glsl: Avoid propagating incompatible type of initializer
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 remove_per_vertex_blocks(exec_list *instructions,
71 _mesa_glsl_parse_state *state, ir_variable_mode mode);
72
73 /**
74 * Visitor class that finds the first instance of any write-only variable that
75 * is ever read, if any
76 */
77 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
78 {
79 public:
80 read_from_write_only_variable_visitor() : found(NULL)
81 {
82 }
83
84 virtual ir_visitor_status visit(ir_dereference_variable *ir)
85 {
86 if (this->in_assignee)
87 return visit_continue;
88
89 ir_variable *var = ir->variable_referenced();
90 /* We can have memory_write_only set on both images and buffer variables,
91 * but in the former there is a distinction between reads from
92 * the variable itself (write_only) and from the memory they point to
93 * (memory_write_only), while in the case of buffer variables there is
94 * no such distinction, that is why this check here is limited to
95 * buffer variables alone.
96 */
97 if (!var || var->data.mode != ir_var_shader_storage)
98 return visit_continue;
99
100 if (var->data.memory_write_only) {
101 found = var;
102 return visit_stop;
103 }
104
105 return visit_continue;
106 }
107
108 ir_variable *get_variable() {
109 return found;
110 }
111
112 virtual ir_visitor_status visit_enter(ir_expression *ir)
113 {
114 /* .length() doesn't actually read anything */
115 if (ir->operation == ir_unop_ssbo_unsized_array_length)
116 return visit_continue_with_parent;
117
118 return visit_continue;
119 }
120
121 private:
122 ir_variable *found;
123 };
124
125 void
126 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
127 {
128 _mesa_glsl_initialize_variables(instructions, state);
129
130 state->symbols->separate_function_namespace = state->language_version == 110;
131
132 state->current_function = NULL;
133
134 state->toplevel_ir = instructions;
135
136 state->gs_input_prim_type_specified = false;
137 state->tcs_output_vertices_specified = false;
138 state->cs_input_local_size_specified = false;
139
140 /* Section 4.2 of the GLSL 1.20 specification states:
141 * "The built-in functions are scoped in a scope outside the global scope
142 * users declare global variables in. That is, a shader's global scope,
143 * available for user-defined functions and global variables, is nested
144 * inside the scope containing the built-in functions."
145 *
146 * Since built-in functions like ftransform() access built-in variables,
147 * it follows that those must be in the outer scope as well.
148 *
149 * We push scope here to create this nesting effect...but don't pop.
150 * This way, a shader's globals are still in the symbol table for use
151 * by the linker.
152 */
153 state->symbols->push_scope();
154
155 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
156 ast->hir(instructions, state);
157
158 detect_recursion_unlinked(state, instructions);
159 detect_conflicting_assignments(state, instructions);
160
161 state->toplevel_ir = NULL;
162
163 /* Move all of the variable declarations to the front of the IR list, and
164 * reverse the order. This has the (intended!) side effect that vertex
165 * shader inputs and fragment shader outputs will appear in the IR in the
166 * same order that they appeared in the shader code. This results in the
167 * locations being assigned in the declared order. Many (arguably buggy)
168 * applications depend on this behavior, and it matches what nearly all
169 * other drivers do.
170 */
171 foreach_in_list_safe(ir_instruction, node, instructions) {
172 ir_variable *const var = node->as_variable();
173
174 if (var == NULL)
175 continue;
176
177 var->remove();
178 instructions->push_head(var);
179 }
180
181 /* Figure out if gl_FragCoord is actually used in fragment shader */
182 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
183 if (var != NULL)
184 state->fs_uses_gl_fragcoord = var->data.used;
185
186 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
187 *
188 * If multiple shaders using members of a built-in block belonging to
189 * the same interface are linked together in the same program, they
190 * must all redeclare the built-in block in the same way, as described
191 * in section 4.3.7 "Interface Blocks" for interface block matching, or
192 * a link error will result.
193 *
194 * The phrase "using members of a built-in block" implies that if two
195 * shaders are linked together and one of them *does not use* any members
196 * of the built-in block, then that shader does not need to have a matching
197 * redeclaration of the built-in block.
198 *
199 * This appears to be a clarification to the behaviour established for
200 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
201 * version.
202 *
203 * The definition of "interface" in section 4.3.7 that applies here is as
204 * follows:
205 *
206 * The boundary between adjacent programmable pipeline stages: This
207 * spans all the outputs in all compilation units of the first stage
208 * and all the inputs in all compilation units of the second stage.
209 *
210 * Therefore this rule applies to both inter- and intra-stage linking.
211 *
212 * The easiest way to implement this is to check whether the shader uses
213 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
214 * remove all the relevant variable declaration from the IR, so that the
215 * linker won't see them and complain about mismatches.
216 */
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
218 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
219
220 /* Check that we don't have reads from write-only variables */
221 read_from_write_only_variable_visitor v;
222 v.run(instructions);
223 ir_variable *error_var = v.get_variable();
224 if (error_var) {
225 /* It would be nice to have proper location information, but for that
226 * we would need to check this as we process each kind of AST node
227 */
228 YYLTYPE loc;
229 memset(&loc, 0, sizeof(loc));
230 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
231 error_var->name);
232 }
233 }
234
235
236 static ir_expression_operation
237 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
238 struct _mesa_glsl_parse_state *state)
239 {
240 switch (to->base_type) {
241 case GLSL_TYPE_FLOAT:
242 switch (from->base_type) {
243 case GLSL_TYPE_INT: return ir_unop_i2f;
244 case GLSL_TYPE_UINT: return ir_unop_u2f;
245 default: return (ir_expression_operation)0;
246 }
247
248 case GLSL_TYPE_UINT:
249 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
250 && !state->MESA_shader_integer_functions_enable)
251 return (ir_expression_operation)0;
252 switch (from->base_type) {
253 case GLSL_TYPE_INT: return ir_unop_i2u;
254 default: return (ir_expression_operation)0;
255 }
256
257 case GLSL_TYPE_DOUBLE:
258 if (!state->has_double())
259 return (ir_expression_operation)0;
260 switch (from->base_type) {
261 case GLSL_TYPE_INT: return ir_unop_i2d;
262 case GLSL_TYPE_UINT: return ir_unop_u2d;
263 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
264 case GLSL_TYPE_INT64: return ir_unop_i642d;
265 case GLSL_TYPE_UINT64: return ir_unop_u642d;
266 default: return (ir_expression_operation)0;
267 }
268
269 case GLSL_TYPE_UINT64:
270 if (!state->has_int64())
271 return (ir_expression_operation)0;
272 switch (from->base_type) {
273 case GLSL_TYPE_INT: return ir_unop_i2u64;
274 case GLSL_TYPE_UINT: return ir_unop_u2u64;
275 case GLSL_TYPE_INT64: return ir_unop_i642u64;
276 default: return (ir_expression_operation)0;
277 }
278
279 case GLSL_TYPE_INT64:
280 if (!state->has_int64())
281 return (ir_expression_operation)0;
282 switch (from->base_type) {
283 case GLSL_TYPE_INT: return ir_unop_i2i64;
284 default: return (ir_expression_operation)0;
285 }
286
287 default: return (ir_expression_operation)0;
288 }
289 }
290
291
292 /**
293 * If a conversion is available, convert one operand to a different type
294 *
295 * The \c from \c ir_rvalue is converted "in place".
296 *
297 * \param to Type that the operand it to be converted to
298 * \param from Operand that is being converted
299 * \param state GLSL compiler state
300 *
301 * \return
302 * If a conversion is possible (or unnecessary), \c true is returned.
303 * Otherwise \c false is returned.
304 */
305 static bool
306 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
307 struct _mesa_glsl_parse_state *state)
308 {
309 void *ctx = state;
310 if (to->base_type == from->type->base_type)
311 return true;
312
313 /* Prior to GLSL 1.20, there are no implicit conversions */
314 if (!state->is_version(120, 0))
315 return false;
316
317 /* ESSL does not allow implicit conversions */
318 if (state->es_shader)
319 return false;
320
321 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
322 *
323 * "There are no implicit array or structure conversions. For
324 * example, an array of int cannot be implicitly converted to an
325 * array of float.
326 */
327 if (!to->is_numeric() || !from->type->is_numeric())
328 return false;
329
330 /* We don't actually want the specific type `to`, we want a type
331 * with the same base type as `to`, but the same vector width as
332 * `from`.
333 */
334 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
335 from->type->matrix_columns);
336
337 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
338 if (op) {
339 from = new(ctx) ir_expression(op, to, from, NULL);
340 return true;
341 } else {
342 return false;
343 }
344 }
345
346
347 static const struct glsl_type *
348 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
349 bool multiply,
350 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
351 {
352 const glsl_type *type_a = value_a->type;
353 const glsl_type *type_b = value_b->type;
354
355 /* From GLSL 1.50 spec, page 56:
356 *
357 * "The arithmetic binary operators add (+), subtract (-),
358 * multiply (*), and divide (/) operate on integer and
359 * floating-point scalars, vectors, and matrices."
360 */
361 if (!type_a->is_numeric() || !type_b->is_numeric()) {
362 _mesa_glsl_error(loc, state,
363 "operands to arithmetic operators must be numeric");
364 return glsl_type::error_type;
365 }
366
367
368 /* "If one operand is floating-point based and the other is
369 * not, then the conversions from Section 4.1.10 "Implicit
370 * Conversions" are applied to the non-floating-point-based operand."
371 */
372 if (!apply_implicit_conversion(type_a, value_b, state)
373 && !apply_implicit_conversion(type_b, value_a, state)) {
374 _mesa_glsl_error(loc, state,
375 "could not implicitly convert operands to "
376 "arithmetic operator");
377 return glsl_type::error_type;
378 }
379 type_a = value_a->type;
380 type_b = value_b->type;
381
382 /* "If the operands are integer types, they must both be signed or
383 * both be unsigned."
384 *
385 * From this rule and the preceeding conversion it can be inferred that
386 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
387 * The is_numeric check above already filtered out the case where either
388 * type is not one of these, so now the base types need only be tested for
389 * equality.
390 */
391 if (type_a->base_type != type_b->base_type) {
392 _mesa_glsl_error(loc, state,
393 "base type mismatch for arithmetic operator");
394 return glsl_type::error_type;
395 }
396
397 /* "All arithmetic binary operators result in the same fundamental type
398 * (signed integer, unsigned integer, or floating-point) as the
399 * operands they operate on, after operand type conversion. After
400 * conversion, the following cases are valid
401 *
402 * * The two operands are scalars. In this case the operation is
403 * applied, resulting in a scalar."
404 */
405 if (type_a->is_scalar() && type_b->is_scalar())
406 return type_a;
407
408 /* "* One operand is a scalar, and the other is a vector or matrix.
409 * In this case, the scalar operation is applied independently to each
410 * component of the vector or matrix, resulting in the same size
411 * vector or matrix."
412 */
413 if (type_a->is_scalar()) {
414 if (!type_b->is_scalar())
415 return type_b;
416 } else if (type_b->is_scalar()) {
417 return type_a;
418 }
419
420 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
421 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
422 * handled.
423 */
424 assert(!type_a->is_scalar());
425 assert(!type_b->is_scalar());
426
427 /* "* The two operands are vectors of the same size. In this case, the
428 * operation is done component-wise resulting in the same size
429 * vector."
430 */
431 if (type_a->is_vector() && type_b->is_vector()) {
432 if (type_a == type_b) {
433 return type_a;
434 } else {
435 _mesa_glsl_error(loc, state,
436 "vector size mismatch for arithmetic operator");
437 return glsl_type::error_type;
438 }
439 }
440
441 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
442 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
443 * <vector, vector> have been handled. At least one of the operands must
444 * be matrix. Further, since there are no integer matrix types, the base
445 * type of both operands must be float.
446 */
447 assert(type_a->is_matrix() || type_b->is_matrix());
448 assert(type_a->is_float() || type_a->is_double());
449 assert(type_b->is_float() || type_b->is_double());
450
451 /* "* The operator is add (+), subtract (-), or divide (/), and the
452 * operands are matrices with the same number of rows and the same
453 * number of columns. In this case, the operation is done component-
454 * wise resulting in the same size matrix."
455 * * The operator is multiply (*), where both operands are matrices or
456 * one operand is a vector and the other a matrix. A right vector
457 * operand is treated as a column vector and a left vector operand as a
458 * row vector. In all these cases, it is required that the number of
459 * columns of the left operand is equal to the number of rows of the
460 * right operand. Then, the multiply (*) operation does a linear
461 * algebraic multiply, yielding an object that has the same number of
462 * rows as the left operand and the same number of columns as the right
463 * operand. Section 5.10 "Vector and Matrix Operations" explains in
464 * more detail how vectors and matrices are operated on."
465 */
466 if (! multiply) {
467 if (type_a == type_b)
468 return type_a;
469 } else {
470 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
471
472 if (type == glsl_type::error_type) {
473 _mesa_glsl_error(loc, state,
474 "size mismatch for matrix multiplication");
475 }
476
477 return type;
478 }
479
480
481 /* "All other cases are illegal."
482 */
483 _mesa_glsl_error(loc, state, "type mismatch");
484 return glsl_type::error_type;
485 }
486
487
488 static const struct glsl_type *
489 unary_arithmetic_result_type(const struct glsl_type *type,
490 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
491 {
492 /* From GLSL 1.50 spec, page 57:
493 *
494 * "The arithmetic unary operators negate (-), post- and pre-increment
495 * and decrement (-- and ++) operate on integer or floating-point
496 * values (including vectors and matrices). All unary operators work
497 * component-wise on their operands. These result with the same type
498 * they operated on."
499 */
500 if (!type->is_numeric()) {
501 _mesa_glsl_error(loc, state,
502 "operands to arithmetic operators must be numeric");
503 return glsl_type::error_type;
504 }
505
506 return type;
507 }
508
509 /**
510 * \brief Return the result type of a bit-logic operation.
511 *
512 * If the given types to the bit-logic operator are invalid, return
513 * glsl_type::error_type.
514 *
515 * \param value_a LHS of bit-logic op
516 * \param value_b RHS of bit-logic op
517 */
518 static const struct glsl_type *
519 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
520 ast_operators op,
521 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
522 {
523 const glsl_type *type_a = value_a->type;
524 const glsl_type *type_b = value_b->type;
525
526 if (!state->check_bitwise_operations_allowed(loc)) {
527 return glsl_type::error_type;
528 }
529
530 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
531 *
532 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
533 * (|). The operands must be of type signed or unsigned integers or
534 * integer vectors."
535 */
536 if (!type_a->is_integer_32_64()) {
537 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
538 ast_expression::operator_string(op));
539 return glsl_type::error_type;
540 }
541 if (!type_b->is_integer_32_64()) {
542 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
543 ast_expression::operator_string(op));
544 return glsl_type::error_type;
545 }
546
547 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
548 * make sense for bitwise operations, as they don't operate on floats.
549 *
550 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
551 * here. It wasn't clear whether or not we should apply them to bitwise
552 * operations. However, Khronos has decided that they should in future
553 * language revisions. Applications also rely on this behavior. We opt
554 * to apply them in general, but issue a portability warning.
555 *
556 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
557 */
558 if (type_a->base_type != type_b->base_type) {
559 if (!apply_implicit_conversion(type_a, value_b, state)
560 && !apply_implicit_conversion(type_b, value_a, state)) {
561 _mesa_glsl_error(loc, state,
562 "could not implicitly convert operands to "
563 "`%s` operator",
564 ast_expression::operator_string(op));
565 return glsl_type::error_type;
566 } else {
567 _mesa_glsl_warning(loc, state,
568 "some implementations may not support implicit "
569 "int -> uint conversions for `%s' operators; "
570 "consider casting explicitly for portability",
571 ast_expression::operator_string(op));
572 }
573 type_a = value_a->type;
574 type_b = value_b->type;
575 }
576
577 /* "The fundamental types of the operands (signed or unsigned) must
578 * match,"
579 */
580 if (type_a->base_type != type_b->base_type) {
581 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
582 "base type", ast_expression::operator_string(op));
583 return glsl_type::error_type;
584 }
585
586 /* "The operands cannot be vectors of differing size." */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
591 "different sizes", ast_expression::operator_string(op));
592 return glsl_type::error_type;
593 }
594
595 /* "If one operand is a scalar and the other a vector, the scalar is
596 * applied component-wise to the vector, resulting in the same type as
597 * the vector. The fundamental types of the operands [...] will be the
598 * resulting fundamental type."
599 */
600 if (type_a->is_scalar())
601 return type_b;
602 else
603 return type_a;
604 }
605
606 static const struct glsl_type *
607 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
608 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
609 {
610 const glsl_type *type_a = value_a->type;
611 const glsl_type *type_b = value_b->type;
612
613 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614 return glsl_type::error_type;
615 }
616
617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618 *
619 * "The operator modulus (%) operates on signed or unsigned integers or
620 * integer vectors."
621 */
622 if (!type_a->is_integer_32_64()) {
623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624 return glsl_type::error_type;
625 }
626 if (!type_b->is_integer_32_64()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628 return glsl_type::error_type;
629 }
630
631 /* "If the fundamental types in the operands do not match, then the
632 * conversions from section 4.1.10 "Implicit Conversions" are applied
633 * to create matching types."
634 *
635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636 * int -> uint conversion rules. Prior to that, there were no implicit
637 * conversions. So it's harmless to apply them universally - no implicit
638 * conversions will exist. If the types don't match, we'll receive false,
639 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640 *
641 * "The operand types must both be signed or unsigned."
642 */
643 if (!apply_implicit_conversion(type_a, value_b, state) &&
644 !apply_implicit_conversion(type_b, value_a, state)) {
645 _mesa_glsl_error(loc, state,
646 "could not implicitly convert operands to "
647 "modulus (%%) operator");
648 return glsl_type::error_type;
649 }
650 type_a = value_a->type;
651 type_b = value_b->type;
652
653 /* "The operands cannot be vectors of differing size. If one operand is
654 * a scalar and the other vector, then the scalar is applied component-
655 * wise to the vector, resulting in the same type as the vector. If both
656 * are vectors of the same size, the result is computed component-wise."
657 */
658 if (type_a->is_vector()) {
659 if (!type_b->is_vector()
660 || (type_a->vector_elements == type_b->vector_elements))
661 return type_a;
662 } else
663 return type_b;
664
665 /* "The operator modulus (%) is not defined for any other data types
666 * (non-integer types)."
667 */
668 _mesa_glsl_error(loc, state, "type mismatch");
669 return glsl_type::error_type;
670 }
671
672
673 static const struct glsl_type *
674 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676 {
677 const glsl_type *type_a = value_a->type;
678 const glsl_type *type_b = value_b->type;
679
680 /* From GLSL 1.50 spec, page 56:
681 * "The relational operators greater than (>), less than (<), greater
682 * than or equal (>=), and less than or equal (<=) operate only on
683 * scalar integer and scalar floating-point expressions."
684 */
685 if (!type_a->is_numeric()
686 || !type_b->is_numeric()
687 || !type_a->is_scalar()
688 || !type_b->is_scalar()) {
689 _mesa_glsl_error(loc, state,
690 "operands to relational operators must be scalar and "
691 "numeric");
692 return glsl_type::error_type;
693 }
694
695 /* "Either the operands' types must match, or the conversions from
696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
697 * operand, after which the types must match."
698 */
699 if (!apply_implicit_conversion(type_a, value_b, state)
700 && !apply_implicit_conversion(type_b, value_a, state)) {
701 _mesa_glsl_error(loc, state,
702 "could not implicitly convert operands to "
703 "relational operator");
704 return glsl_type::error_type;
705 }
706 type_a = value_a->type;
707 type_b = value_b->type;
708
709 if (type_a->base_type != type_b->base_type) {
710 _mesa_glsl_error(loc, state, "base type mismatch");
711 return glsl_type::error_type;
712 }
713
714 /* "The result is scalar Boolean."
715 */
716 return glsl_type::bool_type;
717 }
718
719 /**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728 static const struct glsl_type *
729 shift_result_type(const struct glsl_type *type_a,
730 const struct glsl_type *type_b,
731 ast_operators op,
732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733 {
734 if (!state->check_bitwise_operations_allowed(loc)) {
735 return glsl_type::error_type;
736 }
737
738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739 *
740 * "The shift operators (<<) and (>>). For both operators, the operands
741 * must be signed or unsigned integers or integer vectors. One operand
742 * can be signed while the other is unsigned."
743 */
744 if (!type_a->is_integer_32_64()) {
745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746 "integer vector", ast_expression::operator_string(op));
747 return glsl_type::error_type;
748
749 }
750 if (!type_b->is_integer()) {
751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752 "integer vector", ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "If the first operand is a scalar, the second operand has to be
757 * a scalar as well."
758 */
759 if (type_a->is_scalar() && !type_b->is_scalar()) {
760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761 "second must be scalar as well",
762 ast_expression::operator_string(op));
763 return glsl_type::error_type;
764 }
765
766 /* If both operands are vectors, check that they have same number of
767 * elements.
768 */
769 if (type_a->is_vector() &&
770 type_b->is_vector() &&
771 type_a->vector_elements != type_b->vector_elements) {
772 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773 "have same number of elements",
774 ast_expression::operator_string(op));
775 return glsl_type::error_type;
776 }
777
778 /* "In all cases, the resulting type will be the same type as the left
779 * operand."
780 */
781 return type_a;
782 }
783
784 /**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790 static ir_rvalue *
791 find_innermost_array_index(ir_rvalue *rv)
792 {
793 ir_dereference_array *last = NULL;
794 while (rv) {
795 if (rv->as_dereference_array()) {
796 last = rv->as_dereference_array();
797 rv = last->array;
798 } else if (rv->as_dereference_record())
799 rv = rv->as_dereference_record()->record;
800 else if (rv->as_swizzle())
801 rv = rv->as_swizzle()->val;
802 else
803 rv = NULL;
804 }
805
806 if (last)
807 return last->array_index;
808
809 return NULL;
810 }
811
812 /**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location. If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned. This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828 static ir_rvalue *
829 validate_assignment(struct _mesa_glsl_parse_state *state,
830 YYLTYPE loc, ir_rvalue *lhs,
831 ir_rvalue *rhs, bool is_initializer)
832 {
833 /* If there is already some error in the RHS, just return it. Anything
834 * else will lead to an avalanche of error message back to the user.
835 */
836 if (rhs->type->is_error())
837 return rhs;
838
839 /* In the Tessellation Control Shader:
840 * If a per-vertex output variable is used as an l-value, it is an error
841 * if the expression indicating the vertex number is not the identifier
842 * `gl_InvocationID`.
843 */
844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845 ir_variable *var = lhs->variable_referenced();
846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847 ir_rvalue *index = find_innermost_array_index(lhs);
848 ir_variable *index_var = index ? index->variable_referenced() : NULL;
849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850 _mesa_glsl_error(&loc, state,
851 "Tessellation control shader outputs can only "
852 "be indexed by gl_InvocationID");
853 return NULL;
854 }
855 }
856 }
857
858 /* If the types are identical, the assignment can trivially proceed.
859 */
860 if (rhs->type == lhs->type)
861 return rhs;
862
863 /* If the array element types are the same and the LHS is unsized,
864 * the assignment is okay for initializers embedded in variable
865 * declarations.
866 *
867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868 * is handled by ir_dereference::is_lvalue.
869 */
870 const glsl_type *lhs_t = lhs->type;
871 const glsl_type *rhs_t = rhs->type;
872 bool unsized_array = false;
873 while(lhs_t->is_array()) {
874 if (rhs_t == lhs_t)
875 break; /* the rest of the inner arrays match so break out early */
876 if (!rhs_t->is_array()) {
877 unsized_array = false;
878 break; /* number of dimensions mismatch */
879 }
880 if (lhs_t->length == rhs_t->length) {
881 lhs_t = lhs_t->fields.array;
882 rhs_t = rhs_t->fields.array;
883 continue;
884 } else if (lhs_t->is_unsized_array()) {
885 unsized_array = true;
886 } else {
887 unsized_array = false;
888 break; /* sized array mismatch */
889 }
890 lhs_t = lhs_t->fields.array;
891 rhs_t = rhs_t->fields.array;
892 }
893 if (unsized_array) {
894 if (is_initializer) {
895 return rhs;
896 } else {
897 _mesa_glsl_error(&loc, state,
898 "implicitly sized arrays cannot be assigned");
899 return NULL;
900 }
901 }
902
903 /* Check for implicit conversion in GLSL 1.20 */
904 if (apply_implicit_conversion(lhs->type, rhs, state)) {
905 if (rhs->type == lhs->type)
906 return rhs;
907 }
908
909 _mesa_glsl_error(&loc, state,
910 "%s of type %s cannot be assigned to "
911 "variable of type %s",
912 is_initializer ? "initializer" : "value",
913 rhs->type->name, lhs->type->name);
914
915 return NULL;
916 }
917
918 static void
919 mark_whole_array_access(ir_rvalue *access)
920 {
921 ir_dereference_variable *deref = access->as_dereference_variable();
922
923 if (deref && deref->var) {
924 deref->var->data.max_array_access = deref->type->length - 1;
925 }
926 }
927
928 static bool
929 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
930 const char *non_lvalue_description,
931 ir_rvalue *lhs, ir_rvalue *rhs,
932 ir_rvalue **out_rvalue, bool needs_rvalue,
933 bool is_initializer,
934 YYLTYPE lhs_loc)
935 {
936 void *ctx = state;
937 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
938
939 ir_variable *lhs_var = lhs->variable_referenced();
940 if (lhs_var)
941 lhs_var->data.assigned = true;
942
943 if (!error_emitted) {
944 if (non_lvalue_description != NULL) {
945 _mesa_glsl_error(&lhs_loc, state,
946 "assignment to %s",
947 non_lvalue_description);
948 error_emitted = true;
949 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
950 (lhs_var->data.mode == ir_var_shader_storage &&
951 lhs_var->data.memory_read_only))) {
952 /* We can have memory_read_only set on both images and buffer variables,
953 * but in the former there is a distinction between assignments to
954 * the variable itself (read_only) and to the memory they point to
955 * (memory_read_only), while in the case of buffer variables there is
956 * no such distinction, that is why this check here is limited to
957 * buffer variables alone.
958 */
959 _mesa_glsl_error(&lhs_loc, state,
960 "assignment to read-only variable '%s'",
961 lhs_var->name);
962 error_emitted = true;
963 } else if (lhs->type->is_array() &&
964 !state->check_version(120, 300, &lhs_loc,
965 "whole array assignment forbidden")) {
966 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
967 *
968 * "Other binary or unary expressions, non-dereferenced
969 * arrays, function names, swizzles with repeated fields,
970 * and constants cannot be l-values."
971 *
972 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
973 */
974 error_emitted = true;
975 } else if (!lhs->is_lvalue(state)) {
976 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
977 error_emitted = true;
978 }
979 }
980
981 ir_rvalue *new_rhs =
982 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
983 if (new_rhs != NULL) {
984 rhs = new_rhs;
985
986 /* If the LHS array was not declared with a size, it takes it size from
987 * the RHS. If the LHS is an l-value and a whole array, it must be a
988 * dereference of a variable. Any other case would require that the LHS
989 * is either not an l-value or not a whole array.
990 */
991 if (lhs->type->is_unsized_array()) {
992 ir_dereference *const d = lhs->as_dereference();
993
994 assert(d != NULL);
995
996 ir_variable *const var = d->variable_referenced();
997
998 assert(var != NULL);
999
1000 if (var->data.max_array_access >= rhs->type->array_size()) {
1001 /* FINISHME: This should actually log the location of the RHS. */
1002 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1003 "previous access",
1004 var->data.max_array_access);
1005 }
1006
1007 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1008 rhs->type->array_size());
1009 d->type = var->type;
1010 }
1011 if (lhs->type->is_array()) {
1012 mark_whole_array_access(rhs);
1013 mark_whole_array_access(lhs);
1014 }
1015 } else {
1016 error_emitted = true;
1017 }
1018
1019 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1020 * but not post_inc) need the converted assigned value as an rvalue
1021 * to handle things like:
1022 *
1023 * i = j += 1;
1024 */
1025 if (needs_rvalue) {
1026 ir_rvalue *rvalue;
1027 if (!error_emitted) {
1028 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1029 ir_var_temporary);
1030 instructions->push_tail(var);
1031 instructions->push_tail(assign(var, rhs));
1032
1033 ir_dereference_variable *deref_var =
1034 new(ctx) ir_dereference_variable(var);
1035 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1036 rvalue = new(ctx) ir_dereference_variable(var);
1037 } else {
1038 rvalue = ir_rvalue::error_value(ctx);
1039 }
1040 *out_rvalue = rvalue;
1041 } else {
1042 if (!error_emitted)
1043 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1044 *out_rvalue = NULL;
1045 }
1046
1047 return error_emitted;
1048 }
1049
1050 static ir_rvalue *
1051 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1052 {
1053 void *ctx = ralloc_parent(lvalue);
1054 ir_variable *var;
1055
1056 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1057 ir_var_temporary);
1058 instructions->push_tail(var);
1059
1060 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1061 lvalue));
1062
1063 return new(ctx) ir_dereference_variable(var);
1064 }
1065
1066
1067 ir_rvalue *
1068 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1069 {
1070 (void) instructions;
1071 (void) state;
1072
1073 return NULL;
1074 }
1075
1076 bool
1077 ast_node::has_sequence_subexpression() const
1078 {
1079 return false;
1080 }
1081
1082 void
1083 ast_node::set_is_lhs(bool /* new_value */)
1084 {
1085 }
1086
1087 void
1088 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state)
1090 {
1091 (void)hir(instructions, state);
1092 }
1093
1094 void
1095 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1096 struct _mesa_glsl_parse_state *state)
1097 {
1098 (void)hir(instructions, state);
1099 }
1100
1101 static ir_rvalue *
1102 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1103 {
1104 int join_op;
1105 ir_rvalue *cmp = NULL;
1106
1107 if (operation == ir_binop_all_equal)
1108 join_op = ir_binop_logic_and;
1109 else
1110 join_op = ir_binop_logic_or;
1111
1112 switch (op0->type->base_type) {
1113 case GLSL_TYPE_FLOAT:
1114 case GLSL_TYPE_FLOAT16:
1115 case GLSL_TYPE_UINT:
1116 case GLSL_TYPE_INT:
1117 case GLSL_TYPE_BOOL:
1118 case GLSL_TYPE_DOUBLE:
1119 case GLSL_TYPE_UINT64:
1120 case GLSL_TYPE_INT64:
1121 case GLSL_TYPE_UINT16:
1122 case GLSL_TYPE_INT16:
1123 case GLSL_TYPE_UINT8:
1124 case GLSL_TYPE_INT8:
1125 return new(mem_ctx) ir_expression(operation, op0, op1);
1126
1127 case GLSL_TYPE_ARRAY: {
1128 for (unsigned int i = 0; i < op0->type->length; i++) {
1129 ir_rvalue *e0, *e1, *result;
1130
1131 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1132 new(mem_ctx) ir_constant(i));
1133 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1134 new(mem_ctx) ir_constant(i));
1135 result = do_comparison(mem_ctx, operation, e0, e1);
1136
1137 if (cmp) {
1138 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1139 } else {
1140 cmp = result;
1141 }
1142 }
1143
1144 mark_whole_array_access(op0);
1145 mark_whole_array_access(op1);
1146 break;
1147 }
1148
1149 case GLSL_TYPE_STRUCT: {
1150 for (unsigned int i = 0; i < op0->type->length; i++) {
1151 ir_rvalue *e0, *e1, *result;
1152 const char *field_name = op0->type->fields.structure[i].name;
1153
1154 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1155 field_name);
1156 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1157 field_name);
1158 result = do_comparison(mem_ctx, operation, e0, e1);
1159
1160 if (cmp) {
1161 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162 } else {
1163 cmp = result;
1164 }
1165 }
1166 break;
1167 }
1168
1169 case GLSL_TYPE_ERROR:
1170 case GLSL_TYPE_VOID:
1171 case GLSL_TYPE_SAMPLER:
1172 case GLSL_TYPE_IMAGE:
1173 case GLSL_TYPE_INTERFACE:
1174 case GLSL_TYPE_ATOMIC_UINT:
1175 case GLSL_TYPE_SUBROUTINE:
1176 case GLSL_TYPE_FUNCTION:
1177 /* I assume a comparison of a struct containing a sampler just
1178 * ignores the sampler present in the type.
1179 */
1180 break;
1181 }
1182
1183 if (cmp == NULL)
1184 cmp = new(mem_ctx) ir_constant(true);
1185
1186 return cmp;
1187 }
1188
1189 /* For logical operations, we want to ensure that the operands are
1190 * scalar booleans. If it isn't, emit an error and return a constant
1191 * boolean to avoid triggering cascading error messages.
1192 */
1193 static ir_rvalue *
1194 get_scalar_boolean_operand(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state,
1196 ast_expression *parent_expr,
1197 int operand,
1198 const char *operand_name,
1199 bool *error_emitted)
1200 {
1201 ast_expression *expr = parent_expr->subexpressions[operand];
1202 void *ctx = state;
1203 ir_rvalue *val = expr->hir(instructions, state);
1204
1205 if (val->type->is_boolean() && val->type->is_scalar())
1206 return val;
1207
1208 if (!*error_emitted) {
1209 YYLTYPE loc = expr->get_location();
1210 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1211 operand_name,
1212 parent_expr->operator_string(parent_expr->oper));
1213 *error_emitted = true;
1214 }
1215
1216 return new(ctx) ir_constant(true);
1217 }
1218
1219 /**
1220 * If name refers to a builtin array whose maximum allowed size is less than
1221 * size, report an error and return true. Otherwise return false.
1222 */
1223 void
1224 check_builtin_array_max_size(const char *name, unsigned size,
1225 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1226 {
1227 if ((strcmp("gl_TexCoord", name) == 0)
1228 && (size > state->Const.MaxTextureCoords)) {
1229 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1230 *
1231 * "The size [of gl_TexCoord] can be at most
1232 * gl_MaxTextureCoords."
1233 */
1234 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1235 "be larger than gl_MaxTextureCoords (%u)",
1236 state->Const.MaxTextureCoords);
1237 } else if (strcmp("gl_ClipDistance", name) == 0) {
1238 state->clip_dist_size = size;
1239 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1240 /* From section 7.1 (Vertex Shader Special Variables) of the
1241 * GLSL 1.30 spec:
1242 *
1243 * "The gl_ClipDistance array is predeclared as unsized and
1244 * must be sized by the shader either redeclaring it with a
1245 * size or indexing it only with integral constant
1246 * expressions. ... The size can be at most
1247 * gl_MaxClipDistances."
