glsl: reject image qualifiers with non-image types inside uniform blocks
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have image_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (image_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.image_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.image_read_only))) {
951 /* We can have image_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (image_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue()) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value();
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 exec_list dummy_instructions;
2233
2234 ast_node *array_size = exec_node_data(ast_node, node, link);
2235
2236 /**
2237 * Dimensions other than the outermost dimension can by unsized if they
2238 * are immediately sized by a constructor or initializer.
2239 */
2240 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2241 return 0;
2242
2243 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2244 YYLTYPE loc = array_size->get_location();
2245
2246 if (ir == NULL) {
2247 _mesa_glsl_error(& loc, state,
2248 "array size could not be resolved");
2249 return 0;
2250 }
2251
2252 if (!ir->type->is_integer()) {
2253 _mesa_glsl_error(& loc, state,
2254 "array size must be integer type");
2255 return 0;
2256 }
2257
2258 if (!ir->type->is_scalar()) {
2259 _mesa_glsl_error(& loc, state,
2260 "array size must be scalar type");
2261 return 0;
2262 }
2263
2264 ir_constant *const size = ir->constant_expression_value();
2265 if (size == NULL ||
2266 (state->is_version(120, 300) &&
2267 array_size->has_sequence_subexpression())) {
2268 _mesa_glsl_error(& loc, state, "array size must be a "
2269 "constant valued expression");
2270 return 0;
2271 }
2272
2273 if (size->value.i[0] <= 0) {
2274 _mesa_glsl_error(& loc, state, "array size must be > 0");
2275 return 0;
2276 }
2277
2278 assert(size->type == ir->type);
2279
2280 /* If the array size is const (and we've verified that
2281 * it is) then no instructions should have been emitted
2282 * when we converted it to HIR. If they were emitted,
2283 * then either the array size isn't const after all, or
2284 * we are emitting unnecessary instructions.
2285 */
2286 assert(dummy_instructions.is_empty());
2287
2288 return size->value.u[0];
2289 }
2290
2291 static const glsl_type *
2292 process_array_type(YYLTYPE *loc, const glsl_type *base,
2293 ast_array_specifier *array_specifier,
2294 struct _mesa_glsl_parse_state *state)
2295 {
2296 const glsl_type *array_type = base;
2297
2298 if (array_specifier != NULL) {
2299 if (base->is_array()) {
2300
2301 /* From page 19 (page 25) of the GLSL 1.20 spec:
2302 *
2303 * "Only one-dimensional arrays may be declared."
2304 */
2305 if (!state->check_arrays_of_arrays_allowed(loc)) {
2306 return glsl_type::error_type;
2307 }
2308 }
2309
2310 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2311 !node->is_head_sentinel(); node = node->prev) {
2312 unsigned array_size = process_array_size(node, state);
2313 array_type = glsl_type::get_array_instance(array_type, array_size);
2314 }
2315 }
2316
2317 return array_type;
2318 }
2319
2320 static bool
2321 precision_qualifier_allowed(const glsl_type *type)
2322 {
2323 /* Precision qualifiers apply to floating point, integer and opaque
2324 * types.
2325 *
2326 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2327 * "Any floating point or any integer declaration can have the type
2328 * preceded by one of these precision qualifiers [...] Literal
2329 * constants do not have precision qualifiers. Neither do Boolean
2330 * variables.
2331 *
2332 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2333 * spec also says:
2334 *
2335 * "Precision qualifiers are added for code portability with OpenGL
2336 * ES, not for functionality. They have the same syntax as in OpenGL
2337 * ES."
2338 *
2339 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2340 *
2341 * "uniform lowp sampler2D sampler;
2342 * highp vec2 coord;
2343 * ...
2344 * lowp vec4 col = texture2D (sampler, coord);
2345 * // texture2D returns lowp"
2346 *
2347 * From this, we infer that GLSL 1.30 (and later) should allow precision
2348 * qualifiers on sampler types just like float and integer types.
2349 */
2350 const glsl_type *const t = type->without_array();
2351
2352 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2353 !t->is_record();
2354 }
2355
2356 const glsl_type *
2357 ast_type_specifier::glsl_type(const char **name,
2358 struct _mesa_glsl_parse_state *state) const
2359 {
2360 const struct glsl_type *type;
2361
2362 type = state->symbols->get_type(this->type_name);
2363 *name = this->type_name;
2364
2365 YYLTYPE loc = this->get_location();
2366 type = process_array_type(&loc, type, this->array_specifier, state);
2367
2368 return type;
2369 }
2370
2371 /**
2372 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2373 *
2374 * "The precision statement
2375 *
2376 * precision precision-qualifier type;
2377 *
2378 * can be used to establish a default precision qualifier. The type field can
2379 * be either int or float or any of the sampler types, (...) If type is float,
2380 * the directive applies to non-precision-qualified floating point type
2381 * (scalar, vector, and matrix) declarations. If type is int, the directive
2382 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2383 * and unsigned) declarations."
2384 *
2385 * We use the symbol table to keep the values of the default precisions for
2386 * each 'type' in each scope and we use the 'type' string from the precision
2387 * statement as key in the symbol table. When we want to retrieve the default
2388 * precision associated with a given glsl_type we need to know the type string
2389 * associated with it. This is what this function returns.
2390 */
2391 static const char *
2392 get_type_name_for_precision_qualifier(const glsl_type *type)
2393 {
2394 switch (type->base_type) {
2395 case GLSL_TYPE_FLOAT:
2396 return "float";
2397 case GLSL_TYPE_UINT:
2398 case GLSL_TYPE_INT:
2399 return "int";
2400 case GLSL_TYPE_ATOMIC_UINT:
2401 return "atomic_uint";
2402 case GLSL_TYPE_IMAGE:
2403 /* fallthrough */
2404 case GLSL_TYPE_SAMPLER: {
2405 const unsigned type_idx =
2406 type->sampler_array + 2 * type->sampler_shadow;
2407 const unsigned offset = type->is_sampler() ? 0 : 4;
2408 assert(type_idx < 4);
2409 switch (type->sampled_type) {
2410 case GLSL_TYPE_FLOAT:
2411 switch (type->sampler_dimensionality) {
2412 case GLSL_SAMPLER_DIM_1D: {
2413 assert(type->is_sampler());
2414 static const char *const names[4] = {
2415 "sampler1D", "sampler1DArray",
2416 "sampler1DShadow", "sampler1DArrayShadow"
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_2D: {
2421 static const char *const names[8] = {
2422 "sampler2D", "sampler2DArray",
2423 "sampler2DShadow", "sampler2DArrayShadow",
2424 "image2D", "image2DArray", NULL, NULL
2425 };
2426 return names[offset + type_idx];
2427 }
2428 case GLSL_SAMPLER_DIM_3D: {
2429 static const char *const names[8] = {
2430 "sampler3D", NULL, NULL, NULL,
2431 "image3D", NULL, NULL, NULL
2432 };
2433 return names[offset + type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_CUBE: {
2436 static const char *const names[8] = {
2437 "samplerCube", "samplerCubeArray",
2438 "samplerCubeShadow", "samplerCubeArrayShadow",
2439 "imageCube", NULL, NULL, NULL
2440 };
2441 return names[offset + type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_MS: {
2444 assert(type->is_sampler());
2445 static const char *const names[4] = {
2446 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_RECT: {
2451 assert(type->is_sampler());
2452 static const char *const names[4] = {
2453 "samplerRect", NULL, "samplerRectShadow", NULL
2454 };
2455 return names[type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_BUF: {
2458 static const char *const names[8] = {
2459 "samplerBuffer", NULL, NULL, NULL,
2460 "imageBuffer", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_EXTERNAL: {
2465 assert(type->is_sampler());
2466 static const char *const names[4] = {
2467 "samplerExternalOES", NULL, NULL, NULL
2468 };
2469 return names[type_idx];
2470 }
2471 default:
2472 unreachable("Unsupported sampler/image dimensionality");
2473 } /* sampler/image float dimensionality */
2474 break;
2475 case GLSL_TYPE_INT:
2476 switch (type->sampler_dimensionality) {
2477 case GLSL_SAMPLER_DIM_1D: {
2478 assert(type->is_sampler());
2479 static const char *const names[4] = {
2480 "isampler1D", "isampler1DArray", NULL, NULL
2481 };
2482 return names[type_idx];
2483 }
2484 case GLSL_SAMPLER_DIM_2D: {
2485 static const char *const names[8] = {
2486 "isampler2D", "isampler2DArray", NULL, NULL,
2487 "iimage2D", "iimage2DArray", NULL, NULL
2488 };
2489 return names[offset + type_idx];
2490 }
2491 case GLSL_SAMPLER_DIM_3D: {
2492 static const char *const names[8] = {
2493 "isampler3D", NULL, NULL, NULL,
2494 "iimage3D", NULL, NULL, NULL
2495 };
2496 return names[offset + type_idx];
2497 }
2498 case GLSL_SAMPLER_DIM_CUBE: {
2499 static const char *const names[8] = {
2500 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2501 "iimageCube", NULL, NULL, NULL
2502 };
2503 return names[offset + type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_MS: {
2506 assert(type->is_sampler());
2507 static const char *const names[4] = {
2508 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2509 };
2510 return names[type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_RECT: {
2513 assert(type->is_sampler());
2514 static const char *const names[4] = {
2515 "isamplerRect", NULL, "isamplerRectShadow", NULL
2516 };
2517 return names[type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_BUF: {
2520 static const char *const names[8] = {
2521 "isamplerBuffer", NULL, NULL, NULL,
2522 "iimageBuffer", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 default:
2527 unreachable("Unsupported isampler/iimage dimensionality");
2528 } /* sampler/image int dimensionality */
2529 break;
2530 case GLSL_TYPE_UINT:
2531 switch (type->sampler_dimensionality) {
2532 case GLSL_SAMPLER_DIM_1D: {
2533 assert(type->is_sampler());
2534 static const char *const names[4] = {
2535 "usampler1D", "usampler1DArray", NULL, NULL
2536 };
2537 return names[type_idx];
2538 }
2539 case GLSL_SAMPLER_DIM_2D: {
2540 static const char *const names[8] = {
2541 "usampler2D", "usampler2DArray", NULL, NULL,
2542 "uimage2D", "uimage2DArray", NULL, NULL
2543 };
2544 return names[offset + type_idx];
2545 }
2546 case GLSL_SAMPLER_DIM_3D: {
2547 static const char *const names[8] = {
2548 "usampler3D", NULL, NULL, NULL,
2549 "uimage3D", NULL, NULL, NULL
2550 };
2551 return names[offset + type_idx];
2552 }
2553 case GLSL_SAMPLER_DIM_CUBE: {
2554 static const char *const names[8] = {
2555 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2556 "uimageCube", NULL, NULL, NULL
2557 };
2558 return names[offset + type_idx];
2559 }
2560 case GLSL_SAMPLER_DIM_MS: {
2561 assert(type->is_sampler());
2562 static const char *const names[4] = {
2563 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2564 };
2565 return names[type_idx];
2566 }
2567 case GLSL_SAMPLER_DIM_RECT: {
2568 assert(type->is_sampler());
2569 static const char *const names[4] = {
2570 "usamplerRect", NULL, "usamplerRectShadow", NULL
2571 };
2572 return names[type_idx];
2573 }
2574 case GLSL_SAMPLER_DIM_BUF: {
2575 static const char *const names[8] = {
2576 "usamplerBuffer", NULL, NULL, NULL,
2577 "uimageBuffer", NULL, NULL, NULL
2578 };
2579 return names[offset + type_idx];
2580 }
2581 default:
2582 unreachable("Unsupported usampler/uimage dimensionality");
2583 } /* sampler/image uint dimensionality */
2584 break;
2585 default:
2586 unreachable("Unsupported sampler/image type");
2587 } /* sampler/image type */
2588 break;
2589 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2590 break;
2591 default:
2592 unreachable("Unsupported type");
2593 } /* base type */
2594 }
2595
2596 static unsigned
2597 select_gles_precision(unsigned qual_precision,
2598 const glsl_type *type,
2599 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2600 {
2601 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2602 * In GLES we take the precision from the type qualifier if present,
2603 * otherwise, if the type of the variable allows precision qualifiers at
2604 * all, we look for the default precision qualifier for that type in the
2605 * current scope.
2606 */
2607 assert(state->es_shader);
2608
2609 unsigned precision = GLSL_PRECISION_NONE;
2610 if (qual_precision) {
2611 precision = qual_precision;
2612 } else if (precision_qualifier_allowed(type)) {
2613 const char *type_name =
2614 get_type_name_for_precision_qualifier(type->without_array());
2615 assert(type_name != NULL);
2616
2617 precision =
2618 state->symbols->get_default_precision_qualifier(type_name);
2619 if (precision == ast_precision_none) {
2620 _mesa_glsl_error(loc, state,
2621 "No precision specified in this scope for type `%s'",
2622 type->name);
2623 }
2624 }
2625
2626
2627 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2628 *
2629 * "The default precision of all atomic types is highp. It is an error to
2630 * declare an atomic type with a different precision or to specify the
2631 * default precision for an atomic type to be lowp or mediump."
2632 */
2633 if (type->is_atomic_uint() && precision != ast_precision_high) {
2634 _mesa_glsl_error(loc, state,
2635 "atomic_uint can only have highp precision qualifier");
2636 }
2637
2638 return precision;
2639 }
2640
2641 const glsl_type *
2642 ast_fully_specified_type::glsl_type(const char **name,
2643 struct _mesa_glsl_parse_state *state) const
2644 {
2645 return this->specifier->glsl_type(name, state);
2646 }
2647
2648 /**
2649 * Determine whether a toplevel variable declaration declares a varying. This
2650 * function operates by examining the variable's mode and the shader target,
2651 * so it correctly identifies linkage variables regardless of whether they are
2652 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2653 *
2654 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2655 * this function will produce undefined results.
2656 */
2657 static bool
2658 is_varying_var(ir_variable *var, gl_shader_stage target)
2659 {
2660 switch (target) {
2661 case MESA_SHADER_VERTEX:
2662 return var->data.mode == ir_var_shader_out;
2663 case MESA_SHADER_FRAGMENT:
2664 return var->data.mode == ir_var_shader_in;
2665 default:
2666 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2667 }
2668 }
2669
2670 static bool
2671 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2672 {
2673 if (is_varying_var(var, state->stage))
2674 return true;
2675
2676 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2677 * "Only variables output from a vertex shader can be candidates
2678 * for invariance".
2679 */
2680 if (!state->is_version(130, 0))
2681 return false;
2682
2683 /*
2684 * Later specs remove this language - so allowed invariant
2685 * on fragment shader outputs as well.
2686 */
2687 if (state->stage == MESA_SHADER_FRAGMENT &&
2688 var->data.mode == ir_var_shader_out)
2689 return true;
2690 return false;
2691 }
2692
2693 /**
2694 * Matrix layout qualifiers are only allowed on certain types
2695 */
2696 static void
2697 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2698 YYLTYPE *loc,
2699 const glsl_type *type,
2700 ir_variable *var)
2701 {
2702 if (var && !var->is_in_buffer_block()) {
2703 /* Layout qualifiers may only apply to interface blocks and fields in
2704 * them.
2705 */
2706 _mesa_glsl_error(loc, state,
2707 "uniform block layout qualifiers row_major and "
2708 "column_major may not be applied to variables "
2709 "outside of uniform blocks");
2710 } else if (!type->without_array()->is_matrix()) {
2711 /* The OpenGL ES 3.0 conformance tests did not originally allow
2712 * matrix layout qualifiers on non-matrices. However, the OpenGL
2713 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2714 * amended to specifically allow these layouts on all types. Emit
2715 * a warning so that people know their code may not be portable.
2716 */
2717 _mesa_glsl_warning(loc, state,
2718 "uniform block layout qualifiers row_major and "
2719 "column_major applied to non-matrix types may "
2720 "be rejected by older compilers");
2721 }
2722 }
2723
2724 static bool
2725 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2726 struct _mesa_glsl_parse_state *state,
2727 unsigned xfb_buffer) {
2728 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2729 _mesa_glsl_error(loc, state,
2730 "invalid xfb_buffer specified %d is larger than "
2731 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2732 xfb_buffer,
2733 state->Const.MaxTransformFeedbackBuffers - 1);
2734 return false;
2735 }
2736
2737 return true;
2738 }
2739
2740 /* From the ARB_enhanced_layouts spec:
2741 *
2742 * "Variables and block members qualified with *xfb_offset* can be
2743 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2744 * The offset must be a multiple of the size of the first component of
2745 * the first qualified variable or block member, or a compile-time error
2746 * results. Further, if applied to an aggregate containing a double,
2747 * the offset must also be a multiple of 8, and the space taken in the
2748 * buffer will be a multiple of 8.
2749 */
2750 static bool
2751 validate_xfb_offset_qualifier(YYLTYPE *loc,
2752 struct _mesa_glsl_parse_state *state,
2753 int xfb_offset, const glsl_type *type,
2754 unsigned component_size) {
2755 const glsl_type *t_without_array = type->without_array();
2756
2757 if (xfb_offset != -1 && type->is_unsized_array()) {
2758 _mesa_glsl_error(loc, state,
2759 "xfb_offset can't be used with unsized arrays.");
2760 return false;
2761 }
2762
2763 /* Make sure nested structs don't contain unsized arrays, and validate
2764 * any xfb_offsets on interface members.
2765 */
2766 if (t_without_array->is_record() || t_without_array->is_interface())
2767 for (unsigned int i = 0; i < t_without_array->length; i++) {
2768 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2769
2770 /* When the interface block doesn't have an xfb_offset qualifier then
2771 * we apply the component size rules at the member level.
2772 */
2773 if (xfb_offset == -1)
2774 component_size = member_t->contains_double() ? 8 : 4;
2775
2776 int xfb_offset = t_without_array->fields.structure[i].offset;
2777 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2778 component_size);
2779 }
2780
2781 /* Nested structs or interface block without offset may not have had an
2782 * offset applied yet so return.
2783 */
2784 if (xfb_offset == -1) {
2785 return true;
2786 }
2787
2788 if (xfb_offset % component_size) {
2789 _mesa_glsl_error(loc, state,
2790 "invalid qualifier xfb_offset=%d must be a multiple "
2791 "of the first component size of the first qualified "
2792 "variable or block member. Or double if an aggregate "
2793 "that contains a double (%d).",
2794 xfb_offset, component_size);
2795 return false;
2796 }
2797
2798 return true;
2799 }
2800
2801 static bool
2802 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2803 unsigned stream)
2804 {
2805 if (stream >= state->ctx->Const.MaxVertexStreams) {
2806 _mesa_glsl_error(loc, state,
2807 "invalid stream specified %d is larger than "
2808 "MAX_VERTEX_STREAMS - 1 (%d).",
2809 stream, state->ctx->Const.MaxVertexStreams - 1);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 static void
2817 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2818 YYLTYPE *loc,
2819 ir_variable *var,
2820 const glsl_type *type,
2821 const ast_type_qualifier *qual)
2822 {
2823 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2824 _mesa_glsl_error(loc, state,
2825 "the \"binding\" qualifier only applies to uniforms and "
2826 "shader storage buffer objects");
2827 return;
2828 }
2829
2830 unsigned qual_binding;
2831 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2832 &qual_binding)) {
2833 return;
2834 }
2835
2836 const struct gl_context *const ctx = state->ctx;
2837 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2838 unsigned max_index = qual_binding + elements - 1;
2839 const glsl_type *base_type = type->without_array();
2840
2841 if (base_type->is_interface()) {
2842 /* UBOs. From page 60 of the GLSL 4.20 specification:
2843 * "If the binding point for any uniform block instance is less than zero,
2844 * or greater than or equal to the implementation-dependent maximum
2845 * number of uniform buffer bindings, a compilation error will occur.
2846 * When the binding identifier is used with a uniform block instanced as
2847 * an array of size N, all elements of the array from binding through
2848 * binding + N – 1 must be within this range."
2849 *
2850 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2851 */
2852 if (qual->flags.q.uniform &&
2853 max_index >= ctx->Const.MaxUniformBufferBindings) {
2854 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2855 "the maximum number of UBO binding points (%d)",
2856 qual_binding, elements,
2857 ctx->Const.MaxUniformBufferBindings);
2858 return;
2859 }
2860
2861 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2862 * "If the binding point for any uniform or shader storage block instance
2863 * is less than zero, or greater than or equal to the
2864 * implementation-dependent maximum number of uniform buffer bindings, a
2865 * compile-time error will occur. When the binding identifier is used
2866 * with a uniform or shader storage block instanced as an array of size
2867 * N, all elements of the array from binding through binding + N – 1 must
2868 * be within this range."
2869 */
2870 if (qual->flags.q.buffer &&
2871 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2872 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2873 "the maximum number of SSBO binding points (%d)",
2874 qual_binding, elements,
2875 ctx->Const.MaxShaderStorageBufferBindings);
2876 return;
2877 }
2878 } else if (base_type->is_sampler()) {
2879 /* Samplers. From page 63 of the GLSL 4.20 specification:
2880 * "If the binding is less than zero, or greater than or equal to the
2881 * implementation-dependent maximum supported number of units, a
2882 * compilation error will occur. When the binding identifier is used
2883 * with an array of size N, all elements of the array from binding
2884 * through binding + N - 1 must be within this range."
2885 */
2886 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2887
2888 if (max_index >= limit) {
2889 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2890 "exceeds the maximum number of texture image units "
2891 "(%u)", qual_binding, elements, limit);
2892
2893 return;
2894 }
2895 } else if (base_type->contains_atomic()) {
2896 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2897 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2899 " maximum number of atomic counter buffer bindings"
2900 "(%u)", qual_binding,
2901 ctx->Const.MaxAtomicBufferBindings);
2902
2903 return;
2904 }
2905 } else if ((state->is_version(420, 310) ||
2906 state->ARB_shading_language_420pack_enable) &&
2907 base_type->is_image()) {
2908 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2909 if (max_index >= ctx->Const.MaxImageUnits) {
2910 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2911 " maximum number of image units (%d)", max_index,
2912 ctx->Const.MaxImageUnits);
2913 return;
2914 }
2915
2916 } else {
2917 _mesa_glsl_error(loc, state,
2918 "the \"binding\" qualifier only applies to uniform "
2919 "blocks, opaque variables, or arrays thereof");
2920 return;
2921 }
2922
2923 var->data.explicit_binding = true;
2924 var->data.binding = qual_binding;
2925
2926 return;
2927 }
2928
2929 static void
2930 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2931 YYLTYPE *loc,
2932 const glsl_interp_mode interpolation,
2933 const struct glsl_type *var_type,
2934 ir_variable_mode mode)
2935 {
2936 if (state->stage != MESA_SHADER_FRAGMENT ||
2937 interpolation == INTERP_MODE_FLAT ||
2938 mode != ir_var_shader_in)
2939 return;
2940
2941 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2942 * so must integer vertex outputs.
2943 *
2944 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2945 * "Fragment shader inputs that are signed or unsigned integers or
2946 * integer vectors must be qualified with the interpolation qualifier
2947 * flat."
2948 *
2949 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2950 * "Fragment shader inputs that are, or contain, signed or unsigned
2951 * integers or integer vectors must be qualified with the
2952 * interpolation qualifier flat."
2953 *
2954 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2955 * "Vertex shader outputs that are, or contain, signed or unsigned
2956 * integers or integer vectors must be qualified with the
2957 * interpolation qualifier flat."
2958 *
2959 * Note that prior to GLSL 1.50, this requirement applied to vertex
2960 * outputs rather than fragment inputs. That creates problems in the
2961 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2962 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2963 * apply the restriction to both vertex outputs and fragment inputs.
2964 *
2965 * Note also that the desktop GLSL specs are missing the text "or
2966 * contain"; this is presumably an oversight, since there is no
2967 * reasonable way to interpolate a fragment shader input that contains
2968 * an integer. See Khronos bug #15671.
2969 */
2970 if (state->is_version(130, 300)
2971 && var_type->contains_integer()) {
2972 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2973 "an integer, then it must be qualified with 'flat'");
2974 }
2975
2976 /* Double fragment inputs must be qualified with 'flat'.
2977 *
2978 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2979 * "This extension does not support interpolation of double-precision
2980 * values; doubles used as fragment shader inputs must be qualified as
2981 * "flat"."
2982 *
2983 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2984 * "Fragment shader inputs that are signed or unsigned integers, integer
2985 * vectors, or any double-precision floating-point type must be
2986 * qualified with the interpolation qualifier flat."
2987 *
2988 * Note that the GLSL specs are missing the text "or contain"; this is
2989 * presumably an oversight. See Khronos bug #15671.
2990 *
2991 * The 'double' type does not exist in GLSL ES so far.
2992 */
2993 if (state->has_double()
2994 && var_type->contains_double()) {
2995 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2996 "a double, then it must be qualified with 'flat'");
2997 }
2998 }
2999
3000 static void
3001 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3002 YYLTYPE *loc,
3003 const glsl_interp_mode interpolation,
3004 const struct ast_type_qualifier *qual,
3005 const struct glsl_type *var_type,
3006 ir_variable_mode mode)
3007 {
3008 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3009 * not to vertex shader inputs nor fragment shader outputs.
