++)
8519 data.u[i] = qual_local_size[i];
8520 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8521 var->constant_initializer =
8522 new(var) ir_constant(glsl_type::uvec3_type, &data);
8523 var->data.has_initializer = true;
8524
8525 return NULL;
8526 }
8527
8528
8529 static void
8530 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8531 exec_list *instructions)
8532 {
8533 bool gl_FragColor_assigned = false;
8534 bool gl_FragData_assigned = false;
8535 bool gl_FragSecondaryColor_assigned = false;
8536 bool gl_FragSecondaryData_assigned = false;
8537 bool user_defined_fs_output_assigned = false;
8538 ir_variable *user_defined_fs_output = NULL;
8539
8540 /* It would be nice to have proper location information. */
8541 YYLTYPE loc;
8542 memset(&loc, 0, sizeof(loc));
8543
8544 foreach_in_list(ir_instruction, node, instructions) {
8545 ir_variable *var = node->as_variable();
8546
8547 if (!var || !var->data.assigned)
8548 continue;
8549
8550 if (strcmp(var->name, "gl_FragColor") == 0)
8551 gl_FragColor_assigned = true;
8552 else if (strcmp(var->name, "gl_FragData") == 0)
8553 gl_FragData_assigned = true;
8554 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8555 gl_FragSecondaryColor_assigned = true;
8556 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8557 gl_FragSecondaryData_assigned = true;
8558 else if (!is_gl_identifier(var->name)) {
8559 if (state->stage == MESA_SHADER_FRAGMENT &&
8560 var->data.mode == ir_var_shader_out) {
8561 user_defined_fs_output_assigned = true;
8562 user_defined_fs_output = var;
8563 }
8564 }
8565 }
8566
8567 /* From the GLSL 1.30 spec:
8568 *
8569 * "If a shader statically assigns a value to gl_FragColor, it
8570 * may not assign a value to any element of gl_FragData. If a
8571 * shader statically writes a value to any element of
8572 * gl_FragData, it may not assign a value to
8573 * gl_FragColor. That is, a shader may assign values to either
8574 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8575 * linked together must also consistently write just one of
8576 * these variables. Similarly, if user declared output
8577 * variables are in use (statically assigned to), then the
8578 * built-in variables gl_FragColor and gl_FragData may not be
8579 * assigned to. These incorrect usages all generate compile
8580 * time errors."
8581 */
8582 if (gl_FragColor_assigned && gl_FragData_assigned) {
8583 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8584 "`gl_FragColor' and `gl_FragData'");
8585 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8586 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8587 "`gl_FragColor' and `%s'",
8588 user_defined_fs_output->name);
8589 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8590 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8591 "`gl_FragSecondaryColorEXT' and"
8592 " `gl_FragSecondaryDataEXT'");
8593 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8594 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8595 "`gl_FragColor' and"
8596 " `gl_FragSecondaryDataEXT'");
8597 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8598 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8599 "`gl_FragData' and"
8600 " `gl_FragSecondaryColorEXT'");
8601 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8602 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8603 "`gl_FragData' and `%s'",
8604 user_defined_fs_output->name);
8605 }
8606
8607 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8608 !state->EXT_blend_func_extended_enable) {
8609 _mesa_glsl_error(&loc, state,
8610 "Dual source blending requires EXT_blend_func_extended");
8611 }
8612 }
8613
8614
8615 static void
8616 remove_per_vertex_blocks(exec_list *instructions,
8617 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8618 {
8619 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8620 * if it exists in this shader type.
8621 */
8622 const glsl_type *per_vertex = NULL;
8623 switch (mode) {
8624 case ir_var_shader_in:
8625 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8626 per_vertex = gl_in->get_interface_type();
8627 break;
8628 case ir_var_shader_out:
8629 if (ir_variable *gl_Position =
8630 state->symbols->get_variable("gl_Position")) {
8631 per_vertex = gl_Position->get_interface_type();
8632 }
8633 break;
8634 default:
8635 assert(!"Unexpected mode");
8636 break;
8637 }
8638
8639 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8640 * need to do anything.
8641 */
8642 if (per_vertex == NULL)
8643 return;
8644
8645 /* If the interface block is used by the shader, then we don't need to do
8646 * anything.
8647 */
8648 interface_block_usage_visitor v(mode, per_vertex);
8649 v.run(instructions);
8650 if (v.usage_found())
8651 return;
8652
8653 /* Remove any ir_variable declarations that refer to the interface block
8654 * we're removing.
8655 */
8656 foreach_in_list_safe(ir_instruction, node, instructions) {
8657 ir_variable *const var = node->as_variable();
8658 if (var != NULL && var->get_interface_type() == per_vertex &&
8659 var->data.mode == mode) {
8660 state->symbols->disable_variable(var->name);
8661 var->remove();
8662 }
8663 }
8664 }