1248 */
1249 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1250 "be larger than gl_MaxClipDistances (%u)",
1251 state->Const.MaxClipPlanes);
1252 }
1253 } else if (strcmp("gl_CullDistance", name) == 0) {
1254 state->cull_dist_size = size;
1255 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1256 /* From the ARB_cull_distance spec:
1257 *
1258 * "The gl_CullDistance array is predeclared as unsized and
1259 * must be sized by the shader either redeclaring it with
1260 * a size or indexing it only with integral constant
1261 * expressions. The size determines the number and set of
1262 * enabled cull distances and can be at most
1263 * gl_MaxCullDistances."
1264 */
1265 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1266 "be larger than gl_MaxCullDistances (%u)",
1267 state->Const.MaxClipPlanes);
1268 }
1269 }
1270 }
1271
1272 /**
1273 * Create the constant 1, of a which is appropriate for incrementing and
1274 * decrementing values of the given GLSL type. For example, if type is vec4,
1275 * this creates a constant value of 1.0 having type float.
1276 *
1277 * If the given type is invalid for increment and decrement operators, return
1278 * a floating point 1--the error will be detected later.
1279 */
1280 static ir_rvalue *
1281 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1282 {
1283 switch (type->base_type) {
1284 case GLSL_TYPE_UINT:
1285 return new(ctx) ir_constant((unsigned) 1);
1286 case GLSL_TYPE_INT:
1287 return new(ctx) ir_constant(1);
1288 case GLSL_TYPE_UINT64:
1289 return new(ctx) ir_constant((uint64_t) 1);
1290 case GLSL_TYPE_INT64:
1291 return new(ctx) ir_constant((int64_t) 1);
1292 default:
1293 case GLSL_TYPE_FLOAT:
1294 return new(ctx) ir_constant(1.0f);
1295 }
1296 }
1297
1298 ir_rvalue *
1299 ast_expression::hir(exec_list *instructions,
1300 struct _mesa_glsl_parse_state *state)
1301 {
1302 return do_hir(instructions, state, true);
1303 }
1304
1305 void
1306 ast_expression::hir_no_rvalue(exec_list *instructions,
1307 struct _mesa_glsl_parse_state *state)
1308 {
1309 do_hir(instructions, state, false);
1310 }
1311
1312 void
1313 ast_expression::set_is_lhs(bool new_value)
1314 {
1315 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1316 * if we lack an identifier we can just skip it.
1317 */
1318 if (this->primary_expression.identifier == NULL)
1319 return;
1320
1321 this->is_lhs = new_value;
1322
1323 /* We need to go through the subexpressions tree to cover cases like
1324 * ast_field_selection
1325 */
1326 if (this->subexpressions[0] != NULL)
1327 this->subexpressions[0]->set_is_lhs(new_value);
1328 }
1329
1330 ir_rvalue *
1331 ast_expression::do_hir(exec_list *instructions,
1332 struct _mesa_glsl_parse_state *state,
1333 bool needs_rvalue)
1334 {
1335 void *ctx = state;
1336 static const int operations[AST_NUM_OPERATORS] = {
1337 -1, /* ast_assign doesn't convert to ir_expression. */
1338 -1, /* ast_plus doesn't convert to ir_expression. */
1339 ir_unop_neg,
1340 ir_binop_add,
1341 ir_binop_sub,
1342 ir_binop_mul,
1343 ir_binop_div,
1344 ir_binop_mod,
1345 ir_binop_lshift,
1346 ir_binop_rshift,
1347 ir_binop_less,
1348 ir_binop_less, /* This is correct. See the ast_greater case below. */
1349 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1350 ir_binop_gequal,
1351 ir_binop_all_equal,
1352 ir_binop_any_nequal,
1353 ir_binop_bit_and,
1354 ir_binop_bit_xor,
1355 ir_binop_bit_or,
1356 ir_unop_bit_not,
1357 ir_binop_logic_and,
1358 ir_binop_logic_xor,
1359 ir_binop_logic_or,
1360 ir_unop_logic_not,
1361
1362 /* Note: The following block of expression types actually convert
1363 * to multiple IR instructions.
1364 */
1365 ir_binop_mul, /* ast_mul_assign */
1366 ir_binop_div, /* ast_div_assign */
1367 ir_binop_mod, /* ast_mod_assign */
1368 ir_binop_add, /* ast_add_assign */
1369 ir_binop_sub, /* ast_sub_assign */
1370 ir_binop_lshift, /* ast_ls_assign */
1371 ir_binop_rshift, /* ast_rs_assign */
1372 ir_binop_bit_and, /* ast_and_assign */
1373 ir_binop_bit_xor, /* ast_xor_assign */
1374 ir_binop_bit_or, /* ast_or_assign */
1375
1376 -1, /* ast_conditional doesn't convert to ir_expression. */
1377 ir_binop_add, /* ast_pre_inc. */
1378 ir_binop_sub, /* ast_pre_dec. */
1379 ir_binop_add, /* ast_post_inc. */
1380 ir_binop_sub, /* ast_post_dec. */
1381 -1, /* ast_field_selection doesn't conv to ir_expression. */
1382 -1, /* ast_array_index doesn't convert to ir_expression. */
1383 -1, /* ast_function_call doesn't conv to ir_expression. */
1384 -1, /* ast_identifier doesn't convert to ir_expression. */
1385 -1, /* ast_int_constant doesn't convert to ir_expression. */
1386 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1387 -1, /* ast_float_constant doesn't conv to ir_expression. */
1388 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1389 -1, /* ast_sequence doesn't convert to ir_expression. */
1390 -1, /* ast_aggregate shouldn't ever even get here. */
1391 };
1392 ir_rvalue *result = NULL;
1393 ir_rvalue *op[3];
1394 const struct glsl_type *type, *orig_type;
1395 bool error_emitted = false;
1396 YYLTYPE loc;
1397
1398 loc = this->get_location();
1399
1400 switch (this->oper) {
1401 case ast_aggregate:
1402 unreachable("ast_aggregate: Should never get here.");
1403
1404 case ast_assign: {
1405 this->subexpressions[0]->set_is_lhs(true);
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 error_emitted =
1410 do_assignment(instructions, state,
1411 this->subexpressions[0]->non_lvalue_description,
1412 op[0], op[1], &result, needs_rvalue, false,
1413 this->subexpressions[0]->get_location());
1414 break;
1415 }
1416
1417 case ast_plus:
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419
1420 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1421
1422 error_emitted = type->is_error();
1423
1424 result = op[0];
1425 break;
1426
1427 case ast_neg:
1428 op[0] = this->subexpressions[0]->hir(instructions, state);
1429
1430 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1431
1432 error_emitted = type->is_error();
1433
1434 result = new(ctx) ir_expression(operations[this->oper], type,
1435 op[0], NULL);
1436 break;
1437
1438 case ast_add:
1439 case ast_sub:
1440 case ast_mul:
1441 case ast_div:
1442 op[0] = this->subexpressions[0]->hir(instructions, state);
1443 op[1] = this->subexpressions[1]->hir(instructions, state);
1444
1445 type = arithmetic_result_type(op[0], op[1],
1446 (this->oper == ast_mul),
1447 state, & loc);
1448 error_emitted = type->is_error();
1449
1450 result = new(ctx) ir_expression(operations[this->oper], type,
1451 op[0], op[1]);
1452 break;
1453
1454 case ast_mod:
1455 op[0] = this->subexpressions[0]->hir(instructions, state);
1456 op[1] = this->subexpressions[1]->hir(instructions, state);
1457
1458 type = modulus_result_type(op[0], op[1], state, &loc);
1459
1460 assert(operations[this->oper] == ir_binop_mod);
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_lshift:
1468 case ast_rshift:
1469 if (!state->check_bitwise_operations_allowed(&loc)) {
1470 error_emitted = true;
1471 }
1472
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 result = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1480 break;
1481
1482 case ast_less:
1483 case ast_greater:
1484 case ast_lequal:
1485 case ast_gequal:
1486 op[0] = this->subexpressions[0]->hir(instructions, state);
1487 op[1] = this->subexpressions[1]->hir(instructions, state);
1488
1489 type = relational_result_type(op[0], op[1], state, & loc);
1490
1491 /* The relational operators must either generate an error or result
1492 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1493 */
1494 assert(type->is_error()
1495 || (type->is_boolean() && type->is_scalar()));
1496
1497 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1498 * the arguments and use < or >=.
1499 */
1500 if (this->oper == ast_greater || this->oper == ast_lequal) {
1501 ir_rvalue *const tmp = op[0];
1502 op[0] = op[1];
1503 op[1] = tmp;
1504 }
1505
1506 result = new(ctx) ir_expression(operations[this->oper], type,
1507 op[0], op[1]);
1508 error_emitted = type->is_error();
1509 break;
1510
1511 case ast_nequal:
1512 case ast_equal:
1513 op[0] = this->subexpressions[0]->hir(instructions, state);
1514 op[1] = this->subexpressions[1]->hir(instructions, state);
1515
1516 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1517 *
1518 * "The equality operators equal (==), and not equal (!=)
1519 * operate on all types. They result in a scalar Boolean. If
1520 * the operand types do not match, then there must be a
1521 * conversion from Section 4.1.10 "Implicit Conversions"
1522 * applied to one operand that can make them match, in which
1523 * case this conversion is done."
1524 */
1525
1526 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1527 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1528 "no operation `%1$s' exists that takes a left-hand "
1529 "operand of type 'void' or a right operand of type "
1530 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1531 error_emitted = true;
1532 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1533 && !apply_implicit_conversion(op[1]->type, op[0], state))
1534 || (op[0]->type != op[1]->type)) {
1535 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1536 "type", (this->oper == ast_equal) ? "==" : "!=");
1537 error_emitted = true;
1538 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1539 !state->check_version(120, 300, &loc,
1540 "array comparisons forbidden")) {
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_subroutine() ||
1543 op[1]->type->contains_subroutine())) {
1544 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1545 error_emitted = true;
1546 } else if ((op[0]->type->contains_opaque() ||
1547 op[1]->type->contains_opaque())) {
1548 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1549 error_emitted = true;
1550 }
1551
1552 if (error_emitted) {
1553 result = new(ctx) ir_constant(false);
1554 } else {
1555 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1556 assert(result->type == glsl_type::bool_type);
1557 }
1558 break;
1559
1560 case ast_bit_and:
1561 case ast_bit_xor:
1562 case ast_bit_or:
1563 op[0] = this->subexpressions[0]->hir(instructions, state);
1564 op[1] = this->subexpressions[1]->hir(instructions, state);
1565 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1566 result = new(ctx) ir_expression(operations[this->oper], type,
1567 op[0], op[1]);
1568 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1569 break;
1570
1571 case ast_bit_not:
1572 op[0] = this->subexpressions[0]->hir(instructions, state);
1573
1574 if (!state->check_bitwise_operations_allowed(&loc)) {
1575 error_emitted = true;
1576 }
1577
1578 if (!op[0]->type->is_integer_32_64()) {
1579 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1580 error_emitted = true;
1581 }
1582
1583 type = error_emitted ? glsl_type::error_type : op[0]->type;
1584 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1585 break;
1586
1587 case ast_logic_and: {
1588 exec_list rhs_instructions;
1589 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1590 "LHS", &error_emitted);
1591 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1592 "RHS", &error_emitted);
1593
1594 if (rhs_instructions.is_empty()) {
1595 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1596 } else {
1597 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1598 "and_tmp",
1599 ir_var_temporary);
1600 instructions->push_tail(tmp);
1601
1602 ir_if *const stmt = new(ctx) ir_if(op[0]);
1603 instructions->push_tail(stmt);
1604
1605 stmt->then_instructions.append_list(&rhs_instructions);
1606 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1607 ir_assignment *const then_assign =
1608 new(ctx) ir_assignment(then_deref, op[1]);
1609 stmt->then_instructions.push_tail(then_assign);
1610
1611 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1612 ir_assignment *const else_assign =
1613 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1614 stmt->else_instructions.push_tail(else_assign);
1615
1616 result = new(ctx) ir_dereference_variable(tmp);
1617 }
1618 break;
1619 }
1620
1621 case ast_logic_or: {
1622 exec_list rhs_instructions;
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1624 "LHS", &error_emitted);
1625 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1626 "RHS", &error_emitted);
1627
1628 if (rhs_instructions.is_empty()) {
1629 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1630 } else {
1631 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1632 "or_tmp",
1633 ir_var_temporary);
1634 instructions->push_tail(tmp);
1635
1636 ir_if *const stmt = new(ctx) ir_if(op[0]);
1637 instructions->push_tail(stmt);
1638
1639 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1640 ir_assignment *const then_assign =
1641 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1642 stmt->then_instructions.push_tail(then_assign);
1643
1644 stmt->else_instructions.append_list(&rhs_instructions);
1645 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1646 ir_assignment *const else_assign =
1647 new(ctx) ir_assignment(else_deref, op[1]);
1648 stmt->else_instructions.push_tail(else_assign);
1649
1650 result = new(ctx) ir_dereference_variable(tmp);
1651 }
1652 break;
1653 }
1654
1655 case ast_logic_xor:
1656 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1657 *
1658 * "The logical binary operators and (&&), or ( | | ), and
1659 * exclusive or (^^). They operate only on two Boolean
1660 * expressions and result in a Boolean expression."
1661 */
1662 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1663 &error_emitted);
1664 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1665 &error_emitted);
1666
1667 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1668 op[0], op[1]);
1669 break;
1670
1671 case ast_logic_not:
1672 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1673 "operand", &error_emitted);
1674
1675 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1676 op[0], NULL);
1677 break;
1678
1679 case ast_mul_assign:
1680 case ast_div_assign:
1681 case ast_add_assign:
1682 case ast_sub_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686
1687 orig_type = op[0]->type;
1688 type = arithmetic_result_type(op[0], op[1],
1689 (this->oper == ast_mul_assign),
1690 state, & loc);
1691
1692 if (type != orig_type) {
1693 _mesa_glsl_error(& loc, state,
1694 "could not implicitly convert "
1695 "%s to %s", type->name, orig_type->name);
1696 type = glsl_type::error_type;
1697 }
1698
1699 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1700 op[0], op[1]);
1701
1702 error_emitted =
1703 do_assignment(instructions, state,
1704 this->subexpressions[0]->non_lvalue_description,
1705 op[0]->clone(ctx, NULL), temp_rhs,
1706 &result, needs_rvalue, false,
1707 this->subexpressions[0]->get_location());
1708
1709 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1710 * explicitly test for this because none of the binary expression
1711 * operators allow array operands either.
1712 */
1713
1714 break;
1715 }
1716
1717 case ast_mod_assign: {
1718 this->subexpressions[0]->set_is_lhs(true);
1719 op[0] = this->subexpressions[0]->hir(instructions, state);
1720 op[1] = this->subexpressions[1]->hir(instructions, state);
1721
1722 orig_type = op[0]->type;
1723 type = modulus_result_type(op[0], op[1], state, &loc);
1724
1725 if (type != orig_type) {
1726 _mesa_glsl_error(& loc, state,
1727 "could not implicitly convert "
1728 "%s to %s", type->name, orig_type->name);
1729 type = glsl_type::error_type;
1730 }
1731
1732 assert(operations[this->oper] == ir_binop_mod);
1733
1734 ir_rvalue *temp_rhs;
1735 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1736 op[0], op[1]);
1737
1738 error_emitted =
1739 do_assignment(instructions, state,
1740 this->subexpressions[0]->non_lvalue_description,
1741 op[0]->clone(ctx, NULL), temp_rhs,
1742 &result, needs_rvalue, false,
1743 this->subexpressions[0]->get_location());
1744 break;
1745 }
1746
1747 case ast_ls_assign:
1748 case ast_rs_assign: {
1749 this->subexpressions[0]->set_is_lhs(true);
1750 op[0] = this->subexpressions[0]->hir(instructions, state);
1751 op[1] = this->subexpressions[1]->hir(instructions, state);
1752 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1753 &loc);
1754 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1755 type, op[0], op[1]);
1756 error_emitted =
1757 do_assignment(instructions, state,
1758 this->subexpressions[0]->non_lvalue_description,
1759 op[0]->clone(ctx, NULL), temp_rhs,
1760 &result, needs_rvalue, false,
1761 this->subexpressions[0]->get_location());
1762 break;
1763 }
1764
1765 case ast_and_assign:
1766 case ast_xor_assign:
1767 case ast_or_assign: {
1768 this->subexpressions[0]->set_is_lhs(true);
1769 op[0] = this->subexpressions[0]->hir(instructions, state);
1770 op[1] = this->subexpressions[1]->hir(instructions, state);
1771
1772 orig_type = op[0]->type;
1773 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1774
1775 if (type != orig_type) {
1776 _mesa_glsl_error(& loc, state,
1777 "could not implicitly convert "
1778 "%s to %s", type->name, orig_type->name);
1779 type = glsl_type::error_type;
1780 }
1781
1782 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1783 type, op[0], op[1]);
1784 error_emitted =
1785 do_assignment(instructions, state,
1786 this->subexpressions[0]->non_lvalue_description,
1787 op[0]->clone(ctx, NULL), temp_rhs,
1788 &result, needs_rvalue, false,
1789 this->subexpressions[0]->get_location());
1790 break;
1791 }
1792
1793 case ast_conditional: {
1794 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1795 *
1796 * "The ternary selection operator (?:). It operates on three
1797 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1798 * first expression, which must result in a scalar Boolean."
1799 */
1800 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1801 "condition", &error_emitted);
1802
1803 /* The :? operator is implemented by generating an anonymous temporary
1804 * followed by an if-statement. The last instruction in each branch of
1805 * the if-statement assigns a value to the anonymous temporary. This
1806 * temporary is the r-value of the expression.
1807 */
1808 exec_list then_instructions;
1809 exec_list else_instructions;
1810
1811 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1812 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1813
1814 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1815 *
1816 * "The second and third expressions can be any type, as
1817 * long their types match, or there is a conversion in
1818 * Section 4.1.10 "Implicit Conversions" that can be applied
1819 * to one of the expressions to make their types match. This
1820 * resulting matching type is the type of the entire
1821 * expression."
1822 */
1823 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1824 && !apply_implicit_conversion(op[2]->type, op[1], state))
1825 || (op[1]->type != op[2]->type)) {
1826 YYLTYPE loc = this->subexpressions[1]->get_location();
1827
1828 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1829 "operator must have matching types");
1830 error_emitted = true;
1831 type = glsl_type::error_type;
1832 } else {
1833 type = op[1]->type;
1834 }
1835
1836 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1837 *
1838 * "The second and third expressions must be the same type, but can
1839 * be of any type other than an array."
1840 */
1841 if (type->is_array() &&
1842 !state->check_version(120, 300, &loc,
1843 "second and third operands of ?: operator "
1844 "cannot be arrays")) {
1845 error_emitted = true;
1846 }
1847
1848 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1849 *
1850 * "Except for array indexing, structure member selection, and
1851 * parentheses, opaque variables are not allowed to be operands in
1852 * expressions; such use results in a compile-time error."
1853 */
1854 if (type->contains_opaque()) {
1855 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1856 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1857 "operands of the ?: operator", type->name);
1858 error_emitted = true;
1859 }
1860 }
1861
1862 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1863
1864 if (then_instructions.is_empty()
1865 && else_instructions.is_empty()
1866 && cond_val != NULL) {
1867 result = cond_val->value.b[0] ? op[1] : op[2];
1868 } else {
1869 /* The copy to conditional_tmp reads the whole array. */
1870 if (type->is_array()) {
1871 mark_whole_array_access(op[1]);
1872 mark_whole_array_access(op[2]);
1873 }
1874
1875 ir_variable *const tmp =
1876 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1877 instructions->push_tail(tmp);
1878
1879 ir_if *const stmt = new(ctx) ir_if(op[0]);
1880 instructions->push_tail(stmt);
1881
1882 then_instructions.move_nodes_to(& stmt->then_instructions);
1883 ir_dereference *const then_deref =
1884 new(ctx) ir_dereference_variable(tmp);
1885 ir_assignment *const then_assign =
1886 new(ctx) ir_assignment(then_deref, op[1]);
1887 stmt->then_instructions.push_tail(then_assign);
1888
1889 else_instructions.move_nodes_to(& stmt->else_instructions);
1890 ir_dereference *const else_deref =
1891 new(ctx) ir_dereference_variable(tmp);
1892 ir_assignment *const else_assign =
1893 new(ctx) ir_assignment(else_deref, op[2]);
1894 stmt->else_instructions.push_tail(else_assign);
1895
1896 result = new(ctx) ir_dereference_variable(tmp);
1897 }
1898 break;
1899 }
1900
1901 case ast_pre_inc:
1902 case ast_pre_dec: {
1903 this->non_lvalue_description = (this->oper == ast_pre_inc)
1904 ? "pre-increment operation" : "pre-decrement operation";
1905
1906 op[0] = this->subexpressions[0]->hir(instructions, state);
1907 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1908
1909 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1910
1911 ir_rvalue *temp_rhs;
1912 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1913 op[0], op[1]);
1914
1915 error_emitted =
1916 do_assignment(instructions, state,
1917 this->subexpressions[0]->non_lvalue_description,
1918 op[0]->clone(ctx, NULL), temp_rhs,
1919 &result, needs_rvalue, false,
1920 this->subexpressions[0]->get_location());
1921 break;
1922 }
1923
1924 case ast_post_inc:
1925 case ast_post_dec: {
1926 this->non_lvalue_description = (this->oper == ast_post_inc)
1927 ? "post-increment operation" : "post-decrement operation";
1928 op[0] = this->subexpressions[0]->hir(instructions, state);
1929 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1930
1931 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1932
1933 if (error_emitted) {
1934 result = ir_rvalue::error_value(ctx);
1935 break;
1936 }
1937
1938 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1939
1940 ir_rvalue *temp_rhs;
1941 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1942 op[0], op[1]);
1943
1944 /* Get a temporary of a copy of the lvalue before it's modified.
1945 * This may get thrown away later.
1946 */
1947 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1948
1949 ir_rvalue *junk_rvalue;
1950 error_emitted =
1951 do_assignment(instructions, state,
1952 this->subexpressions[0]->non_lvalue_description,
1953 op[0]->clone(ctx, NULL), temp_rhs,
1954 &junk_rvalue, false, false,
1955 this->subexpressions[0]->get_location());
1956
1957 break;
1958 }
1959
1960 case ast_field_selection:
1961 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1962 break;
1963
1964 case ast_array_index: {
1965 YYLTYPE index_loc = subexpressions[1]->get_location();
1966
1967 /* Getting if an array is being used uninitialized is beyond what we get
1968 * from ir_value.data.assigned. Setting is_lhs as true would force to
1969 * not raise a uninitialized warning when using an array
1970 */
1971 subexpressions[0]->set_is_lhs(true);
1972 op[0] = subexpressions[0]->hir(instructions, state);
1973 op[1] = subexpressions[1]->hir(instructions, state);
1974
1975 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1976 loc, index_loc);
1977
1978 if (result->type->is_error())
1979 error_emitted = true;
1980
1981 break;
1982 }
1983
1984 case ast_unsized_array_dim:
1985 unreachable("ast_unsized_array_dim: Should never get here.");
1986
1987 case ast_function_call:
1988 /* Should *NEVER* get here. ast_function_call should always be handled
1989 * by ast_function_expression::hir.
1990 */
1991 unreachable("ast_function_call: handled elsewhere ");
1992
1993 case ast_identifier: {
1994 /* ast_identifier can appear several places in a full abstract syntax
1995 * tree. This particular use must be at location specified in the grammar
1996 * as 'variable_identifier'.
1997 */
1998 ir_variable *var =
1999 state->symbols->get_variable(this->primary_expression.identifier);
2000
2001 if (var == NULL) {
2002 /* the identifier might be a subroutine name */
2003 char *sub_name;
2004 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2005 var = state->symbols->get_variable(sub_name);
2006 ralloc_free(sub_name);
2007 }
2008
2009 if (var != NULL) {
2010 var->data.used = true;
2011 result = new(ctx) ir_dereference_variable(var);
2012
2013 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2014 && !this->is_lhs
2015 && result->variable_referenced()->data.assigned != true
2016 && !is_gl_identifier(var->name)) {
2017 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2018 this->primary_expression.identifier);
2019 }
2020
2021 /* From the EXT_shader_framebuffer_fetch spec:
2022 *
2023 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2024 * enabled in addition, it's an error to use gl_LastFragData if it
2025 * hasn't been explicitly redeclared with layout(noncoherent)."
2026 */
2027 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2028 !state->EXT_shader_framebuffer_fetch_enable) {
2029 _mesa_glsl_error(&loc, state,
2030 "invalid use of framebuffer fetch output not "
2031 "qualified with layout(noncoherent)");
2032 }
2033
2034 } else {
2035 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2036 this->primary_expression.identifier);
2037
2038 result = ir_rvalue::error_value(ctx);
2039 error_emitted = true;
2040 }
2041 break;
2042 }
2043
2044 case ast_int_constant:
2045 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2046 break;
2047
2048 case ast_uint_constant:
2049 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2050 break;
2051
2052 case ast_float_constant:
2053 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2054 break;
2055
2056 case ast_bool_constant:
2057 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2058 break;
2059
2060 case ast_double_constant:
2061 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2062 break;
2063
2064 case ast_uint64_constant:
2065 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2066 break;
2067
2068 case ast_int64_constant:
2069 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2070 break;
2071
2072 case ast_sequence: {
2073 /* It should not be possible to generate a sequence in the AST without
2074 * any expressions in it.
2075 */
2076 assert(!this->expressions.is_empty());
2077
2078 /* The r-value of a sequence is the last expression in the sequence. If
2079 * the other expressions in the sequence do not have side-effects (and
2080 * therefore add instructions to the instruction list), they get dropped
2081 * on the floor.
2082 */
2083 exec_node *previous_tail = NULL;
2084 YYLTYPE previous_operand_loc = loc;
2085
2086 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2087 /* If one of the operands of comma operator does not generate any
2088 * code, we want to emit a warning. At each pass through the loop
2089 * previous_tail will point to the last instruction in the stream
2090 * *before* processing the previous operand. Naturally,
2091 * instructions->get_tail_raw() will point to the last instruction in
2092 * the stream *after* processing the previous operand. If the two
2093 * pointers match, then the previous operand had no effect.
2094 *
2095 * The warning behavior here differs slightly from GCC. GCC will
2096 * only emit a warning if none of the left-hand operands have an
2097 * effect. However, it will emit a warning for each. I believe that
2098 * there are some cases in C (especially with GCC extensions) where
2099 * it is useful to have an intermediate step in a sequence have no
2100 * effect, but I don't think these cases exist in GLSL. Either way,
2101 * it would be a giant hassle to replicate that behavior.
2102 */
2103 if (previous_tail == instructions->get_tail_raw()) {
2104 _mesa_glsl_warning(&previous_operand_loc, state,
2105 "left-hand operand of comma expression has "
2106 "no effect");
2107 }
2108
2109 /* The tail is directly accessed instead of using the get_tail()
2110 * method for performance reasons. get_tail() has extra code to
2111 * return NULL when the list is empty. We don't care about that
2112 * here, so using get_tail_raw() is fine.
2113 */
2114 previous_tail = instructions->get_tail_raw();
2115 previous_operand_loc = ast->get_location();
2116
2117 result = ast->hir(instructions, state);
2118 }
2119
2120 /* Any errors should have already been emitted in the loop above.
2121 */
2122 error_emitted = true;
2123 break;
2124 }
2125 }
2126 type = NULL; /* use result->type, not type. */
2127 assert(result != NULL || !needs_rvalue);
2128
2129 if (result && result->type->is_error() && !error_emitted)
2130 _mesa_glsl_error(& loc, state, "type mismatch");
2131
2132 return result;
2133 }
2134
2135 bool
2136 ast_expression::has_sequence_subexpression() const
2137 {
2138 switch (this->oper) {
2139 case ast_plus:
2140 case ast_neg:
2141 case ast_bit_not:
2142 case ast_logic_not:
2143 case ast_pre_inc:
2144 case ast_pre_dec:
2145 case ast_post_inc:
2146 case ast_post_dec:
2147 return this->subexpressions[0]->has_sequence_subexpression();
2148
2149 case ast_assign:
2150 case ast_add:
2151 case ast_sub:
2152 case ast_mul:
2153 case ast_div:
2154 case ast_mod:
2155 case ast_lshift:
2156 case ast_rshift:
2157 case ast_less:
2158 case ast_greater:
2159 case ast_lequal:
2160 case ast_gequal:
2161 case ast_nequal:
2162 case ast_equal:
2163 case ast_bit_and:
2164 case ast_bit_xor:
2165 case ast_bit_or:
2166 case ast_logic_and:
2167 case ast_logic_or:
2168 case ast_logic_xor:
2169 case ast_array_index:
2170 case ast_mul_assign:
2171 case ast_div_assign:
2172 case ast_add_assign:
2173 case ast_sub_assign:
2174 case ast_mod_assign:
2175 case ast_ls_assign:
2176 case ast_rs_assign:
2177 case ast_and_assign:
2178 case ast_xor_assign:
2179 case ast_or_assign:
2180 return this->subexpressions[0]->has_sequence_subexpression() ||
2181 this->subexpressions[1]->has_sequence_subexpression();
2182
2183 case ast_conditional:
2184 return this->subexpressions[0]->has_sequence_subexpression() ||
2185 this->subexpressions[1]->has_sequence_subexpression() ||
2186 this->subexpressions[2]->has_sequence_subexpression();
2187
2188 case ast_sequence:
2189 return true;
2190
2191 case ast_field_selection:
2192 case ast_identifier:
2193 case ast_int_constant:
2194 case ast_uint_constant:
2195 case ast_float_constant:
2196 case ast_bool_constant:
2197 case ast_double_constant:
2198 case ast_int64_constant:
2199 case ast_uint64_constant:
2200 return false;
2201
2202 case ast_aggregate:
2203 return false;
2204
2205 case ast_function_call:
2206 unreachable("should be handled by ast_function_expression::hir");
2207
2208 case ast_unsized_array_dim:
2209 unreachable("ast_unsized_array_dim: Should never get here.");
2210 }
2211
2212 return false;
2213 }
2214
2215 ir_rvalue *
2216 ast_expression_statement::hir(exec_list *instructions,
2217 struct _mesa_glsl_parse_state *state)
2218 {
2219 /* It is possible to have expression statements that don't have an
2220 * expression. This is the solitary semicolon:
2221 *
2222 * for (i = 0; i < 5; i++)
2223 * ;
2224 *
2225 * In this case the expression will be NULL. Test for NULL and don't do
2226 * anything in that case.
2227 */
2228 if (expression != NULL)
2229 expression->hir_no_rvalue(instructions, state);
2230
2231 /* Statements do not have r-values.
2232 */
2233 return NULL;
2234 }
2235
2236
2237 ir_rvalue *
2238 ast_compound_statement::hir(exec_list *instructions,
2239 struct _mesa_glsl_parse_state *state)
2240 {
2241 if (new_scope)
2242 state->symbols->push_scope();
2243
2244 foreach_list_typed (ast_node, ast, link, &this->statements)
2245 ast->hir(instructions, state);
2246
2247 if (new_scope)
2248 state->symbols->pop_scope();
2249
2250 /* Compound statements do not have r-values.
2251 */
2252 return NULL;
2253 }
2254
2255 /**
2256 * Evaluate the given exec_node (which should be an ast_node representing
2257 * a single array dimension) and return its integer value.
2258 */
2259 static unsigned
2260 process_array_size(exec_node *node,
2261 struct _mesa_glsl_parse_state *state)
2262 {
2263 void *mem_ctx = state;
2264
2265 exec_list dummy_instructions;
2266
2267 ast_node *array_size = exec_node_data(ast_node, node, link);
2268
2269 /**
2270 * Dimensions other than the outermost dimension can by unsized if they
2271 * are immediately sized by a constructor or initializer.
2272 */
2273 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2274 return 0;
2275
2276 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2277 YYLTYPE loc = array_size->get_location();
2278
2279 if (ir == NULL) {
2280 _mesa_glsl_error(& loc, state,
2281 "array size could not be resolved");
2282 return 0;
2283 }
2284
2285 if (!ir->type->is_integer()) {
2286 _mesa_glsl_error(& loc, state,
2287 "array size must be integer type");
2288 return 0;
2289 }
2290
2291 if (!ir->type->is_scalar()) {
2292 _mesa_glsl_error(& loc, state,
2293 "array size must be scalar type");
2294 return 0;
2295 }
2296
2297 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2298 if (size == NULL ||
2299 (state->is_version(120, 300) &&
2300 array_size->has_sequence_subexpression())) {
2301 _mesa_glsl_error(& loc, state, "array size must be a "
2302 "constant valued expression");
2303 return 0;
2304 }
2305
2306 if (size->value.i[0] <= 0) {
2307 _mesa_glsl_error(& loc, state, "array size must be > 0");
2308 return 0;
2309 }
2310
2311 assert(size->type == ir->type);
2312
2313 /* If the array size is const (and we've verified that
2314 * it is) then no instructions should have been emitted
2315 * when we converted it to HIR. If they were emitted,
2316 * then either the array size isn't const after all, or
2317 * we are emitting unnecessary instructions.
2318 */
2319 assert(dummy_instructions.is_empty());
2320
2321 return size->value.u[0];
2322 }
2323
2324 static const glsl_type *
2325 process_array_type(YYLTYPE *loc, const glsl_type *base,
2326 ast_array_specifier *array_specifier,
2327 struct _mesa_glsl_parse_state *state)
2328 {
2329 const glsl_type *array_type = base;
2330
2331 if (array_specifier != NULL) {
2332 if (base->is_array()) {
2333
2334 /* From page 19 (page 25) of the GLSL 1.20 spec:
2335 *
2336 * "Only one-dimensional arrays may be declared."
2337 */
2338 if (!state->check_arrays_of_arrays_allowed(loc)) {
2339 return glsl_type::error_type;
2340 }
2341 }
2342
2343 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2344 !node->is_head_sentinel(); node = node->prev) {
2345 unsigned array_size = process_array_size(node, state);
2346 array_type = glsl_type::get_array_instance(array_type, array_size);
2347 }
2348 }
2349
2350 return array_type;
2351 }
2352
2353 static bool
2354 precision_qualifier_allowed(const glsl_type *type)
2355 {
2356 /* Precision qualifiers apply to floating point, integer and opaque
2357 * types.
2358 *
2359 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2360 * "Any floating point or any integer declaration can have the type
2361 * preceded by one of these precision qualifiers [...] Literal
2362 * constants do not have precision qualifiers. Neither do Boolean
2363 * variables.
2364 *
2365 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2366 * spec also says:
2367 *
2368 * "Precision qualifiers are added for code portability with OpenGL
2369 * ES, not for functionality. They have the same syntax as in OpenGL
2370 * ES."
