glsl: Fix buffer overflow with an atomic buffer binding out of range.
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74 _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76 /**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
83 read_from_write_only_variable_visitor() : found(NULL)
84 {
85 }
86
87 virtual ir_visitor_status visit(ir_dereference_variable *ir)
88 {
89 if (this->in_assignee)
90 return visit_continue;
91
92 ir_variable *var = ir->variable_referenced();
93 /* We can have memory_write_only set on both images and buffer variables,
94 * but in the former there is a distinction between reads from
95 * the variable itself (write_only) and from the memory they point to
96 * (memory_write_only), while in the case of buffer variables there is
97 * no such distinction, that is why this check here is limited to
98 * buffer variables alone.
99 */
100 if (!var || var->data.mode != ir_var_shader_storage)
101 return visit_continue;
102
103 if (var->data.memory_write_only) {
104 found = var;
105 return visit_stop;
106 }
107
108 return visit_continue;
109 }
110
111 ir_variable *get_variable() {
112 return found;
113 }
114
115 virtual ir_visitor_status visit_enter(ir_expression *ir)
116 {
117 /* .length() doesn't actually read anything */
118 if (ir->operation == ir_unop_ssbo_unsized_array_length)
119 return visit_continue_with_parent;
120
121 return visit_continue;
122 }
123
124 private:
125 ir_variable *found;
126 };
127
128 void
129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131 _mesa_glsl_initialize_variables(instructions, state);
132
133 state->symbols->separate_function_namespace = state->language_version == 110;
134
135 state->current_function = NULL;
136
137 state->toplevel_ir = instructions;
138
139 state->gs_input_prim_type_specified = false;
140 state->tcs_output_vertices_specified = false;
141 state->cs_input_local_size_specified = false;
142
143 /* Section 4.2 of the GLSL 1.20 specification states:
144 * "The built-in functions are scoped in a scope outside the global scope
145 * users declare global variables in. That is, a shader's global scope,
146 * available for user-defined functions and global variables, is nested
147 * inside the scope containing the built-in functions."
148 *
149 * Since built-in functions like ftransform() access built-in variables,
150 * it follows that those must be in the outer scope as well.
151 *
152 * We push scope here to create this nesting effect...but don't pop.
153 * This way, a shader's globals are still in the symbol table for use
154 * by the linker.
155 */
156 state->symbols->push_scope();
157
158 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159 ast->hir(instructions, state);
160
161 verify_subroutine_associated_funcs(state);
162 detect_recursion_unlinked(state, instructions);
163 detect_conflicting_assignments(state, instructions);
164
165 state->toplevel_ir = NULL;
166
167 /* Move all of the variable declarations to the front of the IR list, and
168 * reverse the order. This has the (intended!) side effect that vertex
169 * shader inputs and fragment shader outputs will appear in the IR in the
170 * same order that they appeared in the shader code. This results in the
171 * locations being assigned in the declared order. Many (arguably buggy)
172 * applications depend on this behavior, and it matches what nearly all
173 * other drivers do.
174 */
175 foreach_in_list_safe(ir_instruction, node, instructions) {
176 ir_variable *const var = node->as_variable();
177
178 if (var == NULL)
179 continue;
180
181 var->remove();
182 instructions->push_head(var);
183 }
184
185 /* Figure out if gl_FragCoord is actually used in fragment shader */
186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187 if (var != NULL)
188 state->fs_uses_gl_fragcoord = var->data.used;
189
190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191 *
192 * If multiple shaders using members of a built-in block belonging to
193 * the same interface are linked together in the same program, they
194 * must all redeclare the built-in block in the same way, as described
195 * in section 4.3.7 "Interface Blocks" for interface block matching, or
196 * a link error will result.
197 *
198 * The phrase "using members of a built-in block" implies that if two
199 * shaders are linked together and one of them *does not use* any members
200 * of the built-in block, then that shader does not need to have a matching
201 * redeclaration of the built-in block.
202 *
203 * This appears to be a clarification to the behaviour established for
204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205 * version.
206 *
207 * The definition of "interface" in section 4.3.7 that applies here is as
208 * follows:
209 *
210 * The boundary between adjacent programmable pipeline stages: This
211 * spans all the outputs in all compilation units of the first stage
212 * and all the inputs in all compilation units of the second stage.
213 *
214 * Therefore this rule applies to both inter- and intra-stage linking.
215 *
216 * The easiest way to implement this is to check whether the shader uses
217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218 * remove all the relevant variable declaration from the IR, so that the
219 * linker won't see them and complain about mismatches.
220 */
221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224 /* Check that we don't have reads from write-only variables */
225 read_from_write_only_variable_visitor v;
226 v.run(instructions);
227 ir_variable *error_var = v.get_variable();
228 if (error_var) {
229 /* It would be nice to have proper location information, but for that
230 * we would need to check this as we process each kind of AST node
231 */
232 YYLTYPE loc;
233 memset(&loc, 0, sizeof(loc));
234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235 error_var->name);
236 }
237 }
238
239
240 static ir_expression_operation
241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242 struct _mesa_glsl_parse_state *state)
243 {
244 switch (to->base_type) {
245 case GLSL_TYPE_FLOAT:
246 switch (from->base_type) {
247 case GLSL_TYPE_INT: return ir_unop_i2f;
248 case GLSL_TYPE_UINT: return ir_unop_u2f;
249 default: return (ir_expression_operation)0;
250 }
251
252 case GLSL_TYPE_UINT:
253 if (!state->has_implicit_uint_to_int_conversion())
254 return (ir_expression_operation)0;
255 switch (from->base_type) {
256 case GLSL_TYPE_INT: return ir_unop_i2u;
257 default: return (ir_expression_operation)0;
258 }
259
260 case GLSL_TYPE_DOUBLE:
261 if (!state->has_double())
262 return (ir_expression_operation)0;
263 switch (from->base_type) {
264 case GLSL_TYPE_INT: return ir_unop_i2d;
265 case GLSL_TYPE_UINT: return ir_unop_u2d;
266 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267 case GLSL_TYPE_INT64: return ir_unop_i642d;
268 case GLSL_TYPE_UINT64: return ir_unop_u642d;
269 default: return (ir_expression_operation)0;
270 }
271
272 case GLSL_TYPE_UINT64:
273 if (!state->has_int64())
274 return (ir_expression_operation)0;
275 switch (from->base_type) {
276 case GLSL_TYPE_INT: return ir_unop_i2u64;
277 case GLSL_TYPE_UINT: return ir_unop_u2u64;
278 case GLSL_TYPE_INT64: return ir_unop_i642u64;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_INT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2i64;
287 default: return (ir_expression_operation)0;
288 }
289
290 default: return (ir_expression_operation)0;
291 }
292 }
293
294
295 /**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to Type that the operand it to be converted to
301 * \param from Operand that is being converted
302 * \param state GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308 static bool
309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310 struct _mesa_glsl_parse_state *state)
311 {
312 void *ctx = state;
313 if (to->base_type == from->type->base_type)
314 return true;
315
316 /* Prior to GLSL 1.20, there are no implicit conversions */
317 if (!state->has_implicit_conversions())
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
895 return rhs;
896 } else {
897 _mesa_glsl_error(&loc, state,
898 "implicitly sized arrays cannot be assigned");
899 return NULL;
900 }
901 }
902
903 /* Check for implicit conversion in GLSL 1.20 */
904 if (apply_implicit_conversion(lhs->type, rhs, state)) {
905 if (rhs->type == lhs->type)
906 return rhs;
907 }
908
909 _mesa_glsl_error(&loc, state,
910 "%s of type %s cannot be assigned to "
911 "variable of type %s",
912 is_initializer ? "initializer" : "value",
913 rhs->type->name, lhs->type->name);
914
915 return NULL;
916 }
917
918 static void
919 mark_whole_array_access(ir_rvalue *access)
920 {
921 ir_dereference_variable *deref = access->as_dereference_variable();
922
923 if (deref && deref->var) {
924 deref->var->data.max_array_access = deref->type->length - 1;
925 }
926 }
927
928 static bool
929 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
930 const char *non_lvalue_description,
931 ir_rvalue *lhs, ir_rvalue *rhs,
932 ir_rvalue **out_rvalue, bool needs_rvalue,
933 bool is_initializer,
934 YYLTYPE lhs_loc)
935 {
936 void *ctx = state;
937 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
938
939 ir_variable *lhs_var = lhs->variable_referenced();
940 if (lhs_var)
941 lhs_var->data.assigned = true;
942
943 if (!error_emitted) {
944 if (non_lvalue_description != NULL) {
945 _mesa_glsl_error(&lhs_loc, state,
946 "assignment to %s",
947 non_lvalue_description);
948 error_emitted = true;
949 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
950 (lhs_var->data.mode == ir_var_shader_storage &&
951 lhs_var->data.memory_read_only))) {
952 /* We can have memory_read_only set on both images and buffer variables,
953 * but in the former there is a distinction between assignments to
954 * the variable itself (read_only) and to the memory they point to
955 * (memory_read_only), while in the case of buffer variables there is
956 * no such distinction, that is why this check here is limited to
957 * buffer variables alone.
958 */
959 _mesa_glsl_error(&lhs_loc, state,
960 "assignment to read-only variable '%s'",
961 lhs_var->name);
962 error_emitted = true;
963 } else if (lhs->type->is_array() &&
964 !state->check_version(120, 300, &lhs_loc,
965 "whole array assignment forbidden")) {
966 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
967 *
968 * "Other binary or unary expressions, non-dereferenced
969 * arrays, function names, swizzles with repeated fields,
970 * and constants cannot be l-values."
971 *
972 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
973 */
974 error_emitted = true;
975 } else if (!lhs->is_lvalue(state)) {
976 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
977 error_emitted = true;
978 }
979 }
980
981 ir_rvalue *new_rhs =
982 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
983 if (new_rhs != NULL) {
984 rhs = new_rhs;
985
986 /* If the LHS array was not declared with a size, it takes it size from
987 * the RHS. If the LHS is an l-value and a whole array, it must be a
988 * dereference of a variable. Any other case would require that the LHS
989 * is either not an l-value or not a whole array.
990 */
991 if (lhs->type->is_unsized_array()) {
992 ir_dereference *const d = lhs->as_dereference();
993
994 assert(d != NULL);
995
996 ir_variable *const var = d->variable_referenced();
997
998 assert(var != NULL);
999
1000 if (var->data.max_array_access >= rhs->type->array_size()) {
1001 /* FINISHME: This should actually log the location of the RHS. */
1002 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1003 "previous access",
1004 var->data.max_array_access);
1005 }
1006
1007 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1008 rhs->type->array_size());
1009 d->type = var->type;
1010 }
1011 if (lhs->type->is_array()) {
1012 mark_whole_array_access(rhs);
1013 mark_whole_array_access(lhs);
1014 }
1015 } else {
1016 error_emitted = true;
1017 }
1018
1019 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1020 * but not post_inc) need the converted assigned value as an rvalue
1021 * to handle things like:
1022 *
1023 * i = j += 1;
1024 */
1025 if (needs_rvalue) {
1026 ir_rvalue *rvalue;
1027 if (!error_emitted) {
1028 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1029 ir_var_temporary);
1030 instructions->push_tail(var);
1031 instructions->push_tail(assign(var, rhs));
1032
1033 ir_dereference_variable *deref_var =
1034 new(ctx) ir_dereference_variable(var);
1035 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1036 rvalue = new(ctx) ir_dereference_variable(var);
1037 } else {
1038 rvalue = ir_rvalue::error_value(ctx);
1039 }
1040 *out_rvalue = rvalue;
1041 } else {
1042 if (!error_emitted)
1043 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1044 *out_rvalue = NULL;
1045 }
1046
1047 return error_emitted;
1048 }
1049
1050 static ir_rvalue *
1051 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1052 {
1053 void *ctx = ralloc_parent(lvalue);
1054 ir_variable *var;
1055
1056 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1057 ir_var_temporary);
1058 instructions->push_tail(var);
1059
1060 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1061 lvalue));
1062
1063 return new(ctx) ir_dereference_variable(var);
1064 }
1065
1066
1067 ir_rvalue *
1068 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1069 {
1070 (void) instructions;
1071 (void) state;
1072
1073 return NULL;
1074 }
1075
1076 bool
1077 ast_node::has_sequence_subexpression() const
1078 {
1079 return false;
1080 }
1081
1082 void
1083 ast_node::set_is_lhs(bool /* new_value */)
1084 {
1085 }
1086
1087 void
1088 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state)
1090 {
1091 (void)hir(instructions, state);
1092 }
1093
1094 void
1095 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1096 struct _mesa_glsl_parse_state *state)
1097 {
1098 (void)hir(instructions, state);
1099 }
1100
1101 static ir_rvalue *
1102 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1103 {
1104 int join_op;
1105 ir_rvalue *cmp = NULL;
1106
1107 if (operation == ir_binop_all_equal)
1108 join_op = ir_binop_logic_and;
1109 else
1110 join_op = ir_binop_logic_or;
1111
1112 switch (op0->type->base_type) {
1113 case GLSL_TYPE_FLOAT:
1114 case GLSL_TYPE_FLOAT16:
1115 case GLSL_TYPE_UINT:
1116 case GLSL_TYPE_INT:
1117 case GLSL_TYPE_BOOL:
1118 case GLSL_TYPE_DOUBLE:
1119 case GLSL_TYPE_UINT64:
1120 case GLSL_TYPE_INT64:
1121 case GLSL_TYPE_UINT16:
1122 case GLSL_TYPE_INT16:
1123 case GLSL_TYPE_UINT8:
1124 case GLSL_TYPE_INT8:
1125 return new(mem_ctx) ir_expression(operation, op0, op1);
1126
1127 case GLSL_TYPE_ARRAY: {
1128 for (unsigned int i = 0; i < op0->type->length; i++) {
1129 ir_rvalue *e0, *e1, *result;
1130
1131 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1132 new(mem_ctx) ir_constant(i));
1133 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1134 new(mem_ctx) ir_constant(i));
1135 result = do_comparison(mem_ctx, operation, e0, e1);
1136
1137 if (cmp) {
1138 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1139 } else {
1140 cmp = result;
1141 }
1142 }
1143
1144 mark_whole_array_access(op0);
1145 mark_whole_array_access(op1);
1146 break;
1147 }
1148
1149 case GLSL_TYPE_STRUCT: {
1150 for (unsigned int i = 0; i < op0->type->length; i++) {
1151 ir_rvalue *e0, *e1, *result;
1152 const char *field_name = op0->type->fields.structure[i].name;
1153
1154 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1155 field_name);
1156 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1157 field_name);
1158 result = do_comparison(mem_ctx, operation, e0, e1);
1159
1160 if (cmp) {
1161 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162 } else {
1163 cmp = result;
1164 }
1165 }
1166 break;
1167 }
1168
1169 case GLSL_TYPE_ERROR:
1170 case GLSL_TYPE_VOID:
1171 case GLSL_TYPE_SAMPLER:
1172 case GLSL_TYPE_IMAGE:
1173 case GLSL_TYPE_INTERFACE:
1174 case GLSL_TYPE_ATOMIC_UINT:
1175 case GLSL_TYPE_SUBROUTINE:
1176 case GLSL_TYPE_FUNCTION:
1177 /* I assume a comparison of a struct containing a sampler just
1178 * ignores the sampler present in the type.
1179 */
1180 break;
1181 }
1182
1183 if (cmp == NULL)
1184 cmp = new(mem_ctx) ir_constant(true);
1185
1186 return cmp;
1187 }
1188
1189 /* For logical operations, we want to ensure that the operands are
1190 * scalar booleans. If it isn't, emit an error and return a constant
1191 * boolean to avoid triggering cascading error messages.
1192 */
1193 static ir_rvalue *
1194 get_scalar_boolean_operand(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state,
1196 ast_expression *parent_expr,
1197 int operand,
1198 const char *operand_name,
1199 bool *error_emitted)
1200 {
1201 ast_expression *expr = parent_expr->subexpressions[operand];
1202 void *ctx = state;
1203 ir_rvalue *val = expr->hir(instructions, state);
1204
1205 if (val->type->is_boolean() && val->type->is_scalar())
1206 return val;
1207
1208 if (!*error_emitted) {
1209 YYLTYPE loc = expr->get_location();
1210 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1211 operand_name,
1212 parent_expr->operator_string(parent_expr->oper));
1213 *error_emitted = true;
1214 }
1215
1216 return new(ctx) ir_constant(true);
1217 }
1218
1219 /**
1220 * If name refers to a builtin array whose maximum allowed size is less than
1221 * size, report an error and return true. Otherwise return false.
1222 */
1223 void
1224 check_builtin_array_max_size(const char *name, unsigned size,
1225 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1226 {
1227 if ((strcmp("gl_TexCoord", name) == 0)
1228 && (size > state->Const.MaxTextureCoords)) {
1229 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1230 *
1231 * "The size [of gl_TexCoord] can be at most
1232 * gl_MaxTextureCoords."
1233 */
1234 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1235 "be larger than gl_MaxTextureCoords (%u)",
1236 state->Const.MaxTextureCoords);
1237 } else if (strcmp("gl_ClipDistance", name) == 0) {
1238 state->clip_dist_size = size;
1239 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1240 /* From section 7.1 (Vertex Shader Special Variables) of the
1241 * GLSL 1.30 spec:
1242 *
1243 * "The gl_ClipDistance array is predeclared as unsized and
1244 * must be sized by the shader either redeclaring it with a
1245 * size or indexing it only with integral constant
1246 * expressions. ... The size can be at most
1247 * gl_MaxClipDistances."
1248 */
1249 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1250 "be larger than gl_MaxClipDistances (%u)",
1251 state->Const.MaxClipPlanes);
1252 }
1253 } else if (strcmp("gl_CullDistance", name) == 0) {
1254 state->cull_dist_size = size;
1255 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1256 /* From the ARB_cull_distance spec:
1257 *
1258 * "The gl_CullDistance array is predeclared as unsized and
1259 * must be sized by the shader either redeclaring it with
1260 * a size or indexing it only with integral constant
1261 * expressions. The size determines the number and set of
1262 * enabled cull distances and can be at most
1263 * gl_MaxCullDistances."
1264 */
1265 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1266 "be larger than gl_MaxCullDistances (%u)",
1267 state->Const.MaxClipPlanes);
1268 }
1269 }
1270 }
1271
1272 /**
1273 * Create the constant 1, of a which is appropriate for incrementing and
1274 * decrementing values of the given GLSL type. For example, if type is vec4,
1275 * this creates a constant value of 1.0 having type float.
1276 *
1277 * If the given type is invalid for increment and decrement operators, return
1278 * a floating point 1--the error will be detected later.
1279 */
1280 static ir_rvalue *
1281 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1282 {
1283 switch (type->base_type) {
1284 case GLSL_TYPE_UINT:
1285 return new(ctx) ir_constant((unsigned) 1);
1286 case GLSL_TYPE_INT:
1287 return new(ctx) ir_constant(1);
1288 case GLSL_TYPE_UINT64:
1289 return new(ctx) ir_constant((uint64_t) 1);
1290 case GLSL_TYPE_INT64:
1291 return new(ctx) ir_constant((int64_t) 1);
1292 default:
1293 case GLSL_TYPE_FLOAT:
1294 return new(ctx) ir_constant(1.0f);
1295 }
1296 }
1297
1298 ir_rvalue *
1299 ast_expression::hir(exec_list *instructions,
1300 struct _mesa_glsl_parse_state *state)
1301 {
1302 return do_hir(instructions, state, true);
1303 }
1304
1305 void
1306 ast_expression::hir_no_rvalue(exec_list *instructions,
1307 struct _mesa_glsl_parse_state *state)
1308 {
1309 do_hir(instructions, state, false);
1310 }
1311
1312 void
1313 ast_expression::set_is_lhs(bool new_value)
1314 {
1315 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1316 * if we lack an identifier we can just skip it.
1317 */
1318 if (this->primary_expression.identifier == NULL)
1319 return;
1320
1321 this->is_lhs = new_value;
1322
1323 /* We need to go through the subexpressions tree to cover cases like
1324 * ast_field_selection
1325 */
1326 if (this->subexpressions[0] != NULL)
1327 this->subexpressions[0]->set_is_lhs(new_value);
1328 }
1329
1330 ir_rvalue *
1331 ast_expression::do_hir(exec_list *instructions,
1332 struct _mesa_glsl_parse_state *state,
1333 bool needs_rvalue)
1334 {
1335 void *ctx = state;
1336 static const int operations[AST_NUM_OPERATORS] = {
1337 -1, /* ast_assign doesn't convert to ir_expression. */
1338 -1, /* ast_plus doesn't convert to ir_expression. */
1339 ir_unop_neg,
1340 ir_binop_add,
1341 ir_binop_sub,
1342 ir_binop_mul,
1343 ir_binop_div,
1344 ir_binop_mod,
1345 ir_binop_lshift,
1346 ir_binop_rshift,
1347 ir_binop_less,
1348 ir_binop_less, /* This is correct. See the ast_greater case below. */
1349 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1350 ir_binop_gequal,
1351 ir_binop_all_equal,
1352 ir_binop_any_nequal,
1353 ir_binop_bit_and,
1354 ir_binop_bit_xor,
1355 ir_binop_bit_or,
1356 ir_unop_bit_not,
1357 ir_binop_logic_and,
1358 ir_binop_logic_xor,
1359 ir_binop_logic_or,
1360 ir_unop_logic_not,
1361
1362 /* Note: The following block of expression types actually convert
1363 * to multiple IR instructions.
1364 */
1365 ir_binop_mul, /* ast_mul_assign */
1366 ir_binop_div, /* ast_div_assign */
1367 ir_binop_mod, /* ast_mod_assign */
1368 ir_binop_add, /* ast_add_assign */
1369 ir_binop_sub, /* ast_sub_assign */
1370 ir_binop_lshift, /* ast_ls_assign */
1371 ir_binop_rshift, /* ast_rs_assign */
1372 ir_binop_bit_and, /* ast_and_assign */
1373 ir_binop_bit_xor, /* ast_xor_assign */
1374 ir_binop_bit_or, /* ast_or_assign */
1375
1376 -1, /* ast_conditional doesn't convert to ir_expression. */
1377 ir_binop_add, /* ast_pre_inc. */
1378 ir_binop_sub, /* ast_pre_dec. */
1379 ir_binop_add, /* ast_post_inc. */
1380 ir_binop_sub, /* ast_post_dec. */
1381 -1, /* ast_field_selection doesn't conv to ir_expression. */
1382 -1, /* ast_array_index doesn't convert to ir_expression. */
1383 -1, /* ast_function_call doesn't conv to ir_expression. */
1384 -1, /* ast_identifier doesn't convert to ir_expression. */
1385 -1, /* ast_int_constant doesn't convert to ir_expression. */
1386 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1387 -1, /* ast_float_constant doesn't conv to ir_expression. */
1388 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1389 -1, /* ast_sequence doesn't convert to ir_expression. */
1390 -1, /* ast_aggregate shouldn't ever even get here. */
1391 };
1392 ir_rvalue *result = NULL;
1393 ir_rvalue *op[3];
1394 const struct glsl_type *type, *orig_type;
1395 bool error_emitted = false;
1396 YYLTYPE loc;
1397
1398 loc = this->get_location();
1399
1400 switch (this->oper) {
1401 case ast_aggregate:
1402 unreachable("ast_aggregate: Should never get here.");
1403
1404 case ast_assign: {
1405 this->subexpressions[0]->set_is_lhs(true);
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 error_emitted =
1410 do_assignment(instructions, state,
1411 this->subexpressions[0]->non_lvalue_description,
1412 op[0], op[1], &result, needs_rvalue, false,
1413 this->subexpressions[0]->get_location());
1414 break;
1415 }
1416
1417 case ast_plus:
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419
1420 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1421
1422 error_emitted = type->is_error();
1423
1424 result = op[0];
1425 break;
1426
1427 case ast_neg:
1428 op[0] = this->subexpressions[0]->hir(instructions, state);
1429
1430 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1431
1432 error_emitted = type->is_error();
1433
1434 result = new(ctx) ir_expression(operations[this->oper], type,
1435 op[0], NULL);
1436 break;
1437
1438 case ast_add:
1439 case ast_sub:
1440 case ast_mul:
1441 case ast_div:
1442 op[0] = this->subexpressions[0]->hir(instructions, state);
1443 op[1] = this->subexpressions[1]->hir(instructions, state);
1444
1445 type = arithmetic_result_type(op[0], op[1],
1446 (this->oper == ast_mul),
1447 state, & loc);
1448 error_emitted = type->is_error();
1449
1450 result = new(ctx) ir_expression(operations[this->oper], type,
1451 op[0], op[1]);
1452 break;
1453
1454 case ast_mod:
1455 op[0] = this->subexpressions[0]->hir(instructions, state);
1456 op[1] = this->subexpressions[1]->hir(instructions, state);
1457
1458 type = modulus_result_type(op[0], op[1], state, &loc);
1459
1460 assert(operations[this->oper] == ir_binop_mod);
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_lshift:
1468 case ast_rshift:
1469 if (!state->check_bitwise_operations_allowed(&loc)) {
1470 error_emitted = true;
1471 }
1472
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 result = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1480 break;
1481
1482 case ast_less:
1483 case ast_greater:
1484 case ast_lequal:
1485 case ast_gequal:
1486 op[0] = this->subexpressions[0]->hir(instructions, state);
1487 op[1] = this->subexpressions[1]->hir(instructions, state);
1488
1489 type = relational_result_type(op[0], op[1], state, & loc);
1490
1491 /* The relational operators must either generate an error or result
1492 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1493 */
1494 assert(type->is_error()
1495 || (type->is_boolean() && type->is_scalar()));
1496
1497 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1498 * the arguments and use < or >=.
1499 */
1500 if (this->oper == ast_greater || this->oper == ast_lequal) {
1501 ir_rvalue *const tmp = op[0];
1502 op[0] = op[1];
1503 op[1] = tmp;
1504 }
1505
1506 result = new(ctx) ir_expression(operations[this->oper], type,
1507 op[0], op[1]);
1508 error_emitted = type->is_error();
1509 break;
1510
1511 case ast_nequal:
1512 case ast_equal:
1513 op[0] = this->subexpressions[0]->hir(instructions, state);
1514 op[1] = this->subexpressions[1]->hir(instructions, state);
1515
1516 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1517 *
1518 * "The equality operators equal (==), and not equal (!=)
1519 * operate on all types. They result in a scalar Boolean. If
1520 * the operand types do not match, then there must be a
1521 * conversion from Section 4.1.10 "Implicit Conversions"
1522 * applied to one operand that can make them match, in which
1523 * case this conversion is done."
1524 */
1525
1526 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1527 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1528 "no operation `%1$s' exists that takes a left-hand "
1529 "operand of type 'void' or a right operand of type "
1530 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1531 error_emitted = true;
1532 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1533 && !apply_implicit_conversion(op[1]->type, op[0], state))
1534 || (op[0]->type != op[1]->type)) {
1535 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1536 "type", (this->oper == ast_equal) ? "==" : "!=");
1537 error_emitted = true;
1538 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1539 !state->check_version(120, 300, &loc,
1540 "array comparisons forbidden")) {
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_subroutine() ||
1543 op[1]->type->contains_subroutine())) {
1544 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1545 error_emitted = true;
1546 } else if ((op[0]->type->contains_opaque() ||
1547 op[1]->type->contains_opaque())) {
1548 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1549 error_emitted = true;
1550 }
1551
1552 if (error_emitted) {
1553 result = new(ctx) ir_constant(false);
1554 } else {
1555 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1556 assert(result->type == glsl_type::bool_type);
1557 }
1558 break;
1559
1560 case ast_bit_and:
1561 case ast_bit_xor:
1562 case ast_bit_or:
1563 op[0] = this->subexpressions[0]->hir(instructions, state);
1564 op[1] = this->subexpressions[1]->hir(instructions, state);
1565 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1566 result = new(ctx) ir_expression(operations[this->oper], type,
1567 op[0], op[1]);
1568 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1569 break;
1570
1571 case ast_bit_not:
1572 op[0] = this->subexpressions[0]->hir(instructions, state);
1573
1574 if (!state->check_bitwise_operations_allowed(&loc)) {
1575 error_emitted = true;
1576 }
1577
1578 if (!op[0]->type->is_integer_32_64()) {
1579 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1580 error_emitted = true;
1581 }
1582
1583 type = error_emitted ? glsl_type::error_type : op[0]->type;
1584 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1585 break;
1586
1587 case ast_logic_and: {
1588 exec_list rhs_instructions;
1589 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1590 "LHS", &error_emitted);
1591 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1592 "RHS", &error_emitted);
1593
1594 if (rhs_instructions.is_empty()) {
1595 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1596 } else {
1597 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1598 "and_tmp",
1599 ir_var_temporary);
1600 instructions->push_tail(tmp);
1601
1602 ir_if *const stmt = new(ctx) ir_if(op[0]);
1603 instructions->push_tail(stmt);
1604
1605 stmt->then_instructions.append_list(&rhs_instructions);
1606 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1607 ir_assignment *const then_assign =
1608 new(ctx) ir_assignment(then_deref, op[1]);
1609 stmt->then_instructions.push_tail(then_assign);
1610
1611 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1612 ir_assignment *const else_assign =
1613 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1614 stmt->else_instructions.push_tail(else_assign);
1615
1616 result = new(ctx) ir_dereference_variable(tmp);
1617 }
1618 break;
1619 }
1620
1621 case ast_logic_or: {
1622 exec_list rhs_instructions;
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1624 "LHS", &error_emitted);
1625 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1626 "RHS", &error_emitted);
1627
1628 if (rhs_instructions.is_empty()) {
1629 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1630 } else {
1631 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1632 "or_tmp",
1633 ir_var_temporary);
1634 instructions->push_tail(tmp);
1635
1636 ir_if *const stmt = new(ctx) ir_if(op[0]);
1637 instructions->push_tail(stmt);
1638
1639 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1640 ir_assignment *const then_assign =
1641 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1642 stmt->then_instructions.push_tail(then_assign);
1643
1644 stmt->else_instructions.append_list(&rhs_instructions);
1645 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1646 ir_assignment *const else_assign =
1647 new(ctx) ir_assignment(else_deref, op[1]);
1648 stmt->else_instructions.push_tail(else_assign);
1649
1650 result = new(ctx) ir_dereference_variable(tmp);
1651 }
1652 break;
1653 }
1654
1655 case ast_logic_xor:
1656 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1657 *
1658 * "The logical binary operators and (&&), or ( | | ), and
1659 * exclusive or (^^). They operate only on two Boolean
1660 * expressions and result in a Boolean expression."
1661 */
1662 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1663 &error_emitted);
1664 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1665 &error_emitted);
1666
1667 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1668 op[0], op[1]);
1669 break;
1670
1671 case ast_logic_not:
1672 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1673 "operand", &error_emitted);
1674
1675 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1676 op[0], NULL);
1677 break;
1678
1679 case ast_mul_assign:
1680 case ast_div_assign:
1681 case ast_add_assign:
1682 case ast_sub_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686
1687 orig_type = op[0]->type;
1688
1689 /* Break out if operand types were not parsed successfully. */
1690 if ((op[0]->type == glsl_type::error_type ||
1691 op[1]->type == glsl_type::error_type))
1692 break;
1693
1694 type = arithmetic_result_type(op[0], op[1],
1695 (this->oper == ast_mul_assign),
1696 state, & loc);
1697
1698 if (type != orig_type) {
1699 _mesa_glsl_error(& loc, state,
1700 "could not implicitly convert "
1701 "%s to %s", type->name, orig_type->name);
1702 type = glsl_type::error_type;
1703 }
1704
1705 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1706 op[0], op[1]);
1707
1708 error_emitted =
1709 do_assignment(instructions, state,
1710 this->subexpressions[0]->non_lvalue_description,
1711 op[0]->clone(ctx, NULL), temp_rhs,
1712 &result, needs_rvalue, false,
1713 this->subexpressions[0]->get_location());
1714
1715 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1716 * explicitly test for this because none of the binary expression
1717 * operators allow array operands either.