3010 *
3011 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3012 * "Outputs from a vertex shader (out) and inputs to a fragment
3013 * shader (in) can be further qualified with one or more of these
3014 * interpolation qualifiers"
3015 * ...
3016 * "These interpolation qualifiers may only precede the qualifiers in,
3017 * centroid in, out, or centroid out in a declaration. They do not apply
3018 * to the deprecated storage qualifiers varying or centroid
3019 * varying. They also do not apply to inputs into a vertex shader or
3020 * outputs from a fragment shader."
3021 *
3022 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3023 * "Outputs from a shader (out) and inputs to a shader (in) can be
3024 * further qualified with one of these interpolation qualifiers."
3025 * ...
3026 * "These interpolation qualifiers may only precede the qualifiers
3027 * in, centroid in, out, or centroid out in a declaration. They do
3028 * not apply to inputs into a vertex shader or outputs from a
3029 * fragment shader."
3030 */
3031 if (state->is_version(130, 300)
3032 && interpolation != INTERP_MODE_NONE) {
3033 const char *i = interpolation_string(interpolation);
3034 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3035 _mesa_glsl_error(loc, state,
3036 "interpolation qualifier `%s' can only be applied to "
3037 "shader inputs or outputs.", i);
3038
3039 switch (state->stage) {
3040 case MESA_SHADER_VERTEX:
3041 if (mode == ir_var_shader_in) {
3042 _mesa_glsl_error(loc, state,
3043 "interpolation qualifier '%s' cannot be applied to "
3044 "vertex shader inputs", i);
3045 }
3046 break;
3047 case MESA_SHADER_FRAGMENT:
3048 if (mode == ir_var_shader_out) {
3049 _mesa_glsl_error(loc, state,
3050 "interpolation qualifier '%s' cannot be applied to "
3051 "fragment shader outputs", i);
3052 }
3053 break;
3054 default:
3055 break;
3056 }
3057 }
3058
3059 /* Interpolation qualifiers cannot be applied to 'centroid' and
3060 * 'centroid varying'.
3061 *
3062 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3063 * "interpolation qualifiers may only precede the qualifiers in,
3064 * centroid in, out, or centroid out in a declaration. They do not apply
3065 * to the deprecated storage qualifiers varying or centroid varying."
3066 *
3067 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3068 */
3069 if (state->is_version(130, 0)
3070 && interpolation != INTERP_MODE_NONE
3071 && qual->flags.q.varying) {
3072
3073 const char *i = interpolation_string(interpolation);
3074 const char *s;
3075 if (qual->flags.q.centroid)
3076 s = "centroid varying";
3077 else
3078 s = "varying";
3079
3080 _mesa_glsl_error(loc, state,
3081 "qualifier '%s' cannot be applied to the "
3082 "deprecated storage qualifier '%s'", i, s);
3083 }
3084
3085 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3086 var_type, mode);
3087 }
3088
3089 static glsl_interp_mode
3090 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3091 const struct glsl_type *var_type,
3092 ir_variable_mode mode,
3093 struct _mesa_glsl_parse_state *state,
3094 YYLTYPE *loc)
3095 {
3096 glsl_interp_mode interpolation;
3097 if (qual->flags.q.flat)
3098 interpolation = INTERP_MODE_FLAT;
3099 else if (qual->flags.q.noperspective)
3100 interpolation = INTERP_MODE_NOPERSPECTIVE;
3101 else if (qual->flags.q.smooth)
3102 interpolation = INTERP_MODE_SMOOTH;
3103 else if (state->es_shader &&
3104 ((mode == ir_var_shader_in &&
3105 state->stage != MESA_SHADER_VERTEX) ||
3106 (mode == ir_var_shader_out &&
3107 state->stage != MESA_SHADER_FRAGMENT)))
3108 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3109 *
3110 * "When no interpolation qualifier is present, smooth interpolation
3111 * is used."
3112 */
3113 interpolation = INTERP_MODE_SMOOTH;
3114 else
3115 interpolation = INTERP_MODE_NONE;
3116
3117 validate_interpolation_qualifier(state, loc,
3118 interpolation,
3119 qual, var_type, mode);
3120
3121 return interpolation;
3122 }
3123
3124
3125 static void
3126 apply_explicit_location(const struct ast_type_qualifier *qual,
3127 ir_variable *var,
3128 struct _mesa_glsl_parse_state *state,
3129 YYLTYPE *loc)
3130 {
3131 bool fail = false;
3132
3133 unsigned qual_location;
3134 if (!process_qualifier_constant(state, loc, "location", qual->location,
3135 &qual_location)) {
3136 return;
3137 }
3138
3139 /* Checks for GL_ARB_explicit_uniform_location. */
3140 if (qual->flags.q.uniform) {
3141 if (!state->check_explicit_uniform_location_allowed(loc, var))
3142 return;
3143
3144 const struct gl_context *const ctx = state->ctx;
3145 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3146
3147 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3148 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3149 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3150 ctx->Const.MaxUserAssignableUniformLocations);
3151 return;
3152 }
3153
3154 var->data.explicit_location = true;
3155 var->data.location = qual_location;
3156 return;
3157 }
3158
3159 /* Between GL_ARB_explicit_attrib_location an
3160 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3161 * stage can be assigned explicit locations. The checking here associates
3162 * the correct extension with the correct stage's input / output:
3163 *
3164 * input output
3165 * ----- ------
3166 * vertex explicit_loc sso
3167 * tess control sso sso
3168 * tess eval sso sso
3169 * geometry sso sso
3170 * fragment sso explicit_loc
3171 */
3172 switch (state->stage) {
3173 case MESA_SHADER_VERTEX:
3174 if (var->data.mode == ir_var_shader_in) {
3175 if (!state->check_explicit_attrib_location_allowed(loc, var))
3176 return;
3177
3178 break;
3179 }
3180
3181 if (var->data.mode == ir_var_shader_out) {
3182 if (!state->check_separate_shader_objects_allowed(loc, var))
3183 return;
3184
3185 break;
3186 }
3187
3188 fail = true;
3189 break;
3190
3191 case MESA_SHADER_TESS_CTRL:
3192 case MESA_SHADER_TESS_EVAL:
3193 case MESA_SHADER_GEOMETRY:
3194 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3195 if (!state->check_separate_shader_objects_allowed(loc, var))
3196 return;
3197
3198 break;
3199 }
3200
3201 fail = true;
3202 break;
3203
3204 case MESA_SHADER_FRAGMENT:
3205 if (var->data.mode == ir_var_shader_in) {
3206 if (!state->check_separate_shader_objects_allowed(loc, var))
3207 return;
3208
3209 break;
3210 }
3211
3212 if (var->data.mode == ir_var_shader_out) {
3213 if (!state->check_explicit_attrib_location_allowed(loc, var))
3214 return;
3215
3216 break;
3217 }
3218
3219 fail = true;
3220 break;
3221
3222 case MESA_SHADER_COMPUTE:
3223 _mesa_glsl_error(loc, state,
3224 "compute shader variables cannot be given "
3225 "explicit locations");
3226 return;
3227 };
3228
3229 if (fail) {
3230 _mesa_glsl_error(loc, state,
3231 "%s cannot be given an explicit location in %s shader",
3232 mode_string(var),
3233 _mesa_shader_stage_to_string(state->stage));
3234 } else {
3235 var->data.explicit_location = true;
3236
3237 switch (state->stage) {
3238 case MESA_SHADER_VERTEX:
3239 var->data.location = (var->data.mode == ir_var_shader_in)
3240 ? (qual_location + VERT_ATTRIB_GENERIC0)
3241 : (qual_location + VARYING_SLOT_VAR0);
3242 break;
3243
3244 case MESA_SHADER_TESS_CTRL:
3245 case MESA_SHADER_TESS_EVAL:
3246 case MESA_SHADER_GEOMETRY:
3247 if (var->data.patch)
3248 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3249 else
3250 var->data.location = qual_location + VARYING_SLOT_VAR0;
3251 break;
3252
3253 case MESA_SHADER_FRAGMENT:
3254 var->data.location = (var->data.mode == ir_var_shader_out)
3255 ? (qual_location + FRAG_RESULT_DATA0)
3256 : (qual_location + VARYING_SLOT_VAR0);
3257 break;
3258 case MESA_SHADER_COMPUTE:
3259 assert(!"Unexpected shader type");
3260 break;
3261 }
3262
3263 /* Check if index was set for the uniform instead of the function */
3264 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3265 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3266 "used with subroutine functions");
3267 return;
3268 }
3269
3270 unsigned qual_index;
3271 if (qual->flags.q.explicit_index &&
3272 process_qualifier_constant(state, loc, "index", qual->index,
3273 &qual_index)) {
3274 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3275 * Layout Qualifiers):
3276 *
3277 * "It is also a compile-time error if a fragment shader
3278 * sets a layout index to less than 0 or greater than 1."
3279 *
3280 * Older specifications don't mandate a behavior; we take
3281 * this as a clarification and always generate the error.
3282 */
3283 if (qual_index > 1) {
3284 _mesa_glsl_error(loc, state,
3285 "explicit index may only be 0 or 1");
3286 } else {
3287 var->data.explicit_index = true;
3288 var->data.index = qual_index;
3289 }
3290 }
3291 }
3292 }
3293
3294 static bool
3295 validate_image_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3296 YYLTYPE *loc,
3297 const struct ast_type_qualifier *qual,
3298 const glsl_type *type)
3299 {
3300 if (!type->is_image()) {
3301 if (qual->flags.q.read_only ||
3302 qual->flags.q.write_only ||
3303 qual->flags.q.coherent ||
3304 qual->flags.q._volatile ||
3305 qual->flags.q.restrict_flag) {
3306 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3307 "to images");
3308 }
3309
3310 if (qual->flags.q.explicit_image_format) {
3311 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3312 "applied to images");
3313 }
3314 return false;
3315 }
3316 return true;
3317 }
3318
3319 static void
3320 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3321 ir_variable *var,
3322 struct _mesa_glsl_parse_state *state,
3323 YYLTYPE *loc)
3324 {
3325 const glsl_type *base_type = var->type->without_array();
3326
3327 if (!validate_image_qualifier_for_type(state, loc, qual, base_type))
3328 return;
3329
3330 if (var->data.mode != ir_var_uniform &&
3331 var->data.mode != ir_var_function_in) {
3332 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3333 "function parameters or uniform-qualified "
3334 "global variables");
3335 }
3336
3337 var->data.image_read_only |= qual->flags.q.read_only;
3338 var->data.image_write_only |= qual->flags.q.write_only;
3339 var->data.image_coherent |= qual->flags.q.coherent;
3340 var->data.image_volatile |= qual->flags.q._volatile;
3341 var->data.image_restrict |= qual->flags.q.restrict_flag;
3342 var->data.read_only = true;
3343
3344 if (qual->flags.q.explicit_image_format) {
3345 if (var->data.mode == ir_var_function_in) {
3346 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3347 "image function parameters");
3348 }
3349
3350 if (qual->image_base_type != base_type->sampled_type) {
3351 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3352 "data type of the image");
3353 }
3354
3355 var->data.image_format = qual->image_format;
3356 } else {
3357 if (var->data.mode == ir_var_uniform) {
3358 if (state->es_shader) {
3359 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3360 "format layout qualifier");
3361 } else if (!qual->flags.q.write_only) {
3362 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3363 "`writeonly' must have a format layout qualifier");
3364 }
3365 }
3366 var->data.image_format = GL_NONE;
3367 }
3368
3369 /* From page 70 of the GLSL ES 3.1 specification:
3370 *
3371 * "Except for image variables qualified with the format qualifiers r32f,
3372 * r32i, and r32ui, image variables must specify either memory qualifier
3373 * readonly or the memory qualifier writeonly."
3374 */
3375 if (state->es_shader &&
3376 var->data.image_format != GL_R32F &&
3377 var->data.image_format != GL_R32I &&
3378 var->data.image_format != GL_R32UI &&
3379 !var->data.image_read_only &&
3380 !var->data.image_write_only) {
3381 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3382 "r32i or r32ui must be qualified `readonly' or "
3383 "`writeonly'");
3384 }
3385 }
3386
3387 static inline const char*
3388 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3389 {
3390 if (origin_upper_left && pixel_center_integer)
3391 return "origin_upper_left, pixel_center_integer";
3392 else if (origin_upper_left)
3393 return "origin_upper_left";
3394 else if (pixel_center_integer)
3395 return "pixel_center_integer";
3396 else
3397 return " ";
3398 }
3399
3400 static inline bool
3401 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3402 const struct ast_type_qualifier *qual)
3403 {
3404 /* If gl_FragCoord was previously declared, and the qualifiers were
3405 * different in any way, return true.
3406 */
3407 if (state->fs_redeclares_gl_fragcoord) {
3408 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3409 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3410 }
3411
3412 return false;
3413 }
3414
3415 static inline void
3416 validate_array_dimensions(const glsl_type *t,
3417 struct _mesa_glsl_parse_state *state,
3418 YYLTYPE *loc) {
3419 if (t->is_array()) {
3420 t = t->fields.array;
3421 while (t->is_array()) {
3422 if (t->is_unsized_array()) {
3423 _mesa_glsl_error(loc, state,
3424 "only the outermost array dimension can "
3425 "be unsized",
3426 t->name);
3427 break;
3428 }
3429 t = t->fields.array;
3430 }
3431 }
3432 }
3433
3434 static void
3435 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3436 ir_variable *var,
3437 struct _mesa_glsl_parse_state *state,
3438 YYLTYPE *loc)
3439 {
3440 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3441
3442 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3443 *
3444 * "Within any shader, the first redeclarations of gl_FragCoord
3445 * must appear before any use of gl_FragCoord."
3446 *
3447 * Generate a compiler error if above condition is not met by the
3448 * fragment shader.
3449 */
3450 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3451 if (earlier != NULL &&
3452 earlier->data.used &&
3453 !state->fs_redeclares_gl_fragcoord) {
3454 _mesa_glsl_error(loc, state,
3455 "gl_FragCoord used before its first redeclaration "
3456 "in fragment shader");
3457 }
3458
3459 /* Make sure all gl_FragCoord redeclarations specify the same layout
3460 * qualifiers.
3461 */
3462 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3463 const char *const qual_string =
3464 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3465 qual->flags.q.pixel_center_integer);
3466
3467 const char *const state_string =
3468 get_layout_qualifier_string(state->fs_origin_upper_left,
3469 state->fs_pixel_center_integer);
3470
3471 _mesa_glsl_error(loc, state,
3472 "gl_FragCoord redeclared with different layout "
3473 "qualifiers (%s) and (%s) ",
3474 state_string,
3475 qual_string);
3476 }
3477 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3478 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3479 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3480 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3481 state->fs_redeclares_gl_fragcoord =
3482 state->fs_origin_upper_left ||
3483 state->fs_pixel_center_integer ||
3484 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3485 }
3486
3487 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3488 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3489 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3490 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3491 const char *const qual_string = (qual->flags.q.origin_upper_left)
3492 ? "origin_upper_left" : "pixel_center_integer";
3493
3494 _mesa_glsl_error(loc, state,
3495 "layout qualifier `%s' can only be applied to "
3496 "fragment shader input `gl_FragCoord'",
3497 qual_string);
3498 }
3499
3500 if (qual->flags.q.explicit_location) {
3501 apply_explicit_location(qual, var, state, loc);
3502
3503 if (qual->flags.q.explicit_component) {
3504 unsigned qual_component;
3505 if (process_qualifier_constant(state, loc, "component",
3506 qual->component, &qual_component)) {
3507 const glsl_type *type = var->type->without_array();
3508 unsigned components = type->component_slots();
3509
3510 if (type->is_matrix() || type->is_record()) {
3511 _mesa_glsl_error(loc, state, "component layout qualifier "
3512 "cannot be applied to a matrix, a structure, "
3513 "a block, or an array containing any of "
3514 "these.");
3515 } else if (qual_component != 0 &&
3516 (qual_component + components - 1) > 3) {
3517 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3518 (qual_component + components - 1));
3519 } else if (qual_component == 1 && type->is_64bit()) {
3520 /* We don't bother checking for 3 as it should be caught by the
3521 * overflow check above.
3522 */
3523 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3524 "component 1 or 3");
3525 } else {
3526 var->data.explicit_component = true;
3527 var->data.location_frac = qual_component;
3528 }
3529 }
3530 }
3531 } else if (qual->flags.q.explicit_index) {
3532 if (!qual->subroutine_list)
3533 _mesa_glsl_error(loc, state,
3534 "explicit index requires explicit location");
3535 } else if (qual->flags.q.explicit_component) {
3536 _mesa_glsl_error(loc, state,
3537 "explicit component requires explicit location");
3538 }
3539
3540 if (qual->flags.q.explicit_binding) {
3541 apply_explicit_binding(state, loc, var, var->type, qual);
3542 }
3543
3544 if (state->stage == MESA_SHADER_GEOMETRY &&
3545 qual->flags.q.out && qual->flags.q.stream) {
3546 unsigned qual_stream;
3547 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3548 &qual_stream) &&
3549 validate_stream_qualifier(loc, state, qual_stream)) {
3550 var->data.stream = qual_stream;
3551 }
3552 }
3553
3554 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3555 unsigned qual_xfb_buffer;
3556 if (process_qualifier_constant(state, loc, "xfb_buffer",
3557 qual->xfb_buffer, &qual_xfb_buffer) &&
3558 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3559 var->data.xfb_buffer = qual_xfb_buffer;
3560 if (qual->flags.q.explicit_xfb_buffer)
3561 var->data.explicit_xfb_buffer = true;
3562 }
3563 }
3564
3565 if (qual->flags.q.explicit_xfb_offset) {
3566 unsigned qual_xfb_offset;
3567 unsigned component_size = var->type->contains_double() ? 8 : 4;
3568
3569 if (process_qualifier_constant(state, loc, "xfb_offset",
3570 qual->offset, &qual_xfb_offset) &&
3571 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3572 var->type, component_size)) {
3573 var->data.offset = qual_xfb_offset;
3574 var->data.explicit_xfb_offset = true;
3575 }
3576 }
3577
3578 if (qual->flags.q.explicit_xfb_stride) {
3579 unsigned qual_xfb_stride;
3580 if (process_qualifier_constant(state, loc, "xfb_stride",
3581 qual->xfb_stride, &qual_xfb_stride)) {
3582 var->data.xfb_stride = qual_xfb_stride;
3583 var->data.explicit_xfb_stride = true;
3584 }
3585 }
3586
3587 if (var->type->contains_atomic()) {
3588 if (var->data.mode == ir_var_uniform) {
3589 if (var->data.explicit_binding) {
3590 unsigned *offset =
3591 &state->atomic_counter_offsets[var->data.binding];
3592
3593 if (*offset % ATOMIC_COUNTER_SIZE)
3594 _mesa_glsl_error(loc, state,
3595 "misaligned atomic counter offset");
3596
3597 var->data.offset = *offset;
3598 *offset += var->type->atomic_size();
3599
3600 } else {
3601 _mesa_glsl_error(loc, state,
3602 "atomic counters require explicit binding point");
3603 }
3604 } else if (var->data.mode != ir_var_function_in) {
3605 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3606 "function parameters or uniform-qualified "
3607 "global variables");
3608 }
3609 }
3610
3611 if (var->type->contains_sampler()) {
3612 if (var->data.mode != ir_var_uniform &&
3613 var->data.mode != ir_var_function_in) {
3614 _mesa_glsl_error(loc, state, "sampler variables may only be declared "
3615 "as function parameters or uniform-qualified "
3616 "global variables");
3617 }
3618 }
3619
3620 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3621 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3622 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3623 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3624 * These extensions and all following extensions that add the 'layout'
3625 * keyword have been modified to require the use of 'in' or 'out'.
3626 *
3627 * The following extension do not allow the deprecated keywords:
3628 *
3629 * GL_AMD_conservative_depth
3630 * GL_ARB_conservative_depth
3631 * GL_ARB_gpu_shader5
3632 * GL_ARB_separate_shader_objects
3633 * GL_ARB_tessellation_shader
3634 * GL_ARB_transform_feedback3
3635 * GL_ARB_uniform_buffer_object
3636 *
3637 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3638 * allow layout with the deprecated keywords.
3639 */
3640 const bool relaxed_layout_qualifier_checking =
3641 state->ARB_fragment_coord_conventions_enable;
3642
3643 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3644 || qual->flags.q.varying;
3645 if (qual->has_layout() && uses_deprecated_qualifier) {
3646 if (relaxed_layout_qualifier_checking) {
3647 _mesa_glsl_warning(loc, state,
3648 "`layout' qualifier may not be used with "
3649 "`attribute' or `varying'");
3650 } else {
3651 _mesa_glsl_error(loc, state,
3652 "`layout' qualifier may not be used with "
3653 "`attribute' or `varying'");
3654 }
3655 }
3656
3657 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3658 * AMD_conservative_depth.
3659 */
3660 if (qual->flags.q.depth_type
3661 && !state->is_version(420, 0)
3662 && !state->AMD_conservative_depth_enable
3663 && !state->ARB_conservative_depth_enable) {
3664 _mesa_glsl_error(loc, state,
3665 "extension GL_AMD_conservative_depth or "
3666 "GL_ARB_conservative_depth must be enabled "
3667 "to use depth layout qualifiers");
3668 } else if (qual->flags.q.depth_type
3669 && strcmp(var->name, "gl_FragDepth") != 0) {
3670 _mesa_glsl_error(loc, state,
3671 "depth layout qualifiers can be applied only to "
3672 "gl_FragDepth");
3673 }
3674
3675 switch (qual->depth_type) {
3676 case ast_depth_any:
3677 var->data.depth_layout = ir_depth_layout_any;
3678 break;
3679 case ast_depth_greater:
3680 var->data.depth_layout = ir_depth_layout_greater;
3681 break;
3682 case ast_depth_less:
3683 var->data.depth_layout = ir_depth_layout_less;
3684 break;
3685 case ast_depth_unchanged:
3686 var->data.depth_layout = ir_depth_layout_unchanged;
3687 break;
3688 default:
3689 var->data.depth_layout = ir_depth_layout_none;
3690 break;
3691 }
3692
3693 if (qual->flags.q.std140 ||
3694 qual->flags.q.std430 ||
3695 qual->flags.q.packed ||
3696 qual->flags.q.shared) {
3697 _mesa_glsl_error(loc, state,
3698 "uniform and shader storage block layout qualifiers "
3699 "std140, std430, packed, and shared can only be "
3700 "applied to uniform or shader storage blocks, not "
3701 "members");
3702 }
3703
3704 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3705 validate_matrix_layout_for_type(state, loc, var->type, var);
3706 }
3707
3708 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3709 * Inputs):
3710 *
3711 * "Fragment shaders also allow the following layout qualifier on in only
3712 * (not with variable declarations)
3713 * layout-qualifier-id
3714 * early_fragment_tests
3715 * [...]"
3716 */
3717 if (qual->flags.q.early_fragment_tests) {
3718 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3719 "valid in fragment shader input layout declaration.");
3720 }
3721
3722 if (qual->flags.q.inner_coverage) {
3723 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3724 "valid in fragment shader input layout declaration.");
3725 }
3726
3727 if (qual->flags.q.post_depth_coverage) {
3728 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3729 "valid in fragment shader input layout declaration.");
3730 }
3731 }
3732
3733 static void
3734 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3735 ir_variable *var,
3736 struct _mesa_glsl_parse_state *state,
3737 YYLTYPE *loc,
3738 bool is_parameter)
3739 {
3740 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3741
3742 if (qual->flags.q.invariant) {
3743 if (var->data.used) {
3744 _mesa_glsl_error(loc, state,
3745 "variable `%s' may not be redeclared "
3746 "`invariant' after being used",
3747 var->name);
3748 } else {
3749 var->data.invariant = 1;
3750 }
3751 }
3752
3753 if (qual->flags.q.precise) {
3754 if (var->data.used) {
3755 _mesa_glsl_error(loc, state,
3756 "variable `%s' may not be redeclared "
3757 "`precise' after being used",
3758 var->name);
3759 } else {
3760 var->data.precise = 1;
3761 }
3762 }
3763
3764 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3765 _mesa_glsl_error(loc, state,
3766 "`subroutine' may only be applied to uniforms, "
3767 "subroutine type declarations, or function definitions");
3768 }
3769
3770 if (qual->flags.q.constant || qual->flags.q.attribute
3771 || qual->flags.q.uniform
3772 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3773 var->data.read_only = 1;
3774
3775 if (qual->flags.q.centroid)
3776 var->data.centroid = 1;
3777
3778 if (qual->flags.q.sample)
3779 var->data.sample = 1;
3780
3781 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3782 if (state->es_shader) {
3783 var->data.precision =
3784 select_gles_precision(qual->precision, var->type, state, loc);
3785 }
3786
3787 if (qual->flags.q.patch)
3788 var->data.patch = 1;
3789
3790 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3791 var->type = glsl_type::error_type;
3792 _mesa_glsl_error(loc, state,
3793 "`attribute' variables may not be declared in the "
3794 "%s shader",
3795 _mesa_shader_stage_to_string(state->stage));
3796 }
3797
3798 /* Disallow layout qualifiers which may only appear on layout declarations. */
3799 if (qual->flags.q.prim_type) {
3800 _mesa_glsl_error(loc, state,
3801 "Primitive type may only be specified on GS input or output "
3802 "layout declaration, not on variables.");
3803 }
3804
3805 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3806 *
3807 * "However, the const qualifier cannot be used with out or inout."