2371 *
2372 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2373 *
2374 * "uniform lowp sampler2D sampler;
2375 * highp vec2 coord;
2376 * ...
2377 * lowp vec4 col = texture2D (sampler, coord);
2378 * // texture2D returns lowp"
2379 *
2380 * From this, we infer that GLSL 1.30 (and later) should allow precision
2381 * qualifiers on sampler types just like float and integer types.
2382 */
2383 const glsl_type *const t = type->without_array();
2384
2385 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2386 !t->is_record();
2387 }
2388
2389 const glsl_type *
2390 ast_type_specifier::glsl_type(const char **name,
2391 struct _mesa_glsl_parse_state *state) const
2392 {
2393 const struct glsl_type *type;
2394
2395 if (this->type != NULL)
2396 type = this->type;
2397 else if (structure)
2398 type = structure->type;
2399 else
2400 type = state->symbols->get_type(this->type_name);
2401 *name = this->type_name;
2402
2403 YYLTYPE loc = this->get_location();
2404 type = process_array_type(&loc, type, this->array_specifier, state);
2405
2406 return type;
2407 }
2408
2409 /**
2410 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2411 *
2412 * "The precision statement
2413 *
2414 * precision precision-qualifier type;
2415 *
2416 * can be used to establish a default precision qualifier. The type field can
2417 * be either int or float or any of the sampler types, (...) If type is float,
2418 * the directive applies to non-precision-qualified floating point type
2419 * (scalar, vector, and matrix) declarations. If type is int, the directive
2420 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2421 * and unsigned) declarations."
2422 *
2423 * We use the symbol table to keep the values of the default precisions for
2424 * each 'type' in each scope and we use the 'type' string from the precision
2425 * statement as key in the symbol table. When we want to retrieve the default
2426 * precision associated with a given glsl_type we need to know the type string
2427 * associated with it. This is what this function returns.
2428 */
2429 static const char *
2430 get_type_name_for_precision_qualifier(const glsl_type *type)
2431 {
2432 switch (type->base_type) {
2433 case GLSL_TYPE_FLOAT:
2434 return "float";
2435 case GLSL_TYPE_UINT:
2436 case GLSL_TYPE_INT:
2437 return "int";
2438 case GLSL_TYPE_ATOMIC_UINT:
2439 return "atomic_uint";
2440 case GLSL_TYPE_IMAGE:
2441 /* fallthrough */
2442 case GLSL_TYPE_SAMPLER: {
2443 const unsigned type_idx =
2444 type->sampler_array + 2 * type->sampler_shadow;
2445 const unsigned offset = type->is_sampler() ? 0 : 4;
2446 assert(type_idx < 4);
2447 switch (type->sampled_type) {
2448 case GLSL_TYPE_FLOAT:
2449 switch (type->sampler_dimensionality) {
2450 case GLSL_SAMPLER_DIM_1D: {
2451 assert(type->is_sampler());
2452 static const char *const names[4] = {
2453 "sampler1D", "sampler1DArray",
2454 "sampler1DShadow", "sampler1DArrayShadow"
2455 };
2456 return names[type_idx];
2457 }
2458 case GLSL_SAMPLER_DIM_2D: {
2459 static const char *const names[8] = {
2460 "sampler2D", "sampler2DArray",
2461 "sampler2DShadow", "sampler2DArrayShadow",
2462 "image2D", "image2DArray", NULL, NULL
2463 };
2464 return names[offset + type_idx];
2465 }
2466 case GLSL_SAMPLER_DIM_3D: {
2467 static const char *const names[8] = {
2468 "sampler3D", NULL, NULL, NULL,
2469 "image3D", NULL, NULL, NULL
2470 };
2471 return names[offset + type_idx];
2472 }
2473 case GLSL_SAMPLER_DIM_CUBE: {
2474 static const char *const names[8] = {
2475 "samplerCube", "samplerCubeArray",
2476 "samplerCubeShadow", "samplerCubeArrayShadow",
2477 "imageCube", NULL, NULL, NULL
2478 };
2479 return names[offset + type_idx];
2480 }
2481 case GLSL_SAMPLER_DIM_MS: {
2482 assert(type->is_sampler());
2483 static const char *const names[4] = {
2484 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2485 };
2486 return names[type_idx];
2487 }
2488 case GLSL_SAMPLER_DIM_RECT: {
2489 assert(type->is_sampler());
2490 static const char *const names[4] = {
2491 "samplerRect", NULL, "samplerRectShadow", NULL
2492 };
2493 return names[type_idx];
2494 }
2495 case GLSL_SAMPLER_DIM_BUF: {
2496 static const char *const names[8] = {
2497 "samplerBuffer", NULL, NULL, NULL,
2498 "imageBuffer", NULL, NULL, NULL
2499 };
2500 return names[offset + type_idx];
2501 }
2502 case GLSL_SAMPLER_DIM_EXTERNAL: {
2503 assert(type->is_sampler());
2504 static const char *const names[4] = {
2505 "samplerExternalOES", NULL, NULL, NULL
2506 };
2507 return names[type_idx];
2508 }
2509 default:
2510 unreachable("Unsupported sampler/image dimensionality");
2511 } /* sampler/image float dimensionality */
2512 break;
2513 case GLSL_TYPE_INT:
2514 switch (type->sampler_dimensionality) {
2515 case GLSL_SAMPLER_DIM_1D: {
2516 assert(type->is_sampler());
2517 static const char *const names[4] = {
2518 "isampler1D", "isampler1DArray", NULL, NULL
2519 };
2520 return names[type_idx];
2521 }
2522 case GLSL_SAMPLER_DIM_2D: {
2523 static const char *const names[8] = {
2524 "isampler2D", "isampler2DArray", NULL, NULL,
2525 "iimage2D", "iimage2DArray", NULL, NULL
2526 };
2527 return names[offset + type_idx];
2528 }
2529 case GLSL_SAMPLER_DIM_3D: {
2530 static const char *const names[8] = {
2531 "isampler3D", NULL, NULL, NULL,
2532 "iimage3D", NULL, NULL, NULL
2533 };
2534 return names[offset + type_idx];
2535 }
2536 case GLSL_SAMPLER_DIM_CUBE: {
2537 static const char *const names[8] = {
2538 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2539 "iimageCube", NULL, NULL, NULL
2540 };
2541 return names[offset + type_idx];
2542 }
2543 case GLSL_SAMPLER_DIM_MS: {
2544 assert(type->is_sampler());
2545 static const char *const names[4] = {
2546 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2547 };
2548 return names[type_idx];
2549 }
2550 case GLSL_SAMPLER_DIM_RECT: {
2551 assert(type->is_sampler());
2552 static const char *const names[4] = {
2553 "isamplerRect", NULL, "isamplerRectShadow", NULL
2554 };
2555 return names[type_idx];
2556 }
2557 case GLSL_SAMPLER_DIM_BUF: {
2558 static const char *const names[8] = {
2559 "isamplerBuffer", NULL, NULL, NULL,
2560 "iimageBuffer", NULL, NULL, NULL
2561 };
2562 return names[offset + type_idx];
2563 }
2564 default:
2565 unreachable("Unsupported isampler/iimage dimensionality");
2566 } /* sampler/image int dimensionality */
2567 break;
2568 case GLSL_TYPE_UINT:
2569 switch (type->sampler_dimensionality) {
2570 case GLSL_SAMPLER_DIM_1D: {
2571 assert(type->is_sampler());
2572 static const char *const names[4] = {
2573 "usampler1D", "usampler1DArray", NULL, NULL
2574 };
2575 return names[type_idx];
2576 }
2577 case GLSL_SAMPLER_DIM_2D: {
2578 static const char *const names[8] = {
2579 "usampler2D", "usampler2DArray", NULL, NULL,
2580 "uimage2D", "uimage2DArray", NULL, NULL
2581 };
2582 return names[offset + type_idx];
2583 }
2584 case GLSL_SAMPLER_DIM_3D: {
2585 static const char *const names[8] = {
2586 "usampler3D", NULL, NULL, NULL,
2587 "uimage3D", NULL, NULL, NULL
2588 };
2589 return names[offset + type_idx];
2590 }
2591 case GLSL_SAMPLER_DIM_CUBE: {
2592 static const char *const names[8] = {
2593 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2594 "uimageCube", NULL, NULL, NULL
2595 };
2596 return names[offset + type_idx];
2597 }
2598 case GLSL_SAMPLER_DIM_MS: {
2599 assert(type->is_sampler());
2600 static const char *const names[4] = {
2601 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2602 };
2603 return names[type_idx];
2604 }
2605 case GLSL_SAMPLER_DIM_RECT: {
2606 assert(type->is_sampler());
2607 static const char *const names[4] = {
2608 "usamplerRect", NULL, "usamplerRectShadow", NULL
2609 };
2610 return names[type_idx];
2611 }
2612 case GLSL_SAMPLER_DIM_BUF: {
2613 static const char *const names[8] = {
2614 "usamplerBuffer", NULL, NULL, NULL,
2615 "uimageBuffer", NULL, NULL, NULL
2616 };
2617 return names[offset + type_idx];
2618 }
2619 default:
2620 unreachable("Unsupported usampler/uimage dimensionality");
2621 } /* sampler/image uint dimensionality */
2622 break;
2623 default:
2624 unreachable("Unsupported sampler/image type");
2625 } /* sampler/image type */
2626 break;
2627 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2628 break;
2629 default:
2630 unreachable("Unsupported type");
2631 } /* base type */
2632 }
2633
2634 static unsigned
2635 select_gles_precision(unsigned qual_precision,
2636 const glsl_type *type,
2637 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2638 {
2639 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2640 * In GLES we take the precision from the type qualifier if present,
2641 * otherwise, if the type of the variable allows precision qualifiers at
2642 * all, we look for the default precision qualifier for that type in the
2643 * current scope.
2644 */
2645 assert(state->es_shader);
2646
2647 unsigned precision = GLSL_PRECISION_NONE;
2648 if (qual_precision) {
2649 precision = qual_precision;
2650 } else if (precision_qualifier_allowed(type)) {
2651 const char *type_name =
2652 get_type_name_for_precision_qualifier(type->without_array());
2653 assert(type_name != NULL);
2654
2655 precision =
2656 state->symbols->get_default_precision_qualifier(type_name);
2657 if (precision == ast_precision_none) {
2658 _mesa_glsl_error(loc, state,
2659 "No precision specified in this scope for type `%s'",
2660 type->name);
2661 }
2662 }
2663
2664
2665 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2666 *
2667 * "The default precision of all atomic types is highp. It is an error to
2668 * declare an atomic type with a different precision or to specify the
2669 * default precision for an atomic type to be lowp or mediump."
2670 */
2671 if (type->is_atomic_uint() && precision != ast_precision_high) {
2672 _mesa_glsl_error(loc, state,
2673 "atomic_uint can only have highp precision qualifier");
2674 }
2675
2676 return precision;
2677 }
2678
2679 const glsl_type *
2680 ast_fully_specified_type::glsl_type(const char **name,
2681 struct _mesa_glsl_parse_state *state) const
2682 {
2683 return this->specifier->glsl_type(name, state);
2684 }
2685
2686 /**
2687 * Determine whether a toplevel variable declaration declares a varying. This
2688 * function operates by examining the variable's mode and the shader target,
2689 * so it correctly identifies linkage variables regardless of whether they are
2690 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2691 *
2692 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2693 * this function will produce undefined results.
2694 */
2695 static bool
2696 is_varying_var(ir_variable *var, gl_shader_stage target)
2697 {
2698 switch (target) {
2699 case MESA_SHADER_VERTEX:
2700 return var->data.mode == ir_var_shader_out;
2701 case MESA_SHADER_FRAGMENT:
2702 return var->data.mode == ir_var_shader_in;
2703 default:
2704 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2705 }
2706 }
2707
2708 static bool
2709 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2710 {
2711 if (is_varying_var(var, state->stage))
2712 return true;
2713
2714 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2715 * "Only variables output from a vertex shader can be candidates
2716 * for invariance".
2717 */
2718 if (!state->is_version(130, 0))
2719 return false;
2720
2721 /*
2722 * Later specs remove this language - so allowed invariant
2723 * on fragment shader outputs as well.
2724 */
2725 if (state->stage == MESA_SHADER_FRAGMENT &&
2726 var->data.mode == ir_var_shader_out)
2727 return true;
2728 return false;
2729 }
2730
2731 /**
2732 * Matrix layout qualifiers are only allowed on certain types
2733 */
2734 static void
2735 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2736 YYLTYPE *loc,
2737 const glsl_type *type,
2738 ir_variable *var)
2739 {
2740 if (var && !var->is_in_buffer_block()) {
2741 /* Layout qualifiers may only apply to interface blocks and fields in
2742 * them.
2743 */
2744 _mesa_glsl_error(loc, state,
2745 "uniform block layout qualifiers row_major and "
2746 "column_major may not be applied to variables "
2747 "outside of uniform blocks");
2748 } else if (!type->without_array()->is_matrix()) {
2749 /* The OpenGL ES 3.0 conformance tests did not originally allow
2750 * matrix layout qualifiers on non-matrices. However, the OpenGL
2751 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2752 * amended to specifically allow these layouts on all types. Emit
2753 * a warning so that people know their code may not be portable.
2754 */
2755 _mesa_glsl_warning(loc, state,
2756 "uniform block layout qualifiers row_major and "
2757 "column_major applied to non-matrix types may "
2758 "be rejected by older compilers");
2759 }
2760 }
2761
2762 static bool
2763 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2764 struct _mesa_glsl_parse_state *state,
2765 unsigned xfb_buffer) {
2766 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2767 _mesa_glsl_error(loc, state,
2768 "invalid xfb_buffer specified %d is larger than "
2769 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2770 xfb_buffer,
2771 state->Const.MaxTransformFeedbackBuffers - 1);
2772 return false;
2773 }
2774
2775 return true;
2776 }
2777
2778 /* From the ARB_enhanced_layouts spec:
2779 *
2780 * "Variables and block members qualified with *xfb_offset* can be
2781 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2782 * The offset must be a multiple of the size of the first component of
2783 * the first qualified variable or block member, or a compile-time error
2784 * results. Further, if applied to an aggregate containing a double,
2785 * the offset must also be a multiple of 8, and the space taken in the
2786 * buffer will be a multiple of 8.
2787 */
2788 static bool
2789 validate_xfb_offset_qualifier(YYLTYPE *loc,
2790 struct _mesa_glsl_parse_state *state,
2791 int xfb_offset, const glsl_type *type,
2792 unsigned component_size) {
2793 const glsl_type *t_without_array = type->without_array();
2794
2795 if (xfb_offset != -1 && type->is_unsized_array()) {
2796 _mesa_glsl_error(loc, state,
2797 "xfb_offset can't be used with unsized arrays.");
2798 return false;
2799 }
2800
2801 /* Make sure nested structs don't contain unsized arrays, and validate
2802 * any xfb_offsets on interface members.
2803 */
2804 if (t_without_array->is_record() || t_without_array->is_interface())
2805 for (unsigned int i = 0; i < t_without_array->length; i++) {
2806 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2807
2808 /* When the interface block doesn't have an xfb_offset qualifier then
2809 * we apply the component size rules at the member level.
2810 */
2811 if (xfb_offset == -1)
2812 component_size = member_t->contains_double() ? 8 : 4;
2813
2814 int xfb_offset = t_without_array->fields.structure[i].offset;
2815 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2816 component_size);
2817 }
2818
2819 /* Nested structs or interface block without offset may not have had an
2820 * offset applied yet so return.
2821 */
2822 if (xfb_offset == -1) {
2823 return true;
2824 }
2825
2826 if (xfb_offset % component_size) {
2827 _mesa_glsl_error(loc, state,
2828 "invalid qualifier xfb_offset=%d must be a multiple "
2829 "of the first component size of the first qualified "
2830 "variable or block member. Or double if an aggregate "
2831 "that contains a double (%d).",
2832 xfb_offset, component_size);
2833 return false;
2834 }
2835
2836 return true;
2837 }
2838
2839 static bool
2840 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2841 unsigned stream)
2842 {
2843 if (stream >= state->ctx->Const.MaxVertexStreams) {
2844 _mesa_glsl_error(loc, state,
2845 "invalid stream specified %d is larger than "
2846 "MAX_VERTEX_STREAMS - 1 (%d).",
2847 stream, state->ctx->Const.MaxVertexStreams - 1);
2848 return false;
2849 }
2850
2851 return true;
2852 }
2853
2854 static void
2855 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2856 YYLTYPE *loc,
2857 ir_variable *var,
2858 const glsl_type *type,
2859 const ast_type_qualifier *qual)
2860 {
2861 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2862 _mesa_glsl_error(loc, state,
2863 "the \"binding\" qualifier only applies to uniforms and "
2864 "shader storage buffer objects");
2865 return;
2866 }
2867
2868 unsigned qual_binding;
2869 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2870 &qual_binding)) {
2871 return;
2872 }
2873
2874 const struct gl_context *const ctx = state->ctx;
2875 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2876 unsigned max_index = qual_binding + elements - 1;
2877 const glsl_type *base_type = type->without_array();
2878
2879 if (base_type->is_interface()) {
2880 /* UBOs. From page 60 of the GLSL 4.20 specification:
2881 * "If the binding point for any uniform block instance is less than zero,
2882 * or greater than or equal to the implementation-dependent maximum
2883 * number of uniform buffer bindings, a compilation error will occur.
2884 * When the binding identifier is used with a uniform block instanced as
2885 * an array of size N, all elements of the array from binding through
2886 * binding + N – 1 must be within this range."
2887 *
2888 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2889 */
2890 if (qual->flags.q.uniform &&
2891 max_index >= ctx->Const.MaxUniformBufferBindings) {
2892 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2893 "the maximum number of UBO binding points (%d)",
2894 qual_binding, elements,
2895 ctx->Const.MaxUniformBufferBindings);
2896 return;
2897 }
2898
2899 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2900 * "If the binding point for any uniform or shader storage block instance
2901 * is less than zero, or greater than or equal to the
2902 * implementation-dependent maximum number of uniform buffer bindings, a
2903 * compile-time error will occur. When the binding identifier is used
2904 * with a uniform or shader storage block instanced as an array of size
2905 * N, all elements of the array from binding through binding + N – 1 must
2906 * be within this range."
2907 */
2908 if (qual->flags.q.buffer &&
2909 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2910 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2911 "the maximum number of SSBO binding points (%d)",
2912 qual_binding, elements,
2913 ctx->Const.MaxShaderStorageBufferBindings);
2914 return;
2915 }
2916 } else if (base_type->is_sampler()) {
2917 /* Samplers. From page 63 of the GLSL 4.20 specification:
2918 * "If the binding is less than zero, or greater than or equal to the
2919 * implementation-dependent maximum supported number of units, a
2920 * compilation error will occur. When the binding identifier is used
2921 * with an array of size N, all elements of the array from binding
2922 * through binding + N - 1 must be within this range."
2923 */
2924 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2925
2926 if (max_index >= limit) {
2927 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2928 "exceeds the maximum number of texture image units "
2929 "(%u)", qual_binding, elements, limit);
2930
2931 return;
2932 }
2933 } else if (base_type->contains_atomic()) {
2934 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2935 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2936 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2937 "maximum number of atomic counter buffer bindings "
2938 "(%u)", qual_binding,
2939 ctx->Const.MaxAtomicBufferBindings);
2940
2941 return;
2942 }
2943 } else if ((state->is_version(420, 310) ||
2944 state->ARB_shading_language_420pack_enable) &&
2945 base_type->is_image()) {
2946 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2947 if (max_index >= ctx->Const.MaxImageUnits) {
2948 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2949 "maximum number of image units (%d)", max_index,
2950 ctx->Const.MaxImageUnits);
2951 return;
2952 }
2953
2954 } else {
2955 _mesa_glsl_error(loc, state,
2956 "the \"binding\" qualifier only applies to uniform "
2957 "blocks, storage blocks, opaque variables, or arrays "
2958 "thereof");
2959 return;
2960 }
2961
2962 var->data.explicit_binding = true;
2963 var->data.binding = qual_binding;
2964
2965 return;
2966 }
2967
2968 static void
2969 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2970 YYLTYPE *loc,
2971 const glsl_interp_mode interpolation,
2972 const struct glsl_type *var_type,
2973 ir_variable_mode mode)
2974 {
2975 if (state->stage != MESA_SHADER_FRAGMENT ||
2976 interpolation == INTERP_MODE_FLAT ||
2977 mode != ir_var_shader_in)
2978 return;
2979
2980 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2981 * so must integer vertex outputs.
2982 *
2983 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2984 * "Fragment shader inputs that are signed or unsigned integers or
2985 * integer vectors must be qualified with the interpolation qualifier
2986 * flat."
2987 *
2988 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2989 * "Fragment shader inputs that are, or contain, signed or unsigned
2990 * integers or integer vectors must be qualified with the
2991 * interpolation qualifier flat."
2992 *
2993 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2994 * "Vertex shader outputs that are, or contain, signed or unsigned
2995 * integers or integer vectors must be qualified with the
2996 * interpolation qualifier flat."
2997 *
2998 * Note that prior to GLSL 1.50, this requirement applied to vertex
2999 * outputs rather than fragment inputs. That creates problems in the
3000 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3001 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3002 * apply the restriction to both vertex outputs and fragment inputs.
3003 *
3004 * Note also that the desktop GLSL specs are missing the text "or
3005 * contain"; this is presumably an oversight, since there is no
3006 * reasonable way to interpolate a fragment shader input that contains
3007 * an integer. See Khronos bug #15671.
3008 */
3009 if (state->is_version(130, 300)
3010 && var_type->contains_integer()) {
3011 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3012 "an integer, then it must be qualified with 'flat'");
3013 }
3014
3015 /* Double fragment inputs must be qualified with 'flat'.
3016 *
3017 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3018 * "This extension does not support interpolation of double-precision
3019 * values; doubles used as fragment shader inputs must be qualified as
3020 * "flat"."
3021 *
3022 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3023 * "Fragment shader inputs that are signed or unsigned integers, integer
3024 * vectors, or any double-precision floating-point type must be
3025 * qualified with the interpolation qualifier flat."
3026 *
3027 * Note that the GLSL specs are missing the text "or contain"; this is
3028 * presumably an oversight. See Khronos bug #15671.
3029 *
3030 * The 'double' type does not exist in GLSL ES so far.
3031 */
3032 if (state->has_double()
3033 && var_type->contains_double()) {
3034 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3035 "a double, then it must be qualified with 'flat'");
3036 }
3037
3038 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3039 *
3040 * From section 4.3.4 of the ARB_bindless_texture spec:
3041 *
3042 * "(modify last paragraph, p. 35, allowing samplers and images as
3043 * fragment shader inputs) ... Fragment inputs can only be signed and
3044 * unsigned integers and integer vectors, floating point scalars,
3045 * floating-point vectors, matrices, sampler and image types, or arrays
3046 * or structures of these. Fragment shader inputs that are signed or
3047 * unsigned integers, integer vectors, or any double-precision floating-
3048 * point type, or any sampler or image type must be qualified with the
3049 * interpolation qualifier "flat"."
3050 */
3051 if (state->has_bindless()
3052 && (var_type->contains_sampler() || var_type->contains_image())) {
3053 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3054 "a bindless sampler (or image), then it must be "
3055 "qualified with 'flat'");
3056 }
3057 }
3058
3059 static void
3060 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3061 YYLTYPE *loc,
3062 const glsl_interp_mode interpolation,
3063 const struct ast_type_qualifier *qual,
3064 const struct glsl_type *var_type,
3065 ir_variable_mode mode)
3066 {
3067 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3068 * not to vertex shader inputs nor fragment shader outputs.
3069 *
3070 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3071 * "Outputs from a vertex shader (out) and inputs to a fragment
3072 * shader (in) can be further qualified with one or more of these
3073 * interpolation qualifiers"
3074 * ...
3075 * "These interpolation qualifiers may only precede the qualifiers in,
3076 * centroid in, out, or centroid out in a declaration. They do not apply
3077 * to the deprecated storage qualifiers varying or centroid
3078 * varying. They also do not apply to inputs into a vertex shader or
3079 * outputs from a fragment shader."
3080 *
3081 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3082 * "Outputs from a shader (out) and inputs to a shader (in) can be
3083 * further qualified with one of these interpolation qualifiers."
3084 * ...
3085 * "These interpolation qualifiers may only precede the qualifiers
3086 * in, centroid in, out, or centroid out in a declaration. They do
3087 * not apply to inputs into a vertex shader or outputs from a
3088 * fragment shader."
3089 */
3090 if (state->is_version(130, 300)
3091 && interpolation != INTERP_MODE_NONE) {
3092 const char *i = interpolation_string(interpolation);
3093 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3094 _mesa_glsl_error(loc, state,
3095 "interpolation qualifier `%s' can only be applied to "
3096 "shader inputs or outputs.", i);
3097
3098 switch (state->stage) {
3099 case MESA_SHADER_VERTEX:
3100 if (mode == ir_var_shader_in) {
3101 _mesa_glsl_error(loc, state,
3102 "interpolation qualifier '%s' cannot be applied to "
3103 "vertex shader inputs", i);
3104 }
3105 break;
3106 case MESA_SHADER_FRAGMENT:
3107 if (mode == ir_var_shader_out) {
3108 _mesa_glsl_error(loc, state,
3109 "interpolation qualifier '%s' cannot be applied to "
3110 "fragment shader outputs", i);
3111 }
3112 break;
3113 default:
3114 break;
3115 }
3116 }
3117
3118 /* Interpolation qualifiers cannot be applied to 'centroid' and
3119 * 'centroid varying'.
3120 *
3121 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3122 * "interpolation qualifiers may only precede the qualifiers in,
3123 * centroid in, out, or centroid out in a declaration. They do not apply
3124 * to the deprecated storage qualifiers varying or centroid varying."
3125 *
3126 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3127 */
3128 if (state->is_version(130, 0)
3129 && interpolation != INTERP_MODE_NONE
3130 && qual->flags.q.varying) {
3131
3132 const char *i = interpolation_string(interpolation);
3133 const char *s;
3134 if (qual->flags.q.centroid)
3135 s = "centroid varying";
3136 else
3137 s = "varying";
3138
3139 _mesa_glsl_error(loc, state,
3140 "qualifier '%s' cannot be applied to the "
3141 "deprecated storage qualifier '%s'", i, s);
3142 }
3143
3144 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3145 var_type, mode);
3146 }
3147
3148 static glsl_interp_mode
3149 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3150 const struct glsl_type *var_type,
3151 ir_variable_mode mode,
3152 struct _mesa_glsl_parse_state *state,
3153 YYLTYPE *loc)
3154 {
3155 glsl_interp_mode interpolation;
3156 if (qual->flags.q.flat)
3157 interpolation = INTERP_MODE_FLAT;
3158 else if (qual->flags.q.noperspective)
3159 interpolation = INTERP_MODE_NOPERSPECTIVE;
3160 else if (qual->flags.q.smooth)
3161 interpolation = INTERP_MODE_SMOOTH;
3162 else
3163 interpolation = INTERP_MODE_NONE;
3164
3165 validate_interpolation_qualifier(state, loc,
3166 interpolation,
3167 qual, var_type, mode);
3168
3169 return interpolation;
3170 }
3171
3172
3173 static void
3174 apply_explicit_location(const struct ast_type_qualifier *qual,
3175 ir_variable *var,
3176 struct _mesa_glsl_parse_state *state,
3177 YYLTYPE *loc)
3178 {
3179 bool fail = false;
3180
3181 unsigned qual_location;
3182 if (!process_qualifier_constant(state, loc, "location", qual->location,
3183 &qual_location)) {
3184 return;
3185 }
3186
3187 /* Checks for GL_ARB_explicit_uniform_location. */
3188 if (qual->flags.q.uniform) {
3189 if (!state->check_explicit_uniform_location_allowed(loc, var))
3190 return;
3191
3192 const struct gl_context *const ctx = state->ctx;
3193 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3194
3195 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3196 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3197 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3198 ctx->Const.MaxUserAssignableUniformLocations);
3199 return;
3200 }
3201
3202 var->data.explicit_location = true;
3203 var->data.location = qual_location;
3204 return;
3205 }
3206
3207 /* Between GL_ARB_explicit_attrib_location an
3208 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3209 * stage can be assigned explicit locations. The checking here associates
3210 * the correct extension with the correct stage's input / output:
3211 *
3212 * input output
3213 * ----- ------
3214 * vertex explicit_loc sso
3215 * tess control sso sso
3216 * tess eval sso sso
3217 * geometry sso sso
3218 * fragment sso explicit_loc
3219 */
3220 switch (state->stage) {
3221 case MESA_SHADER_VERTEX:
3222 if (var->data.mode == ir_var_shader_in) {
3223 if (!state->check_explicit_attrib_location_allowed(loc, var))
3224 return;
3225
3226 break;
3227 }
3228
3229 if (var->data.mode == ir_var_shader_out) {
3230 if (!state->check_separate_shader_objects_allowed(loc, var))
3231 return;
3232
3233 break;
3234 }
3235
3236 fail = true;
3237 break;
3238
3239 case MESA_SHADER_TESS_CTRL:
3240 case MESA_SHADER_TESS_EVAL:
3241 case MESA_SHADER_GEOMETRY:
3242 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3243 if (!state->check_separate_shader_objects_allowed(loc, var))
3244 return;
3245
3246 break;
3247 }
3248
3249 fail = true;
3250 break;
3251
3252 case MESA_SHADER_FRAGMENT:
3253 if (var->data.mode == ir_var_shader_in) {
3254 if (!state->check_separate_shader_objects_allowed(loc, var))
3255 return;
3256
3257 break;
3258 }
3259
3260 if (var->data.mode == ir_var_shader_out) {
3261 if (!state->check_explicit_attrib_location_allowed(loc, var))
3262 return;
3263
3264 break;
3265 }
3266
3267 fail = true;
3268 break;
3269
3270 case MESA_SHADER_COMPUTE:
3271 _mesa_glsl_error(loc, state,
3272 "compute shader variables cannot be given "
3273 "explicit locations");
3274 return;
3275 default:
3276 fail = true;
3277 break;
3278 };
3279
3280 if (fail) {
3281 _mesa_glsl_error(loc, state,
3282 "%s cannot be given an explicit location in %s shader",
3283 mode_string(var),
3284 _mesa_shader_stage_to_string(state->stage));
3285 } else {
3286 var->data.explicit_location = true;
3287
3288 switch (state->stage) {
3289 case MESA_SHADER_VERTEX:
3290 var->data.location = (var->data.mode == ir_var_shader_in)
3291 ? (qual_location + VERT_ATTRIB_GENERIC0)
3292 : (qual_location + VARYING_SLOT_VAR0);
3293 break;
3294
3295 case MESA_SHADER_TESS_CTRL:
3296 case MESA_SHADER_TESS_EVAL:
3297 case MESA_SHADER_GEOMETRY:
3298 if (var->data.patch)
3299 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3300 else
3301 var->data.location = qual_location + VARYING_SLOT_VAR0;
3302 break;
3303
3304 case MESA_SHADER_FRAGMENT:
3305 var->data.location = (var->data.mode == ir_var_shader_out)
3306 ? (qual_location + FRAG_RESULT_DATA0)
3307 : (qual_location + VARYING_SLOT_VAR0);
3308 break;
3309 default:
3310 assert(!"Unexpected shader type");
3311 break;
3312 }
3313
3314 /* Check if index was set for the uniform instead of the function */
3315 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3316 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3317 "used with subroutine functions");
3318 return;
3319 }
3320
3321 unsigned qual_index;
3322 if (qual->flags.q.explicit_index &&
3323 process_qualifier_constant(state, loc, "index", qual->index,
3324 &qual_index)) {
3325 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3326 * Layout Qualifiers):
3327 *
3328 * "It is also a compile-time error if a fragment shader
3329 * sets a layout index to less than 0 or greater than 1."
3330 *
3331 * Older specifications don't mandate a behavior; we take
3332 * this as a clarification and always generate the error.
3333 */
3334 if (qual_index > 1) {
3335 _mesa_glsl_error(loc, state,
3336 "explicit index may only be 0 or 1");
3337 } else {
3338 var->data.explicit_index = true;
3339 var->data.index = qual_index;
3340 }
3341 }
3342 }
3343 }
3344
3345 static bool
3346 validate_storage_for_sampler_image_types(ir_variable *var,
3347 struct _mesa_glsl_parse_state *state,
3348 YYLTYPE *loc)
3349 {
3350 /* From section 4.1.7 of the GLSL 4.40 spec:
3351 *
3352 * "[Opaque types] can only be declared as function
3353 * parameters or uniform-qualified variables."
3354 *
3355 * From section 4.1.7 of the ARB_bindless_texture spec:
3356 *
3357 * "Samplers may be declared as shader inputs and outputs, as uniform
3358 * variables, as temporary variables, and as function parameters."
3359 *
3360 * From section 4.1.X of the ARB_bindless_texture spec:
3361 *
3362 * "Images may be declared as shader inputs and outputs, as uniform
3363 * variables, as temporary variables, and as function parameters."
3364 */
3365 if (state->has_bindless()) {
3366 if (var->data.mode != ir_var_auto &&
3367 var->data.mode != ir_var_uniform &&
3368 var->data.mode != ir_var_shader_in &&
3369 var->data.mode != ir_var_shader_out &&
3370 var->data.mode != ir_var_function_in &&
3371 var->data.mode != ir_var_function_out &&
3372 var->data.mode != ir_var_function_inout) {
3373 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3374 "only be declared as shader inputs and outputs, as "
3375 "uniform variables, as temporary variables and as "
3376 "function parameters");
3377 return false;
3378 }
3379 } else {
3380 if (var->data.mode != ir_var_uniform &&
3381 var->data.mode != ir_var_function_in) {
3382 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3383 "declared as function parameters or "
3384 "uniform-qualified global variables");
3385 return false;
3386 }
3387 }
3388 return true;
3389 }
3390
3391 static bool
3392 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3393 YYLTYPE *loc,
3394 const struct ast_type_qualifier *qual,
3395 const glsl_type *type)
3396 {
3397 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3398 *
3399 * "Memory qualifiers are only supported in the declarations of image
3400 * variables, buffer variables, and shader storage blocks; it is an error
3401 * to use such qualifiers in any other declarations.
