Merge commit mesa-public/master into vulkan
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "program/hash_table.h"
57 #include "main/shaderobj.h"
58 #include "ir.h"
59 #include "ir_builder.h"
60
61 using namespace ir_builder;
62
63 static void
64 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
65 exec_list *instructions);
66 static void
67 remove_per_vertex_blocks(exec_list *instructions,
68 _mesa_glsl_parse_state *state, ir_variable_mode mode);
69
70 /**
71 * Visitor class that finds the first instance of any write-only variable that
72 * is ever read, if any
73 */
74 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
75 {
76 public:
77 read_from_write_only_variable_visitor() : found(NULL)
78 {
79 }
80
81 virtual ir_visitor_status visit(ir_dereference_variable *ir)
82 {
83 if (this->in_assignee)
84 return visit_continue;
85
86 ir_variable *var = ir->variable_referenced();
87 /* We can have image_write_only set on both images and buffer variables,
88 * but in the former there is a distinction between reads from
89 * the variable itself (write_only) and from the memory they point to
90 * (image_write_only), while in the case of buffer variables there is
91 * no such distinction, that is why this check here is limited to
92 * buffer variables alone.
93 */
94 if (!var || var->data.mode != ir_var_shader_storage)
95 return visit_continue;
96
97 if (var->data.image_write_only) {
98 found = var;
99 return visit_stop;
100 }
101
102 return visit_continue;
103 }
104
105 ir_variable *get_variable() {
106 return found;
107 }
108
109 virtual ir_visitor_status visit_enter(ir_expression *ir)
110 {
111 /* .length() doesn't actually read anything */
112 if (ir->operation == ir_unop_ssbo_unsized_array_length)
113 return visit_continue_with_parent;
114
115 return visit_continue;
116 }
117
118 private:
119 ir_variable *found;
120 };
121
122 void
123 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
124 {
125 _mesa_glsl_initialize_variables(instructions, state);
126
127 state->symbols->separate_function_namespace = state->language_version == 110;
128
129 state->current_function = NULL;
130
131 state->toplevel_ir = instructions;
132
133 state->gs_input_prim_type_specified = false;
134 state->tcs_output_vertices_specified = false;
135 state->cs_input_local_size_specified = false;
136
137 /* Section 4.2 of the GLSL 1.20 specification states:
138 * "The built-in functions are scoped in a scope outside the global scope
139 * users declare global variables in. That is, a shader's global scope,
140 * available for user-defined functions and global variables, is nested
141 * inside the scope containing the built-in functions."
142 *
143 * Since built-in functions like ftransform() access built-in variables,
144 * it follows that those must be in the outer scope as well.
145 *
146 * We push scope here to create this nesting effect...but don't pop.
147 * This way, a shader's globals are still in the symbol table for use
148 * by the linker.
149 */
150 state->symbols->push_scope();
151
152 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
153 ast->hir(instructions, state);
154
155 detect_recursion_unlinked(state, instructions);
156 detect_conflicting_assignments(state, instructions);
157
158 state->toplevel_ir = NULL;
159
160 /* Move all of the variable declarations to the front of the IR list, and
161 * reverse the order. This has the (intended!) side effect that vertex
162 * shader inputs and fragment shader outputs will appear in the IR in the
163 * same order that they appeared in the shader code. This results in the
164 * locations being assigned in the declared order. Many (arguably buggy)
165 * applications depend on this behavior, and it matches what nearly all
166 * other drivers do.
167 */
168 foreach_in_list_safe(ir_instruction, node, instructions) {
169 ir_variable *const var = node->as_variable();
170
171 if (var == NULL)
172 continue;
173
174 var->remove();
175 instructions->push_head(var);
176 }
177
178 /* Figure out if gl_FragCoord is actually used in fragment shader */
179 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
180 if (var != NULL)
181 state->fs_uses_gl_fragcoord = var->data.used;
182
183 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
184 *
185 * If multiple shaders using members of a built-in block belonging to
186 * the same interface are linked together in the same program, they
187 * must all redeclare the built-in block in the same way, as described
188 * in section 4.3.7 "Interface Blocks" for interface block matching, or
189 * a link error will result.
190 *
191 * The phrase "using members of a built-in block" implies that if two
192 * shaders are linked together and one of them *does not use* any members
193 * of the built-in block, then that shader does not need to have a matching
194 * redeclaration of the built-in block.
195 *
196 * This appears to be a clarification to the behaviour established for
197 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
198 * version.
199 *
200 * The definition of "interface" in section 4.3.7 that applies here is as
201 * follows:
202 *
203 * The boundary between adjacent programmable pipeline stages: This
204 * spans all the outputs in all compilation units of the first stage
205 * and all the inputs in all compilation units of the second stage.
206 *
207 * Therefore this rule applies to both inter- and intra-stage linking.
208 *
209 * The easiest way to implement this is to check whether the shader uses
210 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
211 * remove all the relevant variable declaration from the IR, so that the
212 * linker won't see them and complain about mismatches.
213 */
214 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
215 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
216
217 /* Check that we don't have reads from write-only variables */
218 read_from_write_only_variable_visitor v;
219 v.run(instructions);
220 ir_variable *error_var = v.get_variable();
221 if (error_var) {
222 /* It would be nice to have proper location information, but for that
223 * we would need to check this as we process each kind of AST node
224 */
225 YYLTYPE loc;
226 memset(&loc, 0, sizeof(loc));
227 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
228 error_var->name);
229 }
230 }
231
232
233 static ir_expression_operation
234 get_conversion_operation(const glsl_type *to, const glsl_type *from,
235 struct _mesa_glsl_parse_state *state)
236 {
237 switch (to->base_type) {
238 case GLSL_TYPE_FLOAT:
239 switch (from->base_type) {
240 case GLSL_TYPE_INT: return ir_unop_i2f;
241 case GLSL_TYPE_UINT: return ir_unop_u2f;
242 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
243 default: return (ir_expression_operation)0;
244 }
245
246 case GLSL_TYPE_UINT:
247 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
248 return (ir_expression_operation)0;
249 switch (from->base_type) {
250 case GLSL_TYPE_INT: return ir_unop_i2u;
251 default: return (ir_expression_operation)0;
252 }
253
254 case GLSL_TYPE_DOUBLE:
255 if (!state->has_double())
256 return (ir_expression_operation)0;
257 switch (from->base_type) {
258 case GLSL_TYPE_INT: return ir_unop_i2d;
259 case GLSL_TYPE_UINT: return ir_unop_u2d;
260 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
261 default: return (ir_expression_operation)0;
262 }
263
264 default: return (ir_expression_operation)0;
265 }
266 }
267
268
269 /**
270 * If a conversion is available, convert one operand to a different type
271 *
272 * The \c from \c ir_rvalue is converted "in place".
273 *
274 * \param to Type that the operand it to be converted to
275 * \param from Operand that is being converted
276 * \param state GLSL compiler state
277 *
278 * \return
279 * If a conversion is possible (or unnecessary), \c true is returned.
280 * Otherwise \c false is returned.
281 */
282 bool
283 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 if (to->base_type == from->type->base_type)
288 return true;
289
290 /* Prior to GLSL 1.20, there are no implicit conversions */
291 if (!state->is_version(120, 0))
292 return false;
293
294 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
295 *
296 * "There are no implicit array or structure conversions. For
297 * example, an array of int cannot be implicitly converted to an
298 * array of float.
299 */
300 if (!to->is_numeric() || !from->type->is_numeric())
301 return false;
302
303 /* We don't actually want the specific type `to`, we want a type
304 * with the same base type as `to`, but the same vector width as
305 * `from`.
306 */
307 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
308 from->type->matrix_columns);
309
310 ir_expression_operation op = get_conversion_operation(to, from->type, state);
311 if (op) {
312 from = new(ctx) ir_expression(op, to, from, NULL);
313 return true;
314 } else {
315 return false;
316 }
317 }
318
319
320 static const struct glsl_type *
321 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
322 bool multiply,
323 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
324 {
325 const glsl_type *type_a = value_a->type;
326 const glsl_type *type_b = value_b->type;
327
328 /* From GLSL 1.50 spec, page 56:
329 *
330 * "The arithmetic binary operators add (+), subtract (-),
331 * multiply (*), and divide (/) operate on integer and
332 * floating-point scalars, vectors, and matrices."
333 */
334 if (!type_a->is_numeric() || !type_b->is_numeric()) {
335 _mesa_glsl_error(loc, state,
336 "operands to arithmetic operators must be numeric");
337 return glsl_type::error_type;
338 }
339
340
341 /* "If one operand is floating-point based and the other is
342 * not, then the conversions from Section 4.1.10 "Implicit
343 * Conversions" are applied to the non-floating-point-based operand."
344 */
345 if (!apply_implicit_conversion(type_a, value_b, state)
346 && !apply_implicit_conversion(type_b, value_a, state)) {
347 _mesa_glsl_error(loc, state,
348 "could not implicitly convert operands to "
349 "arithmetic operator");
350 return glsl_type::error_type;
351 }
352 type_a = value_a->type;
353 type_b = value_b->type;
354
355 /* "If the operands are integer types, they must both be signed or
356 * both be unsigned."
357 *
358 * From this rule and the preceeding conversion it can be inferred that
359 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
360 * The is_numeric check above already filtered out the case where either
361 * type is not one of these, so now the base types need only be tested for
362 * equality.
363 */
364 if (type_a->base_type != type_b->base_type) {
365 _mesa_glsl_error(loc, state,
366 "base type mismatch for arithmetic operator");
367 return glsl_type::error_type;
368 }
369
370 /* "All arithmetic binary operators result in the same fundamental type
371 * (signed integer, unsigned integer, or floating-point) as the
372 * operands they operate on, after operand type conversion. After
373 * conversion, the following cases are valid
374 *
375 * * The two operands are scalars. In this case the operation is
376 * applied, resulting in a scalar."
377 */
378 if (type_a->is_scalar() && type_b->is_scalar())
379 return type_a;
380
381 /* "* One operand is a scalar, and the other is a vector or matrix.
382 * In this case, the scalar operation is applied independently to each
383 * component of the vector or matrix, resulting in the same size
384 * vector or matrix."
385 */
386 if (type_a->is_scalar()) {
387 if (!type_b->is_scalar())
388 return type_b;
389 } else if (type_b->is_scalar()) {
390 return type_a;
391 }
392
393 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
394 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
395 * handled.
396 */
397 assert(!type_a->is_scalar());
398 assert(!type_b->is_scalar());
399
400 /* "* The two operands are vectors of the same size. In this case, the
401 * operation is done component-wise resulting in the same size
402 * vector."
403 */
404 if (type_a->is_vector() && type_b->is_vector()) {
405 if (type_a == type_b) {
406 return type_a;
407 } else {
408 _mesa_glsl_error(loc, state,
409 "vector size mismatch for arithmetic operator");
410 return glsl_type::error_type;
411 }
412 }
413
414 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
415 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
416 * <vector, vector> have been handled. At least one of the operands must
417 * be matrix. Further, since there are no integer matrix types, the base
418 * type of both operands must be float.
419 */
420 assert(type_a->is_matrix() || type_b->is_matrix());
421 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
422 type_a->base_type == GLSL_TYPE_DOUBLE);
423 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
424 type_b->base_type == GLSL_TYPE_DOUBLE);
425
426 /* "* The operator is add (+), subtract (-), or divide (/), and the
427 * operands are matrices with the same number of rows and the same
428 * number of columns. In this case, the operation is done component-
429 * wise resulting in the same size matrix."
430 * * The operator is multiply (*), where both operands are matrices or
431 * one operand is a vector and the other a matrix. A right vector
432 * operand is treated as a column vector and a left vector operand as a
433 * row vector. In all these cases, it is required that the number of
434 * columns of the left operand is equal to the number of rows of the
435 * right operand. Then, the multiply (*) operation does a linear
436 * algebraic multiply, yielding an object that has the same number of
437 * rows as the left operand and the same number of columns as the right
438 * operand. Section 5.10 "Vector and Matrix Operations" explains in
439 * more detail how vectors and matrices are operated on."
440 */
441 if (! multiply) {
442 if (type_a == type_b)
443 return type_a;
444 } else {
445 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
446
447 if (type == glsl_type::error_type) {
448 _mesa_glsl_error(loc, state,
449 "size mismatch for matrix multiplication");
450 }
451
452 return type;
453 }
454
455
456 /* "All other cases are illegal."
457 */
458 _mesa_glsl_error(loc, state, "type mismatch");
459 return glsl_type::error_type;
460 }
461
462
463 static const struct glsl_type *
464 unary_arithmetic_result_type(const struct glsl_type *type,
465 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
466 {
467 /* From GLSL 1.50 spec, page 57:
468 *
469 * "The arithmetic unary operators negate (-), post- and pre-increment
470 * and decrement (-- and ++) operate on integer or floating-point
471 * values (including vectors and matrices). All unary operators work
472 * component-wise on their operands. These result with the same type
473 * they operated on."
474 */
475 if (!type->is_numeric()) {
476 _mesa_glsl_error(loc, state,
477 "operands to arithmetic operators must be numeric");
478 return glsl_type::error_type;
479 }
480
481 return type;
482 }
483
484 /**
485 * \brief Return the result type of a bit-logic operation.
486 *
487 * If the given types to the bit-logic operator are invalid, return
488 * glsl_type::error_type.
489 *
490 * \param value_a LHS of bit-logic op
491 * \param value_b RHS of bit-logic op
492 */
493 static const struct glsl_type *
494 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
495 ast_operators op,
496 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
497 {
498 const glsl_type *type_a = value_a->type;
499 const glsl_type *type_b = value_b->type;
500
501 if (!state->check_bitwise_operations_allowed(loc)) {
502 return glsl_type::error_type;
503 }
504
505 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
506 *
507 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
508 * (|). The operands must be of type signed or unsigned integers or
509 * integer vectors."
510 */
511 if (!type_a->is_integer()) {
512 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
513 ast_expression::operator_string(op));
514 return glsl_type::error_type;
515 }
516 if (!type_b->is_integer()) {
517 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
518 ast_expression::operator_string(op));
519 return glsl_type::error_type;
520 }
521
522 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
523 * make sense for bitwise operations, as they don't operate on floats.
524 *
525 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
526 * here. It wasn't clear whether or not we should apply them to bitwise
527 * operations. However, Khronos has decided that they should in future
528 * language revisions. Applications also rely on this behavior. We opt
529 * to apply them in general, but issue a portability warning.
530 *
531 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
532 */
533 if (type_a->base_type != type_b->base_type) {
534 if (!apply_implicit_conversion(type_a, value_b, state)
535 && !apply_implicit_conversion(type_b, value_a, state)) {
536 _mesa_glsl_error(loc, state,
537 "could not implicitly convert operands to "
538 "`%s` operator",
539 ast_expression::operator_string(op));
540 return glsl_type::error_type;
541 } else {
542 _mesa_glsl_warning(loc, state,
543 "some implementations may not support implicit "
544 "int -> uint conversions for `%s' operators; "
545 "consider casting explicitly for portability",
546 ast_expression::operator_string(op));
547 }
548 type_a = value_a->type;
549 type_b = value_b->type;
550 }
551
552 /* "The fundamental types of the operands (signed or unsigned) must
553 * match,"
554 */
555 if (type_a->base_type != type_b->base_type) {
556 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
557 "base type", ast_expression::operator_string(op));
558 return glsl_type::error_type;
559 }
560
561 /* "The operands cannot be vectors of differing size." */
562 if (type_a->is_vector() &&
563 type_b->is_vector() &&
564 type_a->vector_elements != type_b->vector_elements) {
565 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
566 "different sizes", ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* "If one operand is a scalar and the other a vector, the scalar is
571 * applied component-wise to the vector, resulting in the same type as
572 * the vector. The fundamental types of the operands [...] will be the
573 * resulting fundamental type."
574 */
575 if (type_a->is_scalar())
576 return type_b;
577 else
578 return type_a;
579 }
580
581 static const struct glsl_type *
582 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
583 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
584 {
585 const glsl_type *type_a = value_a->type;
586 const glsl_type *type_b = value_b->type;
587
588 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
589 return glsl_type::error_type;
590 }
591
592 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
593 *
594 * "The operator modulus (%) operates on signed or unsigned integers or
595 * integer vectors."
596 */
597 if (!type_a->is_integer()) {
598 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
599 return glsl_type::error_type;
600 }
601 if (!type_b->is_integer()) {
602 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
603 return glsl_type::error_type;
604 }
605
606 /* "If the fundamental types in the operands do not match, then the
607 * conversions from section 4.1.10 "Implicit Conversions" are applied
608 * to create matching types."
609 *
610 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
611 * int -> uint conversion rules. Prior to that, there were no implicit
612 * conversions. So it's harmless to apply them universally - no implicit
613 * conversions will exist. If the types don't match, we'll receive false,
614 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
615 *
616 * "The operand types must both be signed or unsigned."
617 */
618 if (!apply_implicit_conversion(type_a, value_b, state) &&
619 !apply_implicit_conversion(type_b, value_a, state)) {
620 _mesa_glsl_error(loc, state,
621 "could not implicitly convert operands to "
622 "modulus (%%) operator");
623 return glsl_type::error_type;
624 }
625 type_a = value_a->type;
626 type_b = value_b->type;
627
628 /* "The operands cannot be vectors of differing size. If one operand is
629 * a scalar and the other vector, then the scalar is applied component-
630 * wise to the vector, resulting in the same type as the vector. If both
631 * are vectors of the same size, the result is computed component-wise."
632 */
633 if (type_a->is_vector()) {
634 if (!type_b->is_vector()
635 || (type_a->vector_elements == type_b->vector_elements))
636 return type_a;
637 } else
638 return type_b;
639
640 /* "The operator modulus (%) is not defined for any other data types
641 * (non-integer types)."
642 */
643 _mesa_glsl_error(loc, state, "type mismatch");
644 return glsl_type::error_type;
645 }
646
647
648 static const struct glsl_type *
649 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
650 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
651 {
652 const glsl_type *type_a = value_a->type;
653 const glsl_type *type_b = value_b->type;
654
655 /* From GLSL 1.50 spec, page 56:
656 * "The relational operators greater than (>), less than (<), greater
657 * than or equal (>=), and less than or equal (<=) operate only on
658 * scalar integer and scalar floating-point expressions."
659 */
660 if (!type_a->is_numeric()
661 || !type_b->is_numeric()
662 || !type_a->is_scalar()
663 || !type_b->is_scalar()) {
664 _mesa_glsl_error(loc, state,
665 "operands to relational operators must be scalar and "
666 "numeric");
667 return glsl_type::error_type;
668 }
669
670 /* "Either the operands' types must match, or the conversions from
671 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
672 * operand, after which the types must match."
673 */
674 if (!apply_implicit_conversion(type_a, value_b, state)
675 && !apply_implicit_conversion(type_b, value_a, state)) {
676 _mesa_glsl_error(loc, state,
677 "could not implicitly convert operands to "
678 "relational operator");
679 return glsl_type::error_type;
680 }
681 type_a = value_a->type;
682 type_b = value_b->type;
683
684 if (type_a->base_type != type_b->base_type) {
685 _mesa_glsl_error(loc, state, "base type mismatch");
686 return glsl_type::error_type;
687 }
688
689 /* "The result is scalar Boolean."
690 */
691 return glsl_type::bool_type;
692 }
693
694 /**
695 * \brief Return the result type of a bit-shift operation.
696 *
697 * If the given types to the bit-shift operator are invalid, return
698 * glsl_type::error_type.
699 *
700 * \param type_a Type of LHS of bit-shift op
701 * \param type_b Type of RHS of bit-shift op
702 */
703 static const struct glsl_type *
704 shift_result_type(const struct glsl_type *type_a,
705 const struct glsl_type *type_b,
706 ast_operators op,
707 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
708 {
709 if (!state->check_bitwise_operations_allowed(loc)) {
710 return glsl_type::error_type;
711 }
712
713 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
714 *
715 * "The shift operators (<<) and (>>). For both operators, the operands
716 * must be signed or unsigned integers or integer vectors. One operand
717 * can be signed while the other is unsigned."
718 */
719 if (!type_a->is_integer()) {
720 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
721 "integer vector", ast_expression::operator_string(op));
722 return glsl_type::error_type;
723
724 }
725 if (!type_b->is_integer()) {
726 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
727 "integer vector", ast_expression::operator_string(op));
728 return glsl_type::error_type;
729 }
730
731 /* "If the first operand is a scalar, the second operand has to be
732 * a scalar as well."
733 */
734 if (type_a->is_scalar() && !type_b->is_scalar()) {
735 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
736 "second must be scalar as well",
737 ast_expression::operator_string(op));
738 return glsl_type::error_type;
739 }
740
741 /* If both operands are vectors, check that they have same number of
742 * elements.
743 */
744 if (type_a->is_vector() &&
745 type_b->is_vector() &&
746 type_a->vector_elements != type_b->vector_elements) {
747 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
748 "have same number of elements",
749 ast_expression::operator_string(op));
750 return glsl_type::error_type;
751 }
752
753 /* "In all cases, the resulting type will be the same type as the left
754 * operand."
755 */
756 return type_a;
757 }
758
759 /**
760 * Returns the innermost array index expression in an rvalue tree.
761 * This is the largest indexing level -- if an array of blocks, then
762 * it is the block index rather than an indexing expression for an
763 * array-typed member of an array of blocks.
764 */
765 static ir_rvalue *
766 find_innermost_array_index(ir_rvalue *rv)
767 {
768 ir_dereference_array *last = NULL;
769 while (rv) {
770 if (rv->as_dereference_array()) {
771 last = rv->as_dereference_array();
772 rv = last->array;
773 } else if (rv->as_dereference_record())
774 rv = rv->as_dereference_record()->record;
775 else if (rv->as_swizzle())
776 rv = rv->as_swizzle()->val;
777 else
778 rv = NULL;
779 }
780
781 if (last)
782 return last->array_index;
783
784 return NULL;
785 }
786
787 /**
788 * Validates that a value can be assigned to a location with a specified type
789 *
790 * Validates that \c rhs can be assigned to some location. If the types are
791 * not an exact match but an automatic conversion is possible, \c rhs will be
792 * converted.
793 *
794 * \return
795 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
796 * Otherwise the actual RHS to be assigned will be returned. This may be
797 * \c rhs, or it may be \c rhs after some type conversion.
798 *
799 * \note
800 * In addition to being used for assignments, this function is used to
801 * type-check return values.
802 */
803 static ir_rvalue *
804 validate_assignment(struct _mesa_glsl_parse_state *state,
805 YYLTYPE loc, ir_rvalue *lhs,
806 ir_rvalue *rhs, bool is_initializer)
807 {
808 /* If there is already some error in the RHS, just return it. Anything
809 * else will lead to an avalanche of error message back to the user.
810 */
811 if (rhs->type->is_error())
812 return rhs;
813
814 /* In the Tessellation Control Shader:
815 * If a per-vertex output variable is used as an l-value, it is an error
816 * if the expression indicating the vertex number is not the identifier
817 * `gl_InvocationID`.
818 */
819 if (state->stage == MESA_SHADER_TESS_CTRL) {
820 ir_variable *var = lhs->variable_referenced();
821 if (var->data.mode == ir_var_shader_out && !var->data.patch) {
822 ir_rvalue *index = find_innermost_array_index(lhs);
823 ir_variable *index_var = index ? index->variable_referenced() : NULL;
824 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
825 _mesa_glsl_error(&loc, state,
826 "Tessellation control shader outputs can only "
827 "be indexed by gl_InvocationID");
828 return NULL;
829 }
830 }
831 }
832
833 /* If the types are identical, the assignment can trivially proceed.
834 */
835 if (rhs->type == lhs->type)
836 return rhs;
837
838 /* If the array element types are the same and the LHS is unsized,
839 * the assignment is okay for initializers embedded in variable
840 * declarations.
841 *
842 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
843 * is handled by ir_dereference::is_lvalue.
844 */
845 const glsl_type *lhs_t = lhs->type;
846 const glsl_type *rhs_t = rhs->type;
847 bool unsized_array = false;
848 while(lhs_t->is_array()) {
849 if (rhs_t == lhs_t)
850 break; /* the rest of the inner arrays match so break out early */
851 if (!rhs_t->is_array()) {
852 unsized_array = false;
853 break; /* number of dimensions mismatch */
854 }
855 if (lhs_t->length == rhs_t->length) {
856 lhs_t = lhs_t->fields.array;
857 rhs_t = rhs_t->fields.array;
858 continue;
859 } else if (lhs_t->is_unsized_array()) {
860 unsized_array = true;
861 } else {
862 unsized_array = false;
863 break; /* sized array mismatch */
864 }
865 lhs_t = lhs_t->fields.array;
866 rhs_t = rhs_t->fields.array;
867 }
868 if (unsized_array) {
869 if (is_initializer) {
870 return rhs;
871 } else {
872 _mesa_glsl_error(&loc, state,
873 "implicitly sized arrays cannot be assigned");
874 return NULL;
875 }
876 }
877
878 /* Check for implicit conversion in GLSL 1.20 */
879 if (apply_implicit_conversion(lhs->type, rhs, state)) {
880 if (rhs->type == lhs->type)
881 return rhs;
882 }
883
884 _mesa_glsl_error(&loc, state,
885 "%s of type %s cannot be assigned to "
886 "variable of type %s",
887 is_initializer ? "initializer" : "value",
888 rhs->type->name, lhs->type->name);
889
890 return NULL;
891 }
892
893 static void
894 mark_whole_array_access(ir_rvalue *access)
895 {
896 ir_dereference_variable *deref = access->as_dereference_variable();
897
898 if (deref && deref->var) {
899 deref->var->data.max_array_access = deref->type->length - 1;
900 }
901 }
902
903 static bool
904 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
905 const char *non_lvalue_description,
906 ir_rvalue *lhs, ir_rvalue *rhs,
907 ir_rvalue **out_rvalue, bool needs_rvalue,
908 bool is_initializer,
909 YYLTYPE lhs_loc)
910 {
911 void *ctx = state;
912 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
913
914 ir_variable *lhs_var = lhs->variable_referenced();
915 if (lhs_var)
916 lhs_var->data.assigned = true;
917
918 if (!error_emitted) {
919 if (non_lvalue_description != NULL) {
920 _mesa_glsl_error(&lhs_loc, state,
921 "assignment to %s",
922 non_lvalue_description);
923 error_emitted = true;
924 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
925 (lhs_var->data.mode == ir_var_shader_storage &&
926 lhs_var->data.image_read_only))) {
927 /* We can have image_read_only set on both images and buffer variables,
928 * but in the former there is a distinction between assignments to
929 * the variable itself (read_only) and to the memory they point to
930 * (image_read_only), while in the case of buffer variables there is
931 * no such distinction, that is why this check here is limited to
932 * buffer variables alone.
933 */
934 _mesa_glsl_error(&lhs_loc, state,
935 "assignment to read-only variable '%s'",
936 lhs_var->name);
937 error_emitted = true;
938 } else if (lhs->type->is_array() &&
939 !state->check_version(120, 300, &lhs_loc,
940 "whole array assignment forbidden")) {
941 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
942 *
943 * "Other binary or unary expressions, non-dereferenced
944 * arrays, function names, swizzles with repeated fields,
945 * and constants cannot be l-values."
946 *
947 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
948 */
949 error_emitted = true;
950 } else if (!lhs->is_lvalue()) {
951 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
952 error_emitted = true;
953 }
954 }
955
956 ir_rvalue *new_rhs =
957 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
958 if (new_rhs != NULL) {
959 rhs = new_rhs;
960
961 /* If the LHS array was not declared with a size, it takes it size from
962 * the RHS. If the LHS is an l-value and a whole array, it must be a
963 * dereference of a variable. Any other case would require that the LHS
964 * is either not an l-value or not a whole array.
965 */
966 if (lhs->type->is_unsized_array()) {
967 ir_dereference *const d = lhs->as_dereference();
968
969 assert(d != NULL);
970
971 ir_variable *const var = d->variable_referenced();
972
973 assert(var != NULL);
974
975 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
976 /* FINISHME: This should actually log the location of the RHS. */
977 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
978 "previous access",
979 var->data.max_array_access);
980 }
981
982 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
983 rhs->type->array_size());
984 d->type = var->type;
985 }
986 if (lhs->type->is_array()) {
987 mark_whole_array_access(rhs);
988 mark_whole_array_access(lhs);
989 }
990 }
991
992 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
993 * but not post_inc) need the converted assigned value as an rvalue
994 * to handle things like:
995 *
996 * i = j += 1;
997 */
998 if (needs_rvalue) {
999 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1000 ir_var_temporary);
1001 instructions->push_tail(var);
1002 instructions->push_tail(assign(var, rhs));
1003
1004 if (!error_emitted) {
1005 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
1006 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1007 }
1008 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
1009
1010 *out_rvalue = rvalue;
1011 } else {
1012 if (!error_emitted)
1013 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1014 *out_rvalue = NULL;
1015 }
1016
1017 return error_emitted;
1018 }
1019
1020 static ir_rvalue *
1021 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1022 {
1023 void *ctx = ralloc_parent(lvalue);
1024 ir_variable *var;
1025
1026 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1027 ir_var_temporary);
1028 instructions->push_tail(var);
1029
1030 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1031 lvalue));
1032
1033 return new(ctx) ir_dereference_variable(var);
1034 }
1035
1036
1037 ir_rvalue *
1038 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1039 {
1040 (void) instructions;
1041 (void) state;
1042
1043 return NULL;
1044 }
1045
1046 bool
1047 ast_node::has_sequence_subexpression() const
1048 {
1049 return false;
1050 }
1051
1052 void
1053 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1054 struct _mesa_glsl_parse_state *state)
1055 {
1056 (void)hir(instructions, state);
1057 }
1058
1059 void
1060 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1061 struct _mesa_glsl_parse_state *state)
1062 {
1063 (void)hir(instructions, state);
1064 }
1065
1066 static ir_rvalue *
1067 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1068 {
1069 int join_op;
1070 ir_rvalue *cmp = NULL;
1071
1072 if (operation == ir_binop_all_equal)
1073 join_op = ir_binop_logic_and;
1074 else
1075 join_op = ir_binop_logic_or;
1076
1077 switch (op0->type->base_type) {
1078 case GLSL_TYPE_FLOAT:
1079 case GLSL_TYPE_UINT:
1080 case GLSL_TYPE_INT:
1081 case GLSL_TYPE_BOOL:
1082 case GLSL_TYPE_DOUBLE:
1083 return new(mem_ctx) ir_expression(operation, op0, op1);
1084
1085 case GLSL_TYPE_ARRAY: {
1086 for (unsigned int i = 0; i < op0->type->length; i++) {
1087 ir_rvalue *e0, *e1, *result;
1088
1089 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1090 new(mem_ctx) ir_constant(i));
1091 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1092 new(mem_ctx) ir_constant(i));
1093 result = do_comparison(mem_ctx, operation, e0, e1);
1094
1095 if (cmp) {
1096 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1097 } else {
1098 cmp = result;
1099 }
1100 }
1101
1102 mark_whole_array_access(op0);
1103 mark_whole_array_access(op1);
1104 break;
1105 }
1106
1107 case GLSL_TYPE_STRUCT: {
1108 for (unsigned int i = 0; i < op0->type->length; i++) {
1109 ir_rvalue *e0, *e1, *result;
1110 const char *field_name = op0->type->fields.structure[i].name;
1111
1112 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1113 field_name);
1114 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1115 field_name);
1116 result = do_comparison(mem_ctx, operation, e0, e1);
1117
1118 if (cmp) {
1119 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1120 } else {
1121 cmp = result;
1122 }
1123 }
1124 break;
1125 }
1126
1127 case GLSL_TYPE_ERROR:
1128 case GLSL_TYPE_VOID:
1129 case GLSL_TYPE_SAMPLER:
1130 case GLSL_TYPE_IMAGE:
1131 case GLSL_TYPE_INTERFACE:
1132 case GLSL_TYPE_FUNCTION:
1133 case GLSL_TYPE_ATOMIC_UINT:
1134 case GLSL_TYPE_SUBROUTINE:
1135 /* I assume a comparison of a struct containing a sampler just
1136 * ignores the sampler present in the type.