1718 */
1719
1720 break;
1721 }
1722
1723 case ast_mod_assign: {
1724 this->subexpressions[0]->set_is_lhs(true);
1725 op[0] = this->subexpressions[0]->hir(instructions, state);
1726 op[1] = this->subexpressions[1]->hir(instructions, state);
1727
1728 orig_type = op[0]->type;
1729 type = modulus_result_type(op[0], op[1], state, &loc);
1730
1731 if (type != orig_type) {
1732 _mesa_glsl_error(& loc, state,
1733 "could not implicitly convert "
1734 "%s to %s", type->name, orig_type->name);
1735 type = glsl_type::error_type;
1736 }
1737
1738 assert(operations[this->oper] == ir_binop_mod);
1739
1740 ir_rvalue *temp_rhs;
1741 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1742 op[0], op[1]);
1743
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_ls_assign:
1754 case ast_rs_assign: {
1755 this->subexpressions[0]->set_is_lhs(true);
1756 op[0] = this->subexpressions[0]->hir(instructions, state);
1757 op[1] = this->subexpressions[1]->hir(instructions, state);
1758 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1759 &loc);
1760 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1761 type, op[0], op[1]);
1762 error_emitted =
1763 do_assignment(instructions, state,
1764 this->subexpressions[0]->non_lvalue_description,
1765 op[0]->clone(ctx, NULL), temp_rhs,
1766 &result, needs_rvalue, false,
1767 this->subexpressions[0]->get_location());
1768 break;
1769 }
1770
1771 case ast_and_assign:
1772 case ast_xor_assign:
1773 case ast_or_assign: {
1774 this->subexpressions[0]->set_is_lhs(true);
1775 op[0] = this->subexpressions[0]->hir(instructions, state);
1776 op[1] = this->subexpressions[1]->hir(instructions, state);
1777
1778 orig_type = op[0]->type;
1779 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1780
1781 if (type != orig_type) {
1782 _mesa_glsl_error(& loc, state,
1783 "could not implicitly convert "
1784 "%s to %s", type->name, orig_type->name);
1785 type = glsl_type::error_type;
1786 }
1787
1788 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1789 type, op[0], op[1]);
1790 error_emitted =
1791 do_assignment(instructions, state,
1792 this->subexpressions[0]->non_lvalue_description,
1793 op[0]->clone(ctx, NULL), temp_rhs,
1794 &result, needs_rvalue, false,
1795 this->subexpressions[0]->get_location());
1796 break;
1797 }
1798
1799 case ast_conditional: {
1800 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1801 *
1802 * "The ternary selection operator (?:). It operates on three
1803 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1804 * first expression, which must result in a scalar Boolean."
1805 */
1806 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1807 "condition", &error_emitted);
1808
1809 /* The :? operator is implemented by generating an anonymous temporary
1810 * followed by an if-statement. The last instruction in each branch of
1811 * the if-statement assigns a value to the anonymous temporary. This
1812 * temporary is the r-value of the expression.
1813 */
1814 exec_list then_instructions;
1815 exec_list else_instructions;
1816
1817 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1818 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1819
1820 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1821 *
1822 * "The second and third expressions can be any type, as
1823 * long their types match, or there is a conversion in
1824 * Section 4.1.10 "Implicit Conversions" that can be applied
1825 * to one of the expressions to make their types match. This
1826 * resulting matching type is the type of the entire
1827 * expression."
1828 */
1829 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1830 && !apply_implicit_conversion(op[2]->type, op[1], state))
1831 || (op[1]->type != op[2]->type)) {
1832 YYLTYPE loc = this->subexpressions[1]->get_location();
1833
1834 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1835 "operator must have matching types");
1836 error_emitted = true;
1837 type = glsl_type::error_type;
1838 } else {
1839 type = op[1]->type;
1840 }
1841
1842 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1843 *
1844 * "The second and third expressions must be the same type, but can
1845 * be of any type other than an array."
1846 */
1847 if (type->is_array() &&
1848 !state->check_version(120, 300, &loc,
1849 "second and third operands of ?: operator "
1850 "cannot be arrays")) {
1851 error_emitted = true;
1852 }
1853
1854 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1855 *
1856 * "Except for array indexing, structure member selection, and
1857 * parentheses, opaque variables are not allowed to be operands in
1858 * expressions; such use results in a compile-time error."
1859 */
1860 if (type->contains_opaque()) {
1861 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1862 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1863 "operands of the ?: operator", type->name);
1864 error_emitted = true;
1865 }
1866 }
1867
1868 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1869
1870 if (then_instructions.is_empty()
1871 && else_instructions.is_empty()
1872 && cond_val != NULL) {
1873 result = cond_val->value.b[0] ? op[1] : op[2];
1874 } else {
1875 /* The copy to conditional_tmp reads the whole array. */
1876 if (type->is_array()) {
1877 mark_whole_array_access(op[1]);
1878 mark_whole_array_access(op[2]);
1879 }
1880
1881 ir_variable *const tmp =
1882 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1883 instructions->push_tail(tmp);
1884
1885 ir_if *const stmt = new(ctx) ir_if(op[0]);
1886 instructions->push_tail(stmt);
1887
1888 then_instructions.move_nodes_to(& stmt->then_instructions);
1889 ir_dereference *const then_deref =
1890 new(ctx) ir_dereference_variable(tmp);
1891 ir_assignment *const then_assign =
1892 new(ctx) ir_assignment(then_deref, op[1]);
1893 stmt->then_instructions.push_tail(then_assign);
1894
1895 else_instructions.move_nodes_to(& stmt->else_instructions);
1896 ir_dereference *const else_deref =
1897 new(ctx) ir_dereference_variable(tmp);
1898 ir_assignment *const else_assign =
1899 new(ctx) ir_assignment(else_deref, op[2]);
1900 stmt->else_instructions.push_tail(else_assign);
1901
1902 result = new(ctx) ir_dereference_variable(tmp);
1903 }
1904 break;
1905 }
1906
1907 case ast_pre_inc:
1908 case ast_pre_dec: {
1909 this->non_lvalue_description = (this->oper == ast_pre_inc)
1910 ? "pre-increment operation" : "pre-decrement operation";
1911
1912 op[0] = this->subexpressions[0]->hir(instructions, state);
1913 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1914
1915 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1916
1917 ir_rvalue *temp_rhs;
1918 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1919 op[0], op[1]);
1920
1921 error_emitted =
1922 do_assignment(instructions, state,
1923 this->subexpressions[0]->non_lvalue_description,
1924 op[0]->clone(ctx, NULL), temp_rhs,
1925 &result, needs_rvalue, false,
1926 this->subexpressions[0]->get_location());
1927 break;
1928 }
1929
1930 case ast_post_inc:
1931 case ast_post_dec: {
1932 this->non_lvalue_description = (this->oper == ast_post_inc)
1933 ? "post-increment operation" : "post-decrement operation";
1934 op[0] = this->subexpressions[0]->hir(instructions, state);
1935 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1936
1937 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1938
1939 if (error_emitted) {
1940 result = ir_rvalue::error_value(ctx);
1941 break;
1942 }
1943
1944 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1945
1946 ir_rvalue *temp_rhs;
1947 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1948 op[0], op[1]);
1949
1950 /* Get a temporary of a copy of the lvalue before it's modified.
1951 * This may get thrown away later.
1952 */
1953 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1954
1955 ir_rvalue *junk_rvalue;
1956 error_emitted =
1957 do_assignment(instructions, state,
1958 this->subexpressions[0]->non_lvalue_description,
1959 op[0]->clone(ctx, NULL), temp_rhs,
1960 &junk_rvalue, false, false,
1961 this->subexpressions[0]->get_location());
1962
1963 break;
1964 }
1965
1966 case ast_field_selection:
1967 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1968 break;
1969
1970 case ast_array_index: {
1971 YYLTYPE index_loc = subexpressions[1]->get_location();
1972
1973 /* Getting if an array is being used uninitialized is beyond what we get
1974 * from ir_value.data.assigned. Setting is_lhs as true would force to
1975 * not raise a uninitialized warning when using an array
1976 */
1977 subexpressions[0]->set_is_lhs(true);
1978 op[0] = subexpressions[0]->hir(instructions, state);
1979 op[1] = subexpressions[1]->hir(instructions, state);
1980
1981 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1982 loc, index_loc);
1983
1984 if (result->type->is_error())
1985 error_emitted = true;
1986
1987 break;
1988 }
1989
1990 case ast_unsized_array_dim:
1991 unreachable("ast_unsized_array_dim: Should never get here.");
1992
1993 case ast_function_call:
1994 /* Should *NEVER* get here. ast_function_call should always be handled
1995 * by ast_function_expression::hir.
1996 */
1997 unreachable("ast_function_call: handled elsewhere ");
1998
1999 case ast_identifier: {
2000 /* ast_identifier can appear several places in a full abstract syntax
2001 * tree. This particular use must be at location specified in the grammar
2002 * as 'variable_identifier'.
2003 */
2004 ir_variable *var =
2005 state->symbols->get_variable(this->primary_expression.identifier);
2006
2007 if (var == NULL) {
2008 /* the identifier might be a subroutine name */
2009 char *sub_name;
2010 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2011 var = state->symbols->get_variable(sub_name);
2012 ralloc_free(sub_name);
2013 }
2014
2015 if (var != NULL) {
2016 var->data.used = true;
2017 result = new(ctx) ir_dereference_variable(var);
2018
2019 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2020 && !this->is_lhs
2021 && result->variable_referenced()->data.assigned != true
2022 && !is_gl_identifier(var->name)) {
2023 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2024 this->primary_expression.identifier);
2025 }
2026
2027 /* From the EXT_shader_framebuffer_fetch spec:
2028 *
2029 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2030 * enabled in addition, it's an error to use gl_LastFragData if it
2031 * hasn't been explicitly redeclared with layout(noncoherent)."
2032 */
2033 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2034 !state->EXT_shader_framebuffer_fetch_enable) {
2035 _mesa_glsl_error(&loc, state,
2036 "invalid use of framebuffer fetch output not "
2037 "qualified with layout(noncoherent)");
2038 }
2039
2040 } else {
2041 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2042 this->primary_expression.identifier);
2043
2044 result = ir_rvalue::error_value(ctx);
2045 error_emitted = true;
2046 }
2047 break;
2048 }
2049
2050 case ast_int_constant:
2051 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2052 break;
2053
2054 case ast_uint_constant:
2055 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2056 break;
2057
2058 case ast_float_constant:
2059 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2060 break;
2061
2062 case ast_bool_constant:
2063 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2064 break;
2065
2066 case ast_double_constant:
2067 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2068 break;
2069
2070 case ast_uint64_constant:
2071 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2072 break;
2073
2074 case ast_int64_constant:
2075 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2076 break;
2077
2078 case ast_sequence: {
2079 /* It should not be possible to generate a sequence in the AST without
2080 * any expressions in it.
2081 */
2082 assert(!this->expressions.is_empty());
2083
2084 /* The r-value of a sequence is the last expression in the sequence. If
2085 * the other expressions in the sequence do not have side-effects (and
2086 * therefore add instructions to the instruction list), they get dropped
2087 * on the floor.
2088 */
2089 exec_node *previous_tail = NULL;
2090 YYLTYPE previous_operand_loc = loc;
2091
2092 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2093 /* If one of the operands of comma operator does not generate any
2094 * code, we want to emit a warning. At each pass through the loop
2095 * previous_tail will point to the last instruction in the stream
2096 * *before* processing the previous operand. Naturally,
2097 * instructions->get_tail_raw() will point to the last instruction in
2098 * the stream *after* processing the previous operand. If the two
2099 * pointers match, then the previous operand had no effect.
2100 *
2101 * The warning behavior here differs slightly from GCC. GCC will
2102 * only emit a warning if none of the left-hand operands have an
2103 * effect. However, it will emit a warning for each. I believe that
2104 * there are some cases in C (especially with GCC extensions) where
2105 * it is useful to have an intermediate step in a sequence have no
2106 * effect, but I don't think these cases exist in GLSL. Either way,
2107 * it would be a giant hassle to replicate that behavior.
2108 */
2109 if (previous_tail == instructions->get_tail_raw()) {
2110 _mesa_glsl_warning(&previous_operand_loc, state,
2111 "left-hand operand of comma expression has "
2112 "no effect");
2113 }
2114
2115 /* The tail is directly accessed instead of using the get_tail()
2116 * method for performance reasons. get_tail() has extra code to
2117 * return NULL when the list is empty. We don't care about that
2118 * here, so using get_tail_raw() is fine.
2119 */
2120 previous_tail = instructions->get_tail_raw();
2121 previous_operand_loc = ast->get_location();
2122
2123 result = ast->hir(instructions, state);
2124 }
2125
2126 /* Any errors should have already been emitted in the loop above.
2127 */
2128 error_emitted = true;
2129 break;
2130 }
2131 }
2132 type = NULL; /* use result->type, not type. */
2133 assert(result != NULL || !needs_rvalue);
2134
2135 if (result && result->type->is_error() && !error_emitted)
2136 _mesa_glsl_error(& loc, state, "type mismatch");
2137
2138 return result;
2139 }
2140
2141 bool
2142 ast_expression::has_sequence_subexpression() const
2143 {
2144 switch (this->oper) {
2145 case ast_plus:
2146 case ast_neg:
2147 case ast_bit_not:
2148 case ast_logic_not:
2149 case ast_pre_inc:
2150 case ast_pre_dec:
2151 case ast_post_inc:
2152 case ast_post_dec:
2153 return this->subexpressions[0]->has_sequence_subexpression();
2154
2155 case ast_assign:
2156 case ast_add:
2157 case ast_sub:
2158 case ast_mul:
2159 case ast_div:
2160 case ast_mod:
2161 case ast_lshift:
2162 case ast_rshift:
2163 case ast_less:
2164 case ast_greater:
2165 case ast_lequal:
2166 case ast_gequal:
2167 case ast_nequal:
2168 case ast_equal:
2169 case ast_bit_and:
2170 case ast_bit_xor:
2171 case ast_bit_or:
2172 case ast_logic_and:
2173 case ast_logic_or:
2174 case ast_logic_xor:
2175 case ast_array_index:
2176 case ast_mul_assign:
2177 case ast_div_assign:
2178 case ast_add_assign:
2179 case ast_sub_assign:
2180 case ast_mod_assign:
2181 case ast_ls_assign:
2182 case ast_rs_assign:
2183 case ast_and_assign:
2184 case ast_xor_assign:
2185 case ast_or_assign:
2186 return this->subexpressions[0]->has_sequence_subexpression() ||
2187 this->subexpressions[1]->has_sequence_subexpression();
2188
2189 case ast_conditional:
2190 return this->subexpressions[0]->has_sequence_subexpression() ||
2191 this->subexpressions[1]->has_sequence_subexpression() ||
2192 this->subexpressions[2]->has_sequence_subexpression();
2193
2194 case ast_sequence:
2195 return true;
2196
2197 case ast_field_selection:
2198 case ast_identifier:
2199 case ast_int_constant:
2200 case ast_uint_constant:
2201 case ast_float_constant:
2202 case ast_bool_constant:
2203 case ast_double_constant:
2204 case ast_int64_constant:
2205 case ast_uint64_constant:
2206 return false;
2207
2208 case ast_aggregate:
2209 return false;
2210
2211 case ast_function_call:
2212 unreachable("should be handled by ast_function_expression::hir");
2213
2214 case ast_unsized_array_dim:
2215 unreachable("ast_unsized_array_dim: Should never get here.");
2216 }
2217
2218 return false;
2219 }
2220
2221 ir_rvalue *
2222 ast_expression_statement::hir(exec_list *instructions,
2223 struct _mesa_glsl_parse_state *state)
2224 {
2225 /* It is possible to have expression statements that don't have an
2226 * expression. This is the solitary semicolon:
2227 *
2228 * for (i = 0; i < 5; i++)
2229 * ;
2230 *
2231 * In this case the expression will be NULL. Test for NULL and don't do
2232 * anything in that case.
2233 */
2234 if (expression != NULL)
2235 expression->hir_no_rvalue(instructions, state);
2236
2237 /* Statements do not have r-values.
2238 */
2239 return NULL;
2240 }
2241
2242
2243 ir_rvalue *
2244 ast_compound_statement::hir(exec_list *instructions,
2245 struct _mesa_glsl_parse_state *state)
2246 {
2247 if (new_scope)
2248 state->symbols->push_scope();
2249
2250 foreach_list_typed (ast_node, ast, link, &this->statements)
2251 ast->hir(instructions, state);
2252
2253 if (new_scope)
2254 state->symbols->pop_scope();
2255
2256 /* Compound statements do not have r-values.
2257 */
2258 return NULL;
2259 }
2260
2261 /**
2262 * Evaluate the given exec_node (which should be an ast_node representing
2263 * a single array dimension) and return its integer value.
2264 */
2265 static unsigned
2266 process_array_size(exec_node *node,
2267 struct _mesa_glsl_parse_state *state)
2268 {
2269 void *mem_ctx = state;
2270
2271 exec_list dummy_instructions;
2272
2273 ast_node *array_size = exec_node_data(ast_node, node, link);
2274
2275 /**
2276 * Dimensions other than the outermost dimension can by unsized if they
2277 * are immediately sized by a constructor or initializer.
2278 */
2279 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2280 return 0;
2281
2282 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2283 YYLTYPE loc = array_size->get_location();
2284
2285 if (ir == NULL) {
2286 _mesa_glsl_error(& loc, state,
2287 "array size could not be resolved");
2288 return 0;
2289 }
2290
2291 if (!ir->type->is_integer()) {
2292 _mesa_glsl_error(& loc, state,
2293 "array size must be integer type");
2294 return 0;
2295 }
2296
2297 if (!ir->type->is_scalar()) {
2298 _mesa_glsl_error(& loc, state,
2299 "array size must be scalar type");
2300 return 0;
2301 }
2302
2303 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2304 if (size == NULL ||
2305 (state->is_version(120, 300) &&
2306 array_size->has_sequence_subexpression())) {
2307 _mesa_glsl_error(& loc, state, "array size must be a "
2308 "constant valued expression");
2309 return 0;
2310 }
2311
2312 if (size->value.i[0] <= 0) {
2313 _mesa_glsl_error(& loc, state, "array size must be > 0");
2314 return 0;
2315 }
2316
2317 assert(size->type == ir->type);
2318
2319 /* If the array size is const (and we've verified that
2320 * it is) then no instructions should have been emitted
2321 * when we converted it to HIR. If they were emitted,
2322 * then either the array size isn't const after all, or
2323 * we are emitting unnecessary instructions.
2324 */
2325 assert(dummy_instructions.is_empty());
2326
2327 return size->value.u[0];
2328 }
2329
2330 static const glsl_type *
2331 process_array_type(YYLTYPE *loc, const glsl_type *base,
2332 ast_array_specifier *array_specifier,
2333 struct _mesa_glsl_parse_state *state)
2334 {
2335 const glsl_type *array_type = base;
2336
2337 if (array_specifier != NULL) {
2338 if (base->is_array()) {
2339
2340 /* From page 19 (page 25) of the GLSL 1.20 spec:
2341 *
2342 * "Only one-dimensional arrays may be declared."
2343 */
2344 if (!state->check_arrays_of_arrays_allowed(loc)) {
2345 return glsl_type::error_type;
2346 }
2347 }
2348
2349 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2350 !node->is_head_sentinel(); node = node->prev) {
2351 unsigned array_size = process_array_size(node, state);
2352 array_type = glsl_type::get_array_instance(array_type, array_size);
2353 }
2354 }
2355
2356 return array_type;
2357 }
2358
2359 static bool
2360 precision_qualifier_allowed(const glsl_type *type)
2361 {
2362 /* Precision qualifiers apply to floating point, integer and opaque
2363 * types.
2364 *
2365 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2366 * "Any floating point or any integer declaration can have the type
2367 * preceded by one of these precision qualifiers [...] Literal
2368 * constants do not have precision qualifiers. Neither do Boolean
2369 * variables.
2370 *
2371 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2372 * spec also says:
2373 *
2374 * "Precision qualifiers are added for code portability with OpenGL
2375 * ES, not for functionality. They have the same syntax as in OpenGL
2376 * ES."
2377 *
2378 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2379 *
2380 * "uniform lowp sampler2D sampler;
2381 * highp vec2 coord;
2382 * ...
2383 * lowp vec4 col = texture2D (sampler, coord);
2384 * // texture2D returns lowp"
2385 *
2386 * From this, we infer that GLSL 1.30 (and later) should allow precision
2387 * qualifiers on sampler types just like float and integer types.
2388 */
2389 const glsl_type *const t = type->without_array();
2390
2391 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2392 !t->is_record();
2393 }
2394
2395 const glsl_type *
2396 ast_type_specifier::glsl_type(const char **name,
2397 struct _mesa_glsl_parse_state *state) const
2398 {
2399 const struct glsl_type *type;
2400
2401 if (this->type != NULL)
2402 type = this->type;
2403 else if (structure)
2404 type = structure->type;
2405 else
2406 type = state->symbols->get_type(this->type_name);
2407 *name = this->type_name;
2408
2409 YYLTYPE loc = this->get_location();
2410 type = process_array_type(&loc, type, this->array_specifier, state);
2411
2412 return type;
2413 }
2414
2415 /**
2416 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2417 *
2418 * "The precision statement
2419 *
2420 * precision precision-qualifier type;
2421 *
2422 * can be used to establish a default precision qualifier. The type field can
2423 * be either int or float or any of the sampler types, (...) If type is float,
2424 * the directive applies to non-precision-qualified floating point type
2425 * (scalar, vector, and matrix) declarations. If type is int, the directive
2426 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2427 * and unsigned) declarations."
2428 *
2429 * We use the symbol table to keep the values of the default precisions for
2430 * each 'type' in each scope and we use the 'type' string from the precision
2431 * statement as key in the symbol table. When we want to retrieve the default
2432 * precision associated with a given glsl_type we need to know the type string
2433 * associated with it. This is what this function returns.
2434 */
2435 static const char *
2436 get_type_name_for_precision_qualifier(const glsl_type *type)
2437 {
2438 switch (type->base_type) {
2439 case GLSL_TYPE_FLOAT:
2440 return "float";
2441 case GLSL_TYPE_UINT:
2442 case GLSL_TYPE_INT:
2443 return "int";
2444 case GLSL_TYPE_ATOMIC_UINT:
2445 return "atomic_uint";
2446 case GLSL_TYPE_IMAGE:
2447 /* fallthrough */
2448 case GLSL_TYPE_SAMPLER: {
2449 const unsigned type_idx =
2450 type->sampler_array + 2 * type->sampler_shadow;
2451 const unsigned offset = type->is_sampler() ? 0 : 4;
2452 assert(type_idx < 4);
2453 switch (type->sampled_type) {
2454 case GLSL_TYPE_FLOAT:
2455 switch (type->sampler_dimensionality) {
2456 case GLSL_SAMPLER_DIM_1D: {
2457 assert(type->is_sampler());
2458 static const char *const names[4] = {
2459 "sampler1D", "sampler1DArray",
2460 "sampler1DShadow", "sampler1DArrayShadow"
2461 };
2462 return names[type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_2D: {
2465 static const char *const names[8] = {
2466 "sampler2D", "sampler2DArray",
2467 "sampler2DShadow", "sampler2DArrayShadow",
2468 "image2D", "image2DArray", NULL, NULL
2469 };
2470 return names[offset + type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_3D: {
2473 static const char *const names[8] = {
2474 "sampler3D", NULL, NULL, NULL,
2475 "image3D", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_CUBE: {
2480 static const char *const names[8] = {
2481 "samplerCube", "samplerCubeArray",
2482 "samplerCubeShadow", "samplerCubeArrayShadow",
2483 "imageCube", NULL, NULL, NULL
2484 };
2485 return names[offset + type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_MS: {
2488 assert(type->is_sampler());
2489 static const char *const names[4] = {
2490 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2491 };
2492 return names[type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_RECT: {
2495 assert(type->is_sampler());
2496 static const char *const names[4] = {
2497 "samplerRect", NULL, "samplerRectShadow", NULL
2498 };
2499 return names[type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_BUF: {
2502 static const char *const names[8] = {
2503 "samplerBuffer", NULL, NULL, NULL,
2504 "imageBuffer", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_EXTERNAL: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "samplerExternalOES", NULL, NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 default:
2516 unreachable("Unsupported sampler/image dimensionality");
2517 } /* sampler/image float dimensionality */
2518 break;
2519 case GLSL_TYPE_INT:
2520 switch (type->sampler_dimensionality) {
2521 case GLSL_SAMPLER_DIM_1D: {
2522 assert(type->is_sampler());
2523 static const char *const names[4] = {
2524 "isampler1D", "isampler1DArray", NULL, NULL
2525 };
2526 return names[type_idx];
2527 }
2528 case GLSL_SAMPLER_DIM_2D: {
2529 static const char *const names[8] = {
2530 "isampler2D", "isampler2DArray", NULL, NULL,
2531 "iimage2D", "iimage2DArray", NULL, NULL
2532 };
2533 return names[offset + type_idx];
2534 }
2535 case GLSL_SAMPLER_DIM_3D: {
2536 static const char *const names[8] = {
2537 "isampler3D", NULL, NULL, NULL,
2538 "iimage3D", NULL, NULL, NULL
2539 };
2540 return names[offset + type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_CUBE: {
2543 static const char *const names[8] = {
2544 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2545 "iimageCube", NULL, NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_MS: {
2550 assert(type->is_sampler());
2551 static const char *const names[4] = {
2552 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2553 };
2554 return names[type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_RECT: {
2557 assert(type->is_sampler());
2558 static const char *const names[4] = {
2559 "isamplerRect", NULL, "isamplerRectShadow", NULL
2560 };
2561 return names[type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_BUF: {
2564 static const char *const names[8] = {
2565 "isamplerBuffer", NULL, NULL, NULL,
2566 "iimageBuffer", NULL, NULL, NULL
2567 };
2568 return names[offset + type_idx];
2569 }
2570 default:
2571 unreachable("Unsupported isampler/iimage dimensionality");
2572 } /* sampler/image int dimensionality */
2573 break;
2574 case GLSL_TYPE_UINT:
2575 switch (type->sampler_dimensionality) {
2576 case GLSL_SAMPLER_DIM_1D: {
2577 assert(type->is_sampler());
2578 static const char *const names[4] = {
2579 "usampler1D", "usampler1DArray", NULL, NULL
2580 };
2581 return names[type_idx];
2582 }
2583 case GLSL_SAMPLER_DIM_2D: {
2584 static const char *const names[8] = {
2585 "usampler2D", "usampler2DArray", NULL, NULL,
2586 "uimage2D", "uimage2DArray", NULL, NULL
2587 };
2588 return names[offset + type_idx];
2589 }
2590 case GLSL_SAMPLER_DIM_3D: {
2591 static const char *const names[8] = {
2592 "usampler3D", NULL, NULL, NULL,
2593 "uimage3D", NULL, NULL, NULL
2594 };
2595 return names[offset + type_idx];
2596 }
2597 case GLSL_SAMPLER_DIM_CUBE: {
2598 static const char *const names[8] = {
2599 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2600 "uimageCube", NULL, NULL, NULL
2601 };
2602 return names[offset + type_idx];
2603 }
2604 case GLSL_SAMPLER_DIM_MS: {
2605 assert(type->is_sampler());
2606 static const char *const names[4] = {
2607 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2608 };
2609 return names[type_idx];
2610 }
2611 case GLSL_SAMPLER_DIM_RECT: {
2612 assert(type->is_sampler());
2613 static const char *const names[4] = {
2614 "usamplerRect", NULL, "usamplerRectShadow", NULL
2615 };
2616 return names[type_idx];
2617 }
2618 case GLSL_SAMPLER_DIM_BUF: {
2619 static const char *const names[8] = {
2620 "usamplerBuffer", NULL, NULL, NULL,
2621 "uimageBuffer", NULL, NULL, NULL
2622 };
2623 return names[offset + type_idx];
2624 }
2625 default:
2626 unreachable("Unsupported usampler/uimage dimensionality");
2627 } /* sampler/image uint dimensionality */
2628 break;
2629 default:
2630 unreachable("Unsupported sampler/image type");
2631 } /* sampler/image type */
2632 break;
2633 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2634 break;
2635 default:
2636 unreachable("Unsupported type");
2637 } /* base type */
2638 }
2639
2640 static unsigned
2641 select_gles_precision(unsigned qual_precision,
2642 const glsl_type *type,
2643 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2644 {
2645 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2646 * In GLES we take the precision from the type qualifier if present,
2647 * otherwise, if the type of the variable allows precision qualifiers at
2648 * all, we look for the default precision qualifier for that type in the
2649 * current scope.
2650 */
2651 assert(state->es_shader);
2652
2653 unsigned precision = GLSL_PRECISION_NONE;
2654 if (qual_precision) {
2655 precision = qual_precision;
2656 } else if (precision_qualifier_allowed(type)) {
2657 const char *type_name =
2658 get_type_name_for_precision_qualifier(type->without_array());
2659 assert(type_name != NULL);
2660
2661 precision =
2662 state->symbols->get_default_precision_qualifier(type_name);
2663 if (precision == ast_precision_none) {
2664 _mesa_glsl_error(loc, state,
2665 "No precision specified in this scope for type `%s'",
2666 type->name);
2667 }
2668 }
2669
2670
2671 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2672 *
2673 * "The default precision of all atomic types is highp. It is an error to
2674 * declare an atomic type with a different precision or to specify the
2675 * default precision for an atomic type to be lowp or mediump."
2676 */
2677 if (type->is_atomic_uint() && precision != ast_precision_high) {
2678 _mesa_glsl_error(loc, state,
2679 "atomic_uint can only have highp precision qualifier");
2680 }
2681
2682 return precision;
2683 }
2684
2685 const glsl_type *
2686 ast_fully_specified_type::glsl_type(const char **name,
2687 struct _mesa_glsl_parse_state *state) const
2688 {
2689 return this->specifier->glsl_type(name, state);
2690 }
2691
2692 /**
2693 * Determine whether a toplevel variable declaration declares a varying. This
2694 * function operates by examining the variable's mode and the shader target,
2695 * so it correctly identifies linkage variables regardless of whether they are
2696 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2697 *
2698 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2699 * this function will produce undefined results.
2700 */
2701 static bool
2702 is_varying_var(ir_variable *var, gl_shader_stage target)
2703 {
2704 switch (target) {
2705 case MESA_SHADER_VERTEX:
2706 return var->data.mode == ir_var_shader_out;
2707 case MESA_SHADER_FRAGMENT:
2708 return var->data.mode == ir_var_shader_in;
2709 default:
2710 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2711 }
2712 }
2713
2714 static bool
2715 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2716 {
2717 if (is_varying_var(var, state->stage))
2718 return true;
2719
2720 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2721 * "Only variables output from a vertex shader can be candidates
2722 * for invariance".
2723 */
2724 if (!state->is_version(130, 0))
2725 return false;
2726
2727 /*
2728 * Later specs remove this language - so allowed invariant
2729 * on fragment shader outputs as well.
2730 */
2731 if (state->stage == MESA_SHADER_FRAGMENT &&
2732 var->data.mode == ir_var_shader_out)
2733 return true;
2734 return false;
2735 }
2736
2737 /**
2738 * Matrix layout qualifiers are only allowed on certain types
2739 */
2740 static void
2741 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2742 YYLTYPE *loc,
2743 const glsl_type *type,
2744 ir_variable *var)
2745 {
2746 if (var && !var->is_in_buffer_block()) {
2747 /* Layout qualifiers may only apply to interface blocks and fields in
2748 * them.
2749 */
2750 _mesa_glsl_error(loc, state,
2751 "uniform block layout qualifiers row_major and "
2752 "column_major may not be applied to variables "
2753 "outside of uniform blocks");
2754 } else if (!type->without_array()->is_matrix()) {
2755 /* The OpenGL ES 3.0 conformance tests did not originally allow
2756 * matrix layout qualifiers on non-matrices. However, the OpenGL
2757 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2758 * amended to specifically allow these layouts on all types. Emit
2759 * a warning so that people know their code may not be portable.
2760 */
2761 _mesa_glsl_warning(loc, state,
2762 "uniform block layout qualifiers row_major and "
2763 "column_major applied to non-matrix types may "
2764 "be rejected by older compilers");
2765 }
2766 }
2767
2768 static bool
2769 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2770 struct _mesa_glsl_parse_state *state,
2771 unsigned xfb_buffer) {
2772 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2773 _mesa_glsl_error(loc, state,
2774 "invalid xfb_buffer specified %d is larger than "
2775 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2776 xfb_buffer,
2777 state->Const.MaxTransformFeedbackBuffers - 1);
2778 return false;
2779 }
2780
2781 return true;
2782 }
2783
2784 /* From the ARB_enhanced_layouts spec:
2785 *
2786 * "Variables and block members qualified with *xfb_offset* can be
2787 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2788 * The offset must be a multiple of the size of the first component of
2789 * the first qualified variable or block member, or a compile-time error
2790 * results. Further, if applied to an aggregate containing a double,
2791 * the offset must also be a multiple of 8, and the space taken in the
2792 * buffer will be a multiple of 8.