3402 */
3403 if (!type->is_image() && !qual->flags.q.buffer) {
3404 if (qual->flags.q.read_only ||
3405 qual->flags.q.write_only ||
3406 qual->flags.q.coherent ||
3407 qual->flags.q._volatile ||
3408 qual->flags.q.restrict_flag) {
3409 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3410 "in the declarations of image variables, buffer "
3411 "variables, and shader storage blocks");
3412 return false;
3413 }
3414 }
3415 return true;
3416 }
3417
3418 static bool
3419 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3420 YYLTYPE *loc,
3421 const struct ast_type_qualifier *qual,
3422 const glsl_type *type)
3423 {
3424 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3425 *
3426 * "Format layout qualifiers can be used on image variable declarations
3427 * (those declared with a basic type having “image ” in its keyword)."
3428 */
3429 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3430 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3431 "applied to images");
3432 return false;
3433 }
3434 return true;
3435 }
3436
3437 static void
3438 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3439 ir_variable *var,
3440 struct _mesa_glsl_parse_state *state,
3441 YYLTYPE *loc)
3442 {
3443 const glsl_type *base_type = var->type->without_array();
3444
3445 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3446 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3447 return;
3448
3449 if (!base_type->is_image())
3450 return;
3451
3452 if (!validate_storage_for_sampler_image_types(var, state, loc))
3453 return;
3454
3455 var->data.memory_read_only |= qual->flags.q.read_only;
3456 var->data.memory_write_only |= qual->flags.q.write_only;
3457 var->data.memory_coherent |= qual->flags.q.coherent;
3458 var->data.memory_volatile |= qual->flags.q._volatile;
3459 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3460
3461 if (qual->flags.q.explicit_image_format) {
3462 if (var->data.mode == ir_var_function_in) {
3463 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3464 "image function parameters");
3465 }
3466
3467 if (qual->image_base_type != base_type->sampled_type) {
3468 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3469 "data type of the image");
3470 }
3471
3472 var->data.image_format = qual->image_format;
3473 } else {
3474 if (var->data.mode == ir_var_uniform) {
3475 if (state->es_shader) {
3476 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3477 "format layout qualifier");
3478 } else if (!qual->flags.q.write_only) {
3479 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3480 "`writeonly' must have a format layout qualifier");
3481 }
3482 }
3483 var->data.image_format = GL_NONE;
3484 }
3485
3486 /* From page 70 of the GLSL ES 3.1 specification:
3487 *
3488 * "Except for image variables qualified with the format qualifiers r32f,
3489 * r32i, and r32ui, image variables must specify either memory qualifier
3490 * readonly or the memory qualifier writeonly."
3491 */
3492 if (state->es_shader &&
3493 var->data.image_format != GL_R32F &&
3494 var->data.image_format != GL_R32I &&
3495 var->data.image_format != GL_R32UI &&
3496 !var->data.memory_read_only &&
3497 !var->data.memory_write_only) {
3498 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3499 "r32i or r32ui must be qualified `readonly' or "
3500 "`writeonly'");
3501 }
3502 }
3503
3504 static inline const char*
3505 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3506 {
3507 if (origin_upper_left && pixel_center_integer)
3508 return "origin_upper_left, pixel_center_integer";
3509 else if (origin_upper_left)
3510 return "origin_upper_left";
3511 else if (pixel_center_integer)
3512 return "pixel_center_integer";
3513 else
3514 return " ";
3515 }
3516
3517 static inline bool
3518 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3519 const struct ast_type_qualifier *qual)
3520 {
3521 /* If gl_FragCoord was previously declared, and the qualifiers were
3522 * different in any way, return true.
3523 */
3524 if (state->fs_redeclares_gl_fragcoord) {
3525 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3526 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3527 }
3528
3529 return false;
3530 }
3531
3532 static inline void
3533 validate_array_dimensions(const glsl_type *t,
3534 struct _mesa_glsl_parse_state *state,
3535 YYLTYPE *loc) {
3536 if (t->is_array()) {
3537 t = t->fields.array;
3538 while (t->is_array()) {
3539 if (t->is_unsized_array()) {
3540 _mesa_glsl_error(loc, state,
3541 "only the outermost array dimension can "
3542 "be unsized",
3543 t->name);
3544 break;
3545 }
3546 t = t->fields.array;
3547 }
3548 }
3549 }
3550
3551 static void
3552 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3553 ir_variable *var,
3554 struct _mesa_glsl_parse_state *state,
3555 YYLTYPE *loc)
3556 {
3557 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3558 qual->flags.q.bindless_image ||
3559 qual->flags.q.bound_sampler ||
3560 qual->flags.q.bound_image;
3561
3562 /* The ARB_bindless_texture spec says:
3563 *
3564 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3565 * spec"
3566 *
3567 * "If these layout qualifiers are applied to other types of default block
3568 * uniforms, or variables with non-uniform storage, a compile-time error
3569 * will be generated."
3570 */
3571 if (has_local_qualifiers && !qual->flags.q.uniform) {
3572 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3573 "can only be applied to default block uniforms or "
3574 "variables with uniform storage");
3575 return;
3576 }
3577
3578 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3579 * but it makes sense to only allow bindless_sampler/bound_sampler for
3580 * sampler types, and respectively bindless_image/bound_image for image
3581 * types.
3582 */
3583 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3584 !var->type->contains_sampler()) {
3585 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3586 "be applied to sampler types");
3587 return;
3588 }
3589
3590 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3591 !var->type->contains_image()) {
3592 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3593 "applied to image types");
3594 return;
3595 }
3596
3597 /* The bindless_sampler/bindless_image (and respectively
3598 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3599 * local scope.
3600 */
3601 if (var->type->contains_sampler() || var->type->contains_image()) {
3602 var->data.bindless = qual->flags.q.bindless_sampler ||
3603 qual->flags.q.bindless_image ||
3604 state->bindless_sampler_specified ||
3605 state->bindless_image_specified;
3606
3607 var->data.bound = qual->flags.q.bound_sampler ||
3608 qual->flags.q.bound_image ||
3609 state->bound_sampler_specified ||
3610 state->bound_image_specified;
3611 }
3612 }
3613
3614 static void
3615 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3616 ir_variable *var,
3617 struct _mesa_glsl_parse_state *state,
3618 YYLTYPE *loc)
3619 {
3620 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3621
3622 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3623 *
3624 * "Within any shader, the first redeclarations of gl_FragCoord
3625 * must appear before any use of gl_FragCoord."
3626 *
3627 * Generate a compiler error if above condition is not met by the
3628 * fragment shader.
3629 */
3630 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3631 if (earlier != NULL &&
3632 earlier->data.used &&
3633 !state->fs_redeclares_gl_fragcoord) {
3634 _mesa_glsl_error(loc, state,
3635 "gl_FragCoord used before its first redeclaration "
3636 "in fragment shader");
3637 }
3638
3639 /* Make sure all gl_FragCoord redeclarations specify the same layout
3640 * qualifiers.
3641 */
3642 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3643 const char *const qual_string =
3644 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3645 qual->flags.q.pixel_center_integer);
3646
3647 const char *const state_string =
3648 get_layout_qualifier_string(state->fs_origin_upper_left,
3649 state->fs_pixel_center_integer);
3650
3651 _mesa_glsl_error(loc, state,
3652 "gl_FragCoord redeclared with different layout "
3653 "qualifiers (%s) and (%s) ",
3654 state_string,
3655 qual_string);
3656 }
3657 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3658 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3659 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3660 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3661 state->fs_redeclares_gl_fragcoord =
3662 state->fs_origin_upper_left ||
3663 state->fs_pixel_center_integer ||
3664 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3665 }
3666
3667 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3668 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3669 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3670 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3671 const char *const qual_string = (qual->flags.q.origin_upper_left)
3672 ? "origin_upper_left" : "pixel_center_integer";
3673
3674 _mesa_glsl_error(loc, state,
3675 "layout qualifier `%s' can only be applied to "
3676 "fragment shader input `gl_FragCoord'",
3677 qual_string);
3678 }
3679
3680 if (qual->flags.q.explicit_location) {
3681 apply_explicit_location(qual, var, state, loc);
3682
3683 if (qual->flags.q.explicit_component) {
3684 unsigned qual_component;
3685 if (process_qualifier_constant(state, loc, "component",
3686 qual->component, &qual_component)) {
3687 const glsl_type *type = var->type->without_array();
3688 unsigned components = type->component_slots();
3689
3690 if (type->is_matrix() || type->is_record()) {
3691 _mesa_glsl_error(loc, state, "component layout qualifier "
3692 "cannot be applied to a matrix, a structure, "
3693 "a block, or an array containing any of "
3694 "these.");
3695 } else if (qual_component != 0 &&
3696 (qual_component + components - 1) > 3) {
3697 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3698 (qual_component + components - 1));
3699 } else if (qual_component == 1 && type->is_64bit()) {
3700 /* We don't bother checking for 3 as it should be caught by the
3701 * overflow check above.
3702 */
3703 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3704 "component 1 or 3");
3705 } else {
3706 var->data.explicit_component = true;
3707 var->data.location_frac = qual_component;
3708 }
3709 }
3710 }
3711 } else if (qual->flags.q.explicit_index) {
3712 if (!qual->subroutine_list)
3713 _mesa_glsl_error(loc, state,
3714 "explicit index requires explicit location");
3715 } else if (qual->flags.q.explicit_component) {
3716 _mesa_glsl_error(loc, state,
3717 "explicit component requires explicit location");
3718 }
3719
3720 if (qual->flags.q.explicit_binding) {
3721 apply_explicit_binding(state, loc, var, var->type, qual);
3722 }
3723
3724 if (state->stage == MESA_SHADER_GEOMETRY &&
3725 qual->flags.q.out && qual->flags.q.stream) {
3726 unsigned qual_stream;
3727 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3728 &qual_stream) &&
3729 validate_stream_qualifier(loc, state, qual_stream)) {
3730 var->data.stream = qual_stream;
3731 }
3732 }
3733
3734 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3735 unsigned qual_xfb_buffer;
3736 if (process_qualifier_constant(state, loc, "xfb_buffer",
3737 qual->xfb_buffer, &qual_xfb_buffer) &&
3738 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3739 var->data.xfb_buffer = qual_xfb_buffer;
3740 if (qual->flags.q.explicit_xfb_buffer)
3741 var->data.explicit_xfb_buffer = true;
3742 }
3743 }
3744
3745 if (qual->flags.q.explicit_xfb_offset) {
3746 unsigned qual_xfb_offset;
3747 unsigned component_size = var->type->contains_double() ? 8 : 4;
3748
3749 if (process_qualifier_constant(state, loc, "xfb_offset",
3750 qual->offset, &qual_xfb_offset) &&
3751 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3752 var->type, component_size)) {
3753 var->data.offset = qual_xfb_offset;
3754 var->data.explicit_xfb_offset = true;
3755 }
3756 }
3757
3758 if (qual->flags.q.explicit_xfb_stride) {
3759 unsigned qual_xfb_stride;
3760 if (process_qualifier_constant(state, loc, "xfb_stride",
3761 qual->xfb_stride, &qual_xfb_stride)) {
3762 var->data.xfb_stride = qual_xfb_stride;
3763 var->data.explicit_xfb_stride = true;
3764 }
3765 }
3766
3767 if (var->type->contains_atomic()) {
3768 if (var->data.mode == ir_var_uniform) {
3769 if (var->data.explicit_binding) {
3770 unsigned *offset =
3771 &state->atomic_counter_offsets[var->data.binding];
3772
3773 if (*offset % ATOMIC_COUNTER_SIZE)
3774 _mesa_glsl_error(loc, state,
3775 "misaligned atomic counter offset");
3776
3777 var->data.offset = *offset;
3778 *offset += var->type->atomic_size();
3779
3780 } else {
3781 _mesa_glsl_error(loc, state,
3782 "atomic counters require explicit binding point");
3783 }
3784 } else if (var->data.mode != ir_var_function_in) {
3785 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3786 "function parameters or uniform-qualified "
3787 "global variables");
3788 }
3789 }
3790
3791 if (var->type->contains_sampler() &&
3792 !validate_storage_for_sampler_image_types(var, state, loc))
3793 return;
3794
3795 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3796 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3797 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3798 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3799 * These extensions and all following extensions that add the 'layout'
3800 * keyword have been modified to require the use of 'in' or 'out'.
3801 *
3802 * The following extension do not allow the deprecated keywords:
3803 *
3804 * GL_AMD_conservative_depth
3805 * GL_ARB_conservative_depth
3806 * GL_ARB_gpu_shader5
3807 * GL_ARB_separate_shader_objects
3808 * GL_ARB_tessellation_shader
3809 * GL_ARB_transform_feedback3
3810 * GL_ARB_uniform_buffer_object
3811 *
3812 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3813 * allow layout with the deprecated keywords.
3814 */
3815 const bool relaxed_layout_qualifier_checking =
3816 state->ARB_fragment_coord_conventions_enable;
3817
3818 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3819 || qual->flags.q.varying;
3820 if (qual->has_layout() && uses_deprecated_qualifier) {
3821 if (relaxed_layout_qualifier_checking) {
3822 _mesa_glsl_warning(loc, state,
3823 "`layout' qualifier may not be used with "
3824 "`attribute' or `varying'");
3825 } else {
3826 _mesa_glsl_error(loc, state,
3827 "`layout' qualifier may not be used with "
3828 "`attribute' or `varying'");
3829 }
3830 }
3831
3832 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3833 * AMD_conservative_depth.
3834 */
3835 if (qual->flags.q.depth_type
3836 && !state->is_version(420, 0)
3837 && !state->AMD_conservative_depth_enable
3838 && !state->ARB_conservative_depth_enable) {
3839 _mesa_glsl_error(loc, state,
3840 "extension GL_AMD_conservative_depth or "
3841 "GL_ARB_conservative_depth must be enabled "
3842 "to use depth layout qualifiers");
3843 } else if (qual->flags.q.depth_type
3844 && strcmp(var->name, "gl_FragDepth") != 0) {
3845 _mesa_glsl_error(loc, state,
3846 "depth layout qualifiers can be applied only to "
3847 "gl_FragDepth");
3848 }
3849
3850 switch (qual->depth_type) {
3851 case ast_depth_any:
3852 var->data.depth_layout = ir_depth_layout_any;
3853 break;
3854 case ast_depth_greater:
3855 var->data.depth_layout = ir_depth_layout_greater;
3856 break;
3857 case ast_depth_less:
3858 var->data.depth_layout = ir_depth_layout_less;
3859 break;
3860 case ast_depth_unchanged:
3861 var->data.depth_layout = ir_depth_layout_unchanged;
3862 break;
3863 default:
3864 var->data.depth_layout = ir_depth_layout_none;
3865 break;
3866 }
3867
3868 if (qual->flags.q.std140 ||
3869 qual->flags.q.std430 ||
3870 qual->flags.q.packed ||
3871 qual->flags.q.shared) {
3872 _mesa_glsl_error(loc, state,
3873 "uniform and shader storage block layout qualifiers "
3874 "std140, std430, packed, and shared can only be "
3875 "applied to uniform or shader storage blocks, not "
3876 "members");
3877 }
3878
3879 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3880 validate_matrix_layout_for_type(state, loc, var->type, var);
3881 }
3882
3883 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3884 * Inputs):
3885 *
3886 * "Fragment shaders also allow the following layout qualifier on in only
3887 * (not with variable declarations)
3888 * layout-qualifier-id
3889 * early_fragment_tests
3890 * [...]"
3891 */
3892 if (qual->flags.q.early_fragment_tests) {
3893 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3894 "valid in fragment shader input layout declaration.");
3895 }
3896
3897 if (qual->flags.q.inner_coverage) {
3898 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3899 "valid in fragment shader input layout declaration.");
3900 }
3901
3902 if (qual->flags.q.post_depth_coverage) {
3903 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3904 "valid in fragment shader input layout declaration.");
3905 }
3906
3907 if (state->has_bindless())
3908 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3909
3910 if (qual->flags.q.pixel_interlock_ordered ||
3911 qual->flags.q.pixel_interlock_unordered ||
3912 qual->flags.q.sample_interlock_ordered ||
3913 qual->flags.q.sample_interlock_unordered) {
3914 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3915 "pixel_interlock_ordered, pixel_interlock_unordered, "
3916 "sample_interlock_ordered and sample_interlock_unordered, "
3917 "only valid in fragment shader input layout declaration.");
3918 }
3919 }
3920
3921 static void
3922 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3923 ir_variable *var,
3924 struct _mesa_glsl_parse_state *state,
3925 YYLTYPE *loc,
3926 bool is_parameter)
3927 {
3928 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3929
3930 if (qual->flags.q.invariant) {
3931 if (var->data.used) {
3932 _mesa_glsl_error(loc, state,
3933 "variable `%s' may not be redeclared "
3934 "`invariant' after being used",
3935 var->name);
3936 } else {
3937 var->data.invariant = 1;
3938 }
3939 }
3940
3941 if (qual->flags.q.precise) {
3942 if (var->data.used) {
3943 _mesa_glsl_error(loc, state,
3944 "variable `%s' may not be redeclared "
3945 "`precise' after being used",
3946 var->name);
3947 } else {
3948 var->data.precise = 1;
3949 }
3950 }
3951
3952 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3953 _mesa_glsl_error(loc, state,
3954 "`subroutine' may only be applied to uniforms, "
3955 "subroutine type declarations, or function definitions");
3956 }
3957
3958 if (qual->flags.q.constant || qual->flags.q.attribute
3959 || qual->flags.q.uniform
3960 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3961 var->data.read_only = 1;
3962
3963 if (qual->flags.q.centroid)
3964 var->data.centroid = 1;
3965
3966 if (qual->flags.q.sample)
3967 var->data.sample = 1;
3968
3969 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3970 if (state->es_shader) {
3971 var->data.precision =
3972 select_gles_precision(qual->precision, var->type, state, loc);
3973 }
3974
3975 if (qual->flags.q.patch)
3976 var->data.patch = 1;
3977
3978 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3979 var->type = glsl_type::error_type;
3980 _mesa_glsl_error(loc, state,
3981 "`attribute' variables may not be declared in the "
3982 "%s shader",
3983 _mesa_shader_stage_to_string(state->stage));
3984 }
3985
3986 /* Disallow layout qualifiers which may only appear on layout declarations. */
3987 if (qual->flags.q.prim_type) {
3988 _mesa_glsl_error(loc, state,
3989 "Primitive type may only be specified on GS input or output "
3990 "layout declaration, not on variables.");
3991 }
3992
3993 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3994 *
3995 * "However, the const qualifier cannot be used with out or inout."
3996 *
3997 * The same section of the GLSL 4.40 spec further clarifies this saying:
3998 *
3999 * "The const qualifier cannot be used with out or inout, or a
4000 * compile-time error results."
4001 */
4002 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4003 _mesa_glsl_error(loc, state,
4004 "`const' may not be applied to `out' or `inout' "
4005 "function parameters");
4006 }
4007
4008 /* If there is no qualifier that changes the mode of the variable, leave
4009 * the setting alone.
4010 */
4011 assert(var->data.mode != ir_var_temporary);
4012 if (qual->flags.q.in && qual->flags.q.out)
4013 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4014 else if (qual->flags.q.in)
4015 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4016 else if (qual->flags.q.attribute
4017 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4018 var->data.mode = ir_var_shader_in;
4019 else if (qual->flags.q.out)
4020 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4021 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4022 var->data.mode = ir_var_shader_out;
4023 else if (qual->flags.q.uniform)
4024 var->data.mode = ir_var_uniform;
4025 else if (qual->flags.q.buffer)
4026 var->data.mode = ir_var_shader_storage;
4027 else if (qual->flags.q.shared_storage)
4028 var->data.mode = ir_var_shader_shared;
4029
4030 if (!is_parameter && state->has_framebuffer_fetch() &&
4031 state->stage == MESA_SHADER_FRAGMENT) {
4032 if (state->is_version(130, 300))
4033 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4034 else
4035 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4036 }
4037
4038 if (var->data.fb_fetch_output) {
4039 var->data.assigned = true;
4040 var->data.memory_coherent = !qual->flags.q.non_coherent;
4041
4042 /* From the EXT_shader_framebuffer_fetch spec:
4043 *
4044 * "It is an error to declare an inout fragment output not qualified
4045 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4046 * extension hasn't been enabled."
4047 */
4048 if (var->data.memory_coherent &&
4049 !state->EXT_shader_framebuffer_fetch_enable)
4050 _mesa_glsl_error(loc, state,
4051 "invalid declaration of framebuffer fetch output not "
4052 "qualified with layout(noncoherent)");
4053
4054 } else {
4055 /* From the EXT_shader_framebuffer_fetch spec:
4056 *
4057 * "Fragment outputs declared inout may specify the following layout
4058 * qualifier: [...] noncoherent"
4059 */
4060 if (qual->flags.q.non_coherent)
4061 _mesa_glsl_error(loc, state,
4062 "invalid layout(noncoherent) qualifier not part of "
4063 "framebuffer fetch output declaration");
4064 }
4065
4066 if (!is_parameter && is_varying_var(var, state->stage)) {
4067 /* User-defined ins/outs are not permitted in compute shaders. */
4068 if (state->stage == MESA_SHADER_COMPUTE) {
4069 _mesa_glsl_error(loc, state,
4070 "user-defined input and output variables are not "
4071 "permitted in compute shaders");
4072 }
4073
4074 /* This variable is being used to link data between shader stages (in
4075 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4076 * that is allowed for such purposes.
4077 *
4078 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4079 *
4080 * "The varying qualifier can be used only with the data types
4081 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4082 * these."
4083 *
4084 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4085 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4086 *
4087 * "Fragment inputs can only be signed and unsigned integers and
4088 * integer vectors, float, floating-point vectors, matrices, or
4089 * arrays of these. Structures cannot be input.
4090 *
4091 * Similar text exists in the section on vertex shader outputs.
4092 *
4093 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4094 * 3.00 spec allows structs as well. Varying structs are also allowed
4095 * in GLSL 1.50.
4096 *
4097 * From section 4.3.4 of the ARB_bindless_texture spec:
4098 *
4099 * "(modify third paragraph of the section to allow sampler and image
4100 * types) ... Vertex shader inputs can only be float,
4101 * single-precision floating-point scalars, single-precision
4102 * floating-point vectors, matrices, signed and unsigned integers
4103 * and integer vectors, sampler and image types."
4104 *
4105 * From section 4.3.6 of the ARB_bindless_texture spec:
4106 *
4107 * "Output variables can only be floating-point scalars,
4108 * floating-point vectors, matrices, signed or unsigned integers or
4109 * integer vectors, sampler or image types, or arrays or structures
4110 * of any these."
4111 */
4112 switch (var->type->without_array()->base_type) {
4113 case GLSL_TYPE_FLOAT:
4114 /* Ok in all GLSL versions */
4115 break;
4116 case GLSL_TYPE_UINT:
4117 case GLSL_TYPE_INT:
4118 if (state->is_version(130, 300))
4119 break;
4120 _mesa_glsl_error(loc, state,
4121 "varying variables must be of base type float in %s",
4122 state->get_version_string());
4123 break;
4124 case GLSL_TYPE_STRUCT:
4125 if (state->is_version(150, 300))
4126 break;
4127 _mesa_glsl_error(loc, state,
4128 "varying variables may not be of type struct");
4129 break;
4130 case GLSL_TYPE_DOUBLE:
4131 case GLSL_TYPE_UINT64:
4132 case GLSL_TYPE_INT64:
4133 break;
4134 case GLSL_TYPE_SAMPLER:
4135 case GLSL_TYPE_IMAGE:
4136 if (state->has_bindless())
4137 break;
4138 /* fallthrough */
4139 default:
4140 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4141 break;
4142 }
4143 }
4144
4145 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4146 var->data.invariant = true;
4147
4148 var->data.interpolation =
4149 interpret_interpolation_qualifier(qual, var->type,
4150 (ir_variable_mode) var->data.mode,
4151 state, loc);
4152
4153 /* Does the declaration use the deprecated 'attribute' or 'varying'
4154 * keywords?
4155 */
4156 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4157 || qual->flags.q.varying;
4158
4159
4160 /* Validate auxiliary storage qualifiers */
4161
4162 /* From section 4.3.4 of the GLSL 1.30 spec:
4163 * "It is an error to use centroid in in a vertex shader."
4164 *
4165 * From section 4.3.4 of the GLSL ES 3.00 spec:
4166 * "It is an error to use centroid in or interpolation qualifiers in
4167 * a vertex shader input."
4168 */
4169
4170 /* Section 4.3.6 of the GLSL 1.30 specification states:
4171 * "It is an error to use centroid out in a fragment shader."
4172 *
4173 * The GL_ARB_shading_language_420pack extension specification states:
4174 * "It is an error to use auxiliary storage qualifiers or interpolation
4175 * qualifiers on an output in a fragment shader."
4176 */
4177 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4178 _mesa_glsl_error(loc, state,
4179 "sample qualifier may only be used on `in` or `out` "
4180 "variables between shader stages");
4181 }
4182 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4183 _mesa_glsl_error(loc, state,
4184 "centroid qualifier may only be used with `in', "
4185 "`out' or `varying' variables between shader stages");
4186 }
4187
4188 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4189 _mesa_glsl_error(loc, state,
4190 "the shared storage qualifiers can only be used with "
4191 "compute shaders");
4192 }
4193
4194 apply_image_qualifier_to_variable(qual, var, state, loc);
4195 }
4196
4197 /**
4198 * Get the variable that is being redeclared by this declaration or if it
4199 * does not exist, the current declared variable.
4200 *
4201 * Semantic checks to verify the validity of the redeclaration are also
4202 * performed. If semantic checks fail, compilation error will be emitted via
4203 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4204 *
4205 * \returns
4206 * A pointer to an existing variable in the current scope if the declaration
4207 * is a redeclaration, current variable otherwise. \c is_declared boolean
4208 * will return \c true if the declaration is a redeclaration, \c false
4209 * otherwise.
4210 */
4211 static ir_variable *
4212 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4213 struct _mesa_glsl_parse_state *state,
4214 bool allow_all_redeclarations,
4215 bool *is_redeclaration)
4216 {
4217 ir_variable *var = *var_ptr;
4218
4219 /* Check if this declaration is actually a re-declaration, either to
4220 * resize an array or add qualifiers to an existing variable.
4221 *
4222 * This is allowed for variables in the current scope, or when at
4223 * global scope (for built-ins in the implicit outer scope).
4224 */
4225 ir_variable *earlier = state->symbols->get_variable(var->name);
4226 if (earlier == NULL ||
4227 (state->current_function != NULL &&
4228 !state->symbols->name_declared_this_scope(var->name))) {
4229 *is_redeclaration = false;
4230 return var;
4231 }
4232
4233 *is_redeclaration = true;
4234
4235 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4236 *
4237 * "It is legal to declare an array without a size and then
4238 * later re-declare the same name as an array of the same
4239 * type and specify a size."
4240 */
4241 if (earlier->type->is_unsized_array() && var->type->is_array()
4242 && (var->type->fields.array == earlier->type->fields.array)) {
4243 /* FINISHME: This doesn't match the qualifiers on the two
4244 * FINISHME: declarations. It's not 100% clear whether this is
4245 * FINISHME: required or not.
4246 */
4247
4248 const int size = var->type->array_size();
4249 check_builtin_array_max_size(var->name, size, loc, state);
4250 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4251 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4252 "previous access",
4253 earlier->data.max_array_access);
4254 }
4255
4256 earlier->type = var->type;
4257 delete var;
4258 var = NULL;
4259 *var_ptr = NULL;
4260 } else if ((state->ARB_fragment_coord_conventions_enable ||
4261 state->is_version(150, 0))
4262 && strcmp(var->name, "gl_FragCoord") == 0
4263 && earlier->type == var->type
4264 && var->data.mode == ir_var_shader_in) {
4265 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4266 * qualifiers.
4267 */
4268 earlier->data.origin_upper_left = var->data.origin_upper_left;
4269 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4270
4271 /* According to section 4.3.7 of the GLSL 1.30 spec,
4272 * the following built-in varaibles can be redeclared with an
4273 * interpolation qualifier:
4274 * * gl_FrontColor
4275 * * gl_BackColor
4276 * * gl_FrontSecondaryColor
4277 * * gl_BackSecondaryColor
4278 * * gl_Color
4279 * * gl_SecondaryColor
4280 */
4281 } else if (state->is_version(130, 0)
4282 && (strcmp(var->name, "gl_FrontColor") == 0
4283 || strcmp(var->name, "gl_BackColor") == 0
4284 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4285 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4286 || strcmp(var->name, "gl_Color") == 0
4287 || strcmp(var->name, "gl_SecondaryColor") == 0)
4288 && earlier->type == var->type
4289 && earlier->data.mode == var->data.mode) {
4290 earlier->data.interpolation = var->data.interpolation;
4291
4292 /* Layout qualifiers for gl_FragDepth. */
4293 } else if ((state->is_version(420, 0) ||
4294 state->AMD_conservative_depth_enable ||
4295 state->ARB_conservative_depth_enable)
4296 && strcmp(var->name, "gl_FragDepth") == 0
4297 && earlier->type == var->type
4298 && earlier->data.mode == var->data.mode) {
4299
4300 /** From the AMD_conservative_depth spec:
4301 * Within any shader, the first redeclarations of gl_FragDepth
4302 * must appear before any use of gl_FragDepth.
4303 */
4304 if (earlier->data.used) {
4305 _mesa_glsl_error(&loc, state,
4306 "the first redeclaration of gl_FragDepth "
4307 "must appear before any use of gl_FragDepth");
4308 }
4309
4310 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4311 if (earlier->data.depth_layout != ir_depth_layout_none
4312 && earlier->data.depth_layout != var->data.depth_layout) {
4313 _mesa_glsl_error(&loc, state,
4314 "gl_FragDepth: depth layout is declared here "
4315 "as '%s, but it was previously declared as "
4316 "'%s'",
4317 depth_layout_string(var->data.depth_layout),
4318 depth_layout_string(earlier->data.depth_layout));
4319 }
4320
4321 earlier->data.depth_layout = var->data.depth_layout;
4322
4323 } else if (state->has_framebuffer_fetch() &&
4324 strcmp(var->name, "gl_LastFragData") == 0 &&
4325 var->type == earlier->type &&
4326 var->data.mode == ir_var_auto) {
4327 /* According to the EXT_shader_framebuffer_fetch spec:
4328 *
4329 * "By default, gl_LastFragData is declared with the mediump precision
4330 * qualifier. This can be changed by redeclaring the corresponding
4331 * variables with the desired precision qualifier."
4332 *
4333 * "Fragment shaders may specify the following layout qualifier only for
4334 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4335 */
4336 earlier->data.precision = var->data.precision;
4337 earlier->data.memory_coherent = var->data.memory_coherent;
4338
4339 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4340 state->allow_builtin_variable_redeclaration) {
4341 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4342 * valid, but some applications do it.
4343 */
4344 if (earlier->data.mode != var->data.mode &&
4345 !(earlier->data.mode == ir_var_system_value &&
4346 var->data.mode == ir_var_shader_in)) {
4347 _mesa_glsl_error(&loc, state,
4348 "redeclaration of `%s' with incorrect qualifiers",
4349 var->name);
4350 } else if (earlier->type != var->type) {
4351 _mesa_glsl_error(&loc, state,
4352 "redeclaration of `%s' has incorrect type",
4353 var->name);
4354 }
4355 } else if (allow_all_redeclarations) {
4356 if (earlier->data.mode != var->data.mode) {
4357 _mesa_glsl_error(&loc, state,
4358 "redeclaration of `%s' with incorrect qualifiers",
4359 var->name);
4360 } else if (earlier->type != var->type) {
4361 _mesa_glsl_error(&loc, state,
4362 "redeclaration of `%s' has incorrect type",
4363 var->name);
4364 }
4365 } else {
4366 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4367 }
4368
4369 return earlier;
4370 }
4371
4372 /**
4373 * Generate the IR for an initializer in a variable declaration
4374 */
4375 static ir_rvalue *
4376 process_initializer(ir_variable *var, ast_declaration *decl,
4377 ast_fully_specified_type *type,
4378 exec_list *initializer_instructions,
4379 struct _mesa_glsl_parse_state *state)
4380 {
4381 void *mem_ctx = state;
4382 ir_rvalue *result = NULL;
4383
4384 YYLTYPE initializer_loc = decl->initializer->get_location();
4385
4386 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4387 *
4388 * "All uniform variables are read-only and are initialized either
4389 * directly by an application via API commands, or indirectly by
4390 * OpenGL."
4391 */
4392 if (var->data.mode == ir_var_uniform) {
4393 state->check_version(120, 0, &initializer_loc,
4394 "cannot initialize uniform %s",
4395 var->name);
4396 }
4397
4398 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4399 *
4400 * "Buffer variables cannot have initializers."
4401 */
4402 if (var->data.mode == ir_var_shader_storage) {
4403 _mesa_glsl_error(&initializer_loc, state,
4404 "cannot initialize buffer variable %s",
4405 var->name);
4406 }
4407
4408 /* From section 4.1.7 of the GLSL 4.40 spec:
4409 *
4410 * "Opaque variables [...] are initialized only through the
4411 * OpenGL API; they cannot be declared with an initializer in a
4412 * shader."
4413 *
4414 * From section 4.1.7 of the ARB_bindless_texture spec:
4415 *
4416 * "Samplers may be declared as shader inputs and outputs, as uniform
4417 * variables, as temporary variables, and as function parameters."
4418 *
4419 * From section 4.1.X of the ARB_bindless_texture spec:
4420 *
4421 * "Images may be declared as shader inputs and outputs, as uniform
4422 * variables, as temporary variables, and as function parameters."
4423 */
4424 if (var->type->contains_atomic() ||
4425 (!state->has_bindless() && var->type->contains_opaque())) {
4426 _mesa_glsl_error(&initializer_loc, state,
4427 "cannot initialize %s variable %s",
4428 var->name, state->has_bindless() ? "atomic" : "opaque");
4429 }
4430
4431 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4432 _mesa_glsl_error(&initializer_loc, state,
4433 "cannot initialize %s shader input / %s %s",
4434 _mesa_shader_stage_to_string(state->stage),
4435 (state->stage == MESA_SHADER_VERTEX)
4436 ? "attribute" : "varying",
4437 var->name);
4438 }
4439
4440 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4441 _mesa_glsl_error(&initializer_loc, state,
4442 "cannot initialize %s shader output %s",
4443 _mesa_shader_stage_to_string(state->stage),
4444 var->name);
4445 }
4446
4447 /* If the initializer is an ast_aggregate_initializer, recursively store
4448 * type information from the LHS into it, so that its hir() function can do
4449 * type checking.
4450 */
4451 if (decl->initializer->oper == ast_aggregate)
4452 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4453
4454 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4455 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4456
4457 /* Calculate the constant value if this is a const or uniform
4458 * declaration.
4459 *
4460 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4461 *
4462 * "Declarations of globals without a storage qualifier, or with
4463 * just the const qualifier, may include initializers, in which case
4464 * they will be initialized before the first line of main() is
4465 * executed. Such initializers must be a constant expression."