1137 */
1138 break;
1139 }
1140
1141 if (cmp == NULL)
1142 cmp = new(mem_ctx) ir_constant(true);
1143
1144 return cmp;
1145 }
1146
1147 /* For logical operations, we want to ensure that the operands are
1148 * scalar booleans. If it isn't, emit an error and return a constant
1149 * boolean to avoid triggering cascading error messages.
1150 */
1151 ir_rvalue *
1152 get_scalar_boolean_operand(exec_list *instructions,
1153 struct _mesa_glsl_parse_state *state,
1154 ast_expression *parent_expr,
1155 int operand,
1156 const char *operand_name,
1157 bool *error_emitted)
1158 {
1159 ast_expression *expr = parent_expr->subexpressions[operand];
1160 void *ctx = state;
1161 ir_rvalue *val = expr->hir(instructions, state);
1162
1163 if (val->type->is_boolean() && val->type->is_scalar())
1164 return val;
1165
1166 if (!*error_emitted) {
1167 YYLTYPE loc = expr->get_location();
1168 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1169 operand_name,
1170 parent_expr->operator_string(parent_expr->oper));
1171 *error_emitted = true;
1172 }
1173
1174 return new(ctx) ir_constant(true);
1175 }
1176
1177 /**
1178 * If name refers to a builtin array whose maximum allowed size is less than
1179 * size, report an error and return true. Otherwise return false.
1180 */
1181 void
1182 check_builtin_array_max_size(const char *name, unsigned size,
1183 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1184 {
1185 if ((strcmp("gl_TexCoord", name) == 0)
1186 && (size > state->Const.MaxTextureCoords)) {
1187 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1188 *
1189 * "The size [of gl_TexCoord] can be at most
1190 * gl_MaxTextureCoords."
1191 */
1192 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1193 "be larger than gl_MaxTextureCoords (%u)",
1194 state->Const.MaxTextureCoords);
1195 } else if (strcmp("gl_ClipDistance", name) == 0
1196 && size > state->Const.MaxClipPlanes) {
1197 /* From section 7.1 (Vertex Shader Special Variables) of the
1198 * GLSL 1.30 spec:
1199 *
1200 * "The gl_ClipDistance array is predeclared as unsized and
1201 * must be sized by the shader either redeclaring it with a
1202 * size or indexing it only with integral constant
1203 * expressions. ... The size can be at most
1204 * gl_MaxClipDistances."
1205 */
1206 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1207 "be larger than gl_MaxClipDistances (%u)",
1208 state->Const.MaxClipPlanes);
1209 }
1210 }
1211
1212 /**
1213 * Create the constant 1, of a which is appropriate for incrementing and
1214 * decrementing values of the given GLSL type. For example, if type is vec4,
1215 * this creates a constant value of 1.0 having type float.
1216 *
1217 * If the given type is invalid for increment and decrement operators, return
1218 * a floating point 1--the error will be detected later.
1219 */
1220 static ir_rvalue *
1221 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1222 {
1223 switch (type->base_type) {
1224 case GLSL_TYPE_UINT:
1225 return new(ctx) ir_constant((unsigned) 1);
1226 case GLSL_TYPE_INT:
1227 return new(ctx) ir_constant(1);
1228 default:
1229 case GLSL_TYPE_FLOAT:
1230 return new(ctx) ir_constant(1.0f);
1231 }
1232 }
1233
1234 ir_rvalue *
1235 ast_expression::hir(exec_list *instructions,
1236 struct _mesa_glsl_parse_state *state)
1237 {
1238 return do_hir(instructions, state, true);
1239 }
1240
1241 void
1242 ast_expression::hir_no_rvalue(exec_list *instructions,
1243 struct _mesa_glsl_parse_state *state)
1244 {
1245 do_hir(instructions, state, false);
1246 }
1247
1248 ir_rvalue *
1249 ast_expression::do_hir(exec_list *instructions,
1250 struct _mesa_glsl_parse_state *state,
1251 bool needs_rvalue)
1252 {
1253 void *ctx = state;
1254 static const int operations[AST_NUM_OPERATORS] = {
1255 -1, /* ast_assign doesn't convert to ir_expression. */
1256 -1, /* ast_plus doesn't convert to ir_expression. */
1257 ir_unop_neg,
1258 ir_binop_add,
1259 ir_binop_sub,
1260 ir_binop_mul,
1261 ir_binop_div,
1262 ir_binop_mod,
1263 ir_binop_lshift,
1264 ir_binop_rshift,
1265 ir_binop_less,
1266 ir_binop_greater,
1267 ir_binop_lequal,
1268 ir_binop_gequal,
1269 ir_binop_all_equal,
1270 ir_binop_any_nequal,
1271 ir_binop_bit_and,
1272 ir_binop_bit_xor,
1273 ir_binop_bit_or,
1274 ir_unop_bit_not,
1275 ir_binop_logic_and,
1276 ir_binop_logic_xor,
1277 ir_binop_logic_or,
1278 ir_unop_logic_not,
1279
1280 /* Note: The following block of expression types actually convert
1281 * to multiple IR instructions.
1282 */
1283 ir_binop_mul, /* ast_mul_assign */
1284 ir_binop_div, /* ast_div_assign */
1285 ir_binop_mod, /* ast_mod_assign */
1286 ir_binop_add, /* ast_add_assign */
1287 ir_binop_sub, /* ast_sub_assign */
1288 ir_binop_lshift, /* ast_ls_assign */
1289 ir_binop_rshift, /* ast_rs_assign */
1290 ir_binop_bit_and, /* ast_and_assign */
1291 ir_binop_bit_xor, /* ast_xor_assign */
1292 ir_binop_bit_or, /* ast_or_assign */
1293
1294 -1, /* ast_conditional doesn't convert to ir_expression. */
1295 ir_binop_add, /* ast_pre_inc. */
1296 ir_binop_sub, /* ast_pre_dec. */
1297 ir_binop_add, /* ast_post_inc. */
1298 ir_binop_sub, /* ast_post_dec. */
1299 -1, /* ast_field_selection doesn't conv to ir_expression. */
1300 -1, /* ast_array_index doesn't convert to ir_expression. */
1301 -1, /* ast_function_call doesn't conv to ir_expression. */
1302 -1, /* ast_identifier doesn't convert to ir_expression. */
1303 -1, /* ast_int_constant doesn't convert to ir_expression. */
1304 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1305 -1, /* ast_float_constant doesn't conv to ir_expression. */
1306 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1307 -1, /* ast_sequence doesn't convert to ir_expression. */
1308 };
1309 ir_rvalue *result = NULL;
1310 ir_rvalue *op[3];
1311 const struct glsl_type *type; /* a temporary variable for switch cases */
1312 bool error_emitted = false;
1313 YYLTYPE loc;
1314
1315 loc = this->get_location();
1316
1317 switch (this->oper) {
1318 case ast_aggregate:
1319 assert(!"ast_aggregate: Should never get here.");
1320 break;
1321
1322 case ast_assign: {
1323 op[0] = this->subexpressions[0]->hir(instructions, state);
1324 op[1] = this->subexpressions[1]->hir(instructions, state);
1325
1326 error_emitted =
1327 do_assignment(instructions, state,
1328 this->subexpressions[0]->non_lvalue_description,
1329 op[0], op[1], &result, needs_rvalue, false,
1330 this->subexpressions[0]->get_location());
1331 break;
1332 }
1333
1334 case ast_plus:
1335 op[0] = this->subexpressions[0]->hir(instructions, state);
1336
1337 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1338
1339 error_emitted = type->is_error();
1340
1341 result = op[0];
1342 break;
1343
1344 case ast_neg:
1345 op[0] = this->subexpressions[0]->hir(instructions, state);
1346
1347 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1348
1349 error_emitted = type->is_error();
1350
1351 result = new(ctx) ir_expression(operations[this->oper], type,
1352 op[0], NULL);
1353 break;
1354
1355 case ast_add:
1356 case ast_sub:
1357 case ast_mul:
1358 case ast_div:
1359 op[0] = this->subexpressions[0]->hir(instructions, state);
1360 op[1] = this->subexpressions[1]->hir(instructions, state);
1361
1362 type = arithmetic_result_type(op[0], op[1],
1363 (this->oper == ast_mul),
1364 state, & loc);
1365 error_emitted = type->is_error();
1366
1367 result = new(ctx) ir_expression(operations[this->oper], type,
1368 op[0], op[1]);
1369 break;
1370
1371 case ast_mod:
1372 op[0] = this->subexpressions[0]->hir(instructions, state);
1373 op[1] = this->subexpressions[1]->hir(instructions, state);
1374
1375 type = modulus_result_type(op[0], op[1], state, &loc);
1376
1377 assert(operations[this->oper] == ir_binop_mod);
1378
1379 result = new(ctx) ir_expression(operations[this->oper], type,
1380 op[0], op[1]);
1381 error_emitted = type->is_error();
1382 break;
1383
1384 case ast_lshift:
1385 case ast_rshift:
1386 if (!state->check_bitwise_operations_allowed(&loc)) {
1387 error_emitted = true;
1388 }
1389
1390 op[0] = this->subexpressions[0]->hir(instructions, state);
1391 op[1] = this->subexpressions[1]->hir(instructions, state);
1392 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1393 &loc);
1394 result = new(ctx) ir_expression(operations[this->oper], type,
1395 op[0], op[1]);
1396 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1397 break;
1398
1399 case ast_less:
1400 case ast_greater:
1401 case ast_lequal:
1402 case ast_gequal:
1403 op[0] = this->subexpressions[0]->hir(instructions, state);
1404 op[1] = this->subexpressions[1]->hir(instructions, state);
1405
1406 type = relational_result_type(op[0], op[1], state, & loc);
1407
1408 /* The relational operators must either generate an error or result
1409 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1410 */
1411 assert(type->is_error()
1412 || ((type->base_type == GLSL_TYPE_BOOL)
1413 && type->is_scalar()));
1414
1415 result = new(ctx) ir_expression(operations[this->oper], type,
1416 op[0], op[1]);
1417 error_emitted = type->is_error();
1418 break;
1419
1420 case ast_nequal:
1421 case ast_equal:
1422 op[0] = this->subexpressions[0]->hir(instructions, state);
1423 op[1] = this->subexpressions[1]->hir(instructions, state);
1424
1425 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1426 *
1427 * "The equality operators equal (==), and not equal (!=)
1428 * operate on all types. They result in a scalar Boolean. If
1429 * the operand types do not match, then there must be a
1430 * conversion from Section 4.1.10 "Implicit Conversions"
1431 * applied to one operand that can make them match, in which
1432 * case this conversion is done."
1433 */
1434
1435 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1436 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1437 "no operation `%1$s' exists that takes a left-hand "
1438 "operand of type 'void' or a right operand of type "
1439 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1440 error_emitted = true;
1441 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1442 && !apply_implicit_conversion(op[1]->type, op[0], state))
1443 || (op[0]->type != op[1]->type)) {
1444 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1445 "type", (this->oper == ast_equal) ? "==" : "!=");
1446 error_emitted = true;
1447 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1448 !state->check_version(120, 300, &loc,
1449 "array comparisons forbidden")) {
1450 error_emitted = true;
1451 } else if ((op[0]->type->contains_opaque() ||
1452 op[1]->type->contains_opaque())) {
1453 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1454 error_emitted = true;
1455 }
1456
1457 if (error_emitted) {
1458 result = new(ctx) ir_constant(false);
1459 } else {
1460 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1461 assert(result->type == glsl_type::bool_type);
1462 }
1463 break;
1464
1465 case ast_bit_and:
1466 case ast_bit_xor:
1467 case ast_bit_or:
1468 op[0] = this->subexpressions[0]->hir(instructions, state);
1469 op[1] = this->subexpressions[1]->hir(instructions, state);
1470 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1471 result = new(ctx) ir_expression(operations[this->oper], type,
1472 op[0], op[1]);
1473 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1474 break;
1475
1476 case ast_bit_not:
1477 op[0] = this->subexpressions[0]->hir(instructions, state);
1478
1479 if (!state->check_bitwise_operations_allowed(&loc)) {
1480 error_emitted = true;
1481 }
1482
1483 if (!op[0]->type->is_integer()) {
1484 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1485 error_emitted = true;
1486 }
1487
1488 type = error_emitted ? glsl_type::error_type : op[0]->type;
1489 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1490 break;
1491
1492 case ast_logic_and: {
1493 exec_list rhs_instructions;
1494 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1495 "LHS", &error_emitted);
1496 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1497 "RHS", &error_emitted);
1498
1499 if (rhs_instructions.is_empty()) {
1500 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1501 type = result->type;
1502 } else {
1503 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1504 "and_tmp",
1505 ir_var_temporary);
1506 instructions->push_tail(tmp);
1507
1508 ir_if *const stmt = new(ctx) ir_if(op[0]);
1509 instructions->push_tail(stmt);
1510
1511 stmt->then_instructions.append_list(&rhs_instructions);
1512 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1513 ir_assignment *const then_assign =
1514 new(ctx) ir_assignment(then_deref, op[1]);
1515 stmt->then_instructions.push_tail(then_assign);
1516
1517 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1518 ir_assignment *const else_assign =
1519 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1520 stmt->else_instructions.push_tail(else_assign);
1521
1522 result = new(ctx) ir_dereference_variable(tmp);
1523 type = tmp->type;
1524 }
1525 break;
1526 }
1527
1528 case ast_logic_or: {
1529 exec_list rhs_instructions;
1530 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1531 "LHS", &error_emitted);
1532 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1533 "RHS", &error_emitted);
1534
1535 if (rhs_instructions.is_empty()) {
1536 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1537 type = result->type;
1538 } else {
1539 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1540 "or_tmp",
1541 ir_var_temporary);
1542 instructions->push_tail(tmp);
1543
1544 ir_if *const stmt = new(ctx) ir_if(op[0]);
1545 instructions->push_tail(stmt);
1546
1547 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1548 ir_assignment *const then_assign =
1549 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1550 stmt->then_instructions.push_tail(then_assign);
1551
1552 stmt->else_instructions.append_list(&rhs_instructions);
1553 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1554 ir_assignment *const else_assign =
1555 new(ctx) ir_assignment(else_deref, op[1]);
1556 stmt->else_instructions.push_tail(else_assign);
1557
1558 result = new(ctx) ir_dereference_variable(tmp);
1559 type = tmp->type;
1560 }
1561 break;
1562 }
1563
1564 case ast_logic_xor:
1565 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1566 *
1567 * "The logical binary operators and (&&), or ( | | ), and
1568 * exclusive or (^^). They operate only on two Boolean
1569 * expressions and result in a Boolean expression."
1570 */
1571 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1572 &error_emitted);
1573 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1574 &error_emitted);
1575
1576 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1577 op[0], op[1]);
1578 break;
1579
1580 case ast_logic_not:
1581 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1582 "operand", &error_emitted);
1583
1584 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1585 op[0], NULL);
1586 break;
1587
1588 case ast_mul_assign:
1589 case ast_div_assign:
1590 case ast_add_assign:
1591 case ast_sub_assign: {
1592 op[0] = this->subexpressions[0]->hir(instructions, state);
1593 op[1] = this->subexpressions[1]->hir(instructions, state);
1594
1595 type = arithmetic_result_type(op[0], op[1],
1596 (this->oper == ast_mul_assign),
1597 state, & loc);
1598
1599 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1600 op[0], op[1]);
1601
1602 error_emitted =
1603 do_assignment(instructions, state,
1604 this->subexpressions[0]->non_lvalue_description,
1605 op[0]->clone(ctx, NULL), temp_rhs,
1606 &result, needs_rvalue, false,
1607 this->subexpressions[0]->get_location());
1608
1609 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1610 * explicitly test for this because none of the binary expression
1611 * operators allow array operands either.
1612 */
1613
1614 break;
1615 }
1616
1617 case ast_mod_assign: {
1618 op[0] = this->subexpressions[0]->hir(instructions, state);
1619 op[1] = this->subexpressions[1]->hir(instructions, state);
1620
1621 type = modulus_result_type(op[0], op[1], state, &loc);
1622
1623 assert(operations[this->oper] == ir_binop_mod);
1624
1625 ir_rvalue *temp_rhs;
1626 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1627 op[0], op[1]);
1628
1629 error_emitted =
1630 do_assignment(instructions, state,
1631 this->subexpressions[0]->non_lvalue_description,
1632 op[0]->clone(ctx, NULL), temp_rhs,
1633 &result, needs_rvalue, false,
1634 this->subexpressions[0]->get_location());
1635 break;
1636 }
1637
1638 case ast_ls_assign:
1639 case ast_rs_assign: {
1640 op[0] = this->subexpressions[0]->hir(instructions, state);
1641 op[1] = this->subexpressions[1]->hir(instructions, state);
1642 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1643 &loc);
1644 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1645 type, op[0], op[1]);
1646 error_emitted =
1647 do_assignment(instructions, state,
1648 this->subexpressions[0]->non_lvalue_description,
1649 op[0]->clone(ctx, NULL), temp_rhs,
1650 &result, needs_rvalue, false,
1651 this->subexpressions[0]->get_location());
1652 break;
1653 }
1654
1655 case ast_and_assign:
1656 case ast_xor_assign:
1657 case ast_or_assign: {
1658 op[0] = this->subexpressions[0]->hir(instructions, state);
1659 op[1] = this->subexpressions[1]->hir(instructions, state);
1660 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1661 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1662 type, op[0], op[1]);
1663 error_emitted =
1664 do_assignment(instructions, state,
1665 this->subexpressions[0]->non_lvalue_description,
1666 op[0]->clone(ctx, NULL), temp_rhs,
1667 &result, needs_rvalue, false,
1668 this->subexpressions[0]->get_location());
1669 break;
1670 }
1671
1672 case ast_conditional: {
1673 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1674 *
1675 * "The ternary selection operator (?:). It operates on three
1676 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1677 * first expression, which must result in a scalar Boolean."
1678 */
1679 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1680 "condition", &error_emitted);
1681
1682 /* The :? operator is implemented by generating an anonymous temporary
1683 * followed by an if-statement. The last instruction in each branch of
1684 * the if-statement assigns a value to the anonymous temporary. This
1685 * temporary is the r-value of the expression.
1686 */
1687 exec_list then_instructions;
1688 exec_list else_instructions;
1689
1690 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1691 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1692
1693 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1694 *
1695 * "The second and third expressions can be any type, as
1696 * long their types match, or there is a conversion in
1697 * Section 4.1.10 "Implicit Conversions" that can be applied
1698 * to one of the expressions to make their types match. This
1699 * resulting matching type is the type of the entire
1700 * expression."
1701 */
1702 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1703 && !apply_implicit_conversion(op[2]->type, op[1], state))
1704 || (op[1]->type != op[2]->type)) {
1705 YYLTYPE loc = this->subexpressions[1]->get_location();
1706
1707 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1708 "operator must have matching types");
1709 error_emitted = true;
1710 type = glsl_type::error_type;
1711 } else {
1712 type = op[1]->type;
1713 }
1714
1715 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1716 *
1717 * "The second and third expressions must be the same type, but can
1718 * be of any type other than an array."
1719 */
1720 if (type->is_array() &&
1721 !state->check_version(120, 300, &loc,
1722 "second and third operands of ?: operator "
1723 "cannot be arrays")) {
1724 error_emitted = true;
1725 }
1726
1727 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1728 *
1729 * "Except for array indexing, structure member selection, and
1730 * parentheses, opaque variables are not allowed to be operands in
1731 * expressions; such use results in a compile-time error."
1732 */
1733 if (type->contains_opaque()) {
1734 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1735 "of the ?: operator");
1736 error_emitted = true;
1737 }
1738
1739 ir_constant *cond_val = op[0]->constant_expression_value();
1740
1741 if (then_instructions.is_empty()
1742 && else_instructions.is_empty()
1743 && cond_val != NULL) {
1744 result = cond_val->value.b[0] ? op[1] : op[2];
1745 } else {
1746 /* The copy to conditional_tmp reads the whole array. */
1747 if (type->is_array()) {
1748 mark_whole_array_access(op[1]);
1749 mark_whole_array_access(op[2]);
1750 }
1751
1752 ir_variable *const tmp =
1753 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1754 instructions->push_tail(tmp);
1755
1756 ir_if *const stmt = new(ctx) ir_if(op[0]);
1757 instructions->push_tail(stmt);
1758
1759 then_instructions.move_nodes_to(& stmt->then_instructions);
1760 ir_dereference *const then_deref =
1761 new(ctx) ir_dereference_variable(tmp);
1762 ir_assignment *const then_assign =
1763 new(ctx) ir_assignment(then_deref, op[1]);
1764 stmt->then_instructions.push_tail(then_assign);
1765
1766 else_instructions.move_nodes_to(& stmt->else_instructions);
1767 ir_dereference *const else_deref =
1768 new(ctx) ir_dereference_variable(tmp);
1769 ir_assignment *const else_assign =
1770 new(ctx) ir_assignment(else_deref, op[2]);
1771 stmt->else_instructions.push_tail(else_assign);
1772
1773 result = new(ctx) ir_dereference_variable(tmp);
1774 }
1775 break;
1776 }
1777
1778 case ast_pre_inc:
1779 case ast_pre_dec: {
1780 this->non_lvalue_description = (this->oper == ast_pre_inc)
1781 ? "pre-increment operation" : "pre-decrement operation";
1782
1783 op[0] = this->subexpressions[0]->hir(instructions, state);
1784 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1785
1786 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1787
1788 ir_rvalue *temp_rhs;
1789 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1790 op[0], op[1]);
1791
1792 error_emitted =
1793 do_assignment(instructions, state,
1794 this->subexpressions[0]->non_lvalue_description,
1795 op[0]->clone(ctx, NULL), temp_rhs,
1796 &result, needs_rvalue, false,
1797 this->subexpressions[0]->get_location());
1798 break;
1799 }
1800
1801 case ast_post_inc:
1802 case ast_post_dec: {
1803 this->non_lvalue_description = (this->oper == ast_post_inc)
1804 ? "post-increment operation" : "post-decrement operation";
1805 op[0] = this->subexpressions[0]->hir(instructions, state);
1806 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1807
1808 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1809
1810 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1811
1812 ir_rvalue *temp_rhs;
1813 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1814 op[0], op[1]);
1815
1816 /* Get a temporary of a copy of the lvalue before it's modified.
1817 * This may get thrown away later.
1818 */
1819 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1820
1821 ir_rvalue *junk_rvalue;
1822 error_emitted =
1823 do_assignment(instructions, state,
1824 this->subexpressions[0]->non_lvalue_description,
1825 op[0]->clone(ctx, NULL), temp_rhs,
1826 &junk_rvalue, false, false,
1827 this->subexpressions[0]->get_location());
1828
1829 break;
1830 }
1831
1832 case ast_field_selection:
1833 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1834 break;
1835
1836 case ast_array_index: {
1837 YYLTYPE index_loc = subexpressions[1]->get_location();
1838
1839 op[0] = subexpressions[0]->hir(instructions, state);
1840 op[1] = subexpressions[1]->hir(instructions, state);
1841
1842 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1843 loc, index_loc);
1844
1845 if (result->type->is_error())
1846 error_emitted = true;
1847
1848 break;
1849 }
1850
1851 case ast_unsized_array_dim:
1852 assert(!"ast_unsized_array_dim: Should never get here.");
1853 break;
1854
1855 case ast_function_call:
1856 /* Should *NEVER* get here. ast_function_call should always be handled
1857 * by ast_function_expression::hir.
1858 */
1859 assert(0);
1860 break;
1861
1862 case ast_identifier: {
1863 /* ast_identifier can appear several places in a full abstract syntax
1864 * tree. This particular use must be at location specified in the grammar
1865 * as 'variable_identifier'.
1866 */
1867 ir_variable *var =
1868 state->symbols->get_variable(this->primary_expression.identifier);
1869
1870 if (var != NULL) {
1871 var->data.used = true;
1872 result = new(ctx) ir_dereference_variable(var);
1873 } else {
1874 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1875 this->primary_expression.identifier);
1876
1877 result = ir_rvalue::error_value(ctx);
1878 error_emitted = true;
1879 }
1880 break;
1881 }
1882
1883 case ast_int_constant:
1884 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1885 break;
1886
1887 case ast_uint_constant:
1888 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1889 break;
1890
1891 case ast_float_constant:
1892 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1893 break;
1894
1895 case ast_bool_constant:
1896 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1897 break;
1898
1899 case ast_double_constant:
1900 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1901 break;
1902
1903 case ast_sequence: {
1904 /* It should not be possible to generate a sequence in the AST without
1905 * any expressions in it.
1906 */
1907 assert(!this->expressions.is_empty());
1908
1909 /* The r-value of a sequence is the last expression in the sequence. If
1910 * the other expressions in the sequence do not have side-effects (and
1911 * therefore add instructions to the instruction list), they get dropped
1912 * on the floor.
1913 */
1914 exec_node *previous_tail_pred = NULL;
1915 YYLTYPE previous_operand_loc = loc;
1916
1917 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1918 /* If one of the operands of comma operator does not generate any
1919 * code, we want to emit a warning. At each pass through the loop
1920 * previous_tail_pred will point to the last instruction in the
1921 * stream *before* processing the previous operand. Naturally,
1922 * instructions->tail_pred will point to the last instruction in the
1923 * stream *after* processing the previous operand. If the two
1924 * pointers match, then the previous operand had no effect.
1925 *
1926 * The warning behavior here differs slightly from GCC. GCC will
1927 * only emit a warning if none of the left-hand operands have an
1928 * effect. However, it will emit a warning for each. I believe that
1929 * there are some cases in C (especially with GCC extensions) where
1930 * it is useful to have an intermediate step in a sequence have no
1931 * effect, but I don't think these cases exist in GLSL. Either way,
1932 * it would be a giant hassle to replicate that behavior.
1933 */
1934 if (previous_tail_pred == instructions->tail_pred) {
1935 _mesa_glsl_warning(&previous_operand_loc, state,
1936 "left-hand operand of comma expression has "
1937 "no effect");
1938 }
1939
1940 /* tail_pred is directly accessed instead of using the get_tail()
1941 * method for performance reasons. get_tail() has extra code to
1942 * return NULL when the list is empty. We don't care about that
1943 * here, so using tail_pred directly is fine.
1944 */
1945 previous_tail_pred = instructions->tail_pred;
1946 previous_operand_loc = ast->get_location();
1947
1948 result = ast->hir(instructions, state);
1949 }
1950
1951 /* Any errors should have already been emitted in the loop above.
1952 */
1953 error_emitted = true;
1954 break;
1955 }
1956 }
1957 type = NULL; /* use result->type, not type. */
1958 assert(result != NULL || !needs_rvalue);
1959
1960 if (result && result->type->is_error() && !error_emitted)
1961 _mesa_glsl_error(& loc, state, "type mismatch");
1962
1963 return result;
1964 }
1965
1966 bool
1967 ast_expression::has_sequence_subexpression() const
1968 {
1969 switch (this->oper) {
1970 case ast_plus:
1971 case ast_neg:
1972 case ast_bit_not:
1973 case ast_logic_not:
1974 case ast_pre_inc:
1975 case ast_pre_dec:
1976 case ast_post_inc:
1977 case ast_post_dec:
1978 return this->subexpressions[0]->has_sequence_subexpression();
1979
1980 case ast_assign:
1981 case ast_add:
1982 case ast_sub:
1983 case ast_mul:
1984 case ast_div:
1985 case ast_mod:
1986 case ast_lshift:
1987 case ast_rshift:
1988 case ast_less:
1989 case ast_greater:
1990 case ast_lequal:
1991 case ast_gequal:
1992 case ast_nequal:
1993 case ast_equal:
1994 case ast_bit_and:
1995 case ast_bit_xor:
1996 case ast_bit_or:
1997 case ast_logic_and:
1998 case ast_logic_or:
1999 case ast_logic_xor:
2000 case ast_array_index:
2001 case ast_mul_assign:
2002 case ast_div_assign:
2003 case ast_add_assign:
2004 case ast_sub_assign:
2005 case ast_mod_assign:
2006 case ast_ls_assign:
2007 case ast_rs_assign:
2008 case ast_and_assign:
2009 case ast_xor_assign:
2010 case ast_or_assign:
2011 return this->subexpressions[0]->has_sequence_subexpression() ||
2012 this->subexpressions[1]->has_sequence_subexpression();
2013
2014 case ast_conditional:
2015 return this->subexpressions[0]->has_sequence_subexpression() ||
2016 this->subexpressions[1]->has_sequence_subexpression() ||
2017 this->subexpressions[2]->has_sequence_subexpression();
2018
2019 case ast_sequence:
2020 return true;
2021
2022 case ast_field_selection:
2023 case ast_identifier:
2024 case ast_int_constant:
2025 case ast_uint_constant:
2026 case ast_float_constant:
2027 case ast_bool_constant:
2028 case ast_double_constant:
2029 return false;
2030
2031 case ast_aggregate:
2032 unreachable("ast_aggregate: Should never get here.");
2033
2034 case ast_function_call:
2035 unreachable("should be handled by ast_function_expression::hir");
2036
2037 case ast_unsized_array_dim:
2038 unreachable("ast_unsized_array_dim: Should never get here.");
2039 }
2040
2041 return false;
2042 }
2043
2044 ir_rvalue *
2045 ast_expression_statement::hir(exec_list *instructions,
2046 struct _mesa_glsl_parse_state *state)
2047 {
2048 /* It is possible to have expression statements that don't have an
2049 * expression. This is the solitary semicolon:
2050 *
2051 * for (i = 0; i < 5; i++)
2052 * ;
2053 *
2054 * In this case the expression will be NULL. Test for NULL and don't do
2055 * anything in that case.