2793 */
2794 static bool
2795 validate_xfb_offset_qualifier(YYLTYPE *loc,
2796 struct _mesa_glsl_parse_state *state,
2797 int xfb_offset, const glsl_type *type,
2798 unsigned component_size) {
2799 const glsl_type *t_without_array = type->without_array();
2800
2801 if (xfb_offset != -1 && type->is_unsized_array()) {
2802 _mesa_glsl_error(loc, state,
2803 "xfb_offset can't be used with unsized arrays.");
2804 return false;
2805 }
2806
2807 /* Make sure nested structs don't contain unsized arrays, and validate
2808 * any xfb_offsets on interface members.
2809 */
2810 if (t_without_array->is_record() || t_without_array->is_interface())
2811 for (unsigned int i = 0; i < t_without_array->length; i++) {
2812 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2813
2814 /* When the interface block doesn't have an xfb_offset qualifier then
2815 * we apply the component size rules at the member level.
2816 */
2817 if (xfb_offset == -1)
2818 component_size = member_t->contains_double() ? 8 : 4;
2819
2820 int xfb_offset = t_without_array->fields.structure[i].offset;
2821 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2822 component_size);
2823 }
2824
2825 /* Nested structs or interface block without offset may not have had an
2826 * offset applied yet so return.
2827 */
2828 if (xfb_offset == -1) {
2829 return true;
2830 }
2831
2832 if (xfb_offset % component_size) {
2833 _mesa_glsl_error(loc, state,
2834 "invalid qualifier xfb_offset=%d must be a multiple "
2835 "of the first component size of the first qualified "
2836 "variable or block member. Or double if an aggregate "
2837 "that contains a double (%d).",
2838 xfb_offset, component_size);
2839 return false;
2840 }
2841
2842 return true;
2843 }
2844
2845 static bool
2846 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2847 unsigned stream)
2848 {
2849 if (stream >= state->ctx->Const.MaxVertexStreams) {
2850 _mesa_glsl_error(loc, state,
2851 "invalid stream specified %d is larger than "
2852 "MAX_VERTEX_STREAMS - 1 (%d).",
2853 stream, state->ctx->Const.MaxVertexStreams - 1);
2854 return false;
2855 }
2856
2857 return true;
2858 }
2859
2860 static void
2861 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2862 YYLTYPE *loc,
2863 ir_variable *var,
2864 const glsl_type *type,
2865 const ast_type_qualifier *qual)
2866 {
2867 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2868 _mesa_glsl_error(loc, state,
2869 "the \"binding\" qualifier only applies to uniforms and "
2870 "shader storage buffer objects");
2871 return;
2872 }
2873
2874 unsigned qual_binding;
2875 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2876 &qual_binding)) {
2877 return;
2878 }
2879
2880 const struct gl_context *const ctx = state->ctx;
2881 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2882 unsigned max_index = qual_binding + elements - 1;
2883 const glsl_type *base_type = type->without_array();
2884
2885 if (base_type->is_interface()) {
2886 /* UBOs. From page 60 of the GLSL 4.20 specification:
2887 * "If the binding point for any uniform block instance is less than zero,
2888 * or greater than or equal to the implementation-dependent maximum
2889 * number of uniform buffer bindings, a compilation error will occur.
2890 * When the binding identifier is used with a uniform block instanced as
2891 * an array of size N, all elements of the array from binding through
2892 * binding + N – 1 must be within this range."
2893 *
2894 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2895 */
2896 if (qual->flags.q.uniform &&
2897 max_index >= ctx->Const.MaxUniformBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2899 "the maximum number of UBO binding points (%d)",
2900 qual_binding, elements,
2901 ctx->Const.MaxUniformBufferBindings);
2902 return;
2903 }
2904
2905 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2906 * "If the binding point for any uniform or shader storage block instance
2907 * is less than zero, or greater than or equal to the
2908 * implementation-dependent maximum number of uniform buffer bindings, a
2909 * compile-time error will occur. When the binding identifier is used
2910 * with a uniform or shader storage block instanced as an array of size
2911 * N, all elements of the array from binding through binding + N – 1 must
2912 * be within this range."
2913 */
2914 if (qual->flags.q.buffer &&
2915 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2916 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2917 "the maximum number of SSBO binding points (%d)",
2918 qual_binding, elements,
2919 ctx->Const.MaxShaderStorageBufferBindings);
2920 return;
2921 }
2922 } else if (base_type->is_sampler()) {
2923 /* Samplers. From page 63 of the GLSL 4.20 specification:
2924 * "If the binding is less than zero, or greater than or equal to the
2925 * implementation-dependent maximum supported number of units, a
2926 * compilation error will occur. When the binding identifier is used
2927 * with an array of size N, all elements of the array from binding
2928 * through binding + N - 1 must be within this range."
2929 */
2930 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2931
2932 if (max_index >= limit) {
2933 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2934 "exceeds the maximum number of texture image units "
2935 "(%u)", qual_binding, elements, limit);
2936
2937 return;
2938 }
2939 } else if (base_type->contains_atomic()) {
2940 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2941 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2942 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2943 "maximum number of atomic counter buffer bindings "
2944 "(%u)", qual_binding,
2945 ctx->Const.MaxAtomicBufferBindings);
2946
2947 return;
2948 }
2949 } else if ((state->is_version(420, 310) ||
2950 state->ARB_shading_language_420pack_enable) &&
2951 base_type->is_image()) {
2952 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2953 if (max_index >= ctx->Const.MaxImageUnits) {
2954 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2955 "maximum number of image units (%d)", max_index,
2956 ctx->Const.MaxImageUnits);
2957 return;
2958 }
2959
2960 } else {
2961 _mesa_glsl_error(loc, state,
2962 "the \"binding\" qualifier only applies to uniform "
2963 "blocks, storage blocks, opaque variables, or arrays "
2964 "thereof");
2965 return;
2966 }
2967
2968 var->data.explicit_binding = true;
2969 var->data.binding = qual_binding;
2970
2971 return;
2972 }
2973
2974 static void
2975 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2976 YYLTYPE *loc,
2977 const glsl_interp_mode interpolation,
2978 const struct glsl_type *var_type,
2979 ir_variable_mode mode)
2980 {
2981 if (state->stage != MESA_SHADER_FRAGMENT ||
2982 interpolation == INTERP_MODE_FLAT ||
2983 mode != ir_var_shader_in)
2984 return;
2985
2986 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2987 * so must integer vertex outputs.
2988 *
2989 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2990 * "Fragment shader inputs that are signed or unsigned integers or
2991 * integer vectors must be qualified with the interpolation qualifier
2992 * flat."
2993 *
2994 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2995 * "Fragment shader inputs that are, or contain, signed or unsigned
2996 * integers or integer vectors must be qualified with the
2997 * interpolation qualifier flat."
2998 *
2999 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3000 * "Vertex shader outputs that are, or contain, signed or unsigned
3001 * integers or integer vectors must be qualified with the
3002 * interpolation qualifier flat."
3003 *
3004 * Note that prior to GLSL 1.50, this requirement applied to vertex
3005 * outputs rather than fragment inputs. That creates problems in the
3006 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3007 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3008 * apply the restriction to both vertex outputs and fragment inputs.
3009 *
3010 * Note also that the desktop GLSL specs are missing the text "or
3011 * contain"; this is presumably an oversight, since there is no
3012 * reasonable way to interpolate a fragment shader input that contains
3013 * an integer. See Khronos bug #15671.
3014 */
3015 if (state->is_version(130, 300)
3016 && var_type->contains_integer()) {
3017 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3018 "an integer, then it must be qualified with 'flat'");
3019 }
3020
3021 /* Double fragment inputs must be qualified with 'flat'.
3022 *
3023 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3024 * "This extension does not support interpolation of double-precision
3025 * values; doubles used as fragment shader inputs must be qualified as
3026 * "flat"."
3027 *
3028 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3029 * "Fragment shader inputs that are signed or unsigned integers, integer
3030 * vectors, or any double-precision floating-point type must be
3031 * qualified with the interpolation qualifier flat."
3032 *
3033 * Note that the GLSL specs are missing the text "or contain"; this is
3034 * presumably an oversight. See Khronos bug #15671.
3035 *
3036 * The 'double' type does not exist in GLSL ES so far.
3037 */
3038 if (state->has_double()
3039 && var_type->contains_double()) {
3040 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3041 "a double, then it must be qualified with 'flat'");
3042 }
3043
3044 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3045 *
3046 * From section 4.3.4 of the ARB_bindless_texture spec:
3047 *
3048 * "(modify last paragraph, p. 35, allowing samplers and images as
3049 * fragment shader inputs) ... Fragment inputs can only be signed and
3050 * unsigned integers and integer vectors, floating point scalars,
3051 * floating-point vectors, matrices, sampler and image types, or arrays
3052 * or structures of these. Fragment shader inputs that are signed or
3053 * unsigned integers, integer vectors, or any double-precision floating-
3054 * point type, or any sampler or image type must be qualified with the
3055 * interpolation qualifier "flat"."
3056 */
3057 if (state->has_bindless()
3058 && (var_type->contains_sampler() || var_type->contains_image())) {
3059 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3060 "a bindless sampler (or image), then it must be "
3061 "qualified with 'flat'");
3062 }
3063 }
3064
3065 static void
3066 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3067 YYLTYPE *loc,
3068 const glsl_interp_mode interpolation,
3069 const struct ast_type_qualifier *qual,
3070 const struct glsl_type *var_type,
3071 ir_variable_mode mode)
3072 {
3073 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3074 * not to vertex shader inputs nor fragment shader outputs.
3075 *
3076 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3077 * "Outputs from a vertex shader (out) and inputs to a fragment
3078 * shader (in) can be further qualified with one or more of these
3079 * interpolation qualifiers"
3080 * ...
3081 * "These interpolation qualifiers may only precede the qualifiers in,
3082 * centroid in, out, or centroid out in a declaration. They do not apply
3083 * to the deprecated storage qualifiers varying or centroid
3084 * varying. They also do not apply to inputs into a vertex shader or
3085 * outputs from a fragment shader."
3086 *
3087 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3088 * "Outputs from a shader (out) and inputs to a shader (in) can be
3089 * further qualified with one of these interpolation qualifiers."
3090 * ...
3091 * "These interpolation qualifiers may only precede the qualifiers
3092 * in, centroid in, out, or centroid out in a declaration. They do
3093 * not apply to inputs into a vertex shader or outputs from a
3094 * fragment shader."
3095 */
3096 if (state->is_version(130, 300)
3097 && interpolation != INTERP_MODE_NONE) {
3098 const char *i = interpolation_string(interpolation);
3099 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3100 _mesa_glsl_error(loc, state,
3101 "interpolation qualifier `%s' can only be applied to "
3102 "shader inputs or outputs.", i);
3103
3104 switch (state->stage) {
3105 case MESA_SHADER_VERTEX:
3106 if (mode == ir_var_shader_in) {
3107 _mesa_glsl_error(loc, state,
3108 "interpolation qualifier '%s' cannot be applied to "
3109 "vertex shader inputs", i);
3110 }
3111 break;
3112 case MESA_SHADER_FRAGMENT:
3113 if (mode == ir_var_shader_out) {
3114 _mesa_glsl_error(loc, state,
3115 "interpolation qualifier '%s' cannot be applied to "
3116 "fragment shader outputs", i);
3117 }
3118 break;
3119 default:
3120 break;
3121 }
3122 }
3123
3124 /* Interpolation qualifiers cannot be applied to 'centroid' and
3125 * 'centroid varying'.
3126 *
3127 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3128 * "interpolation qualifiers may only precede the qualifiers in,
3129 * centroid in, out, or centroid out in a declaration. They do not apply
3130 * to the deprecated storage qualifiers varying or centroid varying."
3131 *
3132 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3133 */
3134 if (state->is_version(130, 0)
3135 && interpolation != INTERP_MODE_NONE
3136 && qual->flags.q.varying) {
3137
3138 const char *i = interpolation_string(interpolation);
3139 const char *s;
3140 if (qual->flags.q.centroid)
3141 s = "centroid varying";
3142 else
3143 s = "varying";
3144
3145 _mesa_glsl_error(loc, state,
3146 "qualifier '%s' cannot be applied to the "
3147 "deprecated storage qualifier '%s'", i, s);
3148 }
3149
3150 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3151 var_type, mode);
3152 }
3153
3154 static glsl_interp_mode
3155 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3156 const struct glsl_type *var_type,
3157 ir_variable_mode mode,
3158 struct _mesa_glsl_parse_state *state,
3159 YYLTYPE *loc)
3160 {
3161 glsl_interp_mode interpolation;
3162 if (qual->flags.q.flat)
3163 interpolation = INTERP_MODE_FLAT;
3164 else if (qual->flags.q.noperspective)
3165 interpolation = INTERP_MODE_NOPERSPECTIVE;
3166 else if (qual->flags.q.smooth)
3167 interpolation = INTERP_MODE_SMOOTH;
3168 else
3169 interpolation = INTERP_MODE_NONE;
3170
3171 validate_interpolation_qualifier(state, loc,
3172 interpolation,
3173 qual, var_type, mode);
3174
3175 return interpolation;
3176 }
3177
3178
3179 static void
3180 apply_explicit_location(const struct ast_type_qualifier *qual,
3181 ir_variable *var,
3182 struct _mesa_glsl_parse_state *state,
3183 YYLTYPE *loc)
3184 {
3185 bool fail = false;
3186
3187 unsigned qual_location;
3188 if (!process_qualifier_constant(state, loc, "location", qual->location,
3189 &qual_location)) {
3190 return;
3191 }
3192
3193 /* Checks for GL_ARB_explicit_uniform_location. */
3194 if (qual->flags.q.uniform) {
3195 if (!state->check_explicit_uniform_location_allowed(loc, var))
3196 return;
3197
3198 const struct gl_context *const ctx = state->ctx;
3199 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3200
3201 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3202 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3203 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3204 ctx->Const.MaxUserAssignableUniformLocations);
3205 return;
3206 }
3207
3208 var->data.explicit_location = true;
3209 var->data.location = qual_location;
3210 return;
3211 }
3212
3213 /* Between GL_ARB_explicit_attrib_location an
3214 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3215 * stage can be assigned explicit locations. The checking here associates
3216 * the correct extension with the correct stage's input / output:
3217 *
3218 * input output
3219 * ----- ------
3220 * vertex explicit_loc sso
3221 * tess control sso sso
3222 * tess eval sso sso
3223 * geometry sso sso
3224 * fragment sso explicit_loc
3225 */
3226 switch (state->stage) {
3227 case MESA_SHADER_VERTEX:
3228 if (var->data.mode == ir_var_shader_in) {
3229 if (!state->check_explicit_attrib_location_allowed(loc, var))
3230 return;
3231
3232 break;
3233 }
3234
3235 if (var->data.mode == ir_var_shader_out) {
3236 if (!state->check_separate_shader_objects_allowed(loc, var))
3237 return;
3238
3239 break;
3240 }
3241
3242 fail = true;
3243 break;
3244
3245 case MESA_SHADER_TESS_CTRL:
3246 case MESA_SHADER_TESS_EVAL:
3247 case MESA_SHADER_GEOMETRY:
3248 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3249 if (!state->check_separate_shader_objects_allowed(loc, var))
3250 return;
3251
3252 break;
3253 }
3254
3255 fail = true;
3256 break;
3257
3258 case MESA_SHADER_FRAGMENT:
3259 if (var->data.mode == ir_var_shader_in) {
3260 if (!state->check_separate_shader_objects_allowed(loc, var))
3261 return;
3262
3263 break;
3264 }
3265
3266 if (var->data.mode == ir_var_shader_out) {
3267 if (!state->check_explicit_attrib_location_allowed(loc, var))
3268 return;
3269
3270 break;
3271 }
3272
3273 fail = true;
3274 break;
3275
3276 case MESA_SHADER_COMPUTE:
3277 _mesa_glsl_error(loc, state,
3278 "compute shader variables cannot be given "
3279 "explicit locations");
3280 return;
3281 default:
3282 fail = true;
3283 break;
3284 };
3285
3286 if (fail) {
3287 _mesa_glsl_error(loc, state,
3288 "%s cannot be given an explicit location in %s shader",
3289 mode_string(var),
3290 _mesa_shader_stage_to_string(state->stage));
3291 } else {
3292 var->data.explicit_location = true;
3293
3294 switch (state->stage) {
3295 case MESA_SHADER_VERTEX:
3296 var->data.location = (var->data.mode == ir_var_shader_in)
3297 ? (qual_location + VERT_ATTRIB_GENERIC0)
3298 : (qual_location + VARYING_SLOT_VAR0);
3299 break;
3300
3301 case MESA_SHADER_TESS_CTRL:
3302 case MESA_SHADER_TESS_EVAL:
3303 case MESA_SHADER_GEOMETRY:
3304 if (var->data.patch)
3305 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3306 else
3307 var->data.location = qual_location + VARYING_SLOT_VAR0;
3308 break;
3309
3310 case MESA_SHADER_FRAGMENT:
3311 var->data.location = (var->data.mode == ir_var_shader_out)
3312 ? (qual_location + FRAG_RESULT_DATA0)
3313 : (qual_location + VARYING_SLOT_VAR0);
3314 break;
3315 default:
3316 assert(!"Unexpected shader type");
3317 break;
3318 }
3319
3320 /* Check if index was set for the uniform instead of the function */
3321 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3322 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3323 "used with subroutine functions");
3324 return;
3325 }
3326
3327 unsigned qual_index;
3328 if (qual->flags.q.explicit_index &&
3329 process_qualifier_constant(state, loc, "index", qual->index,
3330 &qual_index)) {
3331 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3332 * Layout Qualifiers):
3333 *
3334 * "It is also a compile-time error if a fragment shader
3335 * sets a layout index to less than 0 or greater than 1."
3336 *
3337 * Older specifications don't mandate a behavior; we take
3338 * this as a clarification and always generate the error.
3339 */
3340 if (qual_index > 1) {
3341 _mesa_glsl_error(loc, state,
3342 "explicit index may only be 0 or 1");
3343 } else {
3344 var->data.explicit_index = true;
3345 var->data.index = qual_index;
3346 }
3347 }
3348 }
3349 }
3350
3351 static bool
3352 validate_storage_for_sampler_image_types(ir_variable *var,
3353 struct _mesa_glsl_parse_state *state,
3354 YYLTYPE *loc)
3355 {
3356 /* From section 4.1.7 of the GLSL 4.40 spec:
3357 *
3358 * "[Opaque types] can only be declared as function
3359 * parameters or uniform-qualified variables."
3360 *
3361 * From section 4.1.7 of the ARB_bindless_texture spec:
3362 *
3363 * "Samplers may be declared as shader inputs and outputs, as uniform
3364 * variables, as temporary variables, and as function parameters."
3365 *
3366 * From section 4.1.X of the ARB_bindless_texture spec:
3367 *
3368 * "Images may be declared as shader inputs and outputs, as uniform
3369 * variables, as temporary variables, and as function parameters."
3370 */
3371 if (state->has_bindless()) {
3372 if (var->data.mode != ir_var_auto &&
3373 var->data.mode != ir_var_uniform &&
3374 var->data.mode != ir_var_shader_in &&
3375 var->data.mode != ir_var_shader_out &&
3376 var->data.mode != ir_var_function_in &&
3377 var->data.mode != ir_var_function_out &&
3378 var->data.mode != ir_var_function_inout) {
3379 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3380 "only be declared as shader inputs and outputs, as "
3381 "uniform variables, as temporary variables and as "
3382 "function parameters");
3383 return false;
3384 }
3385 } else {
3386 if (var->data.mode != ir_var_uniform &&
3387 var->data.mode != ir_var_function_in) {
3388 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3389 "declared as function parameters or "
3390 "uniform-qualified global variables");
3391 return false;
3392 }
3393 }
3394 return true;
3395 }
3396
3397 static bool
3398 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3399 YYLTYPE *loc,
3400 const struct ast_type_qualifier *qual,
3401 const glsl_type *type)
3402 {
3403 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3404 *
3405 * "Memory qualifiers are only supported in the declarations of image
3406 * variables, buffer variables, and shader storage blocks; it is an error
3407 * to use such qualifiers in any other declarations.
3408 */
3409 if (!type->is_image() && !qual->flags.q.buffer) {
3410 if (qual->flags.q.read_only ||
3411 qual->flags.q.write_only ||
3412 qual->flags.q.coherent ||
3413 qual->flags.q._volatile ||
3414 qual->flags.q.restrict_flag) {
3415 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3416 "in the declarations of image variables, buffer "
3417 "variables, and shader storage blocks");
3418 return false;
3419 }
3420 }
3421 return true;
3422 }
3423
3424 static bool
3425 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3426 YYLTYPE *loc,
3427 const struct ast_type_qualifier *qual,
3428 const glsl_type *type)
3429 {
3430 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3431 *
3432 * "Format layout qualifiers can be used on image variable declarations
3433 * (those declared with a basic type having “image ” in its keyword)."
3434 */
3435 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3436 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3437 "applied to images");
3438 return false;
3439 }
3440 return true;
3441 }
3442
3443 static void
3444 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3445 ir_variable *var,
3446 struct _mesa_glsl_parse_state *state,
3447 YYLTYPE *loc)
3448 {
3449 const glsl_type *base_type = var->type->without_array();
3450
3451 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3452 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3453 return;
3454
3455 if (!base_type->is_image())
3456 return;
3457
3458 if (!validate_storage_for_sampler_image_types(var, state, loc))
3459 return;
3460
3461 var->data.memory_read_only |= qual->flags.q.read_only;
3462 var->data.memory_write_only |= qual->flags.q.write_only;
3463 var->data.memory_coherent |= qual->flags.q.coherent;
3464 var->data.memory_volatile |= qual->flags.q._volatile;
3465 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3466
3467 if (qual->flags.q.explicit_image_format) {
3468 if (var->data.mode == ir_var_function_in) {
3469 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3470 "image function parameters");
3471 }
3472
3473 if (qual->image_base_type != base_type->sampled_type) {
3474 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3475 "data type of the image");
3476 }
3477
3478 var->data.image_format = qual->image_format;
3479 } else {
3480 if (var->data.mode == ir_var_uniform) {
3481 if (state->es_shader) {
3482 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3483 "format layout qualifier");
3484 } else if (!qual->flags.q.write_only) {
3485 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3486 "`writeonly' must have a format layout qualifier");
3487 }
3488 }
3489 var->data.image_format = GL_NONE;
3490 }
3491
3492 /* From page 70 of the GLSL ES 3.1 specification:
3493 *
3494 * "Except for image variables qualified with the format qualifiers r32f,
3495 * r32i, and r32ui, image variables must specify either memory qualifier
3496 * readonly or the memory qualifier writeonly."
3497 */
3498 if (state->es_shader &&
3499 var->data.image_format != GL_R32F &&
3500 var->data.image_format != GL_R32I &&
3501 var->data.image_format != GL_R32UI &&
3502 !var->data.memory_read_only &&
3503 !var->data.memory_write_only) {
3504 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3505 "r32i or r32ui must be qualified `readonly' or "
3506 "`writeonly'");
3507 }
3508 }
3509
3510 static inline const char*
3511 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3512 {
3513 if (origin_upper_left && pixel_center_integer)
3514 return "origin_upper_left, pixel_center_integer";
3515 else if (origin_upper_left)
3516 return "origin_upper_left";
3517 else if (pixel_center_integer)
3518 return "pixel_center_integer";
3519 else
3520 return " ";
3521 }
3522
3523 static inline bool
3524 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3525 const struct ast_type_qualifier *qual)
3526 {
3527 /* If gl_FragCoord was previously declared, and the qualifiers were
3528 * different in any way, return true.
3529 */
3530 if (state->fs_redeclares_gl_fragcoord) {
3531 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3532 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3533 }
3534
3535 return false;
3536 }
3537
3538 static inline void
3539 validate_array_dimensions(const glsl_type *t,
3540 struct _mesa_glsl_parse_state *state,
3541 YYLTYPE *loc) {
3542 if (t->is_array()) {
3543 t = t->fields.array;
3544 while (t->is_array()) {
3545 if (t->is_unsized_array()) {
3546 _mesa_glsl_error(loc, state,
3547 "only the outermost array dimension can "
3548 "be unsized",
3549 t->name);
3550 break;
3551 }
3552 t = t->fields.array;
3553 }
3554 }
3555 }
3556
3557 static void
3558 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3559 ir_variable *var,
3560 struct _mesa_glsl_parse_state *state,
3561 YYLTYPE *loc)
3562 {
3563 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3564 qual->flags.q.bindless_image ||
3565 qual->flags.q.bound_sampler ||
3566 qual->flags.q.bound_image;
3567
3568 /* The ARB_bindless_texture spec says:
3569 *
3570 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3571 * spec"
3572 *
3573 * "If these layout qualifiers are applied to other types of default block
3574 * uniforms, or variables with non-uniform storage, a compile-time error
3575 * will be generated."
3576 */
3577 if (has_local_qualifiers && !qual->flags.q.uniform) {
3578 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3579 "can only be applied to default block uniforms or "
3580 "variables with uniform storage");
3581 return;
3582 }
3583
3584 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3585 * but it makes sense to only allow bindless_sampler/bound_sampler for
3586 * sampler types, and respectively bindless_image/bound_image for image
3587 * types.
3588 */
3589 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3590 !var->type->contains_sampler()) {
3591 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3592 "be applied to sampler types");
3593 return;
3594 }
3595
3596 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3597 !var->type->contains_image()) {
3598 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3599 "applied to image types");
3600 return;
3601 }
3602
3603 /* The bindless_sampler/bindless_image (and respectively
3604 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3605 * local scope.
3606 */
3607 if (var->type->contains_sampler() || var->type->contains_image()) {
3608 var->data.bindless = qual->flags.q.bindless_sampler ||
3609 qual->flags.q.bindless_image ||
3610 state->bindless_sampler_specified ||
3611 state->bindless_image_specified;
3612
3613 var->data.bound = qual->flags.q.bound_sampler ||
3614 qual->flags.q.bound_image ||
3615 state->bound_sampler_specified ||
3616 state->bound_image_specified;
3617 }
3618 }
3619
3620 static void
3621 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3622 ir_variable *var,
3623 struct _mesa_glsl_parse_state *state,
3624 YYLTYPE *loc)
3625 {
3626 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3627
3628 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3629 *
3630 * "Within any shader, the first redeclarations of gl_FragCoord
3631 * must appear before any use of gl_FragCoord."
3632 *
3633 * Generate a compiler error if above condition is not met by the
3634 * fragment shader.
3635 */
3636 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3637 if (earlier != NULL &&
3638 earlier->data.used &&
3639 !state->fs_redeclares_gl_fragcoord) {
3640 _mesa_glsl_error(loc, state,
3641 "gl_FragCoord used before its first redeclaration "
3642 "in fragment shader");
3643 }
3644
3645 /* Make sure all gl_FragCoord redeclarations specify the same layout
3646 * qualifiers.
3647 */
3648 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3649 const char *const qual_string =
3650 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3651 qual->flags.q.pixel_center_integer);
3652
3653 const char *const state_string =
3654 get_layout_qualifier_string(state->fs_origin_upper_left,
3655 state->fs_pixel_center_integer);
3656
3657 _mesa_glsl_error(loc, state,
3658 "gl_FragCoord redeclared with different layout "
3659 "qualifiers (%s) and (%s) ",
3660 state_string,
3661 qual_string);
3662 }
3663 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3664 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3665 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3666 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3667 state->fs_redeclares_gl_fragcoord =
3668 state->fs_origin_upper_left ||
3669 state->fs_pixel_center_integer ||
3670 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3671 }
3672
3673 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3674 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3675 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3676 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3677 const char *const qual_string = (qual->flags.q.origin_upper_left)
3678 ? "origin_upper_left" : "pixel_center_integer";
3679
3680 _mesa_glsl_error(loc, state,
3681 "layout qualifier `%s' can only be applied to "
3682 "fragment shader input `gl_FragCoord'",
3683 qual_string);
3684 }
3685
3686 if (qual->flags.q.explicit_location) {
3687 apply_explicit_location(qual, var, state, loc);
3688
3689 if (qual->flags.q.explicit_component) {
3690 unsigned qual_component;
3691 if (process_qualifier_constant(state, loc, "component",
3692 qual->component, &qual_component)) {
3693 const glsl_type *type = var->type->without_array();
3694 unsigned components = type->component_slots();
3695
3696 if (type->is_matrix() || type->is_record()) {
3697 _mesa_glsl_error(loc, state, "component layout qualifier "
3698 "cannot be applied to a matrix, a structure, "
3699 "a block, or an array containing any of "
3700 "these.");
3701 } else if (qual_component != 0 &&
3702 (qual_component + components - 1) > 3) {
3703 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3704 (qual_component + components - 1));
3705 } else if (qual_component == 1 && type->is_64bit()) {
3706 /* We don't bother checking for 3 as it should be caught by the
3707 * overflow check above.
3708 */
3709 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3710 "component 1 or 3");
3711 } else {
3712 var->data.explicit_component = true;
3713 var->data.location_frac = qual_component;
3714 }
3715 }
3716 }
3717 } else if (qual->flags.q.explicit_index) {
3718 if (!qual->subroutine_list)
3719 _mesa_glsl_error(loc, state,
3720 "explicit index requires explicit location");
3721 } else if (qual->flags.q.explicit_component) {
3722 _mesa_glsl_error(loc, state,
3723 "explicit component requires explicit location");
3724 }
3725
3726 if (qual->flags.q.explicit_binding) {
3727 apply_explicit_binding(state, loc, var, var->type, qual);
3728 }
3729
3730 if (state->stage == MESA_SHADER_GEOMETRY &&
3731 qual->flags.q.out && qual->flags.q.stream) {
3732 unsigned qual_stream;
3733 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3734 &qual_stream) &&
3735 validate_stream_qualifier(loc, state, qual_stream)) {
3736 var->data.stream = qual_stream;
3737 }
3738 }
3739
3740 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3741 unsigned qual_xfb_buffer;
3742 if (process_qualifier_constant(state, loc, "xfb_buffer",
3743 qual->xfb_buffer, &qual_xfb_buffer) &&
3744 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3745 var->data.xfb_buffer = qual_xfb_buffer;
3746 if (qual->flags.q.explicit_xfb_buffer)
3747 var->data.explicit_xfb_buffer = true;
3748 }
3749 }
3750
3751 if (qual->flags.q.explicit_xfb_offset) {
3752 unsigned qual_xfb_offset;
3753 unsigned component_size = var->type->contains_double() ? 8 : 4;
3754
3755 if (process_qualifier_constant(state, loc, "xfb_offset",
3756 qual->offset, &qual_xfb_offset) &&
3757 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3758 var->type, component_size)) {
3759 var->data.offset = qual_xfb_offset;
3760 var->data.explicit_xfb_offset = true;
3761 }
3762 }
3763
3764 if (qual->flags.q.explicit_xfb_stride) {
3765 unsigned qual_xfb_stride;
3766 if (process_qualifier_constant(state, loc, "xfb_stride",
3767 qual->xfb_stride, &qual_xfb_stride)) {
3768 var->data.xfb_stride = qual_xfb_stride;
3769 var->data.explicit_xfb_stride = true;
3770 }
3771 }
3772
3773 if (var->type->contains_atomic()) {
3774 if (var->data.mode == ir_var_uniform) {
3775 if (var->data.explicit_binding) {
3776 unsigned *offset =
3777 &state->atomic_counter_offsets[var->data.binding];
3778
3779 if (*offset % ATOMIC_COUNTER_SIZE)
3780 _mesa_glsl_error(loc, state,
3781 "misaligned atomic counter offset");
3782
3783 var->data.offset = *offset;
3784 *offset += var->type->atomic_size();
3785
3786 } else {
3787 _mesa_glsl_error(loc, state,
3788 "atomic counters require explicit binding point");
3789 }
3790 } else if (var->data.mode != ir_var_function_in) {
3791 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3792 "function parameters or uniform-qualified "
3793 "global variables");
3794 }
3795 }
3796
3797 if (var->type->contains_sampler() &&
3798 !validate_storage_for_sampler_image_types(var, state, loc))
3799 return;
3800
3801 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3802 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3803 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3804 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3805 * These extensions and all following extensions that add the 'layout'
3806 * keyword have been modified to require the use of 'in' or 'out'.