4466 *
4467 * The same section of the GLSL ES 3.00.4 spec has similar language.
4468 */
4469 if (type->qualifier.flags.q.constant
4470 || type->qualifier.flags.q.uniform
4471 || (state->es_shader && state->current_function == NULL)) {
4472 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4473 lhs, rhs, true);
4474 if (new_rhs != NULL) {
4475 rhs = new_rhs;
4476
4477 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4478 * says:
4479 *
4480 * "A constant expression is one of
4481 *
4482 * ...
4483 *
4484 * - an expression formed by an operator on operands that are
4485 * all constant expressions, including getting an element of
4486 * a constant array, or a field of a constant structure, or
4487 * components of a constant vector. However, the sequence
4488 * operator ( , ) and the assignment operators ( =, +=, ...)
4489 * are not included in the operators that can create a
4490 * constant expression."
4491 *
4492 * Section 12.43 (Sequence operator and constant expressions) says:
4493 *
4494 * "Should the following construct be allowed?
4495 *
4496 * float a[2,3];
4497 *
4498 * The expression within the brackets uses the sequence operator
4499 * (',') and returns the integer 3 so the construct is declaring
4500 * a single-dimensional array of size 3. In some languages, the
4501 * construct declares a two-dimensional array. It would be
4502 * preferable to make this construct illegal to avoid confusion.
4503 *
4504 * One possibility is to change the definition of the sequence
4505 * operator so that it does not return a constant-expression and
4506 * hence cannot be used to declare an array size.
4507 *
4508 * RESOLUTION: The result of a sequence operator is not a
4509 * constant-expression."
4510 *
4511 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4512 * contains language almost identical to the section 4.3.3 in the
4513 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4514 * versions.
4515 */
4516 ir_constant *constant_value =
4517 rhs->constant_expression_value(mem_ctx);
4518
4519 if (!constant_value ||
4520 (state->is_version(430, 300) &&
4521 decl->initializer->has_sequence_subexpression())) {
4522 const char *const variable_mode =
4523 (type->qualifier.flags.q.constant)
4524 ? "const"
4525 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4526
4527 /* If ARB_shading_language_420pack is enabled, initializers of
4528 * const-qualified local variables do not have to be constant
4529 * expressions. Const-qualified global variables must still be
4530 * initialized with constant expressions.
4531 */
4532 if (!state->has_420pack()
4533 || state->current_function == NULL) {
4534 _mesa_glsl_error(& initializer_loc, state,
4535 "initializer of %s variable `%s' must be a "
4536 "constant expression",
4537 variable_mode,
4538 decl->identifier);
4539 if (var->type->is_numeric()) {
4540 /* Reduce cascading errors. */
4541 var->constant_value = type->qualifier.flags.q.constant
4542 ? ir_constant::zero(state, var->type) : NULL;
4543 }
4544 }
4545 } else {
4546 rhs = constant_value;
4547 var->constant_value = type->qualifier.flags.q.constant
4548 ? constant_value : NULL;
4549 }
4550 } else {
4551 if (var->type->is_numeric()) {
4552 /* Reduce cascading errors. */
4553 rhs = var->constant_value = type->qualifier.flags.q.constant
4554 ? ir_constant::zero(state, var->type) : NULL;
4555 }
4556 }
4557 }
4558
4559 if (rhs && !rhs->type->is_error()) {
4560 bool temp = var->data.read_only;
4561 if (type->qualifier.flags.q.constant)
4562 var->data.read_only = false;
4563
4564 /* Never emit code to initialize a uniform.
4565 */
4566 const glsl_type *initializer_type;
4567 bool error_emitted = false;
4568 if (!type->qualifier.flags.q.uniform) {
4569 error_emitted =
4570 do_assignment(initializer_instructions, state,
4571 NULL, lhs, rhs,
4572 &result, true, true,
4573 type->get_location());
4574 initializer_type = result->type;
4575 } else
4576 initializer_type = rhs->type;
4577
4578 if (!error_emitted) {
4579 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4580 var->data.has_initializer = true;
4581
4582 /* If the declared variable is an unsized array, it must inherrit
4583 * its full type from the initializer. A declaration such as
4584 *
4585 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4586 *
4587 * becomes
4588 *
4589 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4590 *
4591 * The assignment generated in the if-statement (below) will also
4592 * automatically handle this case for non-uniforms.
4593 *
4594 * If the declared variable is not an array, the types must
4595 * already match exactly. As a result, the type assignment
4596 * here can be done unconditionally. For non-uniforms the call
4597 * to do_assignment can change the type of the initializer (via
4598 * the implicit conversion rules). For uniforms the initializer
4599 * must be a constant expression, and the type of that expression
4600 * was validated above.
4601 */
4602 var->type = initializer_type;
4603 }
4604
4605 var->data.read_only = temp;
4606 }
4607
4608 return result;
4609 }
4610
4611 static void
4612 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4613 YYLTYPE loc, ir_variable *var,
4614 unsigned num_vertices,
4615 unsigned *size,
4616 const char *var_category)
4617 {
4618 if (var->type->is_unsized_array()) {
4619 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4620 *
4621 * All geometry shader input unsized array declarations will be
4622 * sized by an earlier input layout qualifier, when present, as per
4623 * the following table.
4624 *
4625 * Followed by a table mapping each allowed input layout qualifier to
4626 * the corresponding input length.
4627 *
4628 * Similarly for tessellation control shader outputs.
4629 */
4630 if (num_vertices != 0)
4631 var->type = glsl_type::get_array_instance(var->type->fields.array,
4632 num_vertices);
4633 } else {
4634 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4635 * includes the following examples of compile-time errors:
4636 *
4637 * // code sequence within one shader...
4638 * in vec4 Color1[]; // size unknown
4639 * ...Color1.length()...// illegal, length() unknown
4640 * in vec4 Color2[2]; // size is 2
4641 * ...Color1.length()...// illegal, Color1 still has no size
4642 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4643 * layout(lines) in; // legal, input size is 2, matching
4644 * in vec4 Color4[3]; // illegal, contradicts layout
4645 * ...
4646 *
4647 * To detect the case illustrated by Color3, we verify that the size of
4648 * an explicitly-sized array matches the size of any previously declared
4649 * explicitly-sized array. To detect the case illustrated by Color4, we
4650 * verify that the size of an explicitly-sized array is consistent with
4651 * any previously declared input layout.
4652 */
4653 if (num_vertices != 0 && var->type->length != num_vertices) {
4654 _mesa_glsl_error(&loc, state,
4655 "%s size contradicts previously declared layout "
4656 "(size is %u, but layout requires a size of %u)",
4657 var_category, var->type->length, num_vertices);
4658 } else if (*size != 0 && var->type->length != *size) {
4659 _mesa_glsl_error(&loc, state,
4660 "%s sizes are inconsistent (size is %u, but a "
4661 "previous declaration has size %u)",
4662 var_category, var->type->length, *size);
4663 } else {
4664 *size = var->type->length;
4665 }
4666 }
4667 }
4668
4669 static void
4670 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4671 YYLTYPE loc, ir_variable *var)
4672 {
4673 unsigned num_vertices = 0;
4674
4675 if (state->tcs_output_vertices_specified) {
4676 if (!state->out_qualifier->vertices->
4677 process_qualifier_constant(state, "vertices",
4678 &num_vertices, false)) {
4679 return;
4680 }
4681
4682 if (num_vertices > state->Const.MaxPatchVertices) {
4683 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4684 "GL_MAX_PATCH_VERTICES", num_vertices);
4685 return;
4686 }
4687 }
4688
4689 if (!var->type->is_array() && !var->data.patch) {
4690 _mesa_glsl_error(&loc, state,
4691 "tessellation control shader outputs must be arrays");
4692
4693 /* To avoid cascading failures, short circuit the checks below. */
4694 return;
4695 }
4696
4697 if (var->data.patch)
4698 return;
4699
4700 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4701 &state->tcs_output_size,
4702 "tessellation control shader output");
4703 }
4704
4705 /**
4706 * Do additional processing necessary for tessellation control/evaluation shader
4707 * input declarations. This covers both interface block arrays and bare input
4708 * variables.
4709 */
4710 static void
4711 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4712 YYLTYPE loc, ir_variable *var)
4713 {
4714 if (!var->type->is_array() && !var->data.patch) {
4715 _mesa_glsl_error(&loc, state,
4716 "per-vertex tessellation shader inputs must be arrays");
4717 /* Avoid cascading failures. */
4718 return;
4719 }
4720
4721 if (var->data.patch)
4722 return;
4723
4724 /* The ARB_tessellation_shader spec says:
4725 *
4726 * "Declaring an array size is optional. If no size is specified, it
4727 * will be taken from the implementation-dependent maximum patch size
4728 * (gl_MaxPatchVertices). If a size is specified, it must match the
4729 * maximum patch size; otherwise, a compile or link error will occur."
4730 *
4731 * This text appears twice, once for TCS inputs, and again for TES inputs.
4732 */
4733 if (var->type->is_unsized_array()) {
4734 var->type = glsl_type::get_array_instance(var->type->fields.array,
4735 state->Const.MaxPatchVertices);
4736 } else if (var->type->length != state->Const.MaxPatchVertices) {
4737 _mesa_glsl_error(&loc, state,
4738 "per-vertex tessellation shader input arrays must be "
4739 "sized to gl_MaxPatchVertices (%d).",
4740 state->Const.MaxPatchVertices);
4741 }
4742 }
4743
4744
4745 /**
4746 * Do additional processing necessary for geometry shader input declarations
4747 * (this covers both interface blocks arrays and bare input variables).
4748 */
4749 static void
4750 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4751 YYLTYPE loc, ir_variable *var)
4752 {
4753 unsigned num_vertices = 0;
4754
4755 if (state->gs_input_prim_type_specified) {
4756 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4757 }
4758
4759 /* Geometry shader input variables must be arrays. Caller should have
4760 * reported an error for this.
4761 */
4762 if (!var->type->is_array()) {
4763 assert(state->error);
4764
4765 /* To avoid cascading failures, short circuit the checks below. */
4766 return;
4767 }
4768
4769 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4770 &state->gs_input_size,
4771 "geometry shader input");
4772 }
4773
4774 static void
4775 validate_identifier(const char *identifier, YYLTYPE loc,
4776 struct _mesa_glsl_parse_state *state)
4777 {
4778 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4779 *
4780 * "Identifiers starting with "gl_" are reserved for use by
4781 * OpenGL, and may not be declared in a shader as either a
4782 * variable or a function."
4783 */
4784 if (is_gl_identifier(identifier)) {
4785 _mesa_glsl_error(&loc, state,
4786 "identifier `%s' uses reserved `gl_' prefix",
4787 identifier);
4788 } else if (strstr(identifier, "__")) {
4789 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4790 * spec:
4791 *
4792 * "In addition, all identifiers containing two
4793 * consecutive underscores (__) are reserved as
4794 * possible future keywords."
4795 *
4796 * The intention is that names containing __ are reserved for internal
4797 * use by the implementation, and names prefixed with GL_ are reserved
4798 * for use by Khronos. Names simply containing __ are dangerous to use,
4799 * but should be allowed.
4800 *
4801 * A future version of the GLSL specification will clarify this.
4802 */
4803 _mesa_glsl_warning(&loc, state,
4804 "identifier `%s' uses reserved `__' string",
4805 identifier);
4806 }
4807 }
4808
4809 ir_rvalue *
4810 ast_declarator_list::hir(exec_list *instructions,
4811 struct _mesa_glsl_parse_state *state)
4812 {
4813 void *ctx = state;
4814 const struct glsl_type *decl_type;
4815 const char *type_name = NULL;
4816 ir_rvalue *result = NULL;
4817 YYLTYPE loc = this->get_location();
4818
4819 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4820 *
4821 * "To ensure that a particular output variable is invariant, it is
4822 * necessary to use the invariant qualifier. It can either be used to
4823 * qualify a previously declared variable as being invariant
4824 *
4825 * invariant gl_Position; // make existing gl_Position be invariant"
4826 *
4827 * In these cases the parser will set the 'invariant' flag in the declarator
4828 * list, and the type will be NULL.
4829 */
4830 if (this->invariant) {
4831 assert(this->type == NULL);
4832
4833 if (state->current_function != NULL) {
4834 _mesa_glsl_error(& loc, state,
4835 "all uses of `invariant' keyword must be at global "
4836 "scope");
4837 }
4838
4839 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4840 assert(decl->array_specifier == NULL);
4841 assert(decl->initializer == NULL);
4842
4843 ir_variable *const earlier =
4844 state->symbols->get_variable(decl->identifier);
4845 if (earlier == NULL) {
4846 _mesa_glsl_error(& loc, state,
4847 "undeclared variable `%s' cannot be marked "
4848 "invariant", decl->identifier);
4849 } else if (!is_allowed_invariant(earlier, state)) {
4850 _mesa_glsl_error(&loc, state,
4851 "`%s' cannot be marked invariant; interfaces between "
4852 "shader stages only.", decl->identifier);
4853 } else if (earlier->data.used) {
4854 _mesa_glsl_error(& loc, state,
4855 "variable `%s' may not be redeclared "
4856 "`invariant' after being used",
4857 earlier->name);
4858 } else {
4859 earlier->data.invariant = true;
4860 }
4861 }
4862
4863 /* Invariant redeclarations do not have r-values.
4864 */
4865 return NULL;
4866 }
4867
4868 if (this->precise) {
4869 assert(this->type == NULL);
4870
4871 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4872 assert(decl->array_specifier == NULL);
4873 assert(decl->initializer == NULL);
4874
4875 ir_variable *const earlier =
4876 state->symbols->get_variable(decl->identifier);
4877 if (earlier == NULL) {
4878 _mesa_glsl_error(& loc, state,
4879 "undeclared variable `%s' cannot be marked "
4880 "precise", decl->identifier);
4881 } else if (state->current_function != NULL &&
4882 !state->symbols->name_declared_this_scope(decl->identifier)) {
4883 /* Note: we have to check if we're in a function, since
4884 * builtins are treated as having come from another scope.
4885 */
4886 _mesa_glsl_error(& loc, state,
4887 "variable `%s' from an outer scope may not be "
4888 "redeclared `precise' in this scope",
4889 earlier->name);
4890 } else if (earlier->data.used) {
4891 _mesa_glsl_error(& loc, state,
4892 "variable `%s' may not be redeclared "
4893 "`precise' after being used",
4894 earlier->name);
4895 } else {
4896 earlier->data.precise = true;
4897 }
4898 }
4899
4900 /* Precise redeclarations do not have r-values either. */
4901 return NULL;
4902 }
4903
4904 assert(this->type != NULL);
4905 assert(!this->invariant);
4906 assert(!this->precise);
4907
4908 /* The type specifier may contain a structure definition. Process that
4909 * before any of the variable declarations.
4910 */
4911 (void) this->type->specifier->hir(instructions, state);
4912
4913 decl_type = this->type->glsl_type(& type_name, state);
4914
4915 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4916 * "Buffer variables may only be declared inside interface blocks
4917 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4918 * shader storage blocks. It is a compile-time error to declare buffer
4919 * variables at global scope (outside a block)."
4920 */
4921 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4922 _mesa_glsl_error(&loc, state,
4923 "buffer variables cannot be declared outside "
4924 "interface blocks");
4925 }
4926
4927 /* An offset-qualified atomic counter declaration sets the default
4928 * offset for the next declaration within the same atomic counter
4929 * buffer.
4930 */
4931 if (decl_type && decl_type->contains_atomic()) {
4932 if (type->qualifier.flags.q.explicit_binding &&
4933 type->qualifier.flags.q.explicit_offset) {
4934 unsigned qual_binding;
4935 unsigned qual_offset;
4936 if (process_qualifier_constant(state, &loc, "binding",
4937 type->qualifier.binding,
4938 &qual_binding)
4939 && process_qualifier_constant(state, &loc, "offset",
4940 type->qualifier.offset,
4941 &qual_offset)) {
4942 state->atomic_counter_offsets[qual_binding] = qual_offset;
4943 }
4944 }
4945
4946 ast_type_qualifier allowed_atomic_qual_mask;
4947 allowed_atomic_qual_mask.flags.i = 0;
4948 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4949 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4950 allowed_atomic_qual_mask.flags.q.uniform = 1;
4951
4952 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4953 "invalid layout qualifier for",
4954 "atomic_uint");
4955 }
4956
4957 if (this->declarations.is_empty()) {
4958 /* If there is no structure involved in the program text, there are two
4959 * possible scenarios:
4960 *
4961 * - The program text contained something like 'vec4;'. This is an
4962 * empty declaration. It is valid but weird. Emit a warning.
4963 *
4964 * - The program text contained something like 'S;' and 'S' is not the
4965 * name of a known structure type. This is both invalid and weird.
4966 * Emit an error.
4967 *
4968 * - The program text contained something like 'mediump float;'
4969 * when the programmer probably meant 'precision mediump
4970 * float;' Emit a warning with a description of what they
4971 * probably meant to do.
4972 *
4973 * Note that if decl_type is NULL and there is a structure involved,
4974 * there must have been some sort of error with the structure. In this
4975 * case we assume that an error was already generated on this line of
4976 * code for the structure. There is no need to generate an additional,
4977 * confusing error.
4978 */
4979 assert(this->type->specifier->structure == NULL || decl_type != NULL
4980 || state->error);
4981
4982 if (decl_type == NULL) {
4983 _mesa_glsl_error(&loc, state,
4984 "invalid type `%s' in empty declaration",
4985 type_name);
4986 } else {
4987 if (decl_type->is_array()) {
4988 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4989 * spec:
4990 *
4991 * "... any declaration that leaves the size undefined is
4992 * disallowed as this would add complexity and there are no
4993 * use-cases."
4994 */
4995 if (state->es_shader && decl_type->is_unsized_array()) {
4996 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4997 "or implicitly defined");
4998 }
4999
5000 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5001 *
5002 * "The combinations of types and qualifiers that cause
5003 * compile-time or link-time errors are the same whether or not
5004 * the declaration is empty."
5005 */
5006 validate_array_dimensions(decl_type, state, &loc);
5007 }
5008
5009 if (decl_type->is_atomic_uint()) {
5010 /* Empty atomic counter declarations are allowed and useful
5011 * to set the default offset qualifier.
5012 */
5013 return NULL;
5014 } else if (this->type->qualifier.precision != ast_precision_none) {
5015 if (this->type->specifier->structure != NULL) {
5016 _mesa_glsl_error(&loc, state,
5017 "precision qualifiers can't be applied "
5018 "to structures");
5019 } else {
5020 static const char *const precision_names[] = {
5021 "highp",
5022 "highp",
5023 "mediump",
5024 "lowp"
5025 };
5026
5027 _mesa_glsl_warning(&loc, state,
5028 "empty declaration with precision "
5029 "qualifier, to set the default precision, "
5030 "use `precision %s %s;'",
5031 precision_names[this->type->
5032 qualifier.precision],
5033 type_name);
5034 }
5035 } else if (this->type->specifier->structure == NULL) {
5036 _mesa_glsl_warning(&loc, state, "empty declaration");
5037 }
5038 }
5039 }
5040
5041 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5042 const struct glsl_type *var_type;
5043 ir_variable *var;
5044 const char *identifier = decl->identifier;
5045 /* FINISHME: Emit a warning if a variable declaration shadows a
5046 * FINISHME: declaration at a higher scope.
5047 */
5048
5049 if ((decl_type == NULL) || decl_type->is_void()) {
5050 if (type_name != NULL) {
5051 _mesa_glsl_error(& loc, state,
5052 "invalid type `%s' in declaration of `%s'",
5053 type_name, decl->identifier);
5054 } else {
5055 _mesa_glsl_error(& loc, state,
5056 "invalid type in declaration of `%s'",
5057 decl->identifier);
5058 }
5059 continue;
5060 }
5061
5062 if (this->type->qualifier.is_subroutine_decl()) {
5063 const glsl_type *t;
5064 const char *name;
5065
5066 t = state->symbols->get_type(this->type->specifier->type_name);
5067 if (!t)
5068 _mesa_glsl_error(& loc, state,
5069 "invalid type in declaration of `%s'",
5070 decl->identifier);
5071 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5072
5073 identifier = name;
5074
5075 }
5076 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5077 state);
5078
5079 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5080
5081 /* The 'varying in' and 'varying out' qualifiers can only be used with
5082 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5083 * yet.
5084 */
5085 if (this->type->qualifier.flags.q.varying) {
5086 if (this->type->qualifier.flags.q.in) {
5087 _mesa_glsl_error(& loc, state,
5088 "`varying in' qualifier in declaration of "
5089 "`%s' only valid for geometry shaders using "
5090 "ARB_geometry_shader4 or EXT_geometry_shader4",
5091 decl->identifier);
5092 } else if (this->type->qualifier.flags.q.out) {
5093 _mesa_glsl_error(& loc, state,
5094 "`varying out' qualifier in declaration of "
5095 "`%s' only valid for geometry shaders using "
5096 "ARB_geometry_shader4 or EXT_geometry_shader4",
5097 decl->identifier);
5098 }
5099 }
5100
5101 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5102 *
5103 * "Global variables can only use the qualifiers const,
5104 * attribute, uniform, or varying. Only one may be
5105 * specified.
5106 *
5107 * Local variables can only use the qualifier const."
5108 *
5109 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5110 * any extension that adds the 'layout' keyword.
5111 */
5112 if (!state->is_version(130, 300)
5113 && !state->has_explicit_attrib_location()
5114 && !state->has_separate_shader_objects()
5115 && !state->ARB_fragment_coord_conventions_enable) {
5116 if (this->type->qualifier.flags.q.out) {
5117 _mesa_glsl_error(& loc, state,
5118 "`out' qualifier in declaration of `%s' "
5119 "only valid for function parameters in %s",
5120 decl->identifier, state->get_version_string());
5121 }
5122 if (this->type->qualifier.flags.q.in) {
5123 _mesa_glsl_error(& loc, state,
5124 "`in' qualifier in declaration of `%s' "
5125 "only valid for function parameters in %s",
5126 decl->identifier, state->get_version_string());
5127 }
5128 /* FINISHME: Test for other invalid qualifiers. */
5129 }
5130
5131 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5132 & loc, false);
5133 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5134 &loc);
5135
5136 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5137 && (var->type->is_numeric() || var->type->is_boolean())
5138 && state->zero_init) {
5139 const ir_constant_data data = { { 0 } };
5140 var->data.has_initializer = true;
5141 var->constant_initializer = new(var) ir_constant(var->type, &data);
5142 }
5143
5144 if (this->type->qualifier.flags.q.invariant) {
5145 if (!is_allowed_invariant(var, state)) {
5146 _mesa_glsl_error(&loc, state,
5147 "`%s' cannot be marked invariant; interfaces between "
5148 "shader stages only", var->name);
5149 }
5150 }
5151
5152 if (state->current_function != NULL) {
5153 const char *mode = NULL;
5154 const char *extra = "";
5155
5156 /* There is no need to check for 'inout' here because the parser will
5157 * only allow that in function parameter lists.
5158 */
5159 if (this->type->qualifier.flags.q.attribute) {
5160 mode = "attribute";
5161 } else if (this->type->qualifier.is_subroutine_decl()) {
5162 mode = "subroutine uniform";
5163 } else if (this->type->qualifier.flags.q.uniform) {
5164 mode = "uniform";
5165 } else if (this->type->qualifier.flags.q.varying) {
5166 mode = "varying";
5167 } else if (this->type->qualifier.flags.q.in) {
5168 mode = "in";
5169 extra = " or in function parameter list";
5170 } else if (this->type->qualifier.flags.q.out) {
5171 mode = "out";
5172 extra = " or in function parameter list";
5173 }
5174
5175 if (mode) {
5176 _mesa_glsl_error(& loc, state,
5177 "%s variable `%s' must be declared at "
5178 "global scope%s",
5179 mode, var->name, extra);
5180 }
5181 } else if (var->data.mode == ir_var_shader_in) {
5182 var->data.read_only = true;
5183
5184 if (state->stage == MESA_SHADER_VERTEX) {
5185 bool error_emitted = false;
5186
5187 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5188 *
5189 * "Vertex shader inputs can only be float, floating-point
5190 * vectors, matrices, signed and unsigned integers and integer
5191 * vectors. Vertex shader inputs can also form arrays of these
5192 * types, but not structures."
5193 *
5194 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5195 *
5196 * "Vertex shader inputs can only be float, floating-point
5197 * vectors, matrices, signed and unsigned integers and integer
5198 * vectors. They cannot be arrays or structures."
5199 *
5200 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5201 *
5202 * "The attribute qualifier can be used only with float,
5203 * floating-point vectors, and matrices. Attribute variables
5204 * cannot be declared as arrays or structures."
5205 *
5206 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5207 *
5208 * "Vertex shader inputs can only be float, floating-point
5209 * vectors, matrices, signed and unsigned integers and integer
5210 * vectors. Vertex shader inputs cannot be arrays or
5211 * structures."
5212 *
5213 * From section 4.3.4 of the ARB_bindless_texture spec:
5214 *
5215 * "(modify third paragraph of the section to allow sampler and
5216 * image types) ... Vertex shader inputs can only be float,
5217 * single-precision floating-point scalars, single-precision
5218 * floating-point vectors, matrices, signed and unsigned
5219 * integers and integer vectors, sampler and image types."
5220 */
5221 const glsl_type *check_type = var->type->without_array();
5222
5223 switch (check_type->base_type) {
5224 case GLSL_TYPE_FLOAT:
5225 break;
5226 case GLSL_TYPE_UINT64:
5227 case GLSL_TYPE_INT64:
5228 break;
5229 case GLSL_TYPE_UINT:
5230 case GLSL_TYPE_INT:
5231 if (state->is_version(120, 300))
5232 break;
5233 case GLSL_TYPE_DOUBLE:
5234 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5235 break;
5236 case GLSL_TYPE_SAMPLER:
5237 if (check_type->is_sampler() && state->has_bindless())
5238 break;
5239 case GLSL_TYPE_IMAGE:
5240 if (check_type->is_image() && state->has_bindless())
5241 break;
5242 /* FALLTHROUGH */
5243 default:
5244 _mesa_glsl_error(& loc, state,
5245 "vertex shader input / attribute cannot have "
5246 "type %s`%s'",
5247 var->type->is_array() ? "array of " : "",
5248 check_type->name);
5249 error_emitted = true;
5250 }
5251
5252 if (!error_emitted && var->type->is_array() &&
5253 !state->check_version(150, 0, &loc,
5254 "vertex shader input / attribute "
5255 "cannot have array type")) {
5256 error_emitted = true;
5257 }
5258 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5259 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5260 *
5261 * Geometry shader input variables get the per-vertex values
5262 * written out by vertex shader output variables of the same
5263 * names. Since a geometry shader operates on a set of
5264 * vertices, each input varying variable (or input block, see
5265 * interface blocks below) needs to be declared as an array.
5266 */
5267 if (!var->type->is_array()) {
5268 _mesa_glsl_error(&loc, state,
5269 "geometry shader inputs must be arrays");
5270 }
5271
5272 handle_geometry_shader_input_decl(state, loc, var);
5273 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5274 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5275 *
5276 * It is a compile-time error to declare a fragment shader
5277 * input with, or that contains, any of the following types:
5278 *
5279 * * A boolean type
5280 * * An opaque type
5281 * * An array of arrays
5282 * * An array of structures
5283 * * A structure containing an array
5284 * * A structure containing a structure
5285 */
5286 if (state->es_shader) {
5287 const glsl_type *check_type = var->type->without_array();
5288 if (check_type->is_boolean() ||
5289 check_type->contains_opaque()) {
5290 _mesa_glsl_error(&loc, state,
5291 "fragment shader input cannot have type %s",
5292 check_type->name);
5293 }
5294 if (var->type->is_array() &&
5295 var->type->fields.array->is_array()) {
5296 _mesa_glsl_error(&loc, state,
5297 "%s shader output "
5298 "cannot have an array of arrays",
5299 _mesa_shader_stage_to_string(state->stage));
5300 }
5301 if (var->type->is_array() &&
5302 var->type->fields.array->is_record()) {
5303 _mesa_glsl_error(&loc, state,
5304 "fragment shader input "
5305 "cannot have an array of structs");
5306 }
5307 if (var->type->is_record()) {
5308 for (unsigned i = 0; i < var->type->length; i++) {
5309 if (var->type->fields.structure[i].type->is_array() ||
5310 var->type->fields.structure[i].type->is_record())
5311 _mesa_glsl_error(&loc, state,
5312 "fragment shader input cannot have "
5313 "a struct that contains an "
5314 "array or struct");
5315 }
5316 }
5317 }
5318 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5319 state->stage == MESA_SHADER_TESS_EVAL) {
5320 handle_tess_shader_input_decl(state, loc, var);
5321 }
5322 } else if (var->data.mode == ir_var_shader_out) {
5323 const glsl_type *check_type = var->type->without_array();
5324
5325 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5326 *
5327 * It is a compile-time error to declare a fragment shader output
5328 * that contains any of the following:
5329 *
5330 * * A Boolean type (bool, bvec2 ...)
5331 * * A double-precision scalar or vector (double, dvec2 ...)
5332 * * An opaque type
5333 * * Any matrix type
5334 * * A structure
5335 */
5336 if (state->stage == MESA_SHADER_FRAGMENT) {
5337 if (check_type->is_record() || check_type->is_matrix())
5338 _mesa_glsl_error(&loc, state,
5339 "fragment shader output "
5340 "cannot have struct or matrix type");
5341 switch (check_type->base_type) {
5342 case GLSL_TYPE_UINT:
5343 case GLSL_TYPE_INT:
5344 case GLSL_TYPE_FLOAT:
5345 break;
5346 default:
5347 _mesa_glsl_error(&loc, state,
5348 "fragment shader output cannot have "
5349 "type %s", check_type->name);
5350 }
5351 }
5352
5353 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5354 *
5355 * It is a compile-time error to declare a vertex shader output
5356 * with, or that contains, any of the following types:
5357 *
5358 * * A boolean type
5359 * * An opaque type
5360 * * An array of arrays
5361 * * An array of structures
5362 * * A structure containing an array
5363 * * A structure containing a structure
5364 *
5365 * It is a compile-time error to declare a fragment shader output
5366 * with, or that contains, any of the following types:
5367 *
5368 * * A boolean type
5369 * * An opaque type
5370 * * A matrix
5371 * * A structure
5372 * * An array of array
5373 *
5374 * ES 3.20 updates this to apply to tessellation and geometry shaders
5375 * as well. Because there are per-vertex arrays in the new stages,
5376 * it strikes the "array of..." rules and replaces them with these:
5377 *
5378 * * For per-vertex-arrayed variables (applies to tessellation
5379 * control, tessellation evaluation and geometry shaders):
5380 *
5381 * * Per-vertex-arrayed arrays of arrays
5382 * * Per-vertex-arrayed arrays of structures
5383 *
5384 * * For non-per-vertex-arrayed variables:
5385 *
5386 * * An array of arrays
5387 * * An array of structures
5388 *
5389 * which basically says to unwrap the per-vertex aspect and apply
5390 * the old rules.
5391 */
5392 if (state->es_shader) {
5393 if (var->type->is_array() &&
5394 var->type->fields.array->is_array()) {
5395 _mesa_glsl_error(&loc, state,
5396 "%s shader output "
5397 "cannot have an array of arrays",
5398 _mesa_shader_stage_to_string(state->stage));
5399 }
5400 if (state->stage <= MESA_SHADER_GEOMETRY) {
5401 const glsl_type *type = var->type;
5402
5403 if (state->stage == MESA_SHADER_TESS_CTRL &&
5404 !var->data.patch && var->type->is_array()) {
5405 type = var->type->fields.array;
5406 }
5407
5408 if (type->is_array() && type->fields.array->is_record()) {
5409 _mesa_glsl_error(&loc, state,
5410 "%s shader output cannot have "
5411 "an array of structs",
5412 _mesa_shader_stage_to_string(state->stage));
5413 }
5414 if (type->is_record()) {
5415 for (unsigned i = 0; i < type->length; i++) {
5416 if (type->fields.structure[i].type->is_array() ||
5417 type->fields.structure[i].type->is_record())
5418 _mesa_glsl_error(&loc, state,
5419 "%s shader output cannot have a "
5420 "struct that contains an "
5421 "array or struct",
5422 _mesa_shader_stage_to_string(state->stage));
5423 }
5424 }
5425 }
5426 }
5427
5428 if (state->stage == MESA_SHADER_TESS_CTRL) {
5429 handle_tess_ctrl_shader_output_decl(state, loc, var);
5430 }
5431 } else if (var->type->contains_subroutine()) {
5432 /* declare subroutine uniforms as hidden */
5433 var->data.how_declared = ir_var_hidden;
5434 }
5435
5436 /* From section 4.3.4 of the GLSL 4.00 spec:
5437 * "Input variables may not be declared using the patch in qualifier
5438 * in tessellation control or geometry shaders."
5439 *
5440 * From section 4.3.6 of the GLSL 4.00 spec:
5441 * "It is an error to use patch out in a vertex, tessellation
5442 * evaluation, or geometry shader."
5443 *
5444 * This doesn't explicitly forbid using them in a fragment shader, but
5445 * that's probably just an oversight.
5446 */
5447 if (state->stage != MESA_SHADER_TESS_EVAL
5448 && this->type->qualifier.flags.q.patch
5449 && this->type->qualifier.flags.q.in) {
5450
5451 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5452 "tessellation evaluation shader");
5453 }
5454
5455 if (state->stage != MESA_SHADER_TESS_CTRL
5456 && this->type->qualifier.flags.q.patch
5457 && this->type->qualifier.flags.q.out) {
5458
5459 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5460 "tessellation control shader");
5461 }
5462
5463 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5464 */
5465 if (this->type->qualifier.precision != ast_precision_none) {
5466 state->check_precision_qualifiers_allowed(&loc);
5467 }
5468
5469 if (this->type->qualifier.precision != ast_precision_none &&
5470 !precision_qualifier_allowed(var->type)) {
5471 _mesa_glsl_error(&loc, state,
5472 "precision qualifiers apply only to floating point"
5473 ", integer and opaque types");
5474 }
5475
5476 /* From section 4.1.7 of the GLSL 4.40 spec:
5477 *
5478 * "[Opaque types] can only be declared as function
5479 * parameters or uniform-qualified variables."
5480 *
5481 * From section 4.1.7 of the ARB_bindless_texture spec:
5482 *
5483 * "Samplers may be declared as shader inputs and outputs, as uniform
5484 * variables, as temporary variables, and as function parameters."