2056 */
2057 if (expression != NULL)
2058 expression->hir_no_rvalue(instructions, state);
2059
2060 /* Statements do not have r-values.
2061 */
2062 return NULL;
2063 }
2064
2065
2066 ir_rvalue *
2067 ast_compound_statement::hir(exec_list *instructions,
2068 struct _mesa_glsl_parse_state *state)
2069 {
2070 if (new_scope)
2071 state->symbols->push_scope();
2072
2073 foreach_list_typed (ast_node, ast, link, &this->statements)
2074 ast->hir(instructions, state);
2075
2076 if (new_scope)
2077 state->symbols->pop_scope();
2078
2079 /* Compound statements do not have r-values.
2080 */
2081 return NULL;
2082 }
2083
2084 /**
2085 * Evaluate the given exec_node (which should be an ast_node representing
2086 * a single array dimension) and return its integer value.
2087 */
2088 static unsigned
2089 process_array_size(exec_node *node,
2090 struct _mesa_glsl_parse_state *state)
2091 {
2092 exec_list dummy_instructions;
2093
2094 ast_node *array_size = exec_node_data(ast_node, node, link);
2095
2096 /**
2097 * Dimensions other than the outermost dimension can by unsized if they
2098 * are immediately sized by a constructor or initializer.
2099 */
2100 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2101 return 0;
2102
2103 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2104 YYLTYPE loc = array_size->get_location();
2105
2106 if (ir == NULL) {
2107 _mesa_glsl_error(& loc, state,
2108 "array size could not be resolved");
2109 return 0;
2110 }
2111
2112 if (!ir->type->is_integer()) {
2113 _mesa_glsl_error(& loc, state,
2114 "array size must be integer type");
2115 return 0;
2116 }
2117
2118 if (!ir->type->is_scalar()) {
2119 _mesa_glsl_error(& loc, state,
2120 "array size must be scalar type");
2121 return 0;
2122 }
2123
2124 ir_constant *const size = ir->constant_expression_value();
2125 if (size == NULL || array_size->has_sequence_subexpression()) {
2126 _mesa_glsl_error(& loc, state, "array size must be a "
2127 "constant valued expression");
2128 return 0;
2129 }
2130
2131 if (size->value.i[0] <= 0) {
2132 _mesa_glsl_error(& loc, state, "array size must be > 0");
2133 return 0;
2134 }
2135
2136 assert(size->type == ir->type);
2137
2138 /* If the array size is const (and we've verified that
2139 * it is) then no instructions should have been emitted
2140 * when we converted it to HIR. If they were emitted,
2141 * then either the array size isn't const after all, or
2142 * we are emitting unnecessary instructions.
2143 */
2144 assert(dummy_instructions.is_empty());
2145
2146 return size->value.u[0];
2147 }
2148
2149 static const glsl_type *
2150 process_array_type(YYLTYPE *loc, const glsl_type *base,
2151 ast_array_specifier *array_specifier,
2152 struct _mesa_glsl_parse_state *state)
2153 {
2154 const glsl_type *array_type = base;
2155
2156 if (array_specifier != NULL) {
2157 if (base->is_array()) {
2158
2159 /* From page 19 (page 25) of the GLSL 1.20 spec:
2160 *
2161 * "Only one-dimensional arrays may be declared."
2162 */
2163 if (!state->check_arrays_of_arrays_allowed(loc)) {
2164 return glsl_type::error_type;
2165 }
2166 }
2167
2168 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
2169 !node->is_head_sentinel(); node = node->prev) {
2170 unsigned array_size = process_array_size(node, state);
2171 array_type = glsl_type::get_array_instance(array_type, array_size);
2172 }
2173 }
2174
2175 return array_type;
2176 }
2177
2178 static bool
2179 precision_qualifier_allowed(const glsl_type *type)
2180 {
2181 /* Precision qualifiers apply to floating point, integer and opaque
2182 * types.
2183 *
2184 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2185 * "Any floating point or any integer declaration can have the type
2186 * preceded by one of these precision qualifiers [...] Literal
2187 * constants do not have precision qualifiers. Neither do Boolean
2188 * variables.
2189 *
2190 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2191 * spec also says:
2192 *
2193 * "Precision qualifiers are added for code portability with OpenGL
2194 * ES, not for functionality. They have the same syntax as in OpenGL
2195 * ES."
2196 *
2197 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2198 *
2199 * "uniform lowp sampler2D sampler;
2200 * highp vec2 coord;
2201 * ...
2202 * lowp vec4 col = texture2D (sampler, coord);
2203 * // texture2D returns lowp"
2204 *
2205 * From this, we infer that GLSL 1.30 (and later) should allow precision
2206 * qualifiers on sampler types just like float and integer types.
2207 */
2208 return (type->is_float()
2209 || type->is_integer()
2210 || type->contains_opaque())
2211 && !type->without_array()->is_record();
2212 }
2213
2214 const glsl_type *
2215 ast_type_specifier::glsl_type(const char **name,
2216 struct _mesa_glsl_parse_state *state) const
2217 {
2218 const struct glsl_type *type;
2219
2220 type = state->symbols->get_type(this->type_name);
2221 *name = this->type_name;
2222
2223 YYLTYPE loc = this->get_location();
2224 type = process_array_type(&loc, type, this->array_specifier, state);
2225
2226 return type;
2227 }
2228
2229 /**
2230 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2231 *
2232 * "The precision statement
2233 *
2234 * precision precision-qualifier type;
2235 *
2236 * can be used to establish a default precision qualifier. The type field can
2237 * be either int or float or any of the sampler types, (...) If type is float,
2238 * the directive applies to non-precision-qualified floating point type
2239 * (scalar, vector, and matrix) declarations. If type is int, the directive
2240 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2241 * and unsigned) declarations."
2242 *
2243 * We use the symbol table to keep the values of the default precisions for
2244 * each 'type' in each scope and we use the 'type' string from the precision
2245 * statement as key in the symbol table. When we want to retrieve the default
2246 * precision associated with a given glsl_type we need to know the type string
2247 * associated with it. This is what this function returns.
2248 */
2249 static const char *
2250 get_type_name_for_precision_qualifier(const glsl_type *type)
2251 {
2252 switch (type->base_type) {
2253 case GLSL_TYPE_FLOAT:
2254 return "float";
2255 case GLSL_TYPE_UINT:
2256 case GLSL_TYPE_INT:
2257 return "int";
2258 case GLSL_TYPE_ATOMIC_UINT:
2259 return "atomic_uint";
2260 case GLSL_TYPE_IMAGE:
2261 /* fallthrough */
2262 case GLSL_TYPE_SAMPLER: {
2263 const unsigned type_idx =
2264 type->sampler_array + 2 * type->sampler_shadow;
2265 const unsigned offset = type->base_type == GLSL_TYPE_SAMPLER ? 0 : 4;
2266 assert(type_idx < 4);
2267 switch (type->sampler_type) {
2268 case GLSL_TYPE_FLOAT:
2269 switch (type->sampler_dimensionality) {
2270 case GLSL_SAMPLER_DIM_1D: {
2271 assert(type->base_type == GLSL_TYPE_SAMPLER);
2272 static const char *const names[4] = {
2273 "sampler1D", "sampler1DArray",
2274 "sampler1DShadow", "sampler1DArrayShadow"
2275 };
2276 return names[type_idx];
2277 }
2278 case GLSL_SAMPLER_DIM_2D: {
2279 static const char *const names[8] = {
2280 "sampler2D", "sampler2DArray",
2281 "sampler2DShadow", "sampler2DArrayShadow",
2282 "image2D", "image2DArray", NULL, NULL
2283 };
2284 return names[offset + type_idx];
2285 }
2286 case GLSL_SAMPLER_DIM_3D: {
2287 static const char *const names[8] = {
2288 "sampler3D", NULL, NULL, NULL,
2289 "image3D", NULL, NULL, NULL
2290 };
2291 return names[offset + type_idx];
2292 }
2293 case GLSL_SAMPLER_DIM_CUBE: {
2294 static const char *const names[8] = {
2295 "samplerCube", "samplerCubeArray",
2296 "samplerCubeShadow", "samplerCubeArrayShadow",
2297 "imageCube", NULL, NULL, NULL
2298 };
2299 return names[offset + type_idx];
2300 }
2301 case GLSL_SAMPLER_DIM_MS: {
2302 assert(type->base_type == GLSL_TYPE_SAMPLER);
2303 static const char *const names[4] = {
2304 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2305 };
2306 return names[type_idx];
2307 }
2308 case GLSL_SAMPLER_DIM_RECT: {
2309 assert(type->base_type == GLSL_TYPE_SAMPLER);
2310 static const char *const names[4] = {
2311 "samplerRect", NULL, "samplerRectShadow", NULL
2312 };
2313 return names[type_idx];
2314 }
2315 case GLSL_SAMPLER_DIM_BUF: {
2316 assert(type->base_type == GLSL_TYPE_SAMPLER);
2317 static const char *const names[4] = {
2318 "samplerBuffer", NULL, NULL, NULL
2319 };
2320 return names[type_idx];
2321 }
2322 case GLSL_SAMPLER_DIM_EXTERNAL: {
2323 assert(type->base_type == GLSL_TYPE_SAMPLER);
2324 static const char *const names[4] = {
2325 "samplerExternalOES", NULL, NULL, NULL
2326 };
2327 return names[type_idx];
2328 }
2329 default:
2330 unreachable("Unsupported sampler/image dimensionality");
2331 } /* sampler/image float dimensionality */
2332 break;
2333 case GLSL_TYPE_INT:
2334 switch (type->sampler_dimensionality) {
2335 case GLSL_SAMPLER_DIM_1D: {
2336 assert(type->base_type == GLSL_TYPE_SAMPLER);
2337 static const char *const names[4] = {
2338 "isampler1D", "isampler1DArray", NULL, NULL
2339 };
2340 return names[type_idx];
2341 }
2342 case GLSL_SAMPLER_DIM_2D: {
2343 static const char *const names[8] = {
2344 "isampler2D", "isampler2DArray", NULL, NULL,
2345 "iimage2D", "iimage2DArray", NULL, NULL
2346 };
2347 return names[offset + type_idx];
2348 }
2349 case GLSL_SAMPLER_DIM_3D: {
2350 static const char *const names[8] = {
2351 "isampler3D", NULL, NULL, NULL,
2352 "iimage3D", NULL, NULL, NULL
2353 };
2354 return names[offset + type_idx];
2355 }
2356 case GLSL_SAMPLER_DIM_CUBE: {
2357 static const char *const names[8] = {
2358 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2359 "iimageCube", NULL, NULL, NULL
2360 };
2361 return names[offset + type_idx];
2362 }
2363 case GLSL_SAMPLER_DIM_MS: {
2364 assert(type->base_type == GLSL_TYPE_SAMPLER);
2365 static const char *const names[4] = {
2366 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2367 };
2368 return names[type_idx];
2369 }
2370 case GLSL_SAMPLER_DIM_RECT: {
2371 assert(type->base_type == GLSL_TYPE_SAMPLER);
2372 static const char *const names[4] = {
2373 "isamplerRect", NULL, "isamplerRectShadow", NULL
2374 };
2375 return names[type_idx];
2376 }
2377 case GLSL_SAMPLER_DIM_BUF: {
2378 assert(type->base_type == GLSL_TYPE_SAMPLER);
2379 static const char *const names[4] = {
2380 "isamplerBuffer", NULL, NULL, NULL
2381 };
2382 return names[type_idx];
2383 }
2384 default:
2385 unreachable("Unsupported isampler/iimage dimensionality");
2386 } /* sampler/image int dimensionality */
2387 break;
2388 case GLSL_TYPE_UINT:
2389 switch (type->sampler_dimensionality) {
2390 case GLSL_SAMPLER_DIM_1D: {
2391 assert(type->base_type == GLSL_TYPE_SAMPLER);
2392 static const char *const names[4] = {
2393 "usampler1D", "usampler1DArray", NULL, NULL
2394 };
2395 return names[type_idx];
2396 }
2397 case GLSL_SAMPLER_DIM_2D: {
2398 static const char *const names[8] = {
2399 "usampler2D", "usampler2DArray", NULL, NULL,
2400 "uimage2D", "uimage2DArray", NULL, NULL
2401 };
2402 return names[offset + type_idx];
2403 }
2404 case GLSL_SAMPLER_DIM_3D: {
2405 static const char *const names[8] = {
2406 "usampler3D", NULL, NULL, NULL,
2407 "uimage3D", NULL, NULL, NULL
2408 };
2409 return names[offset + type_idx];
2410 }
2411 case GLSL_SAMPLER_DIM_CUBE: {
2412 static const char *const names[8] = {
2413 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2414 "uimageCube", NULL, NULL, NULL
2415 };
2416 return names[offset + type_idx];
2417 }
2418 case GLSL_SAMPLER_DIM_MS: {
2419 assert(type->base_type == GLSL_TYPE_SAMPLER);
2420 static const char *const names[4] = {
2421 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2422 };
2423 return names[type_idx];
2424 }
2425 case GLSL_SAMPLER_DIM_RECT: {
2426 assert(type->base_type == GLSL_TYPE_SAMPLER);
2427 static const char *const names[4] = {
2428 "usamplerRect", NULL, "usamplerRectShadow", NULL
2429 };
2430 return names[type_idx];
2431 }
2432 case GLSL_SAMPLER_DIM_BUF: {
2433 assert(type->base_type == GLSL_TYPE_SAMPLER);
2434 static const char *const names[4] = {
2435 "usamplerBuffer", NULL, NULL, NULL
2436 };
2437 return names[type_idx];
2438 }
2439 default:
2440 unreachable("Unsupported usampler/uimage dimensionality");
2441 } /* sampler/image uint dimensionality */
2442 break;
2443 default:
2444 unreachable("Unsupported sampler/image type");
2445 } /* sampler/image type */
2446 break;
2447 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2448 break;
2449 default:
2450 unreachable("Unsupported type");
2451 } /* base type */
2452 }
2453
2454 static unsigned
2455 select_gles_precision(unsigned qual_precision,
2456 const glsl_type *type,
2457 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2458 {
2459 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2460 * In GLES we take the precision from the type qualifier if present,
2461 * otherwise, if the type of the variable allows precision qualifiers at
2462 * all, we look for the default precision qualifier for that type in the
2463 * current scope.
2464 */
2465 assert(state->es_shader);
2466
2467 unsigned precision = GLSL_PRECISION_NONE;
2468 if (qual_precision) {
2469 precision = qual_precision;
2470 } else if (precision_qualifier_allowed(type)) {
2471 const char *type_name =
2472 get_type_name_for_precision_qualifier(type->without_array());
2473 assert(type_name != NULL);
2474
2475 precision =
2476 state->symbols->get_default_precision_qualifier(type_name);
2477 if (precision == ast_precision_none) {
2478 _mesa_glsl_error(loc, state,
2479 "No precision specified in this scope for type `%s'",
2480 type->name);
2481 }
2482 }
2483 return precision;
2484 }
2485
2486 const glsl_type *
2487 ast_fully_specified_type::glsl_type(const char **name,
2488 struct _mesa_glsl_parse_state *state) const
2489 {
2490 return this->specifier->glsl_type(name, state);
2491 }
2492
2493 /**
2494 * Determine whether a toplevel variable declaration declares a varying. This
2495 * function operates by examining the variable's mode and the shader target,
2496 * so it correctly identifies linkage variables regardless of whether they are
2497 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2498 *
2499 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2500 * this function will produce undefined results.
2501 */
2502 static bool
2503 is_varying_var(ir_variable *var, gl_shader_stage target)
2504 {
2505 switch (target) {
2506 case MESA_SHADER_VERTEX:
2507 return var->data.mode == ir_var_shader_out;
2508 case MESA_SHADER_FRAGMENT:
2509 return var->data.mode == ir_var_shader_in;
2510 default:
2511 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2512 }
2513 }
2514
2515
2516 /**
2517 * Matrix layout qualifiers are only allowed on certain types
2518 */
2519 static void
2520 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2521 YYLTYPE *loc,
2522 const glsl_type *type,
2523 ir_variable *var)
2524 {
2525 if (var && !var->is_in_buffer_block()) {
2526 /* Layout qualifiers may only apply to interface blocks and fields in
2527 * them.
2528 */
2529 _mesa_glsl_error(loc, state,
2530 "uniform block layout qualifiers row_major and "
2531 "column_major may not be applied to variables "
2532 "outside of uniform blocks");
2533 } else if (!type->without_array()->is_matrix()) {
2534 /* The OpenGL ES 3.0 conformance tests did not originally allow
2535 * matrix layout qualifiers on non-matrices. However, the OpenGL
2536 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2537 * amended to specifically allow these layouts on all types. Emit
2538 * a warning so that people know their code may not be portable.
2539 */
2540 _mesa_glsl_warning(loc, state,
2541 "uniform block layout qualifiers row_major and "
2542 "column_major applied to non-matrix types may "
2543 "be rejected by older compilers");
2544 }
2545 }
2546
2547 static bool
2548 process_qualifier_constant(struct _mesa_glsl_parse_state *state,
2549 YYLTYPE *loc,
2550 const char *qual_indentifier,
2551 ast_expression *const_expression,
2552 unsigned *value)
2553 {
2554 exec_list dummy_instructions;
2555
2556 if (const_expression == NULL) {
2557 *value = 0;
2558 return true;
2559 }
2560
2561 ir_rvalue *const ir = const_expression->hir(&dummy_instructions, state);
2562
2563 ir_constant *const const_int = ir->constant_expression_value();
2564 if (const_int == NULL || !const_int->type->is_integer()) {
2565 _mesa_glsl_error(loc, state, "%s must be an integral constant "
2566 "expression", qual_indentifier);
2567 return false;
2568 }
2569
2570 if (const_int->value.i[0] < 0) {
2571 _mesa_glsl_error(loc, state, "%s layout qualifier is invalid (%d < 0)",
2572 qual_indentifier, const_int->value.u[0]);
2573 return false;
2574 }
2575
2576 /* If the location is const (and we've verified that
2577 * it is) then no instructions should have been emitted
2578 * when we converted it to HIR. If they were emitted,
2579 * then either the location isn't const after all, or
2580 * we are emitting unnecessary instructions.
2581 */
2582 assert(dummy_instructions.is_empty());
2583
2584 *value = const_int->value.u[0];
2585 return true;
2586 }
2587
2588 static bool
2589 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2590 unsigned stream)
2591 {
2592 if (stream >= state->ctx->Const.MaxVertexStreams) {
2593 _mesa_glsl_error(loc, state,
2594 "invalid stream specified %d is larger than "
2595 "MAX_VERTEX_STREAMS - 1 (%d).",
2596 stream, state->ctx->Const.MaxVertexStreams - 1);
2597 return false;
2598 }
2599
2600 return true;
2601 }
2602
2603 static void
2604 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2605 YYLTYPE *loc,
2606 ir_variable *var,
2607 const glsl_type *type,
2608 const ast_type_qualifier *qual)
2609 {
2610 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2611 _mesa_glsl_error(loc, state,
2612 "the \"binding\" qualifier only applies to uniforms and "
2613 "shader storage buffer objects");
2614 return;
2615 }
2616
2617 unsigned qual_binding;
2618 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2619 &qual_binding)) {
2620 return;
2621 }
2622
2623 const struct gl_context *const ctx = state->ctx;
2624 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2625 unsigned max_index = qual_binding + elements - 1;
2626 const glsl_type *base_type = type->without_array();
2627
2628 if (base_type->is_interface()) {
2629 /* UBOs. From page 60 of the GLSL 4.20 specification:
2630 * "If the binding point for any uniform block instance is less than zero,
2631 * or greater than or equal to the implementation-dependent maximum
2632 * number of uniform buffer bindings, a compilation error will occur.
2633 * When the binding identifier is used with a uniform block instanced as
2634 * an array of size N, all elements of the array from binding through
2635 * binding + N – 1 must be within this range."
2636 *
2637 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2638 */
2639 if (qual->flags.q.uniform &&
2640 max_index >= ctx->Const.MaxUniformBufferBindings) {
2641 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2642 "the maximum number of UBO binding points (%d)",
2643 qual_binding, elements,
2644 ctx->Const.MaxUniformBufferBindings);
2645 return;
2646 }
2647
2648 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2649 * "If the binding point for any uniform or shader storage block instance
2650 * is less than zero, or greater than or equal to the
2651 * implementation-dependent maximum number of uniform buffer bindings, a
2652 * compile-time error will occur. When the binding identifier is used
2653 * with a uniform or shader storage block instanced as an array of size
2654 * N, all elements of the array from binding through binding + N – 1 must
2655 * be within this range."
2656 */
2657 if (qual->flags.q.buffer &&
2658 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2659 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2660 "the maximum number of SSBO binding points (%d)",
2661 qual_binding, elements,
2662 ctx->Const.MaxShaderStorageBufferBindings);
2663 return;
2664 }
2665 } else if (base_type->is_sampler()) {
2666 /* Samplers. From page 63 of the GLSL 4.20 specification:
2667 * "If the binding is less than zero, or greater than or equal to the
2668 * implementation-dependent maximum supported number of units, a
2669 * compilation error will occur. When the binding identifier is used
2670 * with an array of size N, all elements of the array from binding
2671 * through binding + N - 1 must be within this range."
2672 */
2673 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2674
2675 if (max_index >= limit) {
2676 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2677 "exceeds the maximum number of texture image units "
2678 "(%u)", qual_binding, elements, limit);
2679
2680 return;
2681 }
2682 } else if (base_type->contains_atomic()) {
2683 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2684 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2685 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2686 " maximum number of atomic counter buffer bindings"
2687 "(%u)", qual_binding,
2688 ctx->Const.MaxAtomicBufferBindings);
2689
2690 return;
2691 }
2692 } else if ((state->is_version(420, 310) ||
2693 state->ARB_shading_language_420pack_enable) &&
2694 base_type->is_image()) {
2695 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2696 if (max_index >= ctx->Const.MaxImageUnits) {
2697 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2698 " maximum number of image units (%d)", max_index,
2699 ctx->Const.MaxImageUnits);
2700 return;
2701 }
2702
2703 } else {
2704 _mesa_glsl_error(loc, state,
2705 "the \"binding\" qualifier only applies to uniform "
2706 "blocks, opaque variables, or arrays thereof");
2707 return;
2708 }
2709
2710 var->data.explicit_binding = true;
2711 var->data.binding = qual_binding;
2712
2713 return;
2714 }
2715
2716
2717 static glsl_interp_qualifier
2718 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2719 ir_variable_mode mode,
2720 struct _mesa_glsl_parse_state *state,
2721 YYLTYPE *loc)
2722 {
2723 glsl_interp_qualifier interpolation;
2724 if (qual->flags.q.flat)
2725 interpolation = INTERP_QUALIFIER_FLAT;
2726 else if (qual->flags.q.noperspective)
2727 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2728 else if (qual->flags.q.smooth)
2729 interpolation = INTERP_QUALIFIER_SMOOTH;
2730 else
2731 interpolation = INTERP_QUALIFIER_NONE;
2732
2733 if (interpolation != INTERP_QUALIFIER_NONE) {
2734 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2735 _mesa_glsl_error(loc, state,
2736 "interpolation qualifier `%s' can only be applied to "
2737 "shader inputs or outputs.",
2738 interpolation_string(interpolation));
2739
2740 }
2741
2742 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2743 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2744 _mesa_glsl_error(loc, state,
2745 "interpolation qualifier `%s' cannot be applied to "
2746 "vertex shader inputs or fragment shader outputs",
2747 interpolation_string(interpolation));
2748 }
2749 }
2750
2751 return interpolation;
2752 }
2753
2754
2755 static void
2756 apply_explicit_location(const struct ast_type_qualifier *qual,
2757 ir_variable *var,
2758 struct _mesa_glsl_parse_state *state,
2759 YYLTYPE *loc)
2760 {
2761 bool fail = false;
2762
2763 unsigned qual_location;
2764 if (!process_qualifier_constant(state, loc, "location", qual->location,
2765 &qual_location)) {
2766 return;
2767 }
2768
2769 /* Checks for GL_ARB_explicit_uniform_location. */
2770 if (qual->flags.q.uniform) {
2771 if (!state->check_explicit_uniform_location_allowed(loc, var))
2772 return;
2773
2774 const struct gl_context *const ctx = state->ctx;
2775 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
2776
2777 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2778 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2779 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2780 ctx->Const.MaxUserAssignableUniformLocations);
2781 return;
2782 }
2783
2784 var->data.explicit_location = true;
2785 var->data.location = qual_location;
2786 return;
2787 }
2788
2789 /* Between GL_ARB_explicit_attrib_location an
2790 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2791 * stage can be assigned explicit locations. The checking here associates
2792 * the correct extension with the correct stage's input / output:
2793 *
2794 * input output
2795 * ----- ------
2796 * vertex explicit_loc sso
2797 * tess control sso sso
2798 * tess eval sso sso
2799 * geometry sso sso
2800 * fragment sso explicit_loc
2801 */
2802 switch (state->stage) {
2803 case MESA_SHADER_VERTEX:
2804 if (var->data.mode == ir_var_shader_in) {
2805 if (!state->check_explicit_attrib_location_allowed(loc, var))
2806 return;
2807
2808 break;
2809 }
2810
2811 if (var->data.mode == ir_var_shader_out) {
2812 if (!state->check_separate_shader_objects_allowed(loc, var))
2813 return;
2814
2815 break;
2816 }
2817
2818 fail = true;
2819 break;
2820
2821 case MESA_SHADER_TESS_CTRL:
2822 case MESA_SHADER_TESS_EVAL:
2823 case MESA_SHADER_GEOMETRY:
2824 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2825 if (!state->check_separate_shader_objects_allowed(loc, var))
2826 return;
2827
2828 break;
2829 }
2830
2831 fail = true;
2832 break;
2833
2834 case MESA_SHADER_FRAGMENT:
2835 if (var->data.mode == ir_var_shader_in) {
2836 if (!state->check_separate_shader_objects_allowed(loc, var))
2837 return;
2838
2839 break;
2840 }
2841
2842 if (var->data.mode == ir_var_shader_out) {
2843 if (!state->check_explicit_attrib_location_allowed(loc, var))
2844 return;
2845
2846 break;
2847 }
2848
2849 fail = true;
2850 break;
2851
2852 case MESA_SHADER_COMPUTE:
2853 _mesa_glsl_error(loc, state,
2854 "compute shader variables cannot be given "
2855 "explicit locations");
2856 return;
2857 };
2858
2859 if (fail) {
2860 _mesa_glsl_error(loc, state,
2861 "%s cannot be given an explicit location in %s shader",
2862 mode_string(var),
2863 _mesa_shader_stage_to_string(state->stage));
2864 } else {
2865 var->data.explicit_location = true;
2866
2867 switch (state->stage) {
2868 case MESA_SHADER_VERTEX:
2869 var->data.location = (var->data.mode == ir_var_shader_in)
2870 ? (qual_location + VERT_ATTRIB_GENERIC0)
2871 : (qual_location + VARYING_SLOT_VAR0);
2872 break;
2873
2874 case MESA_SHADER_TESS_CTRL:
2875 case MESA_SHADER_TESS_EVAL:
2876 case MESA_SHADER_GEOMETRY:
2877 if (var->data.patch)
2878 var->data.location = qual_location + VARYING_SLOT_PATCH0;
2879 else
2880 var->data.location = qual_location + VARYING_SLOT_VAR0;
2881 break;
2882
2883 case MESA_SHADER_FRAGMENT:
2884 var->data.location = (var->data.mode == ir_var_shader_out)
2885 ? (qual_location + FRAG_RESULT_DATA0)
2886 : (qual_location + VARYING_SLOT_VAR0);
2887 break;
2888 case MESA_SHADER_COMPUTE:
2889 assert(!"Unexpected shader type");
2890 break;
2891 }
2892
2893 /* Check if index was set for the uniform instead of the function */
2894 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
2895 _mesa_glsl_error(loc, state, "an index qualifier can only be "
2896 "used with subroutine functions");
2897 return;
2898 }
2899
2900 unsigned qual_index;
2901 if (qual->flags.q.explicit_index &&
2902 process_qualifier_constant(state, loc, "index", qual->index,
2903 &qual_index)) {
2904 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2905 * Layout Qualifiers):
2906 *
2907 * "It is also a compile-time error if a fragment shader
2908 * sets a layout index to less than 0 or greater than 1."
2909 *
2910 * Older specifications don't mandate a behavior; we take
2911 * this as a clarification and always generate the error.