3808 *
3809 * The same section of the GLSL 4.40 spec further clarifies this saying:
3810 *
3811 * "The const qualifier cannot be used with out or inout, or a
3812 * compile-time error results."
3813 */
3814 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3815 _mesa_glsl_error(loc, state,
3816 "`const' may not be applied to `out' or `inout' "
3817 "function parameters");
3818 }
3819
3820 /* If there is no qualifier that changes the mode of the variable, leave
3821 * the setting alone.
3822 */
3823 assert(var->data.mode != ir_var_temporary);
3824 if (qual->flags.q.in && qual->flags.q.out)
3825 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3826 else if (qual->flags.q.in)
3827 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3828 else if (qual->flags.q.attribute
3829 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3830 var->data.mode = ir_var_shader_in;
3831 else if (qual->flags.q.out)
3832 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3833 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3834 var->data.mode = ir_var_shader_out;
3835 else if (qual->flags.q.uniform)
3836 var->data.mode = ir_var_uniform;
3837 else if (qual->flags.q.buffer)
3838 var->data.mode = ir_var_shader_storage;
3839 else if (qual->flags.q.shared_storage)
3840 var->data.mode = ir_var_shader_shared;
3841
3842 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3843 qual->flags.q.in && qual->flags.q.out;
3844
3845 if (!is_parameter && is_varying_var(var, state->stage)) {
3846 /* User-defined ins/outs are not permitted in compute shaders. */
3847 if (state->stage == MESA_SHADER_COMPUTE) {
3848 _mesa_glsl_error(loc, state,
3849 "user-defined input and output variables are not "
3850 "permitted in compute shaders");
3851 }
3852
3853 /* This variable is being used to link data between shader stages (in
3854 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3855 * that is allowed for such purposes.
3856 *
3857 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3858 *
3859 * "The varying qualifier can be used only with the data types
3860 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3861 * these."
3862 *
3863 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3864 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3865 *
3866 * "Fragment inputs can only be signed and unsigned integers and
3867 * integer vectors, float, floating-point vectors, matrices, or
3868 * arrays of these. Structures cannot be input.
3869 *
3870 * Similar text exists in the section on vertex shader outputs.
3871 *
3872 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3873 * 3.00 spec allows structs as well. Varying structs are also allowed
3874 * in GLSL 1.50.
3875 */
3876 switch (var->type->without_array()->base_type) {
3877 case GLSL_TYPE_FLOAT:
3878 /* Ok in all GLSL versions */
3879 break;
3880 case GLSL_TYPE_UINT:
3881 case GLSL_TYPE_INT:
3882 if (state->is_version(130, 300))
3883 break;
3884 _mesa_glsl_error(loc, state,
3885 "varying variables must be of base type float in %s",
3886 state->get_version_string());
3887 break;
3888 case GLSL_TYPE_STRUCT:
3889 if (state->is_version(150, 300))
3890 break;
3891 _mesa_glsl_error(loc, state,
3892 "varying variables may not be of type struct");
3893 break;
3894 case GLSL_TYPE_DOUBLE:
3895 case GLSL_TYPE_UINT64:
3896 case GLSL_TYPE_INT64:
3897 break;
3898 default:
3899 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3900 break;
3901 }
3902 }
3903
3904 if (state->all_invariant && (state->current_function == NULL)) {
3905 switch (state->stage) {
3906 case MESA_SHADER_VERTEX:
3907 if (var->data.mode == ir_var_shader_out)
3908 var->data.invariant = true;
3909 break;
3910 case MESA_SHADER_TESS_CTRL:
3911 case MESA_SHADER_TESS_EVAL:
3912 case MESA_SHADER_GEOMETRY:
3913 if ((var->data.mode == ir_var_shader_in)
3914 || (var->data.mode == ir_var_shader_out))
3915 var->data.invariant = true;
3916 break;
3917 case MESA_SHADER_FRAGMENT:
3918 if (var->data.mode == ir_var_shader_in)
3919 var->data.invariant = true;
3920 break;
3921 case MESA_SHADER_COMPUTE:
3922 /* Invariance isn't meaningful in compute shaders. */
3923 break;
3924 }
3925 }
3926
3927 var->data.interpolation =
3928 interpret_interpolation_qualifier(qual, var->type,
3929 (ir_variable_mode) var->data.mode,
3930 state, loc);
3931
3932 /* Does the declaration use the deprecated 'attribute' or 'varying'
3933 * keywords?
3934 */
3935 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3936 || qual->flags.q.varying;
3937
3938
3939 /* Validate auxiliary storage qualifiers */
3940
3941 /* From section 4.3.4 of the GLSL 1.30 spec:
3942 * "It is an error to use centroid in in a vertex shader."
3943 *
3944 * From section 4.3.4 of the GLSL ES 3.00 spec:
3945 * "It is an error to use centroid in or interpolation qualifiers in
3946 * a vertex shader input."
3947 */
3948
3949 /* Section 4.3.6 of the GLSL 1.30 specification states:
3950 * "It is an error to use centroid out in a fragment shader."
3951 *
3952 * The GL_ARB_shading_language_420pack extension specification states:
3953 * "It is an error to use auxiliary storage qualifiers or interpolation
3954 * qualifiers on an output in a fragment shader."
3955 */
3956 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3957 _mesa_glsl_error(loc, state,
3958 "sample qualifier may only be used on `in` or `out` "
3959 "variables between shader stages");
3960 }
3961 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3962 _mesa_glsl_error(loc, state,
3963 "centroid qualifier may only be used with `in', "
3964 "`out' or `varying' variables between shader stages");
3965 }
3966
3967 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3968 _mesa_glsl_error(loc, state,
3969 "the shared storage qualifiers can only be used with "
3970 "compute shaders");
3971 }
3972
3973 apply_image_qualifier_to_variable(qual, var, state, loc);
3974 }
3975
3976 /**
3977 * Get the variable that is being redeclared by this declaration or if it
3978 * does not exist, the current declared variable.
3979 *
3980 * Semantic checks to verify the validity of the redeclaration are also
3981 * performed. If semantic checks fail, compilation error will be emitted via
3982 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3983 *
3984 * \returns
3985 * A pointer to an existing variable in the current scope if the declaration
3986 * is a redeclaration, current variable otherwise. \c is_declared boolean
3987 * will return \c true if the declaration is a redeclaration, \c false
3988 * otherwise.
3989 */
3990 static ir_variable *
3991 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3992 struct _mesa_glsl_parse_state *state,
3993 bool allow_all_redeclarations,
3994 bool *is_redeclaration)
3995 {
3996 /* Check if this declaration is actually a re-declaration, either to
3997 * resize an array or add qualifiers to an existing variable.
3998 *
3999 * This is allowed for variables in the current scope, or when at
4000 * global scope (for built-ins in the implicit outer scope).
4001 */
4002 ir_variable *earlier = state->symbols->get_variable(var->name);
4003 if (earlier == NULL ||
4004 (state->current_function != NULL &&
4005 !state->symbols->name_declared_this_scope(var->name))) {
4006 *is_redeclaration = false;
4007 return var;
4008 }
4009
4010 *is_redeclaration = true;
4011
4012 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4013 *
4014 * "It is legal to declare an array without a size and then
4015 * later re-declare the same name as an array of the same
4016 * type and specify a size."
4017 */
4018 if (earlier->type->is_unsized_array() && var->type->is_array()
4019 && (var->type->fields.array == earlier->type->fields.array)) {
4020 /* FINISHME: This doesn't match the qualifiers on the two
4021 * FINISHME: declarations. It's not 100% clear whether this is
4022 * FINISHME: required or not.
4023 */
4024
4025 const int size = var->type->array_size();
4026 check_builtin_array_max_size(var->name, size, loc, state);
4027 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4028 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4029 "previous access",
4030 earlier->data.max_array_access);
4031 }
4032
4033 earlier->type = var->type;
4034 delete var;
4035 var = NULL;
4036 } else if ((state->ARB_fragment_coord_conventions_enable ||
4037 state->is_version(150, 0))
4038 && strcmp(var->name, "gl_FragCoord") == 0
4039 && earlier->type == var->type
4040 && var->data.mode == ir_var_shader_in) {
4041 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4042 * qualifiers.
4043 */
4044 earlier->data.origin_upper_left = var->data.origin_upper_left;
4045 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4046
4047 /* According to section 4.3.7 of the GLSL 1.30 spec,
4048 * the following built-in varaibles can be redeclared with an
4049 * interpolation qualifier:
4050 * * gl_FrontColor
4051 * * gl_BackColor
4052 * * gl_FrontSecondaryColor
4053 * * gl_BackSecondaryColor
4054 * * gl_Color
4055 * * gl_SecondaryColor
4056 */
4057 } else if (state->is_version(130, 0)
4058 && (strcmp(var->name, "gl_FrontColor") == 0
4059 || strcmp(var->name, "gl_BackColor") == 0
4060 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4061 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4062 || strcmp(var->name, "gl_Color") == 0
4063 || strcmp(var->name, "gl_SecondaryColor") == 0)
4064 && earlier->type == var->type
4065 && earlier->data.mode == var->data.mode) {
4066 earlier->data.interpolation = var->data.interpolation;
4067
4068 /* Layout qualifiers for gl_FragDepth. */
4069 } else if ((state->is_version(420, 0) ||
4070 state->AMD_conservative_depth_enable ||
4071 state->ARB_conservative_depth_enable)
4072 && strcmp(var->name, "gl_FragDepth") == 0
4073 && earlier->type == var->type
4074 && earlier->data.mode == var->data.mode) {
4075
4076 /** From the AMD_conservative_depth spec:
4077 * Within any shader, the first redeclarations of gl_FragDepth
4078 * must appear before any use of gl_FragDepth.
4079 */
4080 if (earlier->data.used) {
4081 _mesa_glsl_error(&loc, state,
4082 "the first redeclaration of gl_FragDepth "
4083 "must appear before any use of gl_FragDepth");
4084 }
4085
4086 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4087 if (earlier->data.depth_layout != ir_depth_layout_none
4088 && earlier->data.depth_layout != var->data.depth_layout) {
4089 _mesa_glsl_error(&loc, state,
4090 "gl_FragDepth: depth layout is declared here "
4091 "as '%s, but it was previously declared as "
4092 "'%s'",
4093 depth_layout_string(var->data.depth_layout),
4094 depth_layout_string(earlier->data.depth_layout));
4095 }
4096
4097 earlier->data.depth_layout = var->data.depth_layout;
4098
4099 } else if (state->has_framebuffer_fetch() &&
4100 strcmp(var->name, "gl_LastFragData") == 0 &&
4101 var->type == earlier->type &&
4102 var->data.mode == ir_var_auto) {
4103 /* According to the EXT_shader_framebuffer_fetch spec:
4104 *
4105 * "By default, gl_LastFragData is declared with the mediump precision
4106 * qualifier. This can be changed by redeclaring the corresponding
4107 * variables with the desired precision qualifier."
4108 */
4109 earlier->data.precision = var->data.precision;
4110
4111 } else if (allow_all_redeclarations) {
4112 if (earlier->data.mode != var->data.mode) {
4113 _mesa_glsl_error(&loc, state,
4114 "redeclaration of `%s' with incorrect qualifiers",
4115 var->name);
4116 } else if (earlier->type != var->type) {
4117 _mesa_glsl_error(&loc, state,
4118 "redeclaration of `%s' has incorrect type",
4119 var->name);
4120 }
4121 } else {
4122 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4123 }
4124
4125 return earlier;
4126 }
4127
4128 /**
4129 * Generate the IR for an initializer in a variable declaration
4130 */
4131 ir_rvalue *
4132 process_initializer(ir_variable *var, ast_declaration *decl,
4133 ast_fully_specified_type *type,
4134 exec_list *initializer_instructions,
4135 struct _mesa_glsl_parse_state *state)
4136 {
4137 ir_rvalue *result = NULL;
4138
4139 YYLTYPE initializer_loc = decl->initializer->get_location();
4140
4141 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4142 *
4143 * "All uniform variables are read-only and are initialized either
4144 * directly by an application via API commands, or indirectly by
4145 * OpenGL."
4146 */
4147 if (var->data.mode == ir_var_uniform) {
4148 state->check_version(120, 0, &initializer_loc,
4149 "cannot initialize uniform %s",
4150 var->name);
4151 }
4152
4153 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4154 *
4155 * "Buffer variables cannot have initializers."
4156 */
4157 if (var->data.mode == ir_var_shader_storage) {
4158 _mesa_glsl_error(&initializer_loc, state,
4159 "cannot initialize buffer variable %s",
4160 var->name);
4161 }
4162
4163 /* From section 4.1.7 of the GLSL 4.40 spec:
4164 *
4165 * "Opaque variables [...] are initialized only through the
4166 * OpenGL API; they cannot be declared with an initializer in a
4167 * shader."
4168 */
4169 if (var->type->contains_opaque()) {
4170 _mesa_glsl_error(&initializer_loc, state,
4171 "cannot initialize opaque variable %s",
4172 var->name);
4173 }
4174
4175 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4176 _mesa_glsl_error(&initializer_loc, state,
4177 "cannot initialize %s shader input / %s %s",
4178 _mesa_shader_stage_to_string(state->stage),
4179 (state->stage == MESA_SHADER_VERTEX)
4180 ? "attribute" : "varying",
4181 var->name);
4182 }
4183
4184 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4185 _mesa_glsl_error(&initializer_loc, state,
4186 "cannot initialize %s shader output %s",
4187 _mesa_shader_stage_to_string(state->stage),
4188 var->name);
4189 }
4190
4191 /* If the initializer is an ast_aggregate_initializer, recursively store
4192 * type information from the LHS into it, so that its hir() function can do
4193 * type checking.
4194 */
4195 if (decl->initializer->oper == ast_aggregate)
4196 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4197
4198 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4199 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4200
4201 /* Calculate the constant value if this is a const or uniform
4202 * declaration.
4203 *
4204 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4205 *
4206 * "Declarations of globals without a storage qualifier, or with
4207 * just the const qualifier, may include initializers, in which case
4208 * they will be initialized before the first line of main() is
4209 * executed. Such initializers must be a constant expression."
4210 *
4211 * The same section of the GLSL ES 3.00.4 spec has similar language.
4212 */
4213 if (type->qualifier.flags.q.constant
4214 || type->qualifier.flags.q.uniform
4215 || (state->es_shader && state->current_function == NULL)) {
4216 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4217 lhs, rhs, true);
4218 if (new_rhs != NULL) {
4219 rhs = new_rhs;
4220
4221 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4222 * says:
4223 *
4224 * "A constant expression is one of
4225 *
4226 * ...
4227 *
4228 * - an expression formed by an operator on operands that are
4229 * all constant expressions, including getting an element of
4230 * a constant array, or a field of a constant structure, or
4231 * components of a constant vector. However, the sequence
4232 * operator ( , ) and the assignment operators ( =, +=, ...)
4233 * are not included in the operators that can create a
4234 * constant expression."
4235 *
4236 * Section 12.43 (Sequence operator and constant expressions) says:
4237 *
4238 * "Should the following construct be allowed?
4239 *
4240 * float a[2,3];
4241 *
4242 * The expression within the brackets uses the sequence operator
4243 * (',') and returns the integer 3 so the construct is declaring
4244 * a single-dimensional array of size 3. In some languages, the
4245 * construct declares a two-dimensional array. It would be
4246 * preferable to make this construct illegal to avoid confusion.
4247 *
4248 * One possibility is to change the definition of the sequence
4249 * operator so that it does not return a constant-expression and
4250 * hence cannot be used to declare an array size.
4251 *
4252 * RESOLUTION: The result of a sequence operator is not a
4253 * constant-expression."
4254 *
4255 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4256 * contains language almost identical to the section 4.3.3 in the
4257 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4258 * versions.
4259 */
4260 ir_constant *constant_value = rhs->constant_expression_value();
4261 if (!constant_value ||
4262 (state->is_version(430, 300) &&
4263 decl->initializer->has_sequence_subexpression())) {
4264 const char *const variable_mode =
4265 (type->qualifier.flags.q.constant)
4266 ? "const"
4267 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4268
4269 /* If ARB_shading_language_420pack is enabled, initializers of
4270 * const-qualified local variables do not have to be constant
4271 * expressions. Const-qualified global variables must still be
4272 * initialized with constant expressions.
4273 */
4274 if (!state->has_420pack()
4275 || state->current_function == NULL) {
4276 _mesa_glsl_error(& initializer_loc, state,
4277 "initializer of %s variable `%s' must be a "
4278 "constant expression",
4279 variable_mode,
4280 decl->identifier);
4281 if (var->type->is_numeric()) {
4282 /* Reduce cascading errors. */
4283 var->constant_value = type->qualifier.flags.q.constant
4284 ? ir_constant::zero(state, var->type) : NULL;
4285 }
4286 }
4287 } else {
4288 rhs = constant_value;
4289 var->constant_value = type->qualifier.flags.q.constant
4290 ? constant_value : NULL;
4291 }
4292 } else {
4293 if (var->type->is_numeric()) {
4294 /* Reduce cascading errors. */
4295 var->constant_value = type->qualifier.flags.q.constant
4296 ? ir_constant::zero(state, var->type) : NULL;
4297 }
4298 }
4299 }
4300
4301 if (rhs && !rhs->type->is_error()) {
4302 bool temp = var->data.read_only;
4303 if (type->qualifier.flags.q.constant)
4304 var->data.read_only = false;
4305
4306 /* Never emit code to initialize a uniform.
4307 */
4308 const glsl_type *initializer_type;
4309 if (!type->qualifier.flags.q.uniform) {
4310 do_assignment(initializer_instructions, state,
4311 NULL,
4312 lhs, rhs,
4313 &result, true,
4314 true,
4315 type->get_location());
4316 initializer_type = result->type;
4317 } else
4318 initializer_type = rhs->type;
4319
4320 var->constant_initializer = rhs->constant_expression_value();
4321 var->data.has_initializer = true;
4322
4323 /* If the declared variable is an unsized array, it must inherrit
4324 * its full type from the initializer. A declaration such as
4325 *
4326 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4327 *
4328 * becomes
4329 *
4330 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4331 *
4332 * The assignment generated in the if-statement (below) will also
4333 * automatically handle this case for non-uniforms.
4334 *
4335 * If the declared variable is not an array, the types must
4336 * already match exactly. As a result, the type assignment
4337 * here can be done unconditionally. For non-uniforms the call
4338 * to do_assignment can change the type of the initializer (via
4339 * the implicit conversion rules). For uniforms the initializer
4340 * must be a constant expression, and the type of that expression
4341 * was validated above.
4342 */
4343 var->type = initializer_type;
4344
4345 var->data.read_only = temp;
4346 }
4347
4348 return result;
4349 }
4350
4351 static void
4352 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4353 YYLTYPE loc, ir_variable *var,
4354 unsigned num_vertices,
4355 unsigned *size,
4356 const char *var_category)
4357 {
4358 if (var->type->is_unsized_array()) {
4359 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4360 *
4361 * All geometry shader input unsized array declarations will be
4362 * sized by an earlier input layout qualifier, when present, as per
4363 * the following table.
4364 *
4365 * Followed by a table mapping each allowed input layout qualifier to
4366 * the corresponding input length.
4367 *
4368 * Similarly for tessellation control shader outputs.
4369 */
4370 if (num_vertices != 0)
4371 var->type = glsl_type::get_array_instance(var->type->fields.array,
4372 num_vertices);
4373 } else {
4374 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4375 * includes the following examples of compile-time errors:
4376 *
4377 * // code sequence within one shader...
4378 * in vec4 Color1[]; // size unknown
4379 * ...Color1.length()...// illegal, length() unknown
4380 * in vec4 Color2[2]; // size is 2
4381 * ...Color1.length()...// illegal, Color1 still has no size
4382 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4383 * layout(lines) in; // legal, input size is 2, matching
4384 * in vec4 Color4[3]; // illegal, contradicts layout
4385 * ...
4386 *
4387 * To detect the case illustrated by Color3, we verify that the size of
4388 * an explicitly-sized array matches the size of any previously declared
4389 * explicitly-sized array. To detect the case illustrated by Color4, we
4390 * verify that the size of an explicitly-sized array is consistent with
4391 * any previously declared input layout.
4392 */
4393 if (num_vertices != 0 && var->type->length != num_vertices) {
4394 _mesa_glsl_error(&loc, state,
4395 "%s size contradicts previously declared layout "
4396 "(size is %u, but layout requires a size of %u)",
4397 var_category, var->type->length, num_vertices);
4398 } else if (*size != 0 && var->type->length != *size) {
4399 _mesa_glsl_error(&loc, state,
4400 "%s sizes are inconsistent (size is %u, but a "
4401 "previous declaration has size %u)",
4402 var_category, var->type->length, *size);
4403 } else {
4404 *size = var->type->length;
4405 }
4406 }
4407 }
4408
4409 static void
4410 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4411 YYLTYPE loc, ir_variable *var)
4412 {
4413 unsigned num_vertices = 0;
4414
4415 if (state->tcs_output_vertices_specified) {
4416 if (!state->out_qualifier->vertices->
4417 process_qualifier_constant(state, "vertices",
4418 &num_vertices, false)) {
4419 return;
4420 }
4421
4422 if (num_vertices > state->Const.MaxPatchVertices) {
4423 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4424 "GL_MAX_PATCH_VERTICES", num_vertices);
4425 return;
4426 }
4427 }
4428
4429 if (!var->type->is_array() && !var->data.patch) {
4430 _mesa_glsl_error(&loc, state,
4431 "tessellation control shader outputs must be arrays");
4432
4433 /* To avoid cascading failures, short circuit the checks below. */
4434 return;
4435 }
4436
4437 if (var->data.patch)
4438 return;
4439
4440 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4441 &state->tcs_output_size,
4442 "tessellation control shader output");
4443 }
4444
4445 /**
4446 * Do additional processing necessary for tessellation control/evaluation shader
4447 * input declarations. This covers both interface block arrays and bare input
4448 * variables.
4449 */
4450 static void
4451 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4452 YYLTYPE loc, ir_variable *var)
4453 {
4454 if (!var->type->is_array() && !var->data.patch) {
4455 _mesa_glsl_error(&loc, state,
4456 "per-vertex tessellation shader inputs must be arrays");
4457 /* Avoid cascading failures. */
4458 return;
4459 }
4460
4461 if (var->data.patch)
4462 return;
4463
4464 /* The ARB_tessellation_shader spec says:
4465 *
4466 * "Declaring an array size is optional. If no size is specified, it
4467 * will be taken from the implementation-dependent maximum patch size
4468 * (gl_MaxPatchVertices). If a size is specified, it must match the
4469 * maximum patch size; otherwise, a compile or link error will occur."
4470 *
4471 * This text appears twice, once for TCS inputs, and again for TES inputs.
4472 */
4473 if (var->type->is_unsized_array()) {
4474 var->type = glsl_type::get_array_instance(var->type->fields.array,
4475 state->Const.MaxPatchVertices);
4476 } else if (var->type->length != state->Const.MaxPatchVertices) {
4477 _mesa_glsl_error(&loc, state,
4478 "per-vertex tessellation shader input arrays must be "
4479 "sized to gl_MaxPatchVertices (%d).",
4480 state->Const.MaxPatchVertices);
4481 }
4482 }
4483
4484
4485 /**
4486 * Do additional processing necessary for geometry shader input declarations
4487 * (this covers both interface blocks arrays and bare input variables).
4488 */
4489 static void
4490 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4491 YYLTYPE loc, ir_variable *var)
4492 {
4493 unsigned num_vertices = 0;
4494
4495 if (state->gs_input_prim_type_specified) {
4496 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4497 }
4498
4499 /* Geometry shader input variables must be arrays. Caller should have
4500 * reported an error for this.
4501 */
4502 if (!var->type->is_array()) {
4503 assert(state->error);
4504
4505 /* To avoid cascading failures, short circuit the checks below. */
4506 return;
4507 }
4508
4509 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4510 &state->gs_input_size,
4511 "geometry shader input");
4512 }
4513
4514 void
4515 validate_identifier(const char *identifier, YYLTYPE loc,
4516 struct _mesa_glsl_parse_state *state)
4517 {
4518 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4519 *
4520 * "Identifiers starting with "gl_" are reserved for use by
4521 * OpenGL, and may not be declared in a shader as either a
4522 * variable or a function."