3807 *
3808 * The following extension do not allow the deprecated keywords:
3809 *
3810 * GL_AMD_conservative_depth
3811 * GL_ARB_conservative_depth
3812 * GL_ARB_gpu_shader5
3813 * GL_ARB_separate_shader_objects
3814 * GL_ARB_tessellation_shader
3815 * GL_ARB_transform_feedback3
3816 * GL_ARB_uniform_buffer_object
3817 *
3818 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3819 * allow layout with the deprecated keywords.
3820 */
3821 const bool relaxed_layout_qualifier_checking =
3822 state->ARB_fragment_coord_conventions_enable;
3823
3824 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3825 || qual->flags.q.varying;
3826 if (qual->has_layout() && uses_deprecated_qualifier) {
3827 if (relaxed_layout_qualifier_checking) {
3828 _mesa_glsl_warning(loc, state,
3829 "`layout' qualifier may not be used with "
3830 "`attribute' or `varying'");
3831 } else {
3832 _mesa_glsl_error(loc, state,
3833 "`layout' qualifier may not be used with "
3834 "`attribute' or `varying'");
3835 }
3836 }
3837
3838 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3839 * AMD_conservative_depth.
3840 */
3841 if (qual->flags.q.depth_type
3842 && !state->is_version(420, 0)
3843 && !state->AMD_conservative_depth_enable
3844 && !state->ARB_conservative_depth_enable) {
3845 _mesa_glsl_error(loc, state,
3846 "extension GL_AMD_conservative_depth or "
3847 "GL_ARB_conservative_depth must be enabled "
3848 "to use depth layout qualifiers");
3849 } else if (qual->flags.q.depth_type
3850 && strcmp(var->name, "gl_FragDepth") != 0) {
3851 _mesa_glsl_error(loc, state,
3852 "depth layout qualifiers can be applied only to "
3853 "gl_FragDepth");
3854 }
3855
3856 switch (qual->depth_type) {
3857 case ast_depth_any:
3858 var->data.depth_layout = ir_depth_layout_any;
3859 break;
3860 case ast_depth_greater:
3861 var->data.depth_layout = ir_depth_layout_greater;
3862 break;
3863 case ast_depth_less:
3864 var->data.depth_layout = ir_depth_layout_less;
3865 break;
3866 case ast_depth_unchanged:
3867 var->data.depth_layout = ir_depth_layout_unchanged;
3868 break;
3869 default:
3870 var->data.depth_layout = ir_depth_layout_none;
3871 break;
3872 }
3873
3874 if (qual->flags.q.std140 ||
3875 qual->flags.q.std430 ||
3876 qual->flags.q.packed ||
3877 qual->flags.q.shared) {
3878 _mesa_glsl_error(loc, state,
3879 "uniform and shader storage block layout qualifiers "
3880 "std140, std430, packed, and shared can only be "
3881 "applied to uniform or shader storage blocks, not "
3882 "members");
3883 }
3884
3885 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3886 validate_matrix_layout_for_type(state, loc, var->type, var);
3887 }
3888
3889 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3890 * Inputs):
3891 *
3892 * "Fragment shaders also allow the following layout qualifier on in only
3893 * (not with variable declarations)
3894 * layout-qualifier-id
3895 * early_fragment_tests
3896 * [...]"
3897 */
3898 if (qual->flags.q.early_fragment_tests) {
3899 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3900 "valid in fragment shader input layout declaration.");
3901 }
3902
3903 if (qual->flags.q.inner_coverage) {
3904 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3905 "valid in fragment shader input layout declaration.");
3906 }
3907
3908 if (qual->flags.q.post_depth_coverage) {
3909 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3910 "valid in fragment shader input layout declaration.");
3911 }
3912
3913 if (state->has_bindless())
3914 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3915
3916 if (qual->flags.q.pixel_interlock_ordered ||
3917 qual->flags.q.pixel_interlock_unordered ||
3918 qual->flags.q.sample_interlock_ordered ||
3919 qual->flags.q.sample_interlock_unordered) {
3920 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3921 "pixel_interlock_ordered, pixel_interlock_unordered, "
3922 "sample_interlock_ordered and sample_interlock_unordered, "
3923 "only valid in fragment shader input layout declaration.");
3924 }
3925 }
3926
3927 static void
3928 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3929 ir_variable *var,
3930 struct _mesa_glsl_parse_state *state,
3931 YYLTYPE *loc,
3932 bool is_parameter)
3933 {
3934 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3935
3936 if (qual->flags.q.invariant) {
3937 if (var->data.used) {
3938 _mesa_glsl_error(loc, state,
3939 "variable `%s' may not be redeclared "
3940 "`invariant' after being used",
3941 var->name);
3942 } else {
3943 var->data.invariant = 1;
3944 }
3945 }
3946
3947 if (qual->flags.q.precise) {
3948 if (var->data.used) {
3949 _mesa_glsl_error(loc, state,
3950 "variable `%s' may not be redeclared "
3951 "`precise' after being used",
3952 var->name);
3953 } else {
3954 var->data.precise = 1;
3955 }
3956 }
3957
3958 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3959 _mesa_glsl_error(loc, state,
3960 "`subroutine' may only be applied to uniforms, "
3961 "subroutine type declarations, or function definitions");
3962 }
3963
3964 if (qual->flags.q.constant || qual->flags.q.attribute
3965 || qual->flags.q.uniform
3966 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3967 var->data.read_only = 1;
3968
3969 if (qual->flags.q.centroid)
3970 var->data.centroid = 1;
3971
3972 if (qual->flags.q.sample)
3973 var->data.sample = 1;
3974
3975 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3976 if (state->es_shader) {
3977 var->data.precision =
3978 select_gles_precision(qual->precision, var->type, state, loc);
3979 }
3980
3981 if (qual->flags.q.patch)
3982 var->data.patch = 1;
3983
3984 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3985 var->type = glsl_type::error_type;
3986 _mesa_glsl_error(loc, state,
3987 "`attribute' variables may not be declared in the "
3988 "%s shader",
3989 _mesa_shader_stage_to_string(state->stage));
3990 }
3991
3992 /* Disallow layout qualifiers which may only appear on layout declarations. */
3993 if (qual->flags.q.prim_type) {
3994 _mesa_glsl_error(loc, state,
3995 "Primitive type may only be specified on GS input or output "
3996 "layout declaration, not on variables.");
3997 }
3998
3999 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4000 *
4001 * "However, the const qualifier cannot be used with out or inout."
4002 *
4003 * The same section of the GLSL 4.40 spec further clarifies this saying:
4004 *
4005 * "The const qualifier cannot be used with out or inout, or a
4006 * compile-time error results."
4007 */
4008 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4009 _mesa_glsl_error(loc, state,
4010 "`const' may not be applied to `out' or `inout' "
4011 "function parameters");
4012 }
4013
4014 /* If there is no qualifier that changes the mode of the variable, leave
4015 * the setting alone.
4016 */
4017 assert(var->data.mode != ir_var_temporary);
4018 if (qual->flags.q.in && qual->flags.q.out)
4019 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4020 else if (qual->flags.q.in)
4021 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4022 else if (qual->flags.q.attribute
4023 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4024 var->data.mode = ir_var_shader_in;
4025 else if (qual->flags.q.out)
4026 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4027 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4028 var->data.mode = ir_var_shader_out;
4029 else if (qual->flags.q.uniform)
4030 var->data.mode = ir_var_uniform;
4031 else if (qual->flags.q.buffer)
4032 var->data.mode = ir_var_shader_storage;
4033 else if (qual->flags.q.shared_storage)
4034 var->data.mode = ir_var_shader_shared;
4035
4036 if (!is_parameter && state->has_framebuffer_fetch() &&
4037 state->stage == MESA_SHADER_FRAGMENT) {
4038 if (state->is_version(130, 300))
4039 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4040 else
4041 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4042 }
4043
4044 if (var->data.fb_fetch_output) {
4045 var->data.assigned = true;
4046 var->data.memory_coherent = !qual->flags.q.non_coherent;
4047
4048 /* From the EXT_shader_framebuffer_fetch spec:
4049 *
4050 * "It is an error to declare an inout fragment output not qualified
4051 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4052 * extension hasn't been enabled."
4053 */
4054 if (var->data.memory_coherent &&
4055 !state->EXT_shader_framebuffer_fetch_enable)
4056 _mesa_glsl_error(loc, state,
4057 "invalid declaration of framebuffer fetch output not "
4058 "qualified with layout(noncoherent)");
4059
4060 } else {
4061 /* From the EXT_shader_framebuffer_fetch spec:
4062 *
4063 * "Fragment outputs declared inout may specify the following layout
4064 * qualifier: [...] noncoherent"
4065 */
4066 if (qual->flags.q.non_coherent)
4067 _mesa_glsl_error(loc, state,
4068 "invalid layout(noncoherent) qualifier not part of "
4069 "framebuffer fetch output declaration");
4070 }
4071
4072 if (!is_parameter && is_varying_var(var, state->stage)) {
4073 /* User-defined ins/outs are not permitted in compute shaders. */
4074 if (state->stage == MESA_SHADER_COMPUTE) {
4075 _mesa_glsl_error(loc, state,
4076 "user-defined input and output variables are not "
4077 "permitted in compute shaders");
4078 }
4079
4080 /* This variable is being used to link data between shader stages (in
4081 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4082 * that is allowed for such purposes.
4083 *
4084 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4085 *
4086 * "The varying qualifier can be used only with the data types
4087 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4088 * these."
4089 *
4090 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4091 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4092 *
4093 * "Fragment inputs can only be signed and unsigned integers and
4094 * integer vectors, float, floating-point vectors, matrices, or
4095 * arrays of these. Structures cannot be input.
4096 *
4097 * Similar text exists in the section on vertex shader outputs.
4098 *
4099 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4100 * 3.00 spec allows structs as well. Varying structs are also allowed
4101 * in GLSL 1.50.
4102 *
4103 * From section 4.3.4 of the ARB_bindless_texture spec:
4104 *
4105 * "(modify third paragraph of the section to allow sampler and image
4106 * types) ... Vertex shader inputs can only be float,
4107 * single-precision floating-point scalars, single-precision
4108 * floating-point vectors, matrices, signed and unsigned integers
4109 * and integer vectors, sampler and image types."
4110 *
4111 * From section 4.3.6 of the ARB_bindless_texture spec:
4112 *
4113 * "Output variables can only be floating-point scalars,
4114 * floating-point vectors, matrices, signed or unsigned integers or
4115 * integer vectors, sampler or image types, or arrays or structures
4116 * of any these."
4117 */
4118 switch (var->type->without_array()->base_type) {
4119 case GLSL_TYPE_FLOAT:
4120 /* Ok in all GLSL versions */
4121 break;
4122 case GLSL_TYPE_UINT:
4123 case GLSL_TYPE_INT:
4124 if (state->is_version(130, 300))
4125 break;
4126 _mesa_glsl_error(loc, state,
4127 "varying variables must be of base type float in %s",
4128 state->get_version_string());
4129 break;
4130 case GLSL_TYPE_STRUCT:
4131 if (state->is_version(150, 300))
4132 break;
4133 _mesa_glsl_error(loc, state,
4134 "varying variables may not be of type struct");
4135 break;
4136 case GLSL_TYPE_DOUBLE:
4137 case GLSL_TYPE_UINT64:
4138 case GLSL_TYPE_INT64:
4139 break;
4140 case GLSL_TYPE_SAMPLER:
4141 case GLSL_TYPE_IMAGE:
4142 if (state->has_bindless())
4143 break;
4144 /* fallthrough */
4145 default:
4146 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4147 break;
4148 }
4149 }
4150
4151 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4152 var->data.invariant = true;
4153
4154 var->data.interpolation =
4155 interpret_interpolation_qualifier(qual, var->type,
4156 (ir_variable_mode) var->data.mode,
4157 state, loc);
4158
4159 /* Does the declaration use the deprecated 'attribute' or 'varying'
4160 * keywords?
4161 */
4162 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4163 || qual->flags.q.varying;
4164
4165
4166 /* Validate auxiliary storage qualifiers */
4167
4168 /* From section 4.3.4 of the GLSL 1.30 spec:
4169 * "It is an error to use centroid in in a vertex shader."
4170 *
4171 * From section 4.3.4 of the GLSL ES 3.00 spec:
4172 * "It is an error to use centroid in or interpolation qualifiers in
4173 * a vertex shader input."
4174 */
4175
4176 /* Section 4.3.6 of the GLSL 1.30 specification states:
4177 * "It is an error to use centroid out in a fragment shader."
4178 *
4179 * The GL_ARB_shading_language_420pack extension specification states:
4180 * "It is an error to use auxiliary storage qualifiers or interpolation
4181 * qualifiers on an output in a fragment shader."
4182 */
4183 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4184 _mesa_glsl_error(loc, state,
4185 "sample qualifier may only be used on `in` or `out` "
4186 "variables between shader stages");
4187 }
4188 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4189 _mesa_glsl_error(loc, state,
4190 "centroid qualifier may only be used with `in', "
4191 "`out' or `varying' variables between shader stages");
4192 }
4193
4194 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4195 _mesa_glsl_error(loc, state,
4196 "the shared storage qualifiers can only be used with "
4197 "compute shaders");
4198 }
4199
4200 apply_image_qualifier_to_variable(qual, var, state, loc);
4201 }
4202
4203 /**
4204 * Get the variable that is being redeclared by this declaration or if it
4205 * does not exist, the current declared variable.
4206 *
4207 * Semantic checks to verify the validity of the redeclaration are also
4208 * performed. If semantic checks fail, compilation error will be emitted via
4209 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4210 *
4211 * \returns
4212 * A pointer to an existing variable in the current scope if the declaration
4213 * is a redeclaration, current variable otherwise. \c is_declared boolean
4214 * will return \c true if the declaration is a redeclaration, \c false
4215 * otherwise.
4216 */
4217 static ir_variable *
4218 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4219 struct _mesa_glsl_parse_state *state,
4220 bool allow_all_redeclarations,
4221 bool *is_redeclaration)
4222 {
4223 ir_variable *var = *var_ptr;
4224
4225 /* Check if this declaration is actually a re-declaration, either to
4226 * resize an array or add qualifiers to an existing variable.
4227 *
4228 * This is allowed for variables in the current scope, or when at
4229 * global scope (for built-ins in the implicit outer scope).
4230 */
4231 ir_variable *earlier = state->symbols->get_variable(var->name);
4232 if (earlier == NULL ||
4233 (state->current_function != NULL &&
4234 !state->symbols->name_declared_this_scope(var->name))) {
4235 *is_redeclaration = false;
4236 return var;
4237 }
4238
4239 *is_redeclaration = true;
4240
4241 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4242 /* Verify that the redeclaration of a built-in does not change the
4243 * storage qualifier. There are a couple special cases.
4244 *
4245 * 1. Some built-in variables that are defined as 'in' in the
4246 * specification are implemented as system values. Allow
4247 * ir_var_system_value -> ir_var_shader_in.
4248 *
4249 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4250 * specification requires that redeclarations omit any qualifier.
4251 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4252 */
4253 if (earlier->data.mode != var->data.mode &&
4254 !(earlier->data.mode == ir_var_system_value &&
4255 var->data.mode == ir_var_shader_in) &&
4256 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4257 var->data.mode == ir_var_auto)) {
4258 _mesa_glsl_error(&loc, state,
4259 "redeclaration cannot change qualification of `%s'",
4260 var->name);
4261 }
4262 }
4263
4264 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4265 *
4266 * "It is legal to declare an array without a size and then
4267 * later re-declare the same name as an array of the same
4268 * type and specify a size."
4269 */
4270 if (earlier->type->is_unsized_array() && var->type->is_array()
4271 && (var->type->fields.array == earlier->type->fields.array)) {
4272 const int size = var->type->array_size();
4273 check_builtin_array_max_size(var->name, size, loc, state);
4274 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4275 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4276 "previous access",
4277 earlier->data.max_array_access);
4278 }
4279
4280 earlier->type = var->type;
4281 delete var;
4282 var = NULL;
4283 *var_ptr = NULL;
4284 } else if (earlier->type != var->type) {
4285 _mesa_glsl_error(&loc, state,
4286 "redeclaration of `%s' has incorrect type",
4287 var->name);
4288 } else if ((state->ARB_fragment_coord_conventions_enable ||
4289 state->is_version(150, 0))
4290 && strcmp(var->name, "gl_FragCoord") == 0) {
4291 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4292 * qualifiers.
4293 */
4294 earlier->data.origin_upper_left = var->data.origin_upper_left;
4295 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4296
4297 /* According to section 4.3.7 of the GLSL 1.30 spec,
4298 * the following built-in varaibles can be redeclared with an
4299 * interpolation qualifier:
4300 * * gl_FrontColor
4301 * * gl_BackColor
4302 * * gl_FrontSecondaryColor
4303 * * gl_BackSecondaryColor
4304 * * gl_Color
4305 * * gl_SecondaryColor
4306 */
4307 } else if (state->is_version(130, 0)
4308 && (strcmp(var->name, "gl_FrontColor") == 0
4309 || strcmp(var->name, "gl_BackColor") == 0
4310 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4311 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4312 || strcmp(var->name, "gl_Color") == 0
4313 || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4314 earlier->data.interpolation = var->data.interpolation;
4315
4316 /* Layout qualifiers for gl_FragDepth. */
4317 } else if ((state->is_version(420, 0) ||
4318 state->AMD_conservative_depth_enable ||
4319 state->ARB_conservative_depth_enable)
4320 && strcmp(var->name, "gl_FragDepth") == 0) {
4321
4322 /** From the AMD_conservative_depth spec:
4323 * Within any shader, the first redeclarations of gl_FragDepth
4324 * must appear before any use of gl_FragDepth.
4325 */
4326 if (earlier->data.used) {
4327 _mesa_glsl_error(&loc, state,
4328 "the first redeclaration of gl_FragDepth "
4329 "must appear before any use of gl_FragDepth");
4330 }
4331
4332 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4333 if (earlier->data.depth_layout != ir_depth_layout_none
4334 && earlier->data.depth_layout != var->data.depth_layout) {
4335 _mesa_glsl_error(&loc, state,
4336 "gl_FragDepth: depth layout is declared here "
4337 "as '%s, but it was previously declared as "
4338 "'%s'",
4339 depth_layout_string(var->data.depth_layout),
4340 depth_layout_string(earlier->data.depth_layout));
4341 }
4342
4343 earlier->data.depth_layout = var->data.depth_layout;
4344
4345 } else if (state->has_framebuffer_fetch() &&
4346 strcmp(var->name, "gl_LastFragData") == 0 &&
4347 var->data.mode == ir_var_auto) {
4348 /* According to the EXT_shader_framebuffer_fetch spec:
4349 *
4350 * "By default, gl_LastFragData is declared with the mediump precision
4351 * qualifier. This can be changed by redeclaring the corresponding
4352 * variables with the desired precision qualifier."
4353 *
4354 * "Fragment shaders may specify the following layout qualifier only for
4355 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4356 */
4357 earlier->data.precision = var->data.precision;
4358 earlier->data.memory_coherent = var->data.memory_coherent;
4359
4360 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4361 state->allow_builtin_variable_redeclaration) ||
4362 allow_all_redeclarations) {
4363 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4364 * valid, but some applications do it.
4365 */
4366 } else {
4367 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4368 }
4369
4370 return earlier;
4371 }
4372
4373 /**
4374 * Generate the IR for an initializer in a variable declaration
4375 */
4376 static ir_rvalue *
4377 process_initializer(ir_variable *var, ast_declaration *decl,
4378 ast_fully_specified_type *type,
4379 exec_list *initializer_instructions,
4380 struct _mesa_glsl_parse_state *state)
4381 {
4382 void *mem_ctx = state;
4383 ir_rvalue *result = NULL;
4384
4385 YYLTYPE initializer_loc = decl->initializer->get_location();
4386
4387 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4388 *
4389 * "All uniform variables are read-only and are initialized either
4390 * directly by an application via API commands, or indirectly by
4391 * OpenGL."
4392 */
4393 if (var->data.mode == ir_var_uniform) {
4394 state->check_version(120, 0, &initializer_loc,
4395 "cannot initialize uniform %s",
4396 var->name);
4397 }
4398
4399 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4400 *
4401 * "Buffer variables cannot have initializers."
4402 */
4403 if (var->data.mode == ir_var_shader_storage) {
4404 _mesa_glsl_error(&initializer_loc, state,
4405 "cannot initialize buffer variable %s",
4406 var->name);
4407 }
4408
4409 /* From section 4.1.7 of the GLSL 4.40 spec:
4410 *
4411 * "Opaque variables [...] are initialized only through the
4412 * OpenGL API; they cannot be declared with an initializer in a
4413 * shader."
4414 *
4415 * From section 4.1.7 of the ARB_bindless_texture spec:
4416 *
4417 * "Samplers may be declared as shader inputs and outputs, as uniform
4418 * variables, as temporary variables, and as function parameters."
4419 *
4420 * From section 4.1.X of the ARB_bindless_texture spec:
4421 *
4422 * "Images may be declared as shader inputs and outputs, as uniform
4423 * variables, as temporary variables, and as function parameters."
4424 */
4425 if (var->type->contains_atomic() ||
4426 (!state->has_bindless() && var->type->contains_opaque())) {
4427 _mesa_glsl_error(&initializer_loc, state,
4428 "cannot initialize %s variable %s",
4429 var->name, state->has_bindless() ? "atomic" : "opaque");
4430 }
4431
4432 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4433 _mesa_glsl_error(&initializer_loc, state,
4434 "cannot initialize %s shader input / %s %s",
4435 _mesa_shader_stage_to_string(state->stage),
4436 (state->stage == MESA_SHADER_VERTEX)
4437 ? "attribute" : "varying",
4438 var->name);
4439 }
4440
4441 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4442 _mesa_glsl_error(&initializer_loc, state,
4443 "cannot initialize %s shader output %s",
4444 _mesa_shader_stage_to_string(state->stage),
4445 var->name);
4446 }
4447
4448 /* If the initializer is an ast_aggregate_initializer, recursively store
4449 * type information from the LHS into it, so that its hir() function can do
4450 * type checking.
4451 */
4452 if (decl->initializer->oper == ast_aggregate)
4453 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4454
4455 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4456 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4457
4458 /* Calculate the constant value if this is a const or uniform
4459 * declaration.
4460 *
4461 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4462 *
4463 * "Declarations of globals without a storage qualifier, or with
4464 * just the const qualifier, may include initializers, in which case
4465 * they will be initialized before the first line of main() is
4466 * executed. Such initializers must be a constant expression."
4467 *
4468 * The same section of the GLSL ES 3.00.4 spec has similar language.
4469 */
4470 if (type->qualifier.flags.q.constant
4471 || type->qualifier.flags.q.uniform
4472 || (state->es_shader && state->current_function == NULL)) {
4473 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4474 lhs, rhs, true);
4475 if (new_rhs != NULL) {
4476 rhs = new_rhs;
4477
4478 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4479 * says:
4480 *
4481 * "A constant expression is one of
4482 *
4483 * ...
4484 *
4485 * - an expression formed by an operator on operands that are
4486 * all constant expressions, including getting an element of
4487 * a constant array, or a field of a constant structure, or
4488 * components of a constant vector. However, the sequence
4489 * operator ( , ) and the assignment operators ( =, +=, ...)
4490 * are not included in the operators that can create a
4491 * constant expression."
4492 *
4493 * Section 12.43 (Sequence operator and constant expressions) says:
4494 *
4495 * "Should the following construct be allowed?
4496 *
4497 * float a[2,3];
4498 *
4499 * The expression within the brackets uses the sequence operator
4500 * (',') and returns the integer 3 so the construct is declaring
4501 * a single-dimensional array of size 3. In some languages, the
4502 * construct declares a two-dimensional array. It would be
4503 * preferable to make this construct illegal to avoid confusion.
4504 *
4505 * One possibility is to change the definition of the sequence
4506 * operator so that it does not return a constant-expression and
4507 * hence cannot be used to declare an array size.
4508 *
4509 * RESOLUTION: The result of a sequence operator is not a
4510 * constant-expression."
4511 *
4512 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4513 * contains language almost identical to the section 4.3.3 in the
4514 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4515 * versions.
4516 */
4517 ir_constant *constant_value =
4518 rhs->constant_expression_value(mem_ctx);
4519
4520 if (!constant_value ||
4521 (state->is_version(430, 300) &&
4522 decl->initializer->has_sequence_subexpression())) {
4523 const char *const variable_mode =
4524 (type->qualifier.flags.q.constant)
4525 ? "const"
4526 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4527
4528 /* If ARB_shading_language_420pack is enabled, initializers of
4529 * const-qualified local variables do not have to be constant
4530 * expressions. Const-qualified global variables must still be
4531 * initialized with constant expressions.
4532 */
4533 if (!state->has_420pack()
4534 || state->current_function == NULL) {
4535 _mesa_glsl_error(& initializer_loc, state,
4536 "initializer of %s variable `%s' must be a "
4537 "constant expression",
4538 variable_mode,
4539 decl->identifier);
4540 if (var->type->is_numeric()) {
4541 /* Reduce cascading errors. */
4542 var->constant_value = type->qualifier.flags.q.constant
4543 ? ir_constant::zero(state, var->type) : NULL;
4544 }
4545 }
4546 } else {
4547 rhs = constant_value;
4548 var->constant_value = type->qualifier.flags.q.constant
4549 ? constant_value : NULL;
4550 }
4551 } else {
4552 if (var->type->is_numeric()) {
4553 /* Reduce cascading errors. */
4554 rhs = var->constant_value = type->qualifier.flags.q.constant
4555 ? ir_constant::zero(state, var->type) : NULL;
4556 }
4557 }
4558 }
4559
4560 if (rhs && !rhs->type->is_error()) {
4561 bool temp = var->data.read_only;
4562 if (type->qualifier.flags.q.constant)
4563 var->data.read_only = false;
4564
4565 /* Never emit code to initialize a uniform.
4566 */
4567 const glsl_type *initializer_type;
4568 bool error_emitted = false;
4569 if (!type->qualifier.flags.q.uniform) {
4570 error_emitted =
4571 do_assignment(initializer_instructions, state,
4572 NULL, lhs, rhs,
4573 &result, true, true,
4574 type->get_location());
4575 initializer_type = result->type;
4576 } else
4577 initializer_type = rhs->type;
4578
4579 if (!error_emitted) {
4580 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4581 var->data.has_initializer = true;
4582
4583 /* If the declared variable is an unsized array, it must inherrit
4584 * its full type from the initializer. A declaration such as
4585 *
4586 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4587 *
4588 * becomes
4589 *
4590 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4591 *
4592 * The assignment generated in the if-statement (below) will also
4593 * automatically handle this case for non-uniforms.
4594 *
4595 * If the declared variable is not an array, the types must
4596 * already match exactly. As a result, the type assignment
4597 * here can be done unconditionally. For non-uniforms the call
4598 * to do_assignment can change the type of the initializer (via
4599 * the implicit conversion rules). For uniforms the initializer
4600 * must be a constant expression, and the type of that expression
4601 * was validated above.
4602 */
4603 var->type = initializer_type;
4604 }
4605
4606 var->data.read_only = temp;
4607 }
4608
4609 return result;
4610 }
4611
4612 static void
4613 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4614 YYLTYPE loc, ir_variable *var,
4615 unsigned num_vertices,
4616 unsigned *size,
4617 const char *var_category)
4618 {
4619 if (var->type->is_unsized_array()) {
4620 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4621 *
4622 * All geometry shader input unsized array declarations will be
4623 * sized by an earlier input layout qualifier, when present, as per
4624 * the following table.
4625 *
4626 * Followed by a table mapping each allowed input layout qualifier to
4627 * the corresponding input length.
4628 *
4629 * Similarly for tessellation control shader outputs.
4630 */
4631 if (num_vertices != 0)
4632 var->type = glsl_type::get_array_instance(var->type->fields.array,
4633 num_vertices);
4634 } else {
4635 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4636 * includes the following examples of compile-time errors:
4637 *
4638 * // code sequence within one shader...
4639 * in vec4 Color1[]; // size unknown
4640 * ...Color1.length()...// illegal, length() unknown
4641 * in vec4 Color2[2]; // size is 2
4642 * ...Color1.length()...// illegal, Color1 still has no size
4643 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4644 * layout(lines) in; // legal, input size is 2, matching
4645 * in vec4 Color4[3]; // illegal, contradicts layout
4646 * ...
4647 *
4648 * To detect the case illustrated by Color3, we verify that the size of
4649 * an explicitly-sized array matches the size of any previously declared
4650 * explicitly-sized array. To detect the case illustrated by Color4, we
4651 * verify that the size of an explicitly-sized array is consistent with
4652 * any previously declared input layout.
4653 */
4654 if (num_vertices != 0 && var->type->length != num_vertices) {
4655 _mesa_glsl_error(&loc, state,
4656 "%s size contradicts previously declared layout "
4657 "(size is %u, but layout requires a size of %u)",
4658 var_category, var->type->length, num_vertices);
4659 } else if (*size != 0 && var->type->length != *size) {
4660 _mesa_glsl_error(&loc, state,
4661 "%s sizes are inconsistent (size is %u, but a "
4662 "previous declaration has size %u)",
4663 var_category, var->type->length, *size);
4664 } else {
4665 *size = var->type->length;
4666 }
4667 }
4668 }
4669
4670 static void
4671 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4672 YYLTYPE loc, ir_variable *var)
4673 {
4674 unsigned num_vertices = 0;
4675
4676 if (state->tcs_output_vertices_specified) {
4677 if (!state->out_qualifier->vertices->
4678 process_qualifier_constant(state, "vertices",
4679 &num_vertices, false)) {
4680 return;
4681 }
4682
4683 if (num_vertices > state->Const.MaxPatchVertices) {
4684 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4685 "GL_MAX_PATCH_VERTICES", num_vertices);
4686 return;
4687 }
4688 }
4689
4690 if (!var->type->is_array() && !var->data.patch) {
4691 _mesa_glsl_error(&loc, state,
4692 "tessellation control shader outputs must be arrays");
4693
4694 /* To avoid cascading failures, short circuit the checks below. */
4695 return;
4696 }
4697
4698 if (var->data.patch)
4699 return;
4700
4701 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4702 &state->tcs_output_size,
4703 "tessellation control shader output");
4704 }
4705
4706 /**
4707 * Do additional processing necessary for tessellation control/evaluation shader
4708 * input declarations. This covers both interface block arrays and bare input
4709 * variables.
4710 */
4711 static void
4712 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4713 YYLTYPE loc, ir_variable *var)
4714 {
4715 if (!var->type->is_array() && !var->data.patch) {
4716 _mesa_glsl_error(&loc, state,
4717 "per-vertex tessellation shader inputs must be arrays");
4718 /* Avoid cascading failures. */
4719 return;
4720 }
4721
4722 if (var->data.patch)
4723 return;
4724
4725 /* The ARB_tessellation_shader spec says:
4726 *
4727 * "Declaring an array size is optional. If no size is specified, it
4728 * will be taken from the implementation-dependent maximum patch size
4729 * (gl_MaxPatchVertices). If a size is specified, it must match the
4730 * maximum patch size; otherwise, a compile or link error will occur."
4731 *
4732 * This text appears twice, once for TCS inputs, and again for TES inputs.
4733 */
4734 if (var->type->is_unsized_array()) {
4735 var->type = glsl_type::get_array_instance(var->type->fields.array,
4736 state->Const.MaxPatchVertices);
4737 } else if (var->type->length != state->Const.MaxPatchVertices) {
4738 _mesa_glsl_error(&loc, state,
4739 "per-vertex tessellation shader input arrays must be "
4740 "sized to gl_MaxPatchVertices (%d).",
4741 state->Const.MaxPatchVertices);
4742 }
4743 }
4744
4745
4746 /**
4747 * Do additional processing necessary for geometry shader input declarations
4748 * (this covers both interface blocks arrays and bare input variables).
4749 */
4750 static void
4751 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4752 YYLTYPE loc, ir_variable *var)
4753 {
4754 unsigned num_vertices = 0;
4755
4756 if (state->gs_input_prim_type_specified) {
4757 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4758 }
4759
4760 /* Geometry shader input variables must be arrays. Caller should have
4761 * reported an error for this.