2912 */
2913 if (qual_index > 1) {
2914 _mesa_glsl_error(loc, state,
2915 "explicit index may only be 0 or 1");
2916 } else {
2917 var->data.explicit_index = true;
2918 var->data.index = qual_index;
2919 }
2920 }
2921 }
2922 }
2923
2924 static void
2925 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2926 ir_variable *var,
2927 struct _mesa_glsl_parse_state *state,
2928 YYLTYPE *loc)
2929 {
2930 const glsl_type *base_type = var->type->without_array();
2931
2932 if (base_type->is_image()) {
2933 if (var->data.mode != ir_var_uniform &&
2934 var->data.mode != ir_var_function_in) {
2935 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2936 "function parameters or uniform-qualified "
2937 "global variables");
2938 }
2939
2940 var->data.image_read_only |= qual->flags.q.read_only;
2941 var->data.image_write_only |= qual->flags.q.write_only;
2942 var->data.image_coherent |= qual->flags.q.coherent;
2943 var->data.image_volatile |= qual->flags.q._volatile;
2944 var->data.image_restrict |= qual->flags.q.restrict_flag;
2945 var->data.read_only = true;
2946
2947 if (qual->flags.q.explicit_image_format) {
2948 if (var->data.mode == ir_var_function_in) {
2949 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2950 "used on image function parameters");
2951 }
2952
2953 if (qual->image_base_type != base_type->sampler_type) {
2954 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2955 "base data type of the image");
2956 }
2957
2958 var->data.image_format = qual->image_format;
2959 } else {
2960 if (var->data.mode == ir_var_uniform) {
2961 if (state->es_shader) {
2962 _mesa_glsl_error(loc, state, "all image uniforms "
2963 "must have a format layout qualifier");
2964
2965 } else if (!qual->flags.q.write_only) {
2966 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
2967 "`writeonly' must have a format layout "
2968 "qualifier");
2969 }
2970 }
2971
2972 var->data.image_format = GL_NONE;
2973 }
2974
2975 /* From page 70 of the GLSL ES 3.1 specification:
2976 *
2977 * "Except for image variables qualified with the format qualifiers
2978 * r32f, r32i, and r32ui, image variables must specify either memory
2979 * qualifier readonly or the memory qualifier writeonly."
2980 */
2981 if (state->es_shader &&
2982 var->data.image_format != GL_R32F &&
2983 var->data.image_format != GL_R32I &&
2984 var->data.image_format != GL_R32UI &&
2985 !var->data.image_read_only &&
2986 !var->data.image_write_only) {
2987 _mesa_glsl_error(loc, state, "image variables of format other than "
2988 "r32f, r32i or r32ui must be qualified `readonly' or "
2989 "`writeonly'");
2990 }
2991
2992 } else if (qual->flags.q.read_only ||
2993 qual->flags.q.write_only ||
2994 qual->flags.q.coherent ||
2995 qual->flags.q._volatile ||
2996 qual->flags.q.restrict_flag ||
2997 qual->flags.q.explicit_image_format) {
2998 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
2999 "images");
3000 }
3001 }
3002
3003 static inline const char*
3004 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3005 {
3006 if (origin_upper_left && pixel_center_integer)
3007 return "origin_upper_left, pixel_center_integer";
3008 else if (origin_upper_left)
3009 return "origin_upper_left";
3010 else if (pixel_center_integer)
3011 return "pixel_center_integer";
3012 else
3013 return " ";
3014 }
3015
3016 static inline bool
3017 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3018 const struct ast_type_qualifier *qual)
3019 {
3020 /* If gl_FragCoord was previously declared, and the qualifiers were
3021 * different in any way, return true.
3022 */
3023 if (state->fs_redeclares_gl_fragcoord) {
3024 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3025 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3026 }
3027
3028 return false;
3029 }
3030
3031 static inline void
3032 validate_array_dimensions(const glsl_type *t,
3033 struct _mesa_glsl_parse_state *state,
3034 YYLTYPE *loc) {
3035 if (t->is_array()) {
3036 t = t->fields.array;
3037 while (t->is_array()) {
3038 if (t->is_unsized_array()) {
3039 _mesa_glsl_error(loc, state,
3040 "only the outermost array dimension can "
3041 "be unsized",
3042 t->name);
3043 break;
3044 }
3045 t = t->fields.array;
3046 }
3047 }
3048 }
3049
3050 static void
3051 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3052 ir_variable *var,
3053 struct _mesa_glsl_parse_state *state,
3054 YYLTYPE *loc)
3055 {
3056 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3057
3058 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3059 *
3060 * "Within any shader, the first redeclarations of gl_FragCoord
3061 * must appear before any use of gl_FragCoord."
3062 *
3063 * Generate a compiler error if above condition is not met by the
3064 * fragment shader.
3065 */
3066 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3067 if (earlier != NULL &&
3068 earlier->data.used &&
3069 !state->fs_redeclares_gl_fragcoord) {
3070 _mesa_glsl_error(loc, state,
3071 "gl_FragCoord used before its first redeclaration "
3072 "in fragment shader");
3073 }
3074
3075 /* Make sure all gl_FragCoord redeclarations specify the same layout
3076 * qualifiers.
3077 */
3078 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3079 const char *const qual_string =
3080 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3081 qual->flags.q.pixel_center_integer);
3082
3083 const char *const state_string =
3084 get_layout_qualifier_string(state->fs_origin_upper_left,
3085 state->fs_pixel_center_integer);
3086
3087 _mesa_glsl_error(loc, state,
3088 "gl_FragCoord redeclared with different layout "
3089 "qualifiers (%s) and (%s) ",
3090 state_string,
3091 qual_string);
3092 }
3093 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3094 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3095 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3096 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3097 state->fs_redeclares_gl_fragcoord =
3098 state->fs_origin_upper_left ||
3099 state->fs_pixel_center_integer ||
3100 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3101 }
3102
3103 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3104 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3105 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3106 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3107 const char *const qual_string = (qual->flags.q.origin_upper_left)
3108 ? "origin_upper_left" : "pixel_center_integer";
3109
3110 _mesa_glsl_error(loc, state,
3111 "layout qualifier `%s' can only be applied to "
3112 "fragment shader input `gl_FragCoord'",
3113 qual_string);
3114 }
3115
3116 if (qual->flags.q.explicit_location) {
3117 apply_explicit_location(qual, var, state, loc);
3118 } else if (qual->flags.q.explicit_index) {
3119 if (!qual->flags.q.subroutine_def)
3120 _mesa_glsl_error(loc, state,
3121 "explicit index requires explicit location");
3122 }
3123
3124 if (qual->flags.q.explicit_binding) {
3125 apply_explicit_binding(state, loc, var, var->type, qual);
3126 }
3127
3128 if (state->stage == MESA_SHADER_GEOMETRY &&
3129 qual->flags.q.out && qual->flags.q.stream) {
3130 unsigned qual_stream;
3131 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3132 &qual_stream) &&
3133 validate_stream_qualifier(loc, state, qual_stream)) {
3134 var->data.stream = qual_stream;
3135 }
3136 }
3137
3138 if (var->type->contains_atomic()) {
3139 if (var->data.mode == ir_var_uniform) {
3140 if (var->data.explicit_binding) {
3141 unsigned *offset =
3142 &state->atomic_counter_offsets[var->data.binding];
3143
3144 if (*offset % ATOMIC_COUNTER_SIZE)
3145 _mesa_glsl_error(loc, state,
3146 "misaligned atomic counter offset");
3147
3148 var->data.offset = *offset;
3149 *offset += var->type->atomic_size();
3150
3151 } else {
3152 _mesa_glsl_error(loc, state,
3153 "atomic counters require explicit binding point");
3154 }
3155 } else if (var->data.mode != ir_var_function_in) {
3156 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3157 "function parameters or uniform-qualified "
3158 "global variables");
3159 }
3160 }
3161
3162 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3163 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3164 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3165 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3166 * These extensions and all following extensions that add the 'layout'
3167 * keyword have been modified to require the use of 'in' or 'out'.
3168 *
3169 * The following extension do not allow the deprecated keywords:
3170 *
3171 * GL_AMD_conservative_depth
3172 * GL_ARB_conservative_depth
3173 * GL_ARB_gpu_shader5
3174 * GL_ARB_separate_shader_objects
3175 * GL_ARB_tessellation_shader
3176 * GL_ARB_transform_feedback3
3177 * GL_ARB_uniform_buffer_object
3178 *
3179 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3180 * allow layout with the deprecated keywords.
3181 */
3182 const bool relaxed_layout_qualifier_checking =
3183 state->ARB_fragment_coord_conventions_enable;
3184
3185 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3186 || qual->flags.q.varying;
3187 if (qual->has_layout() && uses_deprecated_qualifier) {
3188 if (relaxed_layout_qualifier_checking) {
3189 _mesa_glsl_warning(loc, state,
3190 "`layout' qualifier may not be used with "
3191 "`attribute' or `varying'");
3192 } else {
3193 _mesa_glsl_error(loc, state,
3194 "`layout' qualifier may not be used with "
3195 "`attribute' or `varying'");
3196 }
3197 }
3198
3199 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3200 * AMD_conservative_depth.
3201 */
3202 int depth_layout_count = qual->flags.q.depth_any
3203 + qual->flags.q.depth_greater
3204 + qual->flags.q.depth_less
3205 + qual->flags.q.depth_unchanged;
3206 if (depth_layout_count > 0
3207 && !state->AMD_conservative_depth_enable
3208 && !state->ARB_conservative_depth_enable) {
3209 _mesa_glsl_error(loc, state,
3210 "extension GL_AMD_conservative_depth or "
3211 "GL_ARB_conservative_depth must be enabled "
3212 "to use depth layout qualifiers");
3213 } else if (depth_layout_count > 0
3214 && strcmp(var->name, "gl_FragDepth") != 0) {
3215 _mesa_glsl_error(loc, state,
3216 "depth layout qualifiers can be applied only to "
3217 "gl_FragDepth");
3218 } else if (depth_layout_count > 1
3219 && strcmp(var->name, "gl_FragDepth") == 0) {
3220 _mesa_glsl_error(loc, state,
3221 "at most one depth layout qualifier can be applied to "
3222 "gl_FragDepth");
3223 }
3224 if (qual->flags.q.depth_any)
3225 var->data.depth_layout = ir_depth_layout_any;
3226 else if (qual->flags.q.depth_greater)
3227 var->data.depth_layout = ir_depth_layout_greater;
3228 else if (qual->flags.q.depth_less)
3229 var->data.depth_layout = ir_depth_layout_less;
3230 else if (qual->flags.q.depth_unchanged)
3231 var->data.depth_layout = ir_depth_layout_unchanged;
3232 else
3233 var->data.depth_layout = ir_depth_layout_none;
3234
3235 if (qual->flags.q.std140 ||
3236 qual->flags.q.std430 ||
3237 qual->flags.q.packed ||
3238 qual->flags.q.shared) {
3239 _mesa_glsl_error(loc, state,
3240 "uniform and shader storage block layout qualifiers "
3241 "std140, std430, packed, and shared can only be "
3242 "applied to uniform or shader storage blocks, not "
3243 "members");
3244 }
3245
3246 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3247 validate_matrix_layout_for_type(state, loc, var->type, var);
3248 }
3249
3250 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3251 * Inputs):
3252 *
3253 * "Fragment shaders also allow the following layout qualifier on in only
3254 * (not with variable declarations)
3255 * layout-qualifier-id
3256 * early_fragment_tests
3257 * [...]"
3258 */
3259 if (qual->flags.q.early_fragment_tests) {
3260 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3261 "valid in fragment shader input layout declaration.");
3262 }
3263 }
3264
3265 static void
3266 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3267 ir_variable *var,
3268 struct _mesa_glsl_parse_state *state,
3269 YYLTYPE *loc,
3270 bool is_parameter)
3271 {
3272 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3273
3274 if (qual->flags.q.invariant) {
3275 if (var->data.used) {
3276 _mesa_glsl_error(loc, state,
3277 "variable `%s' may not be redeclared "
3278 "`invariant' after being used",
3279 var->name);
3280 } else {
3281 var->data.invariant = 1;
3282 }
3283 }
3284
3285 if (qual->flags.q.precise) {
3286 if (var->data.used) {
3287 _mesa_glsl_error(loc, state,
3288 "variable `%s' may not be redeclared "
3289 "`precise' after being used",
3290 var->name);
3291 } else {
3292 var->data.precise = 1;
3293 }
3294 }
3295
3296 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3297 _mesa_glsl_error(loc, state,
3298 "`subroutine' may only be applied to uniforms, "
3299 "subroutine type declarations, or function definitions");
3300 }
3301
3302 if (qual->flags.q.constant || qual->flags.q.attribute
3303 || qual->flags.q.uniform
3304 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3305 var->data.read_only = 1;
3306
3307 if (qual->flags.q.centroid)
3308 var->data.centroid = 1;
3309
3310 if (qual->flags.q.sample)
3311 var->data.sample = 1;
3312
3313 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3314 if (state->es_shader) {
3315 var->data.precision =
3316 select_gles_precision(qual->precision, var->type, state, loc);
3317 }
3318
3319 if (qual->flags.q.patch)
3320 var->data.patch = 1;
3321
3322 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3323 var->type = glsl_type::error_type;
3324 _mesa_glsl_error(loc, state,
3325 "`attribute' variables may not be declared in the "
3326 "%s shader",
3327 _mesa_shader_stage_to_string(state->stage));
3328 }
3329
3330 /* Disallow layout qualifiers which may only appear on layout declarations. */
3331 if (qual->flags.q.prim_type) {
3332 _mesa_glsl_error(loc, state,
3333 "Primitive type may only be specified on GS input or output "
3334 "layout declaration, not on variables.");
3335 }
3336
3337 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3338 *
3339 * "However, the const qualifier cannot be used with out or inout."
3340 *
3341 * The same section of the GLSL 4.40 spec further clarifies this saying:
3342 *
3343 * "The const qualifier cannot be used with out or inout, or a
3344 * compile-time error results."
3345 */
3346 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3347 _mesa_glsl_error(loc, state,
3348 "`const' may not be applied to `out' or `inout' "
3349 "function parameters");
3350 }
3351
3352 /* If there is no qualifier that changes the mode of the variable, leave
3353 * the setting alone.
3354 */
3355 assert(var->data.mode != ir_var_temporary);
3356 if (qual->flags.q.in && qual->flags.q.out)
3357 var->data.mode = ir_var_function_inout;
3358 else if (qual->flags.q.in)
3359 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3360 else if (qual->flags.q.attribute
3361 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3362 var->data.mode = ir_var_shader_in;
3363 else if (qual->flags.q.out)
3364 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3365 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3366 var->data.mode = ir_var_shader_out;
3367 else if (qual->flags.q.uniform)
3368 var->data.mode = ir_var_uniform;
3369 else if (qual->flags.q.buffer)
3370 var->data.mode = ir_var_shader_storage;
3371 else if (qual->flags.q.shared_storage)
3372 var->data.mode = ir_var_shader_shared;
3373
3374 if (!is_parameter && is_varying_var(var, state->stage)) {
3375 /* User-defined ins/outs are not permitted in compute shaders. */
3376 if (state->stage == MESA_SHADER_COMPUTE) {
3377 _mesa_glsl_error(loc, state,
3378 "user-defined input and output variables are not "
3379 "permitted in compute shaders");
3380 }
3381
3382 /* This variable is being used to link data between shader stages (in
3383 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3384 * that is allowed for such purposes.
3385 *
3386 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3387 *
3388 * "The varying qualifier can be used only with the data types
3389 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3390 * these."
3391 *
3392 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3393 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3394 *
3395 * "Fragment inputs can only be signed and unsigned integers and
3396 * integer vectors, float, floating-point vectors, matrices, or
3397 * arrays of these. Structures cannot be input.
3398 *
3399 * Similar text exists in the section on vertex shader outputs.
3400 *
3401 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3402 * 3.00 spec allows structs as well. Varying structs are also allowed
3403 * in GLSL 1.50.
3404 */
3405 switch (var->type->get_scalar_type()->base_type) {
3406 case GLSL_TYPE_FLOAT:
3407 /* Ok in all GLSL versions */
3408 break;
3409 case GLSL_TYPE_UINT:
3410 case GLSL_TYPE_INT:
3411 if (state->is_version(130, 300))
3412 break;
3413 _mesa_glsl_error(loc, state,
3414 "varying variables must be of base type float in %s",
3415 state->get_version_string());
3416 break;
3417 case GLSL_TYPE_STRUCT:
3418 if (state->is_version(150, 300))
3419 break;
3420 _mesa_glsl_error(loc, state,
3421 "varying variables may not be of type struct");
3422 break;
3423 case GLSL_TYPE_DOUBLE:
3424 break;
3425 default:
3426 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3427 break;
3428 }
3429 }
3430
3431 if (state->all_invariant && (state->current_function == NULL)) {
3432 switch (state->stage) {
3433 case MESA_SHADER_VERTEX:
3434 if (var->data.mode == ir_var_shader_out)
3435 var->data.invariant = true;
3436 break;
3437 case MESA_SHADER_TESS_CTRL:
3438 case MESA_SHADER_TESS_EVAL:
3439 case MESA_SHADER_GEOMETRY:
3440 if ((var->data.mode == ir_var_shader_in)
3441 || (var->data.mode == ir_var_shader_out))
3442 var->data.invariant = true;
3443 break;
3444 case MESA_SHADER_FRAGMENT:
3445 if (var->data.mode == ir_var_shader_in)
3446 var->data.invariant = true;
3447 break;
3448 case MESA_SHADER_COMPUTE:
3449 /* Invariance isn't meaningful in compute shaders. */
3450 break;
3451 }
3452 }
3453
3454 var->data.interpolation =
3455 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
3456 state, loc);
3457
3458 /* Does the declaration use the deprecated 'attribute' or 'varying'
3459 * keywords?
3460 */
3461 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3462 || qual->flags.q.varying;
3463
3464
3465 /* Validate auxiliary storage qualifiers */
3466
3467 /* From section 4.3.4 of the GLSL 1.30 spec:
3468 * "It is an error to use centroid in in a vertex shader."
3469 *
3470 * From section 4.3.4 of the GLSL ES 3.00 spec:
3471 * "It is an error to use centroid in or interpolation qualifiers in
3472 * a vertex shader input."
3473 */
3474
3475 /* Section 4.3.6 of the GLSL 1.30 specification states:
3476 * "It is an error to use centroid out in a fragment shader."
3477 *
3478 * The GL_ARB_shading_language_420pack extension specification states:
3479 * "It is an error to use auxiliary storage qualifiers or interpolation
3480 * qualifiers on an output in a fragment shader."
3481 */
3482 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3483 _mesa_glsl_error(loc, state,
3484 "sample qualifier may only be used on `in` or `out` "
3485 "variables between shader stages");
3486 }
3487 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3488 _mesa_glsl_error(loc, state,
3489 "centroid qualifier may only be used with `in', "
3490 "`out' or `varying' variables between shader stages");
3491 }
3492
3493 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3494 _mesa_glsl_error(loc, state,
3495 "the shared storage qualifiers can only be used with "
3496 "compute shaders");
3497 }
3498
3499 apply_image_qualifier_to_variable(qual, var, state, loc);
3500 }
3501
3502 /**
3503 * Get the variable that is being redeclared by this declaration
3504 *
3505 * Semantic checks to verify the validity of the redeclaration are also
3506 * performed. If semantic checks fail, compilation error will be emitted via
3507 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3508 *
3509 * \returns
3510 * A pointer to an existing variable in the current scope if the declaration
3511 * is a redeclaration, \c NULL otherwise.
3512 */
3513 static ir_variable *
3514 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3515 struct _mesa_glsl_parse_state *state,
3516 bool allow_all_redeclarations)
3517 {
3518 /* Check if this declaration is actually a re-declaration, either to
3519 * resize an array or add qualifiers to an existing variable.
3520 *
3521 * This is allowed for variables in the current scope, or when at
3522 * global scope (for built-ins in the implicit outer scope).
3523 */
3524 ir_variable *earlier = state->symbols->get_variable(var->name);
3525 if (earlier == NULL ||
3526 (state->current_function != NULL &&
3527 !state->symbols->name_declared_this_scope(var->name))) {
3528 return NULL;
3529 }
3530
3531
3532 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3533 *
3534 * "It is legal to declare an array without a size and then
3535 * later re-declare the same name as an array of the same
3536 * type and specify a size."
3537 */
3538 if (earlier->type->is_unsized_array() && var->type->is_array()
3539 && (var->type->fields.array == earlier->type->fields.array)) {
3540 /* FINISHME: This doesn't match the qualifiers on the two
3541 * FINISHME: declarations. It's not 100% clear whether this is
3542 * FINISHME: required or not.
3543 */
3544
3545 const unsigned size = unsigned(var->type->array_size());
3546 check_builtin_array_max_size(var->name, size, loc, state);
3547 if ((size > 0) && (size <= earlier->data.max_array_access)) {
3548 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
3549 "previous access",
3550 earlier->data.max_array_access);
3551 }
3552
3553 earlier->type = var->type;
3554 delete var;
3555 var = NULL;
3556 } else if ((state->ARB_fragment_coord_conventions_enable ||
3557 state->is_version(150, 0))
3558 && strcmp(var->name, "gl_FragCoord") == 0
3559 && earlier->type == var->type
3560 && var->data.mode == ir_var_shader_in) {
3561 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
3562 * qualifiers.
3563 */
3564 earlier->data.origin_upper_left = var->data.origin_upper_left;
3565 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
3566
3567 /* According to section 4.3.7 of the GLSL 1.30 spec,
3568 * the following built-in varaibles can be redeclared with an
3569 * interpolation qualifier:
3570 * * gl_FrontColor
3571 * * gl_BackColor
3572 * * gl_FrontSecondaryColor
3573 * * gl_BackSecondaryColor
3574 * * gl_Color
3575 * * gl_SecondaryColor
3576 */
3577 } else if (state->is_version(130, 0)
3578 && (strcmp(var->name, "gl_FrontColor") == 0
3579 || strcmp(var->name, "gl_BackColor") == 0
3580 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
3581 || strcmp(var->name, "gl_BackSecondaryColor") == 0
3582 || strcmp(var->name, "gl_Color") == 0
3583 || strcmp(var->name, "gl_SecondaryColor") == 0)
3584 && earlier->type == var->type
3585 && earlier->data.mode == var->data.mode) {
3586 earlier->data.interpolation = var->data.interpolation;
3587
3588 /* Layout qualifiers for gl_FragDepth. */
3589 } else if ((state->AMD_conservative_depth_enable ||
3590 state->ARB_conservative_depth_enable)
3591 && strcmp(var->name, "gl_FragDepth") == 0
3592 && earlier->type == var->type
3593 && earlier->data.mode == var->data.mode) {
3594
3595 /** From the AMD_conservative_depth spec:
3596 * Within any shader, the first redeclarations of gl_FragDepth
3597 * must appear before any use of gl_FragDepth.
3598 */
3599 if (earlier->data.used) {
3600 _mesa_glsl_error(&loc, state,
3601 "the first redeclaration of gl_FragDepth "
3602 "must appear before any use of gl_FragDepth");
3603 }
3604
3605 /* Prevent inconsistent redeclaration of depth layout qualifier. */
3606 if (earlier->data.depth_layout != ir_depth_layout_none
3607 && earlier->data.depth_layout != var->data.depth_layout) {
3608 _mesa_glsl_error(&loc, state,
3609 "gl_FragDepth: depth layout is declared here "
3610 "as '%s, but it was previously declared as "
3611 "'%s'",
3612 depth_layout_string(var->data.depth_layout),
3613 depth_layout_string(earlier->data.depth_layout));
3614 }
3615
3616 earlier->data.depth_layout = var->data.depth_layout;
3617
3618 } else if (allow_all_redeclarations) {
3619 if (earlier->data.mode != var->data.mode) {
3620 _mesa_glsl_error(&loc, state,
3621 "redeclaration of `%s' with incorrect qualifiers",
3622 var->name);
3623 } else if (earlier->type != var->type) {
3624 _mesa_glsl_error(&loc, state,
3625 "redeclaration of `%s' has incorrect type",
3626 var->name);
3627 }
3628 } else {
3629 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
3630 }
3631
3632 return earlier;
3633 }
3634
3635 /**
3636 * Generate the IR for an initializer in a variable declaration
3637 */
3638 ir_rvalue *
3639 process_initializer(ir_variable *var, ast_declaration *decl,
3640 ast_fully_specified_type *type,
3641 exec_list *initializer_instructions,
3642 struct _mesa_glsl_parse_state *state)
3643 {
3644 ir_rvalue *result = NULL;
3645
3646 YYLTYPE initializer_loc = decl->initializer->get_location();
3647
3648 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
3649 *
3650 * "All uniform variables are read-only and are initialized either
3651 * directly by an application via API commands, or indirectly by
3652 * OpenGL."
3653 */
3654 if (var->data.mode == ir_var_uniform) {
3655 state->check_version(120, 0, &initializer_loc,
3656 "cannot initialize uniform %s",
3657 var->name);
3658 }
3659
3660 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
3661 *
3662 * "Buffer variables cannot have initializers."
3663 */
3664 if (var->data.mode == ir_var_shader_storage) {
3665 _mesa_glsl_error(&initializer_loc, state,
3666 "cannot initialize buffer variable %s",
3667 var->name);
3668 }
3669
3670 /* From section 4.1.7 of the GLSL 4.40 spec:
3671 *
3672 * "Opaque variables [...] are initialized only through the
3673 * OpenGL API; they cannot be declared with an initializer in a
3674 * shader."
3675 */
3676 if (var->type->contains_opaque()) {
3677 _mesa_glsl_error(&initializer_loc, state,
3678 "cannot initialize opaque variable %s",
3679 var->name);
3680 }
3681
3682 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
3683 _mesa_glsl_error(&initializer_loc, state,
3684 "cannot initialize %s shader input / %s %s",
3685 _mesa_shader_stage_to_string(state->stage),
3686 (state->stage == MESA_SHADER_VERTEX)
3687 ? "attribute" : "varying",
3688 var->name);
3689 }
3690
3691 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
3692 _mesa_glsl_error(&initializer_loc, state,
3693 "cannot initialize %s shader output %s",
3694 _mesa_shader_stage_to_string(state->stage),
3695 var->name);
3696 }
3697
3698 /* If the initializer is an ast_aggregate_initializer, recursively store
3699 * type information from the LHS into it, so that its hir() function can do
3700 * type checking.
3701 */
3702 if (decl->initializer->oper == ast_aggregate)
3703 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
3704
3705 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
3706 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
3707
3708 /* Calculate the constant value if this is a const or uniform
3709 * declaration.
3710 *
3711 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
3712 *
3713 * "Declarations of globals without a storage qualifier, or with
3714 * just the const qualifier, may include initializers, in which case
3715 * they will be initialized before the first line of main() is
3716 * executed. Such initializers must be a constant expression."
3717 *
3718 * The same section of the GLSL ES 3.00.4 spec has similar language.
3719 */
3720 if (type->qualifier.flags.q.constant
3721 || type->qualifier.flags.q.uniform
3722 || (state->es_shader && state->current_function == NULL)) {
3723 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
3724 lhs, rhs, true);
3725 if (new_rhs != NULL) {
3726 rhs = new_rhs;
3727
3728 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
3729 * says:
3730 *
3731 * "A constant expression is one of
3732 *
3733 * ...
3734 *
3735 * - an expression formed by an operator on operands that are
3736 * all constant expressions, including getting an element of
3737 * a constant array, or a field of a constant structure, or
3738 * components of a constant vector. However, the sequence
3739 * operator ( , ) and the assignment operators ( =, +=, ...)
3740 * are not included in the operators that can create a
3741 * constant expression."
3742 *
3743 * Section 12.43 (Sequence operator and constant expressions) says:
3744 *
3745 * "Should the following construct be allowed?
3746 *
3747 * float a[2,3];
3748 *
3749 * The expression within the brackets uses the sequence operator
3750 * (',') and returns the integer 3 so the construct is declaring
3751 * a single-dimensional array of size 3. In some languages, the
3752 * construct declares a two-dimensional array. It would be
3753 * preferable to make this construct illegal to avoid confusion.
3754 *
3755 * One possibility is to change the definition of the sequence
3756 * operator so that it does not return a constant-expression and
3757 * hence cannot be used to declare an array size.
3758 *
3759 * RESOLUTION: The result of a sequence operator is not a
3760 * constant-expression."
3761 *
3762 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
3763 * contains language almost identical to the section 4.3.3 in the
3764 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
3765 * versions.
3766 */
3767 ir_constant *constant_value = rhs->constant_expression_value();
3768 if (!constant_value ||
3769 (state->is_version(430, 300) &&
3770 decl->initializer->has_sequence_subexpression())) {
3771 const char *const variable_mode =
3772 (type->qualifier.flags.q.constant)
3773 ? "const"
3774 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
3775
3776 /* If ARB_shading_language_420pack is enabled, initializers of
3777 * const-qualified local variables do not have to be constant
3778 * expressions. Const-qualified global variables must still be
3779 * initialized with constant expressions.
3780 */
3781 if (!state->has_420pack()
3782 || state->current_function == NULL) {
3783 _mesa_glsl_error(& initializer_loc, state,
3784 "initializer of %s variable `%s' must be a "
3785 "constant expression",
3786 variable_mode,
3787 decl->identifier);
3788 if (var->type->is_numeric()) {
3789 /* Reduce cascading errors. */
3790 var->constant_value = type->qualifier.flags.q.constant
3791 ? ir_constant::zero(state, var->type) : NULL;
3792 }
3793 }
3794 } else {
3795 rhs = constant_value;
3796 var->constant_value = type->qualifier.flags.q.constant
3797 ? constant_value : NULL;
3798 }
3799 } else {
3800 if (var->type->is_numeric()) {
3801 /* Reduce cascading errors. */
3802 var->constant_value = type->qualifier.flags.q.constant
3803 ? ir_constant::zero(state, var->type) : NULL;
3804 }
3805 }
3806 }
3807
3808 if (rhs && !rhs->type->is_error()) {
3809 bool temp = var->data.read_only;
3810 if (type->qualifier.flags.q.constant)
3811 var->data.read_only = false;
3812
3813 /* Never emit code to initialize a uniform.
3814 */
3815 const glsl_type *initializer_type;
3816 if (!type->qualifier.flags.q.uniform) {
3817 do_assignment(initializer_instructions, state,
3818 NULL,
3819 lhs, rhs,
3820 &result, true,
3821 true,
3822 type->get_location());
3823 initializer_type = result->type;
3824 } else
3825 initializer_type = rhs->type;
3826
3827 var->constant_initializer = rhs->constant_expression_value();
3828 var->data.has_initializer = true;
3829
3830 /* If the declared variable is an unsized array, it must inherrit
3831 * its full type from the initializer. A declaration such as
3832 *
3833 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3834 *
3835 * becomes
3836 *
3837 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3838 *
3839 * The assignment generated in the if-statement (below) will also
3840 * automatically handle this case for non-uniforms.
3841 *
3842 * If the declared variable is not an array, the types must
3843 * already match exactly. As a result, the type assignment
3844 * here can be done unconditionally. For non-uniforms the call
3845 * to do_assignment can change the type of the initializer (via
3846 * the implicit conversion rules). For uniforms the initializer
3847 * must be a constant expression, and the type of that expression
3848 * was validated above.