4523 */
4524 if (is_gl_identifier(identifier)) {
4525 _mesa_glsl_error(&loc, state,
4526 "identifier `%s' uses reserved `gl_' prefix",
4527 identifier);
4528 } else if (strstr(identifier, "__")) {
4529 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4530 * spec:
4531 *
4532 * "In addition, all identifiers containing two
4533 * consecutive underscores (__) are reserved as
4534 * possible future keywords."
4535 *
4536 * The intention is that names containing __ are reserved for internal
4537 * use by the implementation, and names prefixed with GL_ are reserved
4538 * for use by Khronos. Names simply containing __ are dangerous to use,
4539 * but should be allowed.
4540 *
4541 * A future version of the GLSL specification will clarify this.
4542 */
4543 _mesa_glsl_warning(&loc, state,
4544 "identifier `%s' uses reserved `__' string",
4545 identifier);
4546 }
4547 }
4548
4549 ir_rvalue *
4550 ast_declarator_list::hir(exec_list *instructions,
4551 struct _mesa_glsl_parse_state *state)
4552 {
4553 void *ctx = state;
4554 const struct glsl_type *decl_type;
4555 const char *type_name = NULL;
4556 ir_rvalue *result = NULL;
4557 YYLTYPE loc = this->get_location();
4558
4559 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4560 *
4561 * "To ensure that a particular output variable is invariant, it is
4562 * necessary to use the invariant qualifier. It can either be used to
4563 * qualify a previously declared variable as being invariant
4564 *
4565 * invariant gl_Position; // make existing gl_Position be invariant"
4566 *
4567 * In these cases the parser will set the 'invariant' flag in the declarator
4568 * list, and the type will be NULL.
4569 */
4570 if (this->invariant) {
4571 assert(this->type == NULL);
4572
4573 if (state->current_function != NULL) {
4574 _mesa_glsl_error(& loc, state,
4575 "all uses of `invariant' keyword must be at global "
4576 "scope");
4577 }
4578
4579 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4580 assert(decl->array_specifier == NULL);
4581 assert(decl->initializer == NULL);
4582
4583 ir_variable *const earlier =
4584 state->symbols->get_variable(decl->identifier);
4585 if (earlier == NULL) {
4586 _mesa_glsl_error(& loc, state,
4587 "undeclared variable `%s' cannot be marked "
4588 "invariant", decl->identifier);
4589 } else if (!is_allowed_invariant(earlier, state)) {
4590 _mesa_glsl_error(&loc, state,
4591 "`%s' cannot be marked invariant; interfaces between "
4592 "shader stages only.", decl->identifier);
4593 } else if (earlier->data.used) {
4594 _mesa_glsl_error(& loc, state,
4595 "variable `%s' may not be redeclared "
4596 "`invariant' after being used",
4597 earlier->name);
4598 } else {
4599 earlier->data.invariant = true;
4600 }
4601 }
4602
4603 /* Invariant redeclarations do not have r-values.
4604 */
4605 return NULL;
4606 }
4607
4608 if (this->precise) {
4609 assert(this->type == NULL);
4610
4611 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4612 assert(decl->array_specifier == NULL);
4613 assert(decl->initializer == NULL);
4614
4615 ir_variable *const earlier =
4616 state->symbols->get_variable(decl->identifier);
4617 if (earlier == NULL) {
4618 _mesa_glsl_error(& loc, state,
4619 "undeclared variable `%s' cannot be marked "
4620 "precise", decl->identifier);
4621 } else if (state->current_function != NULL &&
4622 !state->symbols->name_declared_this_scope(decl->identifier)) {
4623 /* Note: we have to check if we're in a function, since
4624 * builtins are treated as having come from another scope.
4625 */
4626 _mesa_glsl_error(& loc, state,
4627 "variable `%s' from an outer scope may not be "
4628 "redeclared `precise' in this scope",
4629 earlier->name);
4630 } else if (earlier->data.used) {
4631 _mesa_glsl_error(& loc, state,
4632 "variable `%s' may not be redeclared "
4633 "`precise' after being used",
4634 earlier->name);
4635 } else {
4636 earlier->data.precise = true;
4637 }
4638 }
4639
4640 /* Precise redeclarations do not have r-values either. */
4641 return NULL;
4642 }
4643
4644 assert(this->type != NULL);
4645 assert(!this->invariant);
4646 assert(!this->precise);
4647
4648 /* The type specifier may contain a structure definition. Process that
4649 * before any of the variable declarations.
4650 */
4651 (void) this->type->specifier->hir(instructions, state);
4652
4653 decl_type = this->type->glsl_type(& type_name, state);
4654
4655 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4656 * "Buffer variables may only be declared inside interface blocks
4657 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4658 * shader storage blocks. It is a compile-time error to declare buffer
4659 * variables at global scope (outside a block)."
4660 */
4661 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4662 _mesa_glsl_error(&loc, state,
4663 "buffer variables cannot be declared outside "
4664 "interface blocks");
4665 }
4666
4667 /* An offset-qualified atomic counter declaration sets the default
4668 * offset for the next declaration within the same atomic counter
4669 * buffer.
4670 */
4671 if (decl_type && decl_type->contains_atomic()) {
4672 if (type->qualifier.flags.q.explicit_binding &&
4673 type->qualifier.flags.q.explicit_offset) {
4674 unsigned qual_binding;
4675 unsigned qual_offset;
4676 if (process_qualifier_constant(state, &loc, "binding",
4677 type->qualifier.binding,
4678 &qual_binding)
4679 && process_qualifier_constant(state, &loc, "offset",
4680 type->qualifier.offset,
4681 &qual_offset)) {
4682 state->atomic_counter_offsets[qual_binding] = qual_offset;
4683 }
4684 }
4685
4686 ast_type_qualifier allowed_atomic_qual_mask;
4687 allowed_atomic_qual_mask.flags.i = 0;
4688 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4689 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4690 allowed_atomic_qual_mask.flags.q.uniform = 1;
4691
4692 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4693 "invalid layout qualifier for",
4694 "atomic_uint");
4695 }
4696
4697 if (this->declarations.is_empty()) {
4698 /* If there is no structure involved in the program text, there are two
4699 * possible scenarios:
4700 *
4701 * - The program text contained something like 'vec4;'. This is an
4702 * empty declaration. It is valid but weird. Emit a warning.
4703 *
4704 * - The program text contained something like 'S;' and 'S' is not the
4705 * name of a known structure type. This is both invalid and weird.
4706 * Emit an error.
4707 *
4708 * - The program text contained something like 'mediump float;'
4709 * when the programmer probably meant 'precision mediump
4710 * float;' Emit a warning with a description of what they
4711 * probably meant to do.
4712 *
4713 * Note that if decl_type is NULL and there is a structure involved,
4714 * there must have been some sort of error with the structure. In this
4715 * case we assume that an error was already generated on this line of
4716 * code for the structure. There is no need to generate an additional,
4717 * confusing error.
4718 */
4719 assert(this->type->specifier->structure == NULL || decl_type != NULL
4720 || state->error);
4721
4722 if (decl_type == NULL) {
4723 _mesa_glsl_error(&loc, state,
4724 "invalid type `%s' in empty declaration",
4725 type_name);
4726 } else {
4727 if (decl_type->is_array()) {
4728 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4729 * spec:
4730 *
4731 * "... any declaration that leaves the size undefined is
4732 * disallowed as this would add complexity and there are no
4733 * use-cases."
4734 */
4735 if (state->es_shader && decl_type->is_unsized_array()) {
4736 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4737 "or implicitly defined");
4738 }
4739
4740 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4741 *
4742 * "The combinations of types and qualifiers that cause
4743 * compile-time or link-time errors are the same whether or not
4744 * the declaration is empty."
4745 */
4746 validate_array_dimensions(decl_type, state, &loc);
4747 }
4748
4749 if (decl_type->is_atomic_uint()) {
4750 /* Empty atomic counter declarations are allowed and useful
4751 * to set the default offset qualifier.
4752 */
4753 return NULL;
4754 } else if (this->type->qualifier.precision != ast_precision_none) {
4755 if (this->type->specifier->structure != NULL) {
4756 _mesa_glsl_error(&loc, state,
4757 "precision qualifiers can't be applied "
4758 "to structures");
4759 } else {
4760 static const char *const precision_names[] = {
4761 "highp",
4762 "highp",
4763 "mediump",
4764 "lowp"
4765 };
4766
4767 _mesa_glsl_warning(&loc, state,
4768 "empty declaration with precision "
4769 "qualifier, to set the default precision, "
4770 "use `precision %s %s;'",
4771 precision_names[this->type->
4772 qualifier.precision],
4773 type_name);
4774 }
4775 } else if (this->type->specifier->structure == NULL) {
4776 _mesa_glsl_warning(&loc, state, "empty declaration");
4777 }
4778 }
4779 }
4780
4781 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4782 const struct glsl_type *var_type;
4783 ir_variable *var;
4784 const char *identifier = decl->identifier;
4785 /* FINISHME: Emit a warning if a variable declaration shadows a
4786 * FINISHME: declaration at a higher scope.
4787 */
4788
4789 if ((decl_type == NULL) || decl_type->is_void()) {
4790 if (type_name != NULL) {
4791 _mesa_glsl_error(& loc, state,
4792 "invalid type `%s' in declaration of `%s'",
4793 type_name, decl->identifier);
4794 } else {
4795 _mesa_glsl_error(& loc, state,
4796 "invalid type in declaration of `%s'",
4797 decl->identifier);
4798 }
4799 continue;
4800 }
4801
4802 if (this->type->qualifier.is_subroutine_decl()) {
4803 const glsl_type *t;
4804 const char *name;
4805
4806 t = state->symbols->get_type(this->type->specifier->type_name);
4807 if (!t)
4808 _mesa_glsl_error(& loc, state,
4809 "invalid type in declaration of `%s'",
4810 decl->identifier);
4811 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4812
4813 identifier = name;
4814
4815 }
4816 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4817 state);
4818
4819 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4820
4821 /* The 'varying in' and 'varying out' qualifiers can only be used with
4822 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4823 * yet.
4824 */
4825 if (this->type->qualifier.flags.q.varying) {
4826 if (this->type->qualifier.flags.q.in) {
4827 _mesa_glsl_error(& loc, state,
4828 "`varying in' qualifier in declaration of "
4829 "`%s' only valid for geometry shaders using "
4830 "ARB_geometry_shader4 or EXT_geometry_shader4",
4831 decl->identifier);
4832 } else if (this->type->qualifier.flags.q.out) {
4833 _mesa_glsl_error(& loc, state,
4834 "`varying out' qualifier in declaration of "
4835 "`%s' only valid for geometry shaders using "
4836 "ARB_geometry_shader4 or EXT_geometry_shader4",
4837 decl->identifier);
4838 }
4839 }
4840
4841 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4842 *
4843 * "Global variables can only use the qualifiers const,
4844 * attribute, uniform, or varying. Only one may be
4845 * specified.
4846 *
4847 * Local variables can only use the qualifier const."
4848 *
4849 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4850 * any extension that adds the 'layout' keyword.
4851 */
4852 if (!state->is_version(130, 300)
4853 && !state->has_explicit_attrib_location()
4854 && !state->has_separate_shader_objects()
4855 && !state->ARB_fragment_coord_conventions_enable) {
4856 if (this->type->qualifier.flags.q.out) {
4857 _mesa_glsl_error(& loc, state,
4858 "`out' qualifier in declaration of `%s' "
4859 "only valid for function parameters in %s",
4860 decl->identifier, state->get_version_string());
4861 }
4862 if (this->type->qualifier.flags.q.in) {
4863 _mesa_glsl_error(& loc, state,
4864 "`in' qualifier in declaration of `%s' "
4865 "only valid for function parameters in %s",
4866 decl->identifier, state->get_version_string());
4867 }
4868 /* FINISHME: Test for other invalid qualifiers. */
4869 }
4870
4871 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4872 & loc, false);
4873 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4874 &loc);
4875
4876 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4877 && (var->type->is_numeric() || var->type->is_boolean())
4878 && state->zero_init) {
4879 const ir_constant_data data = { { 0 } };
4880 var->data.has_initializer = true;
4881 var->constant_initializer = new(var) ir_constant(var->type, &data);
4882 }
4883
4884 if (this->type->qualifier.flags.q.invariant) {
4885 if (!is_allowed_invariant(var, state)) {
4886 _mesa_glsl_error(&loc, state,
4887 "`%s' cannot be marked invariant; interfaces between "
4888 "shader stages only", var->name);
4889 }
4890 }
4891
4892 if (state->current_function != NULL) {
4893 const char *mode = NULL;
4894 const char *extra = "";
4895
4896 /* There is no need to check for 'inout' here because the parser will
4897 * only allow that in function parameter lists.
4898 */
4899 if (this->type->qualifier.flags.q.attribute) {
4900 mode = "attribute";
4901 } else if (this->type->qualifier.is_subroutine_decl()) {
4902 mode = "subroutine uniform";
4903 } else if (this->type->qualifier.flags.q.uniform) {
4904 mode = "uniform";
4905 } else if (this->type->qualifier.flags.q.varying) {
4906 mode = "varying";
4907 } else if (this->type->qualifier.flags.q.in) {
4908 mode = "in";
4909 extra = " or in function parameter list";
4910 } else if (this->type->qualifier.flags.q.out) {
4911 mode = "out";
4912 extra = " or in function parameter list";
4913 }
4914
4915 if (mode) {
4916 _mesa_glsl_error(& loc, state,
4917 "%s variable `%s' must be declared at "
4918 "global scope%s",
4919 mode, var->name, extra);
4920 }
4921 } else if (var->data.mode == ir_var_shader_in) {
4922 var->data.read_only = true;
4923
4924 if (state->stage == MESA_SHADER_VERTEX) {
4925 bool error_emitted = false;
4926
4927 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4928 *
4929 * "Vertex shader inputs can only be float, floating-point
4930 * vectors, matrices, signed and unsigned integers and integer
4931 * vectors. Vertex shader inputs can also form arrays of these
4932 * types, but not structures."
4933 *
4934 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4935 *
4936 * "Vertex shader inputs can only be float, floating-point
4937 * vectors, matrices, signed and unsigned integers and integer
4938 * vectors. They cannot be arrays or structures."
4939 *
4940 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4941 *
4942 * "The attribute qualifier can be used only with float,
4943 * floating-point vectors, and matrices. Attribute variables
4944 * cannot be declared as arrays or structures."
4945 *
4946 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4947 *
4948 * "Vertex shader inputs can only be float, floating-point
4949 * vectors, matrices, signed and unsigned integers and integer
4950 * vectors. Vertex shader inputs cannot be arrays or
4951 * structures."
4952 */
4953 const glsl_type *check_type = var->type->without_array();
4954
4955 switch (check_type->base_type) {
4956 case GLSL_TYPE_FLOAT:
4957 break;
4958 case GLSL_TYPE_UINT64:
4959 case GLSL_TYPE_INT64:
4960 break;
4961 case GLSL_TYPE_UINT:
4962 case GLSL_TYPE_INT:
4963 if (state->is_version(120, 300))
4964 break;
4965 case GLSL_TYPE_DOUBLE:
4966 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4967 break;
4968 /* FALLTHROUGH */
4969 default:
4970 _mesa_glsl_error(& loc, state,
4971 "vertex shader input / attribute cannot have "
4972 "type %s`%s'",
4973 var->type->is_array() ? "array of " : "",
4974 check_type->name);
4975 error_emitted = true;
4976 }
4977
4978 if (!error_emitted && var->type->is_array() &&
4979 !state->check_version(150, 0, &loc,
4980 "vertex shader input / attribute "
4981 "cannot have array type")) {
4982 error_emitted = true;
4983 }
4984 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4985 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4986 *
4987 * Geometry shader input variables get the per-vertex values
4988 * written out by vertex shader output variables of the same
4989 * names. Since a geometry shader operates on a set of
4990 * vertices, each input varying variable (or input block, see
4991 * interface blocks below) needs to be declared as an array.
4992 */
4993 if (!var->type->is_array()) {
4994 _mesa_glsl_error(&loc, state,
4995 "geometry shader inputs must be arrays");
4996 }
4997
4998 handle_geometry_shader_input_decl(state, loc, var);
4999 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5000 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5001 *
5002 * It is a compile-time error to declare a fragment shader
5003 * input with, or that contains, any of the following types:
5004 *
5005 * * A boolean type
5006 * * An opaque type
5007 * * An array of arrays
5008 * * An array of structures
5009 * * A structure containing an array
5010 * * A structure containing a structure
5011 */
5012 if (state->es_shader) {
5013 const glsl_type *check_type = var->type->without_array();
5014 if (check_type->is_boolean() ||
5015 check_type->contains_opaque()) {
5016 _mesa_glsl_error(&loc, state,
5017 "fragment shader input cannot have type %s",
5018 check_type->name);
5019 }
5020 if (var->type->is_array() &&
5021 var->type->fields.array->is_array()) {
5022 _mesa_glsl_error(&loc, state,
5023 "%s shader output "
5024 "cannot have an array of arrays",
5025 _mesa_shader_stage_to_string(state->stage));
5026 }
5027 if (var->type->is_array() &&
5028 var->type->fields.array->is_record()) {
5029 _mesa_glsl_error(&loc, state,
5030 "fragment shader input "
5031 "cannot have an array of structs");
5032 }
5033 if (var->type->is_record()) {
5034 for (unsigned i = 0; i < var->type->length; i++) {
5035 if (var->type->fields.structure[i].type->is_array() ||
5036 var->type->fields.structure[i].type->is_record())
5037 _mesa_glsl_error(&loc, state,
5038 "fragement shader input cannot have "
5039 "a struct that contains an "
5040 "array or struct");
5041 }
5042 }
5043 }
5044 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5045 state->stage == MESA_SHADER_TESS_EVAL) {
5046 handle_tess_shader_input_decl(state, loc, var);
5047 }
5048 } else if (var->data.mode == ir_var_shader_out) {
5049 const glsl_type *check_type = var->type->without_array();
5050
5051 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5052 *
5053 * It is a compile-time error to declare a fragment shader output
5054 * that contains any of the following:
5055 *
5056 * * A Boolean type (bool, bvec2 ...)
5057 * * A double-precision scalar or vector (double, dvec2 ...)
5058 * * An opaque type
5059 * * Any matrix type
5060 * * A structure
5061 */
5062 if (state->stage == MESA_SHADER_FRAGMENT) {
5063 if (check_type->is_record() || check_type->is_matrix())
5064 _mesa_glsl_error(&loc, state,
5065 "fragment shader output "
5066 "cannot have struct or matrix type");
5067 switch (check_type->base_type) {
5068 case GLSL_TYPE_UINT:
5069 case GLSL_TYPE_INT:
5070 case GLSL_TYPE_FLOAT:
5071 break;
5072 default:
5073 _mesa_glsl_error(&loc, state,
5074 "fragment shader output cannot have "
5075 "type %s", check_type->name);
5076 }
5077 }
5078
5079 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5080 *
5081 * It is a compile-time error to declare a vertex shader output
5082 * with, or that contains, any of the following types:
5083 *
5084 * * A boolean type
5085 * * An opaque type
5086 * * An array of arrays
5087 * * An array of structures
5088 * * A structure containing an array
5089 * * A structure containing a structure
5090 *
5091 * It is a compile-time error to declare a fragment shader output
5092 * with, or that contains, any of the following types:
5093 *
5094 * * A boolean type
5095 * * An opaque type
5096 * * A matrix
5097 * * A structure
5098 * * An array of array
5099 *
5100 * ES 3.20 updates this to apply to tessellation and geometry shaders
5101 * as well. Because there are per-vertex arrays in the new stages,
5102 * it strikes the "array of..." rules and replaces them with these:
5103 *
5104 * * For per-vertex-arrayed variables (applies to tessellation
5105 * control, tessellation evaluation and geometry shaders):
5106 *
5107 * * Per-vertex-arrayed arrays of arrays
5108 * * Per-vertex-arrayed arrays of structures
5109 *
5110 * * For non-per-vertex-arrayed variables:
5111 *
5112 * * An array of arrays
5113 * * An array of structures
5114 *
5115 * which basically says to unwrap the per-vertex aspect and apply
5116 * the old rules.
5117 */
5118 if (state->es_shader) {
5119 if (var->type->is_array() &&
5120 var->type->fields.array->is_array()) {
5121 _mesa_glsl_error(&loc, state,
5122 "%s shader output "
5123 "cannot have an array of arrays",
5124 _mesa_shader_stage_to_string(state->stage));
5125 }
5126 if (state->stage <= MESA_SHADER_GEOMETRY) {
5127 const glsl_type *type = var->type;
5128
5129 if (state->stage == MESA_SHADER_TESS_CTRL &&
5130 !var->data.patch && var->type->is_array()) {
5131 type = var->type->fields.array;
5132 }
5133
5134 if (type->is_array() && type->fields.array->is_record()) {
5135 _mesa_glsl_error(&loc, state,
5136 "%s shader output cannot have "
5137 "an array of structs",
5138 _mesa_shader_stage_to_string(state->stage));
5139 }
5140 if (type->is_record()) {
5141 for (unsigned i = 0; i < type->length; i++) {
5142 if (type->fields.structure[i].type->is_array() ||
5143 type->fields.structure[i].type->is_record())
5144 _mesa_glsl_error(&loc, state,
5145 "%s shader output cannot have a "
5146 "struct that contains an "
5147 "array or struct",
5148 _mesa_shader_stage_to_string(state->stage));
5149 }
5150 }
5151 }
5152 }
5153
5154 if (state->stage == MESA_SHADER_TESS_CTRL) {
5155 handle_tess_ctrl_shader_output_decl(state, loc, var);
5156 }
5157 } else if (var->type->contains_subroutine()) {
5158 /* declare subroutine uniforms as hidden */
5159 var->data.how_declared = ir_var_hidden;
5160 }
5161
5162 /* From section 4.3.4 of the GLSL 4.00 spec:
5163 * "Input variables may not be declared using the patch in qualifier
5164 * in tessellation control or geometry shaders."
5165 *
5166 * From section 4.3.6 of the GLSL 4.00 spec:
5167 * "It is an error to use patch out in a vertex, tessellation
5168 * evaluation, or geometry shader."
5169 *
5170 * This doesn't explicitly forbid using them in a fragment shader, but
5171 * that's probably just an oversight.
5172 */
5173 if (state->stage != MESA_SHADER_TESS_EVAL
5174 && this->type->qualifier.flags.q.patch
5175 && this->type->qualifier.flags.q.in) {
5176
5177 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5178 "tessellation evaluation shader");
5179 }
5180
5181 if (state->stage != MESA_SHADER_TESS_CTRL
5182 && this->type->qualifier.flags.q.patch
5183 && this->type->qualifier.flags.q.out) {
5184
5185 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5186 "tessellation control shader");
5187 }
5188
5189 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5190 */
5191 if (this->type->qualifier.precision != ast_precision_none) {
5192 state->check_precision_qualifiers_allowed(&loc);
5193 }
5194
5195 if (this->type->qualifier.precision != ast_precision_none &&
5196 !precision_qualifier_allowed(var->type)) {
5197 _mesa_glsl_error(&loc, state,
5198 "precision qualifiers apply only to floating point"
5199 ", integer and opaque types");
5200 }
5201
5202 /* From section 4.1.7 of the GLSL 4.40 spec:
5203 *
5204 * "[Opaque types] can only be declared as function
5205 * parameters or uniform-qualified variables."
5206 */
5207 if (var_type->contains_opaque() &&
5208 !this->type->qualifier.flags.q.uniform) {
5209 _mesa_glsl_error(&loc, state,
5210 "opaque variables must be declared uniform");
5211 }
5212
5213 /* Process the initializer and add its instructions to a temporary
5214 * list. This list will be added to the instruction stream (below) after
5215 * the declaration is added. This is done because in some cases (such as
5216 * redeclarations) the declaration may not actually be added to the
5217 * instruction stream.
5218 */
5219 exec_list initializer_instructions;
5220
5221 /* Examine var name here since var may get deleted in the next call */
5222 bool var_is_gl_id = is_gl_identifier(var->name);
5223
5224 bool is_redeclaration;
5225 ir_variable *declared_var =
5226 get_variable_being_redeclared(var, decl->get_location(), state,
5227 false /* allow_all_redeclarations */,
5228 &is_redeclaration);
5229 if (is_redeclaration) {
5230 if (var_is_gl_id &&
5231 declared_var->data.how_declared == ir_var_declared_in_block) {
5232 _mesa_glsl_error(&loc, state,
5233 "`%s' has already been redeclared using "
5234 "gl_PerVertex", declared_var->name);
5235 }
5236 declared_var->data.how_declared = ir_var_declared_normally;
5237 }
5238
5239 if (decl->initializer != NULL) {
5240 result = process_initializer(declared_var,
5241 decl, this->type,
5242 &initializer_instructions, state);
5243 } else {
5244 validate_array_dimensions(var_type, state, &loc);
5245 }
5246
5247 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5248 *
5249 * "It is an error to write to a const variable outside of
5250 * its declaration, so they must be initialized when
5251 * declared."