5485 *
5486 * From section 4.1.X of the ARB_bindless_texture spec:
5487 *
5488 * "Images may be declared as shader inputs and outputs, as uniform
5489 * variables, as temporary variables, and as function parameters."
5490 */
5491 if (!this->type->qualifier.flags.q.uniform &&
5492 (var_type->contains_atomic() ||
5493 (!state->has_bindless() && var_type->contains_opaque()))) {
5494 _mesa_glsl_error(&loc, state,
5495 "%s variables must be declared uniform",
5496 state->has_bindless() ? "atomic" : "opaque");
5497 }
5498
5499 /* Process the initializer and add its instructions to a temporary
5500 * list. This list will be added to the instruction stream (below) after
5501 * the declaration is added. This is done because in some cases (such as
5502 * redeclarations) the declaration may not actually be added to the
5503 * instruction stream.
5504 */
5505 exec_list initializer_instructions;
5506
5507 /* Examine var name here since var may get deleted in the next call */
5508 bool var_is_gl_id = is_gl_identifier(var->name);
5509
5510 bool is_redeclaration;
5511 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5512 false /* allow_all_redeclarations */,
5513 &is_redeclaration);
5514 if (is_redeclaration) {
5515 if (var_is_gl_id &&
5516 var->data.how_declared == ir_var_declared_in_block) {
5517 _mesa_glsl_error(&loc, state,
5518 "`%s' has already been redeclared using "
5519 "gl_PerVertex", var->name);
5520 }
5521 var->data.how_declared = ir_var_declared_normally;
5522 }
5523
5524 if (decl->initializer != NULL) {
5525 result = process_initializer(var,
5526 decl, this->type,
5527 &initializer_instructions, state);
5528 } else {
5529 validate_array_dimensions(var_type, state, &loc);
5530 }
5531
5532 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5533 *
5534 * "It is an error to write to a const variable outside of
5535 * its declaration, so they must be initialized when
5536 * declared."
5537 */
5538 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5539 _mesa_glsl_error(& loc, state,
5540 "const declaration of `%s' must be initialized",
5541 decl->identifier);
5542 }
5543
5544 if (state->es_shader) {
5545 const glsl_type *const t = var->type;
5546
5547 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5548 *
5549 * The GL_OES_tessellation_shader spec says about inputs:
5550 *
5551 * "Declaring an array size is optional. If no size is specified,
5552 * it will be taken from the implementation-dependent maximum
5553 * patch size (gl_MaxPatchVertices)."
5554 *
5555 * and about TCS outputs:
5556 *
5557 * "If no size is specified, it will be taken from output patch
5558 * size declared in the shader."
5559 *
5560 * The GL_OES_geometry_shader spec says:
5561 *
5562 * "All geometry shader input unsized array declarations will be
5563 * sized by an earlier input primitive layout qualifier, when
5564 * present, as per the following table."
5565 */
5566 const bool implicitly_sized =
5567 (var->data.mode == ir_var_shader_in &&
5568 state->stage >= MESA_SHADER_TESS_CTRL &&
5569 state->stage <= MESA_SHADER_GEOMETRY) ||
5570 (var->data.mode == ir_var_shader_out &&
5571 state->stage == MESA_SHADER_TESS_CTRL);
5572
5573 if (t->is_unsized_array() && !implicitly_sized)
5574 /* Section 10.17 of the GLSL ES 1.00 specification states that
5575 * unsized array declarations have been removed from the language.
5576 * Arrays that are sized using an initializer are still explicitly
5577 * sized. However, GLSL ES 1.00 does not allow array
5578 * initializers. That is only allowed in GLSL ES 3.00.
5579 *
5580 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5581 *
5582 * "An array type can also be formed without specifying a size
5583 * if the definition includes an initializer:
5584 *
5585 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5586 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5587 *
5588 * float a[5];
5589 * float b[] = a;"
5590 */
5591 _mesa_glsl_error(& loc, state,
5592 "unsized array declarations are not allowed in "
5593 "GLSL ES");
5594 }
5595
5596 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5597 *
5598 * "It is a compile-time error to declare an unsized array of
5599 * atomic_uint"
5600 */
5601 if (var->type->is_unsized_array() &&
5602 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5603 _mesa_glsl_error(& loc, state,
5604 "Unsized array of atomic_uint is not allowed");
5605 }
5606
5607 /* If the declaration is not a redeclaration, there are a few additional
5608 * semantic checks that must be applied. In addition, variable that was
5609 * created for the declaration should be added to the IR stream.
5610 */
5611 if (!is_redeclaration) {
5612 validate_identifier(decl->identifier, loc, state);
5613
5614 /* Add the variable to the symbol table. Note that the initializer's
5615 * IR was already processed earlier (though it hasn't been emitted
5616 * yet), without the variable in scope.
5617 *
5618 * This differs from most C-like languages, but it follows the GLSL
5619 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5620 * spec:
5621 *
5622 * "Within a declaration, the scope of a name starts immediately
5623 * after the initializer if present or immediately after the name
5624 * being declared if not."
5625 */
5626 if (!state->symbols->add_variable(var)) {
5627 YYLTYPE loc = this->get_location();
5628 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5629 "current scope", decl->identifier);
5630 continue;
5631 }
5632
5633 /* Push the variable declaration to the top. It means that all the
5634 * variable declarations will appear in a funny last-to-first order,
5635 * but otherwise we run into trouble if a function is prototyped, a
5636 * global var is decled, then the function is defined with usage of
5637 * the global var. See glslparsertest's CorrectModule.frag.
5638 */
5639 instructions->push_head(var);
5640 }
5641
5642 instructions->append_list(&initializer_instructions);
5643 }
5644
5645
5646 /* Generally, variable declarations do not have r-values. However,
5647 * one is used for the declaration in
5648 *
5649 * while (bool b = some_condition()) {
5650 * ...
5651 * }
5652 *
5653 * so we return the rvalue from the last seen declaration here.
5654 */
5655 return result;
5656 }
5657
5658
5659 ir_rvalue *
5660 ast_parameter_declarator::hir(exec_list *instructions,
5661 struct _mesa_glsl_parse_state *state)
5662 {
5663 void *ctx = state;
5664 const struct glsl_type *type;
5665 const char *name = NULL;
5666 YYLTYPE loc = this->get_location();
5667
5668 type = this->type->glsl_type(& name, state);
5669
5670 if (type == NULL) {
5671 if (name != NULL) {
5672 _mesa_glsl_error(& loc, state,
5673 "invalid type `%s' in declaration of `%s'",
5674 name, this->identifier);
5675 } else {
5676 _mesa_glsl_error(& loc, state,
5677 "invalid type in declaration of `%s'",
5678 this->identifier);
5679 }
5680
5681 type = glsl_type::error_type;
5682 }
5683
5684 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5685 *
5686 * "Functions that accept no input arguments need not use void in the
5687 * argument list because prototypes (or definitions) are required and
5688 * therefore there is no ambiguity when an empty argument list "( )" is
5689 * declared. The idiom "(void)" as a parameter list is provided for
5690 * convenience."
5691 *
5692 * Placing this check here prevents a void parameter being set up
5693 * for a function, which avoids tripping up checks for main taking
5694 * parameters and lookups of an unnamed symbol.
5695 */
5696 if (type->is_void()) {
5697 if (this->identifier != NULL)
5698 _mesa_glsl_error(& loc, state,
5699 "named parameter cannot have type `void'");
5700
5701 is_void = true;
5702 return NULL;
5703 }
5704
5705 if (formal_parameter && (this->identifier == NULL)) {
5706 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5707 return NULL;
5708 }
5709
5710 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5711 * call already handled the "vec4[..] foo" case.
5712 */
5713 type = process_array_type(&loc, type, this->array_specifier, state);
5714
5715 if (!type->is_error() && type->is_unsized_array()) {
5716 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5717 "a declared size");
5718 type = glsl_type::error_type;
5719 }
5720
5721 is_void = false;
5722 ir_variable *var = new(ctx)
5723 ir_variable(type, this->identifier, ir_var_function_in);
5724
5725 /* Apply any specified qualifiers to the parameter declaration. Note that
5726 * for function parameters the default mode is 'in'.
5727 */
5728 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5729 true);
5730
5731 /* From section 4.1.7 of the GLSL 4.40 spec:
5732 *
5733 * "Opaque variables cannot be treated as l-values; hence cannot
5734 * be used as out or inout function parameters, nor can they be
5735 * assigned into."
5736 *
5737 * From section 4.1.7 of the ARB_bindless_texture spec:
5738 *
5739 * "Samplers can be used as l-values, so can be assigned into and used
5740 * as "out" and "inout" function parameters."
5741 *
5742 * From section 4.1.X of the ARB_bindless_texture spec:
5743 *
5744 * "Images can be used as l-values, so can be assigned into and used as
5745 * "out" and "inout" function parameters."
5746 */
5747 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5748 && (type->contains_atomic() ||
5749 (!state->has_bindless() && type->contains_opaque()))) {
5750 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5751 "contain %s variables",
5752 state->has_bindless() ? "atomic" : "opaque");
5753 type = glsl_type::error_type;
5754 }
5755
5756 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5757 *
5758 * "When calling a function, expressions that do not evaluate to
5759 * l-values cannot be passed to parameters declared as out or inout."
5760 *
5761 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5762 *
5763 * "Other binary or unary expressions, non-dereferenced arrays,
5764 * function names, swizzles with repeated fields, and constants
5765 * cannot be l-values."
5766 *
5767 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5768 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5769 */
5770 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5771 && type->is_array()
5772 && !state->check_version(120, 100, &loc,
5773 "arrays cannot be out or inout parameters")) {
5774 type = glsl_type::error_type;
5775 }
5776
5777 instructions->push_tail(var);
5778
5779 /* Parameter declarations do not have r-values.
5780 */
5781 return NULL;
5782 }
5783
5784
5785 void
5786 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5787 bool formal,
5788 exec_list *ir_parameters,
5789 _mesa_glsl_parse_state *state)
5790 {
5791 ast_parameter_declarator *void_param = NULL;
5792 unsigned count = 0;
5793
5794 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5795 param->formal_parameter = formal;
5796 param->hir(ir_parameters, state);
5797
5798 if (param->is_void)
5799 void_param = param;
5800
5801 count++;
5802 }
5803
5804 if ((void_param != NULL) && (count > 1)) {
5805 YYLTYPE loc = void_param->get_location();
5806
5807 _mesa_glsl_error(& loc, state,
5808 "`void' parameter must be only parameter");
5809 }
5810 }
5811
5812
5813 void
5814 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5815 {
5816 /* IR invariants disallow function declarations or definitions
5817 * nested within other function definitions. But there is no
5818 * requirement about the relative order of function declarations
5819 * and definitions with respect to one another. So simply insert
5820 * the new ir_function block at the end of the toplevel instruction
5821 * list.
5822 */
5823 state->toplevel_ir->push_tail(f);
5824 }
5825
5826
5827 ir_rvalue *
5828 ast_function::hir(exec_list *instructions,
5829 struct _mesa_glsl_parse_state *state)
5830 {
5831 void *ctx = state;
5832 ir_function *f = NULL;
5833 ir_function_signature *sig = NULL;
5834 exec_list hir_parameters;
5835 YYLTYPE loc = this->get_location();
5836
5837 const char *const name = identifier;
5838
5839 /* New functions are always added to the top-level IR instruction stream,
5840 * so this instruction list pointer is ignored. See also emit_function
5841 * (called below).
5842 */
5843 (void) instructions;
5844
5845 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5846 *
5847 * "Function declarations (prototypes) cannot occur inside of functions;
5848 * they must be at global scope, or for the built-in functions, outside
5849 * the global scope."
5850 *
5851 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5852 *
5853 * "User defined functions may only be defined within the global scope."
5854 *
5855 * Note that this language does not appear in GLSL 1.10.
5856 */
5857 if ((state->current_function != NULL) &&
5858 state->is_version(120, 100)) {
5859 YYLTYPE loc = this->get_location();
5860 _mesa_glsl_error(&loc, state,
5861 "declaration of function `%s' not allowed within "
5862 "function body", name);
5863 }
5864
5865 validate_identifier(name, this->get_location(), state);
5866
5867 /* Convert the list of function parameters to HIR now so that they can be
5868 * used below to compare this function's signature with previously seen
5869 * signatures for functions with the same name.
5870 */
5871 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5872 is_definition,
5873 & hir_parameters, state);
5874
5875 const char *return_type_name;
5876 const glsl_type *return_type =
5877 this->return_type->glsl_type(& return_type_name, state);
5878
5879 if (!return_type) {
5880 YYLTYPE loc = this->get_location();
5881 _mesa_glsl_error(&loc, state,
5882 "function `%s' has undeclared return type `%s'",
5883 name, return_type_name);
5884 return_type = glsl_type::error_type;
5885 }
5886
5887 /* ARB_shader_subroutine states:
5888 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5889 * subroutine(...) to a function declaration."
5890 */
5891 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5892 YYLTYPE loc = this->get_location();
5893 _mesa_glsl_error(&loc, state,
5894 "function declaration `%s' cannot have subroutine prepended",
5895 name);
5896 }
5897
5898 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5899 * "No qualifier is allowed on the return type of a function."
5900 */
5901 if (this->return_type->has_qualifiers(state)) {
5902 YYLTYPE loc = this->get_location();
5903 _mesa_glsl_error(& loc, state,
5904 "function `%s' return type has qualifiers", name);
5905 }
5906
5907 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5908 *
5909 * "Arrays are allowed as arguments and as the return type. In both
5910 * cases, the array must be explicitly sized."
5911 */
5912 if (return_type->is_unsized_array()) {
5913 YYLTYPE loc = this->get_location();
5914 _mesa_glsl_error(& loc, state,
5915 "function `%s' return type array must be explicitly "
5916 "sized", name);
5917 }
5918
5919 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5920 *
5921 * "Arrays are allowed as arguments, but not as the return type. [...]
5922 * The return type can also be a structure if the structure does not
5923 * contain an array."
5924 */
5925 if (state->language_version == 100 && return_type->contains_array()) {
5926 YYLTYPE loc = this->get_location();
5927 _mesa_glsl_error(& loc, state,
5928 "function `%s' return type contains an array", name);
5929 }
5930
5931 /* From section 4.1.7 of the GLSL 4.40 spec:
5932 *
5933 * "[Opaque types] can only be declared as function parameters
5934 * or uniform-qualified variables."
5935 *
5936 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5937 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5938 * (Images)", this should be allowed.
5939 */
5940 if (return_type->contains_atomic() ||
5941 (!state->has_bindless() && return_type->contains_opaque())) {
5942 YYLTYPE loc = this->get_location();
5943 _mesa_glsl_error(&loc, state,
5944 "function `%s' return type can't contain an %s type",
5945 name, state->has_bindless() ? "atomic" : "opaque");
5946 }
5947
5948 /**/
5949 if (return_type->is_subroutine()) {
5950 YYLTYPE loc = this->get_location();
5951 _mesa_glsl_error(&loc, state,
5952 "function `%s' return type can't be a subroutine type",
5953 name);
5954 }
5955
5956
5957 /* Create an ir_function if one doesn't already exist. */
5958 f = state->symbols->get_function(name);
5959 if (f == NULL) {
5960 f = new(ctx) ir_function(name);
5961 if (!this->return_type->qualifier.is_subroutine_decl()) {
5962 if (!state->symbols->add_function(f)) {
5963 /* This function name shadows a non-function use of the same name. */
5964 YYLTYPE loc = this->get_location();
5965 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5966 "non-function", name);
5967 return NULL;
5968 }
5969 }
5970 emit_function(state, f);
5971 }
5972
5973 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5974 *
5975 * "A shader cannot redefine or overload built-in functions."
5976 *
5977 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5978 *
5979 * "User code can overload the built-in functions but cannot redefine
5980 * them."
5981 */
5982 if (state->es_shader) {
5983 /* Local shader has no exact candidates; check the built-ins. */
5984 _mesa_glsl_initialize_builtin_functions();
5985 if (state->language_version >= 300 &&
5986 _mesa_glsl_has_builtin_function(state, name)) {
5987 YYLTYPE loc = this->get_location();
5988 _mesa_glsl_error(& loc, state,
5989 "A shader cannot redefine or overload built-in "
5990 "function `%s' in GLSL ES 3.00", name);
5991 return NULL;
5992 }
5993
5994 if (state->language_version == 100) {
5995 ir_function_signature *sig =
5996 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5997 if (sig && sig->is_builtin()) {
5998 _mesa_glsl_error(& loc, state,
5999 "A shader cannot redefine built-in "
6000 "function `%s' in GLSL ES 1.00", name);
6001 }
6002 }
6003 }
6004
6005 /* Verify that this function's signature either doesn't match a previously
6006 * seen signature for a function with the same name, or, if a match is found,
6007 * that the previously seen signature does not have an associated definition.
6008 */
6009 if (state->es_shader || f->has_user_signature()) {
6010 sig = f->exact_matching_signature(state, &hir_parameters);
6011 if (sig != NULL) {
6012 const char *badvar = sig->qualifiers_match(&hir_parameters);
6013 if (badvar != NULL) {
6014 YYLTYPE loc = this->get_location();
6015
6016 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6017 "qualifiers don't match prototype", name, badvar);
6018 }
6019
6020 if (sig->return_type != return_type) {
6021 YYLTYPE loc = this->get_location();
6022
6023 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6024 "match prototype", name);
6025 }
6026
6027 if (sig->is_defined) {
6028 if (is_definition) {
6029 YYLTYPE loc = this->get_location();
6030 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6031 } else {
6032 /* We just encountered a prototype that exactly matches a
6033 * function that's already been defined. This is redundant,
6034 * and we should ignore it.
6035 */
6036 return NULL;
6037 }
6038 } else if (state->language_version == 100 && !is_definition) {
6039 /* From the GLSL 1.00 spec, section 4.2.7:
6040 *
6041 * "A particular variable, structure or function declaration
6042 * may occur at most once within a scope with the exception
6043 * that a single function prototype plus the corresponding
6044 * function definition are allowed."
6045 */
6046 YYLTYPE loc = this->get_location();
6047 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6048 }
6049 }
6050 }
6051
6052 /* Verify the return type of main() */
6053 if (strcmp(name, "main") == 0) {
6054 if (! return_type->is_void()) {
6055 YYLTYPE loc = this->get_location();
6056
6057 _mesa_glsl_error(& loc, state, "main() must return void");
6058 }
6059
6060 if (!hir_parameters.is_empty()) {
6061 YYLTYPE loc = this->get_location();
6062
6063 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6064 }
6065 }
6066
6067 /* Finish storing the information about this new function in its signature.
6068 */
6069 if (sig == NULL) {
6070 sig = new(ctx) ir_function_signature(return_type);
6071 f->add_signature(sig);
6072 }
6073
6074 sig->replace_parameters(&hir_parameters);
6075 signature = sig;
6076
6077 if (this->return_type->qualifier.subroutine_list) {
6078 int idx;
6079
6080 if (this->return_type->qualifier.flags.q.explicit_index) {
6081 unsigned qual_index;
6082 if (process_qualifier_constant(state, &loc, "index",
6083 this->return_type->qualifier.index,
6084 &qual_index)) {
6085 if (!state->has_explicit_uniform_location()) {
6086 _mesa_glsl_error(&loc, state, "subroutine index requires "
6087 "GL_ARB_explicit_uniform_location or "
6088 "GLSL 4.30");
6089 } else if (qual_index >= MAX_SUBROUTINES) {
6090 _mesa_glsl_error(&loc, state,
6091 "invalid subroutine index (%d) index must "
6092 "be a number between 0 and "
6093 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6094 MAX_SUBROUTINES - 1);
6095 } else {
6096 f->subroutine_index = qual_index;
6097 }
6098 }
6099 }
6100
6101 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6102 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6103 f->num_subroutine_types);
6104 idx = 0;
6105 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6106 const struct glsl_type *type;
6107 /* the subroutine type must be already declared */
6108 type = state->symbols->get_type(decl->identifier);
6109 if (!type) {
6110 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6111 }
6112
6113 for (int i = 0; i < state->num_subroutine_types; i++) {
6114 ir_function *fn = state->subroutine_types[i];
6115 ir_function_signature *tsig = NULL;
6116
6117 if (strcmp(fn->name, decl->identifier))
6118 continue;
6119
6120 tsig = fn->matching_signature(state, &sig->parameters,
6121 false);
6122 if (!tsig) {
6123 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6124 } else {
6125 if (tsig->return_type != sig->return_type) {
6126 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6127 }
6128 }
6129 }
6130 f->subroutine_types[idx++] = type;
6131 }
6132 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6133 ir_function *,
6134 state->num_subroutines + 1);
6135 state->subroutines[state->num_subroutines] = f;
6136 state->num_subroutines++;
6137
6138 }
6139
6140 if (this->return_type->qualifier.is_subroutine_decl()) {
6141 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6142 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6143 return NULL;
6144 }
6145 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6146 ir_function *,
6147 state->num_subroutine_types + 1);
6148 state->subroutine_types[state->num_subroutine_types] = f;
6149 state->num_subroutine_types++;
6150
6151 f->is_subroutine = true;
6152 }
6153
6154 /* Function declarations (prototypes) do not have r-values.
6155 */
6156 return NULL;
6157 }
6158
6159
6160 ir_rvalue *
6161 ast_function_definition::hir(exec_list *instructions,
6162 struct _mesa_glsl_parse_state *state)
6163 {
6164 prototype->is_definition = true;
6165 prototype->hir(instructions, state);
6166
6167 ir_function_signature *signature = prototype->signature;
6168 if (signature == NULL)
6169 return NULL;
6170
6171 assert(state->current_function == NULL);
6172 state->current_function = signature;
6173 state->found_return = false;
6174
6175 /* Duplicate parameters declared in the prototype as concrete variables.
6176 * Add these to the symbol table.
6177 */
6178 state->symbols->push_scope();
6179 foreach_in_list(ir_variable, var, &signature->parameters) {
6180 assert(var->as_variable() != NULL);
6181
6182 /* The only way a parameter would "exist" is if two parameters have
6183 * the same name.
6184 */
6185 if (state->symbols->name_declared_this_scope(var->name)) {
6186 YYLTYPE loc = this->get_location();
6187
6188 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6189 } else {
6190 state->symbols->add_variable(var);
6191 }
6192 }
6193
6194 /* Convert the body of the function to HIR. */
6195 this->body->hir(&signature->body, state);
6196 signature->is_defined = true;
6197
6198 state->symbols->pop_scope();
6199
6200 assert(state->current_function == signature);
6201 state->current_function = NULL;
6202
6203 if (!signature->return_type->is_void() && !state->found_return) {
6204 YYLTYPE loc = this->get_location();
6205 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6206 "%s, but no return statement",
6207 signature->function_name(),
6208 signature->return_type->name);
6209 }
6210
6211 /* Function definitions do not have r-values.
6212 */
6213 return NULL;
6214 }
6215
6216
6217 ir_rvalue *
6218 ast_jump_statement::hir(exec_list *instructions,
6219 struct _mesa_glsl_parse_state *state)
6220 {
6221 void *ctx = state;
6222
6223 switch (mode) {
6224 case ast_return: {
6225 ir_return *inst;
6226 assert(state->current_function);
6227
6228 if (opt_return_value) {
6229 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6230
6231 /* The value of the return type can be NULL if the shader says
6232 * 'return foo();' and foo() is a function that returns void.
6233 *
6234 * NOTE: The GLSL spec doesn't say that this is an error. The type
6235 * of the return value is void. If the return type of the function is
6236 * also void, then this should compile without error. Seriously.
6237 */
6238 const glsl_type *const ret_type =
6239 (ret == NULL) ? glsl_type::void_type : ret->type;
6240
6241 /* Implicit conversions are not allowed for return values prior to
6242 * ARB_shading_language_420pack.
6243 */
6244 if (state->current_function->return_type != ret_type) {
6245 YYLTYPE loc = this->get_location();
6246
6247 if (state->has_420pack()) {
6248 if (!apply_implicit_conversion(state->current_function->return_type,
6249 ret, state)) {
6250 _mesa_glsl_error(& loc, state,
6251 "could not implicitly convert return value "
6252 "to %s, in function `%s'",
6253 state->current_function->return_type->name,
6254 state->current_function->function_name());
6255 }
6256 } else {
6257 _mesa_glsl_error(& loc, state,
6258 "`return' with wrong type %s, in function `%s' "
6259 "returning %s",
6260 ret_type->name,
6261 state->current_function->function_name(),
6262 state->current_function->return_type->name);
6263 }
6264 } else if (state->current_function->return_type->base_type ==
6265 GLSL_TYPE_VOID) {
6266 YYLTYPE loc = this->get_location();
6267
6268 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6269 * specs add a clarification:
6270 *
6271 * "A void function can only use return without a return argument, even if
6272 * the return argument has void type. Return statements only accept values:
6273 *
6274 * void func1() { }
6275 * void func2() { return func1(); } // illegal return statement"
6276 */
6277 _mesa_glsl_error(& loc, state,
6278 "void functions can only use `return' without a "
6279 "return argument");
6280 }
6281
6282 inst = new(ctx) ir_return(ret);
6283 } else {
6284 if (state->current_function->return_type->base_type !=
6285 GLSL_TYPE_VOID) {
6286 YYLTYPE loc = this->get_location();
6287
6288 _mesa_glsl_error(& loc, state,
6289 "`return' with no value, in function %s returning "
6290 "non-void",
6291 state->current_function->function_name());
6292 }
6293 inst = new(ctx) ir_return;
6294 }
6295
6296 state->found_return = true;
6297 instructions->push_tail(inst);
6298 break;
6299 }
6300
6301 case ast_discard:
6302 if (state->stage != MESA_SHADER_FRAGMENT) {
6303 YYLTYPE loc = this->get_location();
6304
6305 _mesa_glsl_error(& loc, state,
6306 "`discard' may only appear in a fragment shader");
6307 }
6308 instructions->push_tail(new(ctx) ir_discard);
6309 break;
6310
6311 case ast_break:
6312 case ast_continue:
6313 if (mode == ast_continue &&
6314 state->loop_nesting_ast == NULL) {
6315 YYLTYPE loc = this->get_location();
6316
6317 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6318 } else if (mode == ast_break &&
6319 state->loop_nesting_ast == NULL &&
6320 state->switch_state.switch_nesting_ast == NULL) {
6321 YYLTYPE loc = this->get_location();
6322
6323 _mesa_glsl_error(& loc, state,
6324 "break may only appear in a loop or a switch");
6325 } else {
6326 /* For a loop, inline the for loop expression again, since we don't
6327 * know where near the end of the loop body the normal copy of it is
6328 * going to be placed. Same goes for the condition for a do-while
6329 * loop.
6330 */
6331 if (state->loop_nesting_ast != NULL &&
6332 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6333 if (state->loop_nesting_ast->rest_expression) {
6334 state->loop_nesting_ast->rest_expression->hir(instructions,
6335 state);
6336 }
6337 if (state->loop_nesting_ast->mode ==
6338 ast_iteration_statement::ast_do_while) {
6339 state->loop_nesting_ast->condition_to_hir(instructions, state);
6340 }
6341 }
6342
6343 if (state->switch_state.is_switch_innermost &&
6344 mode == ast_continue) {
6345 /* Set 'continue_inside' to true. */
6346 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6347 ir_dereference_variable *deref_continue_inside_var =
6348 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6349 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6350 true_val));
6351
6352 /* Break out from the switch, continue for the loop will
6353 * be called right after switch. */
6354 ir_loop_jump *const jump =
6355 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6356 instructions->push_tail(jump);
6357
6358 } else if (state->switch_state.is_switch_innermost &&
6359 mode == ast_break) {
6360 /* Force break out of switch by inserting a break. */
6361 ir_loop_jump *const jump =
6362 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6363 instructions->push_tail(jump);
6364 } else {
6365 ir_loop_jump *const jump =
6366 new(ctx) ir_loop_jump((mode == ast_break)
6367 ? ir_loop_jump::jump_break
6368 : ir_loop_jump::jump_continue);
6369 instructions->push_tail(jump);
6370 }
6371 }
6372
6373 break;
6374 }
6375
6376 /* Jump instructions do not have r-values.
6377 */
6378 return NULL;
6379 }
6380
6381
6382 ir_rvalue *
6383 ast_selection_statement::hir(exec_list *instructions,
6384 struct _mesa_glsl_parse_state *state)
6385 {
6386 void *ctx = state;
6387
6388 ir_rvalue *const condition = this->condition->hir(instructions, state);
6389
6390 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6391 *
6392 * "Any expression whose type evaluates to a Boolean can be used as the
6393 * conditional expression bool-expression. Vector types are not accepted
6394 * as the expression to if."
6395 *
6396 * The checks are separated so that higher quality diagnostics can be
6397 * generated for cases where both rules are violated.
6398 */
6399 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6400 YYLTYPE loc = this->condition->get_location();
6401
6402 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6403 "boolean");
6404 }
6405
6406 ir_if *const stmt = new(ctx) ir_if(condition);
6407
6408 if (then_statement != NULL) {
6409 state->symbols->push_scope();
6410 then_statement->hir(& stmt->then_instructions, state);
6411 state->symbols->pop_scope();
6412 }
6413
6414 if (else_statement != NULL) {
6415 state->symbols->push_scope();
6416 else_statement->hir(& stmt->else_instructions, state);
6417 state->symbols->pop_scope();
6418 }
6419
6420 instructions->push_tail(stmt);
6421
6422 /* if-statements do not have r-values.
6423 */
6424 return NULL;
6425 }
6426
6427
6428 struct case_label {
6429 /** Value of the case label. */
6430 unsigned value;
6431
6432 /** Does this label occur after the default? */
6433 bool after_default;
6434
6435 /**
6436 * AST for the case label.
6437 *
6438 * This is only used to generate error messages for duplicate labels.
6439 */
6440 ast_expression *ast;
6441 };
6442
6443 /* Used for detection of duplicate case values, compare
6444 * given contents directly.
6445 */
6446 static bool
6447 compare_case_value(const void *a, const void *b)
6448 {
6449 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6450 }
6451
6452
6453 /* Used for detection of duplicate case values, just
6454 * returns key contents as is.
6455 */
6456 static unsigned
6457 key_contents(const void *key)
6458 {
6459 return ((struct case_label *) key)->value;
6460 }
6461
6462
6463 ir_rvalue *
6464 ast_switch_statement::hir(exec_list *instructions,
6465 struct _mesa_glsl_parse_state *state)
6466 {
6467 void *ctx = state;
6468
6469 ir_rvalue *const test_expression =
6470 this->test_expression->hir(instructions, state);
6471
6472 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6473 *
6474 * "The type of init-expression in a switch statement must be a
6475 * scalar integer."
6476 */
6477 if (!test_expression->type->is_scalar() ||
6478 !test_expression->type->is_integer()) {
6479 YYLTYPE loc = this->test_expression->get_location();
6480
6481 _mesa_glsl_error(& loc,
6482 state,
6483 "switch-statement expression must be scalar "
6484 "integer");
6485 return NULL;
6486 }
6487
6488 /* Track the switch-statement nesting in a stack-like manner.
6489 */
6490 struct glsl_switch_state saved = state->switch_state;
6491
6492 state->switch_state.is_switch_innermost = true;
6493 state->switch_state.switch_nesting_ast = this;
6494 state->switch_state.labels_ht =
6495 _mesa_hash_table_create(NULL, key_contents,
6496 compare_case_value);
6497 state->switch_state.previous_default = NULL;
6498
6499 /* Initalize is_fallthru state to false.
6500 */
6501 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6502 state->switch_state.is_fallthru_var =
6503 new(ctx) ir_variable(glsl_type::bool_type,
6504 "switch_is_fallthru_tmp",
6505 ir_var_temporary);
6506 instructions->push_tail(state->switch_state.is_fallthru_var);
6507
6508 ir_dereference_variable *deref_is_fallthru_var =
6509 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6510 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6511 is_fallthru_val));
6512
6513 /* Initialize continue_inside state to false.
6514 */
6515 state->switch_state.continue_inside =
6516 new(ctx) ir_variable(glsl_type::bool_type,
6517 "continue_inside_tmp",
6518 ir_var_temporary);
6519 instructions->push_tail(state->switch_state.continue_inside);
6520
6521 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6522 ir_dereference_variable *deref_continue_inside_var =
6523 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6524 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6525 false_val));
6526
6527 state->switch_state.run_default =
6528 new(ctx) ir_variable(glsl_type::bool_type,
6529 "run_default_tmp",
6530 ir_var_temporary);
6531 instructions->push_tail(state->switch_state.run_default);
6532
6533 /* Loop around the switch is used for flow control. */
6534 ir_loop * loop = new(ctx) ir_loop();
6535 instructions->push_tail(loop);
6536
6537 /* Cache test expression.
6538 */
6539 test_to_hir(&loop->body_instructions, state);
6540
6541 /* Emit code for body of switch stmt.
6542 */
6543 body->hir(&loop->body_instructions, state);
6544
6545 /* Insert a break at the end to exit loop. */
6546 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6547 loop->body_instructions.push_tail(jump);
6548
6549 /* If we are inside loop, check if continue got called inside switch. */
6550 if (state->loop_nesting_ast != NULL) {
6551 ir_dereference_variable *deref_continue_inside =
6552 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6553 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6554 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6555
6556 if (state->loop_nesting_ast != NULL) {
6557 if (state->loop_nesting_ast->rest_expression) {
6558 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6559 state);
6560 }
6561 if (state->loop_nesting_ast->mode ==
6562 ast_iteration_statement::ast_do_while) {
6563 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6564 }
6565 }
6566 irif->then_instructions.push_tail(jump);
6567 instructions->push_tail(irif);
6568 }
6569
6570 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6571
6572 state->switch_state = saved;
6573
6574 /* Switch statements do not have r-values. */
6575 return NULL;
6576 }
6577
6578
6579 void
6580 ast_switch_statement::test_to_hir(exec_list *instructions,
6581 struct _mesa_glsl_parse_state *state)
6582 {
6583 void *ctx = state;
6584
6585 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6586 * on the switch test case. The first one would be already raised when
6587 * getting the test_expression at ast_switch_statement::hir
6588 */
6589 test_expression->set_is_lhs(true);
6590 /* Cache value of test expression. */
6591 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6592
6593 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6594 "switch_test_tmp",
6595 ir_var_temporary);
6596 ir_dereference_variable *deref_test_var =
6597 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6598
6599 instructions->push_tail(state->switch_state.test_var);
6600 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6601 }
6602
6603
6604 ir_rvalue *
6605 ast_switch_body::hir(exec_list *instructions,
6606 struct _mesa_glsl_parse_state *state)
6607 {
6608 if (stmts != NULL)
6609 stmts->hir(instructions, state);
6610
6611 /* Switch bodies do not have r-values. */
6612 return NULL;
6613 }
6614
6615 ir_rvalue *
6616 ast_case_statement_list::hir(exec_list *instructions,
6617 struct _mesa_glsl_parse_state *state)
6618 {
6619 exec_list default_case, after_default, tmp;
6620
6621 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6622 case_stmt->hir(&tmp, state);
6623
6624 /* Default case. */
6625 if (state->switch_state.previous_default && default_case.is_empty()) {
6626 default_case.append_list(&tmp);
6627 continue;
6628 }
6629
6630 /* If default case found, append 'after_default' list. */
6631 if (!default_case.is_empty())
6632 after_default.append_list(&tmp);
6633 else
6634 instructions->append_list(&tmp);
6635 }
6636
6637 /* Handle the default case. This is done here because default might not be
6638 * the last case. We need to add checks against following cases first to see
6639 * if default should be chosen or not.