3849 */
3850 var->type = initializer_type;
3851
3852 var->data.read_only = temp;
3853 }
3854
3855 return result;
3856 }
3857
3858 static void
3859 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
3860 YYLTYPE loc, ir_variable *var,
3861 unsigned num_vertices,
3862 unsigned *size,
3863 const char *var_category)
3864 {
3865 if (var->type->is_unsized_array()) {
3866 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3867 *
3868 * All geometry shader input unsized array declarations will be
3869 * sized by an earlier input layout qualifier, when present, as per
3870 * the following table.
3871 *
3872 * Followed by a table mapping each allowed input layout qualifier to
3873 * the corresponding input length.
3874 *
3875 * Similarly for tessellation control shader outputs.
3876 */
3877 if (num_vertices != 0)
3878 var->type = glsl_type::get_array_instance(var->type->fields.array,
3879 num_vertices);
3880 } else {
3881 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3882 * includes the following examples of compile-time errors:
3883 *
3884 * // code sequence within one shader...
3885 * in vec4 Color1[]; // size unknown
3886 * ...Color1.length()...// illegal, length() unknown
3887 * in vec4 Color2[2]; // size is 2
3888 * ...Color1.length()...// illegal, Color1 still has no size
3889 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3890 * layout(lines) in; // legal, input size is 2, matching
3891 * in vec4 Color4[3]; // illegal, contradicts layout
3892 * ...
3893 *
3894 * To detect the case illustrated by Color3, we verify that the size of
3895 * an explicitly-sized array matches the size of any previously declared
3896 * explicitly-sized array. To detect the case illustrated by Color4, we
3897 * verify that the size of an explicitly-sized array is consistent with
3898 * any previously declared input layout.
3899 */
3900 if (num_vertices != 0 && var->type->length != num_vertices) {
3901 _mesa_glsl_error(&loc, state,
3902 "%s size contradicts previously declared layout "
3903 "(size is %u, but layout requires a size of %u)",
3904 var_category, var->type->length, num_vertices);
3905 } else if (*size != 0 && var->type->length != *size) {
3906 _mesa_glsl_error(&loc, state,
3907 "%s sizes are inconsistent (size is %u, but a "
3908 "previous declaration has size %u)",
3909 var_category, var->type->length, *size);
3910 } else {
3911 *size = var->type->length;
3912 }
3913 }
3914 }
3915
3916 static void
3917 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
3918 YYLTYPE loc, ir_variable *var)
3919 {
3920 unsigned num_vertices = 0;
3921
3922 if (state->tcs_output_vertices_specified) {
3923 if (!state->out_qualifier->vertices->
3924 process_qualifier_constant(state, "vertices",
3925 &num_vertices, false)) {
3926 return;
3927 }
3928
3929 if (num_vertices > state->Const.MaxPatchVertices) {
3930 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
3931 "GL_MAX_PATCH_VERTICES", num_vertices);
3932 return;
3933 }
3934 }
3935
3936 if (!var->type->is_array() && !var->data.patch) {
3937 _mesa_glsl_error(&loc, state,
3938 "tessellation control shader outputs must be arrays");
3939
3940 /* To avoid cascading failures, short circuit the checks below. */
3941 return;
3942 }
3943
3944 if (var->data.patch)
3945 return;
3946
3947 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
3948 &state->tcs_output_size,
3949 "tessellation control shader output");
3950 }
3951
3952 /**
3953 * Do additional processing necessary for tessellation control/evaluation shader
3954 * input declarations. This covers both interface block arrays and bare input
3955 * variables.
3956 */
3957 static void
3958 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
3959 YYLTYPE loc, ir_variable *var)
3960 {
3961 if (!var->type->is_array() && !var->data.patch) {
3962 _mesa_glsl_error(&loc, state,
3963 "per-vertex tessellation shader inputs must be arrays");
3964 /* Avoid cascading failures. */
3965 return;
3966 }
3967
3968 if (var->data.patch)
3969 return;
3970
3971 /* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
3972 if (var->type->is_unsized_array()) {
3973 var->type = glsl_type::get_array_instance(var->type->fields.array,
3974 state->Const.MaxPatchVertices);
3975 }
3976 }
3977
3978
3979 /**
3980 * Do additional processing necessary for geometry shader input declarations
3981 * (this covers both interface blocks arrays and bare input variables).
3982 */
3983 static void
3984 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3985 YYLTYPE loc, ir_variable *var)
3986 {
3987 unsigned num_vertices = 0;
3988
3989 if (state->gs_input_prim_type_specified) {
3990 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3991 }
3992
3993 /* Geometry shader input variables must be arrays. Caller should have
3994 * reported an error for this.
3995 */
3996 if (!var->type->is_array()) {
3997 assert(state->error);
3998
3999 /* To avoid cascading failures, short circuit the checks below. */
4000 return;
4001 }
4002
4003 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4004 &state->gs_input_size,
4005 "geometry shader input");
4006 }
4007
4008 void
4009 validate_identifier(const char *identifier, YYLTYPE loc,
4010 struct _mesa_glsl_parse_state *state)
4011 {
4012 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4013 *
4014 * "Identifiers starting with "gl_" are reserved for use by
4015 * OpenGL, and may not be declared in a shader as either a
4016 * variable or a function."
4017 */
4018 if (is_gl_identifier(identifier)) {
4019 _mesa_glsl_error(&loc, state,
4020 "identifier `%s' uses reserved `gl_' prefix",
4021 identifier);
4022 } else if (strstr(identifier, "__")) {
4023 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4024 * spec:
4025 *
4026 * "In addition, all identifiers containing two
4027 * consecutive underscores (__) are reserved as
4028 * possible future keywords."
4029 *
4030 * The intention is that names containing __ are reserved for internal
4031 * use by the implementation, and names prefixed with GL_ are reserved
4032 * for use by Khronos. Names simply containing __ are dangerous to use,
4033 * but should be allowed.
4034 *
4035 * A future version of the GLSL specification will clarify this.
4036 */
4037 _mesa_glsl_warning(&loc, state,
4038 "identifier `%s' uses reserved `__' string",
4039 identifier);
4040 }
4041 }
4042
4043 ir_rvalue *
4044 ast_declarator_list::hir(exec_list *instructions,
4045 struct _mesa_glsl_parse_state *state)
4046 {
4047 void *ctx = state;
4048 const struct glsl_type *decl_type;
4049 const char *type_name = NULL;
4050 ir_rvalue *result = NULL;
4051 YYLTYPE loc = this->get_location();
4052
4053 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4054 *
4055 * "To ensure that a particular output variable is invariant, it is
4056 * necessary to use the invariant qualifier. It can either be used to
4057 * qualify a previously declared variable as being invariant
4058 *
4059 * invariant gl_Position; // make existing gl_Position be invariant"
4060 *
4061 * In these cases the parser will set the 'invariant' flag in the declarator
4062 * list, and the type will be NULL.
4063 */
4064 if (this->invariant) {
4065 assert(this->type == NULL);
4066
4067 if (state->current_function != NULL) {
4068 _mesa_glsl_error(& loc, state,
4069 "all uses of `invariant' keyword must be at global "
4070 "scope");
4071 }
4072
4073 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4074 assert(decl->array_specifier == NULL);
4075 assert(decl->initializer == NULL);
4076
4077 ir_variable *const earlier =
4078 state->symbols->get_variable(decl->identifier);
4079 if (earlier == NULL) {
4080 _mesa_glsl_error(& loc, state,
4081 "undeclared variable `%s' cannot be marked "
4082 "invariant", decl->identifier);
4083 } else if (!is_varying_var(earlier, state->stage)) {
4084 _mesa_glsl_error(&loc, state,
4085 "`%s' cannot be marked invariant; interfaces between "
4086 "shader stages only.", decl->identifier);
4087 } else if (earlier->data.used) {
4088 _mesa_glsl_error(& loc, state,
4089 "variable `%s' may not be redeclared "
4090 "`invariant' after being used",
4091 earlier->name);
4092 } else {
4093 earlier->data.invariant = true;
4094 }
4095 }
4096
4097 /* Invariant redeclarations do not have r-values.
4098 */
4099 return NULL;
4100 }
4101
4102 if (this->precise) {
4103 assert(this->type == NULL);
4104
4105 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4106 assert(decl->array_specifier == NULL);
4107 assert(decl->initializer == NULL);
4108
4109 ir_variable *const earlier =
4110 state->symbols->get_variable(decl->identifier);
4111 if (earlier == NULL) {
4112 _mesa_glsl_error(& loc, state,
4113 "undeclared variable `%s' cannot be marked "
4114 "precise", decl->identifier);
4115 } else if (state->current_function != NULL &&
4116 !state->symbols->name_declared_this_scope(decl->identifier)) {
4117 /* Note: we have to check if we're in a function, since
4118 * builtins are treated as having come from another scope.
4119 */
4120 _mesa_glsl_error(& loc, state,
4121 "variable `%s' from an outer scope may not be "
4122 "redeclared `precise' in this scope",
4123 earlier->name);
4124 } else if (earlier->data.used) {
4125 _mesa_glsl_error(& loc, state,
4126 "variable `%s' may not be redeclared "
4127 "`precise' after being used",
4128 earlier->name);
4129 } else {
4130 earlier->data.precise = true;
4131 }
4132 }
4133
4134 /* Precise redeclarations do not have r-values either. */
4135 return NULL;
4136 }
4137
4138 assert(this->type != NULL);
4139 assert(!this->invariant);
4140 assert(!this->precise);
4141
4142 /* The type specifier may contain a structure definition. Process that
4143 * before any of the variable declarations.
4144 */
4145 (void) this->type->specifier->hir(instructions, state);
4146
4147 decl_type = this->type->glsl_type(& type_name, state);
4148
4149 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4150 * "Buffer variables may only be declared inside interface blocks
4151 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4152 * shader storage blocks. It is a compile-time error to declare buffer
4153 * variables at global scope (outside a block)."
4154 */
4155 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4156 _mesa_glsl_error(&loc, state,
4157 "buffer variables cannot be declared outside "
4158 "interface blocks");
4159 }
4160
4161 /* An offset-qualified atomic counter declaration sets the default
4162 * offset for the next declaration within the same atomic counter
4163 * buffer.
4164 */
4165 if (decl_type && decl_type->contains_atomic()) {
4166 if (type->qualifier.flags.q.explicit_binding &&
4167 type->qualifier.flags.q.explicit_offset) {
4168 unsigned qual_binding;
4169 unsigned qual_offset;
4170 if (process_qualifier_constant(state, &loc, "binding",
4171 type->qualifier.binding,
4172 &qual_binding)
4173 && process_qualifier_constant(state, &loc, "offset",
4174 type->qualifier.offset,
4175 &qual_offset)) {
4176 state->atomic_counter_offsets[qual_binding] = qual_offset;
4177 }
4178 }
4179 }
4180
4181 if (this->declarations.is_empty()) {
4182 /* If there is no structure involved in the program text, there are two
4183 * possible scenarios:
4184 *
4185 * - The program text contained something like 'vec4;'. This is an
4186 * empty declaration. It is valid but weird. Emit a warning.
4187 *
4188 * - The program text contained something like 'S;' and 'S' is not the
4189 * name of a known structure type. This is both invalid and weird.
4190 * Emit an error.
4191 *
4192 * - The program text contained something like 'mediump float;'
4193 * when the programmer probably meant 'precision mediump
4194 * float;' Emit a warning with a description of what they
4195 * probably meant to do.
4196 *
4197 * Note that if decl_type is NULL and there is a structure involved,
4198 * there must have been some sort of error with the structure. In this
4199 * case we assume that an error was already generated on this line of
4200 * code for the structure. There is no need to generate an additional,
4201 * confusing error.
4202 */
4203 assert(this->type->specifier->structure == NULL || decl_type != NULL
4204 || state->error);
4205
4206 if (decl_type == NULL) {
4207 _mesa_glsl_error(&loc, state,
4208 "invalid type `%s' in empty declaration",
4209 type_name);
4210 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4211 /* Empty atomic counter declarations are allowed and useful
4212 * to set the default offset qualifier.
4213 */
4214 return NULL;
4215 } else if (this->type->qualifier.precision != ast_precision_none) {
4216 if (this->type->specifier->structure != NULL) {
4217 _mesa_glsl_error(&loc, state,
4218 "precision qualifiers can't be applied "
4219 "to structures");
4220 } else {
4221 static const char *const precision_names[] = {
4222 "highp",
4223 "highp",
4224 "mediump",
4225 "lowp"
4226 };
4227
4228 _mesa_glsl_warning(&loc, state,
4229 "empty declaration with precision qualifier, "
4230 "to set the default precision, use "
4231 "`precision %s %s;'",
4232 precision_names[this->type->qualifier.precision],
4233 type_name);
4234 }
4235 } else if (this->type->specifier->structure == NULL) {
4236 _mesa_glsl_warning(&loc, state, "empty declaration");
4237 }
4238 }
4239
4240 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4241 const struct glsl_type *var_type;
4242 ir_variable *var;
4243 const char *identifier = decl->identifier;
4244 /* FINISHME: Emit a warning if a variable declaration shadows a
4245 * FINISHME: declaration at a higher scope.
4246 */
4247
4248 if ((decl_type == NULL) || decl_type->is_void()) {
4249 if (type_name != NULL) {
4250 _mesa_glsl_error(& loc, state,
4251 "invalid type `%s' in declaration of `%s'",
4252 type_name, decl->identifier);
4253 } else {
4254 _mesa_glsl_error(& loc, state,
4255 "invalid type in declaration of `%s'",
4256 decl->identifier);
4257 }
4258 continue;
4259 }
4260
4261 if (this->type->qualifier.flags.q.subroutine) {
4262 const glsl_type *t;
4263 const char *name;
4264
4265 t = state->symbols->get_type(this->type->specifier->type_name);
4266 if (!t)
4267 _mesa_glsl_error(& loc, state,
4268 "invalid type in declaration of `%s'",
4269 decl->identifier);
4270 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4271
4272 identifier = name;
4273
4274 }
4275 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4276 state);
4277
4278 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4279
4280 /* The 'varying in' and 'varying out' qualifiers can only be used with
4281 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4282 * yet.
4283 */
4284 if (this->type->qualifier.flags.q.varying) {
4285 if (this->type->qualifier.flags.q.in) {
4286 _mesa_glsl_error(& loc, state,
4287 "`varying in' qualifier in declaration of "
4288 "`%s' only valid for geometry shaders using "
4289 "ARB_geometry_shader4 or EXT_geometry_shader4",
4290 decl->identifier);
4291 } else if (this->type->qualifier.flags.q.out) {
4292 _mesa_glsl_error(& loc, state,
4293 "`varying out' qualifier in declaration of "
4294 "`%s' only valid for geometry shaders using "
4295 "ARB_geometry_shader4 or EXT_geometry_shader4",
4296 decl->identifier);
4297 }
4298 }
4299
4300 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4301 *
4302 * "Global variables can only use the qualifiers const,
4303 * attribute, uniform, or varying. Only one may be
4304 * specified.
4305 *
4306 * Local variables can only use the qualifier const."
4307 *
4308 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4309 * any extension that adds the 'layout' keyword.
4310 */
4311 if (!state->is_version(130, 300)
4312 && !state->has_explicit_attrib_location()
4313 && !state->has_separate_shader_objects()
4314 && !state->ARB_fragment_coord_conventions_enable) {
4315 if (this->type->qualifier.flags.q.out) {
4316 _mesa_glsl_error(& loc, state,
4317 "`out' qualifier in declaration of `%s' "
4318 "only valid for function parameters in %s",
4319 decl->identifier, state->get_version_string());
4320 }
4321 if (this->type->qualifier.flags.q.in) {
4322 _mesa_glsl_error(& loc, state,
4323 "`in' qualifier in declaration of `%s' "
4324 "only valid for function parameters in %s",
4325 decl->identifier, state->get_version_string());
4326 }
4327 /* FINISHME: Test for other invalid qualifiers. */
4328 }
4329
4330 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4331 & loc, false);
4332 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4333 &loc);
4334
4335 if (this->type->qualifier.flags.q.invariant) {
4336 if (!is_varying_var(var, state->stage)) {
4337 _mesa_glsl_error(&loc, state,
4338 "`%s' cannot be marked invariant; interfaces between "
4339 "shader stages only", var->name);
4340 }
4341 }
4342
4343 if (state->current_function != NULL) {
4344 const char *mode = NULL;
4345 const char *extra = "";
4346
4347 /* There is no need to check for 'inout' here because the parser will
4348 * only allow that in function parameter lists.
4349 */
4350 if (this->type->qualifier.flags.q.attribute) {
4351 mode = "attribute";
4352 } else if (this->type->qualifier.flags.q.subroutine) {
4353 mode = "subroutine uniform";
4354 } else if (this->type->qualifier.flags.q.uniform) {
4355 mode = "uniform";
4356 } else if (this->type->qualifier.flags.q.varying) {
4357 mode = "varying";
4358 } else if (this->type->qualifier.flags.q.in) {
4359 mode = "in";
4360 extra = " or in function parameter list";
4361 } else if (this->type->qualifier.flags.q.out) {
4362 mode = "out";
4363 extra = " or in function parameter list";
4364 }
4365
4366 if (mode) {
4367 _mesa_glsl_error(& loc, state,
4368 "%s variable `%s' must be declared at "
4369 "global scope%s",
4370 mode, var->name, extra);
4371 }
4372 } else if (var->data.mode == ir_var_shader_in) {
4373 var->data.read_only = true;
4374
4375 if (state->stage == MESA_SHADER_VERTEX) {
4376 bool error_emitted = false;
4377
4378 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4379 *
4380 * "Vertex shader inputs can only be float, floating-point
4381 * vectors, matrices, signed and unsigned integers and integer
4382 * vectors. Vertex shader inputs can also form arrays of these
4383 * types, but not structures."
4384 *
4385 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4386 *
4387 * "Vertex shader inputs can only be float, floating-point
4388 * vectors, matrices, signed and unsigned integers and integer
4389 * vectors. They cannot be arrays or structures."
4390 *
4391 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4392 *
4393 * "The attribute qualifier can be used only with float,
4394 * floating-point vectors, and matrices. Attribute variables
4395 * cannot be declared as arrays or structures."
4396 *
4397 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4398 *
4399 * "Vertex shader inputs can only be float, floating-point
4400 * vectors, matrices, signed and unsigned integers and integer
4401 * vectors. Vertex shader inputs cannot be arrays or
4402 * structures."
4403 */
4404 const glsl_type *check_type = var->type->without_array();
4405
4406 switch (check_type->base_type) {
4407 case GLSL_TYPE_FLOAT:
4408 break;
4409 case GLSL_TYPE_UINT:
4410 case GLSL_TYPE_INT:
4411 if (state->is_version(120, 300))
4412 break;
4413 case GLSL_TYPE_DOUBLE:
4414 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4415 break;
4416 /* FALLTHROUGH */
4417 default:
4418 _mesa_glsl_error(& loc, state,
4419 "vertex shader input / attribute cannot have "
4420 "type %s`%s'",
4421 var->type->is_array() ? "array of " : "",
4422 check_type->name);
4423 error_emitted = true;
4424 }
4425
4426 if (!error_emitted && var->type->is_array() &&
4427 !state->check_version(150, 0, &loc,
4428 "vertex shader input / attribute "
4429 "cannot have array type")) {
4430 error_emitted = true;
4431 }
4432 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4433 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4434 *
4435 * Geometry shader input variables get the per-vertex values
4436 * written out by vertex shader output variables of the same
4437 * names. Since a geometry shader operates on a set of
4438 * vertices, each input varying variable (or input block, see
4439 * interface blocks below) needs to be declared as an array.
4440 */
4441 if (!var->type->is_array()) {
4442 _mesa_glsl_error(&loc, state,
4443 "geometry shader inputs must be arrays");
4444 }
4445
4446 handle_geometry_shader_input_decl(state, loc, var);
4447 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4448 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4449 *
4450 * It is a compile-time error to declare a fragment shader
4451 * input with, or that contains, any of the following types:
4452 *
4453 * * A boolean type
4454 * * An opaque type
4455 * * An array of arrays
4456 * * An array of structures
4457 * * A structure containing an array
4458 * * A structure containing a structure
4459 */
4460 if (state->es_shader) {
4461 const glsl_type *check_type = var->type->without_array();
4462 if (check_type->is_boolean() ||
4463 check_type->contains_opaque()) {
4464 _mesa_glsl_error(&loc, state,
4465 "fragment shader input cannot have type %s",
4466 check_type->name);
4467 }
4468 if (var->type->is_array() &&
4469 var->type->fields.array->is_array()) {
4470 _mesa_glsl_error(&loc, state,
4471 "%s shader output "
4472 "cannot have an array of arrays",
4473 _mesa_shader_stage_to_string(state->stage));
4474 }
4475 if (var->type->is_array() &&
4476 var->type->fields.array->is_record()) {
4477 _mesa_glsl_error(&loc, state,
4478 "fragment shader input "
4479 "cannot have an array of structs");
4480 }
4481 if (var->type->is_record()) {
4482 for (unsigned i = 0; i < var->type->length; i++) {
4483 if (var->type->fields.structure[i].type->is_array() ||
4484 var->type->fields.structure[i].type->is_record())
4485 _mesa_glsl_error(&loc, state,
4486 "fragement shader input cannot have "
4487 "a struct that contains an "
4488 "array or struct");
4489 }
4490 }
4491 }
4492 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
4493 state->stage == MESA_SHADER_TESS_EVAL) {
4494 handle_tess_shader_input_decl(state, loc, var);
4495 }
4496 } else if (var->data.mode == ir_var_shader_out) {
4497 const glsl_type *check_type = var->type->without_array();
4498
4499 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4500 *
4501 * It is a compile-time error to declare a vertex, tessellation
4502 * evaluation, tessellation control, or geometry shader output
4503 * that contains any of the following:
4504 *
4505 * * A Boolean type (bool, bvec2 ...)
4506 * * An opaque type
4507 */
4508 if (check_type->is_boolean() || check_type->contains_opaque())
4509 _mesa_glsl_error(&loc, state,
4510 "%s shader output cannot have type %s",
4511 _mesa_shader_stage_to_string(state->stage),
4512 check_type->name);
4513
4514 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
4515 *
4516 * It is a compile-time error to declare a fragment shader output
4517 * that contains any of the following:
4518 *
4519 * * A Boolean type (bool, bvec2 ...)
4520 * * A double-precision scalar or vector (double, dvec2 ...)
4521 * * An opaque type
4522 * * Any matrix type
4523 * * A structure
4524 */
4525 if (state->stage == MESA_SHADER_FRAGMENT) {
4526 if (check_type->is_record() || check_type->is_matrix())
4527 _mesa_glsl_error(&loc, state,
4528 "fragment shader output "
4529 "cannot have struct or matrix type");
4530 switch (check_type->base_type) {
4531 case GLSL_TYPE_UINT:
4532 case GLSL_TYPE_INT:
4533 case GLSL_TYPE_FLOAT:
4534 break;
4535 default:
4536 _mesa_glsl_error(&loc, state,
4537 "fragment shader output cannot have "
4538 "type %s", check_type->name);
4539 }
4540 }
4541
4542 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
4543 *
4544 * It is a compile-time error to declare a vertex shader output
4545 * with, or that contains, any of the following types:
4546 *
4547 * * A boolean type
4548 * * An opaque type
4549 * * An array of arrays
4550 * * An array of structures
4551 * * A structure containing an array
4552 * * A structure containing a structure
4553 *
4554 * It is a compile-time error to declare a fragment shader output
4555 * with, or that contains, any of the following types:
4556 *
4557 * * A boolean type
4558 * * An opaque type
4559 * * A matrix
4560 * * A structure
4561 * * An array of array
4562 */
4563 if (state->es_shader) {
4564 if (var->type->is_array() &&
4565 var->type->fields.array->is_array()) {
4566 _mesa_glsl_error(&loc, state,
4567 "%s shader output "
4568 "cannot have an array of arrays",
4569 _mesa_shader_stage_to_string(state->stage));
4570 }
4571 if (state->stage == MESA_SHADER_VERTEX) {
4572 if (var->type->is_array() &&
4573 var->type->fields.array->is_record()) {
4574 _mesa_glsl_error(&loc, state,
4575 "vertex shader output "
4576 "cannot have an array of structs");
4577 }
4578 if (var->type->is_record()) {
4579 for (unsigned i = 0; i < var->type->length; i++) {
4580 if (var->type->fields.structure[i].type->is_array() ||
4581 var->type->fields.structure[i].type->is_record())
4582 _mesa_glsl_error(&loc, state,
4583 "vertex shader output cannot have a "
4584 "struct that contains an "
4585 "array or struct");
4586 }
4587 }
4588 }
4589 }
4590
4591 if (state->stage == MESA_SHADER_TESS_CTRL) {
4592 handle_tess_ctrl_shader_output_decl(state, loc, var);
4593 }
4594 } else if (var->type->contains_subroutine()) {
4595 /* declare subroutine uniforms as hidden */
4596 var->data.how_declared = ir_var_hidden;
4597 }
4598
4599 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
4600 * so must integer vertex outputs.
4601 *
4602 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
4603 * "Fragment shader inputs that are signed or unsigned integers or
4604 * integer vectors must be qualified with the interpolation qualifier
4605 * flat."
4606 *
4607 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
4608 * "Fragment shader inputs that are, or contain, signed or unsigned
4609 * integers or integer vectors must be qualified with the
4610 * interpolation qualifier flat."
4611 *
4612 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
4613 * "Vertex shader outputs that are, or contain, signed or unsigned
4614 * integers or integer vectors must be qualified with the
4615 * interpolation qualifier flat."
4616 *
4617 * Note that prior to GLSL 1.50, this requirement applied to vertex
4618 * outputs rather than fragment inputs. That creates problems in the
4619 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
4620 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
4621 * apply the restriction to both vertex outputs and fragment inputs.
4622 *
4623 * Note also that the desktop GLSL specs are missing the text "or
4624 * contain"; this is presumably an oversight, since there is no
4625 * reasonable way to interpolate a fragment shader input that contains
4626 * an integer.
4627 */
4628 if (state->is_version(130, 300) &&
4629 var->type->contains_integer() &&
4630 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4631 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
4632 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
4633 && state->es_shader))) {
4634 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
4635 "vertex output" : "fragment input";
4636 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
4637 "an integer, then it must be qualified with 'flat'",
4638 var_type);
4639 }
4640
4641 /* Double fragment inputs must be qualified with 'flat'. */
4642 if (var->type->contains_double() &&
4643 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
4644 state->stage == MESA_SHADER_FRAGMENT &&
4645 var->data.mode == ir_var_shader_in) {
4646 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
4647 "a double, then it must be qualified with 'flat'",
4648 var_type);
4649 }
4650
4651 /* Interpolation qualifiers cannot be applied to 'centroid' and
4652 * 'centroid varying'.
4653 *
4654 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4655 * "interpolation qualifiers may only precede the qualifiers in,
4656 * centroid in, out, or centroid out in a declaration. They do not apply
4657 * to the deprecated storage qualifiers varying or centroid varying."
4658 *
4659 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
4660 */
4661 if (state->is_version(130, 0)
4662 && this->type->qualifier.has_interpolation()
4663 && this->type->qualifier.flags.q.varying) {
4664
4665 const char *i = this->type->qualifier.interpolation_string();
4666 assert(i != NULL);
4667 const char *s;
4668 if (this->type->qualifier.flags.q.centroid)
4669 s = "centroid varying";
4670 else
4671 s = "varying";
4672
4673 _mesa_glsl_error(&loc, state,
4674 "qualifier '%s' cannot be applied to the "
4675 "deprecated storage qualifier '%s'", i, s);
4676 }
4677
4678
4679 /* Interpolation qualifiers can only apply to vertex shader outputs and
4680 * fragment shader inputs.
4681 *
4682 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
4683 * "Outputs from a vertex shader (out) and inputs to a fragment
4684 * shader (in) can be further qualified with one or more of these
4685 * interpolation qualifiers"
4686 *
4687 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
4688 * "These interpolation qualifiers may only precede the qualifiers
4689 * in, centroid in, out, or centroid out in a declaration. They do
4690 * not apply to inputs into a vertex shader or outputs from a
4691 * fragment shader."
4692 */
4693 if (state->is_version(130, 300)
4694 && this->type->qualifier.has_interpolation()) {
4695
4696 const char *i = this->type->qualifier.interpolation_string();
4697 assert(i != NULL);
4698
4699 switch (state->stage) {
4700 case MESA_SHADER_VERTEX:
4701 if (this->type->qualifier.flags.q.in) {
4702 _mesa_glsl_error(&loc, state,
4703 "qualifier '%s' cannot be applied to vertex "
4704 "shader inputs", i);
4705 }
4706 break;
4707 case MESA_SHADER_FRAGMENT:
4708 if (this->type->qualifier.flags.q.out) {
4709 _mesa_glsl_error(&loc, state,
4710 "qualifier '%s' cannot be applied to fragment "
4711 "shader outputs", i);
4712 }
4713 break;
4714 default:
4715 break;
4716 }
4717 }
4718
4719
4720 /* From section 4.3.4 of the GLSL 4.00 spec:
4721 * "Input variables may not be declared using the patch in qualifier
4722 * in tessellation control or geometry shaders."
4723 *
4724 * From section 4.3.6 of the GLSL 4.00 spec:
4725 * "It is an error to use patch out in a vertex, tessellation
4726 * evaluation, or geometry shader."
4727 *
4728 * This doesn't explicitly forbid using them in a fragment shader, but
4729 * that's probably just an oversight.
4730 */
4731 if (state->stage != MESA_SHADER_TESS_EVAL
4732 && this->type->qualifier.flags.q.patch
4733 && this->type->qualifier.flags.q.in) {
4734
4735 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
4736 "tessellation evaluation shader");
4737 }
4738
4739 if (state->stage != MESA_SHADER_TESS_CTRL
4740 && this->type->qualifier.flags.q.patch
4741 && this->type->qualifier.flags.q.out) {
4742
4743 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
4744 "tessellation control shader");
4745 }
4746
4747 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
4748 */
4749 if (this->type->qualifier.precision != ast_precision_none) {
4750 state->check_precision_qualifiers_allowed(&loc);
4751 }
4752
4753
4754 /* If a precision qualifier is allowed on a type, it is allowed on
4755 * an array of that type.