5252 */
5253 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5254 _mesa_glsl_error(& loc, state,
5255 "const declaration of `%s' must be initialized",
5256 decl->identifier);
5257 }
5258
5259 if (state->es_shader) {
5260 const glsl_type *const t = declared_var->type;
5261
5262 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5263 *
5264 * The GL_OES_tessellation_shader spec says about inputs:
5265 *
5266 * "Declaring an array size is optional. If no size is specified,
5267 * it will be taken from the implementation-dependent maximum
5268 * patch size (gl_MaxPatchVertices)."
5269 *
5270 * and about TCS outputs:
5271 *
5272 * "If no size is specified, it will be taken from output patch
5273 * size declared in the shader."
5274 *
5275 * The GL_OES_geometry_shader spec says:
5276 *
5277 * "All geometry shader input unsized array declarations will be
5278 * sized by an earlier input primitive layout qualifier, when
5279 * present, as per the following table."
5280 */
5281 const bool implicitly_sized =
5282 (declared_var->data.mode == ir_var_shader_in &&
5283 state->stage >= MESA_SHADER_TESS_CTRL &&
5284 state->stage <= MESA_SHADER_GEOMETRY) ||
5285 (declared_var->data.mode == ir_var_shader_out &&
5286 state->stage == MESA_SHADER_TESS_CTRL);
5287
5288 if (t->is_unsized_array() && !implicitly_sized)
5289 /* Section 10.17 of the GLSL ES 1.00 specification states that
5290 * unsized array declarations have been removed from the language.
5291 * Arrays that are sized using an initializer are still explicitly
5292 * sized. However, GLSL ES 1.00 does not allow array
5293 * initializers. That is only allowed in GLSL ES 3.00.
5294 *
5295 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5296 *
5297 * "An array type can also be formed without specifying a size
5298 * if the definition includes an initializer:
5299 *
5300 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5301 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5302 *
5303 * float a[5];
5304 * float b[] = a;"
5305 */
5306 _mesa_glsl_error(& loc, state,
5307 "unsized array declarations are not allowed in "
5308 "GLSL ES");
5309 }
5310
5311 /* If the declaration is not a redeclaration, there are a few additional
5312 * semantic checks that must be applied. In addition, variable that was
5313 * created for the declaration should be added to the IR stream.
5314 */
5315 if (!is_redeclaration) {
5316 validate_identifier(decl->identifier, loc, state);
5317
5318 /* Add the variable to the symbol table. Note that the initializer's
5319 * IR was already processed earlier (though it hasn't been emitted
5320 * yet), without the variable in scope.
5321 *
5322 * This differs from most C-like languages, but it follows the GLSL
5323 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5324 * spec:
5325 *
5326 * "Within a declaration, the scope of a name starts immediately
5327 * after the initializer if present or immediately after the name
5328 * being declared if not."
5329 */
5330 if (!state->symbols->add_variable(declared_var)) {
5331 YYLTYPE loc = this->get_location();
5332 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5333 "current scope", decl->identifier);
5334 continue;
5335 }
5336
5337 /* Push the variable declaration to the top. It means that all the
5338 * variable declarations will appear in a funny last-to-first order,
5339 * but otherwise we run into trouble if a function is prototyped, a
5340 * global var is decled, then the function is defined with usage of
5341 * the global var. See glslparsertest's CorrectModule.frag.
5342 */
5343 instructions->push_head(declared_var);
5344 }
5345
5346 instructions->append_list(&initializer_instructions);
5347 }
5348
5349
5350 /* Generally, variable declarations do not have r-values. However,
5351 * one is used for the declaration in
5352 *
5353 * while (bool b = some_condition()) {
5354 * ...
5355 * }
5356 *
5357 * so we return the rvalue from the last seen declaration here.
5358 */
5359 return result;
5360 }
5361
5362
5363 ir_rvalue *
5364 ast_parameter_declarator::hir(exec_list *instructions,
5365 struct _mesa_glsl_parse_state *state)
5366 {
5367 void *ctx = state;
5368 const struct glsl_type *type;
5369 const char *name = NULL;
5370 YYLTYPE loc = this->get_location();
5371
5372 type = this->type->glsl_type(& name, state);
5373
5374 if (type == NULL) {
5375 if (name != NULL) {
5376 _mesa_glsl_error(& loc, state,
5377 "invalid type `%s' in declaration of `%s'",
5378 name, this->identifier);
5379 } else {
5380 _mesa_glsl_error(& loc, state,
5381 "invalid type in declaration of `%s'",
5382 this->identifier);
5383 }
5384
5385 type = glsl_type::error_type;
5386 }
5387
5388 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5389 *
5390 * "Functions that accept no input arguments need not use void in the
5391 * argument list because prototypes (or definitions) are required and
5392 * therefore there is no ambiguity when an empty argument list "( )" is
5393 * declared. The idiom "(void)" as a parameter list is provided for
5394 * convenience."
5395 *
5396 * Placing this check here prevents a void parameter being set up
5397 * for a function, which avoids tripping up checks for main taking
5398 * parameters and lookups of an unnamed symbol.
5399 */
5400 if (type->is_void()) {
5401 if (this->identifier != NULL)
5402 _mesa_glsl_error(& loc, state,
5403 "named parameter cannot have type `void'");
5404
5405 is_void = true;
5406 return NULL;
5407 }
5408
5409 if (formal_parameter && (this->identifier == NULL)) {
5410 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5411 return NULL;
5412 }
5413
5414 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5415 * call already handled the "vec4[..] foo" case.
5416 */
5417 type = process_array_type(&loc, type, this->array_specifier, state);
5418
5419 if (!type->is_error() && type->is_unsized_array()) {
5420 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5421 "a declared size");
5422 type = glsl_type::error_type;
5423 }
5424
5425 is_void = false;
5426 ir_variable *var = new(ctx)
5427 ir_variable(type, this->identifier, ir_var_function_in);
5428
5429 /* Apply any specified qualifiers to the parameter declaration. Note that
5430 * for function parameters the default mode is 'in'.
5431 */
5432 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5433 true);
5434
5435 /* From section 4.1.7 of the GLSL 4.40 spec:
5436 *
5437 * "Opaque variables cannot be treated as l-values; hence cannot
5438 * be used as out or inout function parameters, nor can they be
5439 * assigned into."
5440 */
5441 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5442 && type->contains_opaque()) {
5443 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5444 "contain opaque variables");
5445 type = glsl_type::error_type;
5446 }
5447
5448 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5449 *
5450 * "When calling a function, expressions that do not evaluate to
5451 * l-values cannot be passed to parameters declared as out or inout."
5452 *
5453 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5454 *
5455 * "Other binary or unary expressions, non-dereferenced arrays,
5456 * function names, swizzles with repeated fields, and constants
5457 * cannot be l-values."
5458 *
5459 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5460 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5461 */
5462 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5463 && type->is_array()
5464 && !state->check_version(120, 100, &loc,
5465 "arrays cannot be out or inout parameters")) {
5466 type = glsl_type::error_type;
5467 }
5468
5469 instructions->push_tail(var);
5470
5471 /* Parameter declarations do not have r-values.
5472 */
5473 return NULL;
5474 }
5475
5476
5477 void
5478 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5479 bool formal,
5480 exec_list *ir_parameters,
5481 _mesa_glsl_parse_state *state)
5482 {
5483 ast_parameter_declarator *void_param = NULL;
5484 unsigned count = 0;
5485
5486 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5487 param->formal_parameter = formal;
5488 param->hir(ir_parameters, state);
5489
5490 if (param->is_void)
5491 void_param = param;
5492
5493 count++;
5494 }
5495
5496 if ((void_param != NULL) && (count > 1)) {
5497 YYLTYPE loc = void_param->get_location();
5498
5499 _mesa_glsl_error(& loc, state,
5500 "`void' parameter must be only parameter");
5501 }
5502 }
5503
5504
5505 void
5506 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5507 {
5508 /* IR invariants disallow function declarations or definitions
5509 * nested within other function definitions. But there is no
5510 * requirement about the relative order of function declarations
5511 * and definitions with respect to one another. So simply insert
5512 * the new ir_function block at the end of the toplevel instruction
5513 * list.
5514 */
5515 state->toplevel_ir->push_tail(f);
5516 }
5517
5518
5519 ir_rvalue *
5520 ast_function::hir(exec_list *instructions,
5521 struct _mesa_glsl_parse_state *state)
5522 {
5523 void *ctx = state;
5524 ir_function *f = NULL;
5525 ir_function_signature *sig = NULL;
5526 exec_list hir_parameters;
5527 YYLTYPE loc = this->get_location();
5528
5529 const char *const name = identifier;
5530
5531 /* New functions are always added to the top-level IR instruction stream,
5532 * so this instruction list pointer is ignored. See also emit_function
5533 * (called below).
5534 */
5535 (void) instructions;
5536
5537 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5538 *
5539 * "Function declarations (prototypes) cannot occur inside of functions;
5540 * they must be at global scope, or for the built-in functions, outside
5541 * the global scope."
5542 *
5543 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5544 *
5545 * "User defined functions may only be defined within the global scope."
5546 *
5547 * Note that this language does not appear in GLSL 1.10.
5548 */
5549 if ((state->current_function != NULL) &&
5550 state->is_version(120, 100)) {
5551 YYLTYPE loc = this->get_location();
5552 _mesa_glsl_error(&loc, state,
5553 "declaration of function `%s' not allowed within "
5554 "function body", name);
5555 }
5556
5557 validate_identifier(name, this->get_location(), state);
5558
5559 /* Convert the list of function parameters to HIR now so that they can be
5560 * used below to compare this function's signature with previously seen
5561 * signatures for functions with the same name.
5562 */
5563 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5564 is_definition,
5565 & hir_parameters, state);
5566
5567 const char *return_type_name;
5568 const glsl_type *return_type =
5569 this->return_type->glsl_type(& return_type_name, state);
5570
5571 if (!return_type) {
5572 YYLTYPE loc = this->get_location();
5573 _mesa_glsl_error(&loc, state,
5574 "function `%s' has undeclared return type `%s'",
5575 name, return_type_name);
5576 return_type = glsl_type::error_type;
5577 }
5578
5579 /* ARB_shader_subroutine states:
5580 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5581 * subroutine(...) to a function declaration."
5582 */
5583 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5584 YYLTYPE loc = this->get_location();
5585 _mesa_glsl_error(&loc, state,
5586 "function declaration `%s' cannot have subroutine prepended",
5587 name);
5588 }
5589
5590 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5591 * "No qualifier is allowed on the return type of a function."
5592 */
5593 if (this->return_type->has_qualifiers(state)) {
5594 YYLTYPE loc = this->get_location();
5595 _mesa_glsl_error(& loc, state,
5596 "function `%s' return type has qualifiers", name);
5597 }
5598
5599 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5600 *
5601 * "Arrays are allowed as arguments and as the return type. In both
5602 * cases, the array must be explicitly sized."
5603 */
5604 if (return_type->is_unsized_array()) {
5605 YYLTYPE loc = this->get_location();
5606 _mesa_glsl_error(& loc, state,
5607 "function `%s' return type array must be explicitly "
5608 "sized", name);
5609 }
5610
5611 /* From section 4.1.7 of the GLSL 4.40 spec:
5612 *
5613 * "[Opaque types] can only be declared as function parameters
5614 * or uniform-qualified variables."
5615 */
5616 if (return_type->contains_opaque()) {
5617 YYLTYPE loc = this->get_location();
5618 _mesa_glsl_error(&loc, state,
5619 "function `%s' return type can't contain an opaque type",
5620 name);
5621 }
5622
5623 /**/
5624 if (return_type->is_subroutine()) {
5625 YYLTYPE loc = this->get_location();
5626 _mesa_glsl_error(&loc, state,
5627 "function `%s' return type can't be a subroutine type",
5628 name);
5629 }
5630
5631
5632 /* Create an ir_function if one doesn't already exist. */
5633 f = state->symbols->get_function(name);
5634 if (f == NULL) {
5635 f = new(ctx) ir_function(name);
5636 if (!this->return_type->qualifier.is_subroutine_decl()) {
5637 if (!state->symbols->add_function(f)) {
5638 /* This function name shadows a non-function use of the same name. */
5639 YYLTYPE loc = this->get_location();
5640 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5641 "non-function", name);
5642 return NULL;
5643 }
5644 }
5645 emit_function(state, f);
5646 }
5647
5648 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5649 *
5650 * "A shader cannot redefine or overload built-in functions."
5651 *
5652 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5653 *
5654 * "User code can overload the built-in functions but cannot redefine
5655 * them."
5656 */
5657 if (state->es_shader && state->language_version >= 300) {
5658 /* Local shader has no exact candidates; check the built-ins. */
5659 _mesa_glsl_initialize_builtin_functions();
5660 if (_mesa_glsl_has_builtin_function(name)) {
5661 YYLTYPE loc = this->get_location();
5662 _mesa_glsl_error(& loc, state,
5663 "A shader cannot redefine or overload built-in "
5664 "function `%s' in GLSL ES 3.00", name);
5665 return NULL;
5666 }
5667 }
5668
5669 /* Verify that this function's signature either doesn't match a previously
5670 * seen signature for a function with the same name, or, if a match is found,
5671 * that the previously seen signature does not have an associated definition.
5672 */
5673 if (state->es_shader || f->has_user_signature()) {
5674 sig = f->exact_matching_signature(state, &hir_parameters);
5675 if (sig != NULL) {
5676 const char *badvar = sig->qualifiers_match(&hir_parameters);
5677 if (badvar != NULL) {
5678 YYLTYPE loc = this->get_location();
5679
5680 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5681 "qualifiers don't match prototype", name, badvar);
5682 }
5683
5684 if (sig->return_type != return_type) {
5685 YYLTYPE loc = this->get_location();
5686
5687 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5688 "match prototype", name);
5689 }
5690
5691 if (sig->is_defined) {
5692 if (is_definition) {
5693 YYLTYPE loc = this->get_location();
5694 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5695 } else {
5696 /* We just encountered a prototype that exactly matches a
5697 * function that's already been defined. This is redundant,
5698 * and we should ignore it.
5699 */
5700 return NULL;
5701 }
5702 }
5703 }
5704 }
5705
5706 /* Verify the return type of main() */
5707 if (strcmp(name, "main") == 0) {
5708 if (! return_type->is_void()) {
5709 YYLTYPE loc = this->get_location();
5710
5711 _mesa_glsl_error(& loc, state, "main() must return void");
5712 }
5713
5714 if (!hir_parameters.is_empty()) {
5715 YYLTYPE loc = this->get_location();
5716
5717 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5718 }
5719 }
5720
5721 /* Finish storing the information about this new function in its signature.
5722 */
5723 if (sig == NULL) {
5724 sig = new(ctx) ir_function_signature(return_type);
5725 f->add_signature(sig);
5726 }
5727
5728 sig->replace_parameters(&hir_parameters);
5729 signature = sig;
5730
5731 if (this->return_type->qualifier.subroutine_list) {
5732 int idx;
5733
5734 if (this->return_type->qualifier.flags.q.explicit_index) {
5735 unsigned qual_index;
5736 if (process_qualifier_constant(state, &loc, "index",
5737 this->return_type->qualifier.index,
5738 &qual_index)) {
5739 if (!state->has_explicit_uniform_location()) {
5740 _mesa_glsl_error(&loc, state, "subroutine index requires "
5741 "GL_ARB_explicit_uniform_location or "
5742 "GLSL 4.30");
5743 } else if (qual_index >= MAX_SUBROUTINES) {
5744 _mesa_glsl_error(&loc, state,
5745 "invalid subroutine index (%d) index must "
5746 "be a number between 0 and "
5747 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5748 MAX_SUBROUTINES - 1);
5749 } else {
5750 f->subroutine_index = qual_index;
5751 }
5752 }
5753 }
5754
5755 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5756 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5757 f->num_subroutine_types);
5758 idx = 0;
5759 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5760 const struct glsl_type *type;
5761 /* the subroutine type must be already declared */
5762 type = state->symbols->get_type(decl->identifier);
5763 if (!type) {
5764 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5765 }
5766
5767 for (int i = 0; i < state->num_subroutine_types; i++) {
5768 ir_function *fn = state->subroutine_types[i];
5769 ir_function_signature *tsig = NULL;
5770
5771 if (strcmp(fn->name, decl->identifier))
5772 continue;
5773
5774 tsig = fn->matching_signature(state, &sig->parameters,
5775 false);
5776 if (!tsig) {
5777 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5778 } else {
5779 if (tsig->return_type != sig->return_type) {
5780 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5781 }
5782 }
5783 }
5784 f->subroutine_types[idx++] = type;
5785 }
5786 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5787 ir_function *,
5788 state->num_subroutines + 1);
5789 state->subroutines[state->num_subroutines] = f;
5790 state->num_subroutines++;
5791
5792 }
5793
5794 if (this->return_type->qualifier.is_subroutine_decl()) {
5795 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5796 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5797 return NULL;
5798 }
5799 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5800 ir_function *,
5801 state->num_subroutine_types + 1);
5802 state->subroutine_types[state->num_subroutine_types] = f;
5803 state->num_subroutine_types++;
5804
5805 f->is_subroutine = true;
5806 }
5807
5808 /* Function declarations (prototypes) do not have r-values.
5809 */
5810 return NULL;
5811 }
5812
5813
5814 ir_rvalue *
5815 ast_function_definition::hir(exec_list *instructions,
5816 struct _mesa_glsl_parse_state *state)
5817 {
5818 prototype->is_definition = true;
5819 prototype->hir(instructions, state);
5820
5821 ir_function_signature *signature = prototype->signature;
5822 if (signature == NULL)
5823 return NULL;
5824
5825 assert(state->current_function == NULL);
5826 state->current_function = signature;
5827 state->found_return = false;
5828
5829 /* Duplicate parameters declared in the prototype as concrete variables.
5830 * Add these to the symbol table.
5831 */
5832 state->symbols->push_scope();
5833 foreach_in_list(ir_variable, var, &signature->parameters) {
5834 assert(var->as_variable() != NULL);
5835
5836 /* The only way a parameter would "exist" is if two parameters have
5837 * the same name.
5838 */
5839 if (state->symbols->name_declared_this_scope(var->name)) {
5840 YYLTYPE loc = this->get_location();
5841
5842 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5843 } else {
5844 state->symbols->add_variable(var);
5845 }
5846 }
5847
5848 /* Convert the body of the function to HIR. */
5849 this->body->hir(&signature->body, state);
5850 signature->is_defined = true;
5851
5852 state->symbols->pop_scope();
5853
5854 assert(state->current_function == signature);
5855 state->current_function = NULL;
5856
5857 if (!signature->return_type->is_void() && !state->found_return) {
5858 YYLTYPE loc = this->get_location();
5859 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5860 "%s, but no return statement",
5861 signature->function_name(),
5862 signature->return_type->name);
5863 }
5864
5865 /* Function definitions do not have r-values.
5866 */
5867 return NULL;
5868 }
5869
5870
5871 ir_rvalue *
5872 ast_jump_statement::hir(exec_list *instructions,
5873 struct _mesa_glsl_parse_state *state)
5874 {
5875 void *ctx = state;
5876
5877 switch (mode) {
5878 case ast_return: {
5879 ir_return *inst;
5880 assert(state->current_function);
5881
5882 if (opt_return_value) {
5883 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5884
5885 /* The value of the return type can be NULL if the shader says
5886 * 'return foo();' and foo() is a function that returns void.
5887 *
5888 * NOTE: The GLSL spec doesn't say that this is an error. The type
5889 * of the return value is void. If the return type of the function is
5890 * also void, then this should compile without error. Seriously.
5891 */
5892 const glsl_type *const ret_type =
5893 (ret == NULL) ? glsl_type::void_type : ret->type;
5894
5895 /* Implicit conversions are not allowed for return values prior to
5896 * ARB_shading_language_420pack.
5897 */
5898 if (state->current_function->return_type != ret_type) {
5899 YYLTYPE loc = this->get_location();
5900
5901 if (state->has_420pack()) {
5902 if (!apply_implicit_conversion(state->current_function->return_type,
5903 ret, state)) {
5904 _mesa_glsl_error(& loc, state,
5905 "could not implicitly convert return value "
5906 "to %s, in function `%s'",
5907 state->current_function->return_type->name,
5908 state->current_function->function_name());
5909 }
5910 } else {
5911 _mesa_glsl_error(& loc, state,
5912 "`return' with wrong type %s, in function `%s' "
5913 "returning %s",
5914 ret_type->name,
5915 state->current_function->function_name(),
5916 state->current_function->return_type->name);
5917 }
5918 } else if (state->current_function->return_type->base_type ==
5919 GLSL_TYPE_VOID) {
5920 YYLTYPE loc = this->get_location();
5921
5922 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5923 * specs add a clarification:
5924 *
5925 * "A void function can only use return without a return argument, even if
5926 * the return argument has void type. Return statements only accept values:
5927 *
5928 * void func1() { }
5929 * void func2() { return func1(); } // illegal return statement"
5930 */
5931 _mesa_glsl_error(& loc, state,
5932 "void functions can only use `return' without a "
5933 "return argument");
5934 }
5935
5936 inst = new(ctx) ir_return(ret);
5937 } else {
5938 if (state->current_function->return_type->base_type !=
5939 GLSL_TYPE_VOID) {
5940 YYLTYPE loc = this->get_location();
5941
5942 _mesa_glsl_error(& loc, state,
5943 "`return' with no value, in function %s returning "
5944 "non-void",
5945 state->current_function->function_name());
5946 }
5947 inst = new(ctx) ir_return;
5948 }
5949
5950 state->found_return = true;
5951 instructions->push_tail(inst);
5952 break;
5953 }
5954
5955 case ast_discard:
5956 if (state->stage != MESA_SHADER_FRAGMENT) {
5957 YYLTYPE loc = this->get_location();
5958
5959 _mesa_glsl_error(& loc, state,
5960 "`discard' may only appear in a fragment shader");
5961 }
5962 instructions->push_tail(new(ctx) ir_discard);
5963 break;
5964
5965 case ast_break:
5966 case ast_continue:
5967 if (mode == ast_continue &&
5968 state->loop_nesting_ast == NULL) {
5969 YYLTYPE loc = this->get_location();
5970
5971 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5972 } else if (mode == ast_break &&
5973 state->loop_nesting_ast == NULL &&
5974 state->switch_state.switch_nesting_ast == NULL) {
5975 YYLTYPE loc = this->get_location();
5976
5977 _mesa_glsl_error(& loc, state,
5978 "break may only appear in a loop or a switch");
5979 } else {
5980 /* For a loop, inline the for loop expression again, since we don't
5981 * know where near the end of the loop body the normal copy of it is
5982 * going to be placed. Same goes for the condition for a do-while
5983 * loop.
5984 */
5985 if (state->loop_nesting_ast != NULL &&
5986 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5987 if (state->loop_nesting_ast->rest_expression) {
5988 state->loop_nesting_ast->rest_expression->hir(instructions,
5989 state);
5990 }
5991 if (state->loop_nesting_ast->mode ==
5992 ast_iteration_statement::ast_do_while) {
5993 state->loop_nesting_ast->condition_to_hir(instructions, state);
5994 }
5995 }
5996
5997 if (state->switch_state.is_switch_innermost &&
5998 mode == ast_continue) {
5999 /* Set 'continue_inside' to true. */
6000 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6001 ir_dereference_variable *deref_continue_inside_var =
6002 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6003 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6004 true_val));
6005
6006 /* Break out from the switch, continue for the loop will
6007 * be called right after switch. */
6008 ir_loop_jump *const jump =
6009 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6010 instructions->push_tail(jump);
6011
6012 } else if (state->switch_state.is_switch_innermost &&
6013 mode == ast_break) {
6014 /* Force break out of switch by inserting a break. */
6015 ir_loop_jump *const jump =
6016 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6017 instructions->push_tail(jump);
6018 } else {
6019 ir_loop_jump *const jump =
6020 new(ctx) ir_loop_jump((mode == ast_break)
6021 ? ir_loop_jump::jump_break
6022 : ir_loop_jump::jump_continue);
6023 instructions->push_tail(jump);
6024 }
6025 }
6026
6027 break;
6028 }
6029
6030 /* Jump instructions do not have r-values.
6031 */
6032 return NULL;
6033 }
6034
6035
6036 ir_rvalue *
6037 ast_selection_statement::hir(exec_list *instructions,
6038 struct _mesa_glsl_parse_state *state)
6039 {
6040 void *ctx = state;
6041
6042 ir_rvalue *const condition = this->condition->hir(instructions, state);
6043
6044 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6045 *
6046 * "Any expression whose type evaluates to a Boolean can be used as the
6047 * conditional expression bool-expression. Vector types are not accepted
6048 * as the expression to if."