4762 */
4763 if (!var->type->is_array()) {
4764 assert(state->error);
4765
4766 /* To avoid cascading failures, short circuit the checks below. */
4767 return;
4768 }
4769
4770 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4771 &state->gs_input_size,
4772 "geometry shader input");
4773 }
4774
4775 static void
4776 validate_identifier(const char *identifier, YYLTYPE loc,
4777 struct _mesa_glsl_parse_state *state)
4778 {
4779 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4780 *
4781 * "Identifiers starting with "gl_" are reserved for use by
4782 * OpenGL, and may not be declared in a shader as either a
4783 * variable or a function."
4784 */
4785 if (is_gl_identifier(identifier)) {
4786 _mesa_glsl_error(&loc, state,
4787 "identifier `%s' uses reserved `gl_' prefix",
4788 identifier);
4789 } else if (strstr(identifier, "__")) {
4790 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4791 * spec:
4792 *
4793 * "In addition, all identifiers containing two
4794 * consecutive underscores (__) are reserved as
4795 * possible future keywords."
4796 *
4797 * The intention is that names containing __ are reserved for internal
4798 * use by the implementation, and names prefixed with GL_ are reserved
4799 * for use by Khronos. Names simply containing __ are dangerous to use,
4800 * but should be allowed.
4801 *
4802 * A future version of the GLSL specification will clarify this.
4803 */
4804 _mesa_glsl_warning(&loc, state,
4805 "identifier `%s' uses reserved `__' string",
4806 identifier);
4807 }
4808 }
4809
4810 ir_rvalue *
4811 ast_declarator_list::hir(exec_list *instructions,
4812 struct _mesa_glsl_parse_state *state)
4813 {
4814 void *ctx = state;
4815 const struct glsl_type *decl_type;
4816 const char *type_name = NULL;
4817 ir_rvalue *result = NULL;
4818 YYLTYPE loc = this->get_location();
4819
4820 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4821 *
4822 * "To ensure that a particular output variable is invariant, it is
4823 * necessary to use the invariant qualifier. It can either be used to
4824 * qualify a previously declared variable as being invariant
4825 *
4826 * invariant gl_Position; // make existing gl_Position be invariant"
4827 *
4828 * In these cases the parser will set the 'invariant' flag in the declarator
4829 * list, and the type will be NULL.
4830 */
4831 if (this->invariant) {
4832 assert(this->type == NULL);
4833
4834 if (state->current_function != NULL) {
4835 _mesa_glsl_error(& loc, state,
4836 "all uses of `invariant' keyword must be at global "
4837 "scope");
4838 }
4839
4840 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4841 assert(decl->array_specifier == NULL);
4842 assert(decl->initializer == NULL);
4843
4844 ir_variable *const earlier =
4845 state->symbols->get_variable(decl->identifier);
4846 if (earlier == NULL) {
4847 _mesa_glsl_error(& loc, state,
4848 "undeclared variable `%s' cannot be marked "
4849 "invariant", decl->identifier);
4850 } else if (!is_allowed_invariant(earlier, state)) {
4851 _mesa_glsl_error(&loc, state,
4852 "`%s' cannot be marked invariant; interfaces between "
4853 "shader stages only.", decl->identifier);
4854 } else if (earlier->data.used) {
4855 _mesa_glsl_error(& loc, state,
4856 "variable `%s' may not be redeclared "
4857 "`invariant' after being used",
4858 earlier->name);
4859 } else {
4860 earlier->data.invariant = true;
4861 }
4862 }
4863
4864 /* Invariant redeclarations do not have r-values.
4865 */
4866 return NULL;
4867 }
4868
4869 if (this->precise) {
4870 assert(this->type == NULL);
4871
4872 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4873 assert(decl->array_specifier == NULL);
4874 assert(decl->initializer == NULL);
4875
4876 ir_variable *const earlier =
4877 state->symbols->get_variable(decl->identifier);
4878 if (earlier == NULL) {
4879 _mesa_glsl_error(& loc, state,
4880 "undeclared variable `%s' cannot be marked "
4881 "precise", decl->identifier);
4882 } else if (state->current_function != NULL &&
4883 !state->symbols->name_declared_this_scope(decl->identifier)) {
4884 /* Note: we have to check if we're in a function, since
4885 * builtins are treated as having come from another scope.
4886 */
4887 _mesa_glsl_error(& loc, state,
4888 "variable `%s' from an outer scope may not be "
4889 "redeclared `precise' in this scope",
4890 earlier->name);
4891 } else if (earlier->data.used) {
4892 _mesa_glsl_error(& loc, state,
4893 "variable `%s' may not be redeclared "
4894 "`precise' after being used",
4895 earlier->name);
4896 } else {
4897 earlier->data.precise = true;
4898 }
4899 }
4900
4901 /* Precise redeclarations do not have r-values either. */
4902 return NULL;
4903 }
4904
4905 assert(this->type != NULL);
4906 assert(!this->invariant);
4907 assert(!this->precise);
4908
4909 /* The type specifier may contain a structure definition. Process that
4910 * before any of the variable declarations.
4911 */
4912 (void) this->type->specifier->hir(instructions, state);
4913
4914 decl_type = this->type->glsl_type(& type_name, state);
4915
4916 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4917 * "Buffer variables may only be declared inside interface blocks
4918 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4919 * shader storage blocks. It is a compile-time error to declare buffer
4920 * variables at global scope (outside a block)."
4921 */
4922 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4923 _mesa_glsl_error(&loc, state,
4924 "buffer variables cannot be declared outside "
4925 "interface blocks");
4926 }
4927
4928 /* An offset-qualified atomic counter declaration sets the default
4929 * offset for the next declaration within the same atomic counter
4930 * buffer.
4931 */
4932 if (decl_type && decl_type->contains_atomic()) {
4933 if (type->qualifier.flags.q.explicit_binding &&
4934 type->qualifier.flags.q.explicit_offset) {
4935 unsigned qual_binding;
4936 unsigned qual_offset;
4937 if (process_qualifier_constant(state, &loc, "binding",
4938 type->qualifier.binding,
4939 &qual_binding)
4940 && process_qualifier_constant(state, &loc, "offset",
4941 type->qualifier.offset,
4942 &qual_offset)) {
4943 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
4944 state->atomic_counter_offsets[qual_binding] = qual_offset;
4945 }
4946 }
4947
4948 ast_type_qualifier allowed_atomic_qual_mask;
4949 allowed_atomic_qual_mask.flags.i = 0;
4950 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4951 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4952 allowed_atomic_qual_mask.flags.q.uniform = 1;
4953
4954 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4955 "invalid layout qualifier for",
4956 "atomic_uint");
4957 }
4958
4959 if (this->declarations.is_empty()) {
4960 /* If there is no structure involved in the program text, there are two
4961 * possible scenarios:
4962 *
4963 * - The program text contained something like 'vec4;'. This is an
4964 * empty declaration. It is valid but weird. Emit a warning.
4965 *
4966 * - The program text contained something like 'S;' and 'S' is not the
4967 * name of a known structure type. This is both invalid and weird.
4968 * Emit an error.
4969 *
4970 * - The program text contained something like 'mediump float;'
4971 * when the programmer probably meant 'precision mediump
4972 * float;' Emit a warning with a description of what they
4973 * probably meant to do.
4974 *
4975 * Note that if decl_type is NULL and there is a structure involved,
4976 * there must have been some sort of error with the structure. In this
4977 * case we assume that an error was already generated on this line of
4978 * code for the structure. There is no need to generate an additional,
4979 * confusing error.
4980 */
4981 assert(this->type->specifier->structure == NULL || decl_type != NULL
4982 || state->error);
4983
4984 if (decl_type == NULL) {
4985 _mesa_glsl_error(&loc, state,
4986 "invalid type `%s' in empty declaration",
4987 type_name);
4988 } else {
4989 if (decl_type->is_array()) {
4990 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4991 * spec:
4992 *
4993 * "... any declaration that leaves the size undefined is
4994 * disallowed as this would add complexity and there are no
4995 * use-cases."
4996 */
4997 if (state->es_shader && decl_type->is_unsized_array()) {
4998 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4999 "or implicitly defined");
5000 }
5001
5002 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5003 *
5004 * "The combinations of types and qualifiers that cause
5005 * compile-time or link-time errors are the same whether or not
5006 * the declaration is empty."
5007 */
5008 validate_array_dimensions(decl_type, state, &loc);
5009 }
5010
5011 if (decl_type->is_atomic_uint()) {
5012 /* Empty atomic counter declarations are allowed and useful
5013 * to set the default offset qualifier.
5014 */
5015 return NULL;
5016 } else if (this->type->qualifier.precision != ast_precision_none) {
5017 if (this->type->specifier->structure != NULL) {
5018 _mesa_glsl_error(&loc, state,
5019 "precision qualifiers can't be applied "
5020 "to structures");
5021 } else {
5022 static const char *const precision_names[] = {
5023 "highp",
5024 "highp",
5025 "mediump",
5026 "lowp"
5027 };
5028
5029 _mesa_glsl_warning(&loc, state,
5030 "empty declaration with precision "
5031 "qualifier, to set the default precision, "
5032 "use `precision %s %s;'",
5033 precision_names[this->type->
5034 qualifier.precision],
5035 type_name);
5036 }
5037 } else if (this->type->specifier->structure == NULL) {
5038 _mesa_glsl_warning(&loc, state, "empty declaration");
5039 }
5040 }
5041 }
5042
5043 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5044 const struct glsl_type *var_type;
5045 ir_variable *var;
5046 const char *identifier = decl->identifier;
5047 /* FINISHME: Emit a warning if a variable declaration shadows a
5048 * FINISHME: declaration at a higher scope.
5049 */
5050
5051 if ((decl_type == NULL) || decl_type->is_void()) {
5052 if (type_name != NULL) {
5053 _mesa_glsl_error(& loc, state,
5054 "invalid type `%s' in declaration of `%s'",
5055 type_name, decl->identifier);
5056 } else {
5057 _mesa_glsl_error(& loc, state,
5058 "invalid type in declaration of `%s'",
5059 decl->identifier);
5060 }
5061 continue;
5062 }
5063
5064 if (this->type->qualifier.is_subroutine_decl()) {
5065 const glsl_type *t;
5066 const char *name;
5067
5068 t = state->symbols->get_type(this->type->specifier->type_name);
5069 if (!t)
5070 _mesa_glsl_error(& loc, state,
5071 "invalid type in declaration of `%s'",
5072 decl->identifier);
5073 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5074
5075 identifier = name;
5076
5077 }
5078 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5079 state);
5080
5081 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5082
5083 /* The 'varying in' and 'varying out' qualifiers can only be used with
5084 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5085 * yet.
5086 */
5087 if (this->type->qualifier.flags.q.varying) {
5088 if (this->type->qualifier.flags.q.in) {
5089 _mesa_glsl_error(& loc, state,
5090 "`varying in' qualifier in declaration of "
5091 "`%s' only valid for geometry shaders using "
5092 "ARB_geometry_shader4 or EXT_geometry_shader4",
5093 decl->identifier);
5094 } else if (this->type->qualifier.flags.q.out) {
5095 _mesa_glsl_error(& loc, state,
5096 "`varying out' qualifier in declaration of "
5097 "`%s' only valid for geometry shaders using "
5098 "ARB_geometry_shader4 or EXT_geometry_shader4",
5099 decl->identifier);
5100 }
5101 }
5102
5103 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5104 *
5105 * "Global variables can only use the qualifiers const,
5106 * attribute, uniform, or varying. Only one may be
5107 * specified.
5108 *
5109 * Local variables can only use the qualifier const."
5110 *
5111 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5112 * any extension that adds the 'layout' keyword.
5113 */
5114 if (!state->is_version(130, 300)
5115 && !state->has_explicit_attrib_location()
5116 && !state->has_separate_shader_objects()
5117 && !state->ARB_fragment_coord_conventions_enable) {
5118 if (this->type->qualifier.flags.q.out) {
5119 _mesa_glsl_error(& loc, state,
5120 "`out' qualifier in declaration of `%s' "
5121 "only valid for function parameters in %s",
5122 decl->identifier, state->get_version_string());
5123 }
5124 if (this->type->qualifier.flags.q.in) {
5125 _mesa_glsl_error(& loc, state,
5126 "`in' qualifier in declaration of `%s' "
5127 "only valid for function parameters in %s",
5128 decl->identifier, state->get_version_string());
5129 }
5130 /* FINISHME: Test for other invalid qualifiers. */
5131 }
5132
5133 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5134 & loc, false);
5135 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5136 &loc);
5137
5138 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5139 && (var->type->is_numeric() || var->type->is_boolean())
5140 && state->zero_init) {
5141 const ir_constant_data data = { { 0 } };
5142 var->data.has_initializer = true;
5143 var->constant_initializer = new(var) ir_constant(var->type, &data);
5144 }
5145
5146 if (this->type->qualifier.flags.q.invariant) {
5147 if (!is_allowed_invariant(var, state)) {
5148 _mesa_glsl_error(&loc, state,
5149 "`%s' cannot be marked invariant; interfaces between "
5150 "shader stages only", var->name);
5151 }
5152 }
5153
5154 if (state->current_function != NULL) {
5155 const char *mode = NULL;
5156 const char *extra = "";
5157
5158 /* There is no need to check for 'inout' here because the parser will
5159 * only allow that in function parameter lists.
5160 */
5161 if (this->type->qualifier.flags.q.attribute) {
5162 mode = "attribute";
5163 } else if (this->type->qualifier.is_subroutine_decl()) {
5164 mode = "subroutine uniform";
5165 } else if (this->type->qualifier.flags.q.uniform) {
5166 mode = "uniform";
5167 } else if (this->type->qualifier.flags.q.varying) {
5168 mode = "varying";
5169 } else if (this->type->qualifier.flags.q.in) {
5170 mode = "in";
5171 extra = " or in function parameter list";
5172 } else if (this->type->qualifier.flags.q.out) {
5173 mode = "out";
5174 extra = " or in function parameter list";
5175 }
5176
5177 if (mode) {
5178 _mesa_glsl_error(& loc, state,
5179 "%s variable `%s' must be declared at "
5180 "global scope%s",
5181 mode, var->name, extra);
5182 }
5183 } else if (var->data.mode == ir_var_shader_in) {
5184 var->data.read_only = true;
5185
5186 if (state->stage == MESA_SHADER_VERTEX) {
5187 bool error_emitted = false;
5188
5189 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5190 *
5191 * "Vertex shader inputs can only be float, floating-point
5192 * vectors, matrices, signed and unsigned integers and integer
5193 * vectors. Vertex shader inputs can also form arrays of these
5194 * types, but not structures."
5195 *
5196 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5197 *
5198 * "Vertex shader inputs can only be float, floating-point
5199 * vectors, matrices, signed and unsigned integers and integer
5200 * vectors. They cannot be arrays or structures."
5201 *
5202 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5203 *
5204 * "The attribute qualifier can be used only with float,
5205 * floating-point vectors, and matrices. Attribute variables
5206 * cannot be declared as arrays or structures."
5207 *
5208 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5209 *
5210 * "Vertex shader inputs can only be float, floating-point
5211 * vectors, matrices, signed and unsigned integers and integer
5212 * vectors. Vertex shader inputs cannot be arrays or
5213 * structures."
5214 *
5215 * From section 4.3.4 of the ARB_bindless_texture spec:
5216 *
5217 * "(modify third paragraph of the section to allow sampler and
5218 * image types) ... Vertex shader inputs can only be float,
5219 * single-precision floating-point scalars, single-precision
5220 * floating-point vectors, matrices, signed and unsigned
5221 * integers and integer vectors, sampler and image types."
5222 */
5223 const glsl_type *check_type = var->type->without_array();
5224
5225 switch (check_type->base_type) {
5226 case GLSL_TYPE_FLOAT:
5227 break;
5228 case GLSL_TYPE_UINT64:
5229 case GLSL_TYPE_INT64:
5230 break;
5231 case GLSL_TYPE_UINT:
5232 case GLSL_TYPE_INT:
5233 if (state->is_version(120, 300))
5234 break;
5235 case GLSL_TYPE_DOUBLE:
5236 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5237 break;
5238 case GLSL_TYPE_SAMPLER:
5239 if (check_type->is_sampler() && state->has_bindless())
5240 break;
5241 case GLSL_TYPE_IMAGE:
5242 if (check_type->is_image() && state->has_bindless())
5243 break;
5244 /* FALLTHROUGH */
5245 default:
5246 _mesa_glsl_error(& loc, state,
5247 "vertex shader input / attribute cannot have "
5248 "type %s`%s'",
5249 var->type->is_array() ? "array of " : "",
5250 check_type->name);
5251 error_emitted = true;
5252 }
5253
5254 if (!error_emitted && var->type->is_array() &&
5255 !state->check_version(150, 0, &loc,
5256 "vertex shader input / attribute "
5257 "cannot have array type")) {
5258 error_emitted = true;
5259 }
5260 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5261 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5262 *
5263 * Geometry shader input variables get the per-vertex values
5264 * written out by vertex shader output variables of the same
5265 * names. Since a geometry shader operates on a set of
5266 * vertices, each input varying variable (or input block, see
5267 * interface blocks below) needs to be declared as an array.
5268 */
5269 if (!var->type->is_array()) {
5270 _mesa_glsl_error(&loc, state,
5271 "geometry shader inputs must be arrays");
5272 }
5273
5274 handle_geometry_shader_input_decl(state, loc, var);
5275 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5276 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5277 *
5278 * It is a compile-time error to declare a fragment shader
5279 * input with, or that contains, any of the following types:
5280 *
5281 * * A boolean type
5282 * * An opaque type
5283 * * An array of arrays
5284 * * An array of structures
5285 * * A structure containing an array
5286 * * A structure containing a structure
5287 */
5288 if (state->es_shader) {
5289 const glsl_type *check_type = var->type->without_array();
5290 if (check_type->is_boolean() ||
5291 check_type->contains_opaque()) {
5292 _mesa_glsl_error(&loc, state,
5293 "fragment shader input cannot have type %s",
5294 check_type->name);
5295 }
5296 if (var->type->is_array() &&
5297 var->type->fields.array->is_array()) {
5298 _mesa_glsl_error(&loc, state,
5299 "%s shader output "
5300 "cannot have an array of arrays",
5301 _mesa_shader_stage_to_string(state->stage));
5302 }
5303 if (var->type->is_array() &&
5304 var->type->fields.array->is_record()) {
5305 _mesa_glsl_error(&loc, state,
5306 "fragment shader input "
5307 "cannot have an array of structs");
5308 }
5309 if (var->type->is_record()) {
5310 for (unsigned i = 0; i < var->type->length; i++) {
5311 if (var->type->fields.structure[i].type->is_array() ||
5312 var->type->fields.structure[i].type->is_record())
5313 _mesa_glsl_error(&loc, state,
5314 "fragment shader input cannot have "
5315 "a struct that contains an "
5316 "array or struct");
5317 }
5318 }
5319 }
5320 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5321 state->stage == MESA_SHADER_TESS_EVAL) {
5322 handle_tess_shader_input_decl(state, loc, var);
5323 }
5324 } else if (var->data.mode == ir_var_shader_out) {
5325 const glsl_type *check_type = var->type->without_array();
5326
5327 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5328 *
5329 * It is a compile-time error to declare a fragment shader output
5330 * that contains any of the following:
5331 *
5332 * * A Boolean type (bool, bvec2 ...)
5333 * * A double-precision scalar or vector (double, dvec2 ...)
5334 * * An opaque type
5335 * * Any matrix type
5336 * * A structure
5337 */
5338 if (state->stage == MESA_SHADER_FRAGMENT) {
5339 if (check_type->is_record() || check_type->is_matrix())
5340 _mesa_glsl_error(&loc, state,
5341 "fragment shader output "
5342 "cannot have struct or matrix type");
5343 switch (check_type->base_type) {
5344 case GLSL_TYPE_UINT:
5345 case GLSL_TYPE_INT:
5346 case GLSL_TYPE_FLOAT:
5347 break;
5348 default:
5349 _mesa_glsl_error(&loc, state,
5350 "fragment shader output cannot have "
5351 "type %s", check_type->name);
5352 }
5353 }
5354
5355 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5356 *
5357 * It is a compile-time error to declare a vertex shader output
5358 * with, or that contains, any of the following types:
5359 *
5360 * * A boolean type
5361 * * An opaque type
5362 * * An array of arrays
5363 * * An array of structures
5364 * * A structure containing an array
5365 * * A structure containing a structure
5366 *
5367 * It is a compile-time error to declare a fragment shader output
5368 * with, or that contains, any of the following types:
5369 *
5370 * * A boolean type
5371 * * An opaque type
5372 * * A matrix
5373 * * A structure
5374 * * An array of array
5375 *
5376 * ES 3.20 updates this to apply to tessellation and geometry shaders
5377 * as well. Because there are per-vertex arrays in the new stages,
5378 * it strikes the "array of..." rules and replaces them with these:
5379 *
5380 * * For per-vertex-arrayed variables (applies to tessellation
5381 * control, tessellation evaluation and geometry shaders):
5382 *
5383 * * Per-vertex-arrayed arrays of arrays
5384 * * Per-vertex-arrayed arrays of structures
5385 *
5386 * * For non-per-vertex-arrayed variables:
5387 *
5388 * * An array of arrays
5389 * * An array of structures
5390 *
5391 * which basically says to unwrap the per-vertex aspect and apply
5392 * the old rules.
5393 */
5394 if (state->es_shader) {
5395 if (var->type->is_array() &&
5396 var->type->fields.array->is_array()) {
5397 _mesa_glsl_error(&loc, state,
5398 "%s shader output "
5399 "cannot have an array of arrays",
5400 _mesa_shader_stage_to_string(state->stage));
5401 }
5402 if (state->stage <= MESA_SHADER_GEOMETRY) {
5403 const glsl_type *type = var->type;
5404
5405 if (state->stage == MESA_SHADER_TESS_CTRL &&
5406 !var->data.patch && var->type->is_array()) {
5407 type = var->type->fields.array;
5408 }
5409
5410 if (type->is_array() && type->fields.array->is_record()) {
5411 _mesa_glsl_error(&loc, state,
5412 "%s shader output cannot have "
5413 "an array of structs",
5414 _mesa_shader_stage_to_string(state->stage));
5415 }
5416 if (type->is_record()) {
5417 for (unsigned i = 0; i < type->length; i++) {
5418 if (type->fields.structure[i].type->is_array() ||
5419 type->fields.structure[i].type->is_record())
5420 _mesa_glsl_error(&loc, state,
5421 "%s shader output cannot have a "
5422 "struct that contains an "
5423 "array or struct",
5424 _mesa_shader_stage_to_string(state->stage));
5425 }
5426 }
5427 }
5428 }
5429
5430 if (state->stage == MESA_SHADER_TESS_CTRL) {
5431 handle_tess_ctrl_shader_output_decl(state, loc, var);
5432 }
5433 } else if (var->type->contains_subroutine()) {
5434 /* declare subroutine uniforms as hidden */
5435 var->data.how_declared = ir_var_hidden;
5436 }
5437
5438 /* From section 4.3.4 of the GLSL 4.00 spec:
5439 * "Input variables may not be declared using the patch in qualifier
5440 * in tessellation control or geometry shaders."
5441 *
5442 * From section 4.3.6 of the GLSL 4.00 spec:
5443 * "It is an error to use patch out in a vertex, tessellation
5444 * evaluation, or geometry shader."
5445 *
5446 * This doesn't explicitly forbid using them in a fragment shader, but
5447 * that's probably just an oversight.
5448 */
5449 if (state->stage != MESA_SHADER_TESS_EVAL
5450 && this->type->qualifier.flags.q.patch
5451 && this->type->qualifier.flags.q.in) {
5452
5453 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5454 "tessellation evaluation shader");
5455 }
5456
5457 if (state->stage != MESA_SHADER_TESS_CTRL
5458 && this->type->qualifier.flags.q.patch
5459 && this->type->qualifier.flags.q.out) {
5460
5461 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5462 "tessellation control shader");
5463 }
5464
5465 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5466 */
5467 if (this->type->qualifier.precision != ast_precision_none) {
5468 state->check_precision_qualifiers_allowed(&loc);
5469 }
5470
5471 if (this->type->qualifier.precision != ast_precision_none &&
5472 !precision_qualifier_allowed(var->type)) {
5473 _mesa_glsl_error(&loc, state,
5474 "precision qualifiers apply only to floating point"
5475 ", integer and opaque types");
5476 }
5477
5478 /* From section 4.1.7 of the GLSL 4.40 spec:
5479 *
5480 * "[Opaque types] can only be declared as function
5481 * parameters or uniform-qualified variables."
5482 *
5483 * From section 4.1.7 of the ARB_bindless_texture spec:
5484 *
5485 * "Samplers may be declared as shader inputs and outputs, as uniform
5486 * variables, as temporary variables, and as function parameters."
5487 *
5488 * From section 4.1.X of the ARB_bindless_texture spec:
5489 *
5490 * "Images may be declared as shader inputs and outputs, as uniform
5491 * variables, as temporary variables, and as function parameters."
5492 */
5493 if (!this->type->qualifier.flags.q.uniform &&
5494 (var_type->contains_atomic() ||
5495 (!state->has_bindless() && var_type->contains_opaque()))) {
5496 _mesa_glsl_error(&loc, state,
5497 "%s variables must be declared uniform",
5498 state->has_bindless() ? "atomic" : "opaque");
5499 }
5500
5501 /* Process the initializer and add its instructions to a temporary
5502 * list. This list will be added to the instruction stream (below) after
5503 * the declaration is added. This is done because in some cases (such as
5504 * redeclarations) the declaration may not actually be added to the
5505 * instruction stream.
5506 */
5507 exec_list initializer_instructions;
5508
5509 /* Examine var name here since var may get deleted in the next call */
5510 bool var_is_gl_id = is_gl_identifier(var->name);
5511
5512 bool is_redeclaration;
5513 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5514 false /* allow_all_redeclarations */,
5515 &is_redeclaration);
5516 if (is_redeclaration) {
5517 if (var_is_gl_id &&
5518 var->data.how_declared == ir_var_declared_in_block) {
5519 _mesa_glsl_error(&loc, state,
5520 "`%s' has already been redeclared using "
5521 "gl_PerVertex", var->name);
5522 }
5523 var->data.how_declared = ir_var_declared_normally;
5524 }
5525
5526 if (decl->initializer != NULL) {
5527 result = process_initializer(var,
5528 decl, this->type,
5529 &initializer_instructions, state);
5530 } else {
5531 validate_array_dimensions(var_type, state, &loc);
5532 }
5533
5534 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5535 *
5536 * "It is an error to write to a const variable outside of
5537 * its declaration, so they must be initialized when
5538 * declared."
5539 */
5540 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5541 _mesa_glsl_error(& loc, state,
5542 "const declaration of `%s' must be initialized",
5543 decl->identifier);
5544 }
5545
5546 if (state->es_shader) {
5547 const glsl_type *const t = var->type;
5548
5549 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5550 *
5551 * The GL_OES_tessellation_shader spec says about inputs:
5552 *
5553 * "Declaring an array size is optional. If no size is specified,
5554 * it will be taken from the implementation-dependent maximum
5555 * patch size (gl_MaxPatchVertices)."
5556 *
5557 * and about TCS outputs:
5558 *
5559 * "If no size is specified, it will be taken from output patch
5560 * size declared in the shader."
5561 *
5562 * The GL_OES_geometry_shader spec says:
5563 *
5564 * "All geometry shader input unsized array declarations will be
5565 * sized by an earlier input primitive layout qualifier, when
5566 * present, as per the following table."
5567 */
5568 const bool implicitly_sized =
5569 (var->data.mode == ir_var_shader_in &&
5570 state->stage >= MESA_SHADER_TESS_CTRL &&
5571 state->stage <= MESA_SHADER_GEOMETRY) ||
5572 (var->data.mode == ir_var_shader_out &&
5573 state->stage == MESA_SHADER_TESS_CTRL);
5574
5575 if (t->is_unsized_array() && !implicitly_sized)
5576 /* Section 10.17 of the GLSL ES 1.00 specification states that
5577 * unsized array declarations have been removed from the language.
5578 * Arrays that are sized using an initializer are still explicitly
5579 * sized. However, GLSL ES 1.00 does not allow array
5580 * initializers. That is only allowed in GLSL ES 3.00.
5581 *
5582 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5583 *
5584 * "An array type can also be formed without specifying a size
5585 * if the definition includes an initializer:
5586 *
5587 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5588 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5589 *
5590 * float a[5];
5591 * float b[] = a;"
5592 */
5593 _mesa_glsl_error(& loc, state,
5594 "unsized array declarations are not allowed in "
5595 "GLSL ES");
5596 }
5597
5598 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5599 *
5600 * "It is a compile-time error to declare an unsized array of
5601 * atomic_uint"
5602 */
5603 if (var->type->is_unsized_array() &&
5604 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5605 _mesa_glsl_error(& loc, state,
5606 "Unsized array of atomic_uint is not allowed");
5607 }
5608
5609 /* If the declaration is not a redeclaration, there are a few additional
5610 * semantic checks that must be applied. In addition, variable that was
5611 * created for the declaration should be added to the IR stream.
5612 */
5613 if (!is_redeclaration) {
5614 validate_identifier(decl->identifier, loc, state);
5615
5616 /* Add the variable to the symbol table. Note that the initializer's
5617 * IR was already processed earlier (though it hasn't been emitted
5618 * yet), without the variable in scope.
5619 *
5620 * This differs from most C-like languages, but it follows the GLSL
5621 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5622 * spec:
5623 *
5624 * "Within a declaration, the scope of a name starts immediately
5625 * after the initializer if present or immediately after the name
5626 * being declared if not."
5627 */
5628 if (!state->symbols->add_variable(var)) {
5629 YYLTYPE loc = this->get_location();
5630 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5631 "current scope", decl->identifier);
5632 continue;
5633 }
5634
5635 /* Push the variable declaration to the top. It means that all the
5636 * variable declarations will appear in a funny last-to-first order,
5637 * but otherwise we run into trouble if a function is prototyped, a
5638 * global var is decled, then the function is defined with usage of
5639 * the global var. See glslparsertest's CorrectModule.frag.
5640 */
5641 instructions->push_head(var);
5642 }
5643
5644 instructions->append_list(&initializer_instructions);
5645 }
5646
5647
5648 /* Generally, variable declarations do not have r-values. However,
5649 * one is used for the declaration in
5650 *
5651 * while (bool b = some_condition()) {
5652 * ...
5653 * }
5654 *
5655 * so we return the rvalue from the last seen declaration here.
5656 */
5657 return result;
5658 }
5659
5660
5661 ir_rvalue *
5662 ast_parameter_declarator::hir(exec_list *instructions,
5663 struct _mesa_glsl_parse_state *state)
5664 {
5665 void *ctx = state;
5666 const struct glsl_type *type;
5667 const char *name = NULL;
5668 YYLTYPE loc = this->get_location();
5669
5670 type = this->type->glsl_type(& name, state);
5671
5672 if (type == NULL) {
5673 if (name != NULL) {
5674 _mesa_glsl_error(& loc, state,
5675 "invalid type `%s' in declaration of `%s'",
5676 name, this->identifier);
5677 } else {
5678 _mesa_glsl_error(& loc, state,
5679 "invalid type in declaration of `%s'",
5680 this->identifier);
5681 }
5682
5683 type = glsl_type::error_type;
5684 }
5685
5686 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5687 *
5688 * "Functions that accept no input arguments need not use void in the
5689 * argument list because prototypes (or definitions) are required and
5690 * therefore there is no ambiguity when an empty argument list "( )" is
5691 * declared. The idiom "(void)" as a parameter list is provided for
5692 * convenience."
5693 *
5694 * Placing this check here prevents a void parameter being set up
5695 * for a function, which avoids tripping up checks for main taking
5696 * parameters and lookups of an unnamed symbol.
5697 */
5698 if (type->is_void()) {
5699 if (this->identifier != NULL)
5700 _mesa_glsl_error(& loc, state,
5701 "named parameter cannot have type `void'");
5702
5703 is_void = true;
5704 return NULL;
5705 }
5706
5707 if (formal_parameter && (this->identifier == NULL)) {
5708 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5709 return NULL;
5710 }
5711
5712 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5713 * call already handled the "vec4[..] foo" case.
5714 */
5715 type = process_array_type(&loc, type, this->array_specifier, state);
5716
5717 if (!type->is_error() && type->is_unsized_array()) {
5718 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5719 "a declared size");
5720 type = glsl_type::error_type;
5721 }
5722
5723 is_void = false;
5724 ir_variable *var = new(ctx)
5725 ir_variable(type, this->identifier, ir_var_function_in);
5726
5727 /* Apply any specified qualifiers to the parameter declaration. Note that
5728 * for function parameters the default mode is 'in'.