6640 */
6641 if (!default_case.is_empty()) {
6642 struct hash_entry *entry;
6643 ir_factory body(instructions, state);
6644
6645 ir_expression *cmp = NULL;
6646
6647 hash_table_foreach(state->switch_state.labels_ht, entry) {
6648 const struct case_label *const l = (struct case_label *) entry->data;
6649
6650 /* If the switch init-value is the value of one of the labels that
6651 * occurs after the default case, disable execution of the default
6652 * case.
6653 */
6654 if (l->after_default) {
6655 ir_constant *const cnst =
6656 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6657 ? body.constant(unsigned(l->value))
6658 : body.constant(int(l->value));
6659
6660 cmp = cmp == NULL
6661 ? equal(cnst, state->switch_state.test_var)
6662 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6663 }
6664 }
6665
6666 if (cmp != NULL)
6667 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6668 else
6669 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6670
6671 /* Append default case and all cases after it. */
6672 instructions->append_list(&default_case);
6673 instructions->append_list(&after_default);
6674 }
6675
6676 /* Case statements do not have r-values. */
6677 return NULL;
6678 }
6679
6680 ir_rvalue *
6681 ast_case_statement::hir(exec_list *instructions,
6682 struct _mesa_glsl_parse_state *state)
6683 {
6684 labels->hir(instructions, state);
6685
6686 /* Guard case statements depending on fallthru state. */
6687 ir_dereference_variable *const deref_fallthru_guard =
6688 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6689 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6690
6691 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6692 stmt->hir(& test_fallthru->then_instructions, state);
6693
6694 instructions->push_tail(test_fallthru);
6695
6696 /* Case statements do not have r-values. */
6697 return NULL;
6698 }
6699
6700
6701 ir_rvalue *
6702 ast_case_label_list::hir(exec_list *instructions,
6703 struct _mesa_glsl_parse_state *state)
6704 {
6705 foreach_list_typed (ast_case_label, label, link, & this->labels)
6706 label->hir(instructions, state);
6707
6708 /* Case labels do not have r-values. */
6709 return NULL;
6710 }
6711
6712 ir_rvalue *
6713 ast_case_label::hir(exec_list *instructions,
6714 struct _mesa_glsl_parse_state *state)
6715 {
6716 ir_factory body(instructions, state);
6717
6718 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6719
6720 /* If not default case, ... */
6721 if (this->test_value != NULL) {
6722 /* Conditionally set fallthru state based on
6723 * comparison of cached test expression value to case label.
6724 */
6725 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6726 ir_constant *label_const =
6727 label_rval->constant_expression_value(body.mem_ctx);
6728
6729 if (!label_const) {
6730 YYLTYPE loc = this->test_value->get_location();
6731
6732 _mesa_glsl_error(& loc, state,
6733 "switch statement case label must be a "
6734 "constant expression");
6735
6736 /* Stuff a dummy value in to allow processing to continue. */
6737 label_const = body.constant(0);
6738 } else {
6739 hash_entry *entry =
6740 _mesa_hash_table_search(state->switch_state.labels_ht,
6741 &label_const->value.u[0]);
6742
6743 if (entry) {
6744 const struct case_label *const l =
6745 (struct case_label *) entry->data;
6746 const ast_expression *const previous_label = l->ast;
6747 YYLTYPE loc = this->test_value->get_location();
6748
6749 _mesa_glsl_error(& loc, state, "duplicate case value");
6750
6751 loc = previous_label->get_location();
6752 _mesa_glsl_error(& loc, state, "this is the previous case label");
6753 } else {
6754 struct case_label *l = ralloc(state->switch_state.labels_ht,
6755 struct case_label);
6756
6757 l->value = label_const->value.u[0];
6758 l->after_default = state->switch_state.previous_default != NULL;
6759 l->ast = this->test_value;
6760
6761 _mesa_hash_table_insert(state->switch_state.labels_ht,
6762 &label_const->value.u[0],
6763 l);
6764 }
6765 }
6766
6767 /* Create an r-value version of the ir_constant label here (after we may
6768 * have created a fake one in error cases) that can be passed to
6769 * apply_implicit_conversion below.
6770 */
6771 ir_rvalue *label = label_const;
6772
6773 ir_rvalue *deref_test_var =
6774 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6775
6776 /*
6777 * From GLSL 4.40 specification section 6.2 ("Selection"):
6778 *
6779 * "The type of the init-expression value in a switch statement must
6780 * be a scalar int or uint. The type of the constant-expression value
6781 * in a case label also must be a scalar int or uint. When any pair
6782 * of these values is tested for "equal value" and the types do not
6783 * match, an implicit conversion will be done to convert the int to a
6784 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6785 * is done."
6786 */
6787 if (label->type != state->switch_state.test_var->type) {
6788 YYLTYPE loc = this->test_value->get_location();
6789
6790 const glsl_type *type_a = label->type;
6791 const glsl_type *type_b = state->switch_state.test_var->type;
6792
6793 /* Check if int->uint implicit conversion is supported. */
6794 bool integer_conversion_supported =
6795 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6796 state);
6797
6798 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6799 !integer_conversion_supported) {
6800 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6801 "init-expression and case label (%s != %s)",
6802 type_a->name, type_b->name);
6803 } else {
6804 /* Conversion of the case label. */
6805 if (type_a->base_type == GLSL_TYPE_INT) {
6806 if (!apply_implicit_conversion(glsl_type::uint_type,
6807 label, state))
6808 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6809 } else {
6810 /* Conversion of the init-expression value. */
6811 if (!apply_implicit_conversion(glsl_type::uint_type,
6812 deref_test_var, state))
6813 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6814 }
6815 }
6816
6817 /* If the implicit conversion was allowed, the types will already be
6818 * the same. If the implicit conversion wasn't allowed, smash the
6819 * type of the label anyway. This will prevent the expression
6820 * constructor (below) from failing an assertion.
6821 */
6822 label->type = deref_test_var->type;
6823 }
6824
6825 body.emit(assign(fallthru_var,
6826 logic_or(fallthru_var, equal(label, deref_test_var))));
6827 } else { /* default case */
6828 if (state->switch_state.previous_default) {
6829 YYLTYPE loc = this->get_location();
6830 _mesa_glsl_error(& loc, state,
6831 "multiple default labels in one switch");
6832
6833 loc = state->switch_state.previous_default->get_location();
6834 _mesa_glsl_error(& loc, state, "this is the first default label");
6835 }
6836 state->switch_state.previous_default = this;
6837
6838 /* Set fallthru condition on 'run_default' bool. */
6839 body.emit(assign(fallthru_var,
6840 logic_or(fallthru_var,
6841 state->switch_state.run_default)));
6842 }
6843
6844 /* Case statements do not have r-values. */
6845 return NULL;
6846 }
6847
6848 void
6849 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6850 struct _mesa_glsl_parse_state *state)
6851 {
6852 void *ctx = state;
6853
6854 if (condition != NULL) {
6855 ir_rvalue *const cond =
6856 condition->hir(instructions, state);
6857
6858 if ((cond == NULL)
6859 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6860 YYLTYPE loc = condition->get_location();
6861
6862 _mesa_glsl_error(& loc, state,
6863 "loop condition must be scalar boolean");
6864 } else {
6865 /* As the first code in the loop body, generate a block that looks
6866 * like 'if (!condition) break;' as the loop termination condition.
6867 */
6868 ir_rvalue *const not_cond =
6869 new(ctx) ir_expression(ir_unop_logic_not, cond);
6870
6871 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6872
6873 ir_jump *const break_stmt =
6874 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6875
6876 if_stmt->then_instructions.push_tail(break_stmt);
6877 instructions->push_tail(if_stmt);
6878 }
6879 }
6880 }
6881
6882
6883 ir_rvalue *
6884 ast_iteration_statement::hir(exec_list *instructions,
6885 struct _mesa_glsl_parse_state *state)
6886 {
6887 void *ctx = state;
6888
6889 /* For-loops and while-loops start a new scope, but do-while loops do not.
6890 */
6891 if (mode != ast_do_while)
6892 state->symbols->push_scope();
6893
6894 if (init_statement != NULL)
6895 init_statement->hir(instructions, state);
6896
6897 ir_loop *const stmt = new(ctx) ir_loop();
6898 instructions->push_tail(stmt);
6899
6900 /* Track the current loop nesting. */
6901 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6902
6903 state->loop_nesting_ast = this;
6904
6905 /* Likewise, indicate that following code is closest to a loop,
6906 * NOT closest to a switch.
6907 */
6908 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6909 state->switch_state.is_switch_innermost = false;
6910
6911 if (mode != ast_do_while)
6912 condition_to_hir(&stmt->body_instructions, state);
6913
6914 if (body != NULL)
6915 body->hir(& stmt->body_instructions, state);
6916
6917 if (rest_expression != NULL)
6918 rest_expression->hir(& stmt->body_instructions, state);
6919
6920 if (mode == ast_do_while)
6921 condition_to_hir(&stmt->body_instructions, state);
6922
6923 if (mode != ast_do_while)
6924 state->symbols->pop_scope();
6925
6926 /* Restore previous nesting before returning. */
6927 state->loop_nesting_ast = nesting_ast;
6928 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6929
6930 /* Loops do not have r-values.
6931 */
6932 return NULL;
6933 }
6934
6935
6936 /**
6937 * Determine if the given type is valid for establishing a default precision
6938 * qualifier.
6939 *
6940 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6941 *
6942 * "The precision statement
6943 *
6944 * precision precision-qualifier type;
6945 *
6946 * can be used to establish a default precision qualifier. The type field
6947 * can be either int or float or any of the sampler types, and the
6948 * precision-qualifier can be lowp, mediump, or highp."
6949 *
6950 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6951 * qualifiers on sampler types, but this seems like an oversight (since the
6952 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6953 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6954 * version.
6955 */
6956 static bool
6957 is_valid_default_precision_type(const struct glsl_type *const type)
6958 {
6959 if (type == NULL)
6960 return false;
6961
6962 switch (type->base_type) {
6963 case GLSL_TYPE_INT:
6964 case GLSL_TYPE_FLOAT:
6965 /* "int" and "float" are valid, but vectors and matrices are not. */
6966 return type->vector_elements == 1 && type->matrix_columns == 1;
6967 case GLSL_TYPE_SAMPLER:
6968 case GLSL_TYPE_IMAGE:
6969 case GLSL_TYPE_ATOMIC_UINT:
6970 return true;
6971 default:
6972 return false;
6973 }
6974 }
6975
6976
6977 ir_rvalue *
6978 ast_type_specifier::hir(exec_list *instructions,
6979 struct _mesa_glsl_parse_state *state)
6980 {
6981 if (this->default_precision == ast_precision_none && this->structure == NULL)
6982 return NULL;
6983
6984 YYLTYPE loc = this->get_location();
6985
6986 /* If this is a precision statement, check that the type to which it is
6987 * applied is either float or int.
6988 *
6989 * From section 4.5.3 of the GLSL 1.30 spec:
6990 * "The precision statement
6991 * precision precision-qualifier type;
6992 * can be used to establish a default precision qualifier. The type
6993 * field can be either int or float [...]. Any other types or
6994 * qualifiers will result in an error.
6995 */
6996 if (this->default_precision != ast_precision_none) {
6997 if (!state->check_precision_qualifiers_allowed(&loc))
6998 return NULL;
6999
7000 if (this->structure != NULL) {
7001 _mesa_glsl_error(&loc, state,
7002 "precision qualifiers do not apply to structures");
7003 return NULL;
7004 }
7005
7006 if (this->array_specifier != NULL) {
7007 _mesa_glsl_error(&loc, state,
7008 "default precision statements do not apply to "
7009 "arrays");
7010 return NULL;
7011 }
7012
7013 const struct glsl_type *const type =
7014 state->symbols->get_type(this->type_name);
7015 if (!is_valid_default_precision_type(type)) {
7016 _mesa_glsl_error(&loc, state,
7017 "default precision statements apply only to "
7018 "float, int, and opaque types");
7019 return NULL;
7020 }
7021
7022 if (state->es_shader) {
7023 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7024 * spec says:
7025 *
7026 * "Non-precision qualified declarations will use the precision
7027 * qualifier specified in the most recent precision statement
7028 * that is still in scope. The precision statement has the same
7029 * scoping rules as variable declarations. If it is declared
7030 * inside a compound statement, its effect stops at the end of
7031 * the innermost statement it was declared in. Precision
7032 * statements in nested scopes override precision statements in
7033 * outer scopes. Multiple precision statements for the same basic
7034 * type can appear inside the same scope, with later statements
7035 * overriding earlier statements within that scope."
7036 *
7037 * Default precision specifications follow the same scope rules as
7038 * variables. So, we can track the state of the default precision
7039 * qualifiers in the symbol table, and the rules will just work. This
7040 * is a slight abuse of the symbol table, but it has the semantics
7041 * that we want.
7042 */
7043 state->symbols->add_default_precision_qualifier(this->type_name,
7044 this->default_precision);
7045 }
7046
7047 /* FINISHME: Translate precision statements into IR. */
7048 return NULL;
7049 }
7050
7051 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7052 * process_record_constructor() can do type-checking on C-style initializer
7053 * expressions of structs, but ast_struct_specifier should only be translated
7054 * to HIR if it is declaring the type of a structure.
7055 *
7056 * The ->is_declaration field is false for initializers of variables
7057 * declared separately from the struct's type definition.
7058 *
7059 * struct S { ... }; (is_declaration = true)
7060 * struct T { ... } t = { ... }; (is_declaration = true)
7061 * S s = { ... }; (is_declaration = false)
7062 */
7063 if (this->structure != NULL && this->structure->is_declaration)
7064 return this->structure->hir(instructions, state);
7065
7066 return NULL;
7067 }
7068
7069
7070 /**
7071 * Process a structure or interface block tree into an array of structure fields
7072 *
7073 * After parsing, where there are some syntax differnces, structures and
7074 * interface blocks are almost identical. They are similar enough that the
7075 * AST for each can be processed the same way into a set of
7076 * \c glsl_struct_field to describe the members.
7077 *
7078 * If we're processing an interface block, var_mode should be the type of the
7079 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7080 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7081 * ir_var_auto.
7082 *
7083 * \return
7084 * The number of fields processed. A pointer to the array structure fields is
7085 * stored in \c *fields_ret.
7086 */
7087 static unsigned
7088 ast_process_struct_or_iface_block_members(exec_list *instructions,
7089 struct _mesa_glsl_parse_state *state,
7090 exec_list *declarations,
7091 glsl_struct_field **fields_ret,
7092 bool is_interface,
7093 enum glsl_matrix_layout matrix_layout,
7094 bool allow_reserved_names,
7095 ir_variable_mode var_mode,
7096 ast_type_qualifier *layout,
7097 unsigned block_stream,
7098 unsigned block_xfb_buffer,
7099 unsigned block_xfb_offset,
7100 unsigned expl_location,
7101 unsigned expl_align)
7102 {
7103 unsigned decl_count = 0;
7104 unsigned next_offset = 0;
7105
7106 /* Make an initial pass over the list of fields to determine how
7107 * many there are. Each element in this list is an ast_declarator_list.
7108 * This means that we actually need to count the number of elements in the
7109 * 'declarations' list in each of the elements.
7110 */
7111 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7112 decl_count += decl_list->declarations.length();
7113 }
7114
7115 /* Allocate storage for the fields and process the field
7116 * declarations. As the declarations are processed, try to also convert
7117 * the types to HIR. This ensures that structure definitions embedded in
7118 * other structure definitions or in interface blocks are processed.
7119 */
7120 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7121 decl_count);
7122
7123 bool first_member = true;
7124 bool first_member_has_explicit_location = false;
7125
7126 unsigned i = 0;
7127 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7128 const char *type_name;
7129 YYLTYPE loc = decl_list->get_location();
7130
7131 decl_list->type->specifier->hir(instructions, state);
7132
7133 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7134 *
7135 * "Anonymous structures are not supported; so embedded structures
7136 * must have a declarator. A name given to an embedded struct is
7137 * scoped at the same level as the struct it is embedded in."
7138 *
7139 * The same section of the GLSL 1.20 spec says:
7140 *
7141 * "Anonymous structures are not supported. Embedded structures are
7142 * not supported."
7143 *
7144 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7145 * embedded structures in 1.10 only.
7146 */
7147 if (state->language_version != 110 &&
7148 decl_list->type->specifier->structure != NULL)
7149 _mesa_glsl_error(&loc, state,
7150 "embedded structure declarations are not allowed");
7151
7152 const glsl_type *decl_type =
7153 decl_list->type->glsl_type(& type_name, state);
7154
7155 const struct ast_type_qualifier *const qual =
7156 &decl_list->type->qualifier;
7157
7158 /* From section 4.3.9 of the GLSL 4.40 spec:
7159 *
7160 * "[In interface blocks] opaque types are not allowed."
7161 *
7162 * It should be impossible for decl_type to be NULL here. Cases that
7163 * might naturally lead to decl_type being NULL, especially for the
7164 * is_interface case, will have resulted in compilation having
7165 * already halted due to a syntax error.
7166 */
7167 assert(decl_type);
7168
7169 if (is_interface) {
7170 /* From section 4.3.7 of the ARB_bindless_texture spec:
7171 *
7172 * "(remove the following bullet from the last list on p. 39,
7173 * thereby permitting sampler types in interface blocks; image
7174 * types are also permitted in blocks by this extension)"
7175 *
7176 * * sampler types are not allowed
7177 */
7178 if (decl_type->contains_atomic() ||
7179 (!state->has_bindless() && decl_type->contains_opaque())) {
7180 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7181 "interface block contains %s variable",
7182 state->has_bindless() ? "atomic" : "opaque");
7183 }
7184 } else {
7185 if (decl_type->contains_atomic()) {
7186 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7187 *
7188 * "Members of structures cannot be declared as atomic counter
7189 * types."
7190 */
7191 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7192 }
7193
7194 if (!state->has_bindless() && decl_type->contains_image()) {
7195 /* FINISHME: Same problem as with atomic counters.
7196 * FINISHME: Request clarification from Khronos and add
7197 * FINISHME: spec quotation here.
7198 */
7199 _mesa_glsl_error(&loc, state, "image in structure");
7200 }
7201 }
7202
7203 if (qual->flags.q.explicit_binding) {
7204 _mesa_glsl_error(&loc, state,
7205 "binding layout qualifier cannot be applied "
7206 "to struct or interface block members");
7207 }
7208
7209 if (is_interface) {
7210 if (!first_member) {
7211 if (!layout->flags.q.explicit_location &&
7212 ((first_member_has_explicit_location &&
7213 !qual->flags.q.explicit_location) ||
7214 (!first_member_has_explicit_location &&
7215 qual->flags.q.explicit_location))) {
7216 _mesa_glsl_error(&loc, state,
7217 "when block-level location layout qualifier "
7218 "is not supplied either all members must "
7219 "have a location layout qualifier or all "
7220 "members must not have a location layout "
7221 "qualifier");
7222 }
7223 } else {
7224 first_member = false;
7225 first_member_has_explicit_location =
7226 qual->flags.q.explicit_location;
7227 }
7228 }
7229
7230 if (qual->flags.q.std140 ||
7231 qual->flags.q.std430 ||
7232 qual->flags.q.packed ||
7233 qual->flags.q.shared) {
7234 _mesa_glsl_error(&loc, state,
7235 "uniform/shader storage block layout qualifiers "
7236 "std140, std430, packed, and shared can only be "
7237 "applied to uniform/shader storage blocks, not "
7238 "members");
7239 }
7240
7241 if (qual->flags.q.constant) {
7242 _mesa_glsl_error(&loc, state,
7243 "const storage qualifier cannot be applied "
7244 "to struct or interface block members");
7245 }
7246
7247 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7248 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7249
7250 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7251 *
7252 * "A block member may be declared with a stream identifier, but
7253 * the specified stream must match the stream associated with the
7254 * containing block."
7255 */
7256 if (qual->flags.q.explicit_stream) {
7257 unsigned qual_stream;
7258 if (process_qualifier_constant(state, &loc, "stream",
7259 qual->stream, &qual_stream) &&
7260 qual_stream != block_stream) {
7261 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7262 "interface block member does not match "
7263 "the interface block (%u vs %u)", qual_stream,
7264 block_stream);
7265 }
7266 }
7267
7268 int xfb_buffer;
7269 unsigned explicit_xfb_buffer = 0;
7270 if (qual->flags.q.explicit_xfb_buffer) {
7271 unsigned qual_xfb_buffer;
7272 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7273 qual->xfb_buffer, &qual_xfb_buffer)) {
7274 explicit_xfb_buffer = 1;
7275 if (qual_xfb_buffer != block_xfb_buffer)
7276 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7277 "interface block member does not match "
7278 "the interface block (%u vs %u)",
7279 qual_xfb_buffer, block_xfb_buffer);
7280 }
7281 xfb_buffer = (int) qual_xfb_buffer;
7282 } else {
7283 if (layout)
7284 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7285 xfb_buffer = (int) block_xfb_buffer;
7286 }
7287
7288 int xfb_stride = -1;
7289 if (qual->flags.q.explicit_xfb_stride) {
7290 unsigned qual_xfb_stride;
7291 if (process_qualifier_constant(state, &loc, "xfb_stride",
7292 qual->xfb_stride, &qual_xfb_stride)) {
7293 xfb_stride = (int) qual_xfb_stride;
7294 }
7295 }
7296
7297 if (qual->flags.q.uniform && qual->has_interpolation()) {
7298 _mesa_glsl_error(&loc, state,
7299 "interpolation qualifiers cannot be used "
7300 "with uniform interface blocks");
7301 }
7302
7303 if ((qual->flags.q.uniform || !is_interface) &&
7304 qual->has_auxiliary_storage()) {
7305 _mesa_glsl_error(&loc, state,
7306 "auxiliary storage qualifiers cannot be used "
7307 "in uniform blocks or structures.");
7308 }
7309
7310 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7311 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7312 _mesa_glsl_error(&loc, state,
7313 "row_major and column_major can only be "
7314 "applied to interface blocks");
7315 } else
7316 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7317 }
7318
7319 foreach_list_typed (ast_declaration, decl, link,
7320 &decl_list->declarations) {
7321 YYLTYPE loc = decl->get_location();
7322
7323 if (!allow_reserved_names)
7324 validate_identifier(decl->identifier, loc, state);
7325
7326 const struct glsl_type *field_type =
7327 process_array_type(&loc, decl_type, decl->array_specifier, state);
7328 validate_array_dimensions(field_type, state, &loc);
7329 fields[i].type = field_type;
7330 fields[i].name = decl->identifier;
7331 fields[i].interpolation =
7332 interpret_interpolation_qualifier(qual, field_type,
7333 var_mode, state, &loc);
7334 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7335 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7336 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7337 fields[i].precision = qual->precision;
7338 fields[i].offset = -1;
7339 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7340 fields[i].xfb_buffer = xfb_buffer;
7341 fields[i].xfb_stride = xfb_stride;
7342
7343 if (qual->flags.q.explicit_location) {
7344 unsigned qual_location;
7345 if (process_qualifier_constant(state, &loc, "location",
7346 qual->location, &qual_location)) {
7347 fields[i].location = qual_location +
7348 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7349 expl_location = fields[i].location +
7350 fields[i].type->count_attribute_slots(false);
7351 }
7352 } else {
7353 if (layout && layout->flags.q.explicit_location) {
7354 fields[i].location = expl_location;
7355 expl_location += fields[i].type->count_attribute_slots(false);
7356 } else {
7357 fields[i].location = -1;
7358 }
7359 }
7360
7361 /* Offset can only be used with std430 and std140 layouts an initial
7362 * value of 0 is used for error detection.
7363 */
7364 unsigned align = 0;
7365 unsigned size = 0;
7366 if (layout) {
7367 bool row_major;
7368 if (qual->flags.q.row_major ||
7369 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7370 row_major = true;
7371 } else {
7372 row_major = false;
7373 }
7374
7375 if(layout->flags.q.std140) {
7376 align = field_type->std140_base_alignment(row_major);
7377 size = field_type->std140_size(row_major);
7378 } else if (layout->flags.q.std430) {
7379 align = field_type->std430_base_alignment(row_major);
7380 size = field_type->std430_size(row_major);
7381 }
7382 }
7383
7384 if (qual->flags.q.explicit_offset) {
7385 unsigned qual_offset;
7386 if (process_qualifier_constant(state, &loc, "offset",
7387 qual->offset, &qual_offset)) {
7388 if (align != 0 && size != 0) {
7389 if (next_offset > qual_offset)
7390 _mesa_glsl_error(&loc, state, "layout qualifier "
7391 "offset overlaps previous member");
7392
7393 if (qual_offset % align) {
7394 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7395 "must be a multiple of the base "
7396 "alignment of %s", field_type->name);
7397 }
7398 fields[i].offset = qual_offset;
7399 next_offset = glsl_align(qual_offset + size, align);
7400 } else {
7401 _mesa_glsl_error(&loc, state, "offset can only be used "
7402 "with std430 and std140 layouts");
7403 }
7404 }
7405 }
7406
7407 if (qual->flags.q.explicit_align || expl_align != 0) {
7408 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7409 next_offset;
7410 if (align == 0 || size == 0) {
7411 _mesa_glsl_error(&loc, state, "align can only be used with "
7412 "std430 and std140 layouts");
7413 } else if (qual->flags.q.explicit_align) {
7414 unsigned member_align;
7415 if (process_qualifier_constant(state, &loc, "align",
7416 qual->align, &member_align)) {
7417 if (member_align == 0 ||
7418 member_align & (member_align - 1)) {
7419 _mesa_glsl_error(&loc, state, "align layout qualifier "
7420 "in not a power of 2");
7421 } else {
7422 fields[i].offset = glsl_align(offset, member_align);
7423 next_offset = glsl_align(fields[i].offset + size, align);
7424 }
7425 }
7426 } else {
7427 fields[i].offset = glsl_align(offset, expl_align);
7428 next_offset = glsl_align(fields[i].offset + size, align);
7429 }
7430 } else if (!qual->flags.q.explicit_offset) {
7431 if (align != 0 && size != 0)
7432 next_offset = glsl_align(next_offset + size, align);
7433 }
7434
7435 /* From the ARB_enhanced_layouts spec:
7436 *
7437 * "The given offset applies to the first component of the first
7438 * member of the qualified entity. Then, within the qualified
7439 * entity, subsequent components are each assigned, in order, to
7440 * the next available offset aligned to a multiple of that
7441 * component's size. Aggregate types are flattened down to the
7442 * component level to get this sequence of components."
7443 */
7444 if (qual->flags.q.explicit_xfb_offset) {
7445 unsigned xfb_offset;
7446 if (process_qualifier_constant(state, &loc, "xfb_offset",
7447 qual->offset, &xfb_offset)) {
7448 fields[i].offset = xfb_offset;
7449 block_xfb_offset = fields[i].offset +
7450 4 * field_type->component_slots();
7451 }
7452 } else {
7453 if (layout && layout->flags.q.explicit_xfb_offset) {
7454 unsigned align = field_type->is_64bit() ? 8 : 4;
7455 fields[i].offset = glsl_align(block_xfb_offset, align);
7456 block_xfb_offset += 4 * field_type->component_slots();
7457 }
7458 }
7459
7460 /* Propogate row- / column-major information down the fields of the
7461 * structure or interface block. Structures need this data because
7462 * the structure may contain a structure that contains ... a matrix
7463 * that need the proper layout.
7464 */
7465 if (is_interface && layout &&
7466 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7467 (field_type->without_array()->is_matrix()
7468 || field_type->without_array()->is_record())) {
7469 /* If no layout is specified for the field, inherit the layout
7470 * from the block.
7471 */
7472 fields[i].matrix_layout = matrix_layout;
7473
7474 if (qual->flags.q.row_major)
7475 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7476 else if (qual->flags.q.column_major)
7477 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7478
7479 /* If we're processing an uniform or buffer block, the matrix
7480 * layout must be decided by this point.
7481 */
7482 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7483 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7484 }
7485
7486 /* Memory qualifiers are allowed on buffer and image variables, while
7487 * the format qualifier is only accepted for images.
7488 */
7489 if (var_mode == ir_var_shader_storage ||
7490 field_type->without_array()->is_image()) {
7491 /* For readonly and writeonly qualifiers the field definition,
7492 * if set, overwrites the layout qualifier.
7493 */
7494 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7495 fields[i].memory_read_only = qual->flags.q.read_only;
7496 fields[i].memory_write_only = qual->flags.q.write_only;
7497 } else {
7498 fields[i].memory_read_only =
7499 layout ? layout->flags.q.read_only : 0;
7500 fields[i].memory_write_only =
7501 layout ? layout->flags.q.write_only : 0;
7502 }
7503
7504 /* For other qualifiers, we set the flag if either the layout
7505 * qualifier or the field qualifier are set
7506 */
7507 fields[i].memory_coherent = qual->flags.q.coherent ||
7508 (layout && layout->flags.q.coherent);
7509 fields[i].memory_volatile = qual->flags.q._volatile ||
7510 (layout && layout->flags.q._volatile);
7511 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7512 (layout && layout->flags.q.restrict_flag);
7513
7514 if (field_type->without_array()->is_image()) {
7515 if (qual->flags.q.explicit_image_format) {
7516 if (qual->image_base_type !=
7517 field_type->without_array()->sampled_type) {
7518 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7519 "match the base data type of the image");
7520 }
7521
7522 fields[i].image_format = qual->image_format;
7523 } else {
7524 if (!qual->flags.q.write_only) {
7525 _mesa_glsl_error(&loc, state, "image not qualified with "
7526 "`writeonly' must have a format layout "
7527 "qualifier");
7528 }
7529
7530 fields[i].image_format = GL_NONE;
7531 }
7532 }
7533 }
7534
7535 i++;
7536 }
7537 }
7538
7539 assert(i == decl_count);
7540
7541 *fields_ret = fields;
7542 return decl_count;
7543 }
7544
7545
7546 ir_rvalue *
7547 ast_struct_specifier::hir(exec_list *instructions,
7548 struct _mesa_glsl_parse_state *state)
7549 {
7550 YYLTYPE loc = this->get_location();
7551
7552 unsigned expl_location = 0;
7553 if (layout && layout->flags.q.explicit_location) {
7554 if (!process_qualifier_constant(state, &loc, "location",
7555 layout->location, &expl_location)) {
7556 return NULL;
7557 } else {
7558 expl_location = VARYING_SLOT_VAR0 + expl_location;
7559 }
7560 }
7561
7562 glsl_struct_field *fields;
7563 unsigned decl_count =
7564 ast_process_struct_or_iface_block_members(instructions,
7565 state,
7566 &this->declarations,
7567 &fields,
7568 false,
7569 GLSL_MATRIX_LAYOUT_INHERITED,
7570 false /* allow_reserved_names */,
7571 ir_var_auto,
7572 layout,
7573 0, /* for interface only */
7574 0, /* for interface only */
7575 0, /* for interface only */
7576 expl_location,
7577 0 /* for interface only */);
7578
7579 validate_identifier(this->name, loc, state);
7580
7581 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7582
7583 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7584 const glsl_type *match = state->symbols->get_type(name);
7585 /* allow struct matching for desktop GL - older UE4 does this */
7586 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7587 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7588 else
7589 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7590 } else {
7591 const glsl_type **s = reralloc(state, state->user_structures,
7592 const glsl_type *,
7593 state->num_user_structures + 1);
7594 if (s != NULL) {
7595 s[state->num_user_structures] = type;
7596 state->user_structures = s;
7597 state->num_user_structures++;
7598 }
7599 }
7600
7601 /* Structure type definitions do not have r-values.
7602 */
7603 return NULL;
7604 }
7605
7606
7607 /**
7608 * Visitor class which detects whether a given interface block has been used.
7609 */
7610 class interface_block_usage_visitor : public ir_hierarchical_visitor
7611 {
7612 public:
7613 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7614 : mode(mode), block(block), found(false)
7615 {
7616 }
7617
7618 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7619 {
7620 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7621 found = true;
7622 return visit_stop;
7623 }
7624 return visit_continue;
7625 }
7626
7627 bool usage_found() const
7628 {
7629 return this->found;
7630 }
7631
7632 private:
7633 ir_variable_mode mode;
7634 const glsl_type *block;
7635 bool found;
7636 };
7637
7638 static bool
7639 is_unsized_array_last_element(ir_variable *v)
7640 {
7641 const glsl_type *interface_type = v->get_interface_type();
7642 int length = interface_type->length;
7643
7644 assert(v->type->is_unsized_array());
7645
7646 /* Check if it is the last element of the interface */
7647 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7648 return true;
7649 return false;
7650 }
7651
7652 static void
7653 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7654 {
7655 var->data.memory_read_only = field.memory_read_only;
7656 var->data.memory_write_only = field.memory_write_only;
7657 var->data.memory_coherent = field.memory_coherent;
7658 var->data.memory_volatile = field.memory_volatile;
7659 var->data.memory_restrict = field.memory_restrict;
7660 }
7661
7662 ir_rvalue *
7663 ast_interface_block::hir(exec_list *instructions,
7664 struct _mesa_glsl_parse_state *state)
7665 {
7666 YYLTYPE loc = this->get_location();
7667
7668 /* Interface blocks must be declared at global scope */
7669 if (state->current_function != NULL) {
7670 _mesa_glsl_error(&loc, state,
7671 "Interface block `%s' must be declared "
7672 "at global scope",
7673 this->block_name);
7674 }
7675
7676 /* Validate qualifiers:
7677 *
7678 * - Layout Qualifiers as per the table in Section 4.4
7679 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7680 *
7681 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7682 * GLSL 4.50 spec:
7683 *
7684 * "Additionally, memory qualifiers may also be used in the declaration
7685 * of shader storage blocks"
7686 *
7687 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7688 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7689 * Layout Qualifiers) of the GLSL 4.50 spec says:
7690 *
7691 * "The std430 qualifier is supported only for shader storage blocks;
7692 * using std430 on a uniform block will result in a compile-time error."