6049 *
6050 * The checks are separated so that higher quality diagnostics can be
6051 * generated for cases where both rules are violated.
6052 */
6053 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6054 YYLTYPE loc = this->condition->get_location();
6055
6056 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6057 "boolean");
6058 }
6059
6060 ir_if *const stmt = new(ctx) ir_if(condition);
6061
6062 if (then_statement != NULL) {
6063 state->symbols->push_scope();
6064 then_statement->hir(& stmt->then_instructions, state);
6065 state->symbols->pop_scope();
6066 }
6067
6068 if (else_statement != NULL) {
6069 state->symbols->push_scope();
6070 else_statement->hir(& stmt->else_instructions, state);
6071 state->symbols->pop_scope();
6072 }
6073
6074 instructions->push_tail(stmt);
6075
6076 /* if-statements do not have r-values.
6077 */
6078 return NULL;
6079 }
6080
6081
6082 /* Used for detection of duplicate case values, compare
6083 * given contents directly.
6084 */
6085 static bool
6086 compare_case_value(const void *a, const void *b)
6087 {
6088 return *(unsigned *) a == *(unsigned *) b;
6089 }
6090
6091
6092 /* Used for detection of duplicate case values, just
6093 * returns key contents as is.
6094 */
6095 static unsigned
6096 key_contents(const void *key)
6097 {
6098 return *(unsigned *) key;
6099 }
6100
6101
6102 ir_rvalue *
6103 ast_switch_statement::hir(exec_list *instructions,
6104 struct _mesa_glsl_parse_state *state)
6105 {
6106 void *ctx = state;
6107
6108 ir_rvalue *const test_expression =
6109 this->test_expression->hir(instructions, state);
6110
6111 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6112 *
6113 * "The type of init-expression in a switch statement must be a
6114 * scalar integer."
6115 */
6116 if (!test_expression->type->is_scalar() ||
6117 !test_expression->type->is_integer()) {
6118 YYLTYPE loc = this->test_expression->get_location();
6119
6120 _mesa_glsl_error(& loc,
6121 state,
6122 "switch-statement expression must be scalar "
6123 "integer");
6124 }
6125
6126 /* Track the switch-statement nesting in a stack-like manner.
6127 */
6128 struct glsl_switch_state saved = state->switch_state;
6129
6130 state->switch_state.is_switch_innermost = true;
6131 state->switch_state.switch_nesting_ast = this;
6132 state->switch_state.labels_ht =
6133 _mesa_hash_table_create(NULL, key_contents,
6134 compare_case_value);
6135 state->switch_state.previous_default = NULL;
6136
6137 /* Initalize is_fallthru state to false.
6138 */
6139 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6140 state->switch_state.is_fallthru_var =
6141 new(ctx) ir_variable(glsl_type::bool_type,
6142 "switch_is_fallthru_tmp",
6143 ir_var_temporary);
6144 instructions->push_tail(state->switch_state.is_fallthru_var);
6145
6146 ir_dereference_variable *deref_is_fallthru_var =
6147 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6148 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6149 is_fallthru_val));
6150
6151 /* Initialize continue_inside state to false.
6152 */
6153 state->switch_state.continue_inside =
6154 new(ctx) ir_variable(glsl_type::bool_type,
6155 "continue_inside_tmp",
6156 ir_var_temporary);
6157 instructions->push_tail(state->switch_state.continue_inside);
6158
6159 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6160 ir_dereference_variable *deref_continue_inside_var =
6161 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6162 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6163 false_val));
6164
6165 state->switch_state.run_default =
6166 new(ctx) ir_variable(glsl_type::bool_type,
6167 "run_default_tmp",
6168 ir_var_temporary);
6169 instructions->push_tail(state->switch_state.run_default);
6170
6171 /* Loop around the switch is used for flow control. */
6172 ir_loop * loop = new(ctx) ir_loop();
6173 instructions->push_tail(loop);
6174
6175 /* Cache test expression.
6176 */
6177 test_to_hir(&loop->body_instructions, state);
6178
6179 /* Emit code for body of switch stmt.
6180 */
6181 body->hir(&loop->body_instructions, state);
6182
6183 /* Insert a break at the end to exit loop. */
6184 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6185 loop->body_instructions.push_tail(jump);
6186
6187 /* If we are inside loop, check if continue got called inside switch. */
6188 if (state->loop_nesting_ast != NULL) {
6189 ir_dereference_variable *deref_continue_inside =
6190 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6191 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6192 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6193
6194 if (state->loop_nesting_ast != NULL) {
6195 if (state->loop_nesting_ast->rest_expression) {
6196 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6197 state);
6198 }
6199 if (state->loop_nesting_ast->mode ==
6200 ast_iteration_statement::ast_do_while) {
6201 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6202 }
6203 }
6204 irif->then_instructions.push_tail(jump);
6205 instructions->push_tail(irif);
6206 }
6207
6208 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6209
6210 state->switch_state = saved;
6211
6212 /* Switch statements do not have r-values. */
6213 return NULL;
6214 }
6215
6216
6217 void
6218 ast_switch_statement::test_to_hir(exec_list *instructions,
6219 struct _mesa_glsl_parse_state *state)
6220 {
6221 void *ctx = state;
6222
6223 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6224 * on the switch test case. The first one would be already raised when
6225 * getting the test_expression at ast_switch_statement::hir
6226 */
6227 test_expression->set_is_lhs(true);
6228 /* Cache value of test expression. */
6229 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6230
6231 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6232 "switch_test_tmp",
6233 ir_var_temporary);
6234 ir_dereference_variable *deref_test_var =
6235 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6236
6237 instructions->push_tail(state->switch_state.test_var);
6238 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6239 }
6240
6241
6242 ir_rvalue *
6243 ast_switch_body::hir(exec_list *instructions,
6244 struct _mesa_glsl_parse_state *state)
6245 {
6246 if (stmts != NULL)
6247 stmts->hir(instructions, state);
6248
6249 /* Switch bodies do not have r-values. */
6250 return NULL;
6251 }
6252
6253 ir_rvalue *
6254 ast_case_statement_list::hir(exec_list *instructions,
6255 struct _mesa_glsl_parse_state *state)
6256 {
6257 exec_list default_case, after_default, tmp;
6258
6259 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6260 case_stmt->hir(&tmp, state);
6261
6262 /* Default case. */
6263 if (state->switch_state.previous_default && default_case.is_empty()) {
6264 default_case.append_list(&tmp);
6265 continue;
6266 }
6267
6268 /* If default case found, append 'after_default' list. */
6269 if (!default_case.is_empty())
6270 after_default.append_list(&tmp);
6271 else
6272 instructions->append_list(&tmp);
6273 }
6274
6275 /* Handle the default case. This is done here because default might not be
6276 * the last case. We need to add checks against following cases first to see
6277 * if default should be chosen or not.
6278 */
6279 if (!default_case.is_empty()) {
6280
6281 ir_rvalue *const true_val = new (state) ir_constant(true);
6282 ir_dereference_variable *deref_run_default_var =
6283 new(state) ir_dereference_variable(state->switch_state.run_default);
6284
6285 /* Choose to run default case initially, following conditional
6286 * assignments might change this.
6287 */
6288 ir_assignment *const init_var =
6289 new(state) ir_assignment(deref_run_default_var, true_val);
6290 instructions->push_tail(init_var);
6291
6292 /* Default case was the last one, no checks required. */
6293 if (after_default.is_empty()) {
6294 instructions->append_list(&default_case);
6295 return NULL;
6296 }
6297
6298 foreach_in_list(ir_instruction, ir, &after_default) {
6299 ir_assignment *assign = ir->as_assignment();
6300
6301 if (!assign)
6302 continue;
6303
6304 /* Clone the check between case label and init expression. */
6305 ir_expression *exp = (ir_expression*) assign->condition;
6306 ir_expression *clone = exp->clone(state, NULL);
6307
6308 ir_dereference_variable *deref_var =
6309 new(state) ir_dereference_variable(state->switch_state.run_default);
6310 ir_rvalue *const false_val = new (state) ir_constant(false);
6311
6312 ir_assignment *const set_false =
6313 new(state) ir_assignment(deref_var, false_val, clone);
6314
6315 instructions->push_tail(set_false);
6316 }
6317
6318 /* Append default case and all cases after it. */
6319 instructions->append_list(&default_case);
6320 instructions->append_list(&after_default);
6321 }
6322
6323 /* Case statements do not have r-values. */
6324 return NULL;
6325 }
6326
6327 ir_rvalue *
6328 ast_case_statement::hir(exec_list *instructions,
6329 struct _mesa_glsl_parse_state *state)
6330 {
6331 labels->hir(instructions, state);
6332
6333 /* Guard case statements depending on fallthru state. */
6334 ir_dereference_variable *const deref_fallthru_guard =
6335 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6336 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6337
6338 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6339 stmt->hir(& test_fallthru->then_instructions, state);
6340
6341 instructions->push_tail(test_fallthru);
6342
6343 /* Case statements do not have r-values. */
6344 return NULL;
6345 }
6346
6347
6348 ir_rvalue *
6349 ast_case_label_list::hir(exec_list *instructions,
6350 struct _mesa_glsl_parse_state *state)
6351 {
6352 foreach_list_typed (ast_case_label, label, link, & this->labels)
6353 label->hir(instructions, state);
6354
6355 /* Case labels do not have r-values. */
6356 return NULL;
6357 }
6358
6359 ir_rvalue *
6360 ast_case_label::hir(exec_list *instructions,
6361 struct _mesa_glsl_parse_state *state)
6362 {
6363 void *ctx = state;
6364
6365 ir_dereference_variable *deref_fallthru_var =
6366 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6367
6368 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6369
6370 /* If not default case, ... */
6371 if (this->test_value != NULL) {
6372 /* Conditionally set fallthru state based on
6373 * comparison of cached test expression value to case label.
6374 */
6375 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6376 ir_constant *label_const = label_rval->constant_expression_value();
6377
6378 if (!label_const) {
6379 YYLTYPE loc = this->test_value->get_location();
6380
6381 _mesa_glsl_error(& loc, state,
6382 "switch statement case label must be a "
6383 "constant expression");
6384
6385 /* Stuff a dummy value in to allow processing to continue. */
6386 label_const = new(ctx) ir_constant(0);
6387 } else {
6388 hash_entry *entry =
6389 _mesa_hash_table_search(state->switch_state.labels_ht,
6390 (void *)(uintptr_t)&label_const->value.u[0]);
6391
6392 if (entry) {
6393 ast_expression *previous_label = (ast_expression *) entry->data;
6394 YYLTYPE loc = this->test_value->get_location();
6395 _mesa_glsl_error(& loc, state, "duplicate case value");
6396
6397 loc = previous_label->get_location();
6398 _mesa_glsl_error(& loc, state, "this is the previous case label");
6399 } else {
6400 _mesa_hash_table_insert(state->switch_state.labels_ht,
6401 (void *)(uintptr_t)&label_const->value.u[0],
6402 this->test_value);
6403 }
6404 }
6405
6406 ir_dereference_variable *deref_test_var =
6407 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6408
6409 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6410 label_const,
6411 deref_test_var);
6412
6413 /*
6414 * From GLSL 4.40 specification section 6.2 ("Selection"):
6415 *
6416 * "The type of the init-expression value in a switch statement must
6417 * be a scalar int or uint. The type of the constant-expression value
6418 * in a case label also must be a scalar int or uint. When any pair
6419 * of these values is tested for "equal value" and the types do not
6420 * match, an implicit conversion will be done to convert the int to a
6421 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6422 * is done."
6423 */
6424 if (label_const->type != state->switch_state.test_var->type) {
6425 YYLTYPE loc = this->test_value->get_location();
6426
6427 const glsl_type *type_a = label_const->type;
6428 const glsl_type *type_b = state->switch_state.test_var->type;
6429
6430 /* Check if int->uint implicit conversion is supported. */
6431 bool integer_conversion_supported =
6432 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6433 state);
6434
6435 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6436 !integer_conversion_supported) {
6437 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6438 "init-expression and case label (%s != %s)",
6439 type_a->name, type_b->name);
6440 } else {
6441 /* Conversion of the case label. */
6442 if (type_a->base_type == GLSL_TYPE_INT) {
6443 if (!apply_implicit_conversion(glsl_type::uint_type,
6444 test_cond->operands[0], state))
6445 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6446 } else {
6447 /* Conversion of the init-expression value. */
6448 if (!apply_implicit_conversion(glsl_type::uint_type,
6449 test_cond->operands[1], state))
6450 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6451 }
6452 }
6453 }
6454
6455 ir_assignment *set_fallthru_on_test =
6456 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6457
6458 instructions->push_tail(set_fallthru_on_test);
6459 } else { /* default case */
6460 if (state->switch_state.previous_default) {
6461 YYLTYPE loc = this->get_location();
6462 _mesa_glsl_error(& loc, state,
6463 "multiple default labels in one switch");
6464
6465 loc = state->switch_state.previous_default->get_location();
6466 _mesa_glsl_error(& loc, state, "this is the first default label");
6467 }
6468 state->switch_state.previous_default = this;
6469
6470 /* Set fallthru condition on 'run_default' bool. */
6471 ir_dereference_variable *deref_run_default =
6472 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6473 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6474 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6475 cond_true,
6476 deref_run_default);
6477
6478 /* Set falltrhu state. */
6479 ir_assignment *set_fallthru =
6480 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6481
6482 instructions->push_tail(set_fallthru);
6483 }
6484
6485 /* Case statements do not have r-values. */
6486 return NULL;
6487 }
6488
6489 void
6490 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6491 struct _mesa_glsl_parse_state *state)
6492 {
6493 void *ctx = state;
6494
6495 if (condition != NULL) {
6496 ir_rvalue *const cond =
6497 condition->hir(instructions, state);
6498
6499 if ((cond == NULL)
6500 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6501 YYLTYPE loc = condition->get_location();
6502
6503 _mesa_glsl_error(& loc, state,
6504 "loop condition must be scalar boolean");
6505 } else {
6506 /* As the first code in the loop body, generate a block that looks
6507 * like 'if (!condition) break;' as the loop termination condition.
6508 */
6509 ir_rvalue *const not_cond =
6510 new(ctx) ir_expression(ir_unop_logic_not, cond);
6511
6512 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6513
6514 ir_jump *const break_stmt =
6515 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6516
6517 if_stmt->then_instructions.push_tail(break_stmt);
6518 instructions->push_tail(if_stmt);
6519 }
6520 }
6521 }
6522
6523
6524 ir_rvalue *
6525 ast_iteration_statement::hir(exec_list *instructions,
6526 struct _mesa_glsl_parse_state *state)
6527 {
6528 void *ctx = state;
6529
6530 /* For-loops and while-loops start a new scope, but do-while loops do not.
6531 */
6532 if (mode != ast_do_while)
6533 state->symbols->push_scope();
6534
6535 if (init_statement != NULL)
6536 init_statement->hir(instructions, state);
6537
6538 ir_loop *const stmt = new(ctx) ir_loop();
6539 instructions->push_tail(stmt);
6540
6541 /* Track the current loop nesting. */
6542 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6543
6544 state->loop_nesting_ast = this;
6545
6546 /* Likewise, indicate that following code is closest to a loop,
6547 * NOT closest to a switch.
6548 */
6549 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6550 state->switch_state.is_switch_innermost = false;
6551
6552 if (mode != ast_do_while)
6553 condition_to_hir(&stmt->body_instructions, state);
6554
6555 if (body != NULL)
6556 body->hir(& stmt->body_instructions, state);
6557
6558 if (rest_expression != NULL)
6559 rest_expression->hir(& stmt->body_instructions, state);
6560
6561 if (mode == ast_do_while)
6562 condition_to_hir(&stmt->body_instructions, state);
6563
6564 if (mode != ast_do_while)
6565 state->symbols->pop_scope();
6566
6567 /* Restore previous nesting before returning. */
6568 state->loop_nesting_ast = nesting_ast;
6569 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6570
6571 /* Loops do not have r-values.
6572 */
6573 return NULL;
6574 }
6575
6576
6577 /**
6578 * Determine if the given type is valid for establishing a default precision
6579 * qualifier.
6580 *
6581 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6582 *
6583 * "The precision statement
6584 *
6585 * precision precision-qualifier type;
6586 *
6587 * can be used to establish a default precision qualifier. The type field
6588 * can be either int or float or any of the sampler types, and the
6589 * precision-qualifier can be lowp, mediump, or highp."
6590 *
6591 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6592 * qualifiers on sampler types, but this seems like an oversight (since the
6593 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6594 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6595 * version.
6596 */
6597 static bool
6598 is_valid_default_precision_type(const struct glsl_type *const type)
6599 {
6600 if (type == NULL)
6601 return false;
6602
6603 switch (type->base_type) {
6604 case GLSL_TYPE_INT:
6605 case GLSL_TYPE_FLOAT:
6606 /* "int" and "float" are valid, but vectors and matrices are not. */
6607 return type->vector_elements == 1 && type->matrix_columns == 1;
6608 case GLSL_TYPE_SAMPLER:
6609 case GLSL_TYPE_IMAGE:
6610 case GLSL_TYPE_ATOMIC_UINT:
6611 return true;
6612 default:
6613 return false;
6614 }
6615 }
6616
6617
6618 ir_rvalue *
6619 ast_type_specifier::hir(exec_list *instructions,
6620 struct _mesa_glsl_parse_state *state)
6621 {
6622 if (this->default_precision == ast_precision_none && this->structure == NULL)
6623 return NULL;
6624
6625 YYLTYPE loc = this->get_location();
6626
6627 /* If this is a precision statement, check that the type to which it is
6628 * applied is either float or int.
6629 *
6630 * From section 4.5.3 of the GLSL 1.30 spec:
6631 * "The precision statement
6632 * precision precision-qualifier type;
6633 * can be used to establish a default precision qualifier. The type
6634 * field can be either int or float [...]. Any other types or
6635 * qualifiers will result in an error.
6636 */
6637 if (this->default_precision != ast_precision_none) {
6638 if (!state->check_precision_qualifiers_allowed(&loc))
6639 return NULL;
6640
6641 if (this->structure != NULL) {
6642 _mesa_glsl_error(&loc, state,
6643 "precision qualifiers do not apply to structures");
6644 return NULL;
6645 }
6646
6647 if (this->array_specifier != NULL) {
6648 _mesa_glsl_error(&loc, state,
6649 "default precision statements do not apply to "
6650 "arrays");
6651 return NULL;
6652 }
6653
6654 const struct glsl_type *const type =
6655 state->symbols->get_type(this->type_name);
6656 if (!is_valid_default_precision_type(type)) {
6657 _mesa_glsl_error(&loc, state,
6658 "default precision statements apply only to "
6659 "float, int, and opaque types");
6660 return NULL;
6661 }
6662
6663 if (state->es_shader) {
6664 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6665 * spec says:
6666 *
6667 * "Non-precision qualified declarations will use the precision
6668 * qualifier specified in the most recent precision statement
6669 * that is still in scope. The precision statement has the same
6670 * scoping rules as variable declarations. If it is declared
6671 * inside a compound statement, its effect stops at the end of
6672 * the innermost statement it was declared in. Precision
6673 * statements in nested scopes override precision statements in
6674 * outer scopes. Multiple precision statements for the same basic
6675 * type can appear inside the same scope, with later statements
6676 * overriding earlier statements within that scope."
6677 *
6678 * Default precision specifications follow the same scope rules as
6679 * variables. So, we can track the state of the default precision
6680 * qualifiers in the symbol table, and the rules will just work. This
6681 * is a slight abuse of the symbol table, but it has the semantics
6682 * that we want.
6683 */
6684 state->symbols->add_default_precision_qualifier(this->type_name,
6685 this->default_precision);
6686 }
6687
6688 /* FINISHME: Translate precision statements into IR. */
6689 return NULL;
6690 }
6691
6692 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6693 * process_record_constructor() can do type-checking on C-style initializer
6694 * expressions of structs, but ast_struct_specifier should only be translated
6695 * to HIR if it is declaring the type of a structure.
6696 *
6697 * The ->is_declaration field is false for initializers of variables
6698 * declared separately from the struct's type definition.
6699 *
6700 * struct S { ... }; (is_declaration = true)
6701 * struct T { ... } t = { ... }; (is_declaration = true)
6702 * S s = { ... }; (is_declaration = false)
6703 */
6704 if (this->structure != NULL && this->structure->is_declaration)
6705 return this->structure->hir(instructions, state);
6706
6707 return NULL;
6708 }
6709
6710
6711 /**
6712 * Process a structure or interface block tree into an array of structure fields
6713 *
6714 * After parsing, where there are some syntax differnces, structures and
6715 * interface blocks are almost identical. They are similar enough that the
6716 * AST for each can be processed the same way into a set of
6717 * \c glsl_struct_field to describe the members.
6718 *
6719 * If we're processing an interface block, var_mode should be the type of the
6720 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6721 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6722 * ir_var_auto.
6723 *
6724 * \return
6725 * The number of fields processed. A pointer to the array structure fields is
6726 * stored in \c *fields_ret.
6727 */
6728 static unsigned
6729 ast_process_struct_or_iface_block_members(exec_list *instructions,
6730 struct _mesa_glsl_parse_state *state,
6731 exec_list *declarations,
6732 glsl_struct_field **fields_ret,
6733 bool is_interface,
6734 enum glsl_matrix_layout matrix_layout,
6735 bool allow_reserved_names,
6736 ir_variable_mode var_mode,
6737 ast_type_qualifier *layout,
6738 unsigned block_stream,
6739 unsigned block_xfb_buffer,
6740 unsigned block_xfb_offset,
6741 unsigned expl_location,
6742 unsigned expl_align)
6743 {
6744 unsigned decl_count = 0;
6745 unsigned next_offset = 0;
6746
6747 /* Make an initial pass over the list of fields to determine how
6748 * many there are. Each element in this list is an ast_declarator_list.
6749 * This means that we actually need to count the number of elements in the
6750 * 'declarations' list in each of the elements.
6751 */
6752 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6753 decl_count += decl_list->declarations.length();
6754 }
6755
6756 /* Allocate storage for the fields and process the field
6757 * declarations. As the declarations are processed, try to also convert
6758 * the types to HIR. This ensures that structure definitions embedded in
6759 * other structure definitions or in interface blocks are processed.
6760 */
6761 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6762 decl_count);
6763
6764 bool first_member = true;
6765 bool first_member_has_explicit_location = false;
6766
6767 unsigned i = 0;
6768 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6769 const char *type_name;
6770 YYLTYPE loc = decl_list->get_location();
6771
6772 decl_list->type->specifier->hir(instructions, state);
6773
6774 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6775 *
6776 * "Anonymous structures are not supported; so embedded structures
6777 * must have a declarator. A name given to an embedded struct is
6778 * scoped at the same level as the struct it is embedded in."
6779 *
6780 * The same section of the GLSL 1.20 spec says:
6781 *
6782 * "Anonymous structures are not supported. Embedded structures are
6783 * not supported."
6784 *
6785 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6786 * embedded structures in 1.10 only.
6787 */
6788 if (state->language_version != 110 &&
6789 decl_list->type->specifier->structure != NULL)
6790 _mesa_glsl_error(&loc, state,
6791 "embedded structure declarations are not allowed");
6792
6793 const glsl_type *decl_type =
6794 decl_list->type->glsl_type(& type_name, state);
6795
6796 const struct ast_type_qualifier *const qual =
6797 &decl_list->type->qualifier;
6798
6799 /* From section 4.3.9 of the GLSL 4.40 spec:
6800 *
6801 * "[In interface blocks] opaque types are not allowed."
6802 *
6803 * It should be impossible for decl_type to be NULL here. Cases that
6804 * might naturally lead to decl_type being NULL, especially for the
6805 * is_interface case, will have resulted in compilation having
6806 * already halted due to a syntax error.
6807 */
6808 assert(decl_type);
6809
6810 if (is_interface) {
6811 if (decl_type->contains_opaque()) {
6812 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6813 "interface block contains opaque variable");
6814 }
6815 } else {
6816 if (decl_type->contains_atomic()) {
6817 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6818 *
6819 * "Members of structures cannot be declared as atomic counter
6820 * types."
6821 */
6822 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6823 }
6824
6825 if (decl_type->contains_image()) {
6826 /* FINISHME: Same problem as with atomic counters.
6827 * FINISHME: Request clarification from Khronos and add
6828 * FINISHME: spec quotation here.