4756 */
4757 if (!(this->type->qualifier.precision == ast_precision_none
4758 || precision_qualifier_allowed(var->type->without_array()))) {
4759
4760 _mesa_glsl_error(&loc, state,
4761 "precision qualifiers apply only to floating point"
4762 ", integer and opaque types");
4763 }
4764
4765 /* From section 4.1.7 of the GLSL 4.40 spec:
4766 *
4767 * "[Opaque types] can only be declared as function
4768 * parameters or uniform-qualified variables."
4769 */
4770 if (var_type->contains_opaque() &&
4771 !this->type->qualifier.flags.q.uniform) {
4772 _mesa_glsl_error(&loc, state,
4773 "opaque variables must be declared uniform");
4774 }
4775
4776 /* Process the initializer and add its instructions to a temporary
4777 * list. This list will be added to the instruction stream (below) after
4778 * the declaration is added. This is done because in some cases (such as
4779 * redeclarations) the declaration may not actually be added to the
4780 * instruction stream.
4781 */
4782 exec_list initializer_instructions;
4783
4784 /* Examine var name here since var may get deleted in the next call */
4785 bool var_is_gl_id = is_gl_identifier(var->name);
4786
4787 ir_variable *earlier =
4788 get_variable_being_redeclared(var, decl->get_location(), state,
4789 false /* allow_all_redeclarations */);
4790 if (earlier != NULL) {
4791 if (var_is_gl_id &&
4792 earlier->data.how_declared == ir_var_declared_in_block) {
4793 _mesa_glsl_error(&loc, state,
4794 "`%s' has already been redeclared using "
4795 "gl_PerVertex", earlier->name);
4796 }
4797 earlier->data.how_declared = ir_var_declared_normally;
4798 }
4799
4800 if (decl->initializer != NULL) {
4801 result = process_initializer((earlier == NULL) ? var : earlier,
4802 decl, this->type,
4803 &initializer_instructions, state);
4804 } else {
4805 validate_array_dimensions(var_type, state, &loc);
4806 }
4807
4808 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
4809 *
4810 * "It is an error to write to a const variable outside of
4811 * its declaration, so they must be initialized when
4812 * declared."
4813 */
4814 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
4815 _mesa_glsl_error(& loc, state,
4816 "const declaration of `%s' must be initialized",
4817 decl->identifier);
4818 }
4819
4820 if (state->es_shader) {
4821 const glsl_type *const t = (earlier == NULL)
4822 ? var->type : earlier->type;
4823
4824 if (t->is_unsized_array())
4825 /* Section 10.17 of the GLSL ES 1.00 specification states that
4826 * unsized array declarations have been removed from the language.
4827 * Arrays that are sized using an initializer are still explicitly
4828 * sized. However, GLSL ES 1.00 does not allow array
4829 * initializers. That is only allowed in GLSL ES 3.00.
4830 *
4831 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
4832 *
4833 * "An array type can also be formed without specifying a size
4834 * if the definition includes an initializer:
4835 *
4836 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
4837 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
4838 *
4839 * float a[5];
4840 * float b[] = a;"
4841 */
4842 _mesa_glsl_error(& loc, state,
4843 "unsized array declarations are not allowed in "
4844 "GLSL ES");
4845 }
4846
4847 /* If the declaration is not a redeclaration, there are a few additional
4848 * semantic checks that must be applied. In addition, variable that was
4849 * created for the declaration should be added to the IR stream.
4850 */
4851 if (earlier == NULL) {
4852 validate_identifier(decl->identifier, loc, state);
4853
4854 /* Add the variable to the symbol table. Note that the initializer's
4855 * IR was already processed earlier (though it hasn't been emitted
4856 * yet), without the variable in scope.
4857 *
4858 * This differs from most C-like languages, but it follows the GLSL
4859 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
4860 * spec:
4861 *
4862 * "Within a declaration, the scope of a name starts immediately
4863 * after the initializer if present or immediately after the name
4864 * being declared if not."
4865 */
4866 if (!state->symbols->add_variable(var)) {
4867 YYLTYPE loc = this->get_location();
4868 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
4869 "current scope", decl->identifier);
4870 continue;
4871 }
4872
4873 /* Push the variable declaration to the top. It means that all the
4874 * variable declarations will appear in a funny last-to-first order,
4875 * but otherwise we run into trouble if a function is prototyped, a
4876 * global var is decled, then the function is defined with usage of
4877 * the global var. See glslparsertest's CorrectModule.frag.
4878 */
4879 instructions->push_head(var);
4880 }
4881
4882 instructions->append_list(&initializer_instructions);
4883 }
4884
4885
4886 /* Generally, variable declarations do not have r-values. However,
4887 * one is used for the declaration in
4888 *
4889 * while (bool b = some_condition()) {
4890 * ...
4891 * }
4892 *
4893 * so we return the rvalue from the last seen declaration here.
4894 */
4895 return result;
4896 }
4897
4898
4899 ir_rvalue *
4900 ast_parameter_declarator::hir(exec_list *instructions,
4901 struct _mesa_glsl_parse_state *state)
4902 {
4903 void *ctx = state;
4904 const struct glsl_type *type;
4905 const char *name = NULL;
4906 YYLTYPE loc = this->get_location();
4907
4908 type = this->type->glsl_type(& name, state);
4909
4910 if (type == NULL) {
4911 if (name != NULL) {
4912 _mesa_glsl_error(& loc, state,
4913 "invalid type `%s' in declaration of `%s'",
4914 name, this->identifier);
4915 } else {
4916 _mesa_glsl_error(& loc, state,
4917 "invalid type in declaration of `%s'",
4918 this->identifier);
4919 }
4920
4921 type = glsl_type::error_type;
4922 }
4923
4924 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
4925 *
4926 * "Functions that accept no input arguments need not use void in the
4927 * argument list because prototypes (or definitions) are required and
4928 * therefore there is no ambiguity when an empty argument list "( )" is
4929 * declared. The idiom "(void)" as a parameter list is provided for
4930 * convenience."
4931 *
4932 * Placing this check here prevents a void parameter being set up
4933 * for a function, which avoids tripping up checks for main taking
4934 * parameters and lookups of an unnamed symbol.
4935 */
4936 if (type->is_void()) {
4937 if (this->identifier != NULL)
4938 _mesa_glsl_error(& loc, state,
4939 "named parameter cannot have type `void'");
4940
4941 is_void = true;
4942 return NULL;
4943 }
4944
4945 if (formal_parameter && (this->identifier == NULL)) {
4946 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
4947 return NULL;
4948 }
4949
4950 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
4951 * call already handled the "vec4[..] foo" case.
4952 */
4953 type = process_array_type(&loc, type, this->array_specifier, state);
4954
4955 if (!type->is_error() && type->is_unsized_array()) {
4956 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
4957 "a declared size");
4958 type = glsl_type::error_type;
4959 }
4960
4961 is_void = false;
4962 ir_variable *var = new(ctx)
4963 ir_variable(type, this->identifier, ir_var_function_in);
4964
4965 /* Apply any specified qualifiers to the parameter declaration. Note that
4966 * for function parameters the default mode is 'in'.
4967 */
4968 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
4969 true);
4970
4971 /* From section 4.1.7 of the GLSL 4.40 spec:
4972 *
4973 * "Opaque variables cannot be treated as l-values; hence cannot
4974 * be used as out or inout function parameters, nor can they be
4975 * assigned into."
4976 */
4977 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4978 && type->contains_opaque()) {
4979 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
4980 "contain opaque variables");
4981 type = glsl_type::error_type;
4982 }
4983
4984 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
4985 *
4986 * "When calling a function, expressions that do not evaluate to
4987 * l-values cannot be passed to parameters declared as out or inout."
4988 *
4989 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
4990 *
4991 * "Other binary or unary expressions, non-dereferenced arrays,
4992 * function names, swizzles with repeated fields, and constants
4993 * cannot be l-values."
4994 *
4995 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4996 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4997 */
4998 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4999 && type->is_array()
5000 && !state->check_version(120, 100, &loc,
5001 "arrays cannot be out or inout parameters")) {
5002 type = glsl_type::error_type;
5003 }
5004
5005 instructions->push_tail(var);
5006
5007 /* Parameter declarations do not have r-values.
5008 */
5009 return NULL;
5010 }
5011
5012
5013 void
5014 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5015 bool formal,
5016 exec_list *ir_parameters,
5017 _mesa_glsl_parse_state *state)
5018 {
5019 ast_parameter_declarator *void_param = NULL;
5020 unsigned count = 0;
5021
5022 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5023 param->formal_parameter = formal;
5024 param->hir(ir_parameters, state);
5025
5026 if (param->is_void)
5027 void_param = param;
5028
5029 count++;
5030 }
5031
5032 if ((void_param != NULL) && (count > 1)) {
5033 YYLTYPE loc = void_param->get_location();
5034
5035 _mesa_glsl_error(& loc, state,
5036 "`void' parameter must be only parameter");
5037 }
5038 }
5039
5040
5041 void
5042 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5043 {
5044 /* IR invariants disallow function declarations or definitions
5045 * nested within other function definitions. But there is no
5046 * requirement about the relative order of function declarations
5047 * and definitions with respect to one another. So simply insert
5048 * the new ir_function block at the end of the toplevel instruction
5049 * list.
5050 */
5051 state->toplevel_ir->push_tail(f);
5052 }
5053
5054
5055 ir_rvalue *
5056 ast_function::hir(exec_list *instructions,
5057 struct _mesa_glsl_parse_state *state)
5058 {
5059 void *ctx = state;
5060 ir_function *f = NULL;
5061 ir_function_signature *sig = NULL;
5062 exec_list hir_parameters;
5063 YYLTYPE loc = this->get_location();
5064
5065 const char *const name = identifier;
5066
5067 /* New functions are always added to the top-level IR instruction stream,
5068 * so this instruction list pointer is ignored. See also emit_function
5069 * (called below).
5070 */
5071 (void) instructions;
5072
5073 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5074 *
5075 * "Function declarations (prototypes) cannot occur inside of functions;
5076 * they must be at global scope, or for the built-in functions, outside
5077 * the global scope."
5078 *
5079 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5080 *
5081 * "User defined functions may only be defined within the global scope."
5082 *
5083 * Note that this language does not appear in GLSL 1.10.
5084 */
5085 if ((state->current_function != NULL) &&
5086 state->is_version(120, 100)) {
5087 YYLTYPE loc = this->get_location();
5088 _mesa_glsl_error(&loc, state,
5089 "declaration of function `%s' not allowed within "
5090 "function body", name);
5091 }
5092
5093 validate_identifier(name, this->get_location(), state);
5094
5095 /* Convert the list of function parameters to HIR now so that they can be
5096 * used below to compare this function's signature with previously seen
5097 * signatures for functions with the same name.
5098 */
5099 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5100 is_definition,
5101 & hir_parameters, state);
5102
5103 const char *return_type_name;
5104 const glsl_type *return_type =
5105 this->return_type->glsl_type(& return_type_name, state);
5106
5107 if (!return_type) {
5108 YYLTYPE loc = this->get_location();
5109 _mesa_glsl_error(&loc, state,
5110 "function `%s' has undeclared return type `%s'",
5111 name, return_type_name);
5112 return_type = glsl_type::error_type;
5113 }
5114
5115 /* ARB_shader_subroutine states:
5116 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5117 * subroutine(...) to a function declaration."
5118 */
5119 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5120 YYLTYPE loc = this->get_location();
5121 _mesa_glsl_error(&loc, state,
5122 "function declaration `%s' cannot have subroutine prepended",
5123 name);
5124 }
5125
5126 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5127 * "No qualifier is allowed on the return type of a function."
5128 */
5129 if (this->return_type->has_qualifiers(state)) {
5130 YYLTYPE loc = this->get_location();
5131 _mesa_glsl_error(& loc, state,
5132 "function `%s' return type has qualifiers", name);
5133 }
5134
5135 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5136 *
5137 * "Arrays are allowed as arguments and as the return type. In both
5138 * cases, the array must be explicitly sized."
5139 */
5140 if (return_type->is_unsized_array()) {
5141 YYLTYPE loc = this->get_location();
5142 _mesa_glsl_error(& loc, state,
5143 "function `%s' return type array must be explicitly "
5144 "sized", name);
5145 }
5146
5147 /* From section 4.1.7 of the GLSL 4.40 spec:
5148 *
5149 * "[Opaque types] can only be declared as function parameters
5150 * or uniform-qualified variables."
5151 */
5152 if (return_type->contains_opaque()) {
5153 YYLTYPE loc = this->get_location();
5154 _mesa_glsl_error(&loc, state,
5155 "function `%s' return type can't contain an opaque type",
5156 name);
5157 }
5158
5159 /* Create an ir_function if one doesn't already exist. */
5160 f = state->symbols->get_function(name);
5161 if (f == NULL) {
5162 f = new(ctx) ir_function(name);
5163 if (!this->return_type->qualifier.flags.q.subroutine) {
5164 if (!state->symbols->add_function(f)) {
5165 /* This function name shadows a non-function use of the same name. */
5166 YYLTYPE loc = this->get_location();
5167 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5168 "non-function", name);
5169 return NULL;
5170 }
5171 }
5172 emit_function(state, f);
5173 }
5174
5175 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5176 *
5177 * "A shader cannot redefine or overload built-in functions."
5178 *
5179 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5180 *
5181 * "User code can overload the built-in functions but cannot redefine
5182 * them."
5183 */
5184 if (state->es_shader && state->language_version >= 300) {
5185 /* Local shader has no exact candidates; check the built-ins. */
5186 _mesa_glsl_initialize_builtin_functions();
5187 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5188 YYLTYPE loc = this->get_location();
5189 _mesa_glsl_error(& loc, state,
5190 "A shader cannot redefine or overload built-in "
5191 "function `%s' in GLSL ES 3.00", name);
5192 return NULL;
5193 }
5194 }
5195
5196 /* Verify that this function's signature either doesn't match a previously
5197 * seen signature for a function with the same name, or, if a match is found,
5198 * that the previously seen signature does not have an associated definition.
5199 */
5200 if (state->es_shader || f->has_user_signature()) {
5201 sig = f->exact_matching_signature(state, &hir_parameters);
5202 if (sig != NULL) {
5203 const char *badvar = sig->qualifiers_match(&hir_parameters);
5204 if (badvar != NULL) {
5205 YYLTYPE loc = this->get_location();
5206
5207 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5208 "qualifiers don't match prototype", name, badvar);
5209 }
5210
5211 if (sig->return_type != return_type) {
5212 YYLTYPE loc = this->get_location();
5213
5214 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5215 "match prototype", name);
5216 }
5217
5218 if (sig->is_defined) {
5219 if (is_definition) {
5220 YYLTYPE loc = this->get_location();
5221 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5222 } else {
5223 /* We just encountered a prototype that exactly matches a
5224 * function that's already been defined. This is redundant,
5225 * and we should ignore it.
5226 */
5227 return NULL;
5228 }
5229 }
5230 }
5231 }
5232
5233 /* Verify the return type of main() */
5234 if (strcmp(name, "main") == 0) {
5235 if (! return_type->is_void()) {
5236 YYLTYPE loc = this->get_location();
5237
5238 _mesa_glsl_error(& loc, state, "main() must return void");
5239 }
5240
5241 if (!hir_parameters.is_empty()) {
5242 YYLTYPE loc = this->get_location();
5243
5244 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5245 }
5246 }
5247
5248 /* Finish storing the information about this new function in its signature.
5249 */
5250 if (sig == NULL) {
5251 sig = new(ctx) ir_function_signature(return_type);
5252 f->add_signature(sig);
5253 }
5254
5255 sig->replace_parameters(&hir_parameters);
5256 signature = sig;
5257
5258 if (this->return_type->qualifier.flags.q.subroutine_def) {
5259 int idx;
5260
5261 if (this->return_type->qualifier.flags.q.explicit_index) {
5262 unsigned qual_index;
5263 if (process_qualifier_constant(state, &loc, "index",
5264 this->return_type->qualifier.index,
5265 &qual_index)) {
5266 if (!state->has_explicit_uniform_location()) {
5267 _mesa_glsl_error(&loc, state, "subroutine index requires "
5268 "GL_ARB_explicit_uniform_location or "
5269 "GLSL 4.30");
5270 } else if (qual_index >= MAX_SUBROUTINES) {
5271 _mesa_glsl_error(&loc, state,
5272 "invalid subroutine index (%d) index must "
5273 "be a number between 0 and "
5274 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5275 MAX_SUBROUTINES - 1);
5276 } else {
5277 f->subroutine_index = qual_index;
5278 }
5279 }
5280 }
5281
5282 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5283 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5284 f->num_subroutine_types);
5285 idx = 0;
5286 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5287 const struct glsl_type *type;
5288 /* the subroutine type must be already declared */
5289 type = state->symbols->get_type(decl->identifier);
5290 if (!type) {
5291 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5292 }
5293 f->subroutine_types[idx++] = type;
5294 }
5295 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5296 ir_function *,
5297 state->num_subroutines + 1);
5298 state->subroutines[state->num_subroutines] = f;
5299 state->num_subroutines++;
5300
5301 }
5302
5303 if (this->return_type->qualifier.flags.q.subroutine) {
5304 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5305 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5306 return NULL;
5307 }
5308 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5309 ir_function *,
5310 state->num_subroutine_types + 1);
5311 state->subroutine_types[state->num_subroutine_types] = f;
5312 state->num_subroutine_types++;
5313
5314 f->is_subroutine = true;
5315 }
5316
5317 /* Function declarations (prototypes) do not have r-values.
5318 */
5319 return NULL;
5320 }
5321
5322
5323 ir_rvalue *
5324 ast_function_definition::hir(exec_list *instructions,
5325 struct _mesa_glsl_parse_state *state)
5326 {
5327 prototype->is_definition = true;
5328 prototype->hir(instructions, state);
5329
5330 ir_function_signature *signature = prototype->signature;
5331 if (signature == NULL)
5332 return NULL;
5333
5334 assert(state->current_function == NULL);
5335 state->current_function = signature;
5336 state->found_return = false;
5337
5338 /* Duplicate parameters declared in the prototype as concrete variables.
5339 * Add these to the symbol table.
5340 */
5341 state->symbols->push_scope();
5342 foreach_in_list(ir_variable, var, &signature->parameters) {
5343 assert(var->as_variable() != NULL);
5344
5345 /* The only way a parameter would "exist" is if two parameters have
5346 * the same name.
5347 */
5348 if (state->symbols->name_declared_this_scope(var->name)) {
5349 YYLTYPE loc = this->get_location();
5350
5351 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5352 } else {
5353 state->symbols->add_variable(var);
5354 }
5355 }
5356
5357 /* Convert the body of the function to HIR. */
5358 this->body->hir(&signature->body, state);
5359 signature->is_defined = true;
5360
5361 state->symbols->pop_scope();
5362
5363 assert(state->current_function == signature);
5364 state->current_function = NULL;
5365
5366 if (!signature->return_type->is_void() && !state->found_return) {
5367 YYLTYPE loc = this->get_location();
5368 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5369 "%s, but no return statement",
5370 signature->function_name(),
5371 signature->return_type->name);
5372 }
5373
5374 /* Function definitions do not have r-values.
5375 */
5376 return NULL;
5377 }
5378
5379
5380 ir_rvalue *
5381 ast_jump_statement::hir(exec_list *instructions,
5382 struct _mesa_glsl_parse_state *state)
5383 {
5384 void *ctx = state;
5385
5386 switch (mode) {
5387 case ast_return: {
5388 ir_return *inst;
5389 assert(state->current_function);
5390
5391 if (opt_return_value) {
5392 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5393
5394 /* The value of the return type can be NULL if the shader says
5395 * 'return foo();' and foo() is a function that returns void.
5396 *
5397 * NOTE: The GLSL spec doesn't say that this is an error. The type
5398 * of the return value is void. If the return type of the function is
5399 * also void, then this should compile without error. Seriously.
5400 */
5401 const glsl_type *const ret_type =
5402 (ret == NULL) ? glsl_type::void_type : ret->type;
5403
5404 /* Implicit conversions are not allowed for return values prior to
5405 * ARB_shading_language_420pack.
5406 */
5407 if (state->current_function->return_type != ret_type) {
5408 YYLTYPE loc = this->get_location();
5409
5410 if (state->has_420pack()) {
5411 if (!apply_implicit_conversion(state->current_function->return_type,
5412 ret, state)) {
5413 _mesa_glsl_error(& loc, state,
5414 "could not implicitly convert return value "
5415 "to %s, in function `%s'",
5416 state->current_function->return_type->name,
5417 state->current_function->function_name());
5418 }
5419 } else {
5420 _mesa_glsl_error(& loc, state,
5421 "`return' with wrong type %s, in function `%s' "
5422 "returning %s",
5423 ret_type->name,
5424 state->current_function->function_name(),
5425 state->current_function->return_type->name);
5426 }
5427 } else if (state->current_function->return_type->base_type ==
5428 GLSL_TYPE_VOID) {
5429 YYLTYPE loc = this->get_location();
5430
5431 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5432 * specs add a clarification:
5433 *
5434 * "A void function can only use return without a return argument, even if
5435 * the return argument has void type. Return statements only accept values:
5436 *
5437 * void func1() { }
5438 * void func2() { return func1(); } // illegal return statement"
5439 */
5440 _mesa_glsl_error(& loc, state,
5441 "void functions can only use `return' without a "
5442 "return argument");
5443 }
5444
5445 inst = new(ctx) ir_return(ret);
5446 } else {
5447 if (state->current_function->return_type->base_type !=
5448 GLSL_TYPE_VOID) {
5449 YYLTYPE loc = this->get_location();
5450
5451 _mesa_glsl_error(& loc, state,
5452 "`return' with no value, in function %s returning "
5453 "non-void",
5454 state->current_function->function_name());
5455 }
5456 inst = new(ctx) ir_return;
5457 }
5458
5459 state->found_return = true;
5460 instructions->push_tail(inst);
5461 break;
5462 }
5463
5464 case ast_discard:
5465 if (state->stage != MESA_SHADER_FRAGMENT) {
5466 YYLTYPE loc = this->get_location();
5467
5468 _mesa_glsl_error(& loc, state,
5469 "`discard' may only appear in a fragment shader");
5470 }
5471 instructions->push_tail(new(ctx) ir_discard);
5472 break;
5473
5474 case ast_break:
5475 case ast_continue:
5476 if (mode == ast_continue &&
5477 state->loop_nesting_ast == NULL) {
5478 YYLTYPE loc = this->get_location();
5479
5480 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5481 } else if (mode == ast_break &&
5482 state->loop_nesting_ast == NULL &&
5483 state->switch_state.switch_nesting_ast == NULL) {
5484 YYLTYPE loc = this->get_location();
5485
5486 _mesa_glsl_error(& loc, state,
5487 "break may only appear in a loop or a switch");
5488 } else {
5489 /* For a loop, inline the for loop expression again, since we don't
5490 * know where near the end of the loop body the normal copy of it is
5491 * going to be placed. Same goes for the condition for a do-while
5492 * loop.
5493 */
5494 if (state->loop_nesting_ast != NULL &&
5495 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5496 if (state->loop_nesting_ast->rest_expression) {
5497 state->loop_nesting_ast->rest_expression->hir(instructions,
5498 state);
5499 }
5500 if (state->loop_nesting_ast->mode ==
5501 ast_iteration_statement::ast_do_while) {
5502 state->loop_nesting_ast->condition_to_hir(instructions, state);
5503 }
5504 }
5505
5506 if (state->switch_state.is_switch_innermost &&
5507 mode == ast_continue) {
5508 /* Set 'continue_inside' to true. */
5509 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5510 ir_dereference_variable *deref_continue_inside_var =
5511 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5512 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5513 true_val));
5514
5515 /* Break out from the switch, continue for the loop will
5516 * be called right after switch. */
5517 ir_loop_jump *const jump =
5518 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5519 instructions->push_tail(jump);
5520
5521 } else if (state->switch_state.is_switch_innermost &&
5522 mode == ast_break) {
5523 /* Force break out of switch by inserting a break. */
5524 ir_loop_jump *const jump =
5525 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5526 instructions->push_tail(jump);
5527 } else {
5528 ir_loop_jump *const jump =
5529 new(ctx) ir_loop_jump((mode == ast_break)
5530 ? ir_loop_jump::jump_break
5531 : ir_loop_jump::jump_continue);
5532 instructions->push_tail(jump);
5533 }
5534 }
5535
5536 break;
5537 }
5538
5539 /* Jump instructions do not have r-values.
5540 */
5541 return NULL;
5542 }
5543
5544
5545 ir_rvalue *
5546 ast_selection_statement::hir(exec_list *instructions,
5547 struct _mesa_glsl_parse_state *state)
5548 {
5549 void *ctx = state;
5550
5551 ir_rvalue *const condition = this->condition->hir(instructions, state);
5552
5553 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
5554 *
5555 * "Any expression whose type evaluates to a Boolean can be used as the
5556 * conditional expression bool-expression. Vector types are not accepted
5557 * as the expression to if."
5558 *
5559 * The checks are separated so that higher quality diagnostics can be
5560 * generated for cases where both rules are violated.
5561 */
5562 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
5563 YYLTYPE loc = this->condition->get_location();
5564
5565 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
5566 "boolean");
5567 }
5568
5569 ir_if *const stmt = new(ctx) ir_if(condition);
5570
5571 if (then_statement != NULL) {
5572 state->symbols->push_scope();
5573 then_statement->hir(& stmt->then_instructions, state);
5574 state->symbols->pop_scope();
5575 }
5576
5577 if (else_statement != NULL) {
5578 state->symbols->push_scope();
5579 else_statement->hir(& stmt->else_instructions, state);
5580 state->symbols->pop_scope();
5581 }
5582
5583 instructions->push_tail(stmt);
5584
5585 /* if-statements do not have r-values.
5586 */
5587 return NULL;
5588 }
5589
5590
5591 ir_rvalue *
5592 ast_switch_statement::hir(exec_list *instructions,
5593 struct _mesa_glsl_parse_state *state)
5594 {
5595 void *ctx = state;
5596
5597 ir_rvalue *const test_expression =
5598 this->test_expression->hir(instructions, state);
5599
5600 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
5601 *
5602 * "The type of init-expression in a switch statement must be a
5603 * scalar integer."
5604 */
5605 if (!test_expression->type->is_scalar() ||
5606 !test_expression->type->is_integer()) {
5607 YYLTYPE loc = this->test_expression->get_location();
5608
5609 _mesa_glsl_error(& loc,
5610 state,
5611 "switch-statement expression must be scalar "
5612 "integer");
5613 }
5614
5615 /* Track the switch-statement nesting in a stack-like manner.
5616 */
5617 struct glsl_switch_state saved = state->switch_state;
5618
5619 state->switch_state.is_switch_innermost = true;
5620 state->switch_state.switch_nesting_ast = this;
5621 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
5622 hash_table_pointer_compare);
5623 state->switch_state.previous_default = NULL;
5624
5625 /* Initalize is_fallthru state to false.
5626 */
5627 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
5628 state->switch_state.is_fallthru_var =
5629 new(ctx) ir_variable(glsl_type::bool_type,
5630 "switch_is_fallthru_tmp",
5631 ir_var_temporary);
5632 instructions->push_tail(state->switch_state.is_fallthru_var);
5633
5634 ir_dereference_variable *deref_is_fallthru_var =
5635 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5636 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
5637 is_fallthru_val));
5638
5639 /* Initialize continue_inside state to false.
5640 */
5641 state->switch_state.continue_inside =
5642 new(ctx) ir_variable(glsl_type::bool_type,
5643 "continue_inside_tmp",
5644 ir_var_temporary);
5645 instructions->push_tail(state->switch_state.continue_inside);
5646
5647 ir_rvalue *const false_val = new (ctx) ir_constant(false);
5648 ir_dereference_variable *deref_continue_inside_var =
5649 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5650 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
5651 false_val));
5652
5653 state->switch_state.run_default =
5654 new(ctx) ir_variable(glsl_type::bool_type,
5655 "run_default_tmp",
5656 ir_var_temporary);
5657 instructions->push_tail(state->switch_state.run_default);
5658
5659 /* Loop around the switch is used for flow control. */
5660 ir_loop * loop = new(ctx) ir_loop();
5661 instructions->push_tail(loop);
5662
5663 /* Cache test expression.
5664 */
5665 test_to_hir(&loop->body_instructions, state);
5666
5667 /* Emit code for body of switch stmt.
5668 */
5669 body->hir(&loop->body_instructions, state);
5670
5671 /* Insert a break at the end to exit loop. */
5672 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
5673 loop->body_instructions.push_tail(jump);
5674
5675 /* If we are inside loop, check if continue got called inside switch. */
5676 if (state->loop_nesting_ast != NULL) {
5677 ir_dereference_variable *deref_continue_inside =
5678 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5679 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
5680 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
5681
5682 if (state->loop_nesting_ast != NULL) {
5683 if (state->loop_nesting_ast->rest_expression) {
5684 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
5685 state);
5686 }
5687 if (state->loop_nesting_ast->mode ==
5688 ast_iteration_statement::ast_do_while) {
5689 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
5690 }
5691 }
5692 irif->then_instructions.push_tail(jump);
5693 instructions->push_tail(irif);
5694 }
5695
5696 hash_table_dtor(state->switch_state.labels_ht);
5697
5698 state->switch_state = saved;
5699
5700 /* Switch statements do not have r-values. */
5701 return NULL;
5702 }
5703
5704
5705 void
5706 ast_switch_statement::test_to_hir(exec_list *instructions,
5707 struct _mesa_glsl_parse_state *state)
5708 {
5709 void *ctx = state;
5710
5711 /* Cache value of test expression. */
5712 ir_rvalue *const test_val =
5713 test_expression->hir(instructions,
5714 state);
5715
5716 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
5717 "switch_test_tmp",
5718 ir_var_temporary);
5719 ir_dereference_variable *deref_test_var =
5720 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5721
5722 instructions->push_tail(state->switch_state.test_var);
5723 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
5724 }
5725
5726
5727 ir_rvalue *
5728 ast_switch_body::hir(exec_list *instructions,
5729 struct _mesa_glsl_parse_state *state)
5730 {
5731 if (stmts != NULL)
5732 stmts->hir(instructions, state);
5733
5734 /* Switch bodies do not have r-values. */
5735 return NULL;
5736 }
5737
5738 ir_rvalue *
5739 ast_case_statement_list::hir(exec_list *instructions,
5740 struct _mesa_glsl_parse_state *state)
5741 {
5742 exec_list default_case, after_default, tmp;
5743
5744 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
5745 case_stmt->hir(&tmp, state);
5746
5747 /* Default case. */
5748 if (state->switch_state.previous_default && default_case.is_empty()) {
5749 default_case.append_list(&tmp);
5750 continue;
5751 }
5752
5753 /* If default case found, append 'after_default' list. */
5754 if (!default_case.is_empty())
5755 after_default.append_list(&tmp);
5756 else
5757 instructions->append_list(&tmp);
5758 }
5759
5760 /* Handle the default case. This is done here because default might not be
5761 * the last case. We need to add checks against following cases first to see
5762 * if default should be chosen or not.