7693 */
7694 ast_type_qualifier allowed_blk_qualifiers;
7695 allowed_blk_qualifiers.flags.i = 0;
7696 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7697 allowed_blk_qualifiers.flags.q.shared = 1;
7698 allowed_blk_qualifiers.flags.q.packed = 1;
7699 allowed_blk_qualifiers.flags.q.std140 = 1;
7700 allowed_blk_qualifiers.flags.q.row_major = 1;
7701 allowed_blk_qualifiers.flags.q.column_major = 1;
7702 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7703 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7704 if (this->layout.flags.q.buffer) {
7705 allowed_blk_qualifiers.flags.q.buffer = 1;
7706 allowed_blk_qualifiers.flags.q.std430 = 1;
7707 allowed_blk_qualifiers.flags.q.coherent = 1;
7708 allowed_blk_qualifiers.flags.q._volatile = 1;
7709 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7710 allowed_blk_qualifiers.flags.q.read_only = 1;
7711 allowed_blk_qualifiers.flags.q.write_only = 1;
7712 } else {
7713 allowed_blk_qualifiers.flags.q.uniform = 1;
7714 }
7715 } else {
7716 /* Interface block */
7717 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7718
7719 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7720 if (this->layout.flags.q.out) {
7721 allowed_blk_qualifiers.flags.q.out = 1;
7722 if (state->stage == MESA_SHADER_GEOMETRY ||
7723 state->stage == MESA_SHADER_TESS_CTRL ||
7724 state->stage == MESA_SHADER_TESS_EVAL ||
7725 state->stage == MESA_SHADER_VERTEX ) {
7726 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7727 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7728 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7729 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7730 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7731 if (state->stage == MESA_SHADER_GEOMETRY) {
7732 allowed_blk_qualifiers.flags.q.stream = 1;
7733 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7734 }
7735 if (state->stage == MESA_SHADER_TESS_CTRL) {
7736 allowed_blk_qualifiers.flags.q.patch = 1;
7737 }
7738 }
7739 } else {
7740 allowed_blk_qualifiers.flags.q.in = 1;
7741 if (state->stage == MESA_SHADER_TESS_EVAL) {
7742 allowed_blk_qualifiers.flags.q.patch = 1;
7743 }
7744 }
7745 }
7746
7747 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7748 "invalid qualifier for block",
7749 this->block_name);
7750
7751 enum glsl_interface_packing packing;
7752 if (this->layout.flags.q.std140) {
7753 packing = GLSL_INTERFACE_PACKING_STD140;
7754 } else if (this->layout.flags.q.packed) {
7755 packing = GLSL_INTERFACE_PACKING_PACKED;
7756 } else if (this->layout.flags.q.std430) {
7757 packing = GLSL_INTERFACE_PACKING_STD430;
7758 } else {
7759 /* The default layout is shared.
7760 */
7761 packing = GLSL_INTERFACE_PACKING_SHARED;
7762 }
7763
7764 ir_variable_mode var_mode;
7765 const char *iface_type_name;
7766 if (this->layout.flags.q.in) {
7767 var_mode = ir_var_shader_in;
7768 iface_type_name = "in";
7769 } else if (this->layout.flags.q.out) {
7770 var_mode = ir_var_shader_out;
7771 iface_type_name = "out";
7772 } else if (this->layout.flags.q.uniform) {
7773 var_mode = ir_var_uniform;
7774 iface_type_name = "uniform";
7775 } else if (this->layout.flags.q.buffer) {
7776 var_mode = ir_var_shader_storage;
7777 iface_type_name = "buffer";
7778 } else {
7779 var_mode = ir_var_auto;
7780 iface_type_name = "UNKNOWN";
7781 assert(!"interface block layout qualifier not found!");
7782 }
7783
7784 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7785 if (this->layout.flags.q.row_major)
7786 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7787 else if (this->layout.flags.q.column_major)
7788 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7789
7790 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7791 exec_list declared_variables;
7792 glsl_struct_field *fields;
7793
7794 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7795 * that we don't have incompatible qualifiers
7796 */
7797 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7798 _mesa_glsl_error(&loc, state,
7799 "Interface block sets both readonly and writeonly");
7800 }
7801
7802 unsigned qual_stream;
7803 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7804 &qual_stream) ||
7805 !validate_stream_qualifier(&loc, state, qual_stream)) {
7806 /* If the stream qualifier is invalid it doesn't make sense to continue
7807 * on and try to compare stream layouts on member variables against it
7808 * so just return early.
7809 */
7810 return NULL;
7811 }
7812
7813 unsigned qual_xfb_buffer;
7814 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7815 layout.xfb_buffer, &qual_xfb_buffer) ||
7816 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7817 return NULL;
7818 }
7819
7820 unsigned qual_xfb_offset;
7821 if (layout.flags.q.explicit_xfb_offset) {
7822 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7823 layout.offset, &qual_xfb_offset)) {
7824 return NULL;
7825 }
7826 }
7827
7828 unsigned qual_xfb_stride;
7829 if (layout.flags.q.explicit_xfb_stride) {
7830 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7831 layout.xfb_stride, &qual_xfb_stride)) {
7832 return NULL;
7833 }
7834 }
7835
7836 unsigned expl_location = 0;
7837 if (layout.flags.q.explicit_location) {
7838 if (!process_qualifier_constant(state, &loc, "location",
7839 layout.location, &expl_location)) {
7840 return NULL;
7841 } else {
7842 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7843 : VARYING_SLOT_VAR0;
7844 }
7845 }
7846
7847 unsigned expl_align = 0;
7848 if (layout.flags.q.explicit_align) {
7849 if (!process_qualifier_constant(state, &loc, "align",
7850 layout.align, &expl_align)) {
7851 return NULL;
7852 } else {
7853 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7854 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7855 "power of 2.");
7856 return NULL;
7857 }
7858 }
7859 }
7860
7861 unsigned int num_variables =
7862 ast_process_struct_or_iface_block_members(&declared_variables,
7863 state,
7864 &this->declarations,
7865 &fields,
7866 true,
7867 matrix_layout,
7868 redeclaring_per_vertex,
7869 var_mode,
7870 &this->layout,
7871 qual_stream,
7872 qual_xfb_buffer,
7873 qual_xfb_offset,
7874 expl_location,
7875 expl_align);
7876
7877 if (!redeclaring_per_vertex) {
7878 validate_identifier(this->block_name, loc, state);
7879
7880 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7881 *
7882 * "Block names have no other use within a shader beyond interface
7883 * matching; it is a compile-time error to use a block name at global
7884 * scope for anything other than as a block name."
7885 */
7886 ir_variable *var = state->symbols->get_variable(this->block_name);
7887 if (var && !var->type->is_interface()) {
7888 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7889 "already used in the scope.",
7890 this->block_name);
7891 }
7892 }
7893
7894 const glsl_type *earlier_per_vertex = NULL;
7895 if (redeclaring_per_vertex) {
7896 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7897 * the named interface block gl_in, we can find it by looking at the
7898 * previous declaration of gl_in. Otherwise we can find it by looking
7899 * at the previous decalartion of any of the built-in outputs,
7900 * e.g. gl_Position.
7901 *
7902 * Also check that the instance name and array-ness of the redeclaration
7903 * are correct.
7904 */
7905 switch (var_mode) {
7906 case ir_var_shader_in:
7907 if (ir_variable *earlier_gl_in =
7908 state->symbols->get_variable("gl_in")) {
7909 earlier_per_vertex = earlier_gl_in->get_interface_type();
7910 } else {
7911 _mesa_glsl_error(&loc, state,
7912 "redeclaration of gl_PerVertex input not allowed "
7913 "in the %s shader",
7914 _mesa_shader_stage_to_string(state->stage));
7915 }
7916 if (this->instance_name == NULL ||
7917 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7918 !this->array_specifier->is_single_dimension()) {
7919 _mesa_glsl_error(&loc, state,
7920 "gl_PerVertex input must be redeclared as "
7921 "gl_in[]");
7922 }
7923 break;
7924 case ir_var_shader_out:
7925 if (ir_variable *earlier_gl_Position =
7926 state->symbols->get_variable("gl_Position")) {
7927 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7928 } else if (ir_variable *earlier_gl_out =
7929 state->symbols->get_variable("gl_out")) {
7930 earlier_per_vertex = earlier_gl_out->get_interface_type();
7931 } else {
7932 _mesa_glsl_error(&loc, state,
7933 "redeclaration of gl_PerVertex output not "
7934 "allowed in the %s shader",
7935 _mesa_shader_stage_to_string(state->stage));
7936 }
7937 if (state->stage == MESA_SHADER_TESS_CTRL) {
7938 if (this->instance_name == NULL ||
7939 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7940 _mesa_glsl_error(&loc, state,
7941 "gl_PerVertex output must be redeclared as "
7942 "gl_out[]");
7943 }
7944 } else {
7945 if (this->instance_name != NULL) {
7946 _mesa_glsl_error(&loc, state,
7947 "gl_PerVertex output may not be redeclared with "
7948 "an instance name");
7949 }
7950 }
7951 break;
7952 default:
7953 _mesa_glsl_error(&loc, state,
7954 "gl_PerVertex must be declared as an input or an "
7955 "output");
7956 break;
7957 }
7958
7959 if (earlier_per_vertex == NULL) {
7960 /* An error has already been reported. Bail out to avoid null
7961 * dereferences later in this function.
7962 */
7963 return NULL;
7964 }
7965
7966 /* Copy locations from the old gl_PerVertex interface block. */
7967 for (unsigned i = 0; i < num_variables; i++) {
7968 int j = earlier_per_vertex->field_index(fields[i].name);
7969 if (j == -1) {
7970 _mesa_glsl_error(&loc, state,
7971 "redeclaration of gl_PerVertex must be a subset "
7972 "of the built-in members of gl_PerVertex");
7973 } else {
7974 fields[i].location =
7975 earlier_per_vertex->fields.structure[j].location;
7976 fields[i].offset =
7977 earlier_per_vertex->fields.structure[j].offset;
7978 fields[i].interpolation =
7979 earlier_per_vertex->fields.structure[j].interpolation;
7980 fields[i].centroid =
7981 earlier_per_vertex->fields.structure[j].centroid;
7982 fields[i].sample =
7983 earlier_per_vertex->fields.structure[j].sample;
7984 fields[i].patch =
7985 earlier_per_vertex->fields.structure[j].patch;
7986 fields[i].precision =
7987 earlier_per_vertex->fields.structure[j].precision;
7988 fields[i].explicit_xfb_buffer =
7989 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7990 fields[i].xfb_buffer =
7991 earlier_per_vertex->fields.structure[j].xfb_buffer;
7992 fields[i].xfb_stride =
7993 earlier_per_vertex->fields.structure[j].xfb_stride;
7994 }
7995 }
7996
7997 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7998 * spec:
7999 *
8000 * If a built-in interface block is redeclared, it must appear in
8001 * the shader before any use of any member included in the built-in
8002 * declaration, or a compilation error will result.
8003 *
8004 * This appears to be a clarification to the behaviour established for
8005 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8006 * regardless of GLSL version.
8007 */
8008 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8009 v.run(instructions);
8010 if (v.usage_found()) {
8011 _mesa_glsl_error(&loc, state,
8012 "redeclaration of a built-in interface block must "
8013 "appear before any use of any member of the "
8014 "interface block");
8015 }
8016 }
8017
8018 const glsl_type *block_type =
8019 glsl_type::get_interface_instance(fields,
8020 num_variables,
8021 packing,
8022 matrix_layout ==
8023 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8024 this->block_name);
8025
8026 unsigned component_size = block_type->contains_double() ? 8 : 4;
8027 int xfb_offset =
8028 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8029 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8030 component_size);
8031
8032 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8033 YYLTYPE loc = this->get_location();
8034 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8035 "already taken in the current scope",
8036 this->block_name, iface_type_name);
8037 }
8038
8039 /* Since interface blocks cannot contain statements, it should be
8040 * impossible for the block to generate any instructions.
8041 */
8042 assert(declared_variables.is_empty());
8043
8044 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8045 *
8046 * Geometry shader input variables get the per-vertex values written
8047 * out by vertex shader output variables of the same names. Since a
8048 * geometry shader operates on a set of vertices, each input varying
8049 * variable (or input block, see interface blocks below) needs to be
8050 * declared as an array.
8051 */
8052 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8053 var_mode == ir_var_shader_in) {
8054 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8055 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8056 state->stage == MESA_SHADER_TESS_EVAL) &&
8057 !this->layout.flags.q.patch &&
8058 this->array_specifier == NULL &&
8059 var_mode == ir_var_shader_in) {
8060 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8061 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8062 !this->layout.flags.q.patch &&
8063 this->array_specifier == NULL &&
8064 var_mode == ir_var_shader_out) {
8065 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8066 }
8067
8068
8069 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8070 * says:
8071 *
8072 * "If an instance name (instance-name) is used, then it puts all the
8073 * members inside a scope within its own name space, accessed with the
8074 * field selector ( . ) operator (analogously to structures)."
8075 */
8076 if (this->instance_name) {
8077 if (redeclaring_per_vertex) {
8078 /* When a built-in in an unnamed interface block is redeclared,
8079 * get_variable_being_redeclared() calls
8080 * check_builtin_array_max_size() to make sure that built-in array
8081 * variables aren't redeclared to illegal sizes. But we're looking
8082 * at a redeclaration of a named built-in interface block. So we
8083 * have to manually call check_builtin_array_max_size() for all parts
8084 * of the interface that are arrays.
8085 */
8086 for (unsigned i = 0; i < num_variables; i++) {
8087 if (fields[i].type->is_array()) {
8088 const unsigned size = fields[i].type->array_size();
8089 check_builtin_array_max_size(fields[i].name, size, loc, state);
8090 }
8091 }
8092 } else {
8093 validate_identifier(this->instance_name, loc, state);
8094 }
8095
8096 ir_variable *var;
8097
8098 if (this->array_specifier != NULL) {
8099 const glsl_type *block_array_type =
8100 process_array_type(&loc, block_type, this->array_specifier, state);
8101
8102 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8103 *
8104 * For uniform blocks declared an array, each individual array
8105 * element corresponds to a separate buffer object backing one
8106 * instance of the block. As the array size indicates the number
8107 * of buffer objects needed, uniform block array declarations
8108 * must specify an array size.
8109 *
8110 * And a few paragraphs later:
8111 *
8112 * Geometry shader input blocks must be declared as arrays and
8113 * follow the array declaration and linking rules for all
8114 * geometry shader inputs. All other input and output block
8115 * arrays must specify an array size.
8116 *
8117 * The same applies to tessellation shaders.
8118 *
8119 * The upshot of this is that the only circumstance where an
8120 * interface array size *doesn't* need to be specified is on a
8121 * geometry shader input, tessellation control shader input,
8122 * tessellation control shader output, and tessellation evaluation
8123 * shader input.
8124 */
8125 if (block_array_type->is_unsized_array()) {
8126 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8127 state->stage == MESA_SHADER_TESS_CTRL ||
8128 state->stage == MESA_SHADER_TESS_EVAL;
8129 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8130
8131 if (this->layout.flags.q.in) {
8132 if (!allow_inputs)
8133 _mesa_glsl_error(&loc, state,
8134 "unsized input block arrays not allowed in "
8135 "%s shader",
8136 _mesa_shader_stage_to_string(state->stage));
8137 } else if (this->layout.flags.q.out) {
8138 if (!allow_outputs)
8139 _mesa_glsl_error(&loc, state,
8140 "unsized output block arrays not allowed in "
8141 "%s shader",
8142 _mesa_shader_stage_to_string(state->stage));
8143 } else {
8144 /* by elimination, this is a uniform block array */
8145 _mesa_glsl_error(&loc, state,
8146 "unsized uniform block arrays not allowed in "
8147 "%s shader",
8148 _mesa_shader_stage_to_string(state->stage));
8149 }
8150 }
8151
8152 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8153 *
8154 * * Arrays of arrays of blocks are not allowed
8155 */
8156 if (state->es_shader && block_array_type->is_array() &&
8157 block_array_type->fields.array->is_array()) {
8158 _mesa_glsl_error(&loc, state,
8159 "arrays of arrays interface blocks are "
8160 "not allowed");
8161 }
8162
8163 var = new(state) ir_variable(block_array_type,
8164 this->instance_name,
8165 var_mode);
8166 } else {
8167 var = new(state) ir_variable(block_type,
8168 this->instance_name,
8169 var_mode);
8170 }
8171
8172 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8173 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8174
8175 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8176 var->data.read_only = true;
8177
8178 var->data.patch = this->layout.flags.q.patch;
8179
8180 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8181 handle_geometry_shader_input_decl(state, loc, var);
8182 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8183 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8184 handle_tess_shader_input_decl(state, loc, var);
8185 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8186 handle_tess_ctrl_shader_output_decl(state, loc, var);
8187
8188 for (unsigned i = 0; i < num_variables; i++) {
8189 if (var->data.mode == ir_var_shader_storage)
8190 apply_memory_qualifiers(var, fields[i]);
8191 }
8192
8193 if (ir_variable *earlier =
8194 state->symbols->get_variable(this->instance_name)) {
8195 if (!redeclaring_per_vertex) {
8196 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8197 this->instance_name);
8198 }
8199 earlier->data.how_declared = ir_var_declared_normally;
8200 earlier->type = var->type;
8201 earlier->reinit_interface_type(block_type);
8202 delete var;
8203 } else {
8204 if (this->layout.flags.q.explicit_binding) {
8205 apply_explicit_binding(state, &loc, var, var->type,
8206 &this->layout);
8207 }
8208
8209 var->data.stream = qual_stream;
8210 if (layout.flags.q.explicit_location) {
8211 var->data.location = expl_location;
8212 var->data.explicit_location = true;
8213 }
8214
8215 state->symbols->add_variable(var);
8216 instructions->push_tail(var);
8217 }
8218 } else {
8219 /* In order to have an array size, the block must also be declared with
8220 * an instance name.
8221 */
8222 assert(this->array_specifier == NULL);
8223
8224 for (unsigned i = 0; i < num_variables; i++) {
8225 ir_variable *var =
8226 new(state) ir_variable(fields[i].type,
8227 ralloc_strdup(state, fields[i].name),
8228 var_mode);
8229 var->data.interpolation = fields[i].interpolation;
8230 var->data.centroid = fields[i].centroid;
8231 var->data.sample = fields[i].sample;
8232 var->data.patch = fields[i].patch;
8233 var->data.stream = qual_stream;
8234 var->data.location = fields[i].location;
8235
8236 if (fields[i].location != -1)
8237 var->data.explicit_location = true;
8238
8239 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8240 var->data.xfb_buffer = fields[i].xfb_buffer;
8241
8242 if (fields[i].offset != -1)
8243 var->data.explicit_xfb_offset = true;
8244 var->data.offset = fields[i].offset;
8245
8246 var->init_interface_type(block_type);
8247
8248 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8249 var->data.read_only = true;
8250
8251 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8252 if (state->es_shader) {
8253 var->data.precision =
8254 select_gles_precision(fields[i].precision, fields[i].type,
8255 state, &loc);
8256 }
8257
8258 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8259 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8260 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8261 } else {
8262 var->data.matrix_layout = fields[i].matrix_layout;
8263 }
8264
8265 if (var->data.mode == ir_var_shader_storage)
8266 apply_memory_qualifiers(var, fields[i]);
8267
8268 /* Examine var name here since var may get deleted in the next call */
8269 bool var_is_gl_id = is_gl_identifier(var->name);
8270
8271 if (redeclaring_per_vertex) {
8272 bool is_redeclaration;
8273 var =
8274 get_variable_being_redeclared(&var, loc, state,
8275 true /* allow_all_redeclarations */,
8276 &is_redeclaration);
8277 if (!var_is_gl_id || !is_redeclaration) {
8278 _mesa_glsl_error(&loc, state,
8279 "redeclaration of gl_PerVertex can only "
8280 "include built-in variables");
8281 } else if (var->data.how_declared == ir_var_declared_normally) {
8282 _mesa_glsl_error(&loc, state,
8283 "`%s' has already been redeclared",
8284 var->name);
8285 } else {
8286 var->data.how_declared = ir_var_declared_in_block;
8287 var->reinit_interface_type(block_type);
8288 }
8289 continue;
8290 }
8291
8292 if (state->symbols->get_variable(var->name) != NULL)
8293 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8294
8295 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8296 * The UBO declaration itself doesn't get an ir_variable unless it
8297 * has an instance name. This is ugly.
8298 */
8299 if (this->layout.flags.q.explicit_binding) {
8300 apply_explicit_binding(state, &loc, var,
8301 var->get_interface_type(), &this->layout);
8302 }
8303
8304 if (var->type->is_unsized_array()) {
8305 if (var->is_in_shader_storage_block() &&
8306 is_unsized_array_last_element(var)) {
8307 var->data.from_ssbo_unsized_array = true;
8308 } else {
8309 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8310 *
8311 * "If an array is declared as the last member of a shader storage
8312 * block and the size is not specified at compile-time, it is
8313 * sized at run-time. In all other cases, arrays are sized only
8314 * at compile-time."
8315 *
8316 * In desktop GLSL it is allowed to have unsized-arrays that are
8317 * not last, as long as we can determine that they are implicitly
8318 * sized.
8319 */
8320 if (state->es_shader) {
8321 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8322 "definition: only last member of a shader "
8323 "storage block can be defined as unsized "
8324 "array", fields[i].name);
8325 }
8326 }
8327 }
8328
8329 state->symbols->add_variable(var);
8330 instructions->push_tail(var);
8331 }
8332
8333 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8334 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8335 *
8336 * It is also a compilation error ... to redeclare a built-in
8337 * block and then use a member from that built-in block that was
8338 * not included in the redeclaration.
8339 *
8340 * This appears to be a clarification to the behaviour established
8341 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8342 * behaviour regardless of GLSL version.
8343 *
8344 * To prevent the shader from using a member that was not included in
8345 * the redeclaration, we disable any ir_variables that are still
8346 * associated with the old declaration of gl_PerVertex (since we've
8347 * already updated all of the variables contained in the new
8348 * gl_PerVertex to point to it).
8349 *
8350 * As a side effect this will prevent
8351 * validate_intrastage_interface_blocks() from getting confused and
8352 * thinking there are conflicting definitions of gl_PerVertex in the
8353 * shader.
8354 */
8355 foreach_in_list_safe(ir_instruction, node, instructions) {
8356 ir_variable *const var = node->as_variable();
8357 if (var != NULL &&
8358 var->get_interface_type() == earlier_per_vertex &&
8359 var->data.mode == var_mode) {
8360 if (var->data.how_declared == ir_var_declared_normally) {
8361 _mesa_glsl_error(&loc, state,
8362 "redeclaration of gl_PerVertex cannot "
8363 "follow a redeclaration of `%s'",
8364 var->name);
8365 }
8366 state->symbols->disable_variable(var->name);
8367 var->remove();
8368 }
8369 }
8370 }
8371 }
8372
8373 return NULL;
8374 }
8375
8376
8377 ir_rvalue *
8378 ast_tcs_output_layout::hir(exec_list *instructions,
8379 struct _mesa_glsl_parse_state *state)
8380 {
8381 YYLTYPE loc = this->get_location();
8382
8383 unsigned num_vertices;
8384 if (!state->out_qualifier->vertices->
8385 process_qualifier_constant(state, "vertices", &num_vertices,
8386 false)) {
8387 /* return here to stop cascading incorrect error messages */
8388 return NULL;
8389 }
8390
8391 /* If any shader outputs occurred before this declaration and specified an
8392 * array size, make sure the size they specified is consistent with the
8393 * primitive type.
8394 */
8395 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8396 _mesa_glsl_error(&loc, state,
8397 "this tessellation control shader output layout "
8398 "specifies %u vertices, but a previous output "
8399 "is declared with size %u",
8400 num_vertices, state->tcs_output_size);
8401 return NULL;
8402 }
8403
8404 state->tcs_output_vertices_specified = true;
8405
8406 /* If any shader outputs occurred before this declaration and did not
8407 * specify an array size, their size is determined now.
8408 */
8409 foreach_in_list (ir_instruction, node, instructions) {
8410 ir_variable *var = node->as_variable();
8411 if (var == NULL || var->data.mode != ir_var_shader_out)
8412 continue;
8413
8414 /* Note: Not all tessellation control shader output are arrays. */
8415 if (!var->type->is_unsized_array() || var->data.patch)
8416 continue;
8417
8418 if (var->data.max_array_access >= (int)num_vertices) {
8419 _mesa_glsl_error(&loc, state,
8420 "this tessellation control shader output layout "
8421 "specifies %u vertices, but an access to element "
8422 "%u of output `%s' already exists", num_vertices,
8423 var->data.max_array_access, var->name);
8424 } else {
8425 var->type = glsl_type::get_array_instance(var->type->fields.array,
8426 num_vertices);
8427 }
8428 }
8429
8430 return NULL;
8431 }
8432
8433
8434 ir_rvalue *
8435 ast_gs_input_layout::hir(exec_list *instructions,
8436 struct _mesa_glsl_parse_state *state)
8437 {
8438 YYLTYPE loc = this->get_location();
8439
8440 /* Should have been prevented by the parser. */
8441 assert(!state->gs_input_prim_type_specified
8442 || state->in_qualifier->prim_type == this->prim_type);
8443
8444 /* If any shader inputs occurred before this declaration and specified an
8445 * array size, make sure the size they specified is consistent with the
8446 * primitive type.
8447 */
8448 unsigned num_vertices = vertices_per_prim(this->prim_type);
8449 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8450 _mesa_glsl_error(&loc, state,
8451 "this geometry shader input layout implies %u vertices"
8452 " per primitive, but a previous input is declared"
8453 " with size %u", num_vertices, state->gs_input_size);
8454 return NULL;
8455 }
8456
8457 state->gs_input_prim_type_specified = true;
8458
8459 /* If any shader inputs occurred before this declaration and did not
8460 * specify an array size, their size is determined now.
8461 */
8462 foreach_in_list(ir_instruction, node, instructions) {
8463 ir_variable *var = node->as_variable();
8464 if (var == NULL || var->data.mode != ir_var_shader_in)
8465 continue;
8466
8467 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8468 * array; skip it.
8469 */
8470
8471 if (var->type->is_unsized_array()) {
8472 if (var->data.max_array_access >= (int)num_vertices) {
8473 _mesa_glsl_error(&loc, state,
8474 "this geometry shader input layout implies %u"
8475 " vertices, but an access to element %u of input"
8476 " `%s' already exists", num_vertices,
8477 var->data.max_array_access, var->name);
8478 } else {
8479 var->type = glsl_type::get_array_instance(var->type->fields.array,
8480 num_vertices);
8481 }
8482 }
8483 }
8484
8485 return NULL;
8486 }
8487
8488
8489 ir_rvalue *
8490 ast_cs_input_layout::hir(exec_list *instructions,
8491 struct _mesa_glsl_parse_state *state)
8492 {
8493 YYLTYPE loc = this->get_location();
8494
8495 /* From the ARB_compute_shader specification:
8496 *
8497 * If the local size of the shader in any dimension is greater
8498 * than the maximum size supported by the implementation for that
8499 * dimension, a compile-time error results.
8500 *
8501 * It is not clear from the spec how the error should be reported if
8502 * the total size of the work group exceeds
8503 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8504 * report it at compile time as well.
8505 */
8506 GLuint64 total_invocations = 1;
8507 unsigned qual_local_size[3];
8508 for (int i = 0; i < 3; i++) {
8509
8510 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8511 'x' + i);
8512 /* Infer a local_size of 1 for unspecified dimensions */
8513 if (this->local_size[i] == NULL) {
8514 qual_local_size[i] = 1;
8515 } else if (!this->local_size[i]->
8516 process_qualifier_constant(state, local_size_str,
8517 &qual_local_size[i], false)) {
8518 ralloc_free(local_size_str);
8519 return NULL;
8520 }
8521 ralloc_free(local_size_str);
8522
8523 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8524 _mesa_glsl_error(&loc, state,
8525 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8526 " (%d)", 'x' + i,
8527 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8528 break;
8529 }
8530 total_invocations *= qual_local_size[i];
8531 if (total_invocations >
8532 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8533 _mesa_glsl_error(&loc, state,
8534 "product of local_sizes exceeds "
8535 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8536 state->ctx->Const.MaxComputeWorkGroupInvocations);
8537 break;
8538 }
8539 }
8540
8541 /* If any compute input layout declaration preceded this one, make sure it
8542 * was consistent with this one.
8543 */
8544 if (state->cs_input_local_size_specified) {
8545 for (int i = 0; i < 3; i++) {
8546 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8547 _mesa_glsl_error(&loc, state,
8548 "compute shader input layout does not match"
8549 " previous declaration");
8550 return NULL;
8551 }
8552 }
8553 }
8554
8555 /* The ARB_compute_variable_group_size spec says:
8556 *
8557 * If a compute shader including a *local_size_variable* qualifier also
8558 * declares a fixed local group size using the *local_size_x*,
8559 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8560 * results
8561 */
8562 if (state->cs_input_local_size_variable_specified) {
8563 _mesa_glsl_error(&loc, state,
8564 "compute shader can't include both a variable and a "
8565 "fixed local group size");
8566 return NULL;
8567 }
8568
8569 state->cs_input_local_size_specified = true;
8570 for (int i = 0; i < 3; i++)
8571 state->cs_input_local_size[i] = qual_local_size[i];
8572
8573 /* We may now declare the built-in constant gl_WorkGroupSize (see
8574 * builtin_variable_generator::generate_constants() for why we didn't
8575 * declare it earlier).
8576 */
8577 ir_variable *var = new(state->symbols)
8578 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8579 var->data.how_declared = ir_var_declared_implicitly;
8580 var->data.read_only = true;
8581 instructions->push_tail(var);
8582 state->symbols->add_variable(var);
8583 ir_constant_data data;
8584 memset(&data, 0, sizeof(data));
8585 for (int i = 0; i < 3; i++)
8586 data.u[i] = qual_local_size[i];
8587 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8588 var->constant_initializer =
8589 new(var) ir_constant(glsl_type::uvec3_type, &data);
8590 var->data.has_initializer = true;
8591
8592 return NULL;
8593 }
8594
8595
8596 static void
8597 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8598 exec_list *instructions)
8599 {
8600 bool gl_FragColor_assigned = false;
8601 bool gl_FragData_assigned = false;
8602 bool gl_FragSecondaryColor_assigned = false;
8603 bool gl_FragSecondaryData_assigned = false;
8604 bool user_defined_fs_output_assigned = false;
8605 ir_variable *user_defined_fs_output = NULL;
8606
8607 /* It would be nice to have proper location information. */
8608 YYLTYPE loc;
8609 memset(&loc, 0, sizeof(loc));
8610
8611 foreach_in_list(ir_instruction, node, instructions) {
8612 ir_variable *var = node->as_variable();
8613
8614 if (!var || !var->data.assigned)
8615 continue;
8616
8617 if (strcmp(var->name, "gl_FragColor") == 0)
8618 gl_FragColor_assigned = true;
8619 else if (strcmp(var->name, "gl_FragData") == 0)
8620 gl_FragData_assigned = true;
8621 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8622 gl_FragSecondaryColor_assigned = true;
8623 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8624 gl_FragSecondaryData_assigned = true;
8625 else if (!is_gl_identifier(var->name)) {
8626 if (state->stage == MESA_SHADER_FRAGMENT &&
8627 var->data.mode == ir_var_shader_out) {
8628 user_defined_fs_output_assigned = true;
8629 user_defined_fs_output = var;
8630 }
8631 }
8632 }
8633
8634 /* From the GLSL 1.30 spec:
8635 *
8636 * "If a shader statically assigns a value to gl_FragColor, it
8637 * may not assign a value to any element of gl_FragData. If a
8638 * shader statically writes a value to any element of
8639 * gl_FragData, it may not assign a value to
8640 * gl_FragColor. That is, a shader may assign values to either
8641 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8642 * linked together must also consistently write just one of
8643 * these variables. Similarly, if user declared output
8644 * variables are in use (statically assigned to), then the
8645 * built-in variables gl_FragColor and gl_FragData may not be
8646 * assigned to. These incorrect usages all generate compile
8647 * time errors."
8648 */
8649 if (gl_FragColor_assigned && gl_FragData_assigned) {
8650 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8651 "`gl_FragColor' and `gl_FragData'");
8652 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8653 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8654 "`gl_FragColor' and `%s'",
8655 user_defined_fs_output->name);
8656 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8657 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8658 "`gl_FragSecondaryColorEXT' and"
8659 " `gl_FragSecondaryDataEXT'");
8660 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8661 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8662 "`gl_FragColor' and"
8663 " `gl_FragSecondaryDataEXT'");
8664 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8665 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8666 "`gl_FragData' and"
8667 " `gl_FragSecondaryColorEXT'");
8668 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8669 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8670 "`gl_FragData' and `%s'",
8671 user_defined_fs_output->name);
8672 }
8673
8674 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8675 !state->EXT_blend_func_extended_enable) {
8676 _mesa_glsl_error(&loc, state,
8677 "Dual source blending requires EXT_blend_func_extended");
8678 }
8679 }
8680
8681
8682 static void
8683 remove_per_vertex_blocks(exec_list *instructions,
8684 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8685 {
8686 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8687 * if it exists in this shader type.
8688 */
8689 const glsl_type *per_vertex = NULL;
8690 switch (mode) {
8691 case ir_var_shader_in:
8692 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8693 per_vertex = gl_in->get_interface_type();
8694 break;
8695 case ir_var_shader_out:
8696 if (ir_variable *gl_Position =
8697 state->symbols->get_variable("gl_Position")) {
8698 per_vertex = gl_Position->get_interface_type();
8699 }
8700 break;
8701 default:
8702 assert(!"Unexpected mode");
8703 break;
8704 }
8705
8706 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8707 * need to do anything.
8708 */
8709 if (per_vertex == NULL)
8710 return;
8711
8712 /* If the interface block is used by the shader, then we don't need to do
8713 * anything.
8714 */
8715 interface_block_usage_visitor v(mode, per_vertex);
8716 v.run(instructions);
8717 if (v.usage_found())
8718 return;
8719
8720 /* Remove any ir_variable declarations that refer to the interface block
8721 * we're removing.
8722 */
8723 foreach_in_list_safe(ir_instruction, node, instructions) {
8724 ir_variable *const var = node->as_variable();
8725 if (var != NULL && var->get_interface_type() == per_vertex &&
8726 var->data.mode == mode) {
8727 state->symbols->disable_variable(var->name);
8728 var->remove();
8729 }
8730 }
8731 }