6829 */
6830 _mesa_glsl_error(&loc, state, "image in structure");
6831 }
6832 }
6833
6834 if (qual->flags.q.explicit_binding) {
6835 _mesa_glsl_error(&loc, state,
6836 "binding layout qualifier cannot be applied "
6837 "to struct or interface block members");
6838 }
6839
6840 if (is_interface) {
6841 if (!first_member) {
6842 if (!layout->flags.q.explicit_location &&
6843 ((first_member_has_explicit_location &&
6844 !qual->flags.q.explicit_location) ||
6845 (!first_member_has_explicit_location &&
6846 qual->flags.q.explicit_location))) {
6847 _mesa_glsl_error(&loc, state,
6848 "when block-level location layout qualifier "
6849 "is not supplied either all members must "
6850 "have a location layout qualifier or all "
6851 "members must not have a location layout "
6852 "qualifier");
6853 }
6854 } else {
6855 first_member = false;
6856 first_member_has_explicit_location =
6857 qual->flags.q.explicit_location;
6858 }
6859 }
6860
6861 if (qual->flags.q.std140 ||
6862 qual->flags.q.std430 ||
6863 qual->flags.q.packed ||
6864 qual->flags.q.shared) {
6865 _mesa_glsl_error(&loc, state,
6866 "uniform/shader storage block layout qualifiers "
6867 "std140, std430, packed, and shared can only be "
6868 "applied to uniform/shader storage blocks, not "
6869 "members");
6870 }
6871
6872 if (qual->flags.q.constant) {
6873 _mesa_glsl_error(&loc, state,
6874 "const storage qualifier cannot be applied "
6875 "to struct or interface block members");
6876 }
6877
6878 validate_image_qualifier_for_type(state, &loc, qual, decl_type);
6879
6880 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6881 *
6882 * "A block member may be declared with a stream identifier, but
6883 * the specified stream must match the stream associated with the
6884 * containing block."
6885 */
6886 if (qual->flags.q.explicit_stream) {
6887 unsigned qual_stream;
6888 if (process_qualifier_constant(state, &loc, "stream",
6889 qual->stream, &qual_stream) &&
6890 qual_stream != block_stream) {
6891 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6892 "interface block member does not match "
6893 "the interface block (%u vs %u)", qual_stream,
6894 block_stream);
6895 }
6896 }
6897
6898 int xfb_buffer;
6899 unsigned explicit_xfb_buffer = 0;
6900 if (qual->flags.q.explicit_xfb_buffer) {
6901 unsigned qual_xfb_buffer;
6902 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6903 qual->xfb_buffer, &qual_xfb_buffer)) {
6904 explicit_xfb_buffer = 1;
6905 if (qual_xfb_buffer != block_xfb_buffer)
6906 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6907 "interface block member does not match "
6908 "the interface block (%u vs %u)",
6909 qual_xfb_buffer, block_xfb_buffer);
6910 }
6911 xfb_buffer = (int) qual_xfb_buffer;
6912 } else {
6913 if (layout)
6914 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6915 xfb_buffer = (int) block_xfb_buffer;
6916 }
6917
6918 int xfb_stride = -1;
6919 if (qual->flags.q.explicit_xfb_stride) {
6920 unsigned qual_xfb_stride;
6921 if (process_qualifier_constant(state, &loc, "xfb_stride",
6922 qual->xfb_stride, &qual_xfb_stride)) {
6923 xfb_stride = (int) qual_xfb_stride;
6924 }
6925 }
6926
6927 if (qual->flags.q.uniform && qual->has_interpolation()) {
6928 _mesa_glsl_error(&loc, state,
6929 "interpolation qualifiers cannot be used "
6930 "with uniform interface blocks");
6931 }
6932
6933 if ((qual->flags.q.uniform || !is_interface) &&
6934 qual->has_auxiliary_storage()) {
6935 _mesa_glsl_error(&loc, state,
6936 "auxiliary storage qualifiers cannot be used "
6937 "in uniform blocks or structures.");
6938 }
6939
6940 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6941 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6942 _mesa_glsl_error(&loc, state,
6943 "row_major and column_major can only be "
6944 "applied to interface blocks");
6945 } else
6946 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6947 }
6948
6949 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6950 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6951 "readonly and writeonly.");
6952 }
6953
6954 foreach_list_typed (ast_declaration, decl, link,
6955 &decl_list->declarations) {
6956 YYLTYPE loc = decl->get_location();
6957
6958 if (!allow_reserved_names)
6959 validate_identifier(decl->identifier, loc, state);
6960
6961 const struct glsl_type *field_type =
6962 process_array_type(&loc, decl_type, decl->array_specifier, state);
6963 validate_array_dimensions(field_type, state, &loc);
6964 fields[i].type = field_type;
6965 fields[i].name = decl->identifier;
6966 fields[i].interpolation =
6967 interpret_interpolation_qualifier(qual, field_type,
6968 var_mode, state, &loc);
6969 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6970 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6971 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6972 fields[i].precision = qual->precision;
6973 fields[i].offset = -1;
6974 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6975 fields[i].xfb_buffer = xfb_buffer;
6976 fields[i].xfb_stride = xfb_stride;
6977
6978 if (qual->flags.q.explicit_location) {
6979 unsigned qual_location;
6980 if (process_qualifier_constant(state, &loc, "location",
6981 qual->location, &qual_location)) {
6982 fields[i].location = qual_location +
6983 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6984 expl_location = fields[i].location +
6985 fields[i].type->count_attribute_slots(false);
6986 }
6987 } else {
6988 if (layout && layout->flags.q.explicit_location) {
6989 fields[i].location = expl_location;
6990 expl_location += fields[i].type->count_attribute_slots(false);
6991 } else {
6992 fields[i].location = -1;
6993 }
6994 }
6995
6996 /* Offset can only be used with std430 and std140 layouts an initial
6997 * value of 0 is used for error detection.
6998 */
6999 unsigned align = 0;
7000 unsigned size = 0;
7001 if (layout) {
7002 bool row_major;
7003 if (qual->flags.q.row_major ||
7004 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7005 row_major = true;
7006 } else {
7007 row_major = false;
7008 }
7009
7010 if(layout->flags.q.std140) {
7011 align = field_type->std140_base_alignment(row_major);
7012 size = field_type->std140_size(row_major);
7013 } else if (layout->flags.q.std430) {
7014 align = field_type->std430_base_alignment(row_major);
7015 size = field_type->std430_size(row_major);
7016 }
7017 }
7018
7019 if (qual->flags.q.explicit_offset) {
7020 unsigned qual_offset;
7021 if (process_qualifier_constant(state, &loc, "offset",
7022 qual->offset, &qual_offset)) {
7023 if (align != 0 && size != 0) {
7024 if (next_offset > qual_offset)
7025 _mesa_glsl_error(&loc, state, "layout qualifier "
7026 "offset overlaps previous member");
7027
7028 if (qual_offset % align) {
7029 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7030 "must be a multiple of the base "
7031 "alignment of %s", field_type->name);
7032 }
7033 fields[i].offset = qual_offset;
7034 next_offset = glsl_align(qual_offset + size, align);
7035 } else {
7036 _mesa_glsl_error(&loc, state, "offset can only be used "
7037 "with std430 and std140 layouts");
7038 }
7039 }
7040 }
7041
7042 if (qual->flags.q.explicit_align || expl_align != 0) {
7043 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7044 next_offset;
7045 if (align == 0 || size == 0) {
7046 _mesa_glsl_error(&loc, state, "align can only be used with "
7047 "std430 and std140 layouts");
7048 } else if (qual->flags.q.explicit_align) {
7049 unsigned member_align;
7050 if (process_qualifier_constant(state, &loc, "align",
7051 qual->align, &member_align)) {
7052 if (member_align == 0 ||
7053 member_align & (member_align - 1)) {
7054 _mesa_glsl_error(&loc, state, "align layout qualifier "
7055 "in not a power of 2");
7056 } else {
7057 fields[i].offset = glsl_align(offset, member_align);
7058 next_offset = glsl_align(fields[i].offset + size, align);
7059 }
7060 }
7061 } else {
7062 fields[i].offset = glsl_align(offset, expl_align);
7063 next_offset = glsl_align(fields[i].offset + size, align);
7064 }
7065 } else if (!qual->flags.q.explicit_offset) {
7066 if (align != 0 && size != 0)
7067 next_offset = glsl_align(next_offset + size, align);
7068 }
7069
7070 /* From the ARB_enhanced_layouts spec:
7071 *
7072 * "The given offset applies to the first component of the first
7073 * member of the qualified entity. Then, within the qualified
7074 * entity, subsequent components are each assigned, in order, to
7075 * the next available offset aligned to a multiple of that
7076 * component's size. Aggregate types are flattened down to the
7077 * component level to get this sequence of components."
7078 */
7079 if (qual->flags.q.explicit_xfb_offset) {
7080 unsigned xfb_offset;
7081 if (process_qualifier_constant(state, &loc, "xfb_offset",
7082 qual->offset, &xfb_offset)) {
7083 fields[i].offset = xfb_offset;
7084 block_xfb_offset = fields[i].offset +
7085 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7086 }
7087 } else {
7088 if (layout && layout->flags.q.explicit_xfb_offset) {
7089 unsigned align = field_type->is_64bit() ? 8 : 4;
7090 fields[i].offset = glsl_align(block_xfb_offset, align);
7091 block_xfb_offset +=
7092 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7093 }
7094 }
7095
7096 /* Propogate row- / column-major information down the fields of the
7097 * structure or interface block. Structures need this data because
7098 * the structure may contain a structure that contains ... a matrix
7099 * that need the proper layout.
7100 */
7101 if (is_interface && layout &&
7102 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7103 (field_type->without_array()->is_matrix()
7104 || field_type->without_array()->is_record())) {
7105 /* If no layout is specified for the field, inherit the layout
7106 * from the block.
7107 */
7108 fields[i].matrix_layout = matrix_layout;
7109
7110 if (qual->flags.q.row_major)
7111 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7112 else if (qual->flags.q.column_major)
7113 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7114
7115 /* If we're processing an uniform or buffer block, the matrix
7116 * layout must be decided by this point.
7117 */
7118 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7119 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7120 }
7121
7122 /* Image qualifiers are allowed on buffer variables, which can only
7123 * be defined inside shader storage buffer objects
7124 */
7125 if (layout && var_mode == ir_var_shader_storage) {
7126 /* For readonly and writeonly qualifiers the field definition,
7127 * if set, overwrites the layout qualifier.
7128 */
7129 if (qual->flags.q.read_only) {
7130 fields[i].image_read_only = true;
7131 fields[i].image_write_only = false;
7132 } else if (qual->flags.q.write_only) {
7133 fields[i].image_read_only = false;
7134 fields[i].image_write_only = true;
7135 } else {
7136 fields[i].image_read_only = layout->flags.q.read_only;
7137 fields[i].image_write_only = layout->flags.q.write_only;
7138 }
7139
7140 /* For other qualifiers, we set the flag if either the layout
7141 * qualifier or the field qualifier are set
7142 */
7143 fields[i].image_coherent = qual->flags.q.coherent ||
7144 layout->flags.q.coherent;
7145 fields[i].image_volatile = qual->flags.q._volatile ||
7146 layout->flags.q._volatile;
7147 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7148 layout->flags.q.restrict_flag;
7149 }
7150
7151 i++;
7152 }
7153 }
7154
7155 assert(i == decl_count);
7156
7157 *fields_ret = fields;
7158 return decl_count;
7159 }
7160
7161
7162 ir_rvalue *
7163 ast_struct_specifier::hir(exec_list *instructions,
7164 struct _mesa_glsl_parse_state *state)
7165 {
7166 YYLTYPE loc = this->get_location();
7167
7168 unsigned expl_location = 0;
7169 if (layout && layout->flags.q.explicit_location) {
7170 if (!process_qualifier_constant(state, &loc, "location",
7171 layout->location, &expl_location)) {
7172 return NULL;
7173 } else {
7174 expl_location = VARYING_SLOT_VAR0 + expl_location;
7175 }
7176 }
7177
7178 glsl_struct_field *fields;
7179 unsigned decl_count =
7180 ast_process_struct_or_iface_block_members(instructions,
7181 state,
7182 &this->declarations,
7183 &fields,
7184 false,
7185 GLSL_MATRIX_LAYOUT_INHERITED,
7186 false /* allow_reserved_names */,
7187 ir_var_auto,
7188 layout,
7189 0, /* for interface only */
7190 0, /* for interface only */
7191 0, /* for interface only */
7192 expl_location,
7193 0 /* for interface only */);
7194
7195 validate_identifier(this->name, loc, state);
7196
7197 const glsl_type *t =
7198 glsl_type::get_record_instance(fields, decl_count, this->name);
7199
7200 if (!state->symbols->add_type(name, t)) {
7201 const glsl_type *match = state->symbols->get_type(name);
7202 /* allow struct matching for desktop GL - older UE4 does this */
7203 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7204 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7205 else
7206 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7207 } else {
7208 const glsl_type **s = reralloc(state, state->user_structures,
7209 const glsl_type *,
7210 state->num_user_structures + 1);
7211 if (s != NULL) {
7212 s[state->num_user_structures] = t;
7213 state->user_structures = s;
7214 state->num_user_structures++;
7215 }
7216 }
7217
7218 /* Structure type definitions do not have r-values.
7219 */
7220 return NULL;
7221 }
7222
7223
7224 /**
7225 * Visitor class which detects whether a given interface block has been used.
7226 */
7227 class interface_block_usage_visitor : public ir_hierarchical_visitor
7228 {
7229 public:
7230 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7231 : mode(mode), block(block), found(false)
7232 {
7233 }
7234
7235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7236 {
7237 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7238 found = true;
7239 return visit_stop;
7240 }
7241 return visit_continue;
7242 }
7243
7244 bool usage_found() const
7245 {
7246 return this->found;
7247 }
7248
7249 private:
7250 ir_variable_mode mode;
7251 const glsl_type *block;
7252 bool found;
7253 };
7254
7255 static bool
7256 is_unsized_array_last_element(ir_variable *v)
7257 {
7258 const glsl_type *interface_type = v->get_interface_type();
7259 int length = interface_type->length;
7260
7261 assert(v->type->is_unsized_array());
7262
7263 /* Check if it is the last element of the interface */
7264 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7265 return true;
7266 return false;
7267 }
7268
7269 static void
7270 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7271 {
7272 var->data.image_read_only = field.image_read_only;
7273 var->data.image_write_only = field.image_write_only;
7274 var->data.image_coherent = field.image_coherent;
7275 var->data.image_volatile = field.image_volatile;
7276 var->data.image_restrict = field.image_restrict;
7277 }
7278
7279 ir_rvalue *
7280 ast_interface_block::hir(exec_list *instructions,
7281 struct _mesa_glsl_parse_state *state)
7282 {
7283 YYLTYPE loc = this->get_location();
7284
7285 /* Interface blocks must be declared at global scope */
7286 if (state->current_function != NULL) {
7287 _mesa_glsl_error(&loc, state,
7288 "Interface block `%s' must be declared "
7289 "at global scope",
7290 this->block_name);
7291 }
7292
7293 /* Validate qualifiers:
7294 *
7295 * - Layout Qualifiers as per the table in Section 4.4
7296 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7297 *
7298 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7299 * GLSL 4.50 spec:
7300 *
7301 * "Additionally, memory qualifiers may also be used in the declaration
7302 * of shader storage blocks"
7303 *
7304 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7305 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7306 * Layout Qualifiers) of the GLSL 4.50 spec says:
7307 *
7308 * "The std430 qualifier is supported only for shader storage blocks;
7309 * using std430 on a uniform block will result in a compile-time error."
7310 */
7311 ast_type_qualifier allowed_blk_qualifiers;
7312 allowed_blk_qualifiers.flags.i = 0;
7313 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7314 allowed_blk_qualifiers.flags.q.shared = 1;
7315 allowed_blk_qualifiers.flags.q.packed = 1;
7316 allowed_blk_qualifiers.flags.q.std140 = 1;
7317 allowed_blk_qualifiers.flags.q.row_major = 1;
7318 allowed_blk_qualifiers.flags.q.column_major = 1;
7319 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7320 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7321 if (this->layout.flags.q.buffer) {
7322 allowed_blk_qualifiers.flags.q.buffer = 1;
7323 allowed_blk_qualifiers.flags.q.std430 = 1;
7324 allowed_blk_qualifiers.flags.q.coherent = 1;
7325 allowed_blk_qualifiers.flags.q._volatile = 1;
7326 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7327 allowed_blk_qualifiers.flags.q.read_only = 1;
7328 allowed_blk_qualifiers.flags.q.write_only = 1;
7329 } else {
7330 allowed_blk_qualifiers.flags.q.uniform = 1;
7331 }
7332 } else {
7333 /* Interface block */
7334 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7335
7336 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7337 if (this->layout.flags.q.out) {
7338 allowed_blk_qualifiers.flags.q.out = 1;
7339 if (state->stage == MESA_SHADER_GEOMETRY ||
7340 state->stage == MESA_SHADER_TESS_CTRL ||
7341 state->stage == MESA_SHADER_TESS_EVAL ||
7342 state->stage == MESA_SHADER_VERTEX ) {
7343 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7344 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7345 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7346 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7347 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7348 if (state->stage == MESA_SHADER_GEOMETRY) {
7349 allowed_blk_qualifiers.flags.q.stream = 1;
7350 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7351 }
7352 if (state->stage == MESA_SHADER_TESS_CTRL) {
7353 allowed_blk_qualifiers.flags.q.patch = 1;
7354 }
7355 }
7356 } else {
7357 allowed_blk_qualifiers.flags.q.in = 1;
7358 if (state->stage == MESA_SHADER_TESS_EVAL) {
7359 allowed_blk_qualifiers.flags.q.patch = 1;
7360 }
7361 }
7362 }
7363
7364 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7365 "invalid qualifier for block",
7366 this->block_name);
7367
7368 /* The ast_interface_block has a list of ast_declarator_lists. We
7369 * need to turn those into ir_variables with an association
7370 * with this uniform block.
7371 */
7372 enum glsl_interface_packing packing;
7373 if (this->layout.flags.q.shared) {
7374 packing = GLSL_INTERFACE_PACKING_SHARED;
7375 } else if (this->layout.flags.q.packed) {
7376 packing = GLSL_INTERFACE_PACKING_PACKED;
7377 } else if (this->layout.flags.q.std430) {
7378 packing = GLSL_INTERFACE_PACKING_STD430;
7379 } else {
7380 /* The default layout is std140.
7381 */
7382 packing = GLSL_INTERFACE_PACKING_STD140;
7383 }
7384
7385 ir_variable_mode var_mode;
7386 const char *iface_type_name;
7387 if (this->layout.flags.q.in) {
7388 var_mode = ir_var_shader_in;
7389 iface_type_name = "in";
7390 } else if (this->layout.flags.q.out) {
7391 var_mode = ir_var_shader_out;
7392 iface_type_name = "out";
7393 } else if (this->layout.flags.q.uniform) {
7394 var_mode = ir_var_uniform;
7395 iface_type_name = "uniform";
7396 } else if (this->layout.flags.q.buffer) {
7397 var_mode = ir_var_shader_storage;
7398 iface_type_name = "buffer";
7399 } else {
7400 var_mode = ir_var_auto;
7401 iface_type_name = "UNKNOWN";
7402 assert(!"interface block layout qualifier not found!");
7403 }
7404
7405 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7406 if (this->layout.flags.q.row_major)
7407 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7408 else if (this->layout.flags.q.column_major)
7409 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7410
7411 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7412 exec_list declared_variables;
7413 glsl_struct_field *fields;
7414
7415 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7416 * that we don't have incompatible qualifiers
7417 */
7418 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7419 _mesa_glsl_error(&loc, state,
7420 "Interface block sets both readonly and writeonly");
7421 }
7422
7423 unsigned qual_stream;
7424 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7425 &qual_stream) ||
7426 !validate_stream_qualifier(&loc, state, qual_stream)) {
7427 /* If the stream qualifier is invalid it doesn't make sense to continue
7428 * on and try to compare stream layouts on member variables against it
7429 * so just return early.
7430 */
7431 return NULL;
7432 }
7433
7434 unsigned qual_xfb_buffer;
7435 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7436 layout.xfb_buffer, &qual_xfb_buffer) ||
7437 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7438 return NULL;
7439 }
7440
7441 unsigned qual_xfb_offset;
7442 if (layout.flags.q.explicit_xfb_offset) {
7443 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7444 layout.offset, &qual_xfb_offset)) {
7445 return NULL;
7446 }
7447 }
7448
7449 unsigned qual_xfb_stride;
7450 if (layout.flags.q.explicit_xfb_stride) {
7451 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7452 layout.xfb_stride, &qual_xfb_stride)) {
7453 return NULL;
7454 }
7455 }
7456
7457 unsigned expl_location = 0;
7458 if (layout.flags.q.explicit_location) {
7459 if (!process_qualifier_constant(state, &loc, "location",
7460 layout.location, &expl_location)) {
7461 return NULL;
7462 } else {
7463 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7464 : VARYING_SLOT_VAR0;
7465 }
7466 }
7467
7468 unsigned expl_align = 0;
7469 if (layout.flags.q.explicit_align) {
7470 if (!process_qualifier_constant(state, &loc, "align",
7471 layout.align, &expl_align)) {
7472 return NULL;
7473 } else {
7474 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7475 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7476 "power of 2.");
7477 return NULL;
7478 }
7479 }
7480 }
7481
7482 unsigned int num_variables =
7483 ast_process_struct_or_iface_block_members(&declared_variables,
7484 state,
7485 &this->declarations,
7486 &fields,
7487 true,
7488 matrix_layout,
7489 redeclaring_per_vertex,
7490 var_mode,
7491 &this->layout,
7492 qual_stream,
7493 qual_xfb_buffer,
7494 qual_xfb_offset,
7495 expl_location,
7496 expl_align);
7497
7498 if (!redeclaring_per_vertex) {
7499 validate_identifier(this->block_name, loc, state);
7500
7501 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7502 *
7503 * "Block names have no other use within a shader beyond interface
7504 * matching; it is a compile-time error to use a block name at global
7505 * scope for anything other than as a block name."
7506 */
7507 ir_variable *var = state->symbols->get_variable(this->block_name);
7508 if (var && !var->type->is_interface()) {
7509 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7510 "already used in the scope.",
7511 this->block_name);
7512 }
7513 }
7514
7515 const glsl_type *earlier_per_vertex = NULL;
7516 if (redeclaring_per_vertex) {
7517 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7518 * the named interface block gl_in, we can find it by looking at the
7519 * previous declaration of gl_in. Otherwise we can find it by looking
7520 * at the previous decalartion of any of the built-in outputs,
7521 * e.g. gl_Position.
7522 *
7523 * Also check that the instance name and array-ness of the redeclaration
7524 * are correct.
7525 */
7526 switch (var_mode) {
7527 case ir_var_shader_in:
7528 if (ir_variable *earlier_gl_in =
7529 state->symbols->get_variable("gl_in")) {
7530 earlier_per_vertex = earlier_gl_in->get_interface_type();
7531 } else {
7532 _mesa_glsl_error(&loc, state,
7533 "redeclaration of gl_PerVertex input not allowed "
7534 "in the %s shader",
7535 _mesa_shader_stage_to_string(state->stage));
7536 }
7537 if (this->instance_name == NULL ||
7538 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7539 !this->array_specifier->is_single_dimension()) {
7540 _mesa_glsl_error(&loc, state,
7541 "gl_PerVertex input must be redeclared as "
7542 "gl_in[]");
7543 }
7544 break;
7545 case ir_var_shader_out:
7546 if (ir_variable *earlier_gl_Position =
7547 state->symbols->get_variable("gl_Position")) {
7548 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7549 } else if (ir_variable *earlier_gl_out =
7550 state->symbols->get_variable("gl_out")) {
7551 earlier_per_vertex = earlier_gl_out->get_interface_type();
7552 } else {
7553 _mesa_glsl_error(&loc, state,
7554 "redeclaration of gl_PerVertex output not "
7555 "allowed in the %s shader",
7556 _mesa_shader_stage_to_string(state->stage));
7557 }
7558 if (state->stage == MESA_SHADER_TESS_CTRL) {
7559 if (this->instance_name == NULL ||
7560 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7561 _mesa_glsl_error(&loc, state,
7562 "gl_PerVertex output must be redeclared as "
7563 "gl_out[]");
7564 }
7565 } else {
7566 if (this->instance_name != NULL) {
7567 _mesa_glsl_error(&loc, state,
7568 "gl_PerVertex output may not be redeclared with "
7569 "an instance name");
7570 }
7571 }
7572 break;
7573 default:
7574 _mesa_glsl_error(&loc, state,
7575 "gl_PerVertex must be declared as an input or an "
7576 "output");
7577 break;
7578 }
7579
7580 if (earlier_per_vertex == NULL) {
7581 /* An error has already been reported. Bail out to avoid null
7582 * dereferences later in this function.