5729 */
5730 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5731 true);
5732
5733 /* From section 4.1.7 of the GLSL 4.40 spec:
5734 *
5735 * "Opaque variables cannot be treated as l-values; hence cannot
5736 * be used as out or inout function parameters, nor can they be
5737 * assigned into."
5738 *
5739 * From section 4.1.7 of the ARB_bindless_texture spec:
5740 *
5741 * "Samplers can be used as l-values, so can be assigned into and used
5742 * as "out" and "inout" function parameters."
5743 *
5744 * From section 4.1.X of the ARB_bindless_texture spec:
5745 *
5746 * "Images can be used as l-values, so can be assigned into and used as
5747 * "out" and "inout" function parameters."
5748 */
5749 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5750 && (type->contains_atomic() ||
5751 (!state->has_bindless() && type->contains_opaque()))) {
5752 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5753 "contain %s variables",
5754 state->has_bindless() ? "atomic" : "opaque");
5755 type = glsl_type::error_type;
5756 }
5757
5758 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5759 *
5760 * "When calling a function, expressions that do not evaluate to
5761 * l-values cannot be passed to parameters declared as out or inout."
5762 *
5763 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5764 *
5765 * "Other binary or unary expressions, non-dereferenced arrays,
5766 * function names, swizzles with repeated fields, and constants
5767 * cannot be l-values."
5768 *
5769 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5770 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5771 */
5772 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5773 && type->is_array()
5774 && !state->check_version(120, 100, &loc,
5775 "arrays cannot be out or inout parameters")) {
5776 type = glsl_type::error_type;
5777 }
5778
5779 instructions->push_tail(var);
5780
5781 /* Parameter declarations do not have r-values.
5782 */
5783 return NULL;
5784 }
5785
5786
5787 void
5788 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5789 bool formal,
5790 exec_list *ir_parameters,
5791 _mesa_glsl_parse_state *state)
5792 {
5793 ast_parameter_declarator *void_param = NULL;
5794 unsigned count = 0;
5795
5796 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5797 param->formal_parameter = formal;
5798 param->hir(ir_parameters, state);
5799
5800 if (param->is_void)
5801 void_param = param;
5802
5803 count++;
5804 }
5805
5806 if ((void_param != NULL) && (count > 1)) {
5807 YYLTYPE loc = void_param->get_location();
5808
5809 _mesa_glsl_error(& loc, state,
5810 "`void' parameter must be only parameter");
5811 }
5812 }
5813
5814
5815 void
5816 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5817 {
5818 /* IR invariants disallow function declarations or definitions
5819 * nested within other function definitions. But there is no
5820 * requirement about the relative order of function declarations
5821 * and definitions with respect to one another. So simply insert
5822 * the new ir_function block at the end of the toplevel instruction
5823 * list.
5824 */
5825 state->toplevel_ir->push_tail(f);
5826 }
5827
5828
5829 ir_rvalue *
5830 ast_function::hir(exec_list *instructions,
5831 struct _mesa_glsl_parse_state *state)
5832 {
5833 void *ctx = state;
5834 ir_function *f = NULL;
5835 ir_function_signature *sig = NULL;
5836 exec_list hir_parameters;
5837 YYLTYPE loc = this->get_location();
5838
5839 const char *const name = identifier;
5840
5841 /* New functions are always added to the top-level IR instruction stream,
5842 * so this instruction list pointer is ignored. See also emit_function
5843 * (called below).
5844 */
5845 (void) instructions;
5846
5847 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5848 *
5849 * "Function declarations (prototypes) cannot occur inside of functions;
5850 * they must be at global scope, or for the built-in functions, outside
5851 * the global scope."
5852 *
5853 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5854 *
5855 * "User defined functions may only be defined within the global scope."
5856 *
5857 * Note that this language does not appear in GLSL 1.10.
5858 */
5859 if ((state->current_function != NULL) &&
5860 state->is_version(120, 100)) {
5861 YYLTYPE loc = this->get_location();
5862 _mesa_glsl_error(&loc, state,
5863 "declaration of function `%s' not allowed within "
5864 "function body", name);
5865 }
5866
5867 validate_identifier(name, this->get_location(), state);
5868
5869 /* Convert the list of function parameters to HIR now so that they can be
5870 * used below to compare this function's signature with previously seen
5871 * signatures for functions with the same name.
5872 */
5873 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5874 is_definition,
5875 & hir_parameters, state);
5876
5877 const char *return_type_name;
5878 const glsl_type *return_type =
5879 this->return_type->glsl_type(& return_type_name, state);
5880
5881 if (!return_type) {
5882 YYLTYPE loc = this->get_location();
5883 _mesa_glsl_error(&loc, state,
5884 "function `%s' has undeclared return type `%s'",
5885 name, return_type_name);
5886 return_type = glsl_type::error_type;
5887 }
5888
5889 /* ARB_shader_subroutine states:
5890 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5891 * subroutine(...) to a function declaration."
5892 */
5893 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5894 YYLTYPE loc = this->get_location();
5895 _mesa_glsl_error(&loc, state,
5896 "function declaration `%s' cannot have subroutine prepended",
5897 name);
5898 }
5899
5900 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5901 * "No qualifier is allowed on the return type of a function."
5902 */
5903 if (this->return_type->has_qualifiers(state)) {
5904 YYLTYPE loc = this->get_location();
5905 _mesa_glsl_error(& loc, state,
5906 "function `%s' return type has qualifiers", name);
5907 }
5908
5909 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5910 *
5911 * "Arrays are allowed as arguments and as the return type. In both
5912 * cases, the array must be explicitly sized."
5913 */
5914 if (return_type->is_unsized_array()) {
5915 YYLTYPE loc = this->get_location();
5916 _mesa_glsl_error(& loc, state,
5917 "function `%s' return type array must be explicitly "
5918 "sized", name);
5919 }
5920
5921 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5922 *
5923 * "Arrays are allowed as arguments, but not as the return type. [...]
5924 * The return type can also be a structure if the structure does not
5925 * contain an array."
5926 */
5927 if (state->language_version == 100 && return_type->contains_array()) {
5928 YYLTYPE loc = this->get_location();
5929 _mesa_glsl_error(& loc, state,
5930 "function `%s' return type contains an array", name);
5931 }
5932
5933 /* From section 4.1.7 of the GLSL 4.40 spec:
5934 *
5935 * "[Opaque types] can only be declared as function parameters
5936 * or uniform-qualified variables."
5937 *
5938 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5939 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5940 * (Images)", this should be allowed.
5941 */
5942 if (return_type->contains_atomic() ||
5943 (!state->has_bindless() && return_type->contains_opaque())) {
5944 YYLTYPE loc = this->get_location();
5945 _mesa_glsl_error(&loc, state,
5946 "function `%s' return type can't contain an %s type",
5947 name, state->has_bindless() ? "atomic" : "opaque");
5948 }
5949
5950 /**/
5951 if (return_type->is_subroutine()) {
5952 YYLTYPE loc = this->get_location();
5953 _mesa_glsl_error(&loc, state,
5954 "function `%s' return type can't be a subroutine type",
5955 name);
5956 }
5957
5958
5959 /* Create an ir_function if one doesn't already exist. */
5960 f = state->symbols->get_function(name);
5961 if (f == NULL) {
5962 f = new(ctx) ir_function(name);
5963 if (!this->return_type->qualifier.is_subroutine_decl()) {
5964 if (!state->symbols->add_function(f)) {
5965 /* This function name shadows a non-function use of the same name. */
5966 YYLTYPE loc = this->get_location();
5967 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5968 "non-function", name);
5969 return NULL;
5970 }
5971 }
5972 emit_function(state, f);
5973 }
5974
5975 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5976 *
5977 * "A shader cannot redefine or overload built-in functions."
5978 *
5979 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5980 *
5981 * "User code can overload the built-in functions but cannot redefine
5982 * them."
5983 */
5984 if (state->es_shader) {
5985 /* Local shader has no exact candidates; check the built-ins. */
5986 _mesa_glsl_initialize_builtin_functions();
5987 if (state->language_version >= 300 &&
5988 _mesa_glsl_has_builtin_function(state, name)) {
5989 YYLTYPE loc = this->get_location();
5990 _mesa_glsl_error(& loc, state,
5991 "A shader cannot redefine or overload built-in "
5992 "function `%s' in GLSL ES 3.00", name);
5993 return NULL;
5994 }
5995
5996 if (state->language_version == 100) {
5997 ir_function_signature *sig =
5998 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5999 if (sig && sig->is_builtin()) {
6000 _mesa_glsl_error(& loc, state,
6001 "A shader cannot redefine built-in "
6002 "function `%s' in GLSL ES 1.00", name);
6003 }
6004 }
6005 }
6006
6007 /* Verify that this function's signature either doesn't match a previously
6008 * seen signature for a function with the same name, or, if a match is found,
6009 * that the previously seen signature does not have an associated definition.
6010 */
6011 if (state->es_shader || f->has_user_signature()) {
6012 sig = f->exact_matching_signature(state, &hir_parameters);
6013 if (sig != NULL) {
6014 const char *badvar = sig->qualifiers_match(&hir_parameters);
6015 if (badvar != NULL) {
6016 YYLTYPE loc = this->get_location();
6017
6018 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6019 "qualifiers don't match prototype", name, badvar);
6020 }
6021
6022 if (sig->return_type != return_type) {
6023 YYLTYPE loc = this->get_location();
6024
6025 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6026 "match prototype", name);
6027 }
6028
6029 if (sig->is_defined) {
6030 if (is_definition) {
6031 YYLTYPE loc = this->get_location();
6032 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6033 } else {
6034 /* We just encountered a prototype that exactly matches a
6035 * function that's already been defined. This is redundant,
6036 * and we should ignore it.
6037 */
6038 return NULL;
6039 }
6040 } else if (state->language_version == 100 && !is_definition) {
6041 /* From the GLSL 1.00 spec, section 4.2.7:
6042 *
6043 * "A particular variable, structure or function declaration
6044 * may occur at most once within a scope with the exception
6045 * that a single function prototype plus the corresponding
6046 * function definition are allowed."
6047 */
6048 YYLTYPE loc = this->get_location();
6049 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6050 }
6051 }
6052 }
6053
6054 /* Verify the return type of main() */
6055 if (strcmp(name, "main") == 0) {
6056 if (! return_type->is_void()) {
6057 YYLTYPE loc = this->get_location();
6058
6059 _mesa_glsl_error(& loc, state, "main() must return void");
6060 }
6061
6062 if (!hir_parameters.is_empty()) {
6063 YYLTYPE loc = this->get_location();
6064
6065 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6066 }
6067 }
6068
6069 /* Finish storing the information about this new function in its signature.
6070 */
6071 if (sig == NULL) {
6072 sig = new(ctx) ir_function_signature(return_type);
6073 f->add_signature(sig);
6074 }
6075
6076 sig->replace_parameters(&hir_parameters);
6077 signature = sig;
6078
6079 if (this->return_type->qualifier.subroutine_list) {
6080 int idx;
6081
6082 if (this->return_type->qualifier.flags.q.explicit_index) {
6083 unsigned qual_index;
6084 if (process_qualifier_constant(state, &loc, "index",
6085 this->return_type->qualifier.index,
6086 &qual_index)) {
6087 if (!state->has_explicit_uniform_location()) {
6088 _mesa_glsl_error(&loc, state, "subroutine index requires "
6089 "GL_ARB_explicit_uniform_location or "
6090 "GLSL 4.30");
6091 } else if (qual_index >= MAX_SUBROUTINES) {
6092 _mesa_glsl_error(&loc, state,
6093 "invalid subroutine index (%d) index must "
6094 "be a number between 0 and "
6095 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6096 MAX_SUBROUTINES - 1);
6097 } else {
6098 f->subroutine_index = qual_index;
6099 }
6100 }
6101 }
6102
6103 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6104 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6105 f->num_subroutine_types);
6106 idx = 0;
6107 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6108 const struct glsl_type *type;
6109 /* the subroutine type must be already declared */
6110 type = state->symbols->get_type(decl->identifier);
6111 if (!type) {
6112 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6113 }
6114
6115 for (int i = 0; i < state->num_subroutine_types; i++) {
6116 ir_function *fn = state->subroutine_types[i];
6117 ir_function_signature *tsig = NULL;
6118
6119 if (strcmp(fn->name, decl->identifier))
6120 continue;
6121
6122 tsig = fn->matching_signature(state, &sig->parameters,
6123 false);
6124 if (!tsig) {
6125 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6126 } else {
6127 if (tsig->return_type != sig->return_type) {
6128 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6129 }
6130 }
6131 }
6132 f->subroutine_types[idx++] = type;
6133 }
6134 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6135 ir_function *,
6136 state->num_subroutines + 1);
6137 state->subroutines[state->num_subroutines] = f;
6138 state->num_subroutines++;
6139
6140 }
6141
6142 if (this->return_type->qualifier.is_subroutine_decl()) {
6143 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6144 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6145 return NULL;
6146 }
6147 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6148 ir_function *,
6149 state->num_subroutine_types + 1);
6150 state->subroutine_types[state->num_subroutine_types] = f;
6151 state->num_subroutine_types++;
6152
6153 f->is_subroutine = true;
6154 }
6155
6156 /* Function declarations (prototypes) do not have r-values.
6157 */
6158 return NULL;
6159 }
6160
6161
6162 ir_rvalue *
6163 ast_function_definition::hir(exec_list *instructions,
6164 struct _mesa_glsl_parse_state *state)
6165 {
6166 prototype->is_definition = true;
6167 prototype->hir(instructions, state);
6168
6169 ir_function_signature *signature = prototype->signature;
6170 if (signature == NULL)
6171 return NULL;
6172
6173 assert(state->current_function == NULL);
6174 state->current_function = signature;
6175 state->found_return = false;
6176
6177 /* Duplicate parameters declared in the prototype as concrete variables.
6178 * Add these to the symbol table.
6179 */
6180 state->symbols->push_scope();
6181 foreach_in_list(ir_variable, var, &signature->parameters) {
6182 assert(var->as_variable() != NULL);
6183
6184 /* The only way a parameter would "exist" is if two parameters have
6185 * the same name.
6186 */
6187 if (state->symbols->name_declared_this_scope(var->name)) {
6188 YYLTYPE loc = this->get_location();
6189
6190 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6191 } else {
6192 state->symbols->add_variable(var);
6193 }
6194 }
6195
6196 /* Convert the body of the function to HIR. */
6197 this->body->hir(&signature->body, state);
6198 signature->is_defined = true;
6199
6200 state->symbols->pop_scope();
6201
6202 assert(state->current_function == signature);
6203 state->current_function = NULL;
6204
6205 if (!signature->return_type->is_void() && !state->found_return) {
6206 YYLTYPE loc = this->get_location();
6207 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6208 "%s, but no return statement",
6209 signature->function_name(),
6210 signature->return_type->name);
6211 }
6212
6213 /* Function definitions do not have r-values.
6214 */
6215 return NULL;
6216 }
6217
6218
6219 ir_rvalue *
6220 ast_jump_statement::hir(exec_list *instructions,
6221 struct _mesa_glsl_parse_state *state)
6222 {
6223 void *ctx = state;
6224
6225 switch (mode) {
6226 case ast_return: {
6227 ir_return *inst;
6228 assert(state->current_function);
6229
6230 if (opt_return_value) {
6231 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6232
6233 /* The value of the return type can be NULL if the shader says
6234 * 'return foo();' and foo() is a function that returns void.
6235 *
6236 * NOTE: The GLSL spec doesn't say that this is an error. The type
6237 * of the return value is void. If the return type of the function is
6238 * also void, then this should compile without error. Seriously.
6239 */
6240 const glsl_type *const ret_type =
6241 (ret == NULL) ? glsl_type::void_type : ret->type;
6242
6243 /* Implicit conversions are not allowed for return values prior to
6244 * ARB_shading_language_420pack.
6245 */
6246 if (state->current_function->return_type != ret_type) {
6247 YYLTYPE loc = this->get_location();
6248
6249 if (state->has_420pack()) {
6250 if (!apply_implicit_conversion(state->current_function->return_type,
6251 ret, state)) {
6252 _mesa_glsl_error(& loc, state,
6253 "could not implicitly convert return value "
6254 "to %s, in function `%s'",
6255 state->current_function->return_type->name,
6256 state->current_function->function_name());
6257 }
6258 } else {
6259 _mesa_glsl_error(& loc, state,
6260 "`return' with wrong type %s, in function `%s' "
6261 "returning %s",
6262 ret_type->name,
6263 state->current_function->function_name(),
6264 state->current_function->return_type->name);
6265 }
6266 } else if (state->current_function->return_type->base_type ==
6267 GLSL_TYPE_VOID) {
6268 YYLTYPE loc = this->get_location();
6269
6270 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6271 * specs add a clarification:
6272 *
6273 * "A void function can only use return without a return argument, even if
6274 * the return argument has void type. Return statements only accept values:
6275 *
6276 * void func1() { }
6277 * void func2() { return func1(); } // illegal return statement"
6278 */
6279 _mesa_glsl_error(& loc, state,
6280 "void functions can only use `return' without a "
6281 "return argument");
6282 }
6283
6284 inst = new(ctx) ir_return(ret);
6285 } else {
6286 if (state->current_function->return_type->base_type !=
6287 GLSL_TYPE_VOID) {
6288 YYLTYPE loc = this->get_location();
6289
6290 _mesa_glsl_error(& loc, state,
6291 "`return' with no value, in function %s returning "
6292 "non-void",
6293 state->current_function->function_name());
6294 }
6295 inst = new(ctx) ir_return;
6296 }
6297
6298 state->found_return = true;
6299 instructions->push_tail(inst);
6300 break;
6301 }
6302
6303 case ast_discard:
6304 if (state->stage != MESA_SHADER_FRAGMENT) {
6305 YYLTYPE loc = this->get_location();
6306
6307 _mesa_glsl_error(& loc, state,
6308 "`discard' may only appear in a fragment shader");
6309 }
6310 instructions->push_tail(new(ctx) ir_discard);
6311 break;
6312
6313 case ast_break:
6314 case ast_continue:
6315 if (mode == ast_continue &&
6316 state->loop_nesting_ast == NULL) {
6317 YYLTYPE loc = this->get_location();
6318
6319 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6320 } else if (mode == ast_break &&
6321 state->loop_nesting_ast == NULL &&
6322 state->switch_state.switch_nesting_ast == NULL) {
6323 YYLTYPE loc = this->get_location();
6324
6325 _mesa_glsl_error(& loc, state,
6326 "break may only appear in a loop or a switch");
6327 } else {
6328 /* For a loop, inline the for loop expression again, since we don't
6329 * know where near the end of the loop body the normal copy of it is
6330 * going to be placed. Same goes for the condition for a do-while
6331 * loop.
6332 */
6333 if (state->loop_nesting_ast != NULL &&
6334 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6335 if (state->loop_nesting_ast->rest_expression) {
6336 state->loop_nesting_ast->rest_expression->hir(instructions,
6337 state);
6338 }
6339 if (state->loop_nesting_ast->mode ==
6340 ast_iteration_statement::ast_do_while) {
6341 state->loop_nesting_ast->condition_to_hir(instructions, state);
6342 }
6343 }
6344
6345 if (state->switch_state.is_switch_innermost &&
6346 mode == ast_continue) {
6347 /* Set 'continue_inside' to true. */
6348 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6349 ir_dereference_variable *deref_continue_inside_var =
6350 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6351 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6352 true_val));
6353
6354 /* Break out from the switch, continue for the loop will
6355 * be called right after switch. */
6356 ir_loop_jump *const jump =
6357 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6358 instructions->push_tail(jump);
6359
6360 } else if (state->switch_state.is_switch_innermost &&
6361 mode == ast_break) {
6362 /* Force break out of switch by inserting a break. */
6363 ir_loop_jump *const jump =
6364 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6365 instructions->push_tail(jump);
6366 } else {
6367 ir_loop_jump *const jump =
6368 new(ctx) ir_loop_jump((mode == ast_break)
6369 ? ir_loop_jump::jump_break
6370 : ir_loop_jump::jump_continue);
6371 instructions->push_tail(jump);
6372 }
6373 }
6374
6375 break;
6376 }
6377
6378 /* Jump instructions do not have r-values.
6379 */
6380 return NULL;
6381 }
6382
6383
6384 ir_rvalue *
6385 ast_selection_statement::hir(exec_list *instructions,
6386 struct _mesa_glsl_parse_state *state)
6387 {
6388 void *ctx = state;
6389
6390 ir_rvalue *const condition = this->condition->hir(instructions, state);
6391
6392 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6393 *
6394 * "Any expression whose type evaluates to a Boolean can be used as the
6395 * conditional expression bool-expression. Vector types are not accepted
6396 * as the expression to if."
6397 *
6398 * The checks are separated so that higher quality diagnostics can be
6399 * generated for cases where both rules are violated.
6400 */
6401 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6402 YYLTYPE loc = this->condition->get_location();
6403
6404 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6405 "boolean");
6406 }
6407
6408 ir_if *const stmt = new(ctx) ir_if(condition);
6409
6410 if (then_statement != NULL) {
6411 state->symbols->push_scope();
6412 then_statement->hir(& stmt->then_instructions, state);
6413 state->symbols->pop_scope();
6414 }
6415
6416 if (else_statement != NULL) {
6417 state->symbols->push_scope();
6418 else_statement->hir(& stmt->else_instructions, state);
6419 state->symbols->pop_scope();
6420 }
6421
6422 instructions->push_tail(stmt);
6423
6424 /* if-statements do not have r-values.
6425 */
6426 return NULL;
6427 }
6428
6429
6430 struct case_label {
6431 /** Value of the case label. */
6432 unsigned value;
6433
6434 /** Does this label occur after the default? */
6435 bool after_default;
6436
6437 /**
6438 * AST for the case label.
6439 *
6440 * This is only used to generate error messages for duplicate labels.
6441 */
6442 ast_expression *ast;
6443 };
6444
6445 /* Used for detection of duplicate case values, compare
6446 * given contents directly.
6447 */
6448 static bool
6449 compare_case_value(const void *a, const void *b)
6450 {
6451 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6452 }
6453
6454
6455 /* Used for detection of duplicate case values, just
6456 * returns key contents as is.
6457 */
6458 static unsigned
6459 key_contents(const void *key)
6460 {
6461 return ((struct case_label *) key)->value;
6462 }
6463
6464
6465 ir_rvalue *
6466 ast_switch_statement::hir(exec_list *instructions,
6467 struct _mesa_glsl_parse_state *state)
6468 {
6469 void *ctx = state;
6470
6471 ir_rvalue *const test_expression =
6472 this->test_expression->hir(instructions, state);
6473
6474 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6475 *
6476 * "The type of init-expression in a switch statement must be a
6477 * scalar integer."
6478 */
6479 if (!test_expression->type->is_scalar() ||
6480 !test_expression->type->is_integer()) {
6481 YYLTYPE loc = this->test_expression->get_location();
6482
6483 _mesa_glsl_error(& loc,
6484 state,
6485 "switch-statement expression must be scalar "
6486 "integer");
6487 return NULL;
6488 }
6489
6490 /* Track the switch-statement nesting in a stack-like manner.
6491 */
6492 struct glsl_switch_state saved = state->switch_state;
6493
6494 state->switch_state.is_switch_innermost = true;
6495 state->switch_state.switch_nesting_ast = this;
6496 state->switch_state.labels_ht =
6497 _mesa_hash_table_create(NULL, key_contents,
6498 compare_case_value);
6499 state->switch_state.previous_default = NULL;
6500
6501 /* Initalize is_fallthru state to false.
6502 */
6503 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6504 state->switch_state.is_fallthru_var =
6505 new(ctx) ir_variable(glsl_type::bool_type,
6506 "switch_is_fallthru_tmp",
6507 ir_var_temporary);
6508 instructions->push_tail(state->switch_state.is_fallthru_var);
6509
6510 ir_dereference_variable *deref_is_fallthru_var =
6511 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6512 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6513 is_fallthru_val));
6514
6515 /* Initialize continue_inside state to false.
6516 */
6517 state->switch_state.continue_inside =
6518 new(ctx) ir_variable(glsl_type::bool_type,
6519 "continue_inside_tmp",
6520 ir_var_temporary);
6521 instructions->push_tail(state->switch_state.continue_inside);
6522
6523 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6524 ir_dereference_variable *deref_continue_inside_var =
6525 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6526 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6527 false_val));
6528
6529 state->switch_state.run_default =
6530 new(ctx) ir_variable(glsl_type::bool_type,
6531 "run_default_tmp",
6532 ir_var_temporary);
6533 instructions->push_tail(state->switch_state.run_default);
6534
6535 /* Loop around the switch is used for flow control. */
6536 ir_loop * loop = new(ctx) ir_loop();
6537 instructions->push_tail(loop);
6538
6539 /* Cache test expression.
6540 */
6541 test_to_hir(&loop->body_instructions, state);
6542
6543 /* Emit code for body of switch stmt.
6544 */
6545 body->hir(&loop->body_instructions, state);
6546
6547 /* Insert a break at the end to exit loop. */
6548 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6549 loop->body_instructions.push_tail(jump);
6550
6551 /* If we are inside loop, check if continue got called inside switch. */
6552 if (state->loop_nesting_ast != NULL) {
6553 ir_dereference_variable *deref_continue_inside =
6554 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6555 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6556 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6557
6558 if (state->loop_nesting_ast != NULL) {
6559 if (state->loop_nesting_ast->rest_expression) {
6560 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6561 state);
6562 }
6563 if (state->loop_nesting_ast->mode ==
6564 ast_iteration_statement::ast_do_while) {
6565 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6566 }
6567 }
6568 irif->then_instructions.push_tail(jump);
6569 instructions->push_tail(irif);
6570 }
6571
6572 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6573
6574 state->switch_state = saved;
6575
6576 /* Switch statements do not have r-values. */
6577 return NULL;
6578 }
6579
6580
6581 void
6582 ast_switch_statement::test_to_hir(exec_list *instructions,
6583 struct _mesa_glsl_parse_state *state)
6584 {
6585 void *ctx = state;
6586
6587 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6588 * on the switch test case. The first one would be already raised when
6589 * getting the test_expression at ast_switch_statement::hir
6590 */
6591 test_expression->set_is_lhs(true);
6592 /* Cache value of test expression. */
6593 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6594
6595 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6596 "switch_test_tmp",
6597 ir_var_temporary);
6598 ir_dereference_variable *deref_test_var =
6599 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6600
6601 instructions->push_tail(state->switch_state.test_var);
6602 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6603 }
6604
6605
6606 ir_rvalue *
6607 ast_switch_body::hir(exec_list *instructions,
6608 struct _mesa_glsl_parse_state *state)
6609 {
6610 if (stmts != NULL)
6611 stmts->hir(instructions, state);
6612
6613 /* Switch bodies do not have r-values. */
6614 return NULL;
6615 }
6616
6617 ir_rvalue *
6618 ast_case_statement_list::hir(exec_list *instructions,
6619 struct _mesa_glsl_parse_state *state)
6620 {
6621 exec_list default_case, after_default, tmp;
6622
6623 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6624 case_stmt->hir(&tmp, state);
6625
6626 /* Default case. */
6627 if (state->switch_state.previous_default && default_case.is_empty()) {
6628 default_case.append_list(&tmp);
6629 continue;
6630 }
6631
6632 /* If default case found, append 'after_default' list. */
6633 if (!default_case.is_empty())
6634 after_default.append_list(&tmp);
6635 else
6636 instructions->append_list(&tmp);
6637 }
6638
6639 /* Handle the default case. This is done here because default might not be
6640 * the last case. We need to add checks against following cases first to see
6641 * if default should be chosen or not.
6642 */
6643 if (!default_case.is_empty()) {
6644 ir_factory body(instructions, state);
6645
6646 ir_expression *cmp = NULL;
6647
6648 hash_table_foreach(state->switch_state.labels_ht, entry) {
6649 const struct case_label *const l = (struct case_label *) entry->data;
6650
6651 /* If the switch init-value is the value of one of the labels that
6652 * occurs after the default case, disable execution of the default
6653 * case.
6654 */
6655 if (l->after_default) {
6656 ir_constant *const cnst =
6657 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6658 ? body.constant(unsigned(l->value))
6659 : body.constant(int(l->value));
6660
6661 cmp = cmp == NULL
6662 ? equal(cnst, state->switch_state.test_var)
6663 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6664 }
6665 }
6666
6667 if (cmp != NULL)
6668 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6669 else
6670 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6671
6672 /* Append default case and all cases after it. */
6673 instructions->append_list(&default_case);
6674 instructions->append_list(&after_default);
6675 }
6676
6677 /* Case statements do not have r-values. */
6678 return NULL;
6679 }
6680
6681 ir_rvalue *
6682 ast_case_statement::hir(exec_list *instructions,
6683 struct _mesa_glsl_parse_state *state)
6684 {
6685 labels->hir(instructions, state);
6686
6687 /* Guard case statements depending on fallthru state. */
6688 ir_dereference_variable *const deref_fallthru_guard =
6689 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6690 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6691
6692 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6693 stmt->hir(& test_fallthru->then_instructions, state);
6694
6695 instructions->push_tail(test_fallthru);
6696
6697 /* Case statements do not have r-values. */
6698 return NULL;
6699 }
6700
6701
6702 ir_rvalue *
6703 ast_case_label_list::hir(exec_list *instructions,
6704 struct _mesa_glsl_parse_state *state)
6705 {
6706 foreach_list_typed (ast_case_label, label, link, & this->labels)
6707 label->hir(instructions, state);
6708
6709 /* Case labels do not have r-values. */
6710 return NULL;
6711 }
6712
6713 ir_rvalue *
6714 ast_case_label::hir(exec_list *instructions,
6715 struct _mesa_glsl_parse_state *state)
6716 {
6717 ir_factory body(instructions, state);
6718
6719 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6720
6721 /* If not default case, ... */
6722 if (this->test_value != NULL) {
6723 /* Conditionally set fallthru state based on
6724 * comparison of cached test expression value to case label.
6725 */
6726 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6727 ir_constant *label_const =
6728 label_rval->constant_expression_value(body.mem_ctx);
6729
6730 if (!label_const) {
6731 YYLTYPE loc = this->test_value->get_location();
6732
6733 _mesa_glsl_error(& loc, state,
6734 "switch statement case label must be a "
6735 "constant expression");
6736
6737 /* Stuff a dummy value in to allow processing to continue. */
6738 label_const = body.constant(0);
6739 } else {
6740 hash_entry *entry =
6741 _mesa_hash_table_search(state->switch_state.labels_ht,
6742 &label_const->value.u[0]);
6743
6744 if (entry) {
6745 const struct case_label *const l =
6746 (struct case_label *) entry->data;
6747 const ast_expression *const previous_label = l->ast;
6748 YYLTYPE loc = this->test_value->get_location();
6749
6750 _mesa_glsl_error(& loc, state, "duplicate case value");
6751
6752 loc = previous_label->get_location();
6753 _mesa_glsl_error(& loc, state, "this is the previous case label");
6754 } else {
6755 struct case_label *l = ralloc(state->switch_state.labels_ht,
6756 struct case_label);
6757
6758 l->value = label_const->value.u[0];
6759 l->after_default = state->switch_state.previous_default != NULL;
6760 l->ast = this->test_value;
6761
6762 _mesa_hash_table_insert(state->switch_state.labels_ht,
6763 &label_const->value.u[0],
6764 l);
6765 }
6766 }
6767
6768 /* Create an r-value version of the ir_constant label here (after we may
6769 * have created a fake one in error cases) that can be passed to
6770 * apply_implicit_conversion below.
6771 */
6772 ir_rvalue *label = label_const;
6773
6774 ir_rvalue *deref_test_var =
6775 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6776
6777 /*
6778 * From GLSL 4.40 specification section 6.2 ("Selection"):
6779 *
6780 * "The type of the init-expression value in a switch statement must
6781 * be a scalar int or uint. The type of the constant-expression value
6782 * in a case label also must be a scalar int or uint. When any pair
6783 * of these values is tested for "equal value" and the types do not
6784 * match, an implicit conversion will be done to convert the int to a
6785 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6786 * is done."