5763 */
5764 if (!default_case.is_empty()) {
5765
5766 ir_rvalue *const true_val = new (state) ir_constant(true);
5767 ir_dereference_variable *deref_run_default_var =
5768 new(state) ir_dereference_variable(state->switch_state.run_default);
5769
5770 /* Choose to run default case initially, following conditional
5771 * assignments might change this.
5772 */
5773 ir_assignment *const init_var =
5774 new(state) ir_assignment(deref_run_default_var, true_val);
5775 instructions->push_tail(init_var);
5776
5777 /* Default case was the last one, no checks required. */
5778 if (after_default.is_empty()) {
5779 instructions->append_list(&default_case);
5780 return NULL;
5781 }
5782
5783 foreach_in_list(ir_instruction, ir, &after_default) {
5784 ir_assignment *assign = ir->as_assignment();
5785
5786 if (!assign)
5787 continue;
5788
5789 /* Clone the check between case label and init expression. */
5790 ir_expression *exp = (ir_expression*) assign->condition;
5791 ir_expression *clone = exp->clone(state, NULL);
5792
5793 ir_dereference_variable *deref_var =
5794 new(state) ir_dereference_variable(state->switch_state.run_default);
5795 ir_rvalue *const false_val = new (state) ir_constant(false);
5796
5797 ir_assignment *const set_false =
5798 new(state) ir_assignment(deref_var, false_val, clone);
5799
5800 instructions->push_tail(set_false);
5801 }
5802
5803 /* Append default case and all cases after it. */
5804 instructions->append_list(&default_case);
5805 instructions->append_list(&after_default);
5806 }
5807
5808 /* Case statements do not have r-values. */
5809 return NULL;
5810 }
5811
5812 ir_rvalue *
5813 ast_case_statement::hir(exec_list *instructions,
5814 struct _mesa_glsl_parse_state *state)
5815 {
5816 labels->hir(instructions, state);
5817
5818 /* Guard case statements depending on fallthru state. */
5819 ir_dereference_variable *const deref_fallthru_guard =
5820 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
5821 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
5822
5823 foreach_list_typed (ast_node, stmt, link, & this->stmts)
5824 stmt->hir(& test_fallthru->then_instructions, state);
5825
5826 instructions->push_tail(test_fallthru);
5827
5828 /* Case statements do not have r-values. */
5829 return NULL;
5830 }
5831
5832
5833 ir_rvalue *
5834 ast_case_label_list::hir(exec_list *instructions,
5835 struct _mesa_glsl_parse_state *state)
5836 {
5837 foreach_list_typed (ast_case_label, label, link, & this->labels)
5838 label->hir(instructions, state);
5839
5840 /* Case labels do not have r-values. */
5841 return NULL;
5842 }
5843
5844 ir_rvalue *
5845 ast_case_label::hir(exec_list *instructions,
5846 struct _mesa_glsl_parse_state *state)
5847 {
5848 void *ctx = state;
5849
5850 ir_dereference_variable *deref_fallthru_var =
5851 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
5852
5853 ir_rvalue *const true_val = new(ctx) ir_constant(true);
5854
5855 /* If not default case, ... */
5856 if (this->test_value != NULL) {
5857 /* Conditionally set fallthru state based on
5858 * comparison of cached test expression value to case label.
5859 */
5860 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
5861 ir_constant *label_const = label_rval->constant_expression_value();
5862
5863 if (!label_const) {
5864 YYLTYPE loc = this->test_value->get_location();
5865
5866 _mesa_glsl_error(& loc, state,
5867 "switch statement case label must be a "
5868 "constant expression");
5869
5870 /* Stuff a dummy value in to allow processing to continue. */
5871 label_const = new(ctx) ir_constant(0);
5872 } else {
5873 ast_expression *previous_label = (ast_expression *)
5874 hash_table_find(state->switch_state.labels_ht,
5875 (void *)(uintptr_t)label_const->value.u[0]);
5876
5877 if (previous_label) {
5878 YYLTYPE loc = this->test_value->get_location();
5879 _mesa_glsl_error(& loc, state, "duplicate case value");
5880
5881 loc = previous_label->get_location();
5882 _mesa_glsl_error(& loc, state, "this is the previous case label");
5883 } else {
5884 hash_table_insert(state->switch_state.labels_ht,
5885 this->test_value,
5886 (void *)(uintptr_t)label_const->value.u[0]);
5887 }
5888 }
5889
5890 ir_dereference_variable *deref_test_var =
5891 new(ctx) ir_dereference_variable(state->switch_state.test_var);
5892
5893 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5894 label_const,
5895 deref_test_var);
5896
5897 /*
5898 * From GLSL 4.40 specification section 6.2 ("Selection"):
5899 *
5900 * "The type of the init-expression value in a switch statement must
5901 * be a scalar int or uint. The type of the constant-expression value
5902 * in a case label also must be a scalar int or uint. When any pair
5903 * of these values is tested for "equal value" and the types do not
5904 * match, an implicit conversion will be done to convert the int to a
5905 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
5906 * is done."
5907 */
5908 if (label_const->type != state->switch_state.test_var->type) {
5909 YYLTYPE loc = this->test_value->get_location();
5910
5911 const glsl_type *type_a = label_const->type;
5912 const glsl_type *type_b = state->switch_state.test_var->type;
5913
5914 /* Check if int->uint implicit conversion is supported. */
5915 bool integer_conversion_supported =
5916 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
5917 state);
5918
5919 if ((!type_a->is_integer() || !type_b->is_integer()) ||
5920 !integer_conversion_supported) {
5921 _mesa_glsl_error(&loc, state, "type mismatch with switch "
5922 "init-expression and case label (%s != %s)",
5923 type_a->name, type_b->name);
5924 } else {
5925 /* Conversion of the case label. */
5926 if (type_a->base_type == GLSL_TYPE_INT) {
5927 if (!apply_implicit_conversion(glsl_type::uint_type,
5928 test_cond->operands[0], state))
5929 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5930 } else {
5931 /* Conversion of the init-expression value. */
5932 if (!apply_implicit_conversion(glsl_type::uint_type,
5933 test_cond->operands[1], state))
5934 _mesa_glsl_error(&loc, state, "implicit type conversion error");
5935 }
5936 }
5937 }
5938
5939 ir_assignment *set_fallthru_on_test =
5940 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5941
5942 instructions->push_tail(set_fallthru_on_test);
5943 } else { /* default case */
5944 if (state->switch_state.previous_default) {
5945 YYLTYPE loc = this->get_location();
5946 _mesa_glsl_error(& loc, state,
5947 "multiple default labels in one switch");
5948
5949 loc = state->switch_state.previous_default->get_location();
5950 _mesa_glsl_error(& loc, state, "this is the first default label");
5951 }
5952 state->switch_state.previous_default = this;
5953
5954 /* Set fallthru condition on 'run_default' bool. */
5955 ir_dereference_variable *deref_run_default =
5956 new(ctx) ir_dereference_variable(state->switch_state.run_default);
5957 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
5958 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
5959 cond_true,
5960 deref_run_default);
5961
5962 /* Set falltrhu state. */
5963 ir_assignment *set_fallthru =
5964 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
5965
5966 instructions->push_tail(set_fallthru);
5967 }
5968
5969 /* Case statements do not have r-values. */
5970 return NULL;
5971 }
5972
5973 void
5974 ast_iteration_statement::condition_to_hir(exec_list *instructions,
5975 struct _mesa_glsl_parse_state *state)
5976 {
5977 void *ctx = state;
5978
5979 if (condition != NULL) {
5980 ir_rvalue *const cond =
5981 condition->hir(instructions, state);
5982
5983 if ((cond == NULL)
5984 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
5985 YYLTYPE loc = condition->get_location();
5986
5987 _mesa_glsl_error(& loc, state,
5988 "loop condition must be scalar boolean");
5989 } else {
5990 /* As the first code in the loop body, generate a block that looks
5991 * like 'if (!condition) break;' as the loop termination condition.
5992 */
5993 ir_rvalue *const not_cond =
5994 new(ctx) ir_expression(ir_unop_logic_not, cond);
5995
5996 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
5997
5998 ir_jump *const break_stmt =
5999 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6000
6001 if_stmt->then_instructions.push_tail(break_stmt);
6002 instructions->push_tail(if_stmt);
6003 }
6004 }
6005 }
6006
6007
6008 ir_rvalue *
6009 ast_iteration_statement::hir(exec_list *instructions,
6010 struct _mesa_glsl_parse_state *state)
6011 {
6012 void *ctx = state;
6013
6014 /* For-loops and while-loops start a new scope, but do-while loops do not.
6015 */
6016 if (mode != ast_do_while)
6017 state->symbols->push_scope();
6018
6019 if (init_statement != NULL)
6020 init_statement->hir(instructions, state);
6021
6022 ir_loop *const stmt = new(ctx) ir_loop();
6023 instructions->push_tail(stmt);
6024
6025 /* Track the current loop nesting. */
6026 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6027
6028 state->loop_nesting_ast = this;
6029
6030 /* Likewise, indicate that following code is closest to a loop,
6031 * NOT closest to a switch.
6032 */
6033 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6034 state->switch_state.is_switch_innermost = false;
6035
6036 if (mode != ast_do_while)
6037 condition_to_hir(&stmt->body_instructions, state);
6038
6039 if (body != NULL)
6040 body->hir(& stmt->body_instructions, state);
6041
6042 if (rest_expression != NULL)
6043 rest_expression->hir(& stmt->body_instructions, state);
6044
6045 if (mode == ast_do_while)
6046 condition_to_hir(&stmt->body_instructions, state);
6047
6048 if (mode != ast_do_while)
6049 state->symbols->pop_scope();
6050
6051 /* Restore previous nesting before returning. */
6052 state->loop_nesting_ast = nesting_ast;
6053 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6054
6055 /* Loops do not have r-values.
6056 */
6057 return NULL;
6058 }
6059
6060
6061 /**
6062 * Determine if the given type is valid for establishing a default precision
6063 * qualifier.
6064 *
6065 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6066 *
6067 * "The precision statement
6068 *
6069 * precision precision-qualifier type;
6070 *
6071 * can be used to establish a default precision qualifier. The type field
6072 * can be either int or float or any of the sampler types, and the
6073 * precision-qualifier can be lowp, mediump, or highp."
6074 *
6075 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6076 * qualifiers on sampler types, but this seems like an oversight (since the
6077 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6078 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6079 * version.
6080 */
6081 static bool
6082 is_valid_default_precision_type(const struct glsl_type *const type)
6083 {
6084 if (type == NULL)
6085 return false;
6086
6087 switch (type->base_type) {
6088 case GLSL_TYPE_INT:
6089 case GLSL_TYPE_FLOAT:
6090 /* "int" and "float" are valid, but vectors and matrices are not. */
6091 return type->vector_elements == 1 && type->matrix_columns == 1;
6092 case GLSL_TYPE_SAMPLER:
6093 case GLSL_TYPE_IMAGE:
6094 case GLSL_TYPE_ATOMIC_UINT:
6095 return true;
6096 default:
6097 return false;
6098 }
6099 }
6100
6101
6102 ir_rvalue *
6103 ast_type_specifier::hir(exec_list *instructions,
6104 struct _mesa_glsl_parse_state *state)
6105 {
6106 if (this->default_precision == ast_precision_none && this->structure == NULL)
6107 return NULL;
6108
6109 YYLTYPE loc = this->get_location();
6110
6111 /* If this is a precision statement, check that the type to which it is
6112 * applied is either float or int.
6113 *
6114 * From section 4.5.3 of the GLSL 1.30 spec:
6115 * "The precision statement
6116 * precision precision-qualifier type;
6117 * can be used to establish a default precision qualifier. The type
6118 * field can be either int or float [...]. Any other types or
6119 * qualifiers will result in an error.
6120 */
6121 if (this->default_precision != ast_precision_none) {
6122 if (!state->check_precision_qualifiers_allowed(&loc))
6123 return NULL;
6124
6125 if (this->structure != NULL) {
6126 _mesa_glsl_error(&loc, state,
6127 "precision qualifiers do not apply to structures");
6128 return NULL;
6129 }
6130
6131 if (this->array_specifier != NULL) {
6132 _mesa_glsl_error(&loc, state,
6133 "default precision statements do not apply to "
6134 "arrays");
6135 return NULL;
6136 }
6137
6138 const struct glsl_type *const type =
6139 state->symbols->get_type(this->type_name);
6140 if (!is_valid_default_precision_type(type)) {
6141 _mesa_glsl_error(&loc, state,
6142 "default precision statements apply only to "
6143 "float, int, and opaque types");
6144 return NULL;
6145 }
6146
6147 if (state->es_shader) {
6148 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6149 * spec says:
6150 *
6151 * "Non-precision qualified declarations will use the precision
6152 * qualifier specified in the most recent precision statement
6153 * that is still in scope. The precision statement has the same
6154 * scoping rules as variable declarations. If it is declared
6155 * inside a compound statement, its effect stops at the end of
6156 * the innermost statement it was declared in. Precision
6157 * statements in nested scopes override precision statements in
6158 * outer scopes. Multiple precision statements for the same basic
6159 * type can appear inside the same scope, with later statements
6160 * overriding earlier statements within that scope."
6161 *
6162 * Default precision specifications follow the same scope rules as
6163 * variables. So, we can track the state of the default precision
6164 * qualifiers in the symbol table, and the rules will just work. This
6165 * is a slight abuse of the symbol table, but it has the semantics
6166 * that we want.
6167 */
6168 state->symbols->add_default_precision_qualifier(this->type_name,
6169 this->default_precision);
6170 }
6171
6172 /* FINISHME: Translate precision statements into IR. */
6173 return NULL;
6174 }
6175
6176 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6177 * process_record_constructor() can do type-checking on C-style initializer
6178 * expressions of structs, but ast_struct_specifier should only be translated
6179 * to HIR if it is declaring the type of a structure.
6180 *
6181 * The ->is_declaration field is false for initializers of variables
6182 * declared separately from the struct's type definition.
6183 *
6184 * struct S { ... }; (is_declaration = true)
6185 * struct T { ... } t = { ... }; (is_declaration = true)
6186 * S s = { ... }; (is_declaration = false)
6187 */
6188 if (this->structure != NULL && this->structure->is_declaration)
6189 return this->structure->hir(instructions, state);
6190
6191 return NULL;
6192 }
6193
6194
6195 /**
6196 * Process a structure or interface block tree into an array of structure fields
6197 *
6198 * After parsing, where there are some syntax differnces, structures and
6199 * interface blocks are almost identical. They are similar enough that the
6200 * AST for each can be processed the same way into a set of
6201 * \c glsl_struct_field to describe the members.
6202 *
6203 * If we're processing an interface block, var_mode should be the type of the
6204 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6205 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6206 * ir_var_auto.
6207 *
6208 * \return
6209 * The number of fields processed. A pointer to the array structure fields is
6210 * stored in \c *fields_ret.
6211 */
6212 static unsigned
6213 ast_process_struct_or_iface_block_members(exec_list *instructions,
6214 struct _mesa_glsl_parse_state *state,
6215 exec_list *declarations,
6216 glsl_struct_field **fields_ret,
6217 bool is_interface,
6218 enum glsl_matrix_layout matrix_layout,
6219 bool allow_reserved_names,
6220 ir_variable_mode var_mode,
6221 ast_type_qualifier *layout,
6222 unsigned block_stream,
6223 unsigned expl_location)
6224 {
6225 unsigned decl_count = 0;
6226
6227 /* Make an initial pass over the list of fields to determine how
6228 * many there are. Each element in this list is an ast_declarator_list.
6229 * This means that we actually need to count the number of elements in the
6230 * 'declarations' list in each of the elements.
6231 */
6232 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6233 decl_count += decl_list->declarations.length();
6234 }
6235
6236 /* Allocate storage for the fields and process the field
6237 * declarations. As the declarations are processed, try to also convert
6238 * the types to HIR. This ensures that structure definitions embedded in
6239 * other structure definitions or in interface blocks are processed.
6240 */
6241 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
6242 decl_count);
6243
6244 bool first_member = true;
6245 bool first_member_has_explicit_location;
6246
6247 unsigned i = 0;
6248 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6249 const char *type_name;
6250 YYLTYPE loc = decl_list->get_location();
6251
6252 decl_list->type->specifier->hir(instructions, state);
6253
6254 /* Section 10.9 of the GLSL ES 1.00 specification states that
6255 * embedded structure definitions have been removed from the language.
6256 */
6257 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
6258 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
6259 "not allowed in GLSL ES 1.00");
6260 }
6261
6262 const glsl_type *decl_type =
6263 decl_list->type->glsl_type(& type_name, state);
6264
6265 const struct ast_type_qualifier *const qual =
6266 &decl_list->type->qualifier;
6267
6268 /* From section 4.3.9 of the GLSL 4.40 spec:
6269 *
6270 * "[In interface blocks] opaque types are not allowed."
6271 *
6272 * It should be impossible for decl_type to be NULL here. Cases that
6273 * might naturally lead to decl_type being NULL, especially for the
6274 * is_interface case, will have resulted in compilation having
6275 * already halted due to a syntax error.
6276 */
6277 assert(decl_type);
6278
6279 if (is_interface && decl_type->contains_opaque()) {
6280 _mesa_glsl_error(&loc, state,
6281 "uniform/buffer in non-default interface block contains "
6282 "opaque variable");
6283 }
6284
6285 if (decl_type->contains_atomic()) {
6286 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6287 *
6288 * "Members of structures cannot be declared as atomic counter
6289 * types."
6290 */
6291 _mesa_glsl_error(&loc, state, "atomic counter in structure, "
6292 "shader storage block or uniform block");
6293 }
6294
6295 if (decl_type->contains_image()) {
6296 /* FINISHME: Same problem as with atomic counters.
6297 * FINISHME: Request clarification from Khronos and add
6298 * FINISHME: spec quotation here.
6299 */
6300 _mesa_glsl_error(&loc, state,
6301 "image in structure, shader storage block or "
6302 "uniform block");
6303 }
6304
6305 if (qual->flags.q.explicit_binding) {
6306 _mesa_glsl_error(&loc, state,
6307 "binding layout qualifier cannot be applied "
6308 "to struct or interface block members");
6309 }
6310
6311 if (is_interface) {
6312 if (!first_member) {
6313 if (!layout->flags.q.explicit_location &&
6314 ((first_member_has_explicit_location &&
6315 !qual->flags.q.explicit_location) ||
6316 (!first_member_has_explicit_location &&
6317 qual->flags.q.explicit_location))) {
6318 _mesa_glsl_error(&loc, state,
6319 "when block-level location layout qualifier "
6320 "is not supplied either all members must "
6321 "have a location layout qualifier or all "
6322 "members must not have a location layout "
6323 "qualifier");
6324 }
6325 } else {
6326 first_member = false;
6327 first_member_has_explicit_location =
6328 qual->flags.q.explicit_location;
6329 }
6330 }
6331
6332 if (qual->flags.q.std140 ||
6333 qual->flags.q.std430 ||
6334 qual->flags.q.packed ||
6335 qual->flags.q.shared) {
6336 _mesa_glsl_error(&loc, state,
6337 "uniform/shader storage block layout qualifiers "
6338 "std140, std430, packed, and shared can only be "
6339 "applied to uniform/shader storage blocks, not "
6340 "members");
6341 }
6342
6343 if (qual->flags.q.constant) {
6344 _mesa_glsl_error(&loc, state,
6345 "const storage qualifier cannot be applied "
6346 "to struct or interface block members");
6347 }
6348
6349 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6350 *
6351 * "A block member may be declared with a stream identifier, but
6352 * the specified stream must match the stream associated with the
6353 * containing block."
6354 */
6355 if (qual->flags.q.explicit_stream) {
6356 unsigned qual_stream;
6357 if (process_qualifier_constant(state, &loc, "stream",
6358 qual->stream, &qual_stream) &&
6359 qual_stream != block_stream) {
6360 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6361 "interface block member does not match "
6362 "the interface block (%u vs %u)", qual_stream,
6363 block_stream);
6364 }
6365 }
6366
6367 if (qual->flags.q.uniform && qual->has_interpolation()) {
6368 _mesa_glsl_error(&loc, state,
6369 "interpolation qualifiers cannot be used "
6370 "with uniform interface blocks");
6371 }
6372
6373 if ((qual->flags.q.uniform || !is_interface) &&
6374 qual->has_auxiliary_storage()) {
6375 _mesa_glsl_error(&loc, state,
6376 "auxiliary storage qualifiers cannot be used "
6377 "in uniform blocks or structures.");
6378 }
6379
6380 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6381 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6382 _mesa_glsl_error(&loc, state,
6383 "row_major and column_major can only be "
6384 "applied to interface blocks");
6385 } else
6386 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6387 }
6388
6389 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6390 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6391 "readonly and writeonly.");
6392 }
6393
6394 foreach_list_typed (ast_declaration, decl, link,
6395 &decl_list->declarations) {
6396 YYLTYPE loc = decl->get_location();
6397
6398 if (!allow_reserved_names)
6399 validate_identifier(decl->identifier, loc, state);
6400
6401 const struct glsl_type *field_type =
6402 process_array_type(&loc, decl_type, decl->array_specifier, state);
6403 validate_array_dimensions(field_type, state, &loc);
6404 fields[i].type = field_type;
6405 fields[i].name = decl->identifier;
6406 fields[i].interpolation =
6407 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
6408 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6409 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6410 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6411 fields[i].precision = qual->precision;
6412
6413 if (qual->flags.q.explicit_location) {
6414 unsigned qual_location;
6415 if (process_qualifier_constant(state, &loc, "location",
6416 qual->location, &qual_location)) {
6417 fields[i].location = VARYING_SLOT_VAR0 + qual_location;
6418 expl_location = fields[i].location +
6419 fields[i].type->count_attribute_slots(false);
6420 }
6421 } else {
6422 if (layout && layout->flags.q.explicit_location) {
6423 fields[i].location = expl_location;
6424 expl_location += fields[i].type->count_attribute_slots(false);
6425 } else {
6426 fields[i].location = -1;
6427 }
6428 }
6429
6430 /* Propogate row- / column-major information down the fields of the
6431 * structure or interface block. Structures need this data because
6432 * the structure may contain a structure that contains ... a matrix
6433 * that need the proper layout.
6434 */
6435 if (field_type->without_array()->is_matrix()
6436 || field_type->without_array()->is_record()) {
6437 /* If no layout is specified for the field, inherit the layout
6438 * from the block.
6439 */
6440 fields[i].matrix_layout = matrix_layout;
6441
6442 if (qual->flags.q.row_major)
6443 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6444 else if (qual->flags.q.column_major)
6445 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6446
6447 /* If we're processing an interface block, the matrix layout must
6448 * be decided by this point.
6449 */
6450 assert(!is_interface
6451 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
6452 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
6453 }
6454
6455 /* Image qualifiers are allowed on buffer variables, which can only
6456 * be defined inside shader storage buffer objects
6457 */
6458 if (layout && var_mode == ir_var_shader_storage) {
6459 /* For readonly and writeonly qualifiers the field definition,
6460 * if set, overwrites the layout qualifier.
6461 */
6462 if (qual->flags.q.read_only) {
6463 fields[i].image_read_only = true;
6464 fields[i].image_write_only = false;
6465 } else if (qual->flags.q.write_only) {
6466 fields[i].image_read_only = false;
6467 fields[i].image_write_only = true;
6468 } else {
6469 fields[i].image_read_only = layout->flags.q.read_only;
6470 fields[i].image_write_only = layout->flags.q.write_only;
6471 }
6472
6473 /* For other qualifiers, we set the flag if either the layout
6474 * qualifier or the field qualifier are set
6475 */
6476 fields[i].image_coherent = qual->flags.q.coherent ||
6477 layout->flags.q.coherent;
6478 fields[i].image_volatile = qual->flags.q._volatile ||
6479 layout->flags.q._volatile;
6480 fields[i].image_restrict = qual->flags.q.restrict_flag ||
6481 layout->flags.q.restrict_flag;
6482 }
6483
6484 i++;
6485 }
6486 }
6487
6488 assert(i == decl_count);
6489
6490 *fields_ret = fields;
6491 return decl_count;
6492 }
6493
6494
6495 ir_rvalue *
6496 ast_struct_specifier::hir(exec_list *instructions,
6497 struct _mesa_glsl_parse_state *state)
6498 {
6499 YYLTYPE loc = this->get_location();
6500
6501 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6502 *
6503 * "Anonymous structures are not supported; so embedded structures must
6504 * have a declarator. A name given to an embedded struct is scoped at
6505 * the same level as the struct it is embedded in."
6506 *
6507 * The same section of the GLSL 1.20 spec says:
6508 *
6509 * "Anonymous structures are not supported. Embedded structures are not
6510 * supported.
6511 *
6512 * struct S { float f; };
6513 * struct T {
6514 * S; // Error: anonymous structures disallowed
6515 * struct { ... }; // Error: embedded structures disallowed
6516 * S s; // Okay: nested structures with name are allowed
6517 * };"
6518 *
6519 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
6520 * we allow embedded structures in 1.10 only.
6521 */
6522 if (state->language_version != 110 && state->struct_specifier_depth != 0)
6523 _mesa_glsl_error(&loc, state,
6524 "embedded structure declarations are not allowed");
6525
6526 state->struct_specifier_depth++;
6527
6528 unsigned expl_location = 0;
6529 if (layout && layout->flags.q.explicit_location) {
6530 if (!process_qualifier_constant(state, &loc, "location",
6531 layout->location, &expl_location)) {
6532 return NULL;
6533 } else {
6534 expl_location = VARYING_SLOT_VAR0 + expl_location;
6535 }
6536 }
6537
6538 glsl_struct_field *fields;
6539 unsigned decl_count =
6540 ast_process_struct_or_iface_block_members(instructions,
6541 state,
6542 &this->declarations,
6543 &fields,
6544 false,
6545 GLSL_MATRIX_LAYOUT_INHERITED,
6546 false /* allow_reserved_names */,
6547 ir_var_auto,
6548 layout,
6549 0, /* for interface only */
6550 expl_location);
6551
6552 validate_identifier(this->name, loc, state);
6553
6554 const glsl_type *t =
6555 glsl_type::get_record_instance(fields, decl_count, this->name);
6556
6557 if (!state->symbols->add_type(name, t)) {
6558 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
6559 } else {
6560 const glsl_type **s = reralloc(state, state->user_structures,
6561 const glsl_type *,
6562 state->num_user_structures + 1);
6563 if (s != NULL) {
6564 s[state->num_user_structures] = t;
6565 state->user_structures = s;
6566 state->num_user_structures++;
6567 }
6568 }
6569
6570 state->struct_specifier_depth--;
6571
6572 /* Structure type definitions do not have r-values.
6573 */
6574 return NULL;
6575 }
6576
6577
6578 /**
6579 * Visitor class which detects whether a given interface block has been used.
6580 */
6581 class interface_block_usage_visitor : public ir_hierarchical_visitor
6582 {
6583 public:
6584 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
6585 : mode(mode), block(block), found(false)
6586 {
6587 }
6588
6589 virtual ir_visitor_status visit(ir_dereference_variable *ir)
6590 {
6591 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
6592 found = true;
6593 return visit_stop;
6594 }
6595 return visit_continue;
6596 }
6597
6598 bool usage_found() const
6599 {
6600 return this->found;
6601 }
6602
6603 private:
6604 ir_variable_mode mode;
6605 const glsl_type *block;
6606 bool found;
6607 };
6608
6609 static bool
6610 is_unsized_array_last_element(ir_variable *v)
6611 {
6612 const glsl_type *interface_type = v->get_interface_type();
6613 int length = interface_type->length;
6614
6615 assert(v->type->is_unsized_array());
6616
6617 /* Check if it is the last element of the interface */
6618 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
6619 return true;
6620 return false;
6621 }
6622
6623 ir_rvalue *
6624 ast_interface_block::hir(exec_list *instructions,
6625 struct _mesa_glsl_parse_state *state)
6626 {
6627 YYLTYPE loc = this->get_location();
6628
6629 /* Interface blocks must be declared at global scope */
6630 if (state->current_function != NULL) {
6631 _mesa_glsl_error(&loc, state,
6632 "Interface block `%s' must be declared "
6633 "at global scope",
6634 this->block_name);
6635 }
6636
6637 if (!this->layout.flags.q.buffer &&
6638 this->layout.flags.q.std430) {
6639 _mesa_glsl_error(&loc, state,
6640 "std430 storage block layout qualifier is supported "
6641 "only for shader storage blocks");
6642 }
6643
6644 /* The ast_interface_block has a list of ast_declarator_lists. We
6645 * need to turn those into ir_variables with an association
6646 * with this uniform block.
6647 */
6648 enum glsl_interface_packing packing;
6649 if (this->layout.flags.q.shared) {
6650 packing = GLSL_INTERFACE_PACKING_SHARED;
6651 } else if (this->layout.flags.q.packed) {
6652 packing = GLSL_INTERFACE_PACKING_PACKED;
6653 } else if (this->layout.flags.q.std430) {
6654 packing = GLSL_INTERFACE_PACKING_STD430;
6655 } else {
6656 /* The default layout is std140.
6657 */
6658 packing = GLSL_INTERFACE_PACKING_STD140;
6659 }
6660
6661 ir_variable_mode var_mode;
6662 const char *iface_type_name;
6663 if (this->layout.flags.q.in) {
6664 var_mode = ir_var_shader_in;
6665 iface_type_name = "in";
6666 } else if (this->layout.flags.q.out) {
6667 var_mode = ir_var_shader_out;
6668 iface_type_name = "out";
6669 } else if (this->layout.flags.q.uniform) {
6670 var_mode = ir_var_uniform;
6671 iface_type_name = "uniform";
6672 } else if (this->layout.flags.q.buffer) {
6673 var_mode = ir_var_shader_storage;
6674 iface_type_name = "buffer";
6675 } else {
6676 var_mode = ir_var_auto;
6677 iface_type_name = "UNKNOWN";
6678 assert(!"interface block layout qualifier not found!");
6679 }
6680
6681 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
6682 if (this->layout.flags.q.row_major)
6683 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
6684 else if (this->layout.flags.q.column_major)
6685 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
6686
6687 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
6688 exec_list declared_variables;
6689 glsl_struct_field *fields;
6690
6691 /* Treat an interface block as one level of nesting, so that embedded struct
6692 * specifiers will be disallowed.