7583 */
7584 return NULL;
7585 }
7586
7587 /* Copy locations from the old gl_PerVertex interface block. */
7588 for (unsigned i = 0; i < num_variables; i++) {
7589 int j = earlier_per_vertex->field_index(fields[i].name);
7590 if (j == -1) {
7591 _mesa_glsl_error(&loc, state,
7592 "redeclaration of gl_PerVertex must be a subset "
7593 "of the built-in members of gl_PerVertex");
7594 } else {
7595 fields[i].location =
7596 earlier_per_vertex->fields.structure[j].location;
7597 fields[i].offset =
7598 earlier_per_vertex->fields.structure[j].offset;
7599 fields[i].interpolation =
7600 earlier_per_vertex->fields.structure[j].interpolation;
7601 fields[i].centroid =
7602 earlier_per_vertex->fields.structure[j].centroid;
7603 fields[i].sample =
7604 earlier_per_vertex->fields.structure[j].sample;
7605 fields[i].patch =
7606 earlier_per_vertex->fields.structure[j].patch;
7607 fields[i].precision =
7608 earlier_per_vertex->fields.structure[j].precision;
7609 fields[i].explicit_xfb_buffer =
7610 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7611 fields[i].xfb_buffer =
7612 earlier_per_vertex->fields.structure[j].xfb_buffer;
7613 fields[i].xfb_stride =
7614 earlier_per_vertex->fields.structure[j].xfb_stride;
7615 }
7616 }
7617
7618 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7619 * spec:
7620 *
7621 * If a built-in interface block is redeclared, it must appear in
7622 * the shader before any use of any member included in the built-in
7623 * declaration, or a compilation error will result.
7624 *
7625 * This appears to be a clarification to the behaviour established for
7626 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7627 * regardless of GLSL version.
7628 */
7629 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7630 v.run(instructions);
7631 if (v.usage_found()) {
7632 _mesa_glsl_error(&loc, state,
7633 "redeclaration of a built-in interface block must "
7634 "appear before any use of any member of the "
7635 "interface block");
7636 }
7637 }
7638
7639 const glsl_type *block_type =
7640 glsl_type::get_interface_instance(fields,
7641 num_variables,
7642 packing,
7643 matrix_layout ==
7644 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7645 this->block_name);
7646
7647 unsigned component_size = block_type->contains_double() ? 8 : 4;
7648 int xfb_offset =
7649 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7650 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7651 component_size);
7652
7653 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7654 YYLTYPE loc = this->get_location();
7655 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7656 "already taken in the current scope",
7657 this->block_name, iface_type_name);
7658 }
7659
7660 /* Since interface blocks cannot contain statements, it should be
7661 * impossible for the block to generate any instructions.
7662 */
7663 assert(declared_variables.is_empty());
7664
7665 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7666 *
7667 * Geometry shader input variables get the per-vertex values written
7668 * out by vertex shader output variables of the same names. Since a
7669 * geometry shader operates on a set of vertices, each input varying
7670 * variable (or input block, see interface blocks below) needs to be
7671 * declared as an array.
7672 */
7673 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7674 var_mode == ir_var_shader_in) {
7675 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7676 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7677 state->stage == MESA_SHADER_TESS_EVAL) &&
7678 !this->layout.flags.q.patch &&
7679 this->array_specifier == NULL &&
7680 var_mode == ir_var_shader_in) {
7681 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7682 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7683 !this->layout.flags.q.patch &&
7684 this->array_specifier == NULL &&
7685 var_mode == ir_var_shader_out) {
7686 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7687 }
7688
7689
7690 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7691 * says:
7692 *
7693 * "If an instance name (instance-name) is used, then it puts all the
7694 * members inside a scope within its own name space, accessed with the
7695 * field selector ( . ) operator (analogously to structures)."
7696 */
7697 if (this->instance_name) {
7698 if (redeclaring_per_vertex) {
7699 /* When a built-in in an unnamed interface block is redeclared,
7700 * get_variable_being_redeclared() calls
7701 * check_builtin_array_max_size() to make sure that built-in array
7702 * variables aren't redeclared to illegal sizes. But we're looking
7703 * at a redeclaration of a named built-in interface block. So we
7704 * have to manually call check_builtin_array_max_size() for all parts
7705 * of the interface that are arrays.
7706 */
7707 for (unsigned i = 0; i < num_variables; i++) {
7708 if (fields[i].type->is_array()) {
7709 const unsigned size = fields[i].type->array_size();
7710 check_builtin_array_max_size(fields[i].name, size, loc, state);
7711 }
7712 }
7713 } else {
7714 validate_identifier(this->instance_name, loc, state);
7715 }
7716
7717 ir_variable *var;
7718
7719 if (this->array_specifier != NULL) {
7720 const glsl_type *block_array_type =
7721 process_array_type(&loc, block_type, this->array_specifier, state);
7722
7723 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7724 *
7725 * For uniform blocks declared an array, each individual array
7726 * element corresponds to a separate buffer object backing one
7727 * instance of the block. As the array size indicates the number
7728 * of buffer objects needed, uniform block array declarations
7729 * must specify an array size.
7730 *
7731 * And a few paragraphs later:
7732 *
7733 * Geometry shader input blocks must be declared as arrays and
7734 * follow the array declaration and linking rules for all
7735 * geometry shader inputs. All other input and output block
7736 * arrays must specify an array size.
7737 *
7738 * The same applies to tessellation shaders.
7739 *
7740 * The upshot of this is that the only circumstance where an
7741 * interface array size *doesn't* need to be specified is on a
7742 * geometry shader input, tessellation control shader input,
7743 * tessellation control shader output, and tessellation evaluation
7744 * shader input.
7745 */
7746 if (block_array_type->is_unsized_array()) {
7747 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7748 state->stage == MESA_SHADER_TESS_CTRL ||
7749 state->stage == MESA_SHADER_TESS_EVAL;
7750 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7751
7752 if (this->layout.flags.q.in) {
7753 if (!allow_inputs)
7754 _mesa_glsl_error(&loc, state,
7755 "unsized input block arrays not allowed in "
7756 "%s shader",
7757 _mesa_shader_stage_to_string(state->stage));
7758 } else if (this->layout.flags.q.out) {
7759 if (!allow_outputs)
7760 _mesa_glsl_error(&loc, state,
7761 "unsized output block arrays not allowed in "
7762 "%s shader",
7763 _mesa_shader_stage_to_string(state->stage));
7764 } else {
7765 /* by elimination, this is a uniform block array */
7766 _mesa_glsl_error(&loc, state,
7767 "unsized uniform block arrays not allowed in "
7768 "%s shader",
7769 _mesa_shader_stage_to_string(state->stage));
7770 }
7771 }
7772
7773 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7774 *
7775 * * Arrays of arrays of blocks are not allowed
7776 */
7777 if (state->es_shader && block_array_type->is_array() &&
7778 block_array_type->fields.array->is_array()) {
7779 _mesa_glsl_error(&loc, state,
7780 "arrays of arrays interface blocks are "
7781 "not allowed");
7782 }
7783
7784 var = new(state) ir_variable(block_array_type,
7785 this->instance_name,
7786 var_mode);
7787 } else {
7788 var = new(state) ir_variable(block_type,
7789 this->instance_name,
7790 var_mode);
7791 }
7792
7793 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7794 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7795
7796 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7797 var->data.read_only = true;
7798
7799 var->data.patch = this->layout.flags.q.patch;
7800
7801 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7802 handle_geometry_shader_input_decl(state, loc, var);
7803 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7804 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7805 handle_tess_shader_input_decl(state, loc, var);
7806 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7807 handle_tess_ctrl_shader_output_decl(state, loc, var);
7808
7809 for (unsigned i = 0; i < num_variables; i++) {
7810 if (var->data.mode == ir_var_shader_storage)
7811 apply_memory_qualifiers(var, fields[i]);
7812 }
7813
7814 if (ir_variable *earlier =
7815 state->symbols->get_variable(this->instance_name)) {
7816 if (!redeclaring_per_vertex) {
7817 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7818 this->instance_name);
7819 }
7820 earlier->data.how_declared = ir_var_declared_normally;
7821 earlier->type = var->type;
7822 earlier->reinit_interface_type(block_type);
7823 delete var;
7824 } else {
7825 if (this->layout.flags.q.explicit_binding) {
7826 apply_explicit_binding(state, &loc, var, var->type,
7827 &this->layout);
7828 }
7829
7830 var->data.stream = qual_stream;
7831 if (layout.flags.q.explicit_location) {
7832 var->data.location = expl_location;
7833 var->data.explicit_location = true;
7834 }
7835
7836 state->symbols->add_variable(var);
7837 instructions->push_tail(var);
7838 }
7839 } else {
7840 /* In order to have an array size, the block must also be declared with
7841 * an instance name.
7842 */
7843 assert(this->array_specifier == NULL);
7844
7845 for (unsigned i = 0; i < num_variables; i++) {
7846 ir_variable *var =
7847 new(state) ir_variable(fields[i].type,
7848 ralloc_strdup(state, fields[i].name),
7849 var_mode);
7850 var->data.interpolation = fields[i].interpolation;
7851 var->data.centroid = fields[i].centroid;
7852 var->data.sample = fields[i].sample;
7853 var->data.patch = fields[i].patch;
7854 var->data.stream = qual_stream;
7855 var->data.location = fields[i].location;
7856
7857 if (fields[i].location != -1)
7858 var->data.explicit_location = true;
7859
7860 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7861 var->data.xfb_buffer = fields[i].xfb_buffer;
7862
7863 if (fields[i].offset != -1)
7864 var->data.explicit_xfb_offset = true;
7865 var->data.offset = fields[i].offset;
7866
7867 var->init_interface_type(block_type);
7868
7869 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7870 var->data.read_only = true;
7871
7872 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7873 if (state->es_shader) {
7874 var->data.precision =
7875 select_gles_precision(fields[i].precision, fields[i].type,
7876 state, &loc);
7877 }
7878
7879 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7880 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7881 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7882 } else {
7883 var->data.matrix_layout = fields[i].matrix_layout;
7884 }
7885
7886 if (var->data.mode == ir_var_shader_storage)
7887 apply_memory_qualifiers(var, fields[i]);
7888
7889 /* Examine var name here since var may get deleted in the next call */
7890 bool var_is_gl_id = is_gl_identifier(var->name);
7891
7892 if (redeclaring_per_vertex) {
7893 bool is_redeclaration;
7894 ir_variable *declared_var =
7895 get_variable_being_redeclared(var, loc, state,
7896 true /* allow_all_redeclarations */,
7897 &is_redeclaration);
7898 if (!var_is_gl_id || !is_redeclaration) {
7899 _mesa_glsl_error(&loc, state,
7900 "redeclaration of gl_PerVertex can only "
7901 "include built-in variables");
7902 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
7903 _mesa_glsl_error(&loc, state,
7904 "`%s' has already been redeclared",
7905 declared_var->name);
7906 } else {
7907 declared_var->data.how_declared = ir_var_declared_in_block;
7908 declared_var->reinit_interface_type(block_type);
7909 }
7910 continue;
7911 }
7912
7913 if (state->symbols->get_variable(var->name) != NULL)
7914 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7915
7916 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7917 * The UBO declaration itself doesn't get an ir_variable unless it
7918 * has an instance name. This is ugly.
7919 */
7920 if (this->layout.flags.q.explicit_binding) {
7921 apply_explicit_binding(state, &loc, var,
7922 var->get_interface_type(), &this->layout);
7923 }
7924
7925 if (var->type->is_unsized_array()) {
7926 if (var->is_in_shader_storage_block() &&
7927 is_unsized_array_last_element(var)) {
7928 var->data.from_ssbo_unsized_array = true;
7929 } else {
7930 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7931 *
7932 * "If an array is declared as the last member of a shader storage
7933 * block and the size is not specified at compile-time, it is
7934 * sized at run-time. In all other cases, arrays are sized only
7935 * at compile-time."
7936 *
7937 * In desktop GLSL it is allowed to have unsized-arrays that are
7938 * not last, as long as we can determine that they are implicitly
7939 * sized.
7940 */
7941 if (state->es_shader) {
7942 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7943 "definition: only last member of a shader "
7944 "storage block can be defined as unsized "
7945 "array", fields[i].name);
7946 }
7947 }
7948 }
7949
7950 state->symbols->add_variable(var);
7951 instructions->push_tail(var);
7952 }
7953
7954 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7955 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7956 *
7957 * It is also a compilation error ... to redeclare a built-in
7958 * block and then use a member from that built-in block that was
7959 * not included in the redeclaration.
7960 *
7961 * This appears to be a clarification to the behaviour established
7962 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7963 * behaviour regardless of GLSL version.
7964 *
7965 * To prevent the shader from using a member that was not included in
7966 * the redeclaration, we disable any ir_variables that are still
7967 * associated with the old declaration of gl_PerVertex (since we've
7968 * already updated all of the variables contained in the new
7969 * gl_PerVertex to point to it).
7970 *
7971 * As a side effect this will prevent
7972 * validate_intrastage_interface_blocks() from getting confused and
7973 * thinking there are conflicting definitions of gl_PerVertex in the
7974 * shader.
7975 */
7976 foreach_in_list_safe(ir_instruction, node, instructions) {
7977 ir_variable *const var = node->as_variable();
7978 if (var != NULL &&
7979 var->get_interface_type() == earlier_per_vertex &&
7980 var->data.mode == var_mode) {
7981 if (var->data.how_declared == ir_var_declared_normally) {
7982 _mesa_glsl_error(&loc, state,
7983 "redeclaration of gl_PerVertex cannot "
7984 "follow a redeclaration of `%s'",
7985 var->name);
7986 }
7987 state->symbols->disable_variable(var->name);
7988 var->remove();
7989 }
7990 }
7991 }
7992 }
7993
7994 return NULL;
7995 }
7996
7997
7998 ir_rvalue *
7999 ast_tcs_output_layout::hir(exec_list *instructions,
8000 struct _mesa_glsl_parse_state *state)
8001 {
8002 YYLTYPE loc = this->get_location();
8003
8004 unsigned num_vertices;
8005 if (!state->out_qualifier->vertices->
8006 process_qualifier_constant(state, "vertices", &num_vertices,
8007 false)) {
8008 /* return here to stop cascading incorrect error messages */
8009 return NULL;
8010 }
8011
8012 /* If any shader outputs occurred before this declaration and specified an
8013 * array size, make sure the size they specified is consistent with the
8014 * primitive type.
8015 */
8016 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8017 _mesa_glsl_error(&loc, state,
8018 "this tessellation control shader output layout "
8019 "specifies %u vertices, but a previous output "
8020 "is declared with size %u",
8021 num_vertices, state->tcs_output_size);
8022 return NULL;
8023 }
8024
8025 state->tcs_output_vertices_specified = true;
8026
8027 /* If any shader outputs occurred before this declaration and did not
8028 * specify an array size, their size is determined now.
8029 */
8030 foreach_in_list (ir_instruction, node, instructions) {
8031 ir_variable *var = node->as_variable();
8032 if (var == NULL || var->data.mode != ir_var_shader_out)
8033 continue;
8034
8035 /* Note: Not all tessellation control shader output are arrays. */
8036 if (!var->type->is_unsized_array() || var->data.patch)
8037 continue;
8038
8039 if (var->data.max_array_access >= (int)num_vertices) {
8040 _mesa_glsl_error(&loc, state,
8041 "this tessellation control shader output layout "
8042 "specifies %u vertices, but an access to element "
8043 "%u of output `%s' already exists", num_vertices,
8044 var->data.max_array_access, var->name);
8045 } else {
8046 var->type = glsl_type::get_array_instance(var->type->fields.array,
8047 num_vertices);
8048 }
8049 }
8050
8051 return NULL;
8052 }
8053
8054
8055 ir_rvalue *
8056 ast_gs_input_layout::hir(exec_list *instructions,
8057 struct _mesa_glsl_parse_state *state)
8058 {
8059 YYLTYPE loc = this->get_location();
8060
8061 /* Should have been prevented by the parser. */
8062 assert(!state->gs_input_prim_type_specified
8063 || state->in_qualifier->prim_type == this->prim_type);
8064
8065 /* If any shader inputs occurred before this declaration and specified an
8066 * array size, make sure the size they specified is consistent with the
8067 * primitive type.
8068 */
8069 unsigned num_vertices = vertices_per_prim(this->prim_type);
8070 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8071 _mesa_glsl_error(&loc, state,
8072 "this geometry shader input layout implies %u vertices"
8073 " per primitive, but a previous input is declared"
8074 " with size %u", num_vertices, state->gs_input_size);
8075 return NULL;
8076 }
8077
8078 state->gs_input_prim_type_specified = true;
8079
8080 /* If any shader inputs occurred before this declaration and did not
8081 * specify an array size, their size is determined now.
8082 */
8083 foreach_in_list(ir_instruction, node, instructions) {
8084 ir_variable *var = node->as_variable();
8085 if (var == NULL || var->data.mode != ir_var_shader_in)
8086 continue;
8087
8088 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8089 * array; skip it.
8090 */
8091
8092 if (var->type->is_unsized_array()) {
8093 if (var->data.max_array_access >= (int)num_vertices) {
8094 _mesa_glsl_error(&loc, state,
8095 "this geometry shader input layout implies %u"
8096 " vertices, but an access to element %u of input"
8097 " `%s' already exists", num_vertices,
8098 var->data.max_array_access, var->name);
8099 } else {
8100 var->type = glsl_type::get_array_instance(var->type->fields.array,
8101 num_vertices);
8102 }
8103 }
8104 }
8105
8106 return NULL;
8107 }
8108
8109
8110 ir_rvalue *
8111 ast_cs_input_layout::hir(exec_list *instructions,
8112 struct _mesa_glsl_parse_state *state)
8113 {
8114 YYLTYPE loc = this->get_location();
8115
8116 /* From the ARB_compute_shader specification:
8117 *
8118 * If the local size of the shader in any dimension is greater
8119 * than the maximum size supported by the implementation for that
8120 * dimension, a compile-time error results.
8121 *
8122 * It is not clear from the spec how the error should be reported if
8123 * the total size of the work group exceeds
8124 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8125 * report it at compile time as well.
8126 */
8127 GLuint64 total_invocations = 1;
8128 unsigned qual_local_size[3];
8129 for (int i = 0; i < 3; i++) {
8130
8131 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8132 'x' + i);
8133 /* Infer a local_size of 1 for unspecified dimensions */
8134 if (this->local_size[i] == NULL) {
8135 qual_local_size[i] = 1;
8136 } else if (!this->local_size[i]->
8137 process_qualifier_constant(state, local_size_str,
8138 &qual_local_size[i], false)) {
8139 ralloc_free(local_size_str);
8140 return NULL;
8141 }
8142 ralloc_free(local_size_str);
8143
8144 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8145 _mesa_glsl_error(&loc, state,
8146 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8147 " (%d)", 'x' + i,
8148 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8149 break;
8150 }
8151 total_invocations *= qual_local_size[i];
8152 if (total_invocations >
8153 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8154 _mesa_glsl_error(&loc, state,
8155 "product of local_sizes exceeds "
8156 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8157 state->ctx->Const.MaxComputeWorkGroupInvocations);
8158 break;
8159 }
8160 }
8161
8162 /* If any compute input layout declaration preceded this one, make sure it
8163 * was consistent with this one.
8164 */
8165 if (state->cs_input_local_size_specified) {
8166 for (int i = 0; i < 3; i++) {
8167 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8168 _mesa_glsl_error(&loc, state,
8169 "compute shader input layout does not match"
8170 " previous declaration");
8171 return NULL;
8172 }
8173 }
8174 }
8175
8176 /* The ARB_compute_variable_group_size spec says:
8177 *
8178 * If a compute shader including a *local_size_variable* qualifier also
8179 * declares a fixed local group size using the *local_size_x*,
8180 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8181 * results
8182 */
8183 if (state->cs_input_local_size_variable_specified) {
8184 _mesa_glsl_error(&loc, state,
8185 "compute shader can't include both a variable and a "
8186 "fixed local group size");
8187 return NULL;
8188 }
8189
8190 state->cs_input_local_size_specified = true;
8191 for (int i = 0; i < 3; i++)
8192 state->cs_input_local_size[i] = qual_local_size[i];
8193
8194 /* We may now declare the built-in constant gl_WorkGroupSize (see
8195 * builtin_variable_generator::generate_constants() for why we didn't
8196 * declare it earlier).
8197 */
8198 ir_variable *var = new(state->symbols)
8199 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8200 var->data.how_declared = ir_var_declared_implicitly;
8201 var->data.read_only = true;
8202 instructions->push_tail(var);
8203 state->symbols->add_variable(var);
8204 ir_constant_data data;
8205 memset(&data, 0, sizeof(data));
8206 for (int i = 0; i < 3; i++)
8207 data.u[i] = qual_local_size[i];
8208 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8209 var->constant_initializer =
8210 new(var) ir_constant(glsl_type::uvec3_type, &data);
8211 var->data.has_initializer = true;
8212
8213 return NULL;
8214 }
8215
8216
8217 static void
8218 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8219 exec_list *instructions)
8220 {
8221 bool gl_FragColor_assigned = false;
8222 bool gl_FragData_assigned = false;
8223 bool gl_FragSecondaryColor_assigned = false;
8224 bool gl_FragSecondaryData_assigned = false;
8225 bool user_defined_fs_output_assigned = false;
8226 ir_variable *user_defined_fs_output = NULL;
8227
8228 /* It would be nice to have proper location information. */
8229 YYLTYPE loc;
8230 memset(&loc, 0, sizeof(loc));
8231
8232 foreach_in_list(ir_instruction, node, instructions) {
8233 ir_variable *var = node->as_variable();
8234
8235 if (!var || !var->data.assigned)
8236 continue;
8237
8238 if (strcmp(var->name, "gl_FragColor") == 0)
8239 gl_FragColor_assigned = true;
8240 else if (strcmp(var->name, "gl_FragData") == 0)
8241 gl_FragData_assigned = true;
8242 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8243 gl_FragSecondaryColor_assigned = true;
8244 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8245 gl_FragSecondaryData_assigned = true;
8246 else if (!is_gl_identifier(var->name)) {
8247 if (state->stage == MESA_SHADER_FRAGMENT &&
8248 var->data.mode == ir_var_shader_out) {
8249 user_defined_fs_output_assigned = true;
8250 user_defined_fs_output = var;
8251 }
8252 }
8253 }
8254
8255 /* From the GLSL 1.30 spec:
8256 *
8257 * "If a shader statically assigns a value to gl_FragColor, it
8258 * may not assign a value to any element of gl_FragData. If a
8259 * shader statically writes a value to any element of
8260 * gl_FragData, it may not assign a value to
8261 * gl_FragColor. That is, a shader may assign values to either
8262 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8263 * linked together must also consistently write just one of
8264 * these variables. Similarly, if user declared output
8265 * variables are in use (statically assigned to), then the
8266 * built-in variables gl_FragColor and gl_FragData may not be
8267 * assigned to. These incorrect usages all generate compile
8268 * time errors."
8269 */
8270 if (gl_FragColor_assigned && gl_FragData_assigned) {
8271 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8272 "`gl_FragColor' and `gl_FragData'");
8273 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8274 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8275 "`gl_FragColor' and `%s'",
8276 user_defined_fs_output->name);
8277 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8278 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8279 "`gl_FragSecondaryColorEXT' and"
8280 " `gl_FragSecondaryDataEXT'");
8281 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8282 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8283 "`gl_FragColor' and"
8284 " `gl_FragSecondaryDataEXT'");
8285 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8286 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8287 "`gl_FragData' and"
8288 " `gl_FragSecondaryColorEXT'");
8289 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8290 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8291 "`gl_FragData' and `%s'",
8292 user_defined_fs_output->name);
8293 }
8294
8295 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8296 !state->EXT_blend_func_extended_enable) {
8297 _mesa_glsl_error(&loc, state,
8298 "Dual source blending requires EXT_blend_func_extended");
8299 }
8300 }
8301
8302
8303 static void
8304 remove_per_vertex_blocks(exec_list *instructions,
8305 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8306 {
8307 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8308 * if it exists in this shader type.
8309 */
8310 const glsl_type *per_vertex = NULL;
8311 switch (mode) {
8312 case ir_var_shader_in:
8313 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8314 per_vertex = gl_in->get_interface_type();
8315 break;
8316 case ir_var_shader_out:
8317 if (ir_variable *gl_Position =
8318 state->symbols->get_variable("gl_Position")) {
8319 per_vertex = gl_Position->get_interface_type();
8320 }
8321 break;
8322 default:
8323 assert(!"Unexpected mode");
8324 break;
8325 }
8326
8327 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8328 * need to do anything.
8329 */
8330 if (per_vertex == NULL)
8331 return;
8332
8333 /* If the interface block is used by the shader, then we don't need to do
8334 * anything.
8335 */
8336 interface_block_usage_visitor v(mode, per_vertex);
8337 v.run(instructions);
8338 if (v.usage_found())
8339 return;
8340
8341 /* Remove any ir_variable declarations that refer to the interface block
8342 * we're removing.
8343 */
8344 foreach_in_list_safe(ir_instruction, node, instructions) {
8345 ir_variable *const var = node->as_variable();
8346 if (var != NULL && var->get_interface_type() == per_vertex &&
8347 var->data.mode == mode) {
8348 state->symbols->disable_variable(var->name);
8349 var->remove();
8350 }
8351 }
8352 }