6787 */
6788 if (label->type != state->switch_state.test_var->type) {
6789 YYLTYPE loc = this->test_value->get_location();
6790
6791 const glsl_type *type_a = label->type;
6792 const glsl_type *type_b = state->switch_state.test_var->type;
6793
6794 /* Check if int->uint implicit conversion is supported. */
6795 bool integer_conversion_supported =
6796 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6797 state);
6798
6799 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6800 !integer_conversion_supported) {
6801 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6802 "init-expression and case label (%s != %s)",
6803 type_a->name, type_b->name);
6804 } else {
6805 /* Conversion of the case label. */
6806 if (type_a->base_type == GLSL_TYPE_INT) {
6807 if (!apply_implicit_conversion(glsl_type::uint_type,
6808 label, state))
6809 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6810 } else {
6811 /* Conversion of the init-expression value. */
6812 if (!apply_implicit_conversion(glsl_type::uint_type,
6813 deref_test_var, state))
6814 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6815 }
6816 }
6817
6818 /* If the implicit conversion was allowed, the types will already be
6819 * the same. If the implicit conversion wasn't allowed, smash the
6820 * type of the label anyway. This will prevent the expression
6821 * constructor (below) from failing an assertion.
6822 */
6823 label->type = deref_test_var->type;
6824 }
6825
6826 body.emit(assign(fallthru_var,
6827 logic_or(fallthru_var, equal(label, deref_test_var))));
6828 } else { /* default case */
6829 if (state->switch_state.previous_default) {
6830 YYLTYPE loc = this->get_location();
6831 _mesa_glsl_error(& loc, state,
6832 "multiple default labels in one switch");
6833
6834 loc = state->switch_state.previous_default->get_location();
6835 _mesa_glsl_error(& loc, state, "this is the first default label");
6836 }
6837 state->switch_state.previous_default = this;
6838
6839 /* Set fallthru condition on 'run_default' bool. */
6840 body.emit(assign(fallthru_var,
6841 logic_or(fallthru_var,
6842 state->switch_state.run_default)));
6843 }
6844
6845 /* Case statements do not have r-values. */
6846 return NULL;
6847 }
6848
6849 void
6850 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6851 struct _mesa_glsl_parse_state *state)
6852 {
6853 void *ctx = state;
6854
6855 if (condition != NULL) {
6856 ir_rvalue *const cond =
6857 condition->hir(instructions, state);
6858
6859 if ((cond == NULL)
6860 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6861 YYLTYPE loc = condition->get_location();
6862
6863 _mesa_glsl_error(& loc, state,
6864 "loop condition must be scalar boolean");
6865 } else {
6866 /* As the first code in the loop body, generate a block that looks
6867 * like 'if (!condition) break;' as the loop termination condition.
6868 */
6869 ir_rvalue *const not_cond =
6870 new(ctx) ir_expression(ir_unop_logic_not, cond);
6871
6872 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6873
6874 ir_jump *const break_stmt =
6875 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6876
6877 if_stmt->then_instructions.push_tail(break_stmt);
6878 instructions->push_tail(if_stmt);
6879 }
6880 }
6881 }
6882
6883
6884 ir_rvalue *
6885 ast_iteration_statement::hir(exec_list *instructions,
6886 struct _mesa_glsl_parse_state *state)
6887 {
6888 void *ctx = state;
6889
6890 /* For-loops and while-loops start a new scope, but do-while loops do not.
6891 */
6892 if (mode != ast_do_while)
6893 state->symbols->push_scope();
6894
6895 if (init_statement != NULL)
6896 init_statement->hir(instructions, state);
6897
6898 ir_loop *const stmt = new(ctx) ir_loop();
6899 instructions->push_tail(stmt);
6900
6901 /* Track the current loop nesting. */
6902 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6903
6904 state->loop_nesting_ast = this;
6905
6906 /* Likewise, indicate that following code is closest to a loop,
6907 * NOT closest to a switch.
6908 */
6909 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6910 state->switch_state.is_switch_innermost = false;
6911
6912 if (mode != ast_do_while)
6913 condition_to_hir(&stmt->body_instructions, state);
6914
6915 if (body != NULL)
6916 body->hir(& stmt->body_instructions, state);
6917
6918 if (rest_expression != NULL)
6919 rest_expression->hir(& stmt->body_instructions, state);
6920
6921 if (mode == ast_do_while)
6922 condition_to_hir(&stmt->body_instructions, state);
6923
6924 if (mode != ast_do_while)
6925 state->symbols->pop_scope();
6926
6927 /* Restore previous nesting before returning. */
6928 state->loop_nesting_ast = nesting_ast;
6929 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6930
6931 /* Loops do not have r-values.
6932 */
6933 return NULL;
6934 }
6935
6936
6937 /**
6938 * Determine if the given type is valid for establishing a default precision
6939 * qualifier.
6940 *
6941 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6942 *
6943 * "The precision statement
6944 *
6945 * precision precision-qualifier type;
6946 *
6947 * can be used to establish a default precision qualifier. The type field
6948 * can be either int or float or any of the sampler types, and the
6949 * precision-qualifier can be lowp, mediump, or highp."
6950 *
6951 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6952 * qualifiers on sampler types, but this seems like an oversight (since the
6953 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6954 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6955 * version.
6956 */
6957 static bool
6958 is_valid_default_precision_type(const struct glsl_type *const type)
6959 {
6960 if (type == NULL)
6961 return false;
6962
6963 switch (type->base_type) {
6964 case GLSL_TYPE_INT:
6965 case GLSL_TYPE_FLOAT:
6966 /* "int" and "float" are valid, but vectors and matrices are not. */
6967 return type->vector_elements == 1 && type->matrix_columns == 1;
6968 case GLSL_TYPE_SAMPLER:
6969 case GLSL_TYPE_IMAGE:
6970 case GLSL_TYPE_ATOMIC_UINT:
6971 return true;
6972 default:
6973 return false;
6974 }
6975 }
6976
6977
6978 ir_rvalue *
6979 ast_type_specifier::hir(exec_list *instructions,
6980 struct _mesa_glsl_parse_state *state)
6981 {
6982 if (this->default_precision == ast_precision_none && this->structure == NULL)
6983 return NULL;
6984
6985 YYLTYPE loc = this->get_location();
6986
6987 /* If this is a precision statement, check that the type to which it is
6988 * applied is either float or int.
6989 *
6990 * From section 4.5.3 of the GLSL 1.30 spec:
6991 * "The precision statement
6992 * precision precision-qualifier type;
6993 * can be used to establish a default precision qualifier. The type
6994 * field can be either int or float [...]. Any other types or
6995 * qualifiers will result in an error.
6996 */
6997 if (this->default_precision != ast_precision_none) {
6998 if (!state->check_precision_qualifiers_allowed(&loc))
6999 return NULL;
7000
7001 if (this->structure != NULL) {
7002 _mesa_glsl_error(&loc, state,
7003 "precision qualifiers do not apply to structures");
7004 return NULL;
7005 }
7006
7007 if (this->array_specifier != NULL) {
7008 _mesa_glsl_error(&loc, state,
7009 "default precision statements do not apply to "
7010 "arrays");
7011 return NULL;
7012 }
7013
7014 const struct glsl_type *const type =
7015 state->symbols->get_type(this->type_name);
7016 if (!is_valid_default_precision_type(type)) {
7017 _mesa_glsl_error(&loc, state,
7018 "default precision statements apply only to "
7019 "float, int, and opaque types");
7020 return NULL;
7021 }
7022
7023 if (state->es_shader) {
7024 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7025 * spec says:
7026 *
7027 * "Non-precision qualified declarations will use the precision
7028 * qualifier specified in the most recent precision statement
7029 * that is still in scope. The precision statement has the same
7030 * scoping rules as variable declarations. If it is declared
7031 * inside a compound statement, its effect stops at the end of
7032 * the innermost statement it was declared in. Precision
7033 * statements in nested scopes override precision statements in
7034 * outer scopes. Multiple precision statements for the same basic
7035 * type can appear inside the same scope, with later statements
7036 * overriding earlier statements within that scope."
7037 *
7038 * Default precision specifications follow the same scope rules as
7039 * variables. So, we can track the state of the default precision
7040 * qualifiers in the symbol table, and the rules will just work. This
7041 * is a slight abuse of the symbol table, but it has the semantics
7042 * that we want.
7043 */
7044 state->symbols->add_default_precision_qualifier(this->type_name,
7045 this->default_precision);
7046 }
7047
7048 /* FINISHME: Translate precision statements into IR. */
7049 return NULL;
7050 }
7051
7052 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7053 * process_record_constructor() can do type-checking on C-style initializer
7054 * expressions of structs, but ast_struct_specifier should only be translated
7055 * to HIR if it is declaring the type of a structure.
7056 *
7057 * The ->is_declaration field is false for initializers of variables
7058 * declared separately from the struct's type definition.
7059 *
7060 * struct S { ... }; (is_declaration = true)
7061 * struct T { ... } t = { ... }; (is_declaration = true)
7062 * S s = { ... }; (is_declaration = false)
7063 */
7064 if (this->structure != NULL && this->structure->is_declaration)
7065 return this->structure->hir(instructions, state);
7066
7067 return NULL;
7068 }
7069
7070
7071 /**
7072 * Process a structure or interface block tree into an array of structure fields
7073 *
7074 * After parsing, where there are some syntax differnces, structures and
7075 * interface blocks are almost identical. They are similar enough that the
7076 * AST for each can be processed the same way into a set of
7077 * \c glsl_struct_field to describe the members.
7078 *
7079 * If we're processing an interface block, var_mode should be the type of the
7080 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7081 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7082 * ir_var_auto.
7083 *
7084 * \return
7085 * The number of fields processed. A pointer to the array structure fields is
7086 * stored in \c *fields_ret.
7087 */
7088 static unsigned
7089 ast_process_struct_or_iface_block_members(exec_list *instructions,
7090 struct _mesa_glsl_parse_state *state,
7091 exec_list *declarations,
7092 glsl_struct_field **fields_ret,
7093 bool is_interface,
7094 enum glsl_matrix_layout matrix_layout,
7095 bool allow_reserved_names,
7096 ir_variable_mode var_mode,
7097 ast_type_qualifier *layout,
7098 unsigned block_stream,
7099 unsigned block_xfb_buffer,
7100 unsigned block_xfb_offset,
7101 unsigned expl_location,
7102 unsigned expl_align)
7103 {
7104 unsigned decl_count = 0;
7105 unsigned next_offset = 0;
7106
7107 /* Make an initial pass over the list of fields to determine how
7108 * many there are. Each element in this list is an ast_declarator_list.
7109 * This means that we actually need to count the number of elements in the
7110 * 'declarations' list in each of the elements.
7111 */
7112 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7113 decl_count += decl_list->declarations.length();
7114 }
7115
7116 /* Allocate storage for the fields and process the field
7117 * declarations. As the declarations are processed, try to also convert
7118 * the types to HIR. This ensures that structure definitions embedded in
7119 * other structure definitions or in interface blocks are processed.
7120 */
7121 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7122 decl_count);
7123
7124 bool first_member = true;
7125 bool first_member_has_explicit_location = false;
7126
7127 unsigned i = 0;
7128 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7129 const char *type_name;
7130 YYLTYPE loc = decl_list->get_location();
7131
7132 decl_list->type->specifier->hir(instructions, state);
7133
7134 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7135 *
7136 * "Anonymous structures are not supported; so embedded structures
7137 * must have a declarator. A name given to an embedded struct is
7138 * scoped at the same level as the struct it is embedded in."
7139 *
7140 * The same section of the GLSL 1.20 spec says:
7141 *
7142 * "Anonymous structures are not supported. Embedded structures are
7143 * not supported."
7144 *
7145 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7146 * embedded structures in 1.10 only.
7147 */
7148 if (state->language_version != 110 &&
7149 decl_list->type->specifier->structure != NULL)
7150 _mesa_glsl_error(&loc, state,
7151 "embedded structure declarations are not allowed");
7152
7153 const glsl_type *decl_type =
7154 decl_list->type->glsl_type(& type_name, state);
7155
7156 const struct ast_type_qualifier *const qual =
7157 &decl_list->type->qualifier;
7158
7159 /* From section 4.3.9 of the GLSL 4.40 spec:
7160 *
7161 * "[In interface blocks] opaque types are not allowed."
7162 *
7163 * It should be impossible for decl_type to be NULL here. Cases that
7164 * might naturally lead to decl_type being NULL, especially for the
7165 * is_interface case, will have resulted in compilation having
7166 * already halted due to a syntax error.
7167 */
7168 assert(decl_type);
7169
7170 if (is_interface) {
7171 /* From section 4.3.7 of the ARB_bindless_texture spec:
7172 *
7173 * "(remove the following bullet from the last list on p. 39,
7174 * thereby permitting sampler types in interface blocks; image
7175 * types are also permitted in blocks by this extension)"
7176 *
7177 * * sampler types are not allowed
7178 */
7179 if (decl_type->contains_atomic() ||
7180 (!state->has_bindless() && decl_type->contains_opaque())) {
7181 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7182 "interface block contains %s variable",
7183 state->has_bindless() ? "atomic" : "opaque");
7184 }
7185 } else {
7186 if (decl_type->contains_atomic()) {
7187 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7188 *
7189 * "Members of structures cannot be declared as atomic counter
7190 * types."
7191 */
7192 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7193 }
7194
7195 if (!state->has_bindless() && decl_type->contains_image()) {
7196 /* FINISHME: Same problem as with atomic counters.
7197 * FINISHME: Request clarification from Khronos and add
7198 * FINISHME: spec quotation here.
7199 */
7200 _mesa_glsl_error(&loc, state, "image in structure");
7201 }
7202 }
7203
7204 if (qual->flags.q.explicit_binding) {
7205 _mesa_glsl_error(&loc, state,
7206 "binding layout qualifier cannot be applied "
7207 "to struct or interface block members");
7208 }
7209
7210 if (is_interface) {
7211 if (!first_member) {
7212 if (!layout->flags.q.explicit_location &&
7213 ((first_member_has_explicit_location &&
7214 !qual->flags.q.explicit_location) ||
7215 (!first_member_has_explicit_location &&
7216 qual->flags.q.explicit_location))) {
7217 _mesa_glsl_error(&loc, state,
7218 "when block-level location layout qualifier "
7219 "is not supplied either all members must "
7220 "have a location layout qualifier or all "
7221 "members must not have a location layout "
7222 "qualifier");
7223 }
7224 } else {
7225 first_member = false;
7226 first_member_has_explicit_location =
7227 qual->flags.q.explicit_location;
7228 }
7229 }
7230
7231 if (qual->flags.q.std140 ||
7232 qual->flags.q.std430 ||
7233 qual->flags.q.packed ||
7234 qual->flags.q.shared) {
7235 _mesa_glsl_error(&loc, state,
7236 "uniform/shader storage block layout qualifiers "
7237 "std140, std430, packed, and shared can only be "
7238 "applied to uniform/shader storage blocks, not "
7239 "members");
7240 }
7241
7242 if (qual->flags.q.constant) {
7243 _mesa_glsl_error(&loc, state,
7244 "const storage qualifier cannot be applied "
7245 "to struct or interface block members");
7246 }
7247
7248 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7249 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7250
7251 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7252 *
7253 * "A block member may be declared with a stream identifier, but
7254 * the specified stream must match the stream associated with the
7255 * containing block."
7256 */
7257 if (qual->flags.q.explicit_stream) {
7258 unsigned qual_stream;
7259 if (process_qualifier_constant(state, &loc, "stream",
7260 qual->stream, &qual_stream) &&
7261 qual_stream != block_stream) {
7262 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7263 "interface block member does not match "
7264 "the interface block (%u vs %u)", qual_stream,
7265 block_stream);
7266 }
7267 }
7268
7269 int xfb_buffer;
7270 unsigned explicit_xfb_buffer = 0;
7271 if (qual->flags.q.explicit_xfb_buffer) {
7272 unsigned qual_xfb_buffer;
7273 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7274 qual->xfb_buffer, &qual_xfb_buffer)) {
7275 explicit_xfb_buffer = 1;
7276 if (qual_xfb_buffer != block_xfb_buffer)
7277 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7278 "interface block member does not match "
7279 "the interface block (%u vs %u)",
7280 qual_xfb_buffer, block_xfb_buffer);
7281 }
7282 xfb_buffer = (int) qual_xfb_buffer;
7283 } else {
7284 if (layout)
7285 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7286 xfb_buffer = (int) block_xfb_buffer;
7287 }
7288
7289 int xfb_stride = -1;
7290 if (qual->flags.q.explicit_xfb_stride) {
7291 unsigned qual_xfb_stride;
7292 if (process_qualifier_constant(state, &loc, "xfb_stride",
7293 qual->xfb_stride, &qual_xfb_stride)) {
7294 xfb_stride = (int) qual_xfb_stride;
7295 }
7296 }
7297
7298 if (qual->flags.q.uniform && qual->has_interpolation()) {
7299 _mesa_glsl_error(&loc, state,
7300 "interpolation qualifiers cannot be used "
7301 "with uniform interface blocks");
7302 }
7303
7304 if ((qual->flags.q.uniform || !is_interface) &&
7305 qual->has_auxiliary_storage()) {
7306 _mesa_glsl_error(&loc, state,
7307 "auxiliary storage qualifiers cannot be used "
7308 "in uniform blocks or structures.");
7309 }
7310
7311 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7312 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7313 _mesa_glsl_error(&loc, state,
7314 "row_major and column_major can only be "
7315 "applied to interface blocks");
7316 } else
7317 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7318 }
7319
7320 foreach_list_typed (ast_declaration, decl, link,
7321 &decl_list->declarations) {
7322 YYLTYPE loc = decl->get_location();
7323
7324 if (!allow_reserved_names)
7325 validate_identifier(decl->identifier, loc, state);
7326
7327 const struct glsl_type *field_type =
7328 process_array_type(&loc, decl_type, decl->array_specifier, state);
7329 validate_array_dimensions(field_type, state, &loc);
7330 fields[i].type = field_type;
7331 fields[i].name = decl->identifier;
7332 fields[i].interpolation =
7333 interpret_interpolation_qualifier(qual, field_type,
7334 var_mode, state, &loc);
7335 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7336 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7337 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7338 fields[i].precision = qual->precision;
7339 fields[i].offset = -1;
7340 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7341 fields[i].xfb_buffer = xfb_buffer;
7342 fields[i].xfb_stride = xfb_stride;
7343
7344 if (qual->flags.q.explicit_location) {
7345 unsigned qual_location;
7346 if (process_qualifier_constant(state, &loc, "location",
7347 qual->location, &qual_location)) {
7348 fields[i].location = qual_location +
7349 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7350 expl_location = fields[i].location +
7351 fields[i].type->count_attribute_slots(false);
7352 }
7353 } else {
7354 if (layout && layout->flags.q.explicit_location) {
7355 fields[i].location = expl_location;
7356 expl_location += fields[i].type->count_attribute_slots(false);
7357 } else {
7358 fields[i].location = -1;
7359 }
7360 }
7361
7362 /* Offset can only be used with std430 and std140 layouts an initial
7363 * value of 0 is used for error detection.
7364 */
7365 unsigned align = 0;
7366 unsigned size = 0;
7367 if (layout) {
7368 bool row_major;
7369 if (qual->flags.q.row_major ||
7370 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7371 row_major = true;
7372 } else {
7373 row_major = false;
7374 }
7375
7376 if(layout->flags.q.std140) {
7377 align = field_type->std140_base_alignment(row_major);
7378 size = field_type->std140_size(row_major);
7379 } else if (layout->flags.q.std430) {
7380 align = field_type->std430_base_alignment(row_major);
7381 size = field_type->std430_size(row_major);
7382 }
7383 }
7384
7385 if (qual->flags.q.explicit_offset) {
7386 unsigned qual_offset;
7387 if (process_qualifier_constant(state, &loc, "offset",
7388 qual->offset, &qual_offset)) {
7389 if (align != 0 && size != 0) {
7390 if (next_offset > qual_offset)
7391 _mesa_glsl_error(&loc, state, "layout qualifier "
7392 "offset overlaps previous member");
7393
7394 if (qual_offset % align) {
7395 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7396 "must be a multiple of the base "
7397 "alignment of %s", field_type->name);
7398 }
7399 fields[i].offset = qual_offset;
7400 next_offset = glsl_align(qual_offset + size, align);
7401 } else {
7402 _mesa_glsl_error(&loc, state, "offset can only be used "
7403 "with std430 and std140 layouts");
7404 }
7405 }
7406 }
7407
7408 if (qual->flags.q.explicit_align || expl_align != 0) {
7409 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7410 next_offset;
7411 if (align == 0 || size == 0) {
7412 _mesa_glsl_error(&loc, state, "align can only be used with "
7413 "std430 and std140 layouts");
7414 } else if (qual->flags.q.explicit_align) {
7415 unsigned member_align;
7416 if (process_qualifier_constant(state, &loc, "align",
7417 qual->align, &member_align)) {
7418 if (member_align == 0 ||
7419 member_align & (member_align - 1)) {
7420 _mesa_glsl_error(&loc, state, "align layout qualifier "
7421 "is not a power of 2");
7422 } else {
7423 fields[i].offset = glsl_align(offset, member_align);
7424 next_offset = glsl_align(fields[i].offset + size, align);
7425 }
7426 }
7427 } else {
7428 fields[i].offset = glsl_align(offset, expl_align);
7429 next_offset = glsl_align(fields[i].offset + size, align);
7430 }
7431 } else if (!qual->flags.q.explicit_offset) {
7432 if (align != 0 && size != 0)
7433 next_offset = glsl_align(next_offset + size, align);
7434 }
7435
7436 /* From the ARB_enhanced_layouts spec:
7437 *
7438 * "The given offset applies to the first component of the first
7439 * member of the qualified entity. Then, within the qualified
7440 * entity, subsequent components are each assigned, in order, to
7441 * the next available offset aligned to a multiple of that
7442 * component's size. Aggregate types are flattened down to the
7443 * component level to get this sequence of components."
7444 */
7445 if (qual->flags.q.explicit_xfb_offset) {
7446 unsigned xfb_offset;
7447 if (process_qualifier_constant(state, &loc, "xfb_offset",
7448 qual->offset, &xfb_offset)) {
7449 fields[i].offset = xfb_offset;
7450 block_xfb_offset = fields[i].offset +
7451 4 * field_type->component_slots();
7452 }
7453 } else {
7454 if (layout && layout->flags.q.explicit_xfb_offset) {
7455 unsigned align = field_type->is_64bit() ? 8 : 4;
7456 fields[i].offset = glsl_align(block_xfb_offset, align);
7457 block_xfb_offset += 4 * field_type->component_slots();
7458 }
7459 }
7460
7461 /* Propogate row- / column-major information down the fields of the
7462 * structure or interface block. Structures need this data because
7463 * the structure may contain a structure that contains ... a matrix
7464 * that need the proper layout.
7465 */
7466 if (is_interface && layout &&
7467 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7468 (field_type->without_array()->is_matrix()
7469 || field_type->without_array()->is_record())) {
7470 /* If no layout is specified for the field, inherit the layout
7471 * from the block.
7472 */
7473 fields[i].matrix_layout = matrix_layout;
7474
7475 if (qual->flags.q.row_major)
7476 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7477 else if (qual->flags.q.column_major)
7478 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7479
7480 /* If we're processing an uniform or buffer block, the matrix
7481 * layout must be decided by this point.
7482 */
7483 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7484 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7485 }
7486
7487 /* Memory qualifiers are allowed on buffer and image variables, while
7488 * the format qualifier is only accepted for images.
7489 */
7490 if (var_mode == ir_var_shader_storage ||
7491 field_type->without_array()->is_image()) {
7492 /* For readonly and writeonly qualifiers the field definition,
7493 * if set, overwrites the layout qualifier.
7494 */
7495 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7496 fields[i].memory_read_only = qual->flags.q.read_only;
7497 fields[i].memory_write_only = qual->flags.q.write_only;
7498 } else {
7499 fields[i].memory_read_only =
7500 layout ? layout->flags.q.read_only : 0;
7501 fields[i].memory_write_only =
7502 layout ? layout->flags.q.write_only : 0;
7503 }
7504
7505 /* For other qualifiers, we set the flag if either the layout
7506 * qualifier or the field qualifier are set
7507 */
7508 fields[i].memory_coherent = qual->flags.q.coherent ||
7509 (layout && layout->flags.q.coherent);
7510 fields[i].memory_volatile = qual->flags.q._volatile ||
7511 (layout && layout->flags.q._volatile);
7512 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7513 (layout && layout->flags.q.restrict_flag);
7514
7515 if (field_type->without_array()->is_image()) {
7516 if (qual->flags.q.explicit_image_format) {
7517 if (qual->image_base_type !=
7518 field_type->without_array()->sampled_type) {
7519 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7520 "match the base data type of the image");
7521 }
7522
7523 fields[i].image_format = qual->image_format;
7524 } else {
7525 if (!qual->flags.q.write_only) {
7526 _mesa_glsl_error(&loc, state, "image not qualified with "
7527 "`writeonly' must have a format layout "
7528 "qualifier");
7529 }
7530
7531 fields[i].image_format = GL_NONE;
7532 }
7533 }
7534 }
7535
7536 i++;
7537 }
7538 }
7539
7540 assert(i == decl_count);
7541
7542 *fields_ret = fields;
7543 return decl_count;
7544 }
7545
7546
7547 ir_rvalue *
7548 ast_struct_specifier::hir(exec_list *instructions,
7549 struct _mesa_glsl_parse_state *state)
7550 {
7551 YYLTYPE loc = this->get_location();
7552
7553 unsigned expl_location = 0;
7554 if (layout && layout->flags.q.explicit_location) {
7555 if (!process_qualifier_constant(state, &loc, "location",
7556 layout->location, &expl_location)) {
7557 return NULL;
7558 } else {
7559 expl_location = VARYING_SLOT_VAR0 + expl_location;
7560 }
7561 }
7562
7563 glsl_struct_field *fields;
7564 unsigned decl_count =
7565 ast_process_struct_or_iface_block_members(instructions,
7566 state,
7567 &this->declarations,
7568 &fields,
7569 false,
7570 GLSL_MATRIX_LAYOUT_INHERITED,
7571 false /* allow_reserved_names */,
7572 ir_var_auto,
7573 layout,
7574 0, /* for interface only */
7575 0, /* for interface only */
7576 0, /* for interface only */
7577 expl_location,
7578 0 /* for interface only */);
7579
7580 validate_identifier(this->name, loc, state);
7581
7582 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7583
7584 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7585 const glsl_type *match = state->symbols->get_type(name);
7586 /* allow struct matching for desktop GL - older UE4 does this */
7587 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7588 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7589 else
7590 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7591 } else {
7592 const glsl_type **s = reralloc(state, state->user_structures,
7593 const glsl_type *,
7594 state->num_user_structures + 1);
7595 if (s != NULL) {
7596 s[state->num_user_structures] = type;
7597 state->user_structures = s;
7598 state->num_user_structures++;
7599 }
7600 }
7601
7602 /* Structure type definitions do not have r-values.
7603 */
7604 return NULL;
7605 }
7606
7607
7608 /**
7609 * Visitor class which detects whether a given interface block has been used.
7610 */
7611 class interface_block_usage_visitor : public ir_hierarchical_visitor
7612 {
7613 public:
7614 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7615 : mode(mode), block(block), found(false)
7616 {
7617 }
7618
7619 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7620 {
7621 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7622 found = true;
7623 return visit_stop;
7624 }
7625 return visit_continue;
7626 }
7627
7628 bool usage_found() const
7629 {
7630 return this->found;
7631 }
7632
7633 private:
7634 ir_variable_mode mode;
7635 const glsl_type *block;
7636 bool found;
7637 };
7638
7639 static bool
7640 is_unsized_array_last_element(ir_variable *v)
7641 {
7642 const glsl_type *interface_type = v->get_interface_type();
7643 int length = interface_type->length;
7644
7645 assert(v->type->is_unsized_array());
7646
7647 /* Check if it is the last element of the interface */
7648 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7649 return true;
7650 return false;
7651 }
7652
7653 static void
7654 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7655 {
7656 var->data.memory_read_only = field.memory_read_only;
7657 var->data.memory_write_only = field.memory_write_only;
7658 var->data.memory_coherent = field.memory_coherent;
7659 var->data.memory_volatile = field.memory_volatile;
7660 var->data.memory_restrict = field.memory_restrict;
7661 }
7662
7663 ir_rvalue *
7664 ast_interface_block::hir(exec_list *instructions,
7665 struct _mesa_glsl_parse_state *state)
7666 {
7667 YYLTYPE loc = this->get_location();
7668
7669 /* Interface blocks must be declared at global scope */
7670 if (state->current_function != NULL) {
7671 _mesa_glsl_error(&loc, state,
7672 "Interface block `%s' must be declared "
7673 "at global scope",
7674 this->block_name);
7675 }
7676
7677 /* Validate qualifiers:
7678 *
7679 * - Layout Qualifiers as per the table in Section 4.4
7680 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7681 *
7682 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7683 * GLSL 4.50 spec:
7684 *
7685 * "Additionally, memory qualifiers may also be used in the declaration
7686 * of shader storage blocks"
7687 *
7688 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7689 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7690 * Layout Qualifiers) of the GLSL 4.50 spec says:
7691 *
7692 * "The std430 qualifier is supported only for shader storage blocks;
7693 * using std430 on a uniform block will result in a compile-time error."
7694 */
7695 ast_type_qualifier allowed_blk_qualifiers;
7696 allowed_blk_qualifiers.flags.i = 0;
7697 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7698 allowed_blk_qualifiers.flags.q.shared = 1;
7699 allowed_blk_qualifiers.flags.q.packed = 1;
7700 allowed_blk_qualifiers.flags.q.std140 = 1;
7701 allowed_blk_qualifiers.flags.q.row_major = 1;
7702 allowed_blk_qualifiers.flags.q.column_major = 1;
7703 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7704 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7705 if (this->layout.flags.q.buffer) {
7706 allowed_blk_qualifiers.flags.q.buffer = 1;
7707 allowed_blk_qualifiers.flags.q.std430 = 1;
7708 allowed_blk_qualifiers.flags.q.coherent = 1;
7709 allowed_blk_qualifiers.flags.q._volatile = 1;
7710 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7711 allowed_blk_qualifiers.flags.q.read_only = 1;
7712 allowed_blk_qualifiers.flags.q.write_only = 1;
7713 } else {
7714 allowed_blk_qualifiers.flags.q.uniform = 1;
7715 }
7716 } else {
7717 /* Interface block */
7718 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7719
7720 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7721 if (this->layout.flags.q.out) {
7722 allowed_blk_qualifiers.flags.q.out = 1;
7723 if (state->stage == MESA_SHADER_GEOMETRY ||
7724 state->stage == MESA_SHADER_TESS_CTRL ||
7725 state->stage == MESA_SHADER_TESS_EVAL ||
7726 state->stage == MESA_SHADER_VERTEX ) {
7727 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7728 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7729 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7730 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7731 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7732 if (state->stage == MESA_SHADER_GEOMETRY) {
7733 allowed_blk_qualifiers.flags.q.stream = 1;
7734 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7735 }
7736 if (state->stage == MESA_SHADER_TESS_CTRL) {
7737 allowed_blk_qualifiers.flags.q.patch = 1;
7738 }
7739 }
7740 } else {
7741 allowed_blk_qualifiers.flags.q.in = 1;
7742 if (state->stage == MESA_SHADER_TESS_EVAL) {
7743 allowed_blk_qualifiers.flags.q.patch = 1;
7744 }
7745 }
7746 }
7747
7748 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7749 "invalid qualifier for block",
7750 this->block_name);
7751
7752 enum glsl_interface_packing packing;
7753 if (this->layout.flags.q.std140) {
7754 packing = GLSL_INTERFACE_PACKING_STD140;
7755 } else if (this->layout.flags.q.packed) {
7756 packing = GLSL_INTERFACE_PACKING_PACKED;
7757 } else if (this->layout.flags.q.std430) {
7758 packing = GLSL_INTERFACE_PACKING_STD430;
7759 } else {
7760 /* The default layout is shared.