6693 */
6694 state->struct_specifier_depth++;
6695
6696 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
6697 * that we don't have incompatible qualifiers
6698 */
6699 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
6700 _mesa_glsl_error(&loc, state,
6701 "Interface block sets both readonly and writeonly");
6702 }
6703
6704 unsigned qual_stream;
6705 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
6706 &qual_stream) ||
6707 !validate_stream_qualifier(&loc, state, qual_stream)) {
6708 /* If the stream qualifier is invalid it doesn't make sense to continue
6709 * on and try to compare stream layouts on member variables against it
6710 * so just return early.
6711 */
6712 return NULL;
6713 }
6714
6715 unsigned expl_location = 0;
6716 if (layout.flags.q.explicit_location) {
6717 if (!process_qualifier_constant(state, &loc, "location",
6718 layout.location, &expl_location)) {
6719 return NULL;
6720 } else {
6721 expl_location = VARYING_SLOT_VAR0 + expl_location;
6722 }
6723 }
6724
6725 unsigned int num_variables =
6726 ast_process_struct_or_iface_block_members(&declared_variables,
6727 state,
6728 &this->declarations,
6729 &fields,
6730 true,
6731 matrix_layout,
6732 redeclaring_per_vertex,
6733 var_mode,
6734 &this->layout,
6735 qual_stream,
6736 expl_location);
6737
6738 state->struct_specifier_depth--;
6739
6740 if (!redeclaring_per_vertex) {
6741 validate_identifier(this->block_name, loc, state);
6742
6743 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
6744 *
6745 * "Block names have no other use within a shader beyond interface
6746 * matching; it is a compile-time error to use a block name at global
6747 * scope for anything other than as a block name."
6748 */
6749 ir_variable *var = state->symbols->get_variable(this->block_name);
6750 if (var && !var->type->is_interface()) {
6751 _mesa_glsl_error(&loc, state, "Block name `%s' is "
6752 "already used in the scope.",
6753 this->block_name);
6754 }
6755 }
6756
6757 const glsl_type *earlier_per_vertex = NULL;
6758 if (redeclaring_per_vertex) {
6759 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
6760 * the named interface block gl_in, we can find it by looking at the
6761 * previous declaration of gl_in. Otherwise we can find it by looking
6762 * at the previous decalartion of any of the built-in outputs,
6763 * e.g. gl_Position.
6764 *
6765 * Also check that the instance name and array-ness of the redeclaration
6766 * are correct.
6767 */
6768 switch (var_mode) {
6769 case ir_var_shader_in:
6770 if (ir_variable *earlier_gl_in =
6771 state->symbols->get_variable("gl_in")) {
6772 earlier_per_vertex = earlier_gl_in->get_interface_type();
6773 } else {
6774 _mesa_glsl_error(&loc, state,
6775 "redeclaration of gl_PerVertex input not allowed "
6776 "in the %s shader",
6777 _mesa_shader_stage_to_string(state->stage));
6778 }
6779 if (this->instance_name == NULL ||
6780 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
6781 !this->array_specifier->is_single_dimension()) {
6782 _mesa_glsl_error(&loc, state,
6783 "gl_PerVertex input must be redeclared as "
6784 "gl_in[]");
6785 }
6786 break;
6787 case ir_var_shader_out:
6788 if (ir_variable *earlier_gl_Position =
6789 state->symbols->get_variable("gl_Position")) {
6790 earlier_per_vertex = earlier_gl_Position->get_interface_type();
6791 } else if (ir_variable *earlier_gl_out =
6792 state->symbols->get_variable("gl_out")) {
6793 earlier_per_vertex = earlier_gl_out->get_interface_type();
6794 } else {
6795 _mesa_glsl_error(&loc, state,
6796 "redeclaration of gl_PerVertex output not "
6797 "allowed in the %s shader",
6798 _mesa_shader_stage_to_string(state->stage));
6799 }
6800 if (state->stage == MESA_SHADER_TESS_CTRL) {
6801 if (this->instance_name == NULL ||
6802 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
6803 _mesa_glsl_error(&loc, state,
6804 "gl_PerVertex output must be redeclared as "
6805 "gl_out[]");
6806 }
6807 } else {
6808 if (this->instance_name != NULL) {
6809 _mesa_glsl_error(&loc, state,
6810 "gl_PerVertex output may not be redeclared with "
6811 "an instance name");
6812 }
6813 }
6814 break;
6815 default:
6816 _mesa_glsl_error(&loc, state,
6817 "gl_PerVertex must be declared as an input or an "
6818 "output");
6819 break;
6820 }
6821
6822 if (earlier_per_vertex == NULL) {
6823 /* An error has already been reported. Bail out to avoid null
6824 * dereferences later in this function.
6825 */
6826 return NULL;
6827 }
6828
6829 /* Copy locations from the old gl_PerVertex interface block. */
6830 for (unsigned i = 0; i < num_variables; i++) {
6831 int j = earlier_per_vertex->field_index(fields[i].name);
6832 if (j == -1) {
6833 _mesa_glsl_error(&loc, state,
6834 "redeclaration of gl_PerVertex must be a subset "
6835 "of the built-in members of gl_PerVertex");
6836 } else {
6837 fields[i].location =
6838 earlier_per_vertex->fields.structure[j].location;
6839 fields[i].interpolation =
6840 earlier_per_vertex->fields.structure[j].interpolation;
6841 fields[i].centroid =
6842 earlier_per_vertex->fields.structure[j].centroid;
6843 fields[i].sample =
6844 earlier_per_vertex->fields.structure[j].sample;
6845 fields[i].patch =
6846 earlier_per_vertex->fields.structure[j].patch;
6847 fields[i].precision =
6848 earlier_per_vertex->fields.structure[j].precision;
6849 }
6850 }
6851
6852 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
6853 * spec:
6854 *
6855 * If a built-in interface block is redeclared, it must appear in
6856 * the shader before any use of any member included in the built-in
6857 * declaration, or a compilation error will result.
6858 *
6859 * This appears to be a clarification to the behaviour established for
6860 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
6861 * regardless of GLSL version.
6862 */
6863 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
6864 v.run(instructions);
6865 if (v.usage_found()) {
6866 _mesa_glsl_error(&loc, state,
6867 "redeclaration of a built-in interface block must "
6868 "appear before any use of any member of the "
6869 "interface block");
6870 }
6871 }
6872
6873 const glsl_type *block_type =
6874 glsl_type::get_interface_instance(fields,
6875 num_variables,
6876 packing,
6877 this->block_name);
6878
6879 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
6880 YYLTYPE loc = this->get_location();
6881 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
6882 "already taken in the current scope",
6883 this->block_name, iface_type_name);
6884 }
6885
6886 /* Since interface blocks cannot contain statements, it should be
6887 * impossible for the block to generate any instructions.
6888 */
6889 assert(declared_variables.is_empty());
6890
6891 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
6892 *
6893 * Geometry shader input variables get the per-vertex values written
6894 * out by vertex shader output variables of the same names. Since a
6895 * geometry shader operates on a set of vertices, each input varying
6896 * variable (or input block, see interface blocks below) needs to be
6897 * declared as an array.
6898 */
6899 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
6900 var_mode == ir_var_shader_in) {
6901 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
6902 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
6903 state->stage == MESA_SHADER_TESS_EVAL) &&
6904 this->array_specifier == NULL &&
6905 var_mode == ir_var_shader_in) {
6906 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
6907 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
6908 this->array_specifier == NULL &&
6909 var_mode == ir_var_shader_out) {
6910 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
6911 }
6912
6913
6914 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
6915 * says:
6916 *
6917 * "If an instance name (instance-name) is used, then it puts all the
6918 * members inside a scope within its own name space, accessed with the
6919 * field selector ( . ) operator (analogously to structures)."
6920 */
6921 if (this->instance_name) {
6922 if (redeclaring_per_vertex) {
6923 /* When a built-in in an unnamed interface block is redeclared,
6924 * get_variable_being_redeclared() calls
6925 * check_builtin_array_max_size() to make sure that built-in array
6926 * variables aren't redeclared to illegal sizes. But we're looking
6927 * at a redeclaration of a named built-in interface block. So we
6928 * have to manually call check_builtin_array_max_size() for all parts
6929 * of the interface that are arrays.
6930 */
6931 for (unsigned i = 0; i < num_variables; i++) {
6932 if (fields[i].type->is_array()) {
6933 const unsigned size = fields[i].type->array_size();
6934 check_builtin_array_max_size(fields[i].name, size, loc, state);
6935 }
6936 }
6937 } else {
6938 validate_identifier(this->instance_name, loc, state);
6939 }
6940
6941 ir_variable *var;
6942
6943 if (this->array_specifier != NULL) {
6944 const glsl_type *block_array_type =
6945 process_array_type(&loc, block_type, this->array_specifier, state);
6946
6947 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
6948 *
6949 * For uniform blocks declared an array, each individual array
6950 * element corresponds to a separate buffer object backing one
6951 * instance of the block. As the array size indicates the number
6952 * of buffer objects needed, uniform block array declarations
6953 * must specify an array size.
6954 *
6955 * And a few paragraphs later:
6956 *
6957 * Geometry shader input blocks must be declared as arrays and
6958 * follow the array declaration and linking rules for all
6959 * geometry shader inputs. All other input and output block
6960 * arrays must specify an array size.
6961 *
6962 * The same applies to tessellation shaders.
6963 *
6964 * The upshot of this is that the only circumstance where an
6965 * interface array size *doesn't* need to be specified is on a
6966 * geometry shader input, tessellation control shader input,
6967 * tessellation control shader output, and tessellation evaluation
6968 * shader input.
6969 */
6970 if (block_array_type->is_unsized_array()) {
6971 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
6972 state->stage == MESA_SHADER_TESS_CTRL ||
6973 state->stage == MESA_SHADER_TESS_EVAL;
6974 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
6975
6976 if (this->layout.flags.q.in) {
6977 if (!allow_inputs)
6978 _mesa_glsl_error(&loc, state,
6979 "unsized input block arrays not allowed in "
6980 "%s shader",
6981 _mesa_shader_stage_to_string(state->stage));
6982 } else if (this->layout.flags.q.out) {
6983 if (!allow_outputs)
6984 _mesa_glsl_error(&loc, state,
6985 "unsized output block arrays not allowed in "
6986 "%s shader",
6987 _mesa_shader_stage_to_string(state->stage));
6988 } else {
6989 /* by elimination, this is a uniform block array */
6990 _mesa_glsl_error(&loc, state,
6991 "unsized uniform block arrays not allowed in "
6992 "%s shader",
6993 _mesa_shader_stage_to_string(state->stage));
6994 }
6995 }
6996
6997 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
6998 *
6999 * * Arrays of arrays of blocks are not allowed
7000 */
7001 if (state->es_shader && block_array_type->is_array() &&
7002 block_array_type->fields.array->is_array()) {
7003 _mesa_glsl_error(&loc, state,
7004 "arrays of arrays interface blocks are "
7005 "not allowed");
7006 }
7007
7008 var = new(state) ir_variable(block_array_type,
7009 this->instance_name,
7010 var_mode);
7011 } else {
7012 var = new(state) ir_variable(block_type,
7013 this->instance_name,
7014 var_mode);
7015 }
7016
7017 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7018 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7019
7020 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7021 var->data.read_only = true;
7022
7023 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7024 handle_geometry_shader_input_decl(state, loc, var);
7025 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7026 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7027 handle_tess_shader_input_decl(state, loc, var);
7028 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7029 handle_tess_ctrl_shader_output_decl(state, loc, var);
7030
7031 for (unsigned i = 0; i < num_variables; i++) {
7032 if (fields[i].type->is_unsized_array()) {
7033 if (var_mode == ir_var_shader_storage) {
7034 if (i != (num_variables - 1)) {
7035 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7036 "only last member of a shader storage block "
7037 "can be defined as unsized array",
7038 fields[i].name);
7039 }
7040 } else {
7041 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7042 *
7043 * "If an array is declared as the last member of a shader storage
7044 * block and the size is not specified at compile-time, it is
7045 * sized at run-time. In all other cases, arrays are sized only
7046 * at compile-time."
7047 */
7048 if (state->es_shader) {
7049 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7050 "only last member of a shader storage block "
7051 "can be defined as unsized array",
7052 fields[i].name);
7053 }
7054 }
7055 }
7056 }
7057
7058 if (ir_variable *earlier =
7059 state->symbols->get_variable(this->instance_name)) {
7060 if (!redeclaring_per_vertex) {
7061 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7062 this->instance_name);
7063 }
7064 earlier->data.how_declared = ir_var_declared_normally;
7065 earlier->type = var->type;
7066 earlier->reinit_interface_type(block_type);
7067 delete var;
7068 } else {
7069 if (this->layout.flags.q.explicit_binding) {
7070 apply_explicit_binding(state, &loc, var, var->type,
7071 &this->layout);
7072 }
7073
7074 var->data.stream = qual_stream;
7075 if (layout.flags.q.explicit_location) {
7076 var->data.location = expl_location;
7077 var->data.explicit_location = true;
7078 }
7079
7080 state->symbols->add_variable(var);
7081 instructions->push_tail(var);
7082 }
7083 } else {
7084 /* In order to have an array size, the block must also be declared with
7085 * an instance name.
7086 */
7087 assert(this->array_specifier == NULL);
7088
7089 for (unsigned i = 0; i < num_variables; i++) {
7090 ir_variable *var =
7091 new(state) ir_variable(fields[i].type,
7092 ralloc_strdup(state, fields[i].name),
7093 var_mode);
7094 var->data.interpolation = fields[i].interpolation;
7095 var->data.centroid = fields[i].centroid;
7096 var->data.sample = fields[i].sample;
7097 var->data.patch = fields[i].patch;
7098 var->data.stream = qual_stream;
7099 var->data.location = fields[i].location;
7100 if (fields[i].location != -1)
7101 var->data.explicit_location = true;
7102 var->init_interface_type(block_type);
7103
7104 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7105 var->data.read_only = true;
7106
7107 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7108 if (state->es_shader) {
7109 var->data.precision =
7110 select_gles_precision(fields[i].precision, fields[i].type,
7111 state, &loc);
7112 }
7113
7114 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7115 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7116 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7117 } else {
7118 var->data.matrix_layout = fields[i].matrix_layout;
7119 }
7120
7121 if (var->data.mode == ir_var_shader_storage) {
7122 var->data.image_read_only = fields[i].image_read_only;
7123 var->data.image_write_only = fields[i].image_write_only;
7124 var->data.image_coherent = fields[i].image_coherent;
7125 var->data.image_volatile = fields[i].image_volatile;
7126 var->data.image_restrict = fields[i].image_restrict;
7127 }
7128
7129 /* Examine var name here since var may get deleted in the next call */
7130 bool var_is_gl_id = is_gl_identifier(var->name);
7131
7132 if (redeclaring_per_vertex) {
7133 ir_variable *earlier =
7134 get_variable_being_redeclared(var, loc, state,
7135 true /* allow_all_redeclarations */);
7136 if (!var_is_gl_id || earlier == NULL) {
7137 _mesa_glsl_error(&loc, state,
7138 "redeclaration of gl_PerVertex can only "
7139 "include built-in variables");
7140 } else if (earlier->data.how_declared == ir_var_declared_normally) {
7141 _mesa_glsl_error(&loc, state,
7142 "`%s' has already been redeclared",
7143 earlier->name);
7144 } else {
7145 earlier->data.how_declared = ir_var_declared_in_block;
7146 earlier->reinit_interface_type(block_type);
7147 }
7148 continue;
7149 }
7150
7151 if (state->symbols->get_variable(var->name) != NULL)
7152 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7153
7154 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7155 * The UBO declaration itself doesn't get an ir_variable unless it
7156 * has an instance name. This is ugly.
7157 */
7158 if (this->layout.flags.q.explicit_binding) {
7159 apply_explicit_binding(state, &loc, var,
7160 var->get_interface_type(), &this->layout);
7161 }
7162
7163 if (var->type->is_unsized_array()) {
7164 if (var->is_in_shader_storage_block()) {
7165 if (!is_unsized_array_last_element(var)) {
7166 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7167 "only last member of a shader storage block "
7168 "can be defined as unsized array",
7169 var->name);
7170 }
7171 var->data.from_ssbo_unsized_array = true;
7172 } else {
7173 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7174 *
7175 * "If an array is declared as the last member of a shader storage
7176 * block and the size is not specified at compile-time, it is
7177 * sized at run-time. In all other cases, arrays are sized only
7178 * at compile-time."
7179 */
7180 if (state->es_shader) {
7181 _mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
7182 "only last member of a shader storage block "
7183 "can be defined as unsized array",
7184 var->name);
7185 }
7186 }
7187 }
7188
7189 state->symbols->add_variable(var);
7190 instructions->push_tail(var);
7191 }
7192
7193 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7194 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7195 *
7196 * It is also a compilation error ... to redeclare a built-in
7197 * block and then use a member from that built-in block that was
7198 * not included in the redeclaration.
7199 *
7200 * This appears to be a clarification to the behaviour established
7201 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7202 * behaviour regardless of GLSL version.
7203 *
7204 * To prevent the shader from using a member that was not included in
7205 * the redeclaration, we disable any ir_variables that are still
7206 * associated with the old declaration of gl_PerVertex (since we've
7207 * already updated all of the variables contained in the new
7208 * gl_PerVertex to point to it).
7209 *
7210 * As a side effect this will prevent
7211 * validate_intrastage_interface_blocks() from getting confused and
7212 * thinking there are conflicting definitions of gl_PerVertex in the
7213 * shader.
7214 */
7215 foreach_in_list_safe(ir_instruction, node, instructions) {
7216 ir_variable *const var = node->as_variable();
7217 if (var != NULL &&
7218 var->get_interface_type() == earlier_per_vertex &&
7219 var->data.mode == var_mode) {
7220 if (var->data.how_declared == ir_var_declared_normally) {
7221 _mesa_glsl_error(&loc, state,
7222 "redeclaration of gl_PerVertex cannot "
7223 "follow a redeclaration of `%s'",
7224 var->name);
7225 }
7226 state->symbols->disable_variable(var->name);
7227 var->remove();
7228 }
7229 }
7230 }
7231 }
7232
7233 return NULL;
7234 }
7235
7236
7237 ir_rvalue *
7238 ast_tcs_output_layout::hir(exec_list *instructions,
7239 struct _mesa_glsl_parse_state *state)
7240 {
7241 YYLTYPE loc = this->get_location();
7242
7243 unsigned num_vertices;
7244 if (!state->out_qualifier->vertices->
7245 process_qualifier_constant(state, "vertices", &num_vertices,
7246 false)) {
7247 /* return here to stop cascading incorrect error messages */
7248 return NULL;
7249 }
7250
7251 /* If any shader outputs occurred before this declaration and specified an
7252 * array size, make sure the size they specified is consistent with the
7253 * primitive type.
7254 */
7255 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
7256 _mesa_glsl_error(&loc, state,
7257 "this tessellation control shader output layout "
7258 "specifies %u vertices, but a previous output "
7259 "is declared with size %u",
7260 num_vertices, state->tcs_output_size);
7261 return NULL;
7262 }
7263
7264 state->tcs_output_vertices_specified = true;
7265
7266 /* If any shader outputs occurred before this declaration and did not
7267 * specify an array size, their size is determined now.
7268 */
7269 foreach_in_list (ir_instruction, node, instructions) {
7270 ir_variable *var = node->as_variable();
7271 if (var == NULL || var->data.mode != ir_var_shader_out)
7272 continue;
7273
7274 /* Note: Not all tessellation control shader output are arrays. */
7275 if (!var->type->is_unsized_array() || var->data.patch)
7276 continue;
7277
7278 if (var->data.max_array_access >= num_vertices) {
7279 _mesa_glsl_error(&loc, state,
7280 "this tessellation control shader output layout "
7281 "specifies %u vertices, but an access to element "
7282 "%u of output `%s' already exists", num_vertices,
7283 var->data.max_array_access, var->name);
7284 } else {
7285 var->type = glsl_type::get_array_instance(var->type->fields.array,
7286 num_vertices);
7287 }
7288 }
7289
7290 return NULL;
7291 }
7292
7293
7294 ir_rvalue *
7295 ast_gs_input_layout::hir(exec_list *instructions,
7296 struct _mesa_glsl_parse_state *state)
7297 {
7298 YYLTYPE loc = this->get_location();
7299
7300 /* If any geometry input layout declaration preceded this one, make sure it
7301 * was consistent with this one.
7302 */
7303 if (state->gs_input_prim_type_specified &&
7304 state->in_qualifier->prim_type != this->prim_type) {
7305 _mesa_glsl_error(&loc, state,
7306 "geometry shader input layout does not match"
7307 " previous declaration");
7308 return NULL;
7309 }
7310
7311 /* If any shader inputs occurred before this declaration and specified an
7312 * array size, make sure the size they specified is consistent with the
7313 * primitive type.
7314 */
7315 unsigned num_vertices = vertices_per_prim(this->prim_type);
7316 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
7317 _mesa_glsl_error(&loc, state,
7318 "this geometry shader input layout implies %u vertices"
7319 " per primitive, but a previous input is declared"
7320 " with size %u", num_vertices, state->gs_input_size);
7321 return NULL;
7322 }
7323
7324 state->gs_input_prim_type_specified = true;
7325
7326 /* If any shader inputs occurred before this declaration and did not
7327 * specify an array size, their size is determined now.
7328 */
7329 foreach_in_list(ir_instruction, node, instructions) {
7330 ir_variable *var = node->as_variable();
7331 if (var == NULL || var->data.mode != ir_var_shader_in)
7332 continue;
7333
7334 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
7335 * array; skip it.
7336 */
7337
7338 if (var->type->is_unsized_array()) {
7339 if (var->data.max_array_access >= num_vertices) {
7340 _mesa_glsl_error(&loc, state,
7341 "this geometry shader input layout implies %u"
7342 " vertices, but an access to element %u of input"
7343 " `%s' already exists", num_vertices,
7344 var->data.max_array_access, var->name);
7345 } else {
7346 var->type = glsl_type::get_array_instance(var->type->fields.array,
7347 num_vertices);
7348 }
7349 }
7350 }
7351
7352 return NULL;
7353 }
7354
7355
7356 ir_rvalue *
7357 ast_cs_input_layout::hir(exec_list *instructions,
7358 struct _mesa_glsl_parse_state *state)
7359 {
7360 YYLTYPE loc = this->get_location();
7361
7362 /* From the ARB_compute_shader specification:
7363 *
7364 * If the local size of the shader in any dimension is greater
7365 * than the maximum size supported by the implementation for that
7366 * dimension, a compile-time error results.
7367 *
7368 * It is not clear from the spec how the error should be reported if
7369 * the total size of the work group exceeds
7370 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
7371 * report it at compile time as well.
7372 */
7373 GLuint64 total_invocations = 1;
7374 unsigned qual_local_size[3];
7375 for (int i = 0; i < 3; i++) {
7376
7377 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
7378 'x' + i);
7379 /* Infer a local_size of 1 for unspecified dimensions */
7380 if (this->local_size[i] == NULL) {
7381 qual_local_size[i] = 1;
7382 } else if (!this->local_size[i]->
7383 process_qualifier_constant(state, local_size_str,
7384 &qual_local_size[i], false)) {
7385 ralloc_free(local_size_str);
7386 return NULL;
7387 }
7388 ralloc_free(local_size_str);
7389
7390 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
7391 _mesa_glsl_error(&loc, state,
7392 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
7393 " (%d)", 'x' + i,
7394 state->ctx->Const.MaxComputeWorkGroupSize[i]);
7395 break;
7396 }
7397 total_invocations *= qual_local_size[i];
7398 if (total_invocations >
7399 state->ctx->Const.MaxComputeWorkGroupInvocations) {
7400 _mesa_glsl_error(&loc, state,
7401 "product of local_sizes exceeds "
7402 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
7403 state->ctx->Const.MaxComputeWorkGroupInvocations);
7404 break;
7405 }
7406 }
7407
7408 /* If any compute input layout declaration preceded this one, make sure it
7409 * was consistent with this one.
7410 */
7411 if (state->cs_input_local_size_specified) {
7412 for (int i = 0; i < 3; i++) {
7413 if (state->cs_input_local_size[i] != qual_local_size[i]) {
7414 _mesa_glsl_error(&loc, state,
7415 "compute shader input layout does not match"
7416 " previous declaration");
7417 return NULL;
7418 }
7419 }
7420 }
7421
7422 state->cs_input_local_size_specified = true;
7423 for (int i = 0; i < 3; i++)
7424 state->cs_input_local_size[i] = qual_local_size[i];
7425
7426 /* We may now declare the built-in constant gl_WorkGroupSize (see
7427 * builtin_variable_generator::generate_constants() for why we didn't
7428 * declare it earlier).
7429 */
7430 ir_variable *var = new(state->symbols)
7431 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
7432 var->data.how_declared = ir_var_declared_implicitly;
7433 var->data.read_only = true;
7434 instructions->push_tail(var);
7435 state->symbols->add_variable(var);
7436 ir_constant_data data;
7437 memset(&data, 0, sizeof(data));
7438 for (int i = 0; i < 3; i++)
7439 data.u[i] = qual_local_size[i];
7440 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
7441 var->constant_initializer =
7442 new(var) ir_constant(glsl_type::uvec3_type, &data);
7443 var->data.has_initializer = true;
7444
7445 return NULL;
7446 }
7447
7448
7449 static void
7450 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
7451 exec_list *instructions)
7452 {
7453 bool gl_FragColor_assigned = false;
7454 bool gl_FragData_assigned = false;
7455 bool gl_FragSecondaryColor_assigned = false;
7456 bool gl_FragSecondaryData_assigned = false;
7457 bool user_defined_fs_output_assigned = false;
7458 ir_variable *user_defined_fs_output = NULL;
7459
7460 /* It would be nice to have proper location information. */
7461 YYLTYPE loc;
7462 memset(&loc, 0, sizeof(loc));
7463
7464 foreach_in_list(ir_instruction, node, instructions) {
7465 ir_variable *var = node->as_variable();
7466
7467 if (!var || !var->data.assigned)
7468 continue;
7469
7470 if (strcmp(var->name, "gl_FragColor") == 0)
7471 gl_FragColor_assigned = true;
7472 else if (strcmp(var->name, "gl_FragData") == 0)
7473 gl_FragData_assigned = true;
7474 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
7475 gl_FragSecondaryColor_assigned = true;
7476 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
7477 gl_FragSecondaryData_assigned = true;
7478 else if (!is_gl_identifier(var->name)) {
7479 if (state->stage == MESA_SHADER_FRAGMENT &&
7480 var->data.mode == ir_var_shader_out) {
7481 user_defined_fs_output_assigned = true;
7482 user_defined_fs_output = var;
7483 }
7484 }
7485 }
7486
7487 /* From the GLSL 1.30 spec:
7488 *
7489 * "If a shader statically assigns a value to gl_FragColor, it
7490 * may not assign a value to any element of gl_FragData. If a
7491 * shader statically writes a value to any element of
7492 * gl_FragData, it may not assign a value to
7493 * gl_FragColor. That is, a shader may assign values to either
7494 * gl_FragColor or gl_FragData, but not both. Multiple shaders
7495 * linked together must also consistently write just one of
7496 * these variables. Similarly, if user declared output
7497 * variables are in use (statically assigned to), then the
7498 * built-in variables gl_FragColor and gl_FragData may not be
7499 * assigned to. These incorrect usages all generate compile
7500 * time errors."
7501 */
7502 if (gl_FragColor_assigned && gl_FragData_assigned) {
7503 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7504 "`gl_FragColor' and `gl_FragData'");
7505 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
7506 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7507 "`gl_FragColor' and `%s'",
7508 user_defined_fs_output->name);
7509 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
7510 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7511 "`gl_FragSecondaryColorEXT' and"
7512 " `gl_FragSecondaryDataEXT'");
7513 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
7514 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7515 "`gl_FragColor' and"
7516 " `gl_FragSecondaryDataEXT'");
7517 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
7518 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7519 "`gl_FragData' and"
7520 " `gl_FragSecondaryColorEXT'");
7521 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
7522 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
7523 "`gl_FragData' and `%s'",
7524 user_defined_fs_output->name);
7525 }
7526
7527 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
7528 !state->EXT_blend_func_extended_enable) {
7529 _mesa_glsl_error(&loc, state,
7530 "Dual source blending requires EXT_blend_func_extended");
7531 }
7532 }
7533
7534
7535 static void
7536 remove_per_vertex_blocks(exec_list *instructions,
7537 _mesa_glsl_parse_state *state, ir_variable_mode mode)
7538 {
7539 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
7540 * if it exists in this shader type.
7541 */
7542 const glsl_type *per_vertex = NULL;
7543 switch (mode) {
7544 case ir_var_shader_in:
7545 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
7546 per_vertex = gl_in->get_interface_type();
7547 break;
7548 case ir_var_shader_out:
7549 if (ir_variable *gl_Position =
7550 state->symbols->get_variable("gl_Position")) {
7551 per_vertex = gl_Position->get_interface_type();
7552 }
7553 break;
7554 default:
7555 assert(!"Unexpected mode");
7556 break;
7557 }
7558
7559 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
7560 * need to do anything.
7561 */
7562 if (per_vertex == NULL)
7563 return;
7564
7565 /* If the interface block is used by the shader, then we don't need to do
7566 * anything.
7567 */
7568 interface_block_usage_visitor v(mode, per_vertex);
7569 v.run(instructions);
7570 if (v.usage_found())
7571 return;
7572
7573 /* Remove any ir_variable declarations that refer to the interface block
7574 * we're removing.
7575 */
7576 foreach_in_list_safe(ir_instruction, node, instructions) {
7577 ir_variable *const var = node->as_variable();
7578 if (var != NULL && var->get_interface_type() == per_vertex &&
7579 var->data.mode == mode) {
7580 state->symbols->disable_variable(var->name);
7581 var->remove();
7582 }
7583 }
7584 }