7761 */
7762 packing = GLSL_INTERFACE_PACKING_SHARED;
7763 }
7764
7765 ir_variable_mode var_mode;
7766 const char *iface_type_name;
7767 if (this->layout.flags.q.in) {
7768 var_mode = ir_var_shader_in;
7769 iface_type_name = "in";
7770 } else if (this->layout.flags.q.out) {
7771 var_mode = ir_var_shader_out;
7772 iface_type_name = "out";
7773 } else if (this->layout.flags.q.uniform) {
7774 var_mode = ir_var_uniform;
7775 iface_type_name = "uniform";
7776 } else if (this->layout.flags.q.buffer) {
7777 var_mode = ir_var_shader_storage;
7778 iface_type_name = "buffer";
7779 } else {
7780 var_mode = ir_var_auto;
7781 iface_type_name = "UNKNOWN";
7782 assert(!"interface block layout qualifier not found!");
7783 }
7784
7785 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7786 if (this->layout.flags.q.row_major)
7787 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7788 else if (this->layout.flags.q.column_major)
7789 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7790
7791 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7792 exec_list declared_variables;
7793 glsl_struct_field *fields;
7794
7795 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7796 * that we don't have incompatible qualifiers
7797 */
7798 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7799 _mesa_glsl_error(&loc, state,
7800 "Interface block sets both readonly and writeonly");
7801 }
7802
7803 unsigned qual_stream;
7804 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7805 &qual_stream) ||
7806 !validate_stream_qualifier(&loc, state, qual_stream)) {
7807 /* If the stream qualifier is invalid it doesn't make sense to continue
7808 * on and try to compare stream layouts on member variables against it
7809 * so just return early.
7810 */
7811 return NULL;
7812 }
7813
7814 unsigned qual_xfb_buffer;
7815 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7816 layout.xfb_buffer, &qual_xfb_buffer) ||
7817 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7818 return NULL;
7819 }
7820
7821 unsigned qual_xfb_offset;
7822 if (layout.flags.q.explicit_xfb_offset) {
7823 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7824 layout.offset, &qual_xfb_offset)) {
7825 return NULL;
7826 }
7827 }
7828
7829 unsigned qual_xfb_stride;
7830 if (layout.flags.q.explicit_xfb_stride) {
7831 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7832 layout.xfb_stride, &qual_xfb_stride)) {
7833 return NULL;
7834 }
7835 }
7836
7837 unsigned expl_location = 0;
7838 if (layout.flags.q.explicit_location) {
7839 if (!process_qualifier_constant(state, &loc, "location",
7840 layout.location, &expl_location)) {
7841 return NULL;
7842 } else {
7843 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7844 : VARYING_SLOT_VAR0;
7845 }
7846 }
7847
7848 unsigned expl_align = 0;
7849 if (layout.flags.q.explicit_align) {
7850 if (!process_qualifier_constant(state, &loc, "align",
7851 layout.align, &expl_align)) {
7852 return NULL;
7853 } else {
7854 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7855 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7856 "power of 2.");
7857 return NULL;
7858 }
7859 }
7860 }
7861
7862 unsigned int num_variables =
7863 ast_process_struct_or_iface_block_members(&declared_variables,
7864 state,
7865 &this->declarations,
7866 &fields,
7867 true,
7868 matrix_layout,
7869 redeclaring_per_vertex,
7870 var_mode,
7871 &this->layout,
7872 qual_stream,
7873 qual_xfb_buffer,
7874 qual_xfb_offset,
7875 expl_location,
7876 expl_align);
7877
7878 if (!redeclaring_per_vertex) {
7879 validate_identifier(this->block_name, loc, state);
7880
7881 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7882 *
7883 * "Block names have no other use within a shader beyond interface
7884 * matching; it is a compile-time error to use a block name at global
7885 * scope for anything other than as a block name."
7886 */
7887 ir_variable *var = state->symbols->get_variable(this->block_name);
7888 if (var && !var->type->is_interface()) {
7889 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7890 "already used in the scope.",
7891 this->block_name);
7892 }
7893 }
7894
7895 const glsl_type *earlier_per_vertex = NULL;
7896 if (redeclaring_per_vertex) {
7897 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7898 * the named interface block gl_in, we can find it by looking at the
7899 * previous declaration of gl_in. Otherwise we can find it by looking
7900 * at the previous decalartion of any of the built-in outputs,
7901 * e.g. gl_Position.
7902 *
7903 * Also check that the instance name and array-ness of the redeclaration
7904 * are correct.
7905 */
7906 switch (var_mode) {
7907 case ir_var_shader_in:
7908 if (ir_variable *earlier_gl_in =
7909 state->symbols->get_variable("gl_in")) {
7910 earlier_per_vertex = earlier_gl_in->get_interface_type();
7911 } else {
7912 _mesa_glsl_error(&loc, state,
7913 "redeclaration of gl_PerVertex input not allowed "
7914 "in the %s shader",
7915 _mesa_shader_stage_to_string(state->stage));
7916 }
7917 if (this->instance_name == NULL ||
7918 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7919 !this->array_specifier->is_single_dimension()) {
7920 _mesa_glsl_error(&loc, state,
7921 "gl_PerVertex input must be redeclared as "
7922 "gl_in[]");
7923 }
7924 break;
7925 case ir_var_shader_out:
7926 if (ir_variable *earlier_gl_Position =
7927 state->symbols->get_variable("gl_Position")) {
7928 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7929 } else if (ir_variable *earlier_gl_out =
7930 state->symbols->get_variable("gl_out")) {
7931 earlier_per_vertex = earlier_gl_out->get_interface_type();
7932 } else {
7933 _mesa_glsl_error(&loc, state,
7934 "redeclaration of gl_PerVertex output not "
7935 "allowed in the %s shader",
7936 _mesa_shader_stage_to_string(state->stage));
7937 }
7938 if (state->stage == MESA_SHADER_TESS_CTRL) {
7939 if (this->instance_name == NULL ||
7940 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7941 _mesa_glsl_error(&loc, state,
7942 "gl_PerVertex output must be redeclared as "
7943 "gl_out[]");
7944 }
7945 } else {
7946 if (this->instance_name != NULL) {
7947 _mesa_glsl_error(&loc, state,
7948 "gl_PerVertex output may not be redeclared with "
7949 "an instance name");
7950 }
7951 }
7952 break;
7953 default:
7954 _mesa_glsl_error(&loc, state,
7955 "gl_PerVertex must be declared as an input or an "
7956 "output");
7957 break;
7958 }
7959
7960 if (earlier_per_vertex == NULL) {
7961 /* An error has already been reported. Bail out to avoid null
7962 * dereferences later in this function.
7963 */
7964 return NULL;
7965 }
7966
7967 /* Copy locations from the old gl_PerVertex interface block. */
7968 for (unsigned i = 0; i < num_variables; i++) {
7969 int j = earlier_per_vertex->field_index(fields[i].name);
7970 if (j == -1) {
7971 _mesa_glsl_error(&loc, state,
7972 "redeclaration of gl_PerVertex must be a subset "
7973 "of the built-in members of gl_PerVertex");
7974 } else {
7975 fields[i].location =
7976 earlier_per_vertex->fields.structure[j].location;
7977 fields[i].offset =
7978 earlier_per_vertex->fields.structure[j].offset;
7979 fields[i].interpolation =
7980 earlier_per_vertex->fields.structure[j].interpolation;
7981 fields[i].centroid =
7982 earlier_per_vertex->fields.structure[j].centroid;
7983 fields[i].sample =
7984 earlier_per_vertex->fields.structure[j].sample;
7985 fields[i].patch =
7986 earlier_per_vertex->fields.structure[j].patch;
7987 fields[i].precision =
7988 earlier_per_vertex->fields.structure[j].precision;
7989 fields[i].explicit_xfb_buffer =
7990 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7991 fields[i].xfb_buffer =
7992 earlier_per_vertex->fields.structure[j].xfb_buffer;
7993 fields[i].xfb_stride =
7994 earlier_per_vertex->fields.structure[j].xfb_stride;
7995 }
7996 }
7997
7998 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7999 * spec:
8000 *
8001 * If a built-in interface block is redeclared, it must appear in
8002 * the shader before any use of any member included in the built-in
8003 * declaration, or a compilation error will result.
8004 *
8005 * This appears to be a clarification to the behaviour established for
8006 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8007 * regardless of GLSL version.
8008 */
8009 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8010 v.run(instructions);
8011 if (v.usage_found()) {
8012 _mesa_glsl_error(&loc, state,
8013 "redeclaration of a built-in interface block must "
8014 "appear before any use of any member of the "
8015 "interface block");
8016 }
8017 }
8018
8019 const glsl_type *block_type =
8020 glsl_type::get_interface_instance(fields,
8021 num_variables,
8022 packing,
8023 matrix_layout ==
8024 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8025 this->block_name);
8026
8027 unsigned component_size = block_type->contains_double() ? 8 : 4;
8028 int xfb_offset =
8029 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8030 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8031 component_size);
8032
8033 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8034 YYLTYPE loc = this->get_location();
8035 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8036 "already taken in the current scope",
8037 this->block_name, iface_type_name);
8038 }
8039
8040 /* Since interface blocks cannot contain statements, it should be
8041 * impossible for the block to generate any instructions.
8042 */
8043 assert(declared_variables.is_empty());
8044
8045 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8046 *
8047 * Geometry shader input variables get the per-vertex values written
8048 * out by vertex shader output variables of the same names. Since a
8049 * geometry shader operates on a set of vertices, each input varying
8050 * variable (or input block, see interface blocks below) needs to be
8051 * declared as an array.
8052 */
8053 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8054 var_mode == ir_var_shader_in) {
8055 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8056 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8057 state->stage == MESA_SHADER_TESS_EVAL) &&
8058 !this->layout.flags.q.patch &&
8059 this->array_specifier == NULL &&
8060 var_mode == ir_var_shader_in) {
8061 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8062 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8063 !this->layout.flags.q.patch &&
8064 this->array_specifier == NULL &&
8065 var_mode == ir_var_shader_out) {
8066 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8067 }
8068
8069
8070 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8071 * says:
8072 *
8073 * "If an instance name (instance-name) is used, then it puts all the
8074 * members inside a scope within its own name space, accessed with the
8075 * field selector ( . ) operator (analogously to structures)."
8076 */
8077 if (this->instance_name) {
8078 if (redeclaring_per_vertex) {
8079 /* When a built-in in an unnamed interface block is redeclared,
8080 * get_variable_being_redeclared() calls
8081 * check_builtin_array_max_size() to make sure that built-in array
8082 * variables aren't redeclared to illegal sizes. But we're looking
8083 * at a redeclaration of a named built-in interface block. So we
8084 * have to manually call check_builtin_array_max_size() for all parts
8085 * of the interface that are arrays.
8086 */
8087 for (unsigned i = 0; i < num_variables; i++) {
8088 if (fields[i].type->is_array()) {
8089 const unsigned size = fields[i].type->array_size();
8090 check_builtin_array_max_size(fields[i].name, size, loc, state);
8091 }
8092 }
8093 } else {
8094 validate_identifier(this->instance_name, loc, state);
8095 }
8096
8097 ir_variable *var;
8098
8099 if (this->array_specifier != NULL) {
8100 const glsl_type *block_array_type =
8101 process_array_type(&loc, block_type, this->array_specifier, state);
8102
8103 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8104 *
8105 * For uniform blocks declared an array, each individual array
8106 * element corresponds to a separate buffer object backing one
8107 * instance of the block. As the array size indicates the number
8108 * of buffer objects needed, uniform block array declarations
8109 * must specify an array size.
8110 *
8111 * And a few paragraphs later:
8112 *
8113 * Geometry shader input blocks must be declared as arrays and
8114 * follow the array declaration and linking rules for all
8115 * geometry shader inputs. All other input and output block
8116 * arrays must specify an array size.
8117 *
8118 * The same applies to tessellation shaders.
8119 *
8120 * The upshot of this is that the only circumstance where an
8121 * interface array size *doesn't* need to be specified is on a
8122 * geometry shader input, tessellation control shader input,
8123 * tessellation control shader output, and tessellation evaluation
8124 * shader input.
8125 */
8126 if (block_array_type->is_unsized_array()) {
8127 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8128 state->stage == MESA_SHADER_TESS_CTRL ||
8129 state->stage == MESA_SHADER_TESS_EVAL;
8130 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8131
8132 if (this->layout.flags.q.in) {
8133 if (!allow_inputs)
8134 _mesa_glsl_error(&loc, state,
8135 "unsized input block arrays not allowed in "
8136 "%s shader",
8137 _mesa_shader_stage_to_string(state->stage));
8138 } else if (this->layout.flags.q.out) {
8139 if (!allow_outputs)
8140 _mesa_glsl_error(&loc, state,
8141 "unsized output block arrays not allowed in "
8142 "%s shader",
8143 _mesa_shader_stage_to_string(state->stage));
8144 } else {
8145 /* by elimination, this is a uniform block array */
8146 _mesa_glsl_error(&loc, state,
8147 "unsized uniform block arrays not allowed in "
8148 "%s shader",
8149 _mesa_shader_stage_to_string(state->stage));
8150 }
8151 }
8152
8153 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8154 *
8155 * * Arrays of arrays of blocks are not allowed
8156 */
8157 if (state->es_shader && block_array_type->is_array() &&
8158 block_array_type->fields.array->is_array()) {
8159 _mesa_glsl_error(&loc, state,
8160 "arrays of arrays interface blocks are "
8161 "not allowed");
8162 }
8163
8164 var = new(state) ir_variable(block_array_type,
8165 this->instance_name,
8166 var_mode);
8167 } else {
8168 var = new(state) ir_variable(block_type,
8169 this->instance_name,
8170 var_mode);
8171 }
8172
8173 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8174 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8175
8176 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8177 var->data.read_only = true;
8178
8179 var->data.patch = this->layout.flags.q.patch;
8180
8181 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8182 handle_geometry_shader_input_decl(state, loc, var);
8183 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8184 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8185 handle_tess_shader_input_decl(state, loc, var);
8186 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8187 handle_tess_ctrl_shader_output_decl(state, loc, var);
8188
8189 for (unsigned i = 0; i < num_variables; i++) {
8190 if (var->data.mode == ir_var_shader_storage)
8191 apply_memory_qualifiers(var, fields[i]);
8192 }
8193
8194 if (ir_variable *earlier =
8195 state->symbols->get_variable(this->instance_name)) {
8196 if (!redeclaring_per_vertex) {
8197 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8198 this->instance_name);
8199 }
8200 earlier->data.how_declared = ir_var_declared_normally;
8201 earlier->type = var->type;
8202 earlier->reinit_interface_type(block_type);
8203 delete var;
8204 } else {
8205 if (this->layout.flags.q.explicit_binding) {
8206 apply_explicit_binding(state, &loc, var, var->type,
8207 &this->layout);
8208 }
8209
8210 var->data.stream = qual_stream;
8211 if (layout.flags.q.explicit_location) {
8212 var->data.location = expl_location;
8213 var->data.explicit_location = true;
8214 }
8215
8216 state->symbols->add_variable(var);
8217 instructions->push_tail(var);
8218 }
8219 } else {
8220 /* In order to have an array size, the block must also be declared with
8221 * an instance name.
8222 */
8223 assert(this->array_specifier == NULL);
8224
8225 for (unsigned i = 0; i < num_variables; i++) {
8226 ir_variable *var =
8227 new(state) ir_variable(fields[i].type,
8228 ralloc_strdup(state, fields[i].name),
8229 var_mode);
8230 var->data.interpolation = fields[i].interpolation;
8231 var->data.centroid = fields[i].centroid;
8232 var->data.sample = fields[i].sample;
8233 var->data.patch = fields[i].patch;
8234 var->data.stream = qual_stream;
8235 var->data.location = fields[i].location;
8236
8237 if (fields[i].location != -1)
8238 var->data.explicit_location = true;
8239
8240 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8241 var->data.xfb_buffer = fields[i].xfb_buffer;
8242
8243 if (fields[i].offset != -1)
8244 var->data.explicit_xfb_offset = true;
8245 var->data.offset = fields[i].offset;
8246
8247 var->init_interface_type(block_type);
8248
8249 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8250 var->data.read_only = true;
8251
8252 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8253 if (state->es_shader) {
8254 var->data.precision =
8255 select_gles_precision(fields[i].precision, fields[i].type,
8256 state, &loc);
8257 }
8258
8259 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8260 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8261 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8262 } else {
8263 var->data.matrix_layout = fields[i].matrix_layout;
8264 }
8265
8266 if (var->data.mode == ir_var_shader_storage)
8267 apply_memory_qualifiers(var, fields[i]);
8268
8269 /* Examine var name here since var may get deleted in the next call */
8270 bool var_is_gl_id = is_gl_identifier(var->name);
8271
8272 if (redeclaring_per_vertex) {
8273 bool is_redeclaration;
8274 var =
8275 get_variable_being_redeclared(&var, loc, state,
8276 true /* allow_all_redeclarations */,
8277 &is_redeclaration);
8278 if (!var_is_gl_id || !is_redeclaration) {
8279 _mesa_glsl_error(&loc, state,
8280 "redeclaration of gl_PerVertex can only "
8281 "include built-in variables");
8282 } else if (var->data.how_declared == ir_var_declared_normally) {
8283 _mesa_glsl_error(&loc, state,
8284 "`%s' has already been redeclared",
8285 var->name);
8286 } else {
8287 var->data.how_declared = ir_var_declared_in_block;
8288 var->reinit_interface_type(block_type);
8289 }
8290 continue;
8291 }
8292
8293 if (state->symbols->get_variable(var->name) != NULL)
8294 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8295
8296 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8297 * The UBO declaration itself doesn't get an ir_variable unless it
8298 * has an instance name. This is ugly.
8299 */
8300 if (this->layout.flags.q.explicit_binding) {
8301 apply_explicit_binding(state, &loc, var,
8302 var->get_interface_type(), &this->layout);
8303 }
8304
8305 if (var->type->is_unsized_array()) {
8306 if (var->is_in_shader_storage_block() &&
8307 is_unsized_array_last_element(var)) {
8308 var->data.from_ssbo_unsized_array = true;
8309 } else {
8310 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8311 *
8312 * "If an array is declared as the last member of a shader storage
8313 * block and the size is not specified at compile-time, it is
8314 * sized at run-time. In all other cases, arrays are sized only
8315 * at compile-time."
8316 *
8317 * In desktop GLSL it is allowed to have unsized-arrays that are
8318 * not last, as long as we can determine that they are implicitly
8319 * sized.
8320 */
8321 if (state->es_shader) {
8322 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8323 "definition: only last member of a shader "
8324 "storage block can be defined as unsized "
8325 "array", fields[i].name);
8326 }
8327 }
8328 }
8329
8330 state->symbols->add_variable(var);
8331 instructions->push_tail(var);
8332 }
8333
8334 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8335 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8336 *
8337 * It is also a compilation error ... to redeclare a built-in
8338 * block and then use a member from that built-in block that was
8339 * not included in the redeclaration.
8340 *
8341 * This appears to be a clarification to the behaviour established
8342 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8343 * behaviour regardless of GLSL version.
8344 *
8345 * To prevent the shader from using a member that was not included in
8346 * the redeclaration, we disable any ir_variables that are still
8347 * associated with the old declaration of gl_PerVertex (since we've
8348 * already updated all of the variables contained in the new
8349 * gl_PerVertex to point to it).
8350 *
8351 * As a side effect this will prevent
8352 * validate_intrastage_interface_blocks() from getting confused and
8353 * thinking there are conflicting definitions of gl_PerVertex in the
8354 * shader.
8355 */
8356 foreach_in_list_safe(ir_instruction, node, instructions) {
8357 ir_variable *const var = node->as_variable();
8358 if (var != NULL &&
8359 var->get_interface_type() == earlier_per_vertex &&
8360 var->data.mode == var_mode) {
8361 if (var->data.how_declared == ir_var_declared_normally) {
8362 _mesa_glsl_error(&loc, state,
8363 "redeclaration of gl_PerVertex cannot "
8364 "follow a redeclaration of `%s'",
8365 var->name);
8366 }
8367 state->symbols->disable_variable(var->name);
8368 var->remove();
8369 }
8370 }
8371 }
8372 }
8373
8374 return NULL;
8375 }
8376
8377
8378 ir_rvalue *
8379 ast_tcs_output_layout::hir(exec_list *instructions,
8380 struct _mesa_glsl_parse_state *state)
8381 {
8382 YYLTYPE loc = this->get_location();
8383
8384 unsigned num_vertices;
8385 if (!state->out_qualifier->vertices->
8386 process_qualifier_constant(state, "vertices", &num_vertices,
8387 false)) {
8388 /* return here to stop cascading incorrect error messages */
8389 return NULL;
8390 }
8391
8392 /* If any shader outputs occurred before this declaration and specified an
8393 * array size, make sure the size they specified is consistent with the
8394 * primitive type.
8395 */
8396 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8397 _mesa_glsl_error(&loc, state,
8398 "this tessellation control shader output layout "
8399 "specifies %u vertices, but a previous output "
8400 "is declared with size %u",
8401 num_vertices, state->tcs_output_size);
8402 return NULL;
8403 }
8404
8405 state->tcs_output_vertices_specified = true;
8406
8407 /* If any shader outputs occurred before this declaration and did not
8408 * specify an array size, their size is determined now.
8409 */
8410 foreach_in_list (ir_instruction, node, instructions) {
8411 ir_variable *var = node->as_variable();
8412 if (var == NULL || var->data.mode != ir_var_shader_out)
8413 continue;
8414
8415 /* Note: Not all tessellation control shader output are arrays. */
8416 if (!var->type->is_unsized_array() || var->data.patch)
8417 continue;
8418
8419 if (var->data.max_array_access >= (int)num_vertices) {
8420 _mesa_glsl_error(&loc, state,
8421 "this tessellation control shader output layout "
8422 "specifies %u vertices, but an access to element "
8423 "%u of output `%s' already exists", num_vertices,
8424 var->data.max_array_access, var->name);
8425 } else {
8426 var->type = glsl_type::get_array_instance(var->type->fields.array,
8427 num_vertices);
8428 }
8429 }
8430
8431 return NULL;
8432 }
8433
8434
8435 ir_rvalue *
8436 ast_gs_input_layout::hir(exec_list *instructions,
8437 struct _mesa_glsl_parse_state *state)
8438 {
8439 YYLTYPE loc = this->get_location();
8440
8441 /* Should have been prevented by the parser. */
8442 assert(!state->gs_input_prim_type_specified
8443 || state->in_qualifier->prim_type == this->prim_type);
8444
8445 /* If any shader inputs occurred before this declaration and specified an
8446 * array size, make sure the size they specified is consistent with the
8447 * primitive type.
8448 */
8449 unsigned num_vertices = vertices_per_prim(this->prim_type);
8450 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8451 _mesa_glsl_error(&loc, state,
8452 "this geometry shader input layout implies %u vertices"
8453 " per primitive, but a previous input is declared"
8454 " with size %u", num_vertices, state->gs_input_size);
8455 return NULL;
8456 }
8457
8458 state->gs_input_prim_type_specified = true;
8459
8460 /* If any shader inputs occurred before this declaration and did not
8461 * specify an array size, their size is determined now.
8462 */
8463 foreach_in_list(ir_instruction, node, instructions) {
8464 ir_variable *var = node->as_variable();
8465 if (var == NULL || var->data.mode != ir_var_shader_in)
8466 continue;
8467
8468 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8469 * array; skip it.
8470 */
8471
8472 if (var->type->is_unsized_array()) {
8473 if (var->data.max_array_access >= (int)num_vertices) {
8474 _mesa_glsl_error(&loc, state,
8475 "this geometry shader input layout implies %u"
8476 " vertices, but an access to element %u of input"
8477 " `%s' already exists", num_vertices,
8478 var->data.max_array_access, var->name);
8479 } else {
8480 var->type = glsl_type::get_array_instance(var->type->fields.array,
8481 num_vertices);
8482 }
8483 }
8484 }
8485
8486 return NULL;
8487 }
8488
8489
8490 ir_rvalue *
8491 ast_cs_input_layout::hir(exec_list *instructions,
8492 struct _mesa_glsl_parse_state *state)
8493 {
8494 YYLTYPE loc = this->get_location();
8495
8496 /* From the ARB_compute_shader specification:
8497 *
8498 * If the local size of the shader in any dimension is greater
8499 * than the maximum size supported by the implementation for that
8500 * dimension, a compile-time error results.
8501 *
8502 * It is not clear from the spec how the error should be reported if
8503 * the total size of the work group exceeds
8504 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8505 * report it at compile time as well.
8506 */
8507 GLuint64 total_invocations = 1;
8508 unsigned qual_local_size[3];
8509 for (int i = 0; i < 3; i++) {
8510
8511 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8512 'x' + i);
8513 /* Infer a local_size of 1 for unspecified dimensions */
8514 if (this->local_size[i] == NULL) {
8515 qual_local_size[i] = 1;
8516 } else if (!this->local_size[i]->
8517 process_qualifier_constant(state, local_size_str,
8518 &qual_local_size[i], false)) {
8519 ralloc_free(local_size_str);
8520 return NULL;
8521 }
8522 ralloc_free(local_size_str);
8523
8524 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8525 _mesa_glsl_error(&loc, state,
8526 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8527 " (%d)", 'x' + i,
8528 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8529 break;
8530 }
8531 total_invocations *= qual_local_size[i];
8532 if (total_invocations >
8533 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8534 _mesa_glsl_error(&loc, state,
8535 "product of local_sizes exceeds "
8536 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8537 state->ctx->Const.MaxComputeWorkGroupInvocations);
8538 break;
8539 }
8540 }
8541
8542 /* If any compute input layout declaration preceded this one, make sure it
8543 * was consistent with this one.
8544 */
8545 if (state->cs_input_local_size_specified) {
8546 for (int i = 0; i < 3; i++) {
8547 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8548 _mesa_glsl_error(&loc, state,
8549 "compute shader input layout does not match"
8550 " previous declaration");
8551 return NULL;
8552 }
8553 }
8554 }
8555
8556 /* The ARB_compute_variable_group_size spec says:
8557 *
8558 * If a compute shader including a *local_size_variable* qualifier also
8559 * declares a fixed local group size using the *local_size_x*,
8560 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8561 * results
8562 */
8563 if (state->cs_input_local_size_variable_specified) {
8564 _mesa_glsl_error(&loc, state,
8565 "compute shader can't include both a variable and a "
8566 "fixed local group size");
8567 return NULL;
8568 }
8569
8570 state->cs_input_local_size_specified = true;
8571 for (int i = 0; i < 3; i++)
8572 state->cs_input_local_size[i] = qual_local_size[i];
8573
8574 /* We may now declare the built-in constant gl_WorkGroupSize (see
8575 * builtin_variable_generator::generate_constants() for why we didn't
8576 * declare it earlier).
8577 */
8578 ir_variable *var = new(state->symbols)
8579 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8580 var->data.how_declared = ir_var_declared_implicitly;
8581 var->data.read_only = true;
8582 instructions->push_tail(var);
8583 state->symbols->add_variable(var);
8584 ir_constant_data data;
8585 memset(&data, 0, sizeof(data));
8586 for (int i = 0; i < 3; i++)
8587 data.u[i] = qual_local_size[i];
8588 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8589 var->constant_initializer =
8590 new(var) ir_constant(glsl_type::uvec3_type, &data);
8591 var->data.has_initializer = true;
8592
8593 return NULL;
8594 }
8595
8596
8597 static void
8598 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8599 exec_list *instructions)
8600 {
8601 bool gl_FragColor_assigned = false;
8602 bool gl_FragData_assigned = false;
8603 bool gl_FragSecondaryColor_assigned = false;
8604 bool gl_FragSecondaryData_assigned = false;
8605 bool user_defined_fs_output_assigned = false;
8606 ir_variable *user_defined_fs_output = NULL;
8607
8608 /* It would be nice to have proper location information. */
8609 YYLTYPE loc;
8610 memset(&loc, 0, sizeof(loc));
8611
8612 foreach_in_list(ir_instruction, node, instructions) {
8613 ir_variable *var = node->as_variable();
8614
8615 if (!var || !var->data.assigned)
8616 continue;
8617
8618 if (strcmp(var->name, "gl_FragColor") == 0)
8619 gl_FragColor_assigned = true;
8620 else if (strcmp(var->name, "gl_FragData") == 0)
8621 gl_FragData_assigned = true;
8622 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8623 gl_FragSecondaryColor_assigned = true;
8624 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8625 gl_FragSecondaryData_assigned = true;
8626 else if (!is_gl_identifier(var->name)) {
8627 if (state->stage == MESA_SHADER_FRAGMENT &&
8628 var->data.mode == ir_var_shader_out) {
8629 user_defined_fs_output_assigned = true;
8630 user_defined_fs_output = var;
8631 }
8632 }
8633 }
8634
8635 /* From the GLSL 1.30 spec:
8636 *
8637 * "If a shader statically assigns a value to gl_FragColor, it
8638 * may not assign a value to any element of gl_FragData. If a
8639 * shader statically writes a value to any element of
8640 * gl_FragData, it may not assign a value to
8641 * gl_FragColor. That is, a shader may assign values to either
8642 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8643 * linked together must also consistently write just one of
8644 * these variables. Similarly, if user declared output
8645 * variables are in use (statically assigned to), then the
8646 * built-in variables gl_FragColor and gl_FragData may not be
8647 * assigned to. These incorrect usages all generate compile
8648 * time errors."
8649 */
8650 if (gl_FragColor_assigned && gl_FragData_assigned) {
8651 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8652 "`gl_FragColor' and `gl_FragData'");
8653 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8654 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8655 "`gl_FragColor' and `%s'",
8656 user_defined_fs_output->name);
8657 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8658 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8659 "`gl_FragSecondaryColorEXT' and"
8660 " `gl_FragSecondaryDataEXT'");
8661 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8662 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8663 "`gl_FragColor' and"
8664 " `gl_FragSecondaryDataEXT'");
8665 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8666 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8667 "`gl_FragData' and"
8668 " `gl_FragSecondaryColorEXT'");
8669 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8670 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8671 "`gl_FragData' and `%s'",
8672 user_defined_fs_output->name);
8673 }
8674
8675 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8676 !state->EXT_blend_func_extended_enable) {
8677 _mesa_glsl_error(&loc, state,
8678 "Dual source blending requires EXT_blend_func_extended");
8679 }
8680 }
8681
8682 static void
8683 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8684 {
8685 YYLTYPE loc;
8686 memset(&loc, 0, sizeof(loc));
8687
8688 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8689 *
8690 * "A program will fail to compile or link if any shader
8691 * or stage contains two or more functions with the same
8692 * name if the name is associated with a subroutine type."
8693 */
8694
8695 for (int i = 0; i < state->num_subroutines; i++) {
8696 unsigned definitions = 0;
8697 ir_function *fn = state->subroutines[i];
8698 /* Calculate number of function definitions with the same name */
8699 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8700 if (sig->is_defined) {
8701 if (++definitions > 1) {
8702 _mesa_glsl_error(&loc, state,
8703 "%s shader contains two or more function "
8704 "definitions with name `%s', which is "
8705 "associated with a subroutine type.\n",
8706 _mesa_shader_stage_to_string(state->stage),
8707 fn->name);
8708 return;
8709 }
8710 }
8711 }
8712 }
8713 }
8714
8715 static void
8716 remove_per_vertex_blocks(exec_list *instructions,
8717 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8718 {
8719 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8720 * if it exists in this shader type.
8721 */
8722 const glsl_type *per_vertex = NULL;
8723 switch (mode) {
8724 case ir_var_shader_in:
8725 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8726 per_vertex = gl_in->get_interface_type();
8727 break;
8728 case ir_var_shader_out:
8729 if (ir_variable *gl_Position =
8730 state->symbols->get_variable("gl_Position")) {
8731 per_vertex = gl_Position->get_interface_type();
8732 }
8733 break;
8734 default:
8735 assert(!"Unexpected mode");
8736 break;
8737 }
8738
8739 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8740 * need to do anything.
8741 */
8742 if (per_vertex == NULL)
8743 return;
8744
8745 /* If the interface block is used by the shader, then we don't need to do
8746 * anything.
8747 */
8748 interface_block_usage_visitor v(mode, per_vertex);
8749 v.run(instructions);
8750 if (v.usage_found())
8751 return;
8752
8753 /* Remove any ir_variable declarations that refer to the interface block
8754 * we're removing.
8755 */
8756 foreach_in_list_safe(ir_instruction, node, instructions) {
8757 ir_variable *const var = node->as_variable();
8758 if (var != NULL && var->get_interface_type() == per_vertex &&
8759 var->data.mode == mode) {
8760 state->symbols->disable_variable(var->name);
8761 var->remove();
8762 }
8763 }
8764 }
8765
8766 ir_rvalue *
8767 ast_warnings_toggle::hir(exec_list *,
8768 struct _mesa_glsl_parse_state *state)
8769 {
8770 state->warnings_enabled = enable;
8771 return NULL;
